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Benchmark for Bimanual Robotic Manipulation
of Semi-Deformable Objects

Konstantinos Chatzilygeroudis
Kunpeng Yao

Abstract—We propose a new benchmarking protocol to evaluate
algorithms for bimanual robotic manipulation semi-deformable
objects. The benchmark is inspired from two real-world applica-
tions: (a) watchmaking craftsmanship, and (b) belt assembly in
automobile engines. We provide two setups that try to highlight the
following challenges: (a) manipulating objects via a tool, (b) placing
irregularly shaped objects in the correct groove, (c¢) handling semi-
deformable objects, and (d) bimanual coordination. We provide
CAD drawings of the task pieces that can be easily 3D printed
to ensure ease of reproduction, and detailed description of tasks
and protocol for successful reproduction, as well as meaningful
metrics for comparison. We propose four categories of submission
in an attempt to make the benchmark accessible to a wide range of
related fields spanning from adaptive control, motion planning to
learning the tasks through trial-and-error learning.

Index Terms—Performance evaluation and benchmarking,
dual arm manipulation, model learning for control, dexterous
manipulation.

1. INTRODUCTION

VARIETY of industrial tasks are still performed by hu-

mans today, as they require high-level precision and dex-
terity not yet available in robots. These tasks require the use
of prehensile instruments, such as screwdrivers or tweezers,
to grasp, insert, and manipulate tiny and deformable objects.
Examples of such tasks are common in watchmaking crafts-
manship, where both assembling and screwing are the core
actions in the whole process, and in pharmaceutical industry,
to handle pipettes and vials. There is interest to automatize
parts of these tasks [1]. Such precise manipulation can also be
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(a) Plate assembly in
watchmaking
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industry
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(d) Belt assembly in benchmark

(c) Plate assembly in benchmark

Fig. 1. Benchmark tasks: inserting the watch plate (left) and assembling a
rubber belt (right), in an real world scenario (top) and in the benchmark setup
(bottom).

found in automotive industry, such as when assembling a fuse
box, a task considered for robotization recently, as in [2]. These
manipulations often require coordinated motion of two or more
end-effectors, where at least one holds the piece in place while
the others proceed to execute. The tasks are made particularly
difficult as the objects being manipulated may have complex
shapes, and accurate models of the piece may not be available.
Moreover, these very small objects are often fragile and can
easily deform or break. Balanced and precise control of force and
position in coordination is hence crucial. In highly precise tasks
such as those, perception may suffer from low signal/noise ratio.
To achieve high level of dexterity in these tasks often requires
extensive human training.

For robots to start tackling these tasks, they should be
equipped with similar level of dexterity. We propose a bench-
mark to assess level of coordinated control of motion in force
and position across two robotic arms, and ability to cope with
sensori-motor noise. Furthermore, the benchmark assesses per-
formance of learning algorithms to empower robots with such
skills, in an attempt to address the need for a generalized frame-
work for research in robotics [3], [4].

Taking this into consideration, we propose a benchmark for
bimanual manipulation and propose two tasks: 1) a realistic
replication of a watchmaking insertion step, (see Fig. 1(a)); 2)
a replication of manipulation of rubber bands around gears (see
Fig. 1(b)). For the robotic implementation of the benchmarks
first task, we offer to use a watch mechanism and its winding
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components in two scaled-up versions. For the sake of easy
accessibility to the benchmark setup, we provide a CAD model
of the objects considered for simulation, which is reproducible
with 3D printing technologies. As object of choice for the
first task, we consider an eccentric shaped object with a semi-
deformable part, namely the watch plate: a metal plate with
an irregular shape and an elongated, bendable leg that needs
to be clipped in place as a second step of the assembly.
In the second task, we use a rubber band which undergoes
elastic deformations during placement around the support’s
pegs.

