
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Just-in-time performance without warm-up

Denys SHABALIN

Thèse n° 9768

2020

Présentée le 28 février 2020

Prof. J. R. Larus, président du jury
Prof. M. Odersky, directeur de thèse
Prof. V. Adve, rapporteur
Dr A. Prokopec, rapporteur
Prof. E. Bugnion, rapporteur

à la Faculté informatique et communications
Laboratoire de méthodes de programmation 1
Programme doctoral en informatique et communications

Acknowledgements

I would like to thank my advisor Martin Odersky, for providing me this unique opportunity to

explore the realm of ahead-of-time compilation for Scala.

I am grateful to my thesis jury members James Larus, Edouard Bugnion, Vikram Adve and

Alexander Prokopec for their time contribution to this thesis.

The work of Sébastien Doeraene on the Scala.js [35] has been one of the major inspirations for

the project. A large number of the initial design and implementation in Scala Native is directly

built upon the foundation that was laid by the Scala.js project.

A special thanks to Lukas Kellenberger and Valdis Adamsons whose excellent work on the

runtime support for the garbage collection is one of the key factors in our final runtime

performance results.

Colleagues at LAMP and Scala Center that I get to work with over the years including Martin

Duhem, Guillaume Masse, Felix Mulder, Allan Renucci, Jorge Vicente and Ólafur Páll Geirsson.

Scala Native would not be possible without an incredible number of open-source contributions

from the community. Including but not limited to Adam Singer, Adam Voss, Alex Dupre,

Alexey Kutepov, Andrea Peruffo, Andrei Pozolotin, Andrew Smith, Andrzej Sołtysik, Ankit

Soni, Brad Rathke, Carlos Quiroz, Christian Krause, Corey O’Connor, Cédric Viaccoz, David

Patrick, Dubray Alexandre, Eric K Richardson, Ethan Atkins, Felix Garcia Borrego, Florian

Duraffourg, Francois Bertrand, Greg Dorrell, Greg Oledzki, Gregor Ihmor, Hanns Holger Rutz,

Henning Wielenberg, Henry Mai, Hubert Plociniczak, Jason Longshore, Jocelyn Boullier, Jonas

Fonseca, Joseph Price, Kamil Tomala, Kenji Yoshida, Koji Agawa, Kota Mizushima, Lee Tibbert,

Liudmila Kornilova, Marius B. Kotsbak, Martin Mauch, Mike Samsonov, Nadav Samet, Naohisa

Murakami, Pablo Guerrero Rosel, Pawel Batko, Paweł Cejrowski, Paweł Krupa, Piotr Kwiecinski,

Remi Coudert, Richard Whaling, Ruben Berenguel, Saleem Ansari, Sam Halliday, Sandeep

Singh, Shadaj Laddad, Shunsuke Otani, Srepfler Srdan, Stefan Ollinger, Tim Nieradzik, Vincent

Munier, Xavier Fernández Salas and Łukasz Indykiewicz.

Last but not least, I would like to thank Aggelos Biboudis for his time and patience reading the

early drafts of my papers and of this thesis.

Lausanne, November 24, 2019 Denys Shabalin

iii

Abstract

Scala has been developed as a language that deeply integrates with the Java ecosystem. It offers

seamless interoperability with existing Java libraries. Since the Scala compiler targets Java

bytecode, Scala programs have access to high-performance runtimes including the HotSpot

virtual machine.

HotSpot provides impressive performance results achieved via just-in-time compilation. It

starts program execution in interpreter mode, collecting profile feedback about called methods.

This information allows HotSpot to identify hot spots in the program, which are then compiled

on the fly to native code. This compilation scheme enables high peak performance at the cost

of warmup time required to collect the profile data and perform just-in-time compilation.

This is a good example of the traditional tradeoff between ahead-of-time (AOT) and just-in-

time (JIT) compilation. With AOT, compilers have less information, but the runtime story

is reasonably straightforward. With JIT, compilers have more information, which enables

advanced optimizations, but the runtime story becomes complicated.

In this dissertation, we present the design and implementation of Scala Native, an optimizing

compiler for Scala. With Scala Native, Scala programs are compiled ahead of time, which

avoids runtime compilation and enables instant startup times. On the other hand, Scala

Native is able to match and supersede the peak performance of HotSpot on our benchmarks.

In addition to that, Scala Native is a general-purpose Scala compiler - programs compiled by

Scala Native closely match the behavior of programs compiled by the Scala compiler.

First, we introduce NIR, an intermediate representation designed with ahead-of-time com-

pilation in mind. NIR represents programs in the single-static assignment form and has

support for object-oriented features such as virtual dispatch and multiple inheritance. This

representation is a key enabler of our compilation and optimization pipeline.

Secondly, we present Interflow, a link-time optimizer that takes advantage of the closed-world

assumption to optimize the whole program at once. Our optimizer employs a number of

techniques including partial evaluation, allocation sinking, and method duplication. The

combination of these techniques allows Scala Native to outperform HotSpot on the majority

of our benchmarks.

v

Abstract

Finally, we describe how to improve runtime performance even further based on profile

feedback. We propose a technique that splits methods apart isolating key hot paths that are

then optimized more aggressively than the cold parts of the program. This provides a further

performance advantage over HotSpot.

Keywords: Programming Languages, Compilers, Ahead-of-time Compilation, Link-time Opti-

mization.

vi

Résumé

Le langage Scala fut développé pour s’intégrer profondément à l’écosystème de Java. Il offre

une interopérabilité fluide avec les bibliothèques Java. Puisque le compilateur Scala vise

le bytecode Java, les programmes Scala ont accès à des environnements d’exécution haute

performance, tels que la machine virtuelle HotSpot.

HotSpot produit des résultats impressionnant en terme de performances, obtenus grâce

à la compilation à la volée (en anglais just-in-time ou JIT). Elle démarre l’exécution des

programmes en mode interpréteur, tout en collectant des informations de profilage sur les mé-

thodes appelées. Ces informations permettent à HotSpot d’identifier les « points chauds »(hot

spots) du programme, lesquels sont alors compilés à la volée vers du code natif. Cette stratégie

de compilation permet d’atteindre d’excellentes performances de croisière, au prix du temps

de préchauffage (warmup) requis pour collecter les données de profilage et pour effectuer la

compilation à la volée.

Ce qui précède est un bon exemple des compromis classiques entre compilation anticipée (en

anglais ahead-of-time ou AOT) et compilation à la volée. Avec la compilation anticipée, les

compilateurs possèdent moins d’informations, mais le déroulement à l’exécution est simple.

Avec la compilation à la volée, plus d’informations sont disponibles – ce qui permet des

optimisations avancées – mais l’exécution est plus complexe.

Dans cette thèse, nous présentons le design et l’implémentation de Scala Native, un compila-

teur optimisant pour Scala. Avec Scala Native, les programmes Scala sont compilé de manière

anticipée, ce qui évite la compilation à l’exécution et permet un démarrage instantané. Scala

Native est néanmoins capable d’égaler, voire surpasser, les performances de HotSpot sur nos

benchmarks. En outre, Scala Native est un compilateur Scala d’usage général : le comporte-

ment des programmes compilés par Scala Native est très similaire à celui de ceux compilés

par le compilateur Scala original.

Premièrement, nous introduisons la NIR (Native Intermediate Representation), une représen-

tation intermédiaire conçue pour la compilation anticipée. La NIR représente les programmes

sous forme statique à affectation unique (static single-assignment form, ou SSA), et présente

des fonctionnalités dédiées à l’orienté objet telles que liaison virtuelle et héritage multiple.

Cette représentation est un acteur clef de notre pipeline de compilation.

vii

Résumé

Deuxièmement, nous présentons Interflow, un optimiseur à la liaison qui tire parti de l’hypo-

thèse d’un monde fermé pour optimiser chaque programme en entier. Notre optimiseur fait

usage de plusieurs techniques telles que l’évaluation partielle, l’enfouissement d’allocation

et la duplication de méthode. La combinaison de ces techniques permet à Scala Native de

surpasser HotSpot sur la majeure partie de nos benchmarks.

Enfin, nous exposons comment davantage améliorer les performances sur la base d’infor-

mations de profilage. Nous proposons une technique dans laquelle les méthodes sont dé-

composées pour en isoler les chemins critiques, lesquels sont ensuite optimisé de manière

plus agressive que les portions froides du programme. Cette technique produit un avantage

supplémentaire en performances par rapport à HotSpot.

