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Abstract (French)

La reconstruction stéréoscopique consiste à retrouver une structure 3D à partir d’une paire

d’images de la scène, obtenues depuis des angles différents. Ce problème est étudié depuis

des décennies, et de nombreuses méthodes ont été développées avec succès.

Le désavantage principal de ces méthodes est qu’elles utilisent généralement une seule source

d’information à propos de la profondeur, telle que la parallaxe, le flou de défocalisation ou

l’ombrage, et pour cette raison elles ne sont pas aussi robustes que le système visuel humain

qui repose sur un éventail d’indices monoculaires et binoculaires. La raison principale en est

qu’il est trop difficile de concevoir manuellement un modèle utilisant de multiples sources

d’informations à propos de la profondeur. Dans ce travail, nous abordons ce problème en

nous concentrant sur les méthodes stéréoscopiques utilisant de l’apprentissage profond qui

peuvent, à partir des données accompagnées de la vérité terrain concernant la profondeur,

directement produire un modèle combinant des sources d’informations multiples.

Toutefois, la complexité des méthodes d’apprentissage profond exige des ensembles

d’apprentissage de très grandes tailles, accompagnés de la vérité terrain, ce qui est très souvent

difficile ou coûteux à obtenir. De plus, même quand la vérité terrain est disponible, elle est très

souvent contaminées avec des bruits qui réduisent l’efficacité de l’apprentissage supervisé.

Dans le Chapitre 3 de ce manuscrit, nous démontrons qu’il est possible d’atténuer ce problème

en utilisant un apprentissage faiblement supervisé qui utilise des contraintes géométriques

du problème au lieu de la profondeur réelle.

Outre un ensemble d’apprentissage de grande taille, les méthodes stéréoscopiques profondes

ne sont pas utilisables pour autant d’applications que les méthodes traditionnelles. Elles

demandent une capacité mémoire importante, et leur plage de disparité est fixée au moment

de l’apprentissage. Dans le Chapitre 4 du présent travail, nous abordons ces deux aspects en

introduisant une architecture de réseau innovatrice avec un goulot dans la représentation,

capable de traiter de grandes images en utilisant plus de contexte, et un estimateur qui rend

le réseau moins sensible aux ambiguïtés dans les correspondances stéréo, et applicable à de

nouvelles plages de disparité sans nécessiter de ré-entraînement.

Parce que les méthodes d’apprentissage profond sont capables de découvrir des indications

de profondeur dans les données d’apprentissage, elles peuvent être adaptées à de nouvelles
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Abstract

modalités sans faire des modification importante. Dans le Chapitre 5 de la présente étude,

nous démontrons que notre méthode, conçue pour une caméra traditionnelle, peut être

utilisée avec une nouvelle technologie de caméras, dites “à évenements” disposant d’une

plage plus dynamique, de latence plus faible, et de consommation d’énergie réduite. Au lieu

de l’intensité d’échantillonnage de tous les pixels à une fréquence fixée, cette caméra capture

et transmet d’une manière asynchrone tous les événements des changements d’intensités de

pixels. Pour adapter notre méthode à cette nouvelle forme d’imagerie, nous proposons un

module d’intégration de séquences d’événements qui regroupe initialement les données dans

le temps, localement et de manière continue à l’aide d’une couche entièrement connectée,

puis spatialement de manière discrète.

Une application très intéressante de la reconstruction stéréoscopique est la reconstruction de

la topographie de la surface d’une planète à l’aide d’images acquises par un satellite. Dans le

Chapitre 6 du présent travail, nous décrivons un procédé de calibration géométrique, ainsi que

les outils de la reconstruction mosaïque et stéréoscopique que nous avons développés dans le

cadre du projet doctoral pour le Color and Stereo Surface Imaging System embarqué à bord du

Trace Gas Orbiter de l’ESA, orbitant autour de Mars. Pour l’étalonnage, nous proposons une

méthode innovatrice qui se base sur les images de champs d’étoiles parce que des longueurs

focales importantes, et la distorsion optique complexe de l’instrument, interdisent l’utilisation

des méthodes classiques. Les résultats scientifiques et pratiques de ce travail sont largement

utilisés par la communauté scientifique.

Mots clés: 3D, stéréo, faiblement supervisé, entropie croisée sous-pixel, MAP sous-pixel,

caméra événementielle, calibration géométrique, CaSSIS.
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Abstract (English)

Stereo reconstruction is a problem of recovering a 3d structure of a scene from a pair of images

of the scene, acquired from different viewpoints. It has been investigated for decades and

many successful methods were developed.

The main drawback of these methods, is that they typically utilize a single depth cue, such as

parallax, defocus blur or shading, and thus are not as robust as a human visual system that

simultaneously relies on a range of monocular and binocular cues. This is mainly because

it is hard to manually design a model, accounting for multiple depth cues. In this work, we

address this problem by focusing on deep learning-based stereo methods that can discover a

model for multiple depth cues directly from training data with ground truth depth.

The complexity of deep learning-based methods, however, requires very large training sets

with ground truth depth, which is often hard or costly to collect. Furthermore, even when

training data is available it is often contaminated with noise, which reduces the effectiveness

of supervised learning. In this work, in Chapter 3 we show that it is possible to alleviate

this problem by using weakly supervised learning, that utilizes geometric constraints of the

problem instead of ground truth depth.

Besides the large training set requirement, deep stereo methods are not as application-friendly

as traditional methods. They have a large memory footprint and their disparity range is fixed

at training time. For some applications, such as satellite stereo imagery, these are serious

problems since satellite images are very large, often reaching tens of megapixels, and have a

variable baseline, depending on a time difference between stereo images acquisition. In this

work, in Chapter 4 we address these problems by introducing a novel network architecture

with a bottleneck, capable of processing large images and utilizing more context, and an

estimator that makes the network less sensitive to stereo matching ambiguities and applicable

to any disparity range without re-training.

Because deep learning-based methods discover depth cues directly from training data, they

can be adapted to new data modalities without large modifications. In this work, in Chapter 5

we show that our method, developed for a conventional frame-based camera, can be used

with a novel event-based camera, that has a higher dynamic range, smaller latency, and low

power consumption. Instead of sampling intensity of all pixels with a fixed frequency, this
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camera asynchronously reports events of significant pixel intensity changes. To adopt our

method to this new data modality, we propose a novel event sequence embedding module,

that firstly aggregates information locally, across time, using a novel fully-connected layer for

an irregularly sampled continuous domain, and then across discrete spatial domain.

One interesting application of stereo is a reconstruction of a planet’s surface topography from

satellite stereo images. In this work, in Chapter 6 we describe a geometric calibration method,

as well as mosaicing and stereo reconstruction tools that we developed in the framework of

the doctoral project for Color and Stereo Surface Imaging System onboard of ESA’s Trace Gas

Orbiter, orbiting Mars. For the calibration, we propose a novel method, relying on starfield

images because large focal lengths and complex optical distortion of the instrument forbid

using standard methods. Scientific and practical results of this work are widely used by a

scientific community.

Keywords: stereo, deep learning, weakly supervised, efficient, sub-pixel cross-entropy, sub-

pixel MAP, event-based camera, geometric calibration, CaSSIS.
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1 Introduction

The main objective of this chapter is to introduce a reader to the research area and provide a

motivation for this work. Detailed explanations of the proposed methods will be given in the

following chapters.

1.1 Research area

This dissertation combines recent advances in Computer Vision and Deep Learning fields

to develop novel stereo reconstruction methods. The Computer Vision is an area of Artifi-

cial Intelligence that extracts information about the real world, such as scene structure and

semantics, from visual observations, such as videos and images. This is a so-called inverse

problem because it attempts to calculate causal factors that produce an observation from the

observation. The corresponding direct problem is addressed in Computer Graphics which

renders visual observations from models of the real-world objects.

Computer vision problems can be divided into low-level problems, which deal with physical

properties and high-level problems, which deal with semantics. The low-level problems, for

example, include edge detection [1], denoising [2], color processing [3], optic flow [4] and

stereo reconstruction, addressed in this work.

Goal of the stereo reconstruction is to estimate a 3d structure of a scene from two images of

the scene acquired from different viewpoints. In these images, corresponding points appear

shifted and from the extent of this shift, we can compute the distance to the corresponding

physical point. The problem has applications in robotics [5], medical imaging [6], remote

sensing [7], virtual reality, 3d graphics, and computational photography [8, 9].

Most of the problems in the Computer Vision, including the stereo reconstruction, are very

hard for two reasons. The first reason is that most of them are ill-posed, i.e. cannot be uniquely

solved without additional assumptions about the solution. Therefore, all computer vision

methods must rely on domain-specific prior knowledge which is often impossible to hard-

code. The second reason, often referred to as curse of dimensionality, is a high dimensionality
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Chapter 1. Introduction

of input and outputs spaces of the problems. In such case, it is very hard to find meaningful

and robust features related to the solution. Fortunately, Machine Learning and, in particular,

Deep Learning address both problems.

Machine Learning (ML) is an area of Artificial Intelligence, that allows inferring algorithms

and patterns directly from training data without explicitly hard-coding them. The training

data usually consists of examples of input and desired output, coupled with a loss function

that allows comparing the output produced by a method to the desired output. Deep Learning

is a successful sub-field of Machine Learning, that relies on the models inspired by biological

neural networks with multiple layers of neurons. To date, Deep Learning was successfully

applied to many computer vision problems, such as object detection and segmentation [10],

pose estimation [11], reinforcement learning [12], image generation [13], automatic image

captioning [14] and visual question answering [15]. However, there were few prior attempts to

apply it to the stereo reconstruction.

1.2 Motivation

The main motivation of Research Part of this dissertation is to advance stereo reconstruction

methods, while considering their future application in satellite stereo imagery.

The stereo reconstruction problem has been investigated for decades and many successful

methods were developed over the years. However, these methods are still not as robust and

accurate as a human visual system. The human visual system uses multiple monocular and

binocular depth cues for inferring the distance to objects. The binocular cues, rely on our

ability to observe the real world with two eyes and they are strongest and most reliable. They,

for example, include stereopsis cue, which is a displacement of physically corresponding points

in images acquired from different viewpoints. However, in addition to the binocular cues,

our visual system simultaneously uses multiple subtle monocular cues, such as, for example,

defocus blur, shadows, textures gradients, prior knowledge about object sizes. This gives it

robustness unattainable by current stereo reconstruction methods engineered by a human.

In contrast, the engineered stereo reconstruction methods mostly rely on a single depth cue,

typically on the stereopsis, shading [16], defocus blur [17], and texture gradients [18]. This

is mainly because it is hard to manually design models for multiple depth cues. We believe,

that this problem can be addressed by using deep learning-based methods, that can discover

multiple depth cues directly from training data with ground truth depth and learn how to

optimally combine them. Encouraged by the first success [19] of deep learning-based methods

in stereo reconstruction, we decided to focus on them in this dissertation.

The complexity of deep learning models, however, requires large training sets with ground

truth depth, which are hard or costly to collect. Moreover, for some applications, such as

satellite stereo imagery of Mars, collecting such training sets is technically impossible. Be-

sides, even when the labeled training set is available, the ground truth is usually produced

automatically from a depth sensor, such as LiDAR, and thus often contains noise that reduces
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the effectiveness of supervised learning [20]. The current solution to this problem is to use

large synthetic training sets [21] with ground truth, created using computer graphics. The

synthetic training data is, however, different from target domain data. This domain gap mani-

fests in a large performance drop when the network is deployed in the target domain without

fine-tuning. We believe that the large labeled training set requirement can be alleviated using

weakly supervised learning that utilizes geometric constraints instead of ground truth depth,

and explore this idea in Chapter 3 of this work.

Besides requiring a large amount of training data with ground truth, deep learning-based

stereo methods are not as application-friendly as traditional methods. Their biggest disad-

vantages are a large memory footprint and a disparity range fixed at training time. For some

applications, such as satellite stereo imagery, these are serious problems since satellite images

are very large, often reaching tens of megapixels, and have a variable baseline, depending on a

time difference between stereo images acquisition. We believe that deep stereo methods can

be made more application-friendly by using domain knowledge during network design and

experiment with this idea in Chapter 4 of this dissertation.

Because deep learning methods discover depth cues directly from training data, they can be

easily adapted to novel data modalities without serious modifications. This is intriguing since

many machine vision applications could benefit from switching to more advanced sensors,

which do not suffer from high power consumption, data rate, latency, and low dynamic range.

One interesting alternative to a conventional sensor is a novel event-based sensor, mimicking a

biological retina and reporting only asynchronous events of significant pixel intensity changes.

In Chapter 5 we explore the possibility of applying the deep stereo method, developed in

Chapter 4, to an event-based stereo system.

The main motivation of the Applied Part of this work is to develop geometric calibration, stereo

reconstruction and color mosaicing tools for Color and Stereo Surface Imaging System (CaSSIS)

onboard of ESA’s ExoMars Trace Gas Orbiter (TGO), orbiting Mars. To prepare high-quality color

mosaics and Digital Terrain Models (DTMs) from raw CaSSIS data, we need precise geometric

parameters of the camera, such as its focal length, optical distortion model and rotation

relative to the spacecraft frame. While the nominal values of these parameters are known

from the technical specifications, their actual values have to be measured in a laboratory and

validated during commissioning. This procedure is known as a geometric camera calibration.

In our case, large focal length and complex optical distortion of the telescope forbid using

standard calibration methods relying on images of a calibration chart. Therefore, in Chapter 6

of this work, we explore the possibility of calibrating the telescope using images of starfields.
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Chapter 2. Background

The main objective of this chapter is to introduce the stereo reconstruction problem and

review related works. The stereo reconstruction problem is to estimate a 3d structure of a

scene from two images of the scene acquired from different viewpoints. The problem has

distinctive geometric and algorithmic components.

The geometric component comes to play at the beginning and the end of the stereo recon-

struction. In the beginning, it is used for stereo rectification, which aligns stereo images

and simplifies a subsequent search for image correspondences, and in the end, it is used

for stereo triangulation, which infers the distances to image points from established image

correspondences. We briefly review the geometry of the stereo reconstruction in § 2.1 of this

chapter.

The algorithmic part consists in finding a disparity value for every pixel in arbitrary selected

reference stereo image. This disparity value is inverse proportional to the distance to the

corresponding physical point. For most of the physical points, the disparity is simply a

horizontal shift between projections of a point in rectified stereo images. For these points, the

algorithmic part simply consists in finding physically matching points in the stereo images,

i.e. stereo matching. However, this is not true for occluded points, which appear only in one

of the stereo images. The stereo matching is an ill-posed problem that has been investigated

for decades and which is also the main focus of this dissertation. In this chapter, in § 2.2, we

briefly review traditional, non-learning based approaches to the stereo matching. Then, in

§ 2.2 we overview modern deep learning-based approaches and in § 3.2.3 describe weakly

supervised deep learning-based stereo methods. Finally, in § 2.5 we introduce stereo datasets

used in this work and in § 2.6 discuss measures of stereo reconstruction accuracy.

2.1 Geometry

In this section, we briefly review the geometry of a stereo imaging system. First, in § 2.1.1 we

introduce homogeneous coordinates, then, in § 2.1.2 summarize the geometric model of a

single camera, in § 2.1.3 review the geometry of a stereo system and in § 2.1.4 describe how to

estimate parameters of this system using a geometric calibration. Next, in § 2.1.5 we describe

stereo triangulation, that given coordinates of projections of a point in two stereo images

computes the distance to the corresponding physical point. Finally, in § 2.1.6 we discuss

stereo rectification that greatly simplifies the search for image correspondences and the stereo

triangulation. For further details about the geometry of a stereo system please refer to [22].

2.1.1 Homogeneous coordinates

Homogeneous coordinates is a convenient representation of point coordinates that allows sim-

plifying many geometric equations. To convert a Cartesian coordinate vector to homogeneous

coordinate vector, we simply add unit coordinate to the end of the Cartesian coordinate vector

and multiply the resulting vector by an arbitrary constant, i.e. [X ,Y , Z ]T ⇒ [Xω,Y ω, Zω,ω]T
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2.1. Geometry

or [x, y]T ⇒ [xω, yω,ω]T , where ω ∈R. Consequently, we can represent one point by infinitely

many homogeneous coordinates. To convert a homogeneous coordinate vector to Carte-

sian, we divide the homogeneous coordinate vector by its last element and remove the unit

coordinate from the resulting vector. Following [22], we use homogeneous coordinates repre-

sentation in most of the equations. In the rare cases when we use Cartesian representation,

we emphasis it by placing tilde over coordinate vectors.

2.1.2 Geometric camera model

The geometric camera model describes the mathematical relationship between the coordinates

of a point in 3d space and its 2d coordinates in an image. It consists of extrinsic model, intrinsic

model and optical distortion model, described below.

Extrinsic model [22, p155-156] describes the transformation from world frame coordinates

(X ,Y , Z ) to camera frame coordinates (XC ,YC , ZC ) as follows

X̃C = [R | t] · X̃, (2.1)

where R is a 3×3 camera rotation matrix, and t is a 3×1 camera translation vector, X̃C is a

3×1 vector of camera frame coordinates, and X̃ is a 3×1 vector of world frame coordinates.

Alternatively, we can represent the rotation matrix R by a triplet of Euler angels, for example,

(αX ,αY ,αZ ). These Euler angles define tree sequential rotations around axis X , Y and Z

correspondingly. Note, that we can represent the rotation matrix by several different triplets of

Euler angles.

Intrinsic model [22, p153-158] describes the transformation from the 3d camera frame co-

ordinates (XC ,YC , ZC ) to 2d image frame coordinates (x, y). Usually, we use a simple pinhole

camera model as the intrinsic model.

The pinhole camera model performs a central projection of 3d points onto a projection plane

as shown in Figure 2.1. The center of the projection C we call a camera center or an optical

center. It is also an origin of the camera frame coordinate system. The projection planeΠwe

call an image plane. The axis ZC of the camera frame we call a principal axis or a principal ray

and the point P where this axis meets the image plane we call a principal point. The pinhole

camera model performs a linear mapping in homogeneous coordinates as

x = K · [I | 0] XC , where K =

 f 0 x0

0 f y0

0 0 1

 , (2.2)

where K is a camera calibration matrix, x is a 3×1 vector of homogeneous image coordinates,

XC is a 4×1 vector of homogeneous camera frame coordinates, f is a focal length of the camera,

measured in pixels, and x0, y0 are coordinates of a principal point in the image frame.
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Figure 2.1 – The pinhole camera model performs a central projection of the 3d point XC onto
the projection plane. The center of the projection C we call a camera center or an optical
center. It is also an origin of the camera coordinates frame. The projection plane Π we call
an image plane and describe by the equation ZC = f in the camera frame. The axis ZC of the
camera frame we call a principal axis or a principal ray and the point P where it meets the
image plane we call a principal point.

We can combine the intrinsic and the extrinsic models into the single equation as

x = P ·X, P = K · [R | t], (2.3)

where P is a 3×4 camera projection matrix.

Optical distortion model describes the transformation between the image frame coordinates

(x, y) and distorted image frame coordinates (xd , yd ) as xd = fdist(x) or x = fcorr(xd ). The

former transformation is more practical than the latter, since it can be directly used for

image interpolation during the distortion correction. The optical distortion in a conventional

camera we typically describe by Radial or Brown-Conrady optical distortion models. The

Radial model [22, p189-193] only accounts for radially symmetric distortion, while the Brown-

Conrandy [23] in addition, accounts for tangential decentering. We usually describe the

distortion model in the camera frame coordinates. For example, the most common Radial

model we describe as

X̃C d = (1+k1r +k2r 2) · X̃C , r = ‖X̃C‖2 (2.4)

where k1, k2 are distortion coefficients and r is a distance to the distortion center.

2.1.3 Epipolar geometry

Stereo reconstruction relies on epipolar geometry [22, p239-262] which is simply a geometry

of two pinhole cameras shown in Figure 2.2. The line connecting the camera centers CL and
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Figure 2.2 – Epipolar geometry is a geometry of two
pinhole cameras. The line connecting the camera
centers CL and CR we call a baseline and the points
eL and eR where the baseline intersects the image
planes we call epipoles. The plane containing the
camera centers and a 3d point we call an epipo-
lar plane. The epipolar plane intersects the image
planes in the conjugate epipolar lines `L

1 and `R
1 .
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Rx'
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Figure 2.3 – Stereo triangulation. In prac-
tice, when we search for a point in the right
view that matches the point xL in the left
image, instead of the exact match xR , we
find the imprecise match x′R . For this im-
precise match, the projection rays do not
intersect.

CR we call a baseline and the points eL and eR where the baseline intersects the image planes

we call epipoles. The plane containing the camera centers and a 3d point we call an epipolar

plane. The epipolar plane intersect the image planes in the conjugate epipolar lines `R
1 and

`L
1 . There is an infinite number of epipolar lines in the image plane of a camera but they all

intersect at the camera’s epipole. Note, that the epipolar geometry of a stereo system is fully

defined by geometric models of both cameras of this system.

Knowledge of epipolar geometry provides a large advantage when we search for the point in

one view that corresponds to a certain point in another view because it allows reducing 2d

search to 1d search along the epipolar line. For example, if in Figure 2.2 we search for a point

in the right view that corresponds to the point xL
1 in the left view, we need to examine only

points on the epipolar line `R
1 in the right view, instead of all points. Notice that all the points

lying on a given epipolar line in the left view conveniently correspond to the points lying on a

common epipolar line in the right view.

2.1.4 Camera calibration

The process of finding camera model parameters we call camera calibration or resectioning [22,

p178-194]. Typically, for the calibration we acquire several images of a calibration chart. The

calibration chart, such as, for example, a chessboard chart, has several easily identifiable points

with known 3d world frame coordinates. Therefore, the calibration image allows finding a set

of corresponding world frame and image frame points {(Xi ,xi )}i=1...N . Using these points, we

estimate parameters of a camera model, by minimizing average reprojection error, also known
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as a geometric error, which is an average distance between the predicted projection x̂ of a 3d

point X and its actual projection x as

argmin
1

N

N∑
i
‖xi − x̂i )‖2

2, x̂i = fcorr(P ·Xi ) (2.5)

This equation is non-linear due to the optical distortion correction function, and we typically

solve it using Levenberg-Marquardt algorithm, that requires a good initialization. We can find

such initialization by firstly ignoring the optical distortion and solving for the camera projec-

tion matrix using linear least squares method and factorizing the matrix. Alternatively, we can

simply use for the initialization nominal camera parameters from camera specifications.

2.1.5 Stereo triangulation

The procedure of finding the distance to a physical point given coordinates of its projections

in two stereo images is called stereo triangulation. Assume that we know 2d projections xL and

xR of the physical point X as shown in Figure 2.3. In this case, we can find 3d coordinates of the

point by intersecting the corresponding projection rays. In practice, however, instead of exact

matching point xR , we find imprecise match x′R , for which the projection rays do not intersect.