The complexity of the tasks lies in the need to determine
the correct orientation prior to insertion (in the first task), the
right sequence of actions for bimanual control, and the right
amount of force for final insertion/or during manipulation (for
the second task). While these may be determined by hand
after careful tuning, uncertainties still exist due to poor visual
tracking (especially due to occlusion when holding the piece
or the rubber band in the robot’s end-effector) and poor con-
trol of force. Such partial knowledge of the environment and
imprecise perception may be overcome with machine learning
algorithms, which provides a framework that uses previously
acquired experience and possibly takes advantage of noisy
expert demonstrations. Hence, this makes the task an inter-
esting example where learning can be applied to determine
these parameters automatically. Therefore, the benchmark also
serves as a test-bed to compare different machine learning ap-
proaches to achieve multi-arm manipulation of semi-deformable
objects.

II. RELATED WORK

Previous large-scale testing of assembly and bimanual co-
ordination algorithms were organized as challenges, such
as the ARM-S project of DARPA described in [5], where
teams had to perform grasping and manipulation tasks, or the
RoboCup@Work [6], a competition on advanced manipulations
in industrial applications. Nonetheless, the number of available
benchmarks that the community is using is limited [4]. Another
example is given by Fan ez al. in [ 7], which proposes a framework
for manipulation (bimanual peg-in-hole, nut-and-peg assembly,
etc.) and for Reinforcement Learning (RL) algorithms. However,
the benchmark is only in simulation, and the objects considered
are all rigid bodies.

Here, we propose a real-world benchmark that attempts to
replicate main challenges faced in two real-world applications.

A. Manipulation Under Uncertainty

Manipulation and assembly of objects has been widely stud-
ied, more notably in the cases of Peg-in-Hole, which may already
be tackled in setups considering rigid bodies [4], [8]. Typical
approaches to this problem handle uncertainties by either ex-
ploiting compliance [9]-[11] or using force feedback [12], [13].
Although the Peg-in-Hole scenario has a wide range of solu-
tions, there is no available framework to test methods involving
complex-shaped pegs so far. In fact, despite the propositions
in [9], [14], [15] which consider atypical pegs, the materials
and shapes of the objects analyzed are widely different. A
comparison is thus impossible, as the difference in clearance
and hardness of the surfaces change the nature of the assembly
task (see [16]).
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B. Bimanual Coordination

Multi-arm coordination is of importance in our case, since
the proposed benchmark requires cooperation between multiple
arms for the stability of the insertion and assembly task. It
is represented by an asymmetrical task, where each limb has
different motor outputs coordinated in order to achieve the
goal. Such asymmetrical coordination has been studied less
frequently in the past than the coordination of limbs performing
similar motions (e.g., walking or typing), as discussed in [17].
Nonetheless, research on the topic in [18] has shown that in
humans the non-dominant hand uses position control, and the
dominant hand uses force control; this is mirrored in the task
we propose, where one arm stabilizes the watch face while the
dominant arm performing the actual assembly requiring force
precision.

C. Deformable Objects Manipulation

Manipulation becomes more challenging when the objects
are deformable, mainly due to the infinite degrees of freedom
in objects’ shape, which result in huge uncertainties during
manipulation. It is the case for part of the presented task, which
is classified as a deformable linear object manipulation problem
in a recent survey by Sanchez et al. [19] that divides approaches
by type of object manipulated and by goal (deformation sensing,
grasping or object-specific goals).

Tasks involving manipulation of rubber bands have been
already considered by the community, as in [20] for optimal
motion planning using a precise deformation model. And while
Jimenez et al. [21] survey more model-based algorithms for de-
formable objects manipulation planning, uncertainties can also
be handled differently. For example, [22] targets manipulation
without prior knowledge of the deformable objects, and [23]
does not require the simulation or modeling of the deformation.
Furthermore, Zhu et al. [24] propose a framework to reduce
the uncertainty in the manipulated deformable object by taking
advantage of environment contacts in the task of routing a cable.