Keywords : Langages de Programmation, Compilateurs, Compilation Anticipée, Optimisation

à la Liaison.

viii

Contents
Acknowledgements iii

Abstract (English/Français) v

List of Figures xiii

1 Introduction 1

1.1 Design Goals . 2

1.2 Related Work . 3

1.3 Structure . 4

1.4 Contributions . 4

2 Overview 5

2.1 Compilation Model . 5

2.2 Baseline Compilation . 6

2.3 Flow-sensitive Optimization . 7

2.4 Profile-guided Optimization . 7

2.5 Conclusion . 8

3 Native Intermediate Representation 9

3.1 Introduction . 10

3.2 Language Definition . 12

3.2.1 Programs . 12

3.2.2 Definitions . 13

3.2.3 Names, Signatures and Scoping . 14

3.2.4 Instructions and Control-Flow . 15

3.2.5 Operations and Values . 16

3.2.6 Types . 17

3.2.7 Summary . 18

3.3 Typing . 19

3.3.1 Typing Environments . 19

3.3.2 Program and Definition Typing . 20

3.3.3 Basic Block and Terminator Typing . 21

3.3.4 Operation typing . 23

ix

Contents

3.3.5 Value typing . 25

3.3.6 Subtyping . 27

3.4 Related Work . 28

3.5 Conclusion . 28

4 Baseline Compilation 29

4.1 Introduction . 29

4.2 Reachability Analysis . 30

4.2.1 Summaries . 30

4.2.2 Semantic Queries . 31

4.2.3 Computing Summaries and Reachability 32

4.2.4 Class Loading . 34

4.3 Lowering High-Level Operations . 34

4.3.1 Class Allocation and Garbage Collection Interface 34

4.3.2 Memory Layout and Runtime Type Information 35

4.3.3 Field Access . 35

4.3.4 Virtual Method Dispatch . 36

4.3.5 Instance Checks and Checked Casts . 38

4.3.6 Array Operations . 39

4.3.7 Primitive Operations . 40

4.3.8 Module Initialization . 41

4.3.9 Local Variables . 41

4.3.10 Guards . 42

4.4 Runtime Support for Garbage Collection . 44

4.4.1 Design Constraints . 44

4.4.2 No GC . 44

4.4.3 Boehm GC . 45

4.4.4 Immix GC . 45

4.4.5 Commix GC . 46

4.4.6 Optimizing Across Runtime Boundary . 48

4.5 Related Work . 48

4.6 Conclusion . 48

5 Interflow: Flow-sensitive Optimization 49

5.1 Introduction . 49

5.2 Intuition . 51

5.3 Operations . 52

5.3.1 Intuition . 53

5.3.2 Constant Propagation . 53

5.3.3 Allocation Sinking . 54

5.3.4 Type-based Evaluation . 57

5.3.5 Canonicalization . 59

5.3.6 Code Motion . 59

x

Contents

5.3.7 Combination . 60

5.3.8 Redundancy Elimination . 61

5.3.9 Materialization . 61

5.3.10 Summary . 62

5.4 Intramethod Control-Flow . 62

5.4.1 Basic Blocks . 63

5.4.2 Terminators . 63

5.4.3 State Merging . 65

5.4.4 Block Processing . 67

5.5 Intermerthod Control-Flow . 68

5.5.1 Inlining . 69

5.5.2 Method Duplication and Whole-Program Traversal 71

5.5.3 Polymorphic Calls . 73

5.6 Related Work . 74

5.7 Conclusions . 76

6 Profile-guided Optimization 77

6.1 Introduction . 77

6.2 Intuition . 79

6.3 Collecting Profile Information . 81

6.3.1 Profile Information in NIR . 81

6.3.2 In-memory Profile Representation . 82

6.3.3 Profile Instrumentation . 83

6.4 Optimizing based on the Profile Information . 84

6.4.1 White-Gray Code Splitting . 85

6.4.2 Profile-guided Devirtualization . 86

6.4.3 Untaken Branch Pruning . 87

6.4.4 Profile-guided Inlining and Method Duplication 89

6.4.5 Optimizing Cold and Hoisted Methods . 89

6.4.6 Profile-guided Native Code Generation . 90

6.5 Related Work . 91

6.6 Conclusion . 92

7 Performance Evaluation 93

7.1 Environment . 93

7.2 Configurations . 95

7.3 Benchmarks . 95

7.4 Methodology . 96

7.5 Baseline Compilation and Garbage Collection . 98

7.6 Flow-sensitive and Profile-Guided Optimization 100

7.7 Performance relative to Native Image . 103

7.8 Performance relative to HotSpot JDK . 107

7.9 Conclusion . 110

xi

Contents

8 Conclusion 111

A Raw Benchmark Results 113

Bibliography 143

Curriculum Vitae 151

xii

List of Figures
2.1 Scala Native Compilation. 5

2.2 Baseline Compilation. 6

2.3 Compilation with Interflow. 7

2.4 Compilation with Profile Instrumentation. 7

2.5 Compilation with Profile-Guided Speculation. 7

3.1 NIR Definitions. 13

3.2 NIR Names and Member Signatures. 14

3.3 NIR Instructions. 15

3.4 NIR Operations. 16

3.5 NIR Values. 17

3.6 NIR Types. 18

3.7 Flow-sensitivity of the Γ environment. 21

4.1 Summary Information. 31

4.2 Reachability Algorithm . 33

4.3 Class and Runtime Type Information Memory Layout. 35

4.4 Array Memory Layout. 39

4.5 Scala Native’s Immix Heap Layout . 45

4.6 Commix Heap Layout . 46

5.1 Definition of the map method in Scala collections. 50

5.2 Block Processing Algorithm . 67

5.3 Program Processing Algorithm . 71

6.1 Profile In-memory Represetation. 82

6.2 2-step White-Gray Code Splitting. 85

6.3 Profile-guided Devirtualization . 86

7.1 Baseline running time at 50 percentile, normalized by No GC, less is better. . . 98

7.2 Baseline compilation performance, less is better. 99

7.3 Interflow running time at 50 percentile, normalized by Interflow with PGO, less

is better. 100

7.4 Interflow binary size, normalized by baseline compilation, less is better 100

xiii

List of Figures

7.5 Performance impact of flow-sensitive and profile-guided optimization, less is

better. 102

7.6 Native Image running time at 50 percentile, normalized by Interflow with PGO,

less is better. 103

7.7 Native Image binary size, normalized by Interflow with PGO, less is better. . . . 103

7.8 Warmed-up performance relative to Native Image, less is better. 105

7.9 Warm-up performance of Interflow with PGO (gray) relative to Native Image

with PGO (black), less is better. 106

7.10 Warm HotSpot JVM running time at 50 percentile, normalized by Interflow with

PGO, less is better. 107

7.11 Warmed-up performance relative to HotSpot JDK, less is better. 108

7.12 Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with

Paralell GC (black), less is better. 109

A.1 Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with

Paralell GC (black) on the bounce benchmark, less is better. 114

A.2 Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with

Paralell GC (black) on the brainfuck benchmark, less is better. 115

A.3 Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with

Paralell GC (black) on the cd benchmark, less is better. 116

A.4 Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with

Paralell GC (black) on the deltablue benchmark, less is better. 117

A.5 Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with

Paralell GC (black) on the gcbench benchmark, less is better. 118

A.6 Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with

Paralell GC (black) on the json benchmark, less is better. 119

A.7 Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with

Paralell GC (black) on the kmeans benchmark, less is better. 120

A.8 Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with

Paralell GC (black) on the mandelbrot benchmark, less is better. 121

A.9 Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with

Paralell GC (black) on the nbody benchmark, less is better. 122

A.10 Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with

Paralell GC (black) on the permute benchmark, less is better. 123

A.11 Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with

Paralell GC (black) on the richards benchmark, less is better. 124

A.12 Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with

Paralell GC (black) on the rsc benchmark, less is better. 125

A.13 Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with

Paralell GC (black) on the sudoku benchmark, less is better. 126

A.14 Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with

Paralell GC (black) on the tracer benchmark, less is better. 127

xiv

List of Figures

A.15 Warm-up performance of Interflow with PGO (gray) relative to Native Image

(black) on the bounce benchmark, less is better. 128

A.16 Warm-up performance of Interflow with PGO (gray) relative to Native Image

(black) on the brainfuck benchmark, less is better. 129

A.17 Warm-up performance of Interflow with PGO (gray) relative to Native Image

(black) on the cd benchmark, less is better. 130

A.18 Warm-up performance of Interflow with PGO (gray) relative to Native Image

(black) on the deltablue benchmark, less is better. 131

A.19 Warm-up performance of Interflow with PGO (gray) relative to Native Image

(black) on the gcbench benchmark, less is better. 132

A.20 Warm-up performance of Interflow with PGO (gray) relative to Native Image

(black) on the json benchmark, less is better. 133

A.21 Warm-up performance of Interflow with PGO (gray) relative to Native Image

(black) on the kmeans benchmark, less is better. 134

A.22 Warm-up performance of Interflow with PGO (gray) relative to Native Image

(black) on the mandelbrot benchmark, less is better. 135

A.23 Warm-up performance of Interflow with PGO (gray) relative to Native Image

(black) on the nbody benchmark, less is better. 136

A.24 Warm-up performance of Interflow with PGO (gray) relative to Native Image

(black) on the permute benchmark, less is better. 137

A.25 Warm-up performance of Interflow with PGO (gray) relative to Native Image

(black) on the richards benchmark, less is better. 138

A.26 Warm-up performance of Interflow with PGO (gray) relative to Native Image

(black) on the rsc benchmark, less is better. 139

A.27 Warm-up performance of Interflow with PGO (gray) relative to Native Image

(black) on the sudoku benchmark, less is better. 140

A.28 Warm-up performance of Interflow with PGO (gray) relative to Native Image

(black) on the tracer benchmark, less is better. 141

xv

1 Introduction

Programming language design and implementation is a mature field of computer science

that has been around for a long time. Throughout its history, it witnessed thousands of

programming languages implemented in a myriad of ways. It is hard not to look at current

results as mere reflections on the early works done by the pioneers of this field.

High-performance language implementations are represented by either ahead-of-time (AOT)

or just-in-time (JIT) compilation. AOT compilation focuses on statically generating native code

before the application is run, while JIT techniques may dynamically generate new optimized

code at runtime.

AOT compilation has been traditionally the approach used for the systems programming

languages that aim to expose the direct access to underlying hardware in the most direct

way. The approach naturally fits into the overall picture of the lower-level programming and

manual memory management as explored in languages such as C and C++.

On the other side, higher-level languages that tend to rely on some form of automatic memory

management have been often implemented as interpreters. The need for higher-performance

implementation of the interpreted runtimes gave birth to just-in-time compilation that

bridged the performance gap through dynamic code generation.

Scala programming language was originally a part of the second camp of the just-in-time

compiled languages. Its reference implementation targets JVM bytecode and relies on a deep

integration with the Java ecosystem.

Research on the JVM runtime implementation has been traditionally dominated by the just

in time compilers [9, 49, 71, 86] that emphasize the peak performance over the start-up time.