Therefore, to find 3d coordinates of the point we usually solve the following over-determined

system of equations [
xL = PL ·X

xR = PR ·X
(2.6)

We can convert this system to a system of four linear equations, which we can solve using a

linear least squares method.

2.1.6 Stereo rectification

Stereo rectification is a standard procedure of warping stereo images which makes the conju-

gate epipolar lines in these images parallel, horizontal, and vertically aligned. As a result of

this procedure, we substitute the original camera models with the new ones with a common

image plane parallel to the baseline of the stereo system and with epipoles moved to infinity

as shown in Figure 2.4. In practice, during the stereo rectification we also correct the optical

distortion and equalize the focal lengths of the cameras.

The rectification simplifies the stereo matching and the stereo triangulation. For the stereo

matching, we no longer need to compute an epipolar line in an opposite view and can simply

search along the horizontal line. For example, assume that we search for a point in the right

image matching the point xL
1 in the left image. Without the rectification, this would require

computing the right epipolar line `R
1 and searching along this line as shown in Figure 2.4 (a).

In contrast, with the rectification, we can simply search along the same horizontal line `1 in

10



2.1. Geometry

CL CR

baseline

eL eR

X2l2
L l2RΠL ΠR

X1

l1
L l1R

epipolar 
lines

 image planes

Lx1 Rx1

(a) Before the rectification

CL CR
baseline

l1

X2

X1l2

epipolar lines

Π

Lx1 Rx1

common image plane

(b) After the rectification

Figure 2.4 – Stereo rectification. Before the rectification (a) the epipolar lines `L
1 and `L

2
intersect at the epipole eL in the left image planeΠL and the epipolar lines `R

1 and `R
2 intersect

at the epipole eR in the right image planeΠR . After the rectification (b), the cameras have a
common image planeΠ parallel to the baseline with parallel and horizontal epipolar lines `1

and `2.

image
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CL CR

Z 
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X

f

left camera

xL xR
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xL xR
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=

Figure 2.5 – Triangulation for a rectified stereo pair is not
required. Assume that C L and C R are the optical centers
of the left and the right cameras, B is the baseline of the
stereo system and f is the focal length, equal for both
cameras. There is a point X on the distance Z from the
cameras. The left camera projects the point to the image
point xL and the right camera – to the image point xR .
The projections have horizontal coordinates xL and xR

respectively. We call the difference of the horizontal coor-
dinates of the projections as disparity d = xL −xR . Note,
that there is a simple geometric relationship between
the distance Z and the disparity d .

the right image as shown in Figure 2.4 (b). The matching point xR
1 in the right image has same

vertical coordinate as the point xL
1 in the left image, but shifted horizontal coordinate. We

usually call this shift stereo disparity.

Moreover, as shown in Figure 2.5, for the rectified stereo pair, the triangulation is not required

and the distance Z to a point is simply inverse proportional to its disparity d as

Z = B f

d
, d = xL −xR , (2.7)

where B is a baseline of the stereo system and f is a focal length, equal for both cameras.
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2.2 Traditional stereo

In this section, we review traditional, non-learning based approaches to the stereo matching.

Since stereo matching is an ill-posed problem, most of these approaches rely on Bayesian

inference on Markov Random Fields, which we review in § 2.2.1 and § 2.2.2 respectively. During

the Bayesian inference, the traditional approaches usually find the disparity by minimizing

an energy function that consists of two terms: the prior term, that encourages solution with

expected properties and the likelihood term, that encourages consistency with a stereo obser-

vation. We review commonly used prior and likelihood terms in § 2.2.3 and § 2.2.4 respectively.

Finally, in § 2.2.5 we review methods for minimizing the energy function.

2.2.1 Bayesian inference

Early stereo matching methods [4, 24–26] relied only on information contained in a stereo

observation. However, the stereo matching problem is ill-posed and often can not be solved

without additional assumptions about the solution. The ill-posed nature of the problem mani-

fests in matching ambiguities, i.e. situations when there are several equally likely solutions.

To resolve the matching ambiguities, more recent stereo methods rely on Bayesian inference

that takes into account not only a stereo observation but also prior assumptions about the

solution. The former methods are now called local methods and the latter – global methods. At

the core of the Bayesian inference is Bayes Theorem:

P (D | IL ,IR ) = 1

Z
P (D) ·P (IL ,IR | D), (2.8)

where P (D | IL ,IR ) is a probability of the disparity D after observing the stereo images {IL ,IR },

which is called a posterior probability, P (D) is a probability of the disparity D without observing

stereo images which is called a prior probability, and P (IL ,IR | D) is a probability of observing

the stereo images {IL ,IR } given the disparity D, which is called a likelihood probability, and Z

is a normalization constant.

Given the posterior distribution, computed using the Bayes Theorem, one can find the optimal

disparity D̂ using a maximum a posteriori probability (MAP) estimator as

D̂ = argmax
D

P (D | IL ,IR ) (2.9)

Many stereo matching methods [27–32] use Bayesian inference and numerous heuristic

methods [33–35] are inspired by it.

2.2.2 Image model

Traditional methods often represent an image by Markov Random Field (MRF) model. This is

an undirected graphical model that assumes conditional independence of disparity in a pixel
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(x, y) from disparities in far-away pixels, given disparities in the neighborhood N (x, y). This

neighborhood, that we call Markov blanket, might, for example, consist of four or eight closest

pixels. The conditional independence assumption we call Markov property and formally write

as

P
(
D y,x | {D j ,i

}
(i , j ) 6=(x,y)

)
= P

(
Dx,y |

{
Di , j

}
(i , j )∈N (x,y)

)
(2.10)

According to the Hammersley-Clifford Theorem and because of independence of observations

in every pixel, we can factorize the prior and the likelihood distributions on MRF as

P (D) =∏
k
ψprior

({
D y,x

}
(x,y)∈Ck

)
, P (IL ,IR | D) =∏

x,y
ψlh

(
IL ,IR | Dx,y

)
, (2.11)

where C is a minimal subset of MRF nodes with an edge between every pair of nodes, which is

called a clique and ψprior(·) and ψlh(·) are likelihood and prior clique potentials.

The clique potentials often have an exponential form, such as ψ(·) = exp(−φ(·)), in which

case we often substitute probability distribution functions by energy functions and preform

minimization of a posterior energy E(D | IL ,IR ) instead of the maximization of the posterior

probability as

D̂ = argmin
D

E(D | IL ,IR ), E(D | IL ,IR ) = Eprior(D)+Elh(IL ,IR | D), (2.12)

where Eprior(D) =∑
k φprior

({
D y,x

}
(x,y)∈Ck

)
is a prior energy and Elh(IL ,IR | D) =∑

x,y φlh(IL ,IR |
Dx,y ) is a likelihood energy.

Besides MRF [27, 28], stereo matching methods might rely on other graphical models such as

Conditional Random Field (CRF) [29, 30], Markov Chains [31, 32] and Trees [36].

All image models in traditional methods have very few parameters which we typically set

empirically, based on small-scale grid search. Most of the attention in these methods we

devote to finding a global minimum of the energy function.

2.2.3 Priors

The prior energy term in Equation 2.12 encodes prior assumptions about the solution.

In case of the MRF and the CRF, we typically define the prior clique potentials for a pair of

pixel [37, 38] or segments [39], or segment and pixel [27, 40]. In CRFs, we can condition the

clique potentials on an image, which allows, for example, adaptively attenuating disparity

discontinuity penalty on texture edges [29]. The prior potentials typically encode first [37] or

second [38] order smoothness, or smoothness on segment boundaries [39] or goodness of
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fit to a disparity plane hypothesis of a segment [41]. Besides variables for disparities, MRFs

might include random variables for surface normals, occlusions, segments or objects [40–42].

The biggest limitation of MRF / CRF is that they can encode only very simple priors. Admittedly,

some MRFs encode complex, even object-based priors [40, 42], however, this comes at the

cost of the high complexity of the model. The big advantage of MRF / CRF is a small number

of parameters and utilization of a global context.

2.2.4 Likelihood

The likelihood term in the Equation 2.12 encodes information coming from a stereo observa-

tion.

We usually compute the likelihood potentials by comparing each image patch to all its possible

matches in the opposite view. This is not a trivial task since local appearance of a physical

point in the two views might differ due to radiometric and geometric distortions. Therefore,

we usually perform the patches comparison using matching costs and descriptors. The former

ones were are more popular in the stereo matching, while the latter in matching sparse points

of interest.

The matching costs [43, 44] are popular in stereo matching, probably due to their low compu-

tational complexity. The simplest matching cost are the sum of absolute differences (SAD),

and the sum of squared differences (SSD). Zero-mean variants of these costs (ZSAD, ZSSD), as

well as sum of absolute gradient differences (GSAD), are invariant to local brightness changes,

which can also be achieved by combining SAD and SSD with background subtraction by

mean, Laplacian of Gaussian (LoG) [45] or Bilateral filters [46]. Non-parametric matching

costs, such as Rank and Census [47] are invariant to arbitrary order-preserving local inten-

sity transformations, and matching costs such as the Mutual Information (MI) [48] explicitly

model the joint intensity distribution in the two images, and are invariant to arbitrary intensity

transformations. All matching costs are invariant only to radiometric distortions.

Invariant descriptors or features are popular for sparse point matching, and are designed to be

invariant to both radiometric and geometric distortions. They all are either local histograms

of oriented image gradients such as SIFT [49], SURF [50], or binary strings of local pairwise

pixel comparisons such as BRIEF [51]. Although descriptors are rarely used for stereo, there

are some exceptions, such as DAISY [52], which can be efficiently computed densely.

Recently, the community has moved from these fully hand-crafted descriptors to data-driven

descriptors, directly inferred from a training data. This procedure is known as feature selec-

tion or feature extraction. The feature selection procedure simply selects most descriptive

and uncorrelated features from a given feature pool, the feature extraction procedure opti-

mally transforms original features into the new ones. Both procedures can be supervised

or unsupervised. In the unsupervised case, there is no need in a labeled training set and

features are extracted with the goal to preserve as much variance in the data as possible. In
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the supervised case, a labeled training set is required and features are extracted with the goal

to preserve highly predictive features, that are most important for classes discrimination,

therefore, these descriptors are called discriminative. There are several successful data-driven

features, designed for sparse interest point matching. For example, GLOH [53] designed using

unsupervised method based on PCA; BinBoost [54], VGG [55] and LDAHash [56] designed

using supervised methods based on boosting, convex optimization and LDA correspondingly.

2.2.5 Optimization

For finding disparity, in the traditional approaches we have to minimize the energy function.

The minimization method largely depends on the graphical model. In the case of directed

graphical models without loops, such as Trees and Markov Chains, we can easily find the exact

solution using Dynamic Programming [31, 32, 36]. In the case of undirected graphical models,

such as CRF and MRF, the optimization is more complex and often approximate. For these

models, we can use Graph Cuts [37] method, or, in more general case, Loopy Belief Propa-

gation [28] or combination of Markov Chain Monte Carlo (MCMC) sampler and Simulated

Annealing [57].

Overall, the high complexity of optimization is one of the biggest disadvantages of non-

learning based methods. Therefore, the most successful traditional methods rely on simple

graphical models, such as Markov Chains, combined with various heuristics [58].

2.3 Deep stereo matching

First deep learning-based stereo matching methods appeared in 2015 [19, 59], and their

success largely inspired our work. At the beginning, deep learning replaced individual parts

in legacy methods and gave rise to hybrid methods, which we review in § 2.3.1. The latest

trend, however, consists in solving stereo matching using neural network without any post-

processing. These methods are called end-to-end methods and we review them in § 2.3.2.

2.3.1 Hybrid approaches

In the first successful application of neural networks, researchers substituted hand-crafted

stereo matching cost with deep learning-based matching costs inside a legacy stereo pipeline

(often [34, 60]). Originally, researchers used similar costs for sparse point matching [21, 61–65]

and later extended them to stereo reconstruction [19, 66, 67].

Standard deep patch-matching cost networks have a Siamese architecture, introduced in [68].

They consist of two embedding modules with complete weight sharing that join into a common

matching module. Each embedding module is convolutional, it takes an image patch as input,

and outputs the patch’s descriptor. The matching module is usually fully connected, it takes

the two descriptors as input, and outputs a matching cost. Authors in [61] introduced classical
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Siamese architecture for image patch matching. Later, others showed, that it is possible

to replace the matching module by a non-parametric function such as L2 [62] or cosine

distance [19] and that the embedding modules may not share weights [63], and, finally, that

the explicit notion of a descriptor might not be necessary [63].

Most of existing methods for training a Siamese network for patch matching are fully super-

vised, with the exception of [69] proposed in this work in Chapter 3. In most of cases, the

training set consists of positive and negative examples. Each positive example (respectively

negative) consist of a reference patch and its matching patch (respectively a non-matching

one) from another image.

Training either takes one example at the time, positive or negative, and adapts the cost [61–

64, 67], or takes at each step both a positive and a negative example, and maximizes the

difference between the costs, aiming at making the cost for two patches from the positive

example lower than the cost for two patches from the negative example [19, 65, 70]. We call

this latter scheme as Triplet Contrastive learning.

Besides deep patch-matching cost, researcher used neural networks in other stereo reconstruc-

tion sub-tasks such as predicting a smoothness penalty in CRF model from a local intensity

pattern [30, 71]. In [72] a network smooth the matching cost volume and predicts matching

confidences, and in [73] the network detects and fixes incorrect disparities.

2.3.2 End-to-end approaches

Recent works attempt at solving stereo matching using a neural network trained end-to-end

without post-processing [59, 74–80]. Such a network is typically a pipeline composed of

embedding, matching, regularization and refinement modules.

The embedding module produces image descriptors for left and right images, and the (non-

parametric) matching module performs an explicit correlation between shifted descriptors

to compute a cost volume for every disparity [59, 74, 77–79]. Sometimes researchers omit

this matching module and directly feed concatenated left-right descriptors to the regular-

ization module [75, 76, 80]. This strategy uses more spatial context, but the deep network

implementing such a module has a larger memory footprint.

The regularization module takes the cost volume, or the concatenation of the descriptors,

regularizes it and outputs either disparities [59, 74, 77, 79] or distribution over dispari-

ties [75, 76, 78, 80]. In the latter case, researchers compute sub-pixel disparities as a weighted

average with SoftArgmin, which is, however, sensitive to erroneous minor modes in the in-

ferred distribution. The regularization module is usually a hourglass deep network with

shortcut connections between the contracting and the expanding parts [59, 74–77, 79, 80].

In some cases [59, 74, 77, 79], it consists of 2d convolutions and does not treat all disparities

symmetrically, which makes the network over-parametrized and prohibits the change of the

disparity range without modification of its structure and re-training. In other cases, it consists
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of 3d convolutions that treat all disparities symmetrically [75, 76, 78, 80]. As a consequence,

these networks have fewer parameters, but their disparity range is still non-adjustable without

re-training due to the SoftArgmin.

Finally, some methods [77–79] also have a refinement module, that refines the initial low-

resolution disparity relying on a attention map, computed as left-right warping error.

Most state-of-the-art methods rely on fully-supervised training on large synthetic datasets

with ground truth [74], however, some works rely on weakly supervised training [76, 81, 82],

that uses geometric constraints of the task. Most recent methods [82, 83] further improve

results using multi-task learning.

All methods use modest-size image patches during the training and rely on L1 loss, since it

allows to train the network to produce sub-pixel disparities.

2.4 Weakly supervised methods

Although supervised training works well, the complexity of the deep models requires very large

training sets with ground truth which are hard to collect in real applications. Besides, even

when such large sets are available, the ground depth truth is often produced automatically

from a depth sensor, such as LiDAR, and, thus, is usually noisy. The ground truth noise reduces

the effectiveness of supervised training. One solution to this problem is to use synthetic

training sets with the ground truth created using computer graphics [21, 74]. There is, however,

significant domain gap between the synthetic training data and target domain data, that

manifests in a large decrease in the performance when we deploy the network, pretrained on

a synthetic set, in a target domain without fine-tuning. We can address this problem by using

training methods with weak supervision, that we discuss in this section. First, in § 2.4.1 we

describe different types of weak supervision, then in § 2.4.2 we review weakly supervised deep

learning-based methods for the stereo matching.

2.4.1 Types of weak supervision

In this section, we focus on three types of methods with weak supervision: weakly supervised,

semi-supervised, and domain adaptation methods.

In the weakly supervised methods, the ground truth is inexact or “coarse” and thus is easier or

cheaper to collect. There are several approaches to weakly supervised learning. One approach

is called multi-instance learning [84] and it uses labels for groups of training examples instead

of labels for individual examples. Each group label indicates the presence of at least one

example with a certain individual label in the group. This approach allows dealing with low

geometrical accuracy or even the absence of geometrical information and labeling at the

scene level [85]. Another interesting example of “coarse” supervisory data is a training set with

unpaired input and ground truth examples [86]. These methods are called cyclic consistency
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methods and they work by forcing domain consistency of the predictions and consistent cyclic

mapping from the input to the output domain and back.

Another approach is called self-supervised learning and it relies on the special structure of a

problem that allows generating a ground truth automatically. This is, for example, possible in

denoising [87], super-resolution, inpainting [88] and colorization [89] problems. Interestingly,

these and similar problems [90–92] can be used for learning meaningful representations

for others, unrelated tasks. In some cases, instead of automatically generating the ground

truth it is possible to define losses, that do not require the ground truth at all. Such losses

typically enforce constraints on the output such as, for example, temporal, spatial or semantic

coherence [93].

In the semi-supervised methods the ground truth is incomplete, i.e. besides few examples with

a ground truth, there is a large number of unlabeled examples. One approach to the semi-

supervised learning is self-training [94, 95] and it operates by gradually including unlabeled

examples with the high confidence labels, predicted by the method, to the training dataset.

Another approach, is transductive learning, and it propagates the ground truth labels from the

labeled to similar unlabeled training examples [96].

The domain adaptation [97–99] methods deal with the scenario when a model is trained in a

source domain, with a sufficient amount of labeled training data, but deployed in a slightly

different target domain, with a very few labeled examples or only unlabeled examples. This

scenario takes place, for example, when one trains a deep model on a large synthetic dataset,

such as [74, 100], and then deploys it in a real-world system. The main idea behind the transfer

learning is to learn domain-invariant features that are equally useful in the source and in the

target domains.

2.4.2 Deep weakly supervised stereo

The stereo matching problem has strong geometric constraints that can guide weakly super-

vised methods for training deep stereo networks. One of the first weakly supervised methods

for deep stereo [69] is described in this dissertation in Chapter 3. It uses regularized pre-

dictions of the deep network as a ground truth. Among other early methods, self-training

approach from [101] uses as ground truth, predictions of the deep method, satisfying one-to-

one matching constraint, [102] employs as a ground truth most confident predictions of the

non-learning based method [58], selected using the learning-based confidence measure [103].

Modern weakly supervised approaches in monocular [104–108] and stereo reconstruc-

tion [76, 81–83, 109, 110] mostly rely on a image reconstruction, disparity consistency, disparity

coherence and minimum disparity heuristic self-supervised losses which we review below.

These losses do not require ground truth disparity and can be defined for videos [111–113] or

stereo pairs [76, 104–106, 113] and can also be used to train a network for predicting camera

motion [111, 113, 114] and intrinsic parameters [112]. Interestingly, they even improve the
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results of the supervised training [82, 83].

The image reconstruction or photometric loss ensures that an image, warped to the opposite

view using the estimated disparity, is similar to the actual opposite view image. The researchers

warp the image using differentiable bi-linear interpolation, proposed in [115], and compute

difference between the warped image and the actual image using pixel-wise L2 [104, 116] or

L1 [81, 106–108, 112, 114] distances. Same objects often look different in stereo images because

of differences in camera characteristics and parallax. Therefore, some methods use more

robust image distances, such as Structural Similarity Index (SSIM) [76, 106, 107, 112, 114] or

compare gradients of the images using L1 distance [76] or warp images’ features and compute

the difference in the feature space [113]. Furthermore, the method from [81] uses GAN-based

reconstruction loss that penalizes out-of-domain inconsistencies in the warped image and

does not use the corresponding actual image.

The disparity consistency loss forces consistency of the disparities estimated for different views,

i.e. enforces unique matching. This loss, requires disparities for two views. In [106], authors

compute these disparities simultaneously and in [76, 107] in two separate runs. To compute

the loss, in [81, 106], authors warp the estimated opposite view disparity and compare it to the

estimated reference view disparity using L1 distance. In [76], authors warp the reference view

image twice using the estimated reference and the opposite view disparities and compare it to

the original self.

The disparity coherence loss enforces spatial smoothness of the estimated disparity by pe-

nalizing L2, L1 norm or Charbonnier loss of first-order or second-order disparity gradients,

sometimes attenuated in the locations with large first-order or second-order image gradients

for edges preservation [76, 82, 104, 106, 107, 116]. In [83] authors compute the attenuation

using the edge detection network and in [110] using dissimilarity of image and disparity

patches centered at the corresponding locations. Furthermore, in [105, 108] the GAN-based

loss penalizes out-of-domain inconsistencies in the estimated disparity.

The disparity consistency and the image reconstruction losses are invalid in the occluded areas.

While most of the methods ignore this fact, in [82] authors implicitly handle the occlusions by

ignoring large pixel-wise reconstruction losses, and in [112, 117] explicitly detect and ignore

the occlusions.

The minimum disparity heuristic loss encourages the network to prefer smaller disparity in

the occluded areas by penalizing L1 norm of the estimated disparity [76, 107].

Recently, several novel losses were proposed. In [110] the authors proposed a scale consistency

loss, that encourages the network to predict the same disparity for up-scaled and down-scaled

versions of the same stereo images, in [82] the authors proposed a semantic consistency loss

that forces consistent segmentation in different stereo views.

Several domain adaptation methods train a network in a source domain and deploy it in a
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Table 2.1 – Summary of stereo datasets that we use in this work.

Dataset Test # Train # Size Max disp. Ground truth Web score
Middlebury 60 15 1.5-6 MP 30-800 dense, ≤ 0.2 pix. 3
KITTI 395 395 1226×370 192 sparse, ≤ 3 pix. 3
FlyingThings3D 4370 25756 960×540 192 dense 7

slightly different target domain. In [108] the authors apply style transfer to target domain

images to make them more similar to the synthetic, source domain images, in [105, 108] the

authors use domain confusion loss from [118], to prevent over-fitting to the source domain.

The main drawback of these approaches is that they do not allow to discover depth cues,

specific to a target domain.

2.5 Stereo datasets

In this section, we provide detailed information about stereo datasets that we use in this work.