Finally, although machine learning approaches can be used to
tackle this issue, this project still deserves further exploration.
Nonetheless, an interesting take on the matter has been intro-
duced in [25], [26], where a policy for cloths manipulation is
learned via RL, with the latter also discussing the transfer from
simulation to the real world.

D. Machine Learning Approaches

As previously mentioned, issues related to uncertainties and
missing knowledge of the environment may be solved with
the use of machine learning algorithms. Zhu et al. survey
in [27] the approaches to learn the assembly task using Learning
from Demonstration, from either kinesthetic, motion-sensor or
teleoperated demonstrations. Other works have instead taken
advantage of RL, as discussed above for cloth manipulation
in [25], [26], for peg-in-hole assembly in [28], [29], and for
other complex manipulations in [30], [31].

III. THE BENCHMARK

As stated in the introduction, the benchmark consists of
two (2) independent tasks: (a) the watchmaking task, and (b)
the rubber-band task. The benchmark accepts submissions for
approaches that fall in any of the following four categories:
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e Adaptive Control (AC): in this case, the optimal plan (in
kinematic space) to solve the task is assumed to be given
and the goal is to find a control algorithm that is able to find
the force profiles and adapt to the noisy observations of the
computer vision part. No data-driven method is allowed in
this category.

® Motion Planning (MP) Under Uncertainty: in this case, the
goal is to find a working plan (not given) to solve the task
with the ability of handling the uncertainty that comes from
the computer vision estimation. No data-driven method is
allowed in this category.

e Offline Learning (OFL): in this case, the optimal plan
(in kinematic space) to solve the task is assumed to be
given or not (this is up to the users to decide; different
leaderboards are available per case) and the goal is to find
a data-driven algorithm that is able to reliably solve the
tasks. In this category, all the learning must be offline,
that is, performed only once with the collected real-world
samples. Combination of learning methods with motion
planning algorithms is allowed.

® Online Learning (ONL): in this case, the goal is to propose
a trial-and-error learning algorithm that is able to find
a working controller (or policy) that can reliably solve
the tasks despite the noisy observations. The algorithm is
expected to interact with the system and improve over time.
The final optimized controller/policy is evaluated.

Rules and constraints per category are described in the indi-
vidual tasks. The benchmark requires at minimum (a) 4 degrees
of freedom robotic arms and (b) availability of a set of cameras
(different number for each setup) to track the main object parts.
Next, we briefly describe the set-up and baseline for each task.
Detailed information is available in the benchmark website! and
the attached protocol descriptions.

A. Watchmaking Task

This task consists in completing one step of the assembly of a
typical watch, namely inserting the plate, using a dual-arm robot
system holding the required tools at their end-effector. This task
poses the following main challenges to robotic systems:

e Manipulating objects via a tool;

¢ Placing an irregularly shaped object (the plate) in the
correct groove that requires millimeter accuracy control;

¢ Handling a semi-deformable object: the plate’s leg;

e Multi-arm coordination: one arm stabilizing the system,
and the other(s) performing the leg’s bending and final plate
insertion.

The plate is semi-deformable, and it necessitates bending in
order to put it in place. Additionally, its small size requires the
usage of a second tool to keep the object stable. The tools that
are used in the actual setup are: the tweezers, a screw driver and
awooden tool. The task should be performed by a pair of robotic
arms as follows:

One arm holds/supports the tweezers at its end-effector, while
the other arm holds/supports the stick (or similar tool) at its end-
effector. At onset, the plate is already held stiffly in the tweezers
(i.e. the robot does not have to pick it up).> The arms must insert
the plate in the correct location/groove on the watch face. This

Uhttps://www.epfl.ch/labs/lasa/sahr/benchmark
2Picking it up could be a nice extension of the benchmark.
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Fig. 2.
bigger.

Scaled-up watches 3D printed from CAD drawings: 3.5x and 5.8 x

requires orienting the piece correctly and then bending its leg
to stay in place.