The techniques used in JVM runtimes rely on multi-tier compilation model that starts with

a baseline interpreter (or a simple compiler) that collects profile feedback that is used to

selectively generate highly optimized code for the hot paths in the program [11].

While such design of the runtime implementation is able to deliver impressive performance

1

Chapter 1. Introduction

results, it has a significant overhead for short-running applications such as command-line

tools.

As an alternative to this approach, in this thesis, we focus on purely ahead-of-time compiled

compiler and runtime designed for the Scala programming language. While this allows us to

avoid the JIT warm-up overhead completely, AOT compilation poses a major challenge to get

comparable peak performance.

The main reason for the difficulty of obtaining comparable results lies in the fact that tra-

ditional AOT compilation does not allow any form of runtime code generation. All of the

optimization decisions have to be done at compile-time without the ability to revert them

later at runtime.

JIT-compiled runtimes, on the other hand, may compile the code based on speculative as-

sumptions and deoptimize back to the baseline implementation if the assumptions under

which the code was compiled are violated. This allows the runtime to dynamically adapt to

the changes in the application behavior.

1.1 Design Goals

We present Scala Native - an ahead-of-time optimizing compiler for Scala that aims to fulfill

the following design goals:

1. Start-up time. Language implementation should prioritize application start-up time

as one of the key performance metrics. It must offer a significant reduction of the cold

start overhead compared to the reference implementation.

2. Peak performance. The compiled program must run at least as fast as the same program

running on top of the warmed-up reference implementation based on the JVM.

3. Compatibility. Our implementation should provide the same runtime semantics as

the reference implementation. The error conditions should fail in the same way as the

reference implementation, even if they are underspecified by the language itself. This is

crucial to maintain portability of the existing applications which often depend on the

implementation-defined behavior.

The existing compilers in the context of the JVM languages are able to target only two out

of three goals. Existing AOT compilers offer compatible implementation with quick start-up

time at the cost of the lower peak performance. Existing JIT compilers offer a compatible

implementation with excellent peak performance at the expense of warm-up overhead.

Domain-specific compilers generate highly specialized code for a narrow subset of the lan-

guage that foregoes compatibility for performance. For example, Delite [80] domain-specific

2

1.2. Related Work

languages restrict how side effects can be used in Scala programs, and primarily focus on the

compilation of purely functional programs instead.

In comparison, Scala Native meets all three design goals, achieving instant start-up time

without compromising on peak performance or language compatibility.

1.2 Related Work

A significant amount of research has been done in the field of optimizing compilers for the JVM.

The majority of them relies on just-in-time compilation to achieve best runtime performance.

HotSpot JVM [49] is the status quo runtime implementation used for the Scala programming

language. It is implemented as a multi-tier just-in-time compiler that is focused on achieving

the best peak throughput, at the expense of warm-up overhead.

The Server Compiler [64] (also known as C2) is the last tier optimizing compiler within the

HotSpot JVM. It relies on the sea-of-nodes [30] intermediate representation to perform single-

pass optimization of detected hot paths based on profile feedback from earlier tiers of execu-

tion.

Graal VM [86] is the next-generation optimizing compiler that aims to replace the C2 compiler.

Similarly to C2, it relies on the sea-of-nodes intermediate representation [39] to perform a

wide variety of optimizations [52, 53, 54, 68, 76, 85].

Graal Native Image [2] is a subproject within Graal VM that uses the same optimizing compiler

to produce binaries purely ahead-of-time. Its commercial Enterprise Edition (EE) supports

profile-guided optimization that is crucial to obtain the best performance results.

The Zing JVM [71] uses LLVM to replace the C2 compiler. Similarly to the Graal VM, the goal is

to obtain the best peak performance after application warm-up. Moreover, Azul JVM supports

state-of-the-art low-latency garbage collection [31, 82].

The GNU Compiler toolchain [77] explored ahead-of-time compilation of Java in the GCJ

project [28]. The GCJ project was based on the original GCC optimizer and Boehm GC [26].

The VMKit [41] project explored building a JVM based on top of the LLVM compiler. VMKit

forgoes a baseline interpreter and performs a single compilation to LLVM without adaptive

reoptimization. Authors suggest that this results in suboptimal start-up performance that can

be resolved through ahead-of-time compilation.

Jikes RVM [9] is a research JVM written in Java with the goal to explore adaptive optimization.

As part of Jikes RVM, the MMTK [21] project is focused on exploring a wide variety of the

garbage collection techniques in Java [20, 22, 23, 25, 44].

Domain-specific approaches such as LMS [72] enable specialized compilers [47, 79, 81] that

3

Chapter 1. Introduction

target a subset of the language features to generate highly efficient code. The subset usually

does not include features such as virtual dispatch or garbage collection, which prevents its

use with existing libraries that are written with the complete language in mind.

1.3 Structure

In this thesis, we study the complete design and implementation of the Scala Native optimizing

compiler:

• In Chapter 3, we define NIR, an intermediate representation used throughout our

compilation and optimization pipeline. NIR extends LLVM IR with support for high-

level object-oriented features such as classes and traits.

• In Chapter 4, we provide an outline for a baseline compilation that relies on a simple

whole-program analysis for devirtualization. We also cover the integration with garbage

collection runtime and explore commix, our parallel and partially concurrent garbage

collector.

• In Chapter 5, we explore a design for a flow-sensitive optimizer called Interflow. It relies

on a single graph-free traversal of the whole program to perform several well-known

optimizations in single optimization pass.

• In Chapter 6, we extend the Interflow with awareness of profile feedback obtained

through runtime instrumentation. Moreover, we introduce white-gray code splitting

as an underlying framework to reason about JIT-style speculative optimizations in the

ahead-of-time setting.

• In Chapter 7, we evaluate the runtime performance of our implementation and compare

it against Graal Native Image and HotSpot JVM.

1.4 Contributions

The key contributions of this thesis are:

• Design and implementation of Interflow, an optimizer that fuses a number of optimiza-

tions in a single pass over the whole program. Specifically, we focus on partial inlining

and type-based approaches to propagate flow-sensitive information (Chapter 5).

• An implementation of the Scala programming language that meets three key objectives

outlined above: start-up time, peak performance and compatibility. We evaluate and

contrast our implementation to both existing just-in-time and ahead-of-time compilers

(Chapter 7).

4

2 Overview

In this chapter, we present an overall structure of the Scala Native’s approach to compilation.

In particular, we provide a high-level overview of the different compilation modes and discuss

how they connect the individual pieces into a bigger picture.

2.1 Compilation Model

scalac
NIR

Scala Native
LLVM IR

LLVM
Native BinarySource Files

Figure 2.1 – Scala Native Compilation.

At its core, Scala Native is an ahead-of-time optimizing compiler that compiles whole pro-

grams under a closed-world assumption (Figure 2.1). Scala Native builds upon the LLVM [51]

compiler infrastructure to generate platform-dependent machine code.

We distinguish three key steps:

1. Compilation. We rely on a modified version of the Scala compiler that emits our inter-

mediate representation called NIR instead of JVM bytecode. Similarly to the reference

implementation, compilation is incremental and supports separate compilation.

2. Scala Native Link-Time Optimization. Scala Native toolchain takes a set of NIR files and

an application entry point as input for link-time optimization. This step is performed in

batch fashion and runs the whole compilation and optimization on the subset of the

NIR reachable from the entry point on each compilation.

3. LLVM Link-Time Optimization. After Scala Native optimizations, we emit lowered

LLVM IR code and run another set of optimizations using LLVM’s link-time optimizer.

As the final result, we obtain an optimized statically linked binary that includes all of the

application code in addition to the implementation of the garbage collector.

5

Chapter 2. Overview

As we are going to elaborate in further chapters. The Scala Native distinguishes several

compilation modes: baseline compilation, flow-sensitive optimized compilation, and profile-

guided optimized compilation.

Each subsequent mode offers more advanced optimization pipeline, and, as a consequence,

better runtime performance.

2.2 Baseline Compilation

reachability lowering
NIR LLVM IR

Figure 2.2 – Baseline Compilation.

The baseline compilation offers the most basic form of compilation supported by the Scala

Native. Rather than targeting the best possible runtime performance, we aim to perform the

basic compilation as fast as possible. This is useful for development workflows that rely on

frequent recompilations.

Baseline compilation consists of two steps:

1. Reachability. This step aims to minimize the application size by performing whole-

program reachability analysis, starting from the application entry point. Only methods

and classes that are reachable are used for later stages of the compilation. In addition,

this step also computes Class-Hierarchy Information (CHA) [33] that is used in later

stages of compilation.

2. Lowering. The goal of lowering stage is to translate high-level NIR instructions into their

equivalent low-level form in LLVM IR. Lowering takes advantage of CHA information to

perform devirtualization based on whole-program knowledge.

Once the application is translated to the LLVM IR, is further optimized and then linked with

our runtime implementation of the garbage collector (Chapter 4).

In addition to the compiled code, an application requires an implementation of a garbage

collector to link against. Scala Native support four garbage collection strategies out of the box:

No GC, Boehm GC, Immix GC, and Commix GC.

To obtain the best runtime performance, we link statically against the garbage collector

implementation. Moreover, we take advantage of LLVM’s LTO to optimize across the boundary

between the application code and the application interface (Section 4.4).

6

2.3. Flow-sensitive Optimization

reachability interf low lowering
NIR LLVM IR

reachability

Figure 2.3 – Compilation with Interflow.

2.3 Flow-sensitive Optimization

In addition to the optimizations performed by the LLVM toolchain, we implemented our

flow-sensitive optimizer called Interflow. It performs a number of optimizations in a single

graph-free traversal of the whole-program starting from the application entry point (Chapter

5).

As a result of optimization, we obtain a modified program that may have made some of the

methods to be unreachable due to optimizations such as inlining. Moreover, Interflow may

create new methods based on the existing ones using a technique called method duplication

(Section 5.5).