There are three popular benchmark datasets: KITTI [5, 119], Middlebury (MB) [29, 120–122]

and FlyingThings3d [74], summarized in Table 2.1. KITTI and Middlebury datasets have online

scoreboards [123, 124], showing comparative performance of all participating stereo methods.

KITTI dataset additionally has unlabeled training data, which we use in our experiments with

weakly supervised learning.

Middlebury (MB) is the oldest benchmark datasets in the field. Researchers mostly use it for

evaluation of non-learning based stereo methods since it does not have enough labeled data

for training deep neural networks. We show typical examples from the dataset in Figure 2.6.

The dataset consists of five subsets published in separate works [29, 120–122]. In total, it has

60 training and 15 test scenes. Each subsets consist stereo images of staged scenes acquired

by different stereo systems. For some scenes, there are several stereo pairs acquired under

different exposures and illuminations. The size of images varies from 1.5 to 6 Mega Pixels (MP)

and the disparity range varies from 30 to 800 pixels depending on the scene. In this work,

we use half-resolution images due to GPU size limitation. The training examples include a

dense ground truth disparity for the left and right views acquired by a structured light system

with error < 0.2 pixels. The dataset has online scoreboard [124], where methods are ranked

according to their performance on the test set. To participate in the evaluation, developers

upload their test set results to the scoreboard. Only a single upload per method is allowed. After

the upload, the web site computes test performance as 2-pixels-error rate in non-occluded

locations using ground truth disparity, hidden from the participants.

KITTI is a larger and more realistic dataset. We show typical examples from the dataset in Fig-

ure 2.7. The dataset consists of two subsets published in the separate works: KITTI 2012 [119]

and KITTI 2015 [5]. The KITTI 2012 subset consists of 200 training and test examples and the

KITTI 2015 subset consists of 195 training and test examples. Every examples is a rectified color

stereo pairs with resolution 1226×370 (approximately) acquired from cars moving around a
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(a) Left image (b) Left view disparity

Figure 2.6 – Typical examples from the Middlebury dataset. In the disparity images, the white
pixels correspond to the locations without the ground truth and the warmer colors correspond
to larger disparities.

(a) Left image (b) Left view disparity

Figure 2.7 – Typical examples from the KITTI dataset. In the disparity images, the white pixels
correspond to the locations without the ground truth and the warmer colors correspond to
larger disparities. The reflective surfaces, such as car glasses, are densely labeled using car
models.
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(a) Left image (b) Left view disparity

Figure 2.8 – Typical examples from the FlyingThings3d dataset. The warmer colors in the
disparity maps correspond to larger disparities.

city. About 30% of the pixels in the training set have a ground truth disparity acquired by a

LiDAR with an error < 3 pixels. The disparity range is about 230 pixels. For reflective surfaces,

such as car glasses, the dataset provides dense labels, based on car models fitting. Note, that

in the older KITTI 2012 subset the ground truth disparities for reflective surfaces are located

in a separate folder. The KITTI 2015 subset provides ground truth disparities for the left and

the right views, while KITTI 2012 provides ground truth only for the left view. Both subsets

have online scoreboards [123], where all methods are ranked according to their performance

on the test set. The scoreboard computes the test performance using ground truth disparity,

hidden from the participants using 3-pixels-error rate in non-occluded locations for KITTI

2012, and all locations for KITTI 2015.

Each subset of KITTI dataset has an extension (respectively KITTI-EXT 2012 and KITTI-EXT

2015) that contains 19 additional stereo pairs for each scene, without ground truth disparity, i.e.

20× more unlabeled training data. We use this data in our experiment with weakly supervised

learning in Chapter 3.

FlyingThings3d [74] is a very large synthetic dataset produced using computer graphics. We

show typical examples from the dataset in Figure 2.8. Each scene in the dataset depicts various

things flying in the air, overlapping and occluding each other. The dataset contains 25K

training and 4k test pairs, each supplied with precise ground truth disparities for the left and

the right views. The dataset does not have an online scoreboard.

The FlyingThings3d set suffers from two problems: (1) as noticed in [76, 77], some images have
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very large (up to 103) or negative disparities and (2) some images are rendered with artifacts.

To deal with these problems, in some previous publications authors process the test set using

the ground truth. For example, authors in [80] ignore pixels with disparity > 192, while authors

in [74, 77, 79] discard images where more than 25% of pixels have disparity > 300. In this work,

during the training, we use only images without artifacts and with the disparities ∈ [0,255] and

during the benchmarking we use two evaluation protocols mentioned above for fairness of

the comparison.

2.6 Accuracy measures

In this work, we measure accuracy of stereo reconstruction using three standard measures:

• n-pixels-error (NPE), which is a percentage of pixels for which the predicted disparity is off

by more than n pixels. We mostly use 3-pixels-error (3PE) and 1-pixel-error (1PE),

• mean absolute error (MAE) is an average absolute difference between the predicted and the

ground truth disparities, and

• mean depth error (MDE) is an average absolute difference between the predicted and the

ground truth depth.

Note, that the NPE and the MAE are complimentary, since the NPE characterize error robust

to outliers, while MAE accounts for sub-pixel error.
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Chapter 3. Weakly supervised learning of deep patch-matching cost

3.1 Introduction

Deep learning-based costs have demonstrated extremely good performance for matching

image patches for stereo reconstruction. However, training networks for computing such costs

requires a large amount of training data with ground truth disparity, which can be difficult or

costly to collect for certain applications, such as, for example, satellite stereo imaging. In this

work, we address this problem by introducing a new weakly supervised method that does not

require the ground truth disparity but, instead, relies on coarse information about scenes and

a stereo system.

Main contributions of this work are following:

1. We introduce a new weakly supervised method for learning deep patch-matching cost.

Our method alternatively computes matches using current network for matching cost

computation, regularizes and uses them as ground truth to improve the network. The

method allows learning a high-quality deep patch-matching cost when labeled training

data is not available or contaminated with noise.

2. We experimentally show that for given network architecture, training with this new

method without ground truth produces a cost with performance as good as state-of-the-

art baselines trained with the said ground truth across several reference datasets.

This chapter is organized as followings: First, in the “Method” section we describe the proposed

weakly supervised method in details: in § 3.2.1 we formulate the task of weakly supervised

learning of patch-matching cost for stereo, in § 3.2.2 review stereo matching constraints, and

in § 3.2.3 propose several weakly supervised learning methods that use these constraints.

Next, in the “Experiments” section we show effectiveness of the proposed approach: in § 3.3.1

we choose meta-parameters of the proposed methods, in § 3.3.2 compare the proposed weakly

supervised methods to each other, in § 3.3.3 compare the best-performing weakly supervised

method to the supervised baseline method, in § 3.3.4 benchmark stereo matching method

with the proposed patch-matching cost against state-of-the-art stereo methods, in § 3.3.5

visualize what the deep network learns when trained with the proposed method, in § 3.3.6

show ability of the proposed method to adapt a deep patch-matching cost to domains without

the ground truth, and in § 3.3.7 demonstrate advantages of the proposed method in presence

of a ground truth noise. Finally, in the “Conclusion” section we summarize our results.

3.2 Method

3.2.1 Problem formulation

We are provided with a weakly supervised training set, where each training example is a triplet

(P L ,P R ,PΞ) of series of s × s gray-scale patches:
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• P L = (pL
1 , pL

2 . . . pL
w ) is a series of patches extracted from a horizontal line of left rectified

stereo image,

• P R = (pR
1 , pR

2 . . . pR
w ) is a series of patches extracted from the same horizontal line of the

corresponding right rectified stereo image, and

• PΞ = (pΞ1 , pΞ2 . . . pΞw ) is a series of patches, extracted from a random, non-matching horizon-

tal line of the corresponding right rectified stereo image,

where w is a number of patches per line, or, equivalently, a width of a training image. In

addition to the training set, we are provided with a maximum possible disparity dmax , which

depends on a stereo system and prior knowledge about a scene.

For a series of left P L and right P R image patches, a deep matching cost network with parame-

tersΘ computes a matching cost matrix cLR of size w ×w as

cLR = Net(P L ,P R |Θ,dmax ) , where cLR
j i =

{
Net(pL

j , pR
i |Θ) 0 ≤ j − i ≤ dmax

−∞ otherwise
(3.1)

Given the matching cost matrix it is possible to estimate a disparity vector d̂ of size w as

d̂ j = argmin
d

cLR
j , j−d (3.2)

The goal of this work is to find parametersΘ of the network such that the estimated disparity

vector d̂ is equivalent to the corresponding ground truth disparity vector dGT , which is not

available during the training.

Note, that unlike [21, 61–64, 66, 67] which utilize pairs of patches for the training, in this work

we use triplets of series of patches. This allows using constraints defined on a group of patches.

Additionally, processing the series of patches as a whole significantly speeds up the training

process by allowing to reuse shared computations.

3.2.2 Stereo matching constraints

The stereo matching problem has very strong geometric constraints that can be used for the

weakly supervised learning. In this work we use the following constraints:

(E) Epipolar constraint. Every non-occluded left image patch has a matching right image

patch on the corresponding epipolar line [22][239-241p].

(D) Disparity range constraint. Horizontal offset of a left patch relative to the matching right

patch is bounded by a maximum disparity dmax , which depends on the parameters of a

stereo system (focal length, pixel size, baseline) and distance range of the scenes.

29



Chapter 3. Weakly supervised learning of deep patch-matching cost

Physical surface

Left camera Right camera

i j

disparity = j - i

right patch (i)

le
ft

 p
a
tc

h
 (

i)

U: uniquiness constraint (1-to-1)

D: disparity range constraint
(match only in gray area)

C: continuity constraint
(match line is continuous)

O: ordering constraint
(only down, right and
diagonal steps are allowed)

maximum disparity

m
a
x
im

u
m

 d
is

p
a
ri

ty

Figure 3.1 – The left figure shows a scene and the right figure shows the corresponding match-
ing cost matrix. The bold line corresponds to the true matches that satisfy the stereo con-
straints. Elements within the disparity range are shown in gray. Note that for some points
there are no matches.

(U) Uniqueness constraint. Matching pair of patches is unique [125].

(C) Continuity (smoothness) constraint. The horizontal offsets of left image patches relative to

the matching right image patches are similar for nearby patches everywhere except on

depth discontinuities [125].

(O) Ordering constraint. Order of left image patches on the epipolar line is similar to the order

of the matching right image patches on their epipolar line.

These constraints result in a particular shape of a matching cost matrix shown in Figure 3.1.

Note that the uniqueness (U), the continuity (C) and the ordering (O) constraints are some-

times violated. However, our experiments show that these rare violations only marginally

affect the training in the presence of a large training set.

3.2.3 Weakly supervised methods

We developed several weakly supervised methods that use different subsets of the stereo

constraints. They can be used in combination with any network architecture for patch-

matching cost computation and any gradient-based optimization method.

All proposed methods alternate between two steps

(1) Compute unconstrained pR− and constrained pR+ matching patches, subject to con-

straints C , for the left image patch pL , given current parameters of the patch-matching
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network

pR− = argmin
pR∈P R

Net(pL , pR |Θ)

pR+ = argmin
pR∈P R ,C (pR )

Net(pL , pR |Θ) (3.3)

(2) Update network parametersΘ to make the network produce lower matching cost for the

constrained match, than for the unconstrained match by minimizing triplet contrastive

loss, as

Θ̂= argmin
Θ

Loss(Θ | pL , pR+, pR−)

Loss(Θ) = max(0,Net(pL , pR+ |Θ)−Net(pL , pR− |Θ)+λ) (3.4)

In most of the proposed methods, the first step is “integrated” in the loss function. As a

result the loss function takes as an input one or several following matrices: cLR = Net(P L ,P R |
Θ,dmax ), cLΞ = Net(P L ,PΞ |Θ,dmax ) and cRΞ = Net(P R ,PΞ |Θ,dmax ).

Multi-Instance Learning (MIL). This method is inspired by Multi-Instance Learning paradigm

explained in § 2.4.1 and relies only the epipolar (E) and the disparity range constraints (D)

from § 3.2.2.

From these two constraints, we know that every non-occluded left image patch has a matching

patch on the corresponding right epipolar line in a known index interval, but does not have a

matching patch on a random epipolar line. Therefore, for every left image patch, the lowest

matching cost for a patch on the corresponding right epipolar line should be lower than the

lowest matching cost for the patch on a random epipolar line. Our training objective to push

apart these two costs as

Loss(Θ) = 1

|rows|
∑

j∈rows
max(0,min

i
cLR

j i −min
i

cLΞ
j i +λ)+

1

|cols|
∑

i∈cols
max(0,min

j
cLR

j i −min
j

cLΞ
j i +λ), (3.5)

where rows = [dmax . . . w) and cols = [0 . . . w − dmax ) are sets of rows and columns of the

matching cost matrices that are guaranteed to have correct matches (see Figure 3.1), and λ is

a hinge loss margin, which we set equal to 0.2, based on a small-scale grid search. Note that

the disparity range constraint is taken into account automatically when we compute the cost

matrices using Equation 3.1.
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Figure 3.2 – The problem of Multi-Instance Learning (MIL) method. The top figure shows a
left stereo image from the KITTI 2012 dataset with two highlighted epipolar lines. The pictures
below show the diagonal part of the matching cost matrices obtained with the MIL and Con-
trastive methods for these epipolar lines. The dark elements in the cost matrices correspond
to the smaller cost. WTA error for the MIL method is 18.45%, and for the Contrastive method is
17.63%. Note that in the case of the MIL method, the cost matrices are very blocky. The blocks
correspond to the areas where the matching cost does not allow identification of the unique
matches. The problem is solved in the Contrastive method.

According to our experiments, the main problem of the method is that it learns matching

cost insensitive to small shifts from the optimal match. This problem manifests in a blocky

shape of a cost matrix, where the blocks correspond to the areas where the cost does not allow

identification of a unique match as shown in Figure 3.2. This issue motivates the Contrastive

method described in the following section that solves the problem by explicitly using the

uniqueness constraint (U) during the training.

Contrastive method uses the epipolar (E), the disparity range (D), and the uniqueness con-

straints (U) from § 3.2.2.

From the epipolar and the disparity range constraints we know that every non-occluded

left image patch has a matching patch on the corresponding right epipolar line in a known

index interval. Furthermore, according to the uniqueness constraint, the matching patch is

unique. Therefore, for every left image patch, the lowest matching cost for a patch on the

corresponding right epipolar line should be much lower than the second-lowest matching

cost. Our training objective is to push apart these two quantities as
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Loss(Θ) = 1

|rows|
∑

j∈rows
max(0,min

i
cLR

j i −min
i

ĉLR
j i +λ)+

1

|cols|
∑

i∈cols
max(0,min

j
cLR

j i −min
j

čLR
j i +λ), (3.6)

where ĉLR and čLR are matching cost matrices with masked out with −∞ row-wise and

column-wise minima respectively.

Training with the Contrastive method presented above requires good initialization of the cost

network. Fortunately, in this work we use the network which works very well with random

CNN weights, as shown in § 3.3.5, thus we can use the Contrastive method right from the start.

In other cases, it would be necessary to pre-train a network with another method such as MIL.

According to our experiments, the Contrastive method suffers from a problem opposite to the

problem of the MIL method: it produces over-sharpened cost, sensitive even to small shifts

from the exact match. This is also detrimental to the performance since our goal is to find cost

invariant to small geometric transformations, such as shift. We solve the problem by masking

out all spatial neighbors within a non-maximum suppression radius rsup from minima in ĉLR

and čLR with −∞. See the parameters tuning experiments in § 3.3.1 for details.

Contrastive-DP method uses all constraints listed in § 3.2.2. Its main difference with the

Contrastive method is that this method contrasts unconstrained match to the match under the

continuity (C) and the ordering (O) constraints computed using Dynamic Programming (DP),

instead of the best and the second-best matches.

Formally, the DP finds the global matching path M̂ = (( j1, i1), ( j2, i2), . . .) which is a series of

pairwise patch matches (bold line in Figure 3.1) by solving the following optimization problem

M̂ = argmin
M∈M

1

|M |
∑

( j ,i )∈M
cLR

j i , (3.7)

where |M | is a number of pairwise patch matches in the global match,M is a set of all global

matches which are continuous in the following sense

∀k>1,( jk+1, ik+1)− ( jk , ik ) ∈ {(0,1), (1,0), (1,1)},

and ( j1, i1) ∈ {1}× [0,dmax ]. (3.8)

This means that only down, right, and diagonal steps are allowed, which enforces the continu-

ity (C) and the ordering (O) constraints in the solution. Notice also that we search for a path

that has a minimum average cost rather than a minimum total cost to prevent bias toward

global matches consisting of more pairwise matches.
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Given the best global match M̂ found by the DP, we define the loss function as

Loss(Θ) = 1

|M̂ |
∑

( j ,i )∈M̂

min(0,cLR
j i −max

k
c̃LR

j k +λ)+

1

|M̂ |
∑

( j ,i )∈M̂

max(0,cLR
j i −min

k
c̃LR

ki +λ), (3.9)

where c̃LR is a cost matrix where all neighbors of elements belonging to the optimal global

match M̂ within a non-maximum suppression radius rsup are masked with −∞.

The optimal global match computed by the DP might contain vertical and horizontal segments,

that correspond to depth discontinuities, violating the uniqueness constraint (U). During

the training, we ignore all such segments that are longer than a maximum occlusion segment

length `occ . See the parameters tuning experiments in § 3.3.1 for details.

The proposed method uses a DP to regularize a noisy prediction of a deep matching cost

network as it is currently trained. The similar idea in a different context appeared in [93]. In

both [93] and our method, the high-level idea is to learn an embedding in a weakly supervised

manner by minimizing the energy of the best path on a constraint graph, while simultane-

ously maximizing the energy of the best unconstrained path. However there are important

differences: (1) we use per location loss function with a margin, while they use per path loss

function without the margin, (2) we use stereo constraints to construct the constrained graph,

while they use text string labels, and finally (3) the application domains are drastically different

since we deal with geometrical regression and they deal with classification.

3.3 Experiments

We guarantee reproducibility of all experiments in this section by using only available datasets,

and making our code available online1.

In all experiments in this work, we use Torch7 framework [126, 127] and adopt architecture of

deep patch-matching cost network from [66], shown in Figure 3.3. We perform initialization

of weights and biases of the network in a standard way by random sampling from a zero-mean

uniform distribution. For the optimization, we use ADAM method with standard settings and

mini-batches of size equal to the training image height, and no data augmentation. In the

experiments, we use KITTI and Middlebury datasets described in Chapter 2.

We measure an accuracy of the deep matching cost in two scenarios. In the first scenario,

which we call winner-takes-all (WTA), to compute the disparity we simply pick the disparity

with the lowest matching cost. In the second scenario, which we call pipeline, we plug-in the

estimated matching cost into the legacy stereo matching pipeline from [19], which in turn

produces disparity. Note that we do not explicitly optimize the matching cost for performance

1https://github.com/tlkvstepan/mc-cnn-ws
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Figure 3.3 – The architectures of the deep matching cost network from [66] that we use in our
experiments.

Table 3.1 – Parameters tuning for the Contrastive-DP method on the KITTI 2012 validation set.
The parameters with the smallest error are shown in bold.

Parameter Values Winner-take-all 3PE, [%]
Non-max suppression radius rsup 0, 1, 2, 4, 8, 16 21.81, 16.83, 16.66, 16.86, 17.02, 17.28
Max. occlusion segment `occ 1, 2, 4, 8, 16 16.93, 17.32, 17.62, 17.58, 17.56

within the pipeline. The disparity accuracy is measured using 3-pixels-error rate, described in

Chapter 2.

3.3.1 Parameters tuning

Our methods rely on two meta-parameters: the non-maximum suppression radius rsup and

the maximum occlusion segment length `occ . To select the optimal value for each, we keep all

but one parameter fixed and run the training procedure for a small number of iterations on

the KITTI 2012 dataset. Then we compare the WTA errors on the validation set.

The results, shown in Table 3.1, confirm our guess from § 3.2.3 that it is better to mask elements

in cost matrix within the radius rsup = 2 from the optimal match. They also confirm that it is

better to ignore occluded segments larger than `occ = 1.
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Table 3.2 – Comparison of the proposed weakly supervised learning methods on the KITTI 2012
validation set. All methods are used to train the same network architecture. We list constraints
used by each method, using capital letters, where E indicates epipolar, D - disparity range,
U - uniqueness, O - ordering, and C - continuity constraint. The highlighted Contrastive-DP
method uses all stereo matching constraints during learning and achieves the smallest WTA
3PE. Notice that in general, methods that use more constraints perform better.

Method Winner-take-all 3PE, [%] Time, [hr]
Multi-Instance Learning (E, D) 18.45 45
Contrastive (E, D, U) 17.63 30
Contrastive-DP (E, D, U, O, C) 14.61 68

Table 3.3 – Comparison of the proposed weakly supervised method with the fully-supervised
baseline [66] on the validation sets. In the table, we highlight the method with the smallest
WTA errors. The proposed method outperforms the baseline in terms of WTA error across all
datasets. This is remarkable since, in contrast to the supervised method, it does not use ground
truth disparity during learning. For reference, the two bottom rows show the performance
of two standard hand-crafted matching costs, where SAD stands for the sum of absolute
differences of pixel intensities in 9×9 image patch. Note that following the setup of [66], as
input to the deep-learning methods we use patches of size 9×9 for the KITTI 2012 and 2015,
and 11×11 for the MB.

Method
Winner-take-all 3PE, [%]

KITTI 2012 KITTI 2015 Middlebury
MC-CNN fst [66] 15.44 15.38 29.94
MC-CNN-WS fst (proposed) 13.90 14.08 29.60
CENSUS 9×9 [47] 53.52 50.35 64.53
SAD 9×9 32.36 30.67 59.39

3.3.2 Comparison of the proposed methods

In this experiment, we compare the performance of the proposed weakly supervised methods

on the KITTI 2012 dataset using the winner-take-all (WTA) 3PE. The results of the experiment

are shown in Table 3.2.

The main conclusion is that weakly supervised methods that use more stereo constraints for

the training perform better. For example, the MIL, that uses only the epipolar and the disparity

range constraints, has larges WTA 3PE, whereas the Contrastive-DP, that uses all constraints

has the smallest error. In all following sections, we use the best performing Contrastive-DP

method only and refer to it as MC-CNN-WS, where WS stands for weakly supervised.

3.3.3 Comparison with the supervised method

In this section, we compare the proposed weakly supervised method with the fully super-

vised baseline [66] on the three different sets, using the winner-take-all (WTA) 3-pixels-
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error (3PE) (see § 2.6 and § 3.3).