In order to evaluate the robustness of the proposed methods,
the task needs to be performed for three (3) different watch face
orientations and replicated five (5) times per orientation for each
watch scale.

Watch Pieces: The real watch from which this task is in-
spired is quite small with a diameter of 37 mm. While, in the
long run, many commercial solutions will be offered to robotic
arms precise enough to manipulate such small object, it is not
realistic to expect many labs to have such highly precise robots
today. Hence, to avoid any additional challenge to an already
difficult problem, we propose to use scaled-up versions of the
parts. To this end, we have devised two different scaled-up
versions: (a) around 3.5, and (b) 5.8 bigger than the actual
one (see Fig. 2). These ratios are computed such that standard
components like screws are available for the scaled-up watch.
Furthermore, to increase reproducibility, we provide the CAD
files of the parts in the original and the two scaled-up versions.
We expect the potential users of the benchmark to 3D print them
using technologies similar to FDM for watchface (black material
in Fig. 2) and SLA for other components (white material in
Fig. 2). Choosing 3D printing technologies depends on users
preference and potential; however, the only constraint is that the
technology must have precision up to 1 mm for watchface and
0.5 mm for other components.

Tools: The usage of the tweezers is essential for humans
when they perform the task with the actual watch (that is, the
original small size), as fingers are too big to hold the object,
and skin contact with the watch has to be avoided to prevent
contamination. However, given that we use scaled-up versions
for the robotic implementation, it may be sufficient to use a
standard robotic gripper to replace the tweezer. We let users
decide if they want to opt for that solution or they wish to
have a tweezer mounted on the robot’s end-effector. Whichever
solution is chosen, we set only as constraint that the tool at
the end-effector have the following characteristics: (a) it only
has two legs, and (b) it only has one translational degree of
freedom; hence it can only “pinch”. Regarding the second tool,
users are allowed to use any “stick-like” tool suited to the size of
their robotic set-up. The “stick” should not be actuated (i.e. no
degree of freedom) and hence only extend the tip of the robot,
in a similar fashion to the wooden tool held in hand.
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(a) Initial state

Fig. 3.  Elastic rubber-band task: steps to accomplish the task.

Setup Details: In this benchmark, we want to focus on the ma-
nipulation part of the task. Thus, to remove potential irrelevant
differences, we provide a computer vision (CV) setup to estimate
the location of the robots and the watch parts that is based on
one RGB camera and ChArUco markers,? and we expect all
participants to use it (see Sec. IV). Also, since the predictions
are noisy, using this computer vision setup also allows us to
assess uncertainty handling algorithms.

Available Information: For all four categories of submis-
sions, the users are expected use our CV setup to get the
estimated poses of the watch parts. In the OFL and ONL cases,
users can choose to disregard this setup and use up to one RGB
camera feedback (that can either be fixed or mounted on the
end-effector of one of the arms) provided that they do not use
any hand-crafted computer vision algorithm to track the objects.
In other words they are only allowed to use it as a raw sensor
observation as input to the algorithm; they can also use both the
provided CV setup and the raw image data if they wish.

Users can also use (if needed) the kinematic and dynamic
models of the robotic manipulators as well as the rigid body
version of the watch parts. Additionally, the information that the
leg of the plate is semi-deformable can be exploited, although
the an actual deformation model should not be available (it can
be learned or estimated though).

B. Rubber-Band Task

This task consists in manipulating an elastic rubber-band to
create a specific shape on a board with sticks (see Fig. 3).
Manipulating the rubber-band requires a control strategy that
takes into account the forces generated, which adds one more
challenge to the benchmark. The task should be performed by a
pair of robotic arms as follows:

One arm holds/supports the tweezers (or similar tool) at its
end-effector, while the other arm uses a gripper to stabilize the
system. The rubber band is already placed on the board in the
initial shape. The arms must manipulate the rubber-band in
order to achieve a specific shape on the board.

In order to evaluate the robustness of the proposed methods,
the task needs to be performed for three (3) different board
orientations and replicated five (5) times per orientation.