To account for these changes, we run another pass of reachability analysis. The optimized

version of the program is then further lowered to the LLVM IR, similarly to the baseline

compilation.

2.4 Profile-guided Optimization

reachability loweringinstrumented
NIR LLVM IR

Figure 2.4 – Compilation with Profile Instrumentation.

reachability interf lowpgo lowering
NIR LLVM IR

reachabilityspeculate

profile data

Figure 2.5 – Compilation with Profile-Guided Speculation.

To provide additional information for the optimizer, we implement an additional compila-

tion mode that performs an alternative lowering scheme (Figure 2.4) that includes profile

instrumentation.

The instrumented program is run on a workload that performs the application on a repre-

sentative workload. Instrumentation records information about application runtime into a

dedicated file on-disk.

The stored information is then used by the profile-guided optimization pipeline that may

speculate on the invariants within a program (Figure 2.5). Moreover, the speculation step

transforms the program by inserting optimistic speculative optimizations and splits off all

unlikely code paths using white-gray code splitting (Chapter 6).

7

Chapter 2. Overview

2.5 Conclusion

In this chapter we went through a brief overview of the Scala Native compilation pipeline. We

proceed by providing a more in-depth dive into NIR, an intermediate representation used in

our pipeline in the Chapter 3.

8

3 Native Intermediate Representation

In the previous section, we have walked through the overall design of the compilation, reacha-

bility, and optimization phases in the Scala Native pipeline. Even though we are interested

in compiling Scala code, the majority of the pipeline is completely oblivious of the source

language semantics and uses an intermediate language better suited for this purpose called

NIR.

Some of the key features of our intermediate representation are:

• Typed object-oriented representation in SSA form.

• Equivalent in-memory and lossless textual representation.

• Stable serialized binary format used for artifact distribution.

• Hardware-independent evaluation semantics.

• Type system used to verify well-formedness of the NIR programs.

The intermediate representation is used throughout our pipeline. Binary artifacts (i.e., li-

braries) compiled for Scala Native are distributed as serialized NIR. Reachability, optimization

and lowering phases consume and produce NIR as its only format.

NIR is designed and implemented primarily with Scala in mind although it shares lots of

features common with other intermediate languages such as Java bytecode and the Swift

intermediate language.

9

Chapter 3. Native Intermediate Representation

3.1 Introduction

Let us have a look at a simple Scala program that prints a countdown from 10 to 1 that is

followed by a "Tada!" message:

1 object Countdown {
2 def main(args: Array[String]): Unit = {
3 (10 to 1 by -1).foreach { i =>
4 println(i)
5 }
6 println("Tada!")
7 }
8 }

The code iterates over a sequence of numbers using idomatic language features such as Scala

collection ranges and closures. This code compiles down to the following NIR files on disk:

.
Countdown$$anonfun$main$1.class
Countdown$$anonfun$main$1.nir
Countdown$.class
Countdown$.nir

Each NIR file corresponds to a single JVM class file which may represent either a top-level

class definition in the source program or any of the classes generated behind the scenes by the

Scala compiler. For example here we see an additional class Countdown$$anonfun$main$1
generated for the closure used to iterate over the range.

We can visualize those files by transforming them into their equivalent textual representation

(method bodies omitted):

// Countdown$$anonfun$main$1.nir
module @"T10Countdown$"

: @"T16java.lang.Object"
def @"M10Countdown$RE"

: (@"T10Countdown$") => unit { ... }
def @"Countdown$D4mainLAL16java.lang.String_uE"

: (@"T10Countdown$", array[@"T16java.lang.String"]) => unit { ... }

// Countdown$$anonfun$main$1.nir
class @"T25Countdown$$anonfun$main$1"

: @"T39scala.runtime.AbstractFunction1$mcVI$sp", @"T18scala.Serializable"
def @"M25Countdown$$anonfun$main$1RE"

10

3.1. Introduction

: (@"T25Countdown$$anonfun$main$1") => unit { ... }
def @"M25Countdown$$anonfun$main$1D13apply$mcVI$spiuE"

: (@"T25Countdown$$anonfun$main$1", int) => unit { ... }

NIR class files have a flat scope that contains named definitions inside of it. Definitions may

not be nested within one another syntactically and may only appear at the top level of the

class file.

Definitions are identified by their globally unique names (@"..."). Names encode the owner-

ship information between methods and classes they belong to. As we are going to illustrate

in Section 3.2.3, names have a rich structure that also includes types to uniquely identify

overloaded definitions.

Let us have a look at the main method in detail:

def @"M10Countdown$D4mainLAL16java.lang.String_uE"
: (@"T10Countdown$", array[@"T16java.lang.String"]) => unit {

%3(%1 : @"T10Countdown$", %2 : array[@"T16java.lang.String"]):
%4 = moduleload @"T22scala.runtime.RichInt$"
%5 = moduleload @"T13scala.Predef$"
%6 = resolvemethod %5, #"D10intWrapperiiE"
%7 = call[...] %6(%5, int 10)
%8 = resolvemethod %4,

#"D13to$extension0iiL42scala.collection.immutable.Range$InclusiveE"
%9 = call[...] %8(%4, %7, int 1)
%10 = resolvemethod %9, #"D2byiL32scala.collection.immutable.RangeE"
%11 = call[...] %10(%9, int -1)
%10 = classalloc @"T25Countdown$$anonfun$main$1"
%11 = call[...] @"M25Countdown$$anonfun$main$1RE"(%10)
%12 = resolvemethod %9, #"D14foreachmVcspL15scala.Function1uE"
%13 = call[...] %12(%9, %10)
%14 = moduleload @"T13scala.Predef$"
%15 = resolvemethod %14, #"D7printlnL16java.lang.ObjectuE"
%16 = call[...] %15(%14, "Tada!")
ret %16

}

Methods are composed of basic blocks that contain instructions. Each instruction represents

a single static assignment that binds a local name to a result of the right-hand side. Operations

may depend on previously computed results but can never contain any nested subexpressions

directly.

11

Chapter 3. Native Intermediate Representation

As we can see from the printout of the main method, the original code got compiled to a

sequence of module accesses, class allocations and method calls on them. Methods are

resolved based on their method signatures (#"..."). Closures are compiled to anonymous

classes that have an apply method as an entry point for the closure invocation.

The method contains only a single basic block %3 due to the fact that looping is performed

in the foreach implementation that invokes the closure for every element of the underlying

collection (i.e., range of numbers in this case).

3.2 Language Definition

In this section, we are going to walk through the complete list of features that are available in

the intermediate language. In particular, we are going to focus on its instruction set and how

it is used to model high-level language features.

3.2.1 Programs

As we have illustrated earlier, NIR is persisted to disk in a very similar manner to the JVM

class files. Each class and all their members are stored to a corresponding file in a directory

structure that encodes packages names in a hierarchical manner.

JVM resolves classes through a class loading mechanism that happens at application runtime.

It can be used to dynamically load arbitrary code at any point of the application execution.

This allows for some extremely powerful use cases such as runtime code generation.

On the other hand, Scala Native is an ahead-of-time compiler and requires a list of all classes

and methods to be statically known. While reference implementation supports runtime class

loading, we perform an equivalent of class resolution at application link time. We perform this

resolution as part of our reachability analysis.

Reachability analysis tries to minimize the number of classes and methods loaded from the

classpath, starting from the application entry point. It traverses the complete program starting

from the application entry point. As a result, we obtain a transitive closure of all reachable

definitions that form a single global scope that is used for optimization and compilation to

native code.

We refer to the transitive closure of reachable definitions as a linked program. Linked programs

are self-contained units of compilation from the Scala Native point of view. They may still

contain references to externally defined methods over the C ABI, but all of the Scala code is

known statically.

12

3.2. Language Definition

d ::= definitions:
a dtop top-level definition
a dmember member definition

a ::= attributes:
mayinline | inlining attributes

inlinehint |
noinline |
alwaysinline

mayspecialize | specialization attributes
nospecialize

extern extern attribute
...

dtop ::= top-level definitions:
class n : n1,n2 class definition
module n : n1,n2 module definition
trait n : nn2 trait definition

dmember ::= member definitions:
var n : T = v var definition
const n : T = v const definition
decl n : T method declaration

def n : T { bb } method definition

Figure 3.1 – NIR Definitions.

3.2.2 Definitions

Linked programs in NIR are represented as a sequence of definitions d (Figure 3.1). Definitions

provide information about available types, methods, and fields.

Type definitions dtop can be either classes, modules, or traits. Class and module definitions

always have a single parent class they inherit from. The only exception is java.lang.Object
that sits at the top of the class hierarchy. Additionally, they may also implement traits. Classes

and traits closely match JVM bytecode classes and interfaces. Modules, on the other hand, are

Scala-specific and allow one to concisely represent lazily initialized top-level state. In contrast,

JVM relies on static initialization which is not supported in the Scala language.

Member definitions dmember correspond to either fields or methods in the original program.

Methods of abstract classes and traits can be declared without implementation and are re-

solved at runtime through dynamic dispatch.

Definitions may be annotated with attributes a. Attributes convey additional information

such as if a method can be considered for inlining and specialization by the optimizer. They

also provide a way to mark special-purpose definitions such as stubs and proxies.

Lastly, attributes can also indicate that a given definition must be available externally via C

ABI. Members of extern modules have special semantics because they map to C’s top-level

functions and global variables. Their names are preserved without name mangling in the

native binary code.

13

Chapter 3. Native Intermediate Representation

n ::= global names:
@i d mangled
top i d top-level
member n, s member

i d ::= identifiers:
nv numeric value
"..." non-empty string

s ::= member signatures:
#i d mangled
field i d ,T field
ctor T constructor
method i d ,T method
proxy i d ,T reflective proxy
extern i d externally visible
generated i d internally generated
duplicate s,T method duplicate

Figure 3.2 – NIR Names and Member Signatures.