The results are shown in Table 3.3. As we see, the proposed method outperforms the fully-

supervised method in terms of WTA error across all three sets. This is remarkable because the

method does not use ground truth disparity during learning. The success of our method in

case of the KITTI 2012 and the KITTI 2015 sets can be attributed to the fact that these sets have

a large amount of unlabeled stereo data, that can be used by our method. These sets have

more than 20× more unlabeled data than labeled training data. In the case of MB, dataset our

method does not have such a huge advantage over the supervised method. The set has only

30% more unlabeled training data than the labeled training data.

3.3.4 Benchmarking

In this section, we investigate how well our weakly supervised deep matching cost network

performs when we plug it into the stereo pipeline from [66]. First, we tune the parameters

of the pipeline for each dataset using a simple coordinate descent method, starting from the

default values of [66]. Then we compute disparity maps for the test sets with withheld ground

truth and upload the results to the evaluation web sites [123, 124]. The evaluation results are

available in online scoreboards and shown in Tables 3.5 and 3.4 (note, that corresponding

disparity maps are also available for viewing in the scoreboards).

As we can see, across all benchmarks the results with matching cost network trained without

ground truth are very close to the results with matching cost network in the fully-supervised

manner. Those are very encouraging results, given in particular that we do not optimize

the matching cost network and the pipeline parameters together, and considering the per-

formance in the winner-take-all setup of § 3.3.3. The fact that our cost outperforms the

supervised cost in winner-takes-all setup but lags behind it when used as a part of the pipeline

is not surprising. The pipeline relies on multiple heuristics and thus provide a regularization

that is not taken into account during the training of the cost network. Thus, smaller WTA error

does not guarantee smaller Pipeline error.

Regarding the inference time, note that since we use the same pipeline and the network as

[66], the inference times are also very similar. The differences are only due to the hardware

differences.

3.3.5 What does the deep matching cost network learn?

In Figure 3.4, we show matching cost matrices computed before and after the training with

the proposed MC-CNN-WS method on the KITTI 2012 dataset. While one can not visually

distinguish the best match in the cost matrices before the training, it becomes visible after

the training. This suggests that the training improves the discriminative ability of the deep

matching cost. Notably, the performance of the matching cost network with random weights

is surprisingly good. The corresponding WTA error on the KITTI 2012 is just 42.01%. This good
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Table 3.4 – Middlebury benchmark [124] snapshot from 14/11/2016 with published meth-
ods (default view). The proposed MC-CNN-WS method, highlighted in the table, does not use
ground truth data during the training but has the error rate very similar to the error rate of the
supervised MC-CNN fst method, shown in bold, trained with the ground truth data.

Rank Submission Method 2PE (non-occluded), [%] Time, [s]
1 19/01/2015 NTDE [128] 7.62 300
2 28/08/2015 MC-CNN acrt [19] 8.29 254
3 03/11/2015 MC-CNN+RBS [129] 8.62 345
4 26/01/2016 MC-CNN fst [19] 9.69 2.94
5 11/14/2016 MC-CNN-WS (proposed) 12.1 5.59
6 13/10/2015 MDP [130] 12.6 130
7 19/04/2015 MeshStereo [131] 13.4 146

Table 3.5 – KITTI 2012 (top) and KITTI 2015 (bottom) benchmark [123] snapshots from
14/11/2016 with published methods (default view). The proposed MC-CNN-WS method,
highlighted in the tables, does not use ground truth data during the training but has the error
rate very similar to that of the supervised MC-CNN fst method, shown in bold, trained with
the ground truth. Since the MC-CNN fst method does not appear on the evaluation tables,
due to restrictions on the number of results for a single paper, we borrow the results from [19]

Rank Submission Method 3PE (non-occluded), [%] Time, [s]
1 27/04/2016 PBCP [132] 2.36 68
2 26/10/2015 Displets v2 [40] 2.37 265
3 21/08/2015 MC-CNN acrt [19] 2.43 67
4 30/03/2016 cfusion [133] 2.46 70
5 16/04/2015 PRSM [134] 2.78 300
6 21/08/2015 MC-CNN fst [19] 2.82 0.8
7 03/08/2015 SPS-st [41] 2.83 2
8 14/11/2016 MC-CNN-WS (proposed) 3.02 1.35
9 03/03/2014 VC-SF [135] 3.05 300

Rank Submission Method 3PE (all pixels), [%] Time, [s]
1 26/10/2015 Displets v2 [40] 3.43 265
2 27/04/2016 PBCP [132] 3.61 68
3 21/08/2015 MC-CNN acrt [19] 3.89 2.94
4 16/04/2015 PRSM [134] 4.27 300
5 06/11/2015 DispNetC [74] 4.34 0.06
6 11/04/2016 ContentCNN [136] 4.54 1
7 21/08/2015 MC-CNN fst [19] 4.62 0.8
8 14/11/2016 MC-CNN-WS (proposed) 4.97 1.35
9 03/08/2015 SPS-st [41] 5.31 2
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Figure 3.4 – Diagonal part of the matching cost matrices before and after the training with the
MC-CNN-WS on the KITTI 2012 dataset. The top figure shows left rectified stereo image with
two highlighted epipolar lines. The pictures below show the matching cost matrices for these
epipolar lines. The dark elements in the cost matrices correspond to the lower cost. WTA error
before the training is 42.01%, and 14.61% after the training. Note that before the training we
can not visually distinguish the best matches in the cost matrices, while after the training they
are visible.

performance is the reason why we don’t need to pre-train the network before applying the

contrastive methods.

In Figure 3.5 we show failure cases of the deep matching cost after training with the proposed

method. Most of the failures happen when the ground truth match is visually indistinguishable

from the incorrect match picked by the network. This situation can arise when the reference

patch is from a flat image area, an area with a repetitive texture, or an area with a horizontal

edge. Notably, some failures are triggered by apparent errors in the ground truth. These

errors worsen outcomes of the supervised learning as we show in § 3.3.7, but does not affect

outcomes of our weakly supervised learning, since it does not use the ground-truth.

3.3.6 Weakly supervised domain adaptation

In this experiment, we study the ability of the proposed method to adapt a matching cost to a

target domain without the ground truth. For that, we train the deep matching cost using the

proposed method on one dataset and test on all datasets. The results are shown in Table 3.6.

Notice that the accuracy is always better when the training and the validation examples come
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3.5 – Failure cases of the deep matching cost trained with the proposed method on
the KITTI 2012 dataset. For each example, the three displayed patches from top to bottom
correspond to: the reference patch, the predicted match, and the ground-truth match. Most
of the incorrectly predicted matches are visually indistinguishable from the ground truth
matches and correspond to the cases when the reference patch is from the area with the
horizontal edge (3, 6, 13), flat image area (4, 5, 10), or area with a repetitive texture. Some
failures are triggered by the apparent errors in the ground truth (2, 12, 14, 16).

Table 3.6 – Generalization error across datasets. The smallest WTA errors, shown in bold,
correspond to the cases when the training and the validation sets are similar. This confirms
that the proposed weakly supervised method can indeed tune the deep matching cost to a
particular stereo system and dataset even without the ground truth disparity.

Training set
Winner-take-all 3PE, [%]

KITTI 2012 KITTI 2015 Middlebury
KITTI 2012 13.90 15.52 34.85
KITTI 2015 16.61 14.08 36.66
Middelbury 14.22 15.00 29.60

from the same population. This proves that the proposed weakly supervised method can to

tune a deep matching cost to a particular stereo system without the ground truth.

3.3.7 Training with a noisy ground truth

In this experiment, we show that the proposed weakly supervised method has an advantage

over the supervised baseline [19] in the presence of ground-truth noise. For that, we add noise

to the sub-pixel accurate ground truth disparity of the Middlebury training set. We use two

noise models: uniform, that simulates gross disparity errors, and Gaussian, that simulates

sensor noise. To add uniform noise, we substitute the ground truth disparity with a sample

from the uniform distribution U (0,dmax ) with some probability pu . To add Gaussian noise,

we simply add a sample from the Gaussian distribution N (0,σ2
g ) to the ground truth disparity.

From Table 3.7 it is clear that the supervised method underperforms in the presence of the

noise. It is especially sensitive to the Gaussian noise, that is typical for depth sensors. This

kind of noise is, for example, present in the KITTI datasets [119]. In contrast, the proposed

method is unaffected by the noise since it does not use the ground truth.
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Table 3.7 – Training in the presence of ground truth noise. We evaluate errors on the Middle-
bury validation dataset. In the presence of the ground truth noise, the performance of the
supervised method plummets. In contrast, the proposed method is unaffected by the noise.

Method Ground truth noise Winner-take-all 3PE, [%]

MC-CNN fst [19]

No noise 29.94
Uniform, pu = 5% 30.66

Uniform, pu = 20% 31.35
Gaussian N (0,32) 34.86

MC-CNN-WS (proposed) – 29.60

3.4 Conclusion

We propose a novel weakly supervised method for training patch-matching cost for stereo

reconstruction. This method allows training with a dataset without ground truth disparity,

by relying on simple constraints coming from properties of a stereo system, and a rough

knowledge about the scenes.

Benchmarking on standard datasets shows that the proposed method gives similar results as

the baseline supervised method with the same network trained on the same but fully labeled

datasets.

This good performance can be explained by the strong redundancy of fully labeled datasets,

due to the continuity of surfaces, coupled with inevitable labeling errors. The latter can

degrade the performance resulting from fully supervised training process, and could only be

mitigated by using prior knowledge about the regularity of the labeling.
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4.1 Introduction

End-to-end deep learning networks recently showed an extremely good performance for

stereo matching. However, existing networks are difficult to use in practical applications since

(1) they are memory-hungry and unable to process even modest-size images, (2) have disparity

range fixed at training time. For some applications, such as satellite stereo imagery, these are

serious problems since satellite images are very large, often reaching tens of megapixels, and

have a variable baseline, depending on a time difference between stereo image acquisition. In

this work, we propose Practical Deep Stereo (PDS) network that addresses these issues.

Main contributions of this work can be summarised as following:

1. We decrease the memory footprint of the network by introducing a novel bottleneck

module. It compresses concatenated image descriptors into a compact matching sig-

nature before feeding them to the regularization module. Reduced memory footprint

allows processing larger images and training on full-size images, that boosts network

ability to utilize a large spatial context.

2. We propose to use for the inference a sub-pixel maximum a posterior (MAP) estima-

tor approximation that computes an expectation around the disparity with minimum

matching cost and thus robust to erroneous modes in the disparity distribution and

allows to modify a disparity range without retraining. This is extremely practical, as it

allows the community to develop reusable stereo networks, as they exist in image recog-

nition (VGG, AlexNet, etc.). For training, we similarly introduce a sub-pixel criterion

by combining the standard cross-entropy with a kernel interpolation, which provides

faster convergence rates and higher accuracy.

3. The proposed network has better or comparable performance than the state-of-the-art

methods on FlyingThings3D and KITTI datasets.

This chapter is organised as following:

First, in the “Method” section we describe the proposed deep learning-based method in details:

in § 4.2.1 we introduce novel bottleneck matching module, drastically reducing memory

footprint, in § 4.2.2 present sub-pixel MAP estimator approximation, insensitive to erroneous

modes in a disparity distribution, and in § 4.2.3 propose a sub-pixel cross-entropy loss.

Next, in the “Experiments” section we validate our contributions: in § 4.3.1 we show that the

reduced memory footprint allows training on full-size images and leveraging a large spatial

context and improving the performance, in § 4.3.2 and § 4.3.3 demonstrate that the proposed

estimator and the loss allow modifying the disparity range without re-training and improving

the performance, in § 4.3.4 benchmark our method against the state-of-the-art baselines

and show that it has the smallest 3-pixel-error (3PE) and the smallest or the second smallest

mean absolute error (MAE) on the FlyingThings3D set, and ranked the third and the fourth on

the KITTI 2015 and the KITTI 2012 sets respectively. Finally, in the “Conclusion” section we
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Figure 4.1 – Functional structure of the proposed network and processing flow during training
and inference. We outline the input and output quantities with thin lines and the processing
modules with thick ones. The yellow shapes are embedding modules, the red rectangle is
the matching module and the turquoise shape is the regularization module. The matching
module is a contribution of this work. In the previous methods [75, 80], authors directly feed
the concatenated left and shifted right descriptors to the regularization module (hourglass
network). We represent 4d compact matching signature tensor as a 3d tensor by combining
the feature indexes and disparities along the vertical axis.

summarize our results.

4.2 Method

The proposed network takes as input color stereo images {IL ,IR } each of size 3×h ×w and

produces a matching cost tensor C as following

C = Net(IL ,IR |Θ,dmax ), (4.1)

whereΘ are the model’s parameters, and dmax is a maximum disparity.

The computed matching cost tensor is such that Cd ,y,x is the cost of matching the pixel I L
y,x

in the left image to the pixel I R
y,x−d in the right image, which is equivalent to assigning the

disparity D y,x = d to the left image pixel. We can convert the matching cost tensor C into a

posterior probability tensor as

P
(
D | IL ,IR)= softmin

d

(
Cd ,y,x

)
(4.2)

Note, that the size of the matching cost tensor is dmax
2 ×h ×w , because we compute matching
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costs only for even disparities to reduce memory footprint. However, for clarity in all formulas

we assume that the tensor has size dmax ×h ×w .

The modular architecture of the proposed network and processing flow during training and

inference are shown in Figure 4.1, and we can summarize the input(s) and the output(s) of

each module as follows

• The embedding module takes as an input a color image of size 3×h ×w , and computes

an image descriptor of size c × h
4 × w

4 .

• The matching module for each disparity d takes as an input the left and shifted right

image descriptors, each of size c × h
4 × w

4 , and computes a compact matching signature
c
8 × h

4 × w
4 . This module is unique to our network and we describe it in details in § 4.2.1.

• The regularization module is an hourglass 3d convolution neural network with short-

cut connections between the contracting and the expanding parts. It takes a tensor

composed of concatenated compact matching signatures for all disparities of size
c
8 × dmax

4 × h
4 × w

4 , and computes a matching cost C of size dmax
2 ×h ×w .

We provide additional information about every module such as convolution filter size and

channels number in Table 4.1.

According to the taxonomy in [120], all traditional stereo matching methods consist of (1)

matching score computation, (2) score aggregation, (3) optimization, and (4) disparity refine-

ment steps. In the proposed network, the embedding and the matching modules are roughly

responsible for the step (1) and the regularization module for the steps (2-4).

Besides the matching module, there are several other design choices that reduce the memory

footprint of our network during training and inference. In contrast to [75], we use aggressive

four-times sub-sampling in the embedding module, and our regularization module pro-

duces probabilities only for even disparities. Also, after each convolution and transposed

convolution in the network, we place Instance Normalization (IN) [137] instead of Batch

Normalization (BN) since during the training we use full-size images instead of mini-batches

of image patches.

4.2.1 Matching module

The core of state-of-the-art methods [75, 76, 78, 80] is a 3d convolutional Hourglass network

used as the regularization module, that takes as an input a tensor composed of concatenated

left-right image descriptors for all possible disparity values. Because of the large size of this

tensor, these methods have a huge memory footprint during the inference.

We decrease the memory usage by implementing a novel matching module with a “bottleneck”

architecture, that we show in Figure 4.2. For each disparity, the matching module takes

concatenated left and shifted right descriptor and produces a compact matching signature,
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Table 4.1 – The architecture of the proposed network. Each Residual block consists of two 2d
convolutions followed by a shortcut connection. Every convolution and transposed convolu-
tion, including these in the Residual blocks, is followed by LeakyReLU with a negative slope
0.2 and Instance Normalization [137]. We set c = 64.

Layer Layer Description Output Dimension
color image 3×h ×w

Embedding module
E1 2d convolution 3×5×5× c stride 2 c × 1

2 h × 1
2 w

E2 2d convolution c ×5×5× c stride 2 c × 1
4 h × 1

4 w
E3 2× Residual block with c ×3×3× c 2d conv. c × 1

4 h × 1
4 w

E4-redir. 2d convolution c ×3×3× c
8 no IN, LeakyReLU 1

8 c × 1
4 h × 1

4 h

Matching module
M1 concatenate left-right embeddings E3 2c × 1

4 h × 1
4 w

M2 2d convolution 128×3×3× c 2c × 1
4 h × 1

4 w
M3 2× Residual block with c ×3×3× c 2d convolution c × 1

4 h × 1
4 w

M4 2d conv. c ×3×3× c
8 no IN, LeakyReLU 1

8 c × 1
4 h × 1

4 w

Regularization module
H1 concatenate joint embeddings M4 1

8 c × 1
4 dmax × 1

4 h × 1
4 w

H2 3d convolution c
8 ×3×3×3× c

8
1
8 c × 1

4 dmax × 1
4 h × 1

4 w
H3 3d convolution c

8 ×3×3×3× c
4 , stride 2 1

4 c × 1
8 dmax × 1

8 h × 1
8 w

H4 H3 + E4-redir. 1
4 c × 1

4 dmax × 1
8 h × 1

8 w
H5 3d convolution c

4 ×3×3×3× c
4

1
4 c × 1

8 dmax × 1
8 h × 1

8 w
H6 H5 + H4 1

4 c × 1
8 dmax × 1

8 h × 1
8 w

H7 3d convolution c
4 ×3×3×3× c

2 , stride 2 1
2 c × 1

16 dmax × 1
16 h × 1

16 w
H8 3d convolution c

2 ×3×3×3× c
2

1
2 c × 1

16 dmax × 1
16 h × 1

16 w
H9 H8 + H7 1

2 c × 1
16 dmax × 1

16 h × 1
16 w

H10 3d convolution c
2 ×3×3×3× c, stride 2 c × 1

32 dmax × 1
32 h × 1

32 w
H11 3d convolution c ×3×3×3× c c × 1

32 dmax × 1
32 h × 1

32 w
H12 H11 + H10 c × 1

32 dmax × 1
32 h × 1

32 w
H13 3d convolution c ×3×3×3×2c, stride 2 2c × 1

64 dmax × 1
64 h × 1

64 w
H14 3d trans. conv. 2c ×4×4×4× c, stride 2 c × 1

32 dmax × 1
32 h × 1

32 w
H15 H14+H11 c × 1

32 dmax × 1
32 h × 1

32 w
H16 3d convolution c ×3×3×3× c c × 1

32 dmax × 1
32 h × 1

32 w
H17 3d trans. convolution c ×4×4×4× c

2 , stride 2 1
2 c × 1

16 dmax × 1
16 h × 1

16 w
H18 H17+H8 1

2 c × 1
16 dmax × 1

16 h × 1
16 w

H19 3d convolution c
2 ×3×3×3× c

2
1
2 c × 1

16 dmax × 1
16 h × 1

16 w
H20 3d trans. convolution c

2 ×4×4×4× c
4 , stride 2 1

4 c × 1
8 dmax × 1

8 h × 1
8 w

H21 H20+H5 1
4 c × 1

8 dmax × 1
8 h × 1

8 w
H22 3d convolution c

4 ×3×3×3× c
4

1
4 c × 1

8 dmax × 1
8 h × 1

8 w
H23 3d trans. convolution c

4 ×4×4×4× c
8 , stride 2 1

8 c × 1
4 dmax × 1

4 h × 1
4 w

H24 H23+H3 1
8 c × 1

4 dmax × 1
4 h × 1

4 w
H25 3d convolution c

8 ×3×3×3× c
8

1
8 c × 1

4 dmax × 1
4 h × 1

4 w
H26 3d trans. convolution c

8 ×4×4×4× c
16 , stride 2 1

16 c × 1
2 dmax × 1

2 h × 1
2 w

H27
3d trans. convolution c

16 ×3×4×4×1,
stride (1,2,2), no IN, LeakyReLU

1
2 dmax ×h ×w
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Figure 4.2 – For each disparity, the matching module
takes concatenated left and shifted right descriptor
and produces a compact matching signature, that is,
similarly to the correlation matrix from [21] carry infor-
mation about the goodness of match, but has multiple
channels. Because the matching signature has fewer
channels than the concatenated descriptors we reduce
memory footprint during inference.

Sub-pixel MAP 

estimation

SoftArgmin 

estimation

(a) Multi-modal distribution

Sub-pixel MAP 

estimation

SoftArgmin 

estimation

(b) Distribution of extended disparity range

Figure 4.3 – Disadvantages of the SoftArgmin estimator: (a) in presence of the multi-modal
distribution the SoftArgmin blends all the modes and produces the incorrect disparity estimate;
(b) when the disparity range is extended (blue area), the SoftArgmin estimate degrades due to
the additional modes.

that is, similarly to the correlation matrix from [21] carry information about the goodness

of match, but has multiple channels. Then, we concatenate matching signatures for all

disparities in 4d tensor and feed it to the regularization module. Because the matching

signature has fewer channels than the concatenated descriptors we reduce memory footprint

during inference. This contrasts with existing methods, which directly feed the concatenated

descriptors [75, 76, 78, 80] to the regularization module. Reducing the memory footprint

allows processing larger images during the inference, and consequently using a larger spatial

context for solving matching ambiguities, which translates directly into better performance.

This module is inspired by CRL [77] and DispNetCorr1D [59, 74] which control the mem-

ory footprint (as shown in Table 4.6) by feeding correlation results instead of concatenated

descriptors to the Hourglass network and by [63] which show the superior performance of

joint left-right image embedding. We also borrow some ideas from the bottleneck module in

ResNet [138], since it also encourages compressed intermediate representations.

4.2.2 Sub-pixel maximum a posteriori estimator

In state-of-the-art methods, a stereo network produces a matching cost and then use Soft-

Argmin module [75, 76, 78, 80], introduced in [75], to compute the predicted sub-pixel dis-

parity. The name SoftArgmin comes from the fact that this function computes disparity of a

match with the minimum matching cost in a “soft” way. In fact, the SoftArgmin is simply an
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expectation of a probability distribution over the disparity

D̂ y,x =∑
d

d ·P
(
D y,x = d | IL ,IR)

, (4.3)

where D̂ y,x is an estimated disparity for left image pixel with coordinates (y, x).

Ground Truth

Figure 4.4 – Target dis-
tribution of sub-pixel
cross-entropy is a dis-
cretized Laplace distri-
bution centered at sub-
pixel ground truth dis-
parity.

This SoftArgmin approximates a sub-pixel maximum a poste-

rior (MAP) solution when the distribution over disparity is uni-modal

and symmetric. However, as illustrated in Figure 4.3, this strategy

suffers from two key weaknesses. First, when these assumptions

are not fulfilled, for instance, if the distribution is multi-modal, the

averaging blends the modes and produces the disparity estimate far

from all of them. Second, if we extend the disparity range without

retraining, the estimate degrades due to additional modes.

The authors of [75] argue that a network adapts to the SoftArgmin

during training by re-scaling its output values to make the distri-

bution uni-modal. However, the network learns to perform the

re-scaling only for the disparity range used during the training. If we

decide to change the disparity range during the test, we will have to retrain the network.