Required Parts: For completing the task, one needs the
specific board model and a rubber band. Details about the
specifications of the rubber band can be found in the benchmark
website. Again, to increase reproducibility and ease the 3D
printing process, we provide the CAD files of the board along
with physical properties.

3https://docs.opencv.org/4.1.0/d9/d6a/group__aruco.html

(b) First part
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Tools: The usage of the tweezers might make the handling of
the elastic rubber band easier. However, it may be sufficient to
use a standard robotic gripper to replace the tweezer. As in the
previous task, we let users decide which option they prefer, and
we still impose the same “pinch” constraint on the end-effector
tool. These constraints apply for both arms.

Setup Details: Similarly to the previous task, we provide a
CV setup to estimate the location of the robots, the board and the
location and shape of the rubber-band that is based on two RGB
camera and ChArUco markers, and we expect all participants to
use it (see Sec. IV).

Available Information: The available information that is
given/permitted as input to the algorithms follow the same rules
as in the previous task.

IV. TRACKING THE OBJECTS AND ROBOTS
WITH COMPUTER VISION

As described above, we provide a computer vision setup and
methods to construct coordinate systems for each robot arm and
the watch base using ChArUco markers. ChArUco markers are
the combination of ArUco markers and chessboard pattern. They
can be easily detected by cameras and provide better estimation
of position than purely using ArUco markers. We use the python
version of OpenCV [32] to implement the tracking algorithm.

In our setup, ChArUCo markers are placed at each corner
of each robot arm base. Thus, a collection of four markers are
used for each robot arm. Another collection of four markers are
placed on the watch base to track its location, and a ChArUco
chessboard is placed on the table for easier combination of ref-
erence frames. Each marker has to be perfectly flat for accurate
detection of position. We require one RGB camera placed in
a manner that all markers are visible within its point of view
(see Fig. 4). For the second task, we require an additional RGB
camera that observes the workspace from above and tracks the
position/shape of the rubber band.

Assuming that the four markers at the base of each robot arm
form a perfect square, we construct the coordinate system for
each robot arm as follows: the origin is located at the center of
the four markers. The x-axis points towards a specific marker
(different for each robot), and the z-axis points up towards the
ceiling. A similar method is applied to construct the coordinate
system of the watch base or the board. We also use a ChArUco
chessboard to make the calculations easier.

Having created the coordinated frames for each robot and the
watch face (or the board) with respect to the camera’s frame, we
are able to compute transformations between any two frames
and thus get an estimated position of the watch face with respect
to the right robot, for example. The precision accuracy of the
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Fig. 4.

Experimental setup with ChArUco markers.

system in our experiments is around 2-4 cm, which is small
enough to be corrected or used in algorithms, but big enough
to not allow the tasks to be performed as is, as they require
millimetric precision to be performed.

V. EVALUATION PROTOCOL

In this section, we describe the evaluation protocol that quan-
tifies the performance of the system in completing the tasks.
We expect potential users of the benchmark to report the perfor-
mance metrics of their approach per sub-task: (a) watchmaking
task with big watch, (b) watchmaking task with small watch, (c)
rubber band task. Additionally, the users are expected to report
their robotic setup, but also the pipeline of their approach (e.g.,
whether they used some simulator or not). We define two (2)
global metrics that apply to all the submission categories, but
also per category metrics:

¢ Global:

- Success rate metric (G1);
- Normalized average completion time (G2).

e OFL Metrics:

- Normalized number of offline real-world samples needed
to create the datasets and/or models (A1);
- Normalized model learning time (A2).

e MP Metric:

- Normalized average time needed for the planner to output
the plan (M1).

e ONL Metrics:

- Normalized interaction time needed to train the solution
controller (T1);
- All OFL metrics (if used).

The total score of the benchmark (for comparison reasons),
Shenchmark, 18 @ weighted sum over all sub-tasks and scores.
We also define a few offline sub-metrics that should help in
identifying what went wrong in cases of failure. We set N = 5
the number of repetitions and J = 3 the number of different
initial orientations, and we give the metrics as follows.