3.2.3 Names, Signatures and Scoping

All definitions in NIR are identified by their globally unique names n (Figure 3.2). Names can

be either top-level names or member names.

Top-level names are used to identify classes, modules, and traits. They contain the fully-

qualified name of the corresponding definition that includes its package such as scala.Tuple2.

Top-level names are owners of any of its member names. This naturally corresponds to the

syntactic nesting of members definitions within class definitions in the Scala language.

Member names are composed of their owner top-level name and a member signature s.

Signatures refer to fields, methods, constructors, and special-purpose members (such as

internally generated and proxy names). Signatures contain types to uniquely identify a specific

constructor, method overload or a method duplicate. As we are going to discuss Chapter 5,

methods may be duplicated to specialize them to a sequence of more precise types than the

ones declared originally.

Conceptually, member names are a part of their owner scope and can be looked up by their

signature at either compile time or at run time through dynamic method dispatch. Owner

scope contains all of its member definitions and member definitions of all of its transitive

superclasses. Subclasses may override previously defined methods with the same signature.

Although names and signatures have a rich structure, they are predominantly kept in their

mangled form to speed up their use as keys of hash maps and elements of hash sets. Name

mangling maps them to a unique string with a similar naming convention to C++ Itanium ABI

[1]. Mangling is bidirectional and can fully recover the underlying name structure without loss

of information. Extern names are the only names that are not mangled in the compiled native

code for the sake of interoperability with C code.

14

3.2. Language Definition

bb ::= basic block

lbb(lpar am : T) : label with parameters

lop = op static assignments
t terminator

t ::= terminators:
tbr eak−out break-out terminators
t j ump jump terminators

tbr eak−out ::= break-out terminators:
ret v return
unreachable unreachable
throw v throw an exception

t j ump ::= jump terminators:
jump l (v) unconditional jump
if v conditional jump

then l1(v1)
else l2(v2)

switch v switch jump

case v0 ⇒ l1(v1)
default ⇒ l2(v2)

try op try or else unwind
to l1 ⇒ l2(v1)
unwind l3 ⇒ l4(v2)

l ::= %i d local name

Figure 3.3 – NIR Instructions.

3.2.4 Instructions and Control-Flow

Method bodies are represented as a sequence of basic blocks (Figure 3.3). Basic blocks bb are

composed of the sequence of static assignments that end with a single terminator instruction.

Static assignments l = op bind a local name to the result of an operation. Operations op

define a data-flow within the method.

NIR uses basic block parameters to model values that depend on the control-flow rather than

phi instructions [70]. Each basic block may declare a sequence of named parameters of given

types. Jumps within the method body must pass values of the correspondings parameter types

for a given basic block.

Terminator instructions t define control-flow transfer between basic blocks. They can transfer

the control either within the method (e.g., conditional or unconditional jumps) or outside of

the method (return, throw or undefined). Jumps can only be performed to the other basic

blocks within the same method.

Additionally, apart from explicit control-flow through terminators, operations may cause

implicit early termination of the method call due to an uncaught exception. A special termi-

nator try can be used to explicitly catch and process exceptional conditions. Try terminator

conditionally defines either a successful result of the normal computation or produces an

exception value.

Based on the syntactic structure, it is trivial to recover a control-flow graph out of it. Even

though we can represent arbitrary control-flow in the language, we are only interested in

supporting reducible control-flow graphs [8].

Given that Scala does not have support for unstructured control-flow such as g oto, there

exists an NIR construction algorithm that preserves the reducibility property. This restriction

15

Chapter 3. Native Intermediate Representation

op ::= operations:
ophl high-level operations
opl l low-level operations
oppr i m primitive operations

ophl ::= high-level operations:
var[T] declare a variable
varload v read from variable
varstore v1, v2 write to a variable
moduleload n get module instance
classalloc n allocate an instance
fieldload v, s readd from field
fieldstore v1, s, v2 write to field
resolvemethod v, s resolve method
isinstanceof[T] v instance check
asinstanceof[T] v checked cast
arrayalloc[T] v array allocation
arraylength v1 get array length
arrayload v1, v2 read from array
arraystore v1, v2, v3 write to array

opl l ::= low-level operations:
element[T] v0, v get element pointer
stackalloc[T] v stack allocation
load[T] v load from memory
store[T] v1, v2 store into memory
call[T] v0(v) function call
insert v1, v2, nv insert element
extract v1, nv extract element

oppr i m ::= primitive operations:
opcomp [T] v1, v2 compare two values of type T
opconv [T] v convert to T using conversion
opbi n[T] v1, v2 binary operation on T

opcomp ::= comparison operations:
ieq | ine integer comparison
ugt | uge | ult | ule unsigned integer comparson
sgt | sge | slt | sle signed integer comparison
feq | fne | fgt | floating-point comparison

fge | flt | fle

opconv ::= conversion operations:
trunc | fptrunc truncation
zext | sext | fpext extension
fptoui | fptosi floating point to integer
uitofp | sitofp integer to floating point
ptrtoint | inttoptr integer to pointer
bitcast reinterpret cast

opbi n ::= binary operations:
iadd | isub | imul integer operations
sdiv | srem signed integer operations
udiv | urem unsigned integer operations
fadd | fsub | fmul | floating-point operations

fdiv | frem
shl | lshr | ashr| bitwise operations

and | or | xor

Figure 3.4 – NIR Operations.

greatly simplifies the handling of control-flow in the optimization phase and is a common

design goal between modern representations such as WebAssembly [73] and Graal IR [39].

3.2.5 Operations and Values

The computations are built up as a sequence of operations (Figure 3.4) that produce and

manipulate values (Figure 3.5) at runtime. Operations op may take one or more values as

an input and may also be parameterized by types. We distinguish high-level, low-level, and

primitive operations.

Operations produce local names l as their results. Locals are used to express value dependen-

cies between operations. Whenever one operation depends on another, it uses a previously

16

3.2. Language Definition

v ::= values:
vpr i m primitive value
l local value
n global value
zero[T] zero initialized value
unit unit value
"..." string value
{ v } struct aggregate value
[v] array aggregate value

vpr i m ::= primitive values
null null value
true | false boolean value
char nv 16-bit unsigned integer value
byte nv 8-bit signed integer value
short nv 16-bit signed integer value
int nv 32-bit signed integer value
long nv 64-bit signed integer value
float nv 32-bit floating-point value
double nv 64-bit floating-point value

Figure 3.5 – NIR Values.

computed result as one if its value arguments. Such dependencies can span across multiple

basic blocks.

High-level operations ophl represent object-oriented semantics necessary to express Scala

code. They include managed allocations, field access, dynamic dispatch, checked casts and

instance checks, boxing, and array operations. Additionally, we also include instructions to

model local variables. Unlike unrestricted stack allocation, local variables return second-class

values that can only be used within a single method and thus can never escape by construction.

All of these operations are lowered to low-level subset during link-time.

Low-level opl l and primitive operations oppr i m closely model semantics of the corresponding

operations from the LLVM IR. They include indirect calls, operations on aggregate values,

raw memory access, stack allocation, arithmetic operations, comparisons, and conversions.

Low-level operations may exhibit undefined behavior in error conditions such as dereferenc-

ing a null pointer. All primitive operations on non-pointer types, apart from bitcast, are

fully checked at runtime and do not exhibit undefined behavior but rather throw exceptions

similarly to JVM bytecode. As we are going to explore in Section 4.3, we rely on explicit checks

to avoid undefined behavior.

Values v may either refer to previously computed results by their local name l , refer to defini-

tions by their global name n or be one of the canonical constants for a given type. Local values

are used to express dependencies between operations. Global values may be used to refer to

runtime representations of types and implementations of methods.

3.2.6 Types

We rely on an object-oriented type system (Figure 3.6). Types are split into reference, primitive,

aggregates, bottom, and second-class types.

Reference types Tr e f may refer to either class, modules, traits or arrays. For convenience, we

distinguish unit as a separate type even though it can be modeled as a named reference type

17

Chapter 3. Native Intermediate Representation

T ::= types:
Tr e f reference type
Tbot bottom types
Tpr i m primitive type
Tag g r aggregate types
Tsecond−cl ass second-class type

Tr e f ::= reference types:
unit unit type
array[T] array reference type
n named reference type

Tbot ::= bottom types:
null null type
nothing nothing type

Tpr i m ::= primitive value types:
bool boolean value
char unsigned integer value type
byte | short | signed integer value

int | long
float | double floating-point value types
ptr pointer value type

Tag g r ::= aggregate value types:
[T ×nv] array value type
{ T } struct value type

Tsecond−cl ass ::= second class types:
var[T] variable type
(T) ⇒ Tr et function type

Figure 3.6 – NIR Types.

as well. Similarly to the JVM bytecode, array[T] is the only type whose generic information

is preserved. Otherwise, the type system is erased and does not preserve information about

source-level generics for any other data structures.

Primitives types Tpr i m represent built-in data types such as booleans, fixed-width integer,

floating-point numbers, and pointers. Primitives may not be used interchangeably with

reference types and must be explicitly boxed whenever a value escapes to a generic location of

a reference type. This includes ptr which represents C-style pointer values to unmanaged

memory. By contrast, reference types are managed by the garbage-collector and don’t need to

be boxed.

Apart from primitive values, we also support aggregate value types Tag g r such as structs and

array values that contain a statically known number of elements. Aggregates can be used to

model multi-field value types in the source language (although Scala only supports single-field

value classes due to the lack of support for value types on the JVM).

Lastly, we also include bottom Tbot and second-class types Tsecond−cl ass . Bottom types contain

null and nothing type. null is used as a universal bottom type for all reference types, while

nothing models computations that do not normally return (i.e., either do not terminate or

always fail with an exception). Second-class types such as variable types and functions types

can not be passed as first-class values and are only used to store typing information for type

checking of local variable operations and function calls.