To address these drawbacks, we propose to use a sub-pixel MAP approximation for the in-

ference that computes using Equation 4.3 and a uni-modal posterior distribution calculated

using only matching cost values around the disparity with the minimum matching cost

D̃ = argmind Cd ,y,x as follows

P (D y,x | IL ,IR ) =
{

softmind :|d−d̃|≤∆Cd ,y,x
∣∣D y,x − D̃

∣∣≤∆
0 otherwise

, (4.4)

where ∆ is an estimator’s support, which we set equal to 2 based on a small scale grid search.

The approximation works under the assumption that the disparity distribution is symmetric

in the vicinity of a major mode.

Note, that in contrast to the SoftArgmin, the proposed sup-pixel MAP is used only for inference.

During the training, we use the posterior disparity distribution computed using Equation 4.2

and the sub-pixel cross-entropy loss discussed in the next section.

4.2.3 Sub-pixel cross-entropy loss

Many deep stereo networks rely on L1 loss [75, 76, 78, 80], even though the “natural” choice

for classification by design networks, producing distribution over discrete disparity values is

cross-entropy. The L1 loss is often selected because it empirically [75] performs better than

the cross-entropy and because when combined with SoftArgmin, it allows training a network
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with sub-pixel ground truth.

In this work, we propose a novel sub-pixel cross-entropy that provides faster convergence

and better accuracy. The target distribution of the proposed loss is a discretized Laplace

distribution centered at the ground truth disparity DGT
y,x , shown in Figure 4.4 and computed as

follows

Laplace(D y,x = d | DGT
y,x ,b) = 1

N
exp

(
−
|d −DGT

y,x |
b

)
, where N =∑

d
exp

(
−
|d −DGT

y,x |
b

)
, (4.5)

where b is a diversity of the Laplace distribution, which we set equal to 4 pixels, reasoning that

the distribution should cover at least several discrete disparities. With this target distribution,

the cross-entropy is computed as usual:

Loss(Θ) =− 1

wh
·∑

y,x

∑
d

Laplace(D y,x = d |µ= DGT
y,x ,b) · log(softmin(Cd ,y,x )) (4.6)

The proposed sub-pixel cross-entropy is different from soft cross-entropy [136] since in the

former case, in each discrete location, the target distribution is a smooth function of a distance

to the sub-pixel ground truth. This allows training the network to produce a distribution from

which we can compute sub-pixel disparities using the estimator, proposed in the previous

section.

4.3 Experiments

We guarantee reproducibility of all experiments in this section by using only available datasets,

and making our code available online1.

We perform all experiments with the PyTorch framework [139]. The weighs and the biases

of the network we initialize using default PyTorch initialization and train the network on

each dataset as shown in Table 4.2. During the training, we normalize training images to

zero mean and unit variance. We optimize the loss function with the RMSprop method with

standard settings. In our experiments, we use the FlyingThings3D and the KITTI datasets and

3-pixels-error (3PE) and mean absolute error (MAE) accuracy measures described in Chapter 2.

For validation sets, we withhold 500 images from the FlyingThings3D training set, and 58 from

the KITTI training set, respectively.

4.3.1 Training on full-size images

In this section, we show the effectiveness of using full-size images during training and infer-

ence, which is possible due to a small memory footprint of the proposed network. For that

we train our network till the convergence on the FlyingThings3D dataset with L1 loss and

1https://github.com/tlkvstepan/PracticalDeepStereo_NIPS2018
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Table 4.2 – Summary of training settings for the FlyingThings3D and the KITTI datasets.

FlyingThings3D KITTI
Mode from scratch fine-tune
Learning schedule 0.01 for 120k, ×0.5 every 20k 0.005 for 50k, ×0.5 every 20k
Number of iterations 160k 100k
Training image size 960×540 (full-size) 1164×330
Maximum disparity 255 255
Augmentation not used mixUp [140], zoom and crop

Table 4.3 – Disparity error of the proposed network on the FlyingThings3D test set as a function
of training patch and test patch sizes. Interestingly, even the network trained on small image
patches performs better when provided with access to a larger spatial context during inference.
As expected, the network trained on full-size images, highlighted in the table, performs the
best. Note, that during the training we use SoftArgmin with L1 loss.

Training patch size Test patch size 3-pixel-error, [%] Mean absolute error, [px]
512×256 512×256 8.63 4.18
512×256 960×540 5.28 3.55
960×540 960×540 4.50 3.40

SoftArgmin twice, the first time we use 512×256 training patches randomly cropped from

training images as in [75, 80], and the second time, we use full-size 960×540 training images.

As shown in Table 4.3, even the network trained on small image patches performs better when

provided with access to a larger spatial context during inference. As expected, the network

trained on full-size images makes better use of the said context and performs significantly

better.

4.3.2 Effectiveness of the proposed estimator

In this section, we show the advantages of the proposed estimator over the SoftArgmin. For

that, we train the proposed network till convergence on the FlyingThings3D with the Soft-

Argmin, L1 loss and full-size training images and test it twice: the first time with the SoftArgmin

for inference, and the second time with the proposed sub-pixel MAP. As shown in Table 4.4,

the substitution leads to the reduction of the 3-pixels-error (3PE) and the slight increase of

the mean absolute error (MAE). The latter probably happens because in an erroneous area

SoftArgmin’s estimates are wrong, but closer to ground truth since it blends all distribution

modes, as shown in Figure 4.5.

When, we test the same network with the disparity range increased from 255 to 511 pixels, the

performance of the network with the SoftArgmin plummets, while the performance of the

network with the sub-pixel MAP remains almost the same as shown in Table 4.4. This proves

that the sub-pixel MAP allows modifying the disparity range of a network on-the-fly.
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Table 4.4 – Effectiveness of the proposed sub-pixel MAP estimator on the FlyingThings3D set.
Note, that when during the test we substitute the SoftArgmin with the proposed Sub-pixel
MAP, highlighted in the table, we get lower 3PE and similar MAE. Moreover, when we increase
disparity range twice, the MAE and the 3PE of the network with the Sub-pixel MAP, highlighted
in the table, almost do not change, while the errors of the network with the SoftArgmin
increase.

Estimator 3-pixels-error, [%] MAE, [px]
Standard disparity range ∈ [0,255]

SoftArgmin 4.50 3.40
Sub-pixel MAP 4.22 3.42

Extended disparity range ∈ [0,512]
SoftArgmin 5.20 3.81
Sub-pixel MAP 4.27 3.53

(a) Left image (b) Ground truth (c) SoftArgmin (d) Sub-pixel MAP

Figure 4.5 – Examples of disparity estimation error with the SoftArgmin and the sub-pixel MAP
on the FlyingThings3D set. Note that the SoftArgmin estimate (c), though wrong, is closer to
the ground truth (b) than the sub-pixel MAP estimate (d). This explains the larger MAE of the
sub-pixel MAP estimate.
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Figure 4.6 – Dynamics of 3-pixel-error on the vali-
dation set during training on the FlyingThings3D
set with the proposed sub-pixel cross entropy (blue)
and L1 (red) criterion. Note, that with the proposed
criterion the validation error converges faster and
reaches the lower error than with L1. Interestingly,
[75] also reports faster convergence with one-hot
cross-entropy than with L1 loss, but contrary to our
results, concludes that it results in a larger 3PE.

52



4.4. Conclusion

Table 4.5 – Effectiveness of the proposed sub-pixel cross-entropy loss on the FlyingThings3D
set. As highlighted in the table, when we train the network with the sub-pixel cross-entropy
loss, it has much lower 3PE and only slightly worse MAE than the network trained with the L1

loss.

Loss 3-pixels-error, [%] MAE, [px]
L1 + SoftArgmin 4.22 3.42
Sub-pixel cross-entropy 3.80 3.63

4.3.3 Effectiveness of the proposed loss

In this section, we show the advantages of the proposed loss over the L1. For that, we train the

network with the proposed sub-pixel cross-entropy loss and compare it to the network trained

with the SoftArgmin and L1 loss. As shown in Table 4.5, the former network has much smaller

3PE and only slightly larger MAE. The convergence speed with the sub-pixel cross-entropy

is also much faster than with L1 loss as shown in Figure 4.6. Interestingly, [75] also reports

faster convergence with one-hot cross-entropy than with L1 loss, but contrary to our results,

concludes that training with L1 results in a larger 3PE.

4.3.4 Benchmarking

In this section, we show the effectiveness of the proposed method, compared to the state-of-

the-art methods on the KITTI and the FlyingThings3D datasets. For the KITTI datasets, we

compute disparity maps for the test sets with withheld ground truth and upload the results to

the evaluation web site. For the FlyingThings3D set, we evaluate the performance on the test

set ourselves as explained in Chapter 2.

FlyingThings3D benchmarking results are shown in Table 4.6. Notably, the proposed method

has the lowest 3PE error according to both evaluation protocols and the lowest or the second

lowest MAE, depending on the protocol. Moreover, in contrast to other methods, our method

has a small memory footprint, number of parameters, and allows changing the disparity range

without retraining.

KITTI 2012 and KITTI 2015 benchmarking results are shown in Table 4.7. The proposed

method ranks the third on the KITTI 2015 set and the fourth on the KITTI 2012 set, taking into

account state-of-the-art results not yet officially published at the time of the writing, such as

iResNet-i2 [79], PSMNet [80] and LRCR [78] methods.

4.4 Conclusion

In this work, we address two issues precluding the use of deep networks for stereo recon-

struction in many practical situations in spite of their excellent accuracy: their large memory

footprint, and the inability to adjust to a different disparity range without retraining. We show
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Table 4.6 – FlyingThings3d benchmark snapshot from 15/05/2018 with top methods, includ-
ing not yet officially published at the time of the writing iResNet-i2 [79], PSMNet [80], and
LRCR [78]. Besides the errors, we also show the number of parameters and inference memory
footprint for each method. DispNetCorr1D [74], CRL [77], iResNet-i2 [79] and LRCR [78] pre-
dict disparities as classes and are consequently over-parameterized. GC [75] omits an explicit
correlation step, which results in the large memory usage during inference. The proposed PDS
network, highlighted in the table, has a small number of parameters and memory footprint,
the smallest 3PE and the smallest or the second smallest MAE, depending on the evaluation
protocol, and it is the only method able to handle different disparity ranges without retraining.
Note, that for our method we report two results. The result outside of brackets is obtained
using the protocol of the PSM [80] method, according to which the errors are calculated only
for ground truth pixel with disparity < 192. The result in the brackets is calculated according
to the protocol of the CRL [77], DispNetCorr1D [74] and iResNet-i2 [79] methods, according to
which the error is calculated only for images where less than 25% of pixels have disparity >
300, as explained in [77]. Inference memory footprints are our theoretical estimates based on
network structures and do not include memory required for storing networks’ parameters (real
memory footprint will depend on implementation). Error rates and numbers of parameters
are taken from the respective publications.

Method Parameters, Memory, 3PE, [%] MAE, [px] Modifiable
[M] [GB] Disparity

PDS (proposed) 2.2 0.4 3.38 (2.89) 1.12 (0.87) 3

PSM [80] 5.2 0.6 n/a 1.09 7

CRL [77] 78 0.2 6.20 1.32 7

iResNet-i2 [79] 43 0.2 4.57 1.40 7

DispNetCorr1D [74] 42 0.1 n/a 1.68 7

LRCR [78] 30 9.0 8.67 2.02 7

GC [75] 3.5 4.5 9.34 2.02 7

that by carefully revising conventionally used networks architecture to control the memory

footprint and adapt analytically the network to the disparity range, and by using the new loss

and the estimator to cope with a multi-modal posterior distribution and sub-pixel accuracy, it

is possible to resolve these practical issues and reach state-of-the-art performance.
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Table 4.7 – KITTI 2015 (top) and KITTI 2012 (bottom) benchmarks snapshot from 15/05/2018
with top-10 methods, including not yet officially published at the time of the writing iResNet-
i2 [79], PSMNet [80], and LRCR [78]. Our method, highlighted in the table, is the third in the
KITTI 2015 and the fourth in the KITTI 2012 leader boards. The tables are shown in default
mode.

Rank Submission date Method 3PE (all pixels), [%] Time, [s]
1 30/12/2017 PSMNet [80] 2.16 0.4
2 18/03/2018 iResNet-i2 [79] 2.44 0.12
3 15/05/2018 PDS (proposed) 2.58 0.5
4 24/03/2017 CRL [77] 2.67 0.47
5 27/01/2017 GC-NET [75] 2.87 0.9
6 15/11/2017 LRCR [78] 3.03 49
7 15/11/2016 DRR [73] 3.16 0.4
8 08/11/2017 SsSMnet [76] 3.40 0.8
9 15/12/2016 L-ResMatch [72] 3.42 48
10 26/10/2015 Displets v2 [40] 3.43 265

Rank Submission date Method 3PE (non-occluded), [%] Time, [s]
1 31/12/17 PSMNet [80] 1.49 0.4
2 23/11/17 iResNet-i2 [79] 1.71 0.12
3 27/01/17 GC-NET [75] 1.77 0.9
4 15/05/18 PDS (proposed) 1.92 0.5
5 15/12/16 L-ResMatch [72] 2.27 48
6 11/09/16 CNNF+SGM [140] 2.28 71
7 15/12/16 SGM-NET [71] 2.29 67
8 08/11/17 SsSMnet [76] 2.30 0.8
9 27/04/16 PBCP [132] 2.36 68
10 26/10/15 Displets v2 [40] 2.37 265
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5.1 Introduction

Today, a frame-based camera is the sensor of choice for stereo vision. However, these cameras,

originally developed for acquisition of static images rather than for sensing of dynamic un-

controlled visual environments, suffer from high power consumption, data rate, latency, and

low dynamic range. An event-based image sensor addresses these drawbacks by mimicking a

biological retina. Instead of measuring the intensity of every pixel in a fixed time-interval, it

reports events of significant pixel intensity changes. However, asynchronous event sequences

require special handling, since the best performing deep methods for stereo reconstruction

work only with synchronous, spatially gridded data. We address this problem in this work.

Main contributions of this work can be summarized as following

1. We propose a new learning-based module for an event sequence embedding, for use

in different applications. The module builds a representation of an event sequence by

firstly aggregating information locally across time, using a novel fully-connected layer

for an irregularly sampled continuous domain, and then across discrete spatial domain.

2. We use this embedding to design the first deep network-based method for event-based

stereo reconstruction. The method is based on an architecture with a large receptive

field that uses large context and allows stereo reconstruction for locations without

events. We demonstrate that this method significantly outperforms other competing

approaches on the Multi Vehicle Stereo Event Camera Dataset (MVSEC).

This chapter is organised as follows

First, in the “Background” section we provide information about event-based camera and

methods required for the understanding of this work: in § 5.2.1 we review stereo matching

methods for an event-based camera and highlight major research directions, and in § 5.2.2

overview hand-crafted embedding methods for event sequences used in deep learning meth-

ods.

Next, in the “Method” section we propose a deep learning-based stereo matching method

for an event-based camera based on novel event sequence embedding, which we introduce

in § 5.3.1. Then, in the “Experiments” section we validate contributions of this work: in

§ 5.4.1 we introduce the dataset and the evaluation protocol, in § 5.4.2 discuss importance of

temporal and spatial context, in § 5.4.3 compare the proposed temporal aggregation method

to the hand-crafted baseline, in § 5.4.4 show that the stereo matching method, based on the

proposed temporal aggregation outperforms the state-of-the-art methods by a large margin,

in § 5.4.5 visualize filters of the proposed continuous fully-connected layer. Finally, in the

“Conclusion” section we summarize this work.
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Figure 5.1 – Working principles of a conventional and an event-based sensor. The conventional
frame-based sensor (a) acquire still pictures synchronously, at a fixed frame rate. In contrast,
the event-based sensor (b) records asynchronous events of significant pixel intensity changes.
Every event is characterized by a discrete position (x, y), timestamp t , which is so precise that
it can be considered continuous, and binary polarity δ, which depends on the sign of the
intensity change (i.e. “dark to bright” or “bright to dark”).

5.2 Background

Conventional frame-based sensor acquires still pictures at a fixed time interval or frame rate.

In contrast, the retina in a human eye operates on completely different principles. Nobel prize

winning experiments [141] showed that the retina is most sensitive to temporal brightness

gradients, and is blind to static scenes in the absence of eye movements [142]. These principles

inspired the development of event-based image sensors [143, 144].

In an event-based image sensor, pixels are sensitive to temporal brightness contrast and trigger

binary events with a rate proportional to the temporal gradient of photo-current. Events can

have positive or negative polarity depending on the sign of the gradient (i.e. “dark to bright” or

“bright to dark”). Triggered events are recorded by the sensor asynchronously with information

about their spatial positions, polarities, and timestamps accurate to microseconds. Working

principles of the conventional frame-based and an event-based sensor are illustrated in

Figure 5.1.

Event-based image sensors have several advantages over the conventional frame-based sen-

sors. First, they have higher dynamic range and thus do not saturate in extreme lighting

conditions, such as bright daylight and night with minimum illumination, thanks to pixel-wise

gain and integration time control. Secondly, they have lower power consumption and data

rate, since they only transmit information about significant brightness changes, and thus

can be used in power-constrained systems. Finally, due to immediate transmission of every

triggered event with a microsecond-accurate timestamp, such sensors have lower latency

and can be used in time-critical applications. However, these advantages come at a cost.

Event-based sensors have lower resolution, because their pixels are more complex, and do not

provide rich intensity information. We summarize advantages and drawbacks of event-based

image sensors in Table 5.1.

Unique properties of event-based image sensors make them attractive for low-latency dynamic
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Table 5.1 – Advantages and drawbacks of an event-based image sensor, such as [144], compared
to a conventional frame-based sensor. In the table, we show orders of magnitude for every
characteristic, rather than precise values and highlight advantages of event-based sensors.

Characteristic Conventional sensor Event-based sensor
Dynamic range, [dB] 50 130
Power consumption, [W] 1 0.01
Data rate, [Mb/s] 100 0.1
Latency, [ms] 10 0.001
Resolution, [MP] 1 0.01
Intensity information 3 7

vision applications in environments with uncontrolled illumination, such as tracking [145],

robot control [146], or object recognition [147]. Depth estimation, that we investigate in this

work, could drastically improve performance in these applications, and open the way to novel

use cases, such as augmented reality.

5.2.1 Event-based stereo

Due to the novelty of event-based image sensors, only a few event-based stereo methods have

been proposed, none of which is learning-based.

One line of research investigates how to represent and compare events. This is a hard problem

because events have a few spatio-temporal neighbors and only one binary feature. Early

methods [148, 149] compared events using only their timestamps which led to matching ambi-

guities, due to the noise, variable cameras sensitivity, and imperfect camera synchronization.

Therefore, later methods relied on hand-crafted descriptors [150–152] and similarity mea-

sures [153–155]. In [150] descriptors are computed as a bank of orientation-sensitive spatial

filter responses, in [151] as a vector of distances to closest events in several spatial directions,

in [152] as a histogram of orientations of vectors pointing to the closest events in a spatial

window. As for similarity measures, spatial windows with events are compared in [153] using

average distances to the closest events, in [155] using average inverse timestamp difference

between corresponding events, and in [154] using intersection-over-union of events.

The second research direction explores how to apply regularization in stereo matching. This

is a challenging problem due to the sparsity of data in both time and space, which conse-

quently cannot be represented with conventional Markov Random Field (MRF) models. Some

works [155–157] adopt heuristic cooperative regularization from [33] by defining a spatio-

temporal inhibitory and excitatory neighborhood for each event, while others [158, 159] use

belief propagation and semi-global matching on sparse MRF models, were nodes are active

only during a fixed interval after receiving an event.

The third line of research explores how to accumulate events over the time to cope with the fact

of individual events being noisy and not very informative, though leading to the undesirable
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effect of blurring object boundaries when using long accumulation times. Most methods use

fixed accumulation intervals [148–150, 153], while [152] sets accumulation time equal to the

average of the inverse of the event rate, and [154] warps event positions as if they were all

triggered at the same time using depth hypothesis and known camera motion.

Another challenging direction is dense stereo matching using sparse event data. While most

of the methods produce sparse disparity, authors in [160] reconstruct semi-dense disparity

by fusing information from several view-points using known camera motion, [152] computes

disparity at every location without an event by fitting a plane to its neighbor disparities.

Finally, a lot of works is dedicated to implementing stereo matching on neuromorphic chips

and field-programmable gate arrays (FPGA) [161, 162].

To sum-up, all existing methods use hand-crafted event representations and grid-based image

models, that support only simplistic priors, such as smoothness. Meanwhile, most successful

frame-based stereo methods use learning-based representations [66], an area-based regu-

larization [75] using deep networks, and even use monocular depth cues [104, 106]. This

motivates our work, that focuses on developing end-to-end deep learning for event-based

stereo matching.

5.2.2 Deep learning with event sequences

Event sequences can be processed using convolutional neural networks (CNNs), recurrent

neural networks (RNNs) and specialized networks for event data.

One option is to use off-the-shelf CNNs, which are extremely successful in frame-based image

processing. However, one problem is that convolutional modules work with dense images,

where each pixel lies in a 2d or 3d (in case of video) discrete space, with an intensity value

assigned to it. In contrast, an event sequence consists of sparse events, each lying in 3d space,

with two discrete spatial dimensions, and one continuous temporal dimension, featuring one

binary variable (polarity). Therefore, such a sequence needs to be transformed to a frame-

based representation before it can be input to a standard CNN. Note, however, that naive

binning of the time dimension is problematic since it would lose temporal information or

produce tensors with a prohibitively large temporal dimension.

Existing methods [146, 163–167] use hand-crafted transformations to convert event sequences

to frame-based representations, that we call event images. For example, [163] saves the polarity

of the latest event, [164] sums event polarities in every location during a predetermined time

interval, [146] counts the number of positive and negative events to avoid information loss

due to polarity cancellation. To preserve time information, in addition to positive and negative

event counts [166] saves the timestamp of the last positive and negative events at every

location, while [167] saves the average timestamps of the updates. To capture time dynamic,

[165, 167] stack several event images described earlier, for consecutive time intervals. The

main drawback of all these representations is that they lose precise timing information about
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Figure 5.2 – Functional structure of the event-based stereo network. It is based on our network
for frame-based stereo [173]. Its large receptive field allows performing stereo matching
even for locations without events. To accommodate event sequences, we add event queue
module which stores several most recent events in every location and learning-based temporal
aggregation module which transforms an event sequence into the event image.

events.

Another seemingly natural choice, given the sequential nature of the data, is to use RNNs.

For example, [168] uses RNNs with long-term memory for event-based recognition. Their

main drawback is that they do not preserve the spatial information, that is crucial for some

applications, such as stereo matching. Note, that convolutional RNNs, such as [169], preserve

spatial information, but cannot be used for the same reason as CNNs.