A. Global Metrics

The global metrics aim at evaluating how fast and robust the
solutions of the proposed methods are.
G1 - Success rate metric:

Sy S b

Sagi = N7

(D
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G2 - Normalized average completion time:

2Ly S (fmax — 1)
NJtmax

where b;; is a binary value determining if the i-th repetition for
j-th initial orientation was successful, Z;; is the time needed to
complete the task in the i-th repetition for j-th initial pose, and
tmax = 60 is the maximum time allowed to perform the task
(i.e.,if t;; > 60s, then t;; = 605).

Ser = (2)

B. Offline Learning Metrics
A1 - Normalized number of offline real-world samples:

kmax - k
Sat = ——— 3)

kmax
A2 - Normalized model training time:

train train
plrain g

max
Sar = train
max

“

where k, t"i" are the number of samples needed to create the
datasets and the time to train the models respectively, ky.x =
10000 is the maximum number of offline samples, and 0 =
1800 s is the maximum time for model training.

C. Motion Planning Metric
M1 - Normalized average planning time:

N J it It
iz D (Pinax — 155")

plan
tmax

SM] =

)

where tf;-an the time the planner took to output a result in the i-th

repetition of the j-th initial orientation, and P10 _ 1800 s is the
maximum time available for a planner to output a result.

D. Online Learning Metric
T1 - Normalized interaction time:
tte _ tte

St= e (6)

max

where ' is the interaction time needed to learn a controller

for the task [33], and ¢, = 1800s is the maximum allowed

interaction time to solve a task.
E. Total Score

The total score is computed as a weighted sum over all sub-
tasks and scores:

Sbenchmark
= wo(S& + SG) +wi(SK + Sky + Swy + ST (D)

where m = {watchpig, Watchgy,y, rubber}, wo = 0.25 and w,
adapts depending on the submission category.

E Sub-Metrics

These additional metrics make it easier to identify which parts
were problematic in cases of failure:
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e 6D pose tracking accuracy: with this metric, we assess
the ability of the robotic system and the controller to
achieve 6D poses with millimeter accuracy. We provide
a protocol to use the proposed controller to achieve six
different end-effector poses, and we measure the distance
from the desired pose. The score is defined as follows (the
smaller the better):

6 . )
Zi:l Hpéesired — pzctuaIH (8)
6

where Pyegireq 19 the desired end-effector pose, and p, .y, 1S
the actual end-effector pose achieved. We take the differ-
ence both in translation and orientation. For the orientation,
we use the angle-axis representation.

e Safe dual-arm end-effector tracking: the robots are given
end-effector targets that would lead to a collision using
a simple PD-controller, and we measure the following
quantities: (a) time in collision, (b) target goal (last point
in the path) accuracy. The score is defined as follows (the
smaller the better):

Strack =

2
2i=1

tiol | |p(l;le251red — péctual | | (9)

where % is the time in seconds that the robots collided (¢
iterates over the robots).

* Force application: with this metric, we measure the ability
of the controller to apply contact forces in specific direc-
tions while maintaining good tracking of the desired end-
effector pose. This metric requires a force-torque sensor
to be mounted on the end-effector of one of the robots.
One of the robots is given two desired end-effector poses
and desired forces to apply. We let the system run for T’
seconds, and we measure the average error in force and
final end-effector pose error (the smaller the better):

S, safe —

2 i i i
Zi:l Favgferror‘ |pdesired ~ DPactual ||
2
These metrics are not compulsory, but we strongly encourage

potential participants to use them, as they provide useful insights
on what is working well or not.

Sforce = ( 1 0)

VI. BASELINES

We devise three (3) baseline methods: one for the AC and two
for the OFL category of the benchmark. Before moving on to
each baseline method, we first describe the low-level controller
of our dual-arm robot system.