3.2.7 Summary

As we have outlined in this section, NIR syntactically consists of three levels of nesting:

18

3.3. Typing

1. Top-level definitions d .

2. Basic blocks and terminators bb.

3. Static assignemnts and values l = op.

We are going to rely on this structure as the backbone for all of the NIR transformations and

analysis phases, including typing (Section 3.3), reachability (Chapter 4) and optimization

(Chapter 5).

3.3 Typing

To ensure and verify the well-formedness of linked NIR programs, we define the following

typing relationships:

• Program ` d and definition typing Σ` d

• Basic block ∆,Σ` bb | Γout ,Tr et and terminator typing Γ,∆,Σ` t | Γout ,Tr et

• Operation ∆,Σ,Γ` op : T and value typing ∆,Σ,Γ` v : T

3.3.1 Typing Environments

The typing relationships rely on the three contexts that model the three-levels of the structural

nesting in the intermediate language:

• Top-level definition scope context Σ:

Σ ::= top-level environment:

; empty top-level

n 7→ s : T ,Σ class with members

For any given top-level definition, Σ contains all of its members indexed by their signa-

ture s. Members include any signatures inherited from the parent class or trait. We rely

on sigma to ensure the safety of field access and method resolution operations.

• Basic block context ∆:

∆ ::= block environment:

; empty blocks

l 7→ T ,∆ block with arguments

19

Chapter 3. Native Intermediate Representation

∆ stores all available basic blocks and their corresponding parameters. We rely on it to

ensure that jumps within a sequence of basic block are self-contained and respect the

parameter types.

• Local context Γ:

Γ ::= locals environment:

; empty locals

l 7→ T,Γ local of type

Γ stores all of the current accessible local names and their corresponding types. As we

are going to illustrate later, Γ needs to be managed carefully to reflect the flow-sensitive

naming in NIR.

3.3.2 Program and Definition Typing

NIR programs consist of definitions indexed by their unique global names. Definition typing

ensures that each definition is defined only once:

noDoubl eDe f i ni t i on(d)

Σ= nd 7→ member s(nd) Σ` d

` d
(DT-PROGRAM)

Individual top-level definitions must not form cyclic dependencies in their inheritance chains:

n 6∈ par ent s(n) i sC l ass(n1) i sTr ai t (n2)

Σ` class n : n1,n2

(DT-CLASS)

n 6∈ par ent s(n) i sC l ass(n1) i sTr ai t (n2)

Σ` module n : n1,n2

(DT-MODULE)

n 6∈ par ent s(n) i sTr ai t (n1)

Σ` trait n : n1

(DT-TRAIT)

Lastly, we ensure that members are well-typed with respect to their declared signatures:

;,;,Σ` v : T i sF i r stC l assT y pe(T)

nowner = owner (n) i sC l ass(nowner)∨ i sModule(nowner)

Σ` var n : T = v
(DT-VAR)

;,;,Σ` v : T i sF i r stC l assT y pe(T)

nowner = owner (n) i sModule(nowner)

Σ` const n : T = v
(DT-CONST)

20

3.3. Typing

Tsi g = t y pesi g (n) T ⇒ Tr et <: Tsi g

i sF i r stC l assT y pe(T) i sF i r stC l assT y pe(Tr et)

nowner = owner (n) i sC l ass(nowner)∨ i sTr ai t (nowner)

Σ` decl n : T ⇒ Tr et

(DT-DECL)

Tsi g = t y pesi g (n) T ⇒ Tr et <: Tsi g

i sF i r stC l assT y pe(T) i sF i r stC l assT y peT y pe(Tr et)

i sReduci ble(bb) i sReachabl e(bb) noDoubl eDe f i ni t i on(bb)

∆= lbb 7→ par amt y pes(bb) ∆,Σ` bb | Γ,Tr et

Σ` def n : T ⇒ Tr et { bb }
(DT-DEFN)

3.3.3 Basic Block and Terminator Typing

Γ1 Γn. . .

lbb(lparam : T) :
l1 = op1

lj = opj

. . .

. . .
lm = opm

t

Γout1 Γoutk
. . .

Γstart = lparam : T, ∩i Γi

Γend = li : Topi
, Γstart

Γj = li : Topi
, Γstart where i < j

Figure 3.7 – Flow-sensitivity of the Γ environment.

The most challenging part of the whole framework lies in the basic block typing and manage-

ment of the Γ context. The complexity has to do with flow-dependant nature of the local name

bindings.

In SSA-based representation, instructions may depend on previously computed results as long

as the dependency respects the domination property of the control-flow graph [70]. To encode

domination in our typing rules, we first consider that we are working purely with reducible

control-flow graphs. Such graphs may always be partitioned into forward and backward edges,

where the start of the backward edge is dominated by its end.

Under this constraint, it is sufficient only to consider the DAG subset of the graph that is

formed based purely on the forward edges. Before visiting a basic block, we visit all of its DAG

21

Chapter 3. Native Intermediate Representation

predecessors and then intersect the resulting Γ contexts. This ensures that the starting context

Γst ar t contains purely the bindings that are available on each path flowing into the current

basic block.

Within the basic block, operations may see all of the directly preceding results, in addition

to the bindings that were propagated from the predecessors and the basic block parameters

lpar am : T . In the end, basic block typing completes with providing a context for each of the

outgoing edges Γouti :

i sF i r stC l assT y pe(T)

bbpr ed = pr edecessor s(bb)

∆,Σ` bbpr ed | Γpr ed ,Tr et

Γst ar t = l : T , ∩Γpr ed

Γst ar t ,∆,Σ` lop = op : T

Γend = lop : T ,Γst ar t

Γend ,∆,Σ` t | Γout ,Tr et

∆,Σ` lbb(l : T) : lop = op t | Γout ,Tr et

(BT-BASIC-BLOCK)

Γ,∆,Σ` op : T

i sF i r stC l assT y pe(T) ∨ i sV ar T y pe(T)

Γ,∆,Σ` l = op : T
(BT-LET)

∀in ∈ lop = op

Γn = lm : Tm ,Γ wher e m < n

Γn ,∆,Σ` in : Tn

Γ,∆,Σ` lop = op : Tn

(BT-LET-SEQ)

The basic block typing terminates with basic blocks that end with break-out terminators tbr eak

that do not have any outgoing edges:

Γ,∆,Σ` v : Tr et

Γ,∆,Σ` ret v | {Γ},Tr et

(TT-RETURN)

Γ,∆,Σ` v : @" j ava.l ang .T hr ow abl e"

Γ,∆,Σ` throw v | {Γ},Tr et

(TT-THROW)

Γ,∆,Σ` unreachable | {Γ},Tr et (TT-UNREACHABLE)

Jump terminators must ensure that the destination basic block is defined in the current

method and the passed arguments correspond to the types of the corresponding basic block

parameters:

22

3.3. Typing

l ∈∆ T =∆(l) Γ,∆,Σ` v : T

Γ,∆,Σ` jump l (v) | {Γ},Tr et

(TT-JUMP)

Γ,∆,Σ` v : bool
Γ,∆,Σ` jump l1(v1) | {Γ1},Tr et Γ,∆,Σ` jump l2(v2) | {Γ2}Tr et

Γ,∆,Σ` if v then l1(v1) else l2(v2) | {Γ1,Γ2},Tr et

(TT-IF)

Γ,∆,Σ` v : T i sInteg er T y pe(T) ;,;,Σ` v0 : T

Γ,∆,Σ` jump l1(v1) | Γ1,Tr et Γ,∆,Σ` jump l2(v2) | {Γ2},Tr et

Γ,∆,Σ` switch v case v0 ⇒ l1(v1) default ⇒ l2(v2) | {Γ1,Γ2},Tr et

(TT-SWITCH)

Γ,∆,Σ` op : T i sF i r stC l assT y pe(T)

Γ1 = l1 : T, Γ Γ2 = l3 : @" j ava.l ang .T hr ow abl e", Γ

Γ1,∆,Σ` jump l2(v1) | Γ′1,Tr et Γ2,∆,Σ` jump l4(v2) | Γ′2,Tr et

Γ,∆,Σ` try op to l1 ⇒ l2(v1) unwind l3 ⇒ l4(v2) | {Γ′1,Γ′2},Tr et

(TT-TRY)

3.3.4 Operation typing

Operation typing expresses the expected types for each of the individual operations. Special

care needs to be taken to ensure that second-class types are not used as first-class values.