Finally, one can use asynchronous networks, where every neuron has an internal state that

is updated by events, such as Spiked Neural Networks (SNN) [170] or specially designed

convolutional neural networks [171, 172]. Unfortunately, it is hard to build and train such

networks, because they are not easily differentiable, and additionally difficult to implement

in a standard framework that enables the use of available computational back-ends such as

GPUs.

5.3 Method

The proposed network takes as an input left and right event sequences E l ,E r , each consisting

of n events sorted by the time of arrival E = ((xi , yi , ti ,δi ) | ti+1 > ti )i=1...n . Each event is a

point in a three dimensional space with two discrete spatial coordinates and one continuous

temporal coordinate (x, y, t ) ∈ [0 . . . w)× [0 . . .h)×R and one polarity feature δ ∈ {−1,1}, where

w and h correspond to the width and height of an image sensor, measured in pixels. Given
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Figure 5.3 – The event queue is a 4d tensor of
size 2×κ×h × w . It stores ≤ κ most recent
events at each location and keeps each event
for at most τ seconds. The figure depicts the
queue with width and height fused to a sin-
gle dimension. When a new event (9) arrives,
it pushes older events (6, 5, 2) to the end of
the queue and the oldest event (1) out of the
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such event sequences, the network computes an estimated disparity tensor D̂ as

D̂ = Net(E l ,E r |Θ,dmax ) ∈ [0,dmax ]h×w , (5.1)

whereΘ are network parameters and dmax is a maximum disparity.

The functional structure of the network is shown in Figure 5.2. It is based on our network for

frame-based stereo [173] described in details in Chapter 4. Its large receptive field allows per-

forming stereo matching even for locations without events. To accommodate event sequences,

we add event queue module which stores several most recent events in every location and

learning-based temporal aggregation module which transforms an event sequence to an event

image. These modules are the main novelties of this work and they will be described in details

in the next section.

5.3.1 Events sequence embedding

In this work, we focus on a special family of embedding functions that can be represented as a

composition GS(Gτ(·)) of two functions: temporal aggregation Gτ(·) and spatial aggregation

GS(·). The temporal aggregation function is defined per-location and it takes a local event

sequence E(x, y) = ((xi , yi , ti ,δi ) ∈ E | (xi , yi ) = (x, y)) as input, and produces an event image

I of size c ×h × w , as Iy,x = Gτ(E(x, y)). The spatial aggregation is a translation-invariant

function that is applied to sub-windows of the event image and produces an event descriptor

F such that ∀y, x, Fy,x =GS
(
Iy−∆:y+∆,x−∆:x+∆

)
.

The spatially gridded nature of the event image allows using standard 2d convolutions. There-

fore, throughout our experiments, we use embedding module from [173] for spatial aggrega-

tion and focus on developing a temporal aggregation method.

To implement various temporal aggregation methods, we need a way to efficiently accumulate

events in each location. For that, we propose to use a First-In First-Out (FIFO) queue shown in

Figure 5.3. It stores ≤ κ most recent events at each location and keeps each event for at most τ

seconds. We call κ the capacity and τ the time horizon of the queue. In real applications, this

queue can be efficiently implemented using a linked list or a simpler circular buffer. Note,

63



Chapter 5. Dense deep event-based stereo

that this queue works well regardless of amount of motion: in presence of fast motion, when

events are frequent, it stores only the recent ones, while in presence of slow motion, when

events are rare, it preserves old ones. We prune events that arrived more than τ seconds ago

from the queue and replace them with zeros before applying the temporal aggregation.

Hand-crafted. In §5.2.2, we reviewed existing methods for converting event sequences to

event images. All of them are hand-crafted temporal aggregation functions. One of these

methods produces an event image by counting the number of positive and negative events

and recording timestamps of the most recent positive and negative events at every location.

Because similar methods [146, 163–167] worked well in many applications, we use this method

as a baseline.

Continuous fully-connected layer (CFC). Ideally, however, we would like to take into account

the fact that the events are sampled irregularly and have continuous timestamps. To do so,

we use a continuous fully-connected layer (CFC), where continuous kernels are themselves

approximated by a multi-layer perceptron (MLP), that we call a kernel network. This network

allows modeling arbitrary complex, continuous kernels and can be trained end-to-end along

with the rest of the architecture. The overall idea is illustrated in Figure 5.5.

Let us compare the proposed layer to a standard fully-connected (FC) layer, to appreciate the

differences. Given event polarities δ= [δ1,δ2,δ3,δ4,δ5,0,0] for some location stored in the

event queue, a single output of the conventional FC layer is computed as I =σ(∑7
i wiδi +b

)
,

where w is a weights vector and b is a bias and σ(·) is a non-linearity. In contrast, a single

output of the proposed CFC layer is computed as I = σ
(1

5

∑5
i w(ti ) ·δi +b

)
. Note that as

shown in Figure 5.4, for a standard FC layer, the weight of each polarity simply depends

on the events order i , while for the proposed CFC, the weight is a continuous parametric

function w(ti ) = KernelNet(ti ), of real-valued event timestamp ti . This allows to embed event

sequences with irregularly spaced time intervals between events.

Note that a similar idea is used in [174]. However, in [174] authors use continuous convolu-

tional layers, while we propose continuous fully-connected layer, moreover, they work with 3d

points in a Euclidean space acquired by a LIDAR.

5.4 Experiments

All experiments in this section are done using the PyTorch framework [139] on publicly avail-

able datasets, and our code is available online 1.

In our experiments, besides the PDS [173] stereo network with a large receptive field, we use

the network with a small 9×9 receptive field. This network is similar to “accurate network“

from [19] with four 3×3 convolutional layers with 64 features for embedding and two 1×1

convolutional layers with 128 features for computing matching cost and we refer to it as MC-

1https://github.com/tlkvstepan/event_stereo_ICCV2019
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Figure 5.4 – Comparison of the
conventional fully-connected (FC)
layer (a) to proposed continuous fully-
connected (CFC) layer (b). In con-
trast to the FC, the CFC allows embed-
ding event sequences with irregularly
spaced time intervals between events.
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Table 5.2 – The architecture of the kernel network in the continuous fully-connected layer. The
network takes as an input event timestamps of size 1×κ×h ×w from the event queue and
produces a weights tensor of size 64×κ×h×w . By using 3d convolutions with kernel 1×1×1
instead of a fully-connected layer we can process the entire event queue.

Layer Description Output Size
3d convolution 1×1×1×1×64 ◦ ReLU 64×κ×h ×w
2 × 3d convolution 64×1×1×1×64 ◦ ReLU 64×κ×h ×w
3d convolution 64×1×1×1×64 64×κ×h ×w

CNN. We use this network to study the effectiveness of the proposed temporal aggregation in

the absence of a large spatial context.

In our experiments, in the continuous fully-connected layer we use the kernel network with

the architecture shown in Table 5.2, that was discovered using coarse grid search.

All networks are initialized using a default PyTorch initialization, except the kernel network,

for which we develop the custom initialization described below. Usually network weights are

initialized using a normal distributionN
(
0, 2

Nl+Nl−1

)
, where Nl−1 and Nl are the numbers of

inputs and outputs respectively. This initialization is called Xavier initialization [175] and it

ensures that the variances of network activations and parameter gradients are kept constant

across all layers. Since the kernel network essentially produces weights of the continuous

fully-connected layer, we initialize its parameters such that its output is normally distributed.

This is done computationally by sampling weights of the continuous fully-connected layer

for timestamps t1, t2, . . . tM from a normal distribution W = [w(t1), . . . ,w(tM )] ∼N
(
0, 2

Nl+Nl−1

)
and fitting the kernel network to these weights. Besides keeping the variances in check, this
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Figure 5.6 – The continuous kernels of the kernel network before (a) and after (b) the custom
initialization. Note, that before the initialization (a) the continuous kernels are mostly linear
and very similar to each other, whereas after the initialization (b) they have complex and
diverse shapes. For clarity, we show 3 kernels out of 64.

Table 5.3 – Optimal learning rate and event queue parameters for each combination of a
temporal aggregation and stereo network selected using a “coarse” grid search on the validation
set of the first split of the Indoor Flying set.

Learning rate Capacity, [#] Time horizon, [seconds]

Small spatial context (MC-CNN [19])

Hand-crafted 10−3 all events 0.1

Continuous fully-connected 10−3 15 0.5

Large spatial context (PDS [173])

Hand-crafted 0.1 all events 0.1

Continuous fully-connected 10−4 1 0.5

initialization ensures diversity of the resulting continuous kernels as shown in Figure 5.6. The

biases of the fully-connected continuous layer are initialized with zeros.

The optimization is performed using RMSprop method with standard settings. For the training,

we use full-sensor event sequences without augmentation. We consider only ground truth at

locations corresponding to the most recent 15’000 events, if not explicitly stated otherwise. In

all experiments, we normalize event polarities to N (0,1) and subtract the timestamp of the

most recent event in the sensor from all timestamps.

For each combination of the temporal aggregation and stereo network, we chose the best

learning rate, event queue capacity and time horizon shown in Table 5.3 using a “coarse”

grid search on the validation set of the first split of the Indoor Flying set. In the case of the

continuous fully-connected layer combined with MC-CNN, the larger event queue capacity

might lead to even better result but we do not explore the parameter space further due to the

time limitation.
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5.4.1 Dataset

In this work, we use the Multi-Vehicle Stereo Event Camera Dataset (MVSEC) [176] which is

available online [177]. This is the only large publicly available dataset acquired with a real

event-based stereo system, and over recent years it has become the standard [154, 160] for

evaluation of event-based stereo methods. It is collected by a system composed of a LIDAR and

two event-based cameras with a resolution of 346×260 pixels mounted on various vehicles,

such as a drone, a car, and a motorcycle. The LIDAR acquires frames with sparse depth

measurements at 20Hz, while the event-based cameras acquire continuous streams of events

and gray-scale video frames, which we use for visualization purposes only.

We unpack the original data in the ROS bag format [178] to a more convenient format for train-

ing. The depths we convert to left-view sub-pixel disparities and save as images. We preserve

sub-pixel precision by scaling the disparities. We assume that all pixels with disparities > 36

have unknown disparities. Then, for each depth, we find the closest gray-scale image in time,

and events preceding the depth by 0.05 seconds in the left and right view. We correct their

optical distortions, rectify and save them.

In this work, we use the Indoor Flying dataset from MVSEC, which is captured from a drone

flying in a room with various objects. Similar to [154], we compute and report the mean-

absolute-depth-error (MDE) and the one-pixel-error (1PE), computed in sparse locations

corresponding to 15’000 events preceding each depth measurement. We report the results for

three data splits summarized in Table 5.4. Following the [154], we exclude the take-off and

landing frames from the dataset. For testing, we use frames from the same intervals as [154] to

guarantee consistent and comparable results.

5.4.2 Importance of spatial and temporal context

In this section, we analyze the importance of temporal and spatial context for event-based

stereo. The amount of the spatial context is determined by the receptive field of the stereo

network with which we combine a temporal aggregation module. The larger receptive field

allows the network to access a larger spatial context. The amount of the temporal context,

available to the network, we can control by setting the event queue capacity.

To understand the importance of the temporal context, we firstly combine the proposed

temporal aggregation with the small receptive field stereo network (MC-CNN [19]) and then

with the large receptive field stereo network (PDS [173]). In each case, we train the resulting

network two times using different random initializations on the first split of the Indoor Flying

dataset, varying the event queue capacity. To avoid over-fitting, in each trial we select the

network that achieves the lowest error on the validation set over the training epochs. In

Table 5.5 we show mean depth errors on the validation set averaged across the trials. In all

experiments, we set the time horizon of the event queue to τ= 0.5 seconds.

From the table, it is clear that when the large spatial context is not available, the larger temporal

67



Chapter 5. Dense deep event-based stereo

Table 5.4 – Summary of the Indoor Flying dataset splits. For each split, we specify which
sequences and frames we use for training, validation and test. For example, S1

140...1200 means
that we use frames from 140 to 1200 exclusively from sequence one. Note that during the test
we use frames from the same intervals as [154] in order to guarantee consistency of the test
results.

Split # Set Sequence and frames Size

1
Training S2

160...1580 ∪S3
125...1815 3110

Validation A ∈ S1
140...1200 200

Test B ∈ S1
140...1200 | A∩B =; 861

2
Training S1

80...1260 ∪S3
125...1815 2870

Validation A ∈ S2
120...1420 200

Test B ∈ S2
120...1420 | A∩B =; 1101

3

Training S1
80...1260 ∪S2

160...1580 2600

Validation A ∈ S3
73...1615 200

Test B ∈ S3
73...1615 | A∩B =; 1343

Table 5.5 – Importance of temporal context in the presence of large and small spatial context.
The numbers in the table show mean depth errors on the validation set of the first split of the
Indoor Flying dataset, averaged over two trials. Notice, that when the large spatial context is
not available, the larger temporal context helps to achieve the lower error. However, when the
large spatial context is available, the larger temporal context is ignored.

Queue capacity κ, [events]
1 3 7 15

Small spatial context, MC-CNN [19] 80.4 71.5 67.7 59.4
Large spatial context, PDS [173] 13.3 13.4 13.5 13.3

context helps to achieve the lower error. However, when the large spatial context is available,

the larger temporal context is ignored, probably because it is less reliable. These results,

however, are valid only for the given highly-dynamic stereo dataset, filmed from the drone,

and the stereo matching problem. We suspect that for other datasets and problems, such as

monocular depth estimation or optic flow, a large temporal context provided by the proposed

temporal aggregation approach can be very useful, even for networks with a large receptive

field.

5.4.3 Effectiveness of the temporal aggregation

In this section, we compare the proposed temporal aggregation to the hand-crafted base-

line in combination with the small receptive field (MC-CNN [19]) and the large receptive

field (PDS [173]) stereo networks. In each case, we train the network two times using different
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Table 5.6 – Effectiveness of the proposed temporal aggregation method compared to the
baseline. We report test set results on the first split of the Indoor Flying dataset averaged over
two trials. Our method outperforms the baseline with the MC-CNN network with a small
9×9 receptive field because it allows utilizing large temporal context in form of timestamps of
multiple individual events, which very helpful when the network is deprived of a large spatial
context. However, when the proposed temporal aggregation is combined with PDS [173] stereo
network with a large receptive field, its advantage compared to the baseline is not large.

Mean depth error, [cm] 1-pixel-error, [%]
Small spatial context (MC-CNN [19])

Hand-crafted 94.5 35.9
Continuous fully-connected 58.4 30.5

Large spatial context (PDS [173])
Hand-crafted 13.3 8.9
Continuous fully-connected 12.7 8.0

random initializations on the first split of the Indoor Flying dataset. To avoid over-fitting, in

each trial we select the network that achieves the lowest error on the validation set over all

epochs. In Table 5.6 we show mean depth errors on the test set averaged across two trials.

As shown in the table, the proposed temporal aggregation outperform the hand-crafted

method, when it is combined with the MC-CNN network with a small 9×9 receptive field.

This is because it utilizes a large temporal context in the form of precise timestamps of

multiple individual events, which is very helpful when the network is deprived of a large spatial

context. However, when the proposed temporal aggregation is combined with PDS [173] stereo

network with a large receptive field, its advantage compared to the baseline is not large. Note,

however, that in contrast to the baseline, our method does not require parameter search since

it discovers appropriate amount of temporal context during training, as we showed in the

previous section.

For the stereo matching, the PDS stereo network has better performance than MC-CNN,

therefore, in the following sections, we combine the proposed temporal aggregation method

with this network and refer to it as Deep Dense Event Stereo (DDES).

5.4.4 Benchmarking

In this section, we compare the proposed stereo method to the state-of-the-art event-based

methods [154, 155, 160], published recently, and to two traditional methods [35, 58] operating

on event images implemented in [160].

For quantitative comparison we use the protocol from [154] described in §5.4.1. According

to this protocol, we evaluate results in sparse locations corresponding to 15’000 most recent

events. We use the same parameters and experiment settings as in §5.4.3.
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During our experiments with various splits of the Indoor Flying dataset, we noticed significant

differences between the test and the training set of the second split. In the test set, composed

of the second sequence, there are much more abrupt motions (triggering large numbers

of events) than compared to the training set, composed of sequences one and three. This

suggests that the test and the training set of this split are drawn from very different underlying

distributions and thus should not be used in the experiments. As a partial remedy, for the

second split, we train the network using a fixed number of 130’000 events instead of a fixed

time horizon and show the results in the table.

The benchmarking results are summarized in Table 5.7. Our proposed DDES method sig-

nificantly outperforms other single viewpoint methods, such as TSES [154], CopNet [155],

SGM* [58, 160] and FCVF* [35, 160] and even performs on-par with Semi-Dense 3D

method [160] which fuses depths from several viewpoints using known camera motion. We

also train and test our method using full ground truth, taking into account all locations, includ-

ing those without events. The results are only slightly worse than results with the sparse ground

truth. To our knowledge, the proposed method is the only method capable of producing dense

stereo results for event-based cameras.

For qualitative comparison, we estimate disparity using DDES trained on the full ground

truth for example cases similar to the ones used in [154, 160]. Figure 5.8 contains a visual

comparison of our results with those of TSES [154] and Semi-Dense 3D [160] borrowed from

the respective papers. Unlike previous methods, the proposed method computes truly dense

and sub-pixel accurate disparity.

Our proposed method runs at about 10 frames per second on a desktop PC with a GeForce

GTX TITAN X GPU.

5.4.5 What does continuous fully-connected layer learn?

In this section, we visualize the output of the kernel network. To this end, we input uniformly

sampled timestamps ∈ [−0.5,0] to the kernel network and plot every row of the CFC weights

tensor as a smooth curve, which we call weight kernel.

We show resulting kernels before and after the training in Figure 5.7. At the beginning of the

training, the weight kernels produced by the kernel network are normally distributed, thanks

to the custom initialization. After the training, the weight kernels become smooth in time

and converge to one of two shapes: bell-shaped (kernels 2 and 3) or derivative (kernel 1). The

bell-shaped kernels detect events with particular timestamps, while the derivative kernels

compute event count changes (time-derivative) at varying time scales. Most of the kernels

assign close to zero weights to old events.
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Table 5.7 – Benchmarking on the Indoor Flying dataset using sparse ground truth, correspond-
ing to the last 15’000 events, and dense ground truth. Results for TSES [154] and CopNet [155]
are from [154] and results for Semi-Dense 3D [160], SGM* [58, 160] and FCVF* [35, 160] are
from [160]. SGM* and FCVF* methods implemented in [160] are similar to the original frame-
based methods but operate on event images. For Semi-Dense 3D, SGM* and FCVF* results for
the second split are not available. We report average test set errors over the three randomized
training trials. All methods are sorted in ascending order according to their test error. Our
proposed method dubbed Deep Dense Event Stereo (DDES) is highlighted. Note, that it out-
performs other single viewpoint methods, such as TSES, CopNet, SGM* and FCVF*, and even
performs on-par with Semi-Dense 3D method that fuses depths from several viewpoints using
known camera motion. The proposed method performs only slightly worse when trained and
tested on the dense ground truth. Notably, the proposed method is the only method capable
of producing dense results.

Method
Mean absolute depth error, [cm]
Split 1 Split 2 Split 3

Sparse ground truth (last 15’000 events)
Semi-Dense 3D [160] 13 – 33
DDES (proposed) 13 18 18
TSES [154] 36 44 36
CopNet [155] 61 100 64
SGM* [58, 160] 93 – 119
FCVF* [35, 160] 99 – 103

Dense ground truth
DDES (proposed) 17 29 28
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(a) Before training (b) After training

Figure 5.7 – Visualization of kernel network output before (a) and after (b) the training. Before
the training (a), the weight kernels produced by the kernel network are normally distributed by
design. After the training (b), the weight kernels have one of two shapes: bell-shaped (kernels
2 and 3) and derivative (kernel 1).
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(a) Events (b) Ground Truth (c) DDES (proposed) (d) TSES [154]

(a) Events (b) Ground Truth (c) DDES (proposed) (f) Semi-Dense 3D [160]

Figure 5.8 – Qualitative comparison with recent event-based methods on the Indoor Flying
dataset. For comparison, we select frames similar to the ones used in [154] and in [160].
Results for TSES [154] and Semi-Dense 3D [160] are borrowed from the respective papers.
Note, that, unlike our method, Semi-Dense 3D fuses depth from several viewpoints using
known camera motion. The rows correspond to frame #100 from sequence 1, frame #340 from
sequence 1, frame #1700 from sequence 3 and frame #980 from sequence 1 correspondingly.
To get the results for sequence 1 we train the network using sequences 2 and 3 (first split) and
to get the results for sequence 3 we train the network using sequences 1 and 2 (third split). We
try to match the color-coding of the methods as much as possible. In all figures, the warmer
colors correspond to the closer objects. In (a) we visualize the 15’000 most recent events from
the left camera, overlaid with a gray-scale image, which is not used by the methods. Positive
events are shown in red and negative events are shown in blue. In (b,c,d) locations without
disparities are shown in dark blue and in (f) in black. Note, that our proposed method (c)
computes dense disparities, while in TSES (d) some disparities are invalidated by outlier
rejection and in Semi-Dense 3D (f) disparities are computed only for locations with events.
Similarly to Semi-Dense 3D method, our proposed method (c) estimates sub-pixel disparities,
while TSES (d) estimates integer disparities.
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5.5 Conclusion

In this work, we propose a novel learning-based method for embedding event sequences

recorded by event-based vision sensors. It explicitly treats events as a stream of sparse 3d data

points, each with two discrete spatial coordinates and one continuous temporal coordinate,

and takes into account timestamps and spatial positions of all events in a time interval. We

show that when the network has small receptive field our proposed embedding outperforms

state-of-the-art hand-crafted embedding in stereo matching task.

Using the proposed embedding we develop a deep neural network for stereo matching. This

is the first learning-based stereo matching method for event-based cameras and the only

method to date producing dense results. We show that the proposed method outperforms the

latest state-of-the-art methods on the standard MVSEC dataset by large margins.

Event-based cameras offer advantages such as higher dynamic range and temporal resolution

over traditional frame-based cameras. However, the special data structure of an event stream

requires a new suite of imaging algorithms. We believe that the embedding that we develop in

this work could serve as a building block also beyond stereo.

73





Part IIApplied part

75





6 Calibration of a satellite stereo system

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Camera model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.2 Calibration using starfield images . . . . . . . . . . . . . . . . . . . . . 82

6.2.3 Space image processing tools . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Optical distortion model selection . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 On-ground calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5 In-flight calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.6 Color mosaicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.7 Stereo reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.7.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

This chapter is based on the following publication:

S. Tulyakov, A. Ivanov, N. Thomas, V. Roloff, A. Pommerol, G. Cremonese, T. Weigel and F.

Fleuret, Geometric calibration of Colour and Stereo Surface Imaging System of ESA’s Trace Gas

Orbiter. Advances in Space Research, 61(1):487–496, 2018.