Dual-Arm Centralized Control: In order to safely control
both manipulators, we consider both of them as a single robot and
perform Quadratic Programming (QP) based inverse kinematics
control in order to find the joint commands to achieve desired
end-effector poses (see [34] for more details).

Apart from the end-effector target poses and to ensure that the
end-effectors paths generated by the QP solver are collision free,
we devise a set of sub-goals for each body part of each robot.
These sub-goals produce a velocity opposite in direction to any
link of the other robot, and thus creating a velocity field that
repulses the robots away from each other. To make a compromise

between accuracy and safety, the magnitude of these velocities

. . ) _ (.5 dist
are defined with an exponential function as v = e 0-542 , where

th is the minimum allowed distance between the robot links, and
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dist is the distance between the COM of the links. Using this
control scheme, we are able to control the robots to millimeter
accuracy while maintaining safety and getting collision-free
paths.

A. Adaptive Control Baseline

For this baseline, we make the assumption that the tracking
system provides us with perfect measurements and thus a set of
waypoints for the end-effector of each arm is enough such that
the task can be accomplished. The main intuition behind this
baseline is, that if we are given the physical properties of the
objects (at least as rigid bodies) and the tracking of the objects
is good enough, then we should be able to directly solve the tasks
in position control and simple planning.* Of course, in reality
(a) we do not have perfect tracking, and (b) we do not know
the exact physical properties of the objects as some of them are
semi-deformable.

We use our centralized QP control scheme and a set of prede-
fined waypoints (along with timings) that are defined for each
end-effector with respect to the local coordinate frame of the
watch face or the board (we do this in order to generalize to new
poses of the watch face/board). In essence, each robot, j, needs

to achieve a set of end-effector goals G/ wherei = 1... N. j and
N is the number of goals of robot j. We additionally give a time

duration, tj , for each sub-goal after which the robot moves on
the next desired waypoint.

B. Offline Learning Baseline #1

In this baseline, we assume that the plan to solve the task is
given. The main idea behind our machine learning baseline is to
assume that we have access to an accurate tracking system (e.g.,
motion capture system) only during training, but not at the time
of evaluation, and try to correct the transformations provided by
the computer vision algorithm.

To do so, we put motion capture markers on the robots, the
watch face/board and the chessboard. We are now able to connect
the predictions of the computer vision pipeline with the ones
from the motion capture by using the ChArUco chessboard
as the connection. Once the motion capture and the computer
vision estimations can be combined, we collect samples of the

following form: (T?,Tg), where Tg( is the pose of the X
with respect to the ChArUco chessboard frame given by the
computer vision system, and T}g is the transformation needed
to go from the computer vision estimation of the pose of X to
the motion capture estimation of the same pose. X takes the
following values: (a) right robot, (b) left robot, and (c) watch
face or board.

Once we collect a few of these samples, we use Gaussian

processes (GP) to learn the mappings® 7T : T? — T§ (we refer

the reader to [35] for more details about GP regression).6
Using the learned GP models during evaluation, we only need

computer vision without the help of a motion capture system.

Thus, each time we query for the pose of the watch face or

4This baseline is not really an adaptive control one, but it fits under the
requirements of the category.

3We model an isometry transformation by a 3D translation and an axis-angle
representation for the orientation.

OWe used the limbo [36] library for the implementation.
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TABLE I
BASELINE RESULTS FOR THE WATCHMAKING TASK. THE VALUES ARE
AVERAGED OVER THE TWO DIFFERENT SCALES FOR BREVITY

Score | AC Mocap | AC | OFL#l | OFL#2

Gl | 08 | 0| 06 | 04
G2 | 073 | 0 | 066 | 064
Al | - | - | 098 | 088
A2 | - | - | 095 | 092

the board, we apply the correction given by the GP model to
the computer vision estimated pose. Since the optimal plan is
assumed to be available, we use our centralized QP control
scheme to follow it.