High-level operations ophl operate purely on reference types and can not be applied to

primitive or aggregate types directly:

n ∈Σ i sModul e(n)

Γ,∆,Σ` moduleload n : n
(OT-MODULELOAD)

n ∈Σ i sC l ass(n)

Γ,∆,Σ` classalloc n : n
(OT-CLASSALLOC)

Γ,∆,Σ` v : n s : Ts ∈Σ(n) i sF i el d(s)

Γ,∆,Σ` fieldload v, s : Ts

(OT-FIELDLOAD)

Γ,∆,Σ` v : n s : Ts ∈Σ(n) i sF i el d(s) Γ,∆,Σ` v2 : Ts

Γ,∆,Σ` fieldstore v1, s, v2 : unit
(OT-FIELDSTORE)

Γ,∆,Σ` v : n s : Ts ∈Σ(n) i sMethod(s)

Γ,∆,Σ` resolvemethod v, s : ptr
(OT-RESOLVEMETHOD)

Γ,∆,Σ` v : T1 i sRe f T y pe(T1) i sRe f T y pe(T2)

Γ,∆,Σ` isinstanceof[T2] v : bool
(OT-ISINSTANCEOF)

23

Chapter 3. Native Intermediate Representation

Γ,∆,Σ` v : T1 i sRe f T y pe(T1) i sRe f T y pe(T2)

Γ,∆,Σ` asinstanceof[T2] v : T2

(OT-ASINSTANCEOF)

Γ,∆,Σ` v : int i sF i r stC l assT y pe(T)

Γ,∆,Σ` arrayalloc[T] v : array[T]
(OT-ARRAYALLOC)

Γ,∆,Σ` v : array[T] i sF i r stC l assT y pe(T)

Γ,∆,Σ` arraylength v : int
(OT-ARRAYLENGTH)

Γ,∆,Σ` v1 : array[T] Γ,∆,Σ` v2 : int i sF i r stC l assT y pe(T)

Γ,∆,Σ` arrayload v1, v2 : T
(OT-ARRAYLOAD)

Γ,∆,Σ` v1 : array[T] Γ,∆,Σ` v2 : int
Γ,∆,Σ` v3 : T i sF i r stC l assT y pe(T)

Γ,∆,Σ` arraystore v1, v2, v3 : unit
(OT-ARRAYSTORE)

Local variable operations may only operate on the second-class values of the var[T] type:

i sF i r stC l assT y pe(T)

Γ,∆,Σ` var[T] : var [T]
(OT-VAR)

Γ,∆,Σ` v : var[T] i sF i r stC l assT y pe(T)

Γ,∆,Σ` varload v : T
(OT-VARLOAD)

Γ,∆,Σ` v1 : var[T] Γ,∆,Σ` v2 : T i sF i r stC l assT y pe(T)

Γ,∆,Σ` varstore v1, v2 : unit
(OT-VARSTORE)

Low-level operations perform operations on the opaque pointers into the unmanaged mem-

ory:

Γ,∆,Σ` v0 : ptr Γ,∆,Σ` v : long i sF i r stC l assT y pe(T)

Γ,∆,Σ` element[T] v0, v : ptr
(OT-ELEMENT)

Γ,∆,Σ` v : long i sF i r stC l assT y pe(T)

Γ,∆,Σ` stackalloc[T] v : ptr
(OT-STACKALLOC)

Γ,∆,Σ` v : ptr i sF i r stC l assT y pe(T)

Γ,∆,Σ` load[T] v : T
(OT-LOAD)

Γ,∆,Σ` v1 : ptr Γ,∆,Σ` v2 : T i sF i r stC l assT y pe(T)

Γ,∆,Σ` store[T] v1, v2 : unit
(OT-STORE)

24

3.3. Typing

T f = T ⇒ Tr et Γ,∆,Σ` v : T Γ,∆,Σ` v0 : ptr
i sF i r stC l assT y pe(T) i sF i r stC l assT y pe(Tr et)

Γ,∆,Σ` call[T] v0(v) : Tr et

(OT-CALL)

Aggregate operations can be used to extract and insert values out of the aggregate type using

compile-time checked indexes:

Γ,∆,Σ` v1 : [T ×nv1] Γ,∆,Σ` v2 : T

0 ≤ nv0 < nv1 i sF i r stC l assT y pe(T)

Γ,∆,Σ` insert v1, v2,nv0 : [T ×nv1]
(OT-INSERT-ARRAY)

Γ,∆,Σ` v1 : {T } Γ,∆,Σ` v2 : Tnv

0 ≤ nv < leng th(T) i sF i r stC l assT y pe(T)

Γ,∆,Σ` insert v1, v2,nv : {T }
(OT-INSERT-STRUCT)

Γ,∆,Σ` v1 : [T ×nv1]

0 ≤ nv0 < nv1 i sF i r stC l assT y pe(T)

Γ,∆,Σ` extract v1,nv0 : T
(OT-EXTRACT-ARRAY)

Γ,∆,Σ` v1 : {T }

0 ≤ nv < leng th(T) i sF i r stC l assT y pe(T)

Γ,∆,Σ` extract v1,nv : Tnv

(OT-EXTRACT-STRUCT)

Lastly, primitive operations oppr i m take values of the declared type that must be supported

for the corresponding operation:

Γ,∆,Σ` v1 : T Γ,∆,Σ` v2 : T i sV al i dComp(opcomp ,T)

Γ,∆,Σ` opcomp [T] v1, v2 : bool
(OT-COMP)

Γ,∆,Σ` v : T2 i sV al i dConv(opconv ,T1,T2)

Γ,∆,Σ` opconv [T1] v : T1

(OT-CONV)

Γ,∆,Σ` v1 : T1 Γ,∆,Σ` v2 : T i sV al i dBi n(opbi n ,T)

Γ,∆,Σ` opbi n[T] v1, v2 : T
(OT-BIN)

3.3.5 Value typing

Type information for locals is available through the typing context Γ:

l : T ∈ Γ
Γ,∆,Σ` l : T

(VT-LOCAL)

25

Chapter 3. Native Intermediate Representation

Typing of the most values is trivial due to the fact that most values represent the canonical

constants of the corresponding types:

Γ,∆,Σ` n : ptr (VT-GLOBAL)

i sF i r stC l assT y pe(T)

Γ,∆,Σ` zero[T] : T
(VT-ZERO)

Γ,∆,Σ` unit : unit (VT-UNIT)

Γ,∆,Σ` null : null (VT-NULL)

Γ,∆,Σ` "..." : @" j ava.l ang .Str i ng " (VT-STRING)

Γ,∆,Σ` true : bool (VT-TRUE)

Γ,∆,Σ` false : bool (VT-FALSE)

Γ,∆,Σ` char nv : char (VT-CHAR)

Γ,∆,Σ` byte nv : byte (VT-BYTE)

Γ,∆,Σ` short nv : short (VT-SHORT)

Γ,∆,Σ` int nv : int (VT-INT)

Γ,∆,Σ` long nv : long (VT-LONG)

Γ,∆,Σ` float nv : float (VT-FLOAT)

Γ,∆,Σ` double nv : double (VT-DOUBLE)

Values of the aggregate types contain other values nested within them. We first ensure the

well-formedness of each of their nested values individually:

Γ,∆,Σ` v : T i sF i r stC l assT y pe(T)

Γ,∆,Σ` {v} : {T }
(VT-STRUCT)

Γ,∆,Σ` v : T n = l eng th(v) i sF i r stC l assT y pe(T)

Γ,∆,Σ` [v] : [T ×n]
(VT-ARRAY)

Additionally, we need an additional rule to encode subtyping (Section 3.3.6) of the reference

and bottom types:

Γ,∆,Σ` v : S S <: T

Γ,∆,Σ` v : T
(VT-SUB)

26

3.3. Typing

3.3.6 Subtyping

Subtyping is based on the standard reflexivity and transitivity rules:

S <: S (S-REFL)

S <: U U <: T

S <: T
(S-TRANS)

Reference types Tr e f form a subtyping relation based on their declared parents with @" j ava.l ang .Ob j ect"

at the top of the hierarchy:

i sRe f T y pe(T)

T <: @" j ava.l ang .Ob j ect"
(S-TOP)

class n : n1,n2 npar ent ∈ par ent s(n)

n <: npar ent

(S-CLASS-PARENT)

module n : n1,n2 npar ent ∈ par ent s(n)

n <: npar ent

(S-MODULE-PARENT)

trait n : n1 npar ent ∈ par ent s(n)

n <: npar ent

(S-TRAIT-PARENT)

NIR type system includes two bottom types, one for the reference type hierarchy and another

one for all first-class values:

i sRe f T y pe(T) i sF i r stC l assT y pe(T)

null <: T
(S-BOT-NULL)

i sF i r stC l assT y pe(T)

nothing <: T
(S-BOT-NOTHING)

Additionally, we support subtyping for function types. Even though they are not first-class

values, it is convenient to express the conformance to the method signatures:

T1 <: S1 S2 <: T2

S1 ⇒ S2 <: T2 ⇒ T2

(S-FUNC)

27

Chapter 3. Native Intermediate Representation

3.4 Related Work

NIR was designed as an intermediate language between LLVM IR [51] and Scala’s typed syntax

trees. This has made a significant influence on the design of the lower-level features of the

intermediate representation. Low-level operations, values, constants, and types are all based

on corresponding features of our target language.

Unlike LLVM IR, NIR provides a complete set of primitives necessary to implement typed

object-oriented languages such as Scala, Java, or Kotlin. This includes classes and traits

which closely mirror the semantics of classes and interfaces in the JVM bytecode. Unlike JVM

bytecode, NIR directly uses SSA form rather than stack-based evaluation semantics. This lets

us skip an intermediate step of compiling to stack-based intermediate language first and then

recovering SSA equivalent out of it.

Similarly to the Swift Intermediate Language (SIL) [7], NIR uses parametrized basic blocks

over LLVM’s phi instructions. Parametrized basic blocks are also reminiscent of continuations

in intermediate representations designed for functional programming languages such as CPS

[10]. Unlike SIL, NIR offers garbage-collected runtime semantics rather than having explicit

reference counting operations in the intermediate language.

Compared to SSA representations of JVM bytecode such as HotSpot’s Sea of Nodes [30, 38] and

Graal’s IR [39], we leave graph-based representation to the optimizer state. NIR’s instructions

are represented in an already scheduled form unlike floating nodes in graph-based intermedi-

ate representations. This dramatically simplifies the tooling around viewing and debugging

NIR transformations as we can rely on textual output that is designed to be fully isomorphic to

the in-memory representation without loss of information.

Lastly, NIR shares a lot in common with Scala.js IR (SJIR) [35]. Both SJIR and NIR encode Scala’s

high-level semantics based on an intermediate language with an erased type system. Both

representations are designed for closed-world AOT-optimizing compilers for Scala. Unlike NIR,

SJIR is tree-based to simplify compilation to JavaScript which does not support non-structured

control-flow. NIR includes lower-level primitives for interoperability with C, while SJIR offers

tight integration with JavaScript.