77



Chapter 6. Calibration of a satellite stereo system

6.1 Introduction

On March 15, 2016, European Space Agency (ESA) launched Trace Gas Orbiter (TGO) satellite

to Mars, as a part of the ExoMars project. Main aim of the satellite is to find trace gases -

evidence of geological or biological activity on Mars. Color and Stereo Surface Imaging System

(CaSSIS) on board of TGO helps to characterize sites identified as potential sources of trace

gases visually and structurally. To this end, one can use color mosaics and Digital Terrain

Models (DTMs), that can be produced from raw CaSSIS data. To produce these scientific

products, however, we need precise geometric parameters of the telescope, such as its focal

length, optical distortion model and orientation of the camera relative to the spacecraft that

can be found using a geometric calibration. While there are many calibration methods for a

conventional camera, we cannot use them for the calibration of a telescope with a large focal

length and complex optical distortion, such as CaSSIS. We address this problem in our work.

Main contributions of this work can be summarized as following:

1. We propose a novel geometric calibration method for a satellite telescope with a large

focal length and complex optical distortion that relies on starfield images and apply the

method to refine CaSSIS parameters.

2. We develop tools for reconstruction of bundle-adjusted color mosaics and DTMs from

raw CaSSIS data and experimentally show that color bands misalignment in the color

mosaics and average absolute vertical error of the DTMs with respect to overlapping

HiRISE DTMs are small.

This chapter is organized as follows

First, in the “Background” section we introduce CaSSIS, then, in § 6.2.1 present its geometric

camera model, in § 6.2.2 review calibration methods that rely on images of starfields, and in

§ 6.2.3 overview tools for processing space images that we use in this work.

Next, in the “Optical distortion model selection” section we chose an optical distortion model

for CaSSIS using optical simulation data. In the “On-ground calibration” section we briefly

discuss the unsuccessful attempt to perform calibration of the CaSSIS in laboratory, using

collimator and calibration target. Afterward, in the “In-flight calibration” section in § 6.5.1 we

present novel calibration method that relies on starfield images, and in § 6.5.2 show calibration

results, obtained using this method for the CaSSIS.

Then, in the “Color mosaicing” section, in § 6.6.1 we propose an automatic tool for reconstruc-

tion of color mosaics from raw CaSSIS data, and in § 6.6.2 perform qualitative and quantitative

analysis of reconstructed color mosaics, focusing on a misalignment of color bands. In the

following “Stereo reconstruction” section, in § 6.6.1 we similarly propose an automatic tool

for DTM reconstruction from raw CaSSIS data, and in § 6.6.2 perform analysis of quality of

the DTMs, using an overlapping DTMs from another stereo system with a higher resolution.

Finally, in the “Conclusion” section we summarize our results.
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6.2 Background

The CaSSIS ([179–183]) is a multi-spectral push-frame camera with 4 rectangular color filters

covering its sensor. Its brief specification is provided in Figure 6.1. As the spacecraft is moving

along an orbit, each part of a targeted area becomes visible, in each filter, and gets sequentially

filmed by the CaSSIS as shown in Figure 6.2. We call individual images of this sequence

exposures and sub-images acquired by individual filters framelets. On the ground, we can

collate the framelets and stitch them using camera parameters and telemetry into a color

mosaic of the target area.

The CaSSIS is also a stereo system. It is capable of acquiring two sequences from different

viewpoints on the same orbit as shown in Figure 6.3. While approaching a target area it

acquires the first sequence of exposures, then, it mechanically rotates and acquires the second

sequence, while departing from the target area. By computing parallax between these two

sequences, we can reconstruct a 3d model of surface relief in the target area, called Digital

Terrain Model (DTM). Compared to other color cameras with 3d reconstruction capabilities

orbiting Mars, the CaSSIS has several unique features, such as high spatial resolution, second

only to High-Resolution Imaging Science Experiment (HiRISE), and ability to acquire stereo

pairs from the same orbit within a very short time interval.

To prepare scientific products, such as color mosaics and DTMs from raw CaSSIS data, we need

precise geometric camera parameters, such as its focal length, optical distortion model and

rotation relative to the spacecraft frame. While we know their nominal values from a technical

specification, their actual values might deviate from the nominal ones, due to imprecise

manufacturing, mounting, or various changes during the spacecraft cruise and operation due

to structure dryout and zero gravity. Therefore, we have to measure their actual values in a

controlled environment of a clean room and validate during a commissioning phase in flight.

This is the main goal of a geometric calibration procedure.

There are many geometric calibration methods [22, 184–186] and tools [187–189] for conven-

tional frame cameras. However, we can not use these off-the-shelf tools for the calibration of

telescopes such as CaSSIS, for two reasons. Firstly, most of them require images of calibration

targets, such as a checkerboard chart. For telescopes with a large focal length, however, such

targets must be very large (≈ km2) and should be placed very far away from the telescope

(≈ 10 km), which is impractical. Secondly, telescopes often have off-axis optical designs with

complex optical distortion, that cannot be handled by off-the-shelf tools. Therefore, there is

a need for specialized calibration methods, which are unfortunately scarce in the literature.

In this work, we address this problem by proposing a universal method for calibration of a

telescope with a large focal length and complex optical distortion and apply this method to

the CaSSIS.

After refining the geometric parameters of the CaSSIS, we produce scientific products from

raw data. Unfortunately, there is no out-of-box universal tool capable of doing this. Therefore,

we develop fully automatic tools for the color mosaicing and DTM reconstruction for the
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(a) Sensor outline

Parameter Specification
Optic 3-mirror plus fold mirror off-axis
Detector Raytheon Osprey 2k CMOS hybrid
Filters 675, 485, 840, 985 nanometers
Focal length 880 millimeters
F# 6.52
Pixel size 10×10 micrometers
Detector area 2048×2048 (2048×1350 is used)
FOV 1.33×0.88 degree
Angle w.r.t nadir 10.0±0.2 degree

(b) Specifications

Figure 6.1 – CaSSIS sensor outline (a) and specifications (b). The CaSSIS telescope is a three-
mirror anastigmat system (off-axis) with a fold mirror. The CaSSIS Filter Strip Assembly (FSA)
comprises a Raytheon Osprey 2048×2048 hybrid CMOS detector with 4 colour filters mounted
on it following the push-frame technique. Narrow dark bands between the filters reduce
spectral cross-talk. The detector can acquire an un-smeared image along the ground-track.
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Figure 6.2 – Color image acquisition capability of the CaSSIS. The CaSSIS acquires a sequence
of images of a target area from different locations as it moves along an orbit. We call individual
images exposures and sub-images acquired by individual filters – framelets. On the ground,
we can stitch framelets into a color mosaic of the target area using camera parameters and
telemetry.

Figure 6.3 – Stereo acquisition capability of the
CaSSIS. While approaching a target area the
CaSSIS acquires the first sequence of exposures,
then it mechanically rotates and acquires the
second sequence, while departing from the tar-
get area. By computing parallax between these
two sequences, we can reconstruct a 3d model
of surface relief in the target area, called Digi-
tal Terrain Model (DTM). Courtesy of European
Space Agency (ESA).
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Figure 6.4 – Visualization of CaSSIS coordinate
frames. We set the world frame equal to Equato-
rial J2000 (J2000) frame and the camera frame we
call Focal Strip Assembly (FSA) frame. We know the
rotation of the Spacecraft (SC) frame with respect
to the J2000 thanks to spacecraft attitude sensors,
such as star trackers, and the rotation of the Tele-
scope (TEL) frame with respect to the Camera Ro-
tation Unit (CRU) frame because we control the ro-
tation of the CaSSIS ourselves. Also, we know the
nominal rotation of the Camera Rotation Unit frame
relative to the Spacecraft frame and the rotation of
the Focal Strip Assembly frame relative to the Tele-
scope frame from the specification (dashed axis) but
want to refine them during geometric calibration.

CaSSIS.

6.2.1 Camera model

The CaSSIS camera model is similar to the one described in Chapter 2, however, there are

several important differences which we highlight in this section.

Extrinsic model. In the case of the CaSSIS, we set the world frame equal to Equatorial

J2000 (J2000) frame, because in star catalogs star positions are given in this frame, and refer

to the camera frame as Focal Strip Assembly (FSA) frame. Furthermore, when we work with

images of starfields, a translation of the camera relative to world frame is negligible compare

to a distance to the calibration targets (stars). Therefore, we set the translation vector t in

Equation 2.1 equal to zero. The camera rotation matrix we factorize as

R = R̂T EL→F S A ·RC RU→T EL · R̂SC→C RU ·RJ2000→SC , (6.1)

where RJ2000→SC is a rotation of the Spacecraft (SC) frame with respect to the J2000 Equatorial

frame, RSC→C RU is a rotation of the Camera Rotation Unit (CRU) frame with respect to the

Spacecraft frame, RC RU→T EL is a rotation of the Telescope (TEL) frame with respect to the

Camera Rotation Unit frame and RT EL→F S A is a rotation of the Focal Strip Assembly (FSA)

frame with respect to the Telescope frame. We know the RJ2000→SC matrix, thanks to spacecraft

attitude sensors, such as star trackers, and the RT EL→C RU matrix, because we control the

rotation of the CaSSIS ourselves. We also know the nominal values of the R̂T EL→F S A and the

R̂SC→C RU from the camera specification but want to refine them during geometric calibration.

We summarize all coordinate frames that we use in the factorization in Figure 6.4.
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Chapter 6. Calibration of a satellite stereo system

Intrinsic model. In the case of the CaSSIS, the only intrinsic parameter is its focal length f .

The coordinates (x0, y0) of a principal point in Equation 2.2 we set equal to the center of the

sensor, as shown in Figure 6.1 (a).

Optical distortion model. As we show in in § 6.3, the conventional optical distortion models,

described in Chapter 2, cannot represent complex optical distortion in a camera with off-axis

optical elements, such as the CaSSIS. Therefore, in this work we adopt Rational distortion

model [190].

In the camera frame coordinates, we describe the Rational model as

XC = Acorrχ , where χ=
[

X 2
C d XC d YC d Y 2

C d XC d YC d 1
]T

, (6.2)

where Acorr is a 3×6 Rational distortion correction matrix.

The model has several interesting properties. Firstly, although in total it has 18 parameters,

there are only 17 free parameters, since we can multiply both sides of the equation by the

same number. Secondly, there is no close-form analytical solution for the inverse model.

In other words, given ideal coordinates, we can not compute the corresponding distorted

coordinates analytically. However, the Rational model can very precisely represent the inverse

of itself [191]. We use this property and simultaneously estimate two Rational models: one that

transforms the distorted coordinates to the ideal and characterized by Acorr, and another that

transforms the ideal coordinates to the distorted and characterized by Adist. Thirdly, we can

estimate the parameters of the Rational distortion model from a single image of a calibration

chart up to unknown homography without knowing the intrinsic and the extrinsic parameters

of a camera as shown in [190].

6.2.2 Calibration using starfield images

As described in § 2.1.4, for geometric calibration of a camera we need images of calibration

targets – objects with known real-world coordinates. Since precise angular positions of stars

are documented in star catalogs [192], such as Two Micron All-Sky Survey (2MASS) and Tycho-

2, starfields can serve as perfect calibration targets. Indeed, star trackers, that are an integral

part of every spacecraft, often rely on starfield calibration [193–195]. Also, in [196] authors

use starfields to calibrate consumer-level camera. Unfortunately, all known starfield-based

calibration methods assume a simplistic optical distortion model, and therefore, we cannot

use them for the calibration of a telescope with complex optical distortion.

Before stars from an image can be used for the calibration, they should be identified with stars

from a star catalog. Fortunately, we can do this automatically [197] using the Astrometry.net

library [198].
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6.2.3 Space image processing tools

In this work, we rely on several well-established libraries for processing space images and

computing DTMs. For preprocessing images, we use open-source SPICE [199] and Integrated

Software for Imagers and Spectrometers (ISIS) [200] libraries. SPICE library helps to access

spacecraft telemetry and characteristics, stored in a form of SPICE kernels [201], and allows

performing various geometrical computations. This is a low-level library and we use it mostly

in our in-flight calibration method. In contrast, USGS ISIS library provides high-level functions

for image manipulation, that we use for the mosaicing and stereo triangulation. For the stereo

matching, we rely on open-source NASA Ames Stereo Pipeline (ASP) [7, 202]. Besides the ASP,

there are several alternatives, such as, for example, SOCET SET [203] and S2P [204, 205].

6.3 Optical distortion model selection

To find out what distortion model better represents CaSSIS optical distortion, we fit the

Radial [22], the Brown-Conrady [23], the Rational [190] and the Bi-cubic [206] optical distortion

models to the optical distortion data computed using a ray-tracing simulation provided by

the telescope manufacturer (RUAG Space Zurich, Switzerland), and compare the average

Euclidean errors of the models using a leave-one-out cross-validation.

We show the resulting distortion fields and errors for each model in Figure 6.5. The Radial

and Brown-Conrady models suffer from more than 1 pixel errors, and hence fail to represent

the CaSSIS distortion, while the Bi-cubic and Rational models, with less than 0.1 pixel error,

perform well. Among the last two models, we select the Rational model because we can easily

estimate its parameters from a single image of a calibration chart and because it has fewer

parameters than the Bi-cubic model.

6.4 On-ground calibration

During our calibration experiment in a laboratory, we attempt to estimate the rational distor-

tion model from a single image of a calibration chart, as in [190]. Because the focal length of

CaSSIS is too large to acquire a sharp image of a calibration chart from a reasonable distance,

we use the set-up with a collimator shown in Figure 6.7.

To identify dots in the acquired image, we apply adaptive thresholding and connected compo-

nents detection methods. Then, we find the dot centers using centroid algorithm. Finally, we

fit the regular rectangular grid to the dot centers, using a simple algorithm that starts from

an arbitrarily-selected dot and expands the grid in horizontal and vertical directions, until no

new dots can be added to the grid.

We show the acquired image with the fitted grid in Figure 6.6. Analysis of the grid confirms

the presence of small optical distortion in the image: the grid rows and columns appeared,
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Figure 6.5 – Distortion fields of various optical distortion models fitted to the simulated CaSSIS
optical distortion data computed using a ray-tracing. The vectors show a transformation
from distorted to ideal image coordinates. The contour lines show a magnitude of this trans-
formation. The errors are average Euclidean distances between positions of ideal pixels, as
predicted by the model, and their actual positions. Note that the simple Radial (a) and the
Brown-Conrady (b) models, with > 1 pixel error, fail to represent the CaSSIS distortion, while
the Bi-cubic (c) and the Rational (d) models, with < 0.1 pixels error, both perform well.
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Figure 6.6 – Image of the calibration chart overlaid with
the grid (blue filter is on the top). The red crosses show
dots that are added to the grid and the blue points show
ignored dots.

light dot chart

camera
parabola

Figure 6.7 – On-ground calibration
setting. To acquire a sharp image of
the dotted calibration target from a
reasonable distance, we put it in the
focus of the parabolic collimator.

not as straight lines but, as high-order curves. However, we fail to estimate the distortion field

resembling Figure 6.5 (c) using the grid. This is probably because the experimental data is

contaminated with residual distortion coming from the off-axis collimator which we can not

decouple from the CaSSIS distortion.

6.5 In-flight calibration

During TGO commissioning and mid-cruise checkout, the CaSSIS acquired multiple images

of starfields, that we use for in-flight calibration. In this section, in § 6.5.1 we propose a novel

calibration method that uses starfield images and in § 6.5.2 apply this method to refine the

geometric parameters of the CaSSIS.

The proposed calibration method is implemented in Matlab using SPICE [199] and Astrome-

try [198] libraries. To encourage re-use of the method we make our code available on-line1.

6.5.1 Method

We show the workflow of the proposed in-flight calibration method in Figure 6.8 and describe

its steps below:

Exposures preprocessing. First, we assemble full-sensor images from several data packets

according to information in XML files from the telemetry conversion. We denoise every image

by subtracting the median of several close in time images from each image. This procedure

helps to get rid of fixed-pattern noise and hot pixels. Then, we flatten each image by applying

1https://github.com/tlkvstepan/CaSSIS_calibration

85

https://github.com/tlkvstepan/CaSSIS_calibration


Chapter 6. Calibration of a satellite stereo system
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Figure 6.8 – Workflow of the in-flight calibration. The green ellipses show the input data, the
blue ellipses show output data and the rectangles show processing steps.

a Difference-of-Gaussian (DoG) filter.

Starfields recognition. Next, we perform stars detection and recognition using the open-

source Astrometry.net [198] library and Two Micron All-Sky Survey star catalog (2MASS) [192].

The library takes an image of a starfield as an input and outputs (x, y) coordinates of stars in

the image, and their corresponding right ascension α and declination δ coordinates in the

Equatorial J2000 frame (and epoch). In the next step, we collect information about detected

stars from all images and filter out erroneous detections. First, we ignore detections with very

low relative image brightness. Next, since the calibration image sets consist of sequences of

3-4 almost identical images, we mark a star as a false detection, if it is not re-detected at a

similar position in at least 2 other images. Finally, to ensure that we have enough stars for a

robust estimation of extrinsic parameters for every exposure, we remove exposures that have

less than 10 stars.

Camera rotation initialization. We estimate the camera rotation for every image indepen-

dently. During the estimation, we set the focal length of the camera to the nominal and

search for the camera rotation that minimizes the reprojection error, i.e the Euclidean dis-

tance between observed and predicted star positions in each image individually (please, refer

Chapter 2). We preform the optimization using Levenberg-Marquardt algorithm (lsqnonlin in

MATLAB). We initialize the optimization with nominal rotation angles, which we read from

the SPICE kernels of the ExoMars mission [201], using the SPICE Toolkit [199].

Iterative Bundle Adjustment (BA). In this step, we search for a refined focal length and rota-

tions (extrinsic parameters) that minimize the reprojection errors for all images simultaneously.

The optimization is performed with Levenberg–Marquardt algorithm. We initialize the opti-

mization with the nominal focal length and the rotation matrices that we found in the previous

step. After each BA iteration, we rejected as outliers stars that have much larger residual repro-

jection errors than their spatial neighbors and repeat the BA until no new outliers are found.

Without this outlier rejection, the subsequent optical distortion estimation would fail.

Optical distortion estimation. In this step, we “freeze” the intrinsic and the extrinsic camera
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6.5. In-flight calibration

Table 6.1 – Summary of the starfield datasets that we use in this work. Each dataset consists
of several imaging experiments and each experiment consist of exposure sequences. Each
sequence consists of 3-4 almost identical exposures, acquired within a short time interval. In
each exposure, we detect 10-60 stars. In the table, we show number of the detected stars that
pass the false detection removal procedure.

Set Acquisition date Experiment # of exposures # of stars

Training

04/13/2016 pointing cassis

197 3528
06/14/2016 mcc motor
20/11/2016 stellar cal orbit09
24/11/2016 stellar cal orbit10

Validation 04/07/2016 commissioning 2 8 598

parameters and search for a Rational optical distortion model that minimizes the remaining

reprojection error. The optimization is performed with Levenberg–Marquardt algorithm. We

initialize the optimization process using a “no distortion” hypothesis.

Frames rotation refinement. Finally, we search for the R̂SC→C RU and the R̂T EL→F S A matrices,

introduced in § 6.2.1, that minimize an average angular error between the predicted camera

pointing and camera pointing estimated from the image during the BA. The optimization

is performed using Levenberg–Marquardt algorithm with RANSAC [22, p117-121] outlier

rejection method. We initialize the optimization process using the nominal rotation matrices.

6.5.2 Results

In this section, we apply the proposed geometric calibration method to the CaSSIS. We es-

timate the camera parameters using the training set and check the results using a separate

validation set. Both sets are summarized in Table 6.1. They consist of 5 starfield imaging exper-

iments. We select these experiments since they contain images of dense starfields acquired

with a long exposure. In these experiments, we use only sequences with exposure of at least

one second. Furthermore, in each sequence, we ignore the first exposure, which has persistent

brightness anomaly. In the training set, we identify 3528 stars that pass the false detection

removal. As we show in Figure 6.9, these stars cover the sensor densely and uniformly, allowing

for a good geometric calibration.

Using the stars detected in the training set, we refine the nominal camera rotation obtained

from the SPICE kernel for every exposure, while keeping the focal length of the camera fixed to

the nominal. By refining the rotations, we reduce the average reprojection error from 1219.4

(median 279.1) to 8.2 pixels. Notice, that the initial mean error is very large due to several

anomalies in rotation sensor readouts.

Then, we use the estimated camera rotations and the nominal focal length to initialize the

iterative Bundle Adjustment (BA) that refines the camera rotations and the focal length using

all images simultaneously, while ignoring optical distortion. The BA converges after eleven
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Figure 6.9 – Position of stars
detected in the training set on
the sensor. The stars cover the
sensor densely and uniformly,
allowing for a good geometric
calibration. On the top and
the bottom parts of the sen-
sor, there are no observations,
since they are covered by a non-
transparent mask. There are in
total 3528 stars.

iterations. We show the effect of the iterative outliers rejection scheme in Figure 6.10. Note

that after the first iteration, the BA residuals contain gross outliers, while after the last iteration,

the residuals form a clear spatial pattern suggesting the presence of optical distortion. The BA

reduces the reprojection error from 8.2 to 2.1 pixels. The focal length refined by the BA is equal

to 874.9 millimeters, which is slightly shorter than the nominal focal length of 880 millimeters.

Then, we “freeze” the focal length and camera rotations and estimate the Rational distortion

model. We show the estimated distortion field in Figure 6.11 (a). Note that its shape resembles

the distortion field that we obtained in §6.3 by fitting the Rational model to optical simulation

data, which we duplicate for convenience in Figure 6.11 (b), with an apparent 180 degrees

rotation of the field. The rotation is probably caused by a particular sensor mounting relative

to the lens.

We show the estimated parameters of the distortion correction model in Table 6.2. By taking

into account the distortion model, we reduce the average reprojection error from 2.1 to

0.6 pixels. Moreover, as shown in Figure 6.12, after the distortion correction the residual

reprojection error becomes spatially uniform and small when compared to the residual error

after the bundle adjustment from Figure 6.10 (b). The apparent absence of a spatial pattern in

the residuals suggests that they are caused by spatially uniform error, such as, for example,

stars coordinate estimation error.

Next, we refine the rotation matrices R̂SC→C RU and R̂T EL→F S A and show the results in Table 6.4.

During the refinement, we identify 60% of images as inliers and reduce the average angular

error on these images from 0.272 to 0.045 degrees.