C. Offline Learning Baseline #2

In this baseline, we assume that the plan to solve the task
is not given and that human teleoperated demonstrations of the
full task are provided. During the demonstration, end-effector
positions and orientations of both robotics arms are recorded.

Once we get the demonstration data, we seek to find the set of
waypoints that the robot has to follow in order to complete the
task. For this reason, we assume that the desired behavior can be
model as multiple-attractor dynamical system. In order to cluster
the different sub-dynamics and extract the relative attractors
(or waypoints), we take advantage of a graph-based kernel
Principal Component Analysis algorithm. Having identified the
waypoints the robots need to follow, we use our centralized QP
control scheme to do so and the correction models to correct the
computer vision estimations.

VII. BASELINE RESULTS

We provide baseline results only for the first task of the
benchmark (i.e., watchmaking). We also provide an example
solution of the second task using teleoperation for clarity (refer
to the supplementary video or the benchmark website).

A. Adaptive Control Baseline

To showcase the importance of our benchmark, we devise two
sets of evaluation tests for the AC baseline. In the first set, we
assume the access to a motion capture system that gives accurate
poses of the objects and the robots positions up to less than 1 mm.
In the second set, we use exactly the same algorithm but with
the computer vision system.

The results of these experiments are depicted in Table I (AC
Mocap and AC columns). We can see that when having perfect
knowledge, the AC baseline performs very well; it fails only
about 20% of the time, that is around 6 times over the 30
replications (due to the small inaccuracies that accumulate from
the motion capture system and the controller), and takes around
18 s for each execution. On the contrary, because of the noisy
signal coming from computer vision, this baseline fails every
time in the actual setup of the benchmark.

B. Offline Learning Baseline #1

We used 200 offline samples to learn the correcting trans-
formations in our OFL#1 baseline. Overall the OFL#1 baseline
improves performance significantly when compared to the AC
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Fig. 5. Example of extracted waypoints (shown as rhombs) from a demon-
strated trajectory.

one: it fails 40% of time, and takes around 20 s to complete the
task. Moreover since it only uses 200 offline samples it is fast to
compute (around 100 s) and achieves high A1 and A2 scores.

The baseline used here follows the spirit of Simulation-To-
Real approaches [37]. Simulation-To-Real approaches use a
simulator, where ground truth is easily accessible, to learn a
robust policy. This requires less knowledge of the real-world
at evaluation time. Similarly, our approach uses a “lab setup”
where a motion capture is available but relies only on the noisy
computer vision estimate at the evaluation step.

C. Offline Learning Baseline #2

Using just one (1) demonstration, our OFL#2 baseline was
able to extract the waypoints for controlling the robots (one
example is shown in Fig. 5). The results are worse than the
OFL#1 baseline, but much better than the AC one. In particular,
the OFL#2 baseline succeeds around 40% of the time and has
equivalent scores with the OFL#1 baseline in the rest of the
scores (a small decrease in the samples complexity since the
demonstrated trajectory consisted of 1000 samples). The reason
for the decreased success rate is the fact that the waypoints
we get from the data-driven approach can easily deviate a few
millimeters from the optimal ones, and this precision is crucial
for completing the task.

VIII. CONCLUSION

Our benchmark aims to support future advances on dexterous
manipulation and bimanual coordination with semi-deformable
objects. To recall, we provide four submission categories (or
versions) in an attempt to make the benchmark accessible to a
wide range of related fields spanning from adaptive control to
trial-and-error learning.

Our baseline experiments showcase that uncertainty in the
tracking of the environment, partial knowledge about the phys-
ical and dynamical properties of the objects, and precise force
control are the main challenges to be tackled by the methods
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that will participate in this benchmark. The experiments also
revealed that our benchmark tasks are practical, but also require
algorithmic or theoretical advances in order to be fully solved.
Our setup, metrics and sub-metrics make the benchmark acces-
sible to a wide range of research areas, and we hope that it will
generate impactful research papers.
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