3.5 Conclusion

In this chapter, we defined NIR, an intermediate representation that is used throughout

Scala Native’s toolchain. We presented the language structure and showed how the language

could be checked for well-formedness using an erased type system. Apart from the high-level

features, we also include a subset of lower-level features used for interoperability with C code

that also serves as a building block for the optimizing compilation and lowering pipeline.

28

4 Baseline Compilation

In the previous chapter, we defined NIR, an intermediate language that we are going to use

throughout the compilation and optimization pipeline.

We use baseline compilation as the foundation on which we are going to build upon in further

chapters. The goal of the baseline compilation is to transform programs that consist of high-

level instructions into their lower-level counterparts relying on the whole program knowledge.

In addition, we also cover the memory management runtime, which relies on conservative

garbage collection. We discuss the techniques used in our implementation and illustrate how

the compiled code integrates with the garbage collector.

4.1 Introduction

Scala programming language [?] relies heavily on virtual dispatch as the foundation for a

large number of its core language features:

1. Fields. By default, class fields in Scala are backed by getter and setter methods that can

be overridden by subclasses. This means that even the basic field access in compiled as

a virtual call to the corresponding getter or setter methods.

2. Traits. Scala encourages library design that relies on traits with abstract methods. In

addition to abstract methods, traits may also contain concrete implementations that

provide a default implementation for a particular function. Those implementations

may be further overridden in classes that implement the trait. Scala collections rely

heavily on traits to minimize reimplementation of the same operations across a wide

set of concrete collection types.

3. Closures. Functional programming is one of the key idioms supported by the language.

Under the hood, closures are compiled as anonymous classes that extend FunctionN
trait for a given function arity N. Closures represent captures as fields on the underlying

29

Chapter 4. Baseline Compilation

class.

4. Implicits. Another aspect of functional programming are type classes [42]. Scala com-

piler automatically resolves instances through an implicit search [61, 62] mechanism

that can also synthesize new type class instances based on declarative definitions. Type

classes are often encoded as traits that take self reference as an explicit argument.

In the intermediate code, all of these features end up being compiled to either class or trait vir-

tual method dispatch. Due to the fact that even the most basic operations such as field access

are compiled this way, it is crucial to devirtualize virtual method calls whenever possible.

A naive language implementation could always compile the virtual dispatch through the

well-known runtime method dispatch techniques such as virtual function tables and row

displacement dispatch tables [37]. In that case, the method dispatch cost will be prohibitive

for small methods such as field accesses.

Alternatively, one can perform a whole-program analysis under a closed world assumption.

Specifically, Class Hierarchy Analysis (CHA) [33] can be used to find out which methods are

never overridden and can be compiled as static calls. Unlike virtual calls, static calls are eligible

for inlining, which is extremely valuable for small methods even for baseline compilation.

To compute CHA, we traverse a program starting from the entry point and record summary

information about any of the methods, classes or traits that have been visited. Any methods

or classes that did not get summaries created for them are discarded as not reachable. It is

beneficial to minimize the set of reachable definitions as it directly affects the precision of

information available in the CHA.

4.2 Reachability Analysis

4.2.1 Summaries

One of the goals of the reachability analysis is the creation of summary information (Figure 4.1)

that describes definitions in the original program. Summaries describe top-level definitions

(i.e., classes, traits, and objects) and contain information about their members indexed by the

member signatures.

Summaries form a cyclic directed graph that corresponds to the inheritance between classes

and traits in the original program. The graph can be decomposed into a union of two acyclic

graphs: one that encodes relationship from subclasses to their parent classes, and another

that includes all subtypes for a given type. More concretely:

1. Class information links to their direct par ent s it inherits from. The inheritance sub-

graph is acyclic and always starts with @" j ava.l ang .Ob j ect" at the top of the hierarchy.

30

4.2. Reachability Analysis

i n f o ::= summary information:
classinfo n { top-level definition information

par ent s a sequence of direct parents of the given definition
subt y pes a set of subtypes that implement this class or trait
member s a set of members indexed by their signature
r espond s a mapping from method signatures to their implementation
al located a boolean flag that states if a defn was allocated
cal l ed a set of signatures called on this top-level defn
...

}
memberinfo n { member information

T member type
...

}

Figure 4.1 – Summary Information.

2. Each class contains a set of all of it transitive subt y pes. Subtypes subgraph is acyclic

as well and serves as a precomputed form of the inheritance chain. This set lets one

answer subtyping queries in constant time through a single direct lookup in a hash set.

3. Class information contains a sequence of member s defined directly in this class, ex-

cluding any of the inherited members. To speed up the lookup of method resolution,

we also store a mapping from signatures a class r espond s to, to their corresponding

implementation. This gives us a constant time resolution of a method implementation

given a method signature for all classes.

4. We also record if a class was al located at least once throughout the program, and

the sequence of all method signatures that were observed to be cal l ed on this class.

This information makes it possible to minimize the generation of the dispatch table

information and improve the precision of the virtual-method-targets estimation by

excluding classes that were never allocated.

The information stored in the definition of summaries does not contain any form of a call graph

information. Instead, we rely on a graph free [56] traversal for both analysis and optimization.

4.2.2 Semantic Queries

The primary goal of the summary information is to support fast response to the following

queries that are used as part of lowering and optimization:

1. Lookup of a method implementation for a given exact type and signature: n = r esol ve(T, s).

31

Chapter 4. Baseline Compilation

2. Lookup for all potential method implementations for a given type and signature: n =
t ar g et s(T, s). The query can be answered in a linear time with respect to to the number

of subtypes for a given type T . We iterate through all subtypes that are allocated and

r esol ve the signature on them.

3. Subtyping test: i sSub(T1,T2). The query can be answered in constant time based on

the subt y pes set.

4. Least upper bound of two types: lub(T1,T2). For class-class and class-trait pairs, the

query can be answered in constant time based on the subt y pes set. For trait-trait pairs,

computation of the least upper bound requires a linear traversal of the inheritance chain

to find a least common supertrait between the two.

4.2.3 Computing Summaries and Reachability

We compute the set of all reachable definition through a single-pass traversal that goes through

the program, starting from the entry points (Figure 4.2).

The algorithm takes an environment of all available definitions (i.e., the application classpath)

and a sequence of entry points. Its performs a depth-first traversal that visits definitions and

updates the queue with any new names discovered in the process.

As one of the side effects of the traversal, we initialize and complete the summary information

for each of the definitions in the program. Each time a new class is observed, it registers itself

as a subtype of its parent types.

Initially, classes start with no member definitions and have them added later on as the program

goes through the operations in all methods. Whenever it sees a method dispatch operation, it

queries all of its potential targets using the current class hierarchy information and adds the

corresponding methods targets to the queue if they have not been visited yet.

Even though the information might not be complete at any point in time (due to a potential

of new classes being discovered after the current method is visited) the analysis is still sound

because we record all calls as part of the class information. Whenever a new subtype is loaded,

it makes sure to visit all of its method implementations for the signatures that have been called

before on each of its transitive parents.

Additionally, we also track if the classes have been allocated. A bare reference to a class by

name (e.g., through a method signature) does not increase the set of reachable methods until

the class is seen to be allocated at least once.

As a result of the traversal, we compute a set of all summaries for all reachable definitions. Any

definition that does not have a summary is not reachable from the entry point and can be

safely discarded.

32

4.2. Reachability Analysis

1: queue ←;
2: i n f os ←;
3:

4: procedure REACH(env = n 7→ d , entr i es = n)
5: queue = queue ∪entr i es
6: while nonEmpt y(queue) do
7: n ← pop(queue)
8: if n 6∈ i n f os then
9: i n f os(n) = r eachDe f n(env(n))

10: end if
11: end while
12: r eachabl e = {n 7→ d | n 7→ d ∈ env ∧n ∈ i n f os}
13: return (r eachabl e, i n f os)
14: end procedure
15:

16: procedure REACHDEFN(d)
17: for n ∈ d do
18: queue = queue ∪n
19: end for
20: if i sTopLevelDe f n(d) then
21: return newTopIn f o(d)
22: else if i sF i el dDe f n(d) then
23: return new Member In f o(d)
24: else if i sMethodDe f n(d) then
25: for op ∈ basi cBlocks(d) do
26: r eachOp(op)
27: end for
28: return new Member In f o(d)
29: end if
30: end procedure
31:

32: procedure REACHOP(op)
33: if i s Al l ocati on(op) then
34: n ← al locates(op)
35: set Al l ocated(i n f os(n))
36: end if
37: if i sMethodDi spatch(op) then
38: for n ∈ t ar g et s(op) do
39: queue = queue ∪n
40: end for
41: n ← r ecei ver (op)
42: s ← si g natur e(op)
43: setC al l ed(i n f os(n), s)
44: end if
45: end procedure

Figure 4.2 – Reachability Algorithm

33

Chapter 4. Baseline Compilation

4.2.4 Class Loading

Reachability algorithm takes a mapping from names to definitions as its view of all available

definitions in the program. The environment is typically represented through a classpath that

contains files stored in directories or jars on disk.

Each serialized NIR file on disk corresponds to a single class in the original program. All of the

definitions within that file are owned by the corresponding top-level definition. This lets us

perform global name resolution in two steps: the first resolution of a corresponding file on

disk, and then later resolution of a member signature within that file.

Reachability traversal lazily loads classes on the first access similarly to class loading mecha-

nism as part of the JVM. This allows us to avoid deserialization overhead for classes that are

reached in a given application.

Moreover, the presented algorithm can exclude a subset of methods or fields within a class as

long as they are not visited during the traversal. Once reachability analysis is complete, such

definitions are discarded even if they were previously deserialized as part of the class.

4.3 Lowering High-Level Operations

In this section, we are going to walk through the lowering process that maps high