Finally, we compute errors of the estimated camera model on the validation set, that we did

not use for the model estimation. Before the validation, we identify inlier star images and

estimate image-based extrinsic parameters for the validation set using the same procedure as

we used earlier during the camera parameters estimation. We summarize the validation results

in Table 6.3. With the ideal extrinsic parameters, the refined focal length and the estimated

optical distortion model reduce the reprojection error 7× from 3.5 to 0.5 pixels. However,
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(a) First BA iteration
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(b) Eleventh (final) BA iteration

Figure 6.10 – Residual reprojection error after the first and the eleventh BA iterations in the
sensor coordinate frame. The color coding shows the actual scale of the residual error. The
crossed-out residuals correspond to the identified outliers. On the top and the bottom parts
of the sensor, there are no observations since they are covered by a nontransparent mask.
Note, that after the first iteration (a), the residuals contain gross outliers, while after the
eleventh iteration (b) the residuals form a clear spatial pattern suggesting the presence of
optical distortion. The average reprojection error before the BA is 8.5 pixels, after the first
iteration it is 7.0 pixels, and after the eleventh iteration, it is 2.1 pixels.
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(a) Estimated from starfield images
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(b) Estimated from simulation data

Figure 6.11 – Comparison of the distortion fields estimated from starfield images (a) and the
optical simulation data (b), as described in §6.3. The vectors show the transformation from
distorted to ideal image coordinates. The contours show the magnitude of the transformation.
Note that the distortion fields are very similar in shape, with an apparent 180 degrees rotation
of the field. The rotation is probably caused by a particular sensor mounting relative to the
lens.
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Table 6.2 – Parameters of the Rational distortion correction model estimated using starfield
images. Acorr

1 , Acorr
1 and Acorr

3 are rows of the Rational distortion correction matrix.

Acorr
1 0.0054 0.0024 0.0000 0.9994 -0.0001 0.0016

Acorr
2 0.0001 0.0054 0.0025 -0.0004 0.9972 -0.0177

Acorr
3 0.0000 0.0000 0.0000 0.0054 0.0016 1.0000
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Figure 6.12 – Residual reprojection error
after optical distortion correction. The av-
erage reprojection error is 0.6 pixels. The
color coding shows an actual error scale,
which is similar to Figure 6.10 (b). Note
that the residuals are smaller and more
spatially uniform than compared to the
residuals after the BA from Figure 6.10 (b).
The apparent absence of a spatial pat-
tern in the residuals suggests that they are
caused by some spatially uniform error,
such as, for example, stars coordinates er-
ror.

Table 6.3 – Reprojection error on the validation set, which we did not use for model estima-
tion. With the ideal extrinsic parameters, the refined focal length and the estimated optical
distortion model reduces the reprojection error 7× from 3.5 to 0.5 pixels. However, with the
refined rotation matrices the results are significantly worse that with the ideal. Perhaps, this is
due to a non-systematic pointing error, that cannot be corrected by the calibration.

Frames rotation Focal length Optical distortion Error, [pix]
nominal nominal no 275.9

ideal
nominal no 3.5
refined no 1.9
refined estimated 0.5

refined refined estimated 8.3

Table 6.4 – Rotation matrices R̂SC→C RU and R̂T EL→F S A , described in § 6.2.1, refined using
starfield images. We represent every rotation matrix by three Euler angles, each specified
by the rotation axis and counter-clockwise rotation angle in degrees. For example, αX = 0.4
denotes counter-clockwise rotation around X-axis by 0.4 degrees.

Rotation matrix Euler angles, [deg]

R̂SC→C RU (refined) αX = 0.021 αY = 0.120 αZ =−179.881

RSC→C RU (nominal) αX = 0.000 αY = 0.000 αZ =−180.000

R̂T EL→F S A (refined) αY = 89.714 αX = 80.005 αZ = 0.168

RT EL→F S A (nominal) αZ = 0.000 αY = 90.000 αX = 80.110
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Figure 6.13 – Workflow of the proposed color mosaicing method.

with the refined rotation matrices the results are significantly worse than with the ideal. This

suggests the presence of a non-systematic camera pointing error, for example, due to a camera

jitter, that cannot be corrected by the geometric calibration.

6.6 Color mosaicing

In this section, in § 6.6.1 we propose a novel tool for reconstruction of color mosaics from raw

CaSSIS data, and in § 6.6.2 provide a qualitative and quantitative analysis of their quality. We

implement the tool in Python using USGS ISIS library [200] and make it available on-line2.

6.6.1 Method

We show the workflow of the proposed mosaicing method in Figure 6.13 and describe each

step below.

Preprocessing. First, we convert data packet for each framelet to ISIS “.cub” format and add

telemetry information from SPICE kernels to each “.cub”. We denoise BLU and NIR band

framelets since they contain a lot of salt-and-pepper and Gaussian noise by applying median

and Gaussian filters.

Bundle Adjustment (BA). In § 6.5.2 and § 6.6.2 we show that the CaSSIS is affected by small

periodic high frequency motions, called camera jitter. This jitter cases small camera orien-

tation errors that cannot be corrected by the geometric calibration and cause a framelets

misalignment in a mosaic. To address this problem, we introduce into the pipeline BA that

refines camera orientations for each exposure. For the BA, we use points matched across the

bands, because an overlap between framelets of the same band is too small (≈ 25 pixels) to

guarantee a reasonable amount of matches. During the BA, we penalize significant deviations

from the nominal camera orientation to prevent divergence of BA and ensure that framelets

from the same exposure share camera parameters. Since the camera jitter is relatively small,

the BA works mostly in an automatic mode.

Map-projection. Next, we project all framelets from all bands to sinusoidal map, with opti-

2https://github.com/tlkvstepan/CaSSIS_color_and_stereo
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Table 6.5 – Summary of the CaSSIS observations from “MTP07”, “STP027” and “boot2” that we
use for the qualitative analysis of color mosaics.

Observation Acquisition Center Resolution
date and time (lat, lon), [deg] [m/px]

MY34_004060_181_1 21-10-2018 at 09:09:00 (0.125, 342.573) 4.6
MY34_004060_228_1 21-10-2018 at 09:24:28 (-44.847, 355.908) 4.4
MY34_004071_200_1 22-10-2018 at 06:52:20 (-18.457, 28.245) 4.4

Table 6.6 – Average along-track, across-track and Euclidean misalignment between the “NIR”
and the “PAN” bands in 26 color mosaics from “MTP07”, “STP027” and “boot2” with standard
deviations. The result obtained with the refined CaSSIS parameters and the BA, highlighted in
the table, has the smallest band misalignment.

Settings Along-track, [px] Across-track, [px] L2, [px]
Nominal param. 2.7±1.8 −1.7±1.4 4.4±0.6
Refined param. 0.8±0.9 0.1±0.8 1.8±0.5
Refined param. & BA 0.4±1.0 0.3±0.4 1.3±0.7

mally select parameters such as resolution and latitude-longitude limits.

Bands mosaicing & stacking. After that, for every band we combine all framelets into a band

mosaic. Finally, we combine the mosaics of individual bands into one multi-band mosaic and

mask locations that do not have all bands.

6.6.2 Results

In this section, we present a qualitative and quantitative analysis of CaSSIS color mosaics

reconstructed using the method described in the previous section. For the qualitative analysis,

in Figure 6.14 we show color mosaics for sequences from “MTP07”, “STP027” and “boot2”,

summarized in Table 6.5. We reconstruct the mosaics using the refined CaSSIS parameters

and the BA. In Figure 6.15 we show close-ups of these mosaics and, for comparison, same

mosaics reconstructed with the nominal CaSSIS parameters and without the BA. Note, that,

the mosaics reconstructed with the refined parameters and BA do not have color fringes.

As a quantitative measure of color mosaic quality, we use spatial misalignment between

the “NIR” and the “PAN” bands. We use these band because they are present in almost all

sequences. To compute the misalignment for a particular color mosaic, we perform sub-

pixel block matching between “NIR” and “PAN” bands for sparse regularly sampled locations

and compute median of the along-track, across-track and L2 misalignment. In Table 6.6 we

show average misalignment for 26 reconstructed color mosaics from “MTP07”, “STP027” and

“boot2” (we use all sequences that have “NIR” and “PAN” bands).

The color mosaics reconstructed with the refined camera parameters have significantly smaller

bands misalignment than the color mosaics reconstructed with the nominal parameters. In
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MY34_004060_181_1

MY34_004060_228_1

MY34_004071_200_1

Figure 6.14 – Examples of color mosaics reconstructed using the proposed method, the refined
CaSSIS parameters and BA. We show the mosaics in false colour (NIR → red, PAN → green,
BLU → blue channel).
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MY34_004060_181_1 MY34_004060_228_1 MY34_004071_200_1

Figure 6.15 – Close-ups of color mosaics from Figure 6.14. The mosaics in the first row we
reconstruct using the nominal CaSSIS parameters and the mosaics in the second row – using
the refined parameters and BA. Note, that the mosaics in the second row do not have color
fringes. We show the mosaics in false colour (NIR → red, PAN → green, BLU → blue channel).

the former case, the remaining misalignment is due to a non-systematic CaSSIS orientation

error, caused by the camera jitter. The presence of the jitter becomes obvious from Figure 6.16,

where we show pixel-wise bands misalignment for mosaics reconstructed with the refined

camera parameters but without the BA. Note, that the misalignment varies from framelet to

framelet which indicates the presence of the camera jitter. As we show in Table 6.6, these

non-systematic pointing errors can be reduced by the proposed BA.

6.7 Stereo reconstruction

In this section, in § 6.7.1 we propose a tool for reconstruction of DTMs from raw CaSSIS data

and in § 6.7.2 we provide a qualitative and quantitative analysis of their quality. We develop

this tool in Python using USGS ISIS [200] and Ames Stereo Pipeline (ASP) [202] and make the

source code and standalone package for Linux available online3. The standalone package we

build using the CDE virtualization tool [207] and it contains all dependencies.

6.7.1 Method

The method takes as an input stereo observation that consists of two CaSSIS sequences and

produces raster with heights above the Mars ellipsoid, called Digital Terrain Model (DTM). The

DTM reconstruction method consists of three steps described below.

Stereo sequences mosaicing. First, we reconstruct color mosaics for both sequences from

a stereo observation. For this, we rely on the procedure described in § 6.6 with two minor

modifications. The first modification is that we use the same projection parameters for both

3https://github.com/tlkvstepan/CaSSIS_color_and_stereo
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(a) Across-track misalignment (b) Along-track misalignment

Figure 6.16 – Pixel-wise bands misalignment in the color mosaics reconstructed with the
refined camera parameters but without the BA. We compute the misalignment between “PAN”
and “NIR” bands. The dark and the bright speckles correspond to registration errors. Notice,
that the misalignment varies from framelet to framelet, which indicates the presence of the
camera jitter.

sequences to ensure that the resulting mosaics have the same resolution and lay on the same

coordinate grid. Another modification is that we include tracing layers to the mosaics, that

allows finding the origin of every pixel in the mosaics. We use this information later, during

stereo triangulation.

Stereo matching. Next, we perform a stereo matching between the sequences. Since for the

map-projected mosaics the epipolar geometry described in § 2.1.3 is not valid, we perform

the stereo matching in 2d space. For that, we rely on Ames Stereo Pipeline (ASP) [202], which

performs: 2d coarse-to-fine correlation followed by sub-pixel refinement and outliers rejection.

Finally, it produces files with horizontal and vertical displacements between the mosaics.

Stereo triangulation. Finally, we perform a stereo triangulation to find positions of the mosaic

points in 3d space. Because ASP is not capable of performing the triangulation for map-

projected mosaics, we implement it ourselves in C++ using USGS ISIS API [200]. Since USGS

ISIS does not preserve the camera information required for the triangulation in the mosaics,

we trace the origin of every pixel back to the corresponding map-projected framelet, where

this information is present. For every resulting 3d point, we find the closest point on Mars

ellipsoid, corresponding geographic coordinates, and elevation with respect to the ellipsoid. To

compute the elevations for the original coordinate grid we use simple nearest neighbourhood

interpolation.

95



Chapter 6. Calibration of a satellite stereo system

Table 6.7 – Summary of CaSSIS observations that we use for qualitative and quantitative
analysis of DTMs. Note, that we show the overlapping HiRISE products in Table 6.8 in the
same order.

Observation Acquisition Center Resolution,
date and time (lat, lon), [deg] [m/px]

MY34_004219_201 03-11-2018 at 09:33:06 (-18.617, 62.619) 4.4
MY34_004069_162 16-11-2018 at 21:39:57 (18.601, 77.416) 4.7
MY34_004041_196 19-10-2018 at 19:54:54 (-14.615, 175.641) 4.5

Table 6.8 – Summary of HiRISE DTMs that we use as ground truth for quantitative analysis
of CaSSIS DTMs. Note, that we show the overlapping CaSSIS observations in Table 6.7 in the
same order.

DTM product Resolution, [m/px] MOLA RMS, [m]
DTEED_021494_1610_013134_1610_A01 2.0 4.610
DTEEC_002387_1985_003798_1985_A01 1.0 4.773
DTEEC_036087_1655_035164_1655_U01 1.0 -

6.7.2 Results

In this section, we present a qualitative and quantitative analysis of CaSSIS DTMs recon-

structed using the proposed method.

For experiments, we select three CaSSIS stereo observations overlapping with officially re-

leased DTMs for High-Resolution Imaging Science Experiment (HiRISE) on-board of Mars

Reconnaissance Orbiter (MRO) [208] available from Planetary Data System (PDS) archive [209].

We summarize these overlapping observations in Tables 6.7 and 6.8. We use HiRISE DTMs as

a ground truth, because they have a much higher spatial resolution (≈ 1 m/px) than CaSSIS

DTMs (≈ 4.5 m/px) and because they are aligned with Mars Orbiter Laser Altimeter (MOLA)

data and manually validated by a human expert.

For the qualitative analysis, we visualize reconstructed CaSSIS DTMs in Figure 6.17. The DTMs

are reconstructed automatically using PAN channels of color mosaics. For each DTM, we

show a synthesized shade image, which is called hillshade. The reconstructed CaSSIS DTMs

have several apparent artifacts such as elevation bumps on framelets boundaries, caused

by remaining orientation errors, spurious line patterns, probably caused by reflections from

camera elements, and depth outliers, caused by stereo matching errors.

For the quantitative analysis, we compute the average absolute vertical error of the recon-

structed DTMs relative to the corresponding HiRISE DTMs. For that, we match projection

parameters and datum of the HiRISE DTMs to these of the CaSSIS DTMs and align HiRISE

and CaSSIS DTMs using Iterative Closest Point (ICP) algorithm implemented in the ASP [202].

We initialize the algorithm with 5-10 manually matched points. We perform the alignment

using only 3d translation. After the alignment, we compare the DTMs and show the results
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MY34_004219_201

MY34_004041_196

MY34_004069_162

Figure 6.17 – Hillshade images synthesized from the CaSSIS DTMs reconstructed using the
proposed method. The DTMs are reconstructed automatically using the “PAN” band. The yel-
low contours show areas of overlap with the corresponding HiRISE DTMs. The reconstructed
DTMs have several apparent artifacts such as elevation bumps on framelets boundaries,
caused by remaining orientation errors, spurious line patterns, probably caused by reflections
from camera elements, and depth outliers, caused by stereo matching errors.
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Table 6.9 – Average absolute vertical errors with standard deviations for CaSSIS DTMs. We
compute the errors relative to the corresponding HiRISE DTMs after the alignment using 3d
translations. The aligning translations are large and very similar for different observations,
which suggests the presence of a significant camera pointing error, perhaps due to the incorrect
image timing. After the alignment, the errors are relatively small.

Observation
Absolute Aligning translation, [m]
vertical East North Down
error, [m] (across-track) (along-track)

MY34_004219_201 6.0±4.0 -813.8 3489.1 218.3
MY34_004069_162 5.4±14.1 -822.9 3243.8 -231.0
MY34_004041_196 2.2±1.7 -762.2 3309.2 -191.8

in Table 6.9. Note, that the translation vectors, aligning the point clouds are large, especially

along-track. This probably indicates the presence of a significant camera pointing error, per-

haps due to the incorrect image timing. After the alignment, the absolute vertical errors are

relatively small. This is in agreement with observations in [210], where the authors perform

the same comparison using different tools.

6.8 Conclusion

In this work, we propose a novel method for geometric calibration of a telescope with a large

focal length and complex optical distortion. We apply this method to refine the nominal

camera parameters of the CaSSIS and show that the refined parameters significantly improve

the quality of CaSSIS color mosaics. The refined parameters became part of the official

ExoMars Trace Gas Orbiter SPICE kernels [201] and USGS ISIS [200] releases. We also develop

automatic tools for reconstruction of color mosaics and DTMs from raw CaSSIS data and

experimentally show that color bands misalignment in the reconstructed color mosaics and

average absolute vertical error of the reconstructed DTMs are relatively small. However,

qualitative analysis of CaSSIS DTMs revealed multiple artifacts in DTMs, probably caused

by an incorrect stereo matching, imperfect camera pointing and possibly, internal reflection.

These problems should be addressed in future works. The practical significance of this work is

supported by the fact that its results are widely used by a scientific community [181, 182, 210–

214].
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In this chapter, in § 7.1 we summarize practical and scientific contributions of this dissertation

and in § 7.2 discuss possible future research direction.

7.1 Summary

In the “Research” part (Part I) of this work, we focus on deep learning-based methods for

stereo reconstruction which discover multiple depth cues directly from training data and on

their potential application in satellite stereo imagery. The main scientific contributions of the

“Research” part are following.

In Chapter 3, based on [69], we show that it is possible to learn a high quality deep metric for

stereo matching without any labeled training data, relying only on coarse information about

scenes geometry and a stereo system. The proposed weakly supervised method alternatively

computes matches using the current metric, regularizes them and uses as ground truth for

metric learning. For a given network architecture, training with this method without ground

truth produces a metric with the performance as good as the performance of the same metric

trained with the said ground truth. The method allows training a deep metric when labeled

training data is not available or contaminated with noise.

Next, in Chapter 4, based on [173], we show that using domain knowledge it is possible to

design a more practical end-to-end deep stereo method. We propose a novel bottleneck

module that drastically reduces the memory footprint of the network, allowing it to leverage

a larger spatial context to resolve matching ambiguities and process larger images. Also,

we proposed a new loss and estimator that makes the method less sensitive to ambiguous

matches, and applicable to any disparity range without retraining. At the time of the article

submission, the method was among the top performers across the benchmarks.

In Chapter 5, based on [215], we demonstrate that our method from § 4 developed for a frame-

based stereo system can be easily re-purposed for an event-based stereo system, producing an

asynchronous stream of events, triggered by significant pixel intensity changes. For that, we
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introduce a novel module for event sequence embedding which builds a representation of a

sequence by firstly aggregating information locally across time, using a novel fully-connected

layer for an irregularly sampled continuous domain, and then across discrete spatial domain.

The resulting method is the first learning-based stereo method for an event-based camera and

the only method that produces dense results, moreover, it outperforms all previous methods

on Multi-Vehicle Stereo Event Camera Dataset (MVSEC) benchmark by a large margin.

In the “Applied” part (Part II) of this work, we focus on geometric calibration and developing au-

tomatic stereo reconstruction and mosaicing tools for the CaSSIS. The practical contributions

of the “Applied” part are following.

In Chapter 5 we develop a new geometric calibration method for a satellite telescope with a

large focal length and complex optical distortion. To our knowledge, this is the first calibration

method that uses hundreds of images of starfields to robustly estimate intrinsic and extrinsic

parameters of the camera and a complex optical distortion model. With the proposed method

we refine nominal parameters of the CaSSIS and enabled reconstruction of high quality color

mosaics without color fringes and Digital Terrain Models. These refined parameters became

part of the official Trace Gas Orbiter SPICE kernels [201] and USGS ISIS [200] releases. We also

develop and validate tools for an automatic reconstruction of color mosaics and DTMs from a

raw CaSSIS data, which are widely used by a scientific community [181, 182, 210–214].

7.2 Future directions

The main weakness of the weakly supervised method proposed in Chapter 3 is its reliance

on problem constraints identified and hard-coded by a human into unsupervised losses.

These losses probably do not account for all constraints and most of them require careful

parameter tuning. It would be interesting to explore if they can be learned directly from a data

in a form of error detector network and then used for a fine-tuning of a stereo network using

unlabeled target domain examples. Since error detection is typically easy, we expect that the

error detector will require relatively small capacity. It can be trained on a source domain in a

domain adversarial manner [118], or on a few labeled examples from the target domain.

For the stereo method from the Chapter 4 one major problem is a large number of parameters

and memory footprint of 3d convolutions in the regularization network. Moreover, to process

map-projected satellite stereo images we will have to use 4d convolutions instead of 3d for a

2d search in horizontal and vertical directions, which will make the problem even worse. It

would be interesting to explore different parametrizations of these convolutions, that have a

smaller number of parameters and permit memory-efficient processing. One can, for example,

use separable convolutions [216, 217].

There is a room for improvement for an event sequence embedding method from the Chapter 5.

We showed that in the presence of a large spatial context, the network starts to ignore the

temporal context. We suspect that this happens because the dataset which we use for training,
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composed of videos acquire from a quadcopter, contains a lot of abrupt motions that render

the temporal context less reliable than the spatial. However, we believe that for frames with

less motion, the temporal context can still be beneficial. It would be interesting to explore

a mechanism, which will be able to decide about the appropriate amount of spatial and

temporal context on a per-location basis. We believe that it can be based on the self-attention

mechanism, described in [218, 219]. Also it will be interesting to apply the proposed temporal

aggregation method to other problems, that require large temporal context, such as optic flow

and single view depth estimation.

Finally, the calibration method and the stereo reconstruction tool proposed in § 6 also can

be improved. Regarding the calibration, during the experiments, we noticed that there is a

significant translation between CaSSIS mosaics and mosaics from other instruments. This

suggests the presence of a large camera pointing error of unknown origin. We suspect that it

might be related to an error in image acquisition timestamp. This might explain why the trans-

lation is mostly along the track and why the pointing error is not presented in starfield images.

This problem should be investigated in future works. Regarding the stereo reconstruction,

we found several artifacts in reconstructed DTMs which should be fixed in future works. The

most prominent stair-step problem on framelets stitches, caused by a small pointing error, can

be alleviated by performing bundle adjustment jointly for a whole stereo observation, using

correspondences between stereo observation established by interest point matching [49] and

using all color bands in stereo triangulation.

Finally, the most rewarding future work is to apply the results of our research to CaSSIS data.

This would require redesigning the network from Chapter 4 to preform 2d stereo matching

because map-projected mosaics do not have epipolar geometry. The resulting network can

be pre-trained on a synthetic optic flow dataset, such as [74] and then fine-tuned on real

CaSSIS images without ground truth using our weakly supervised method from Chapter 3,

also redesigned for a 2d stereo matching.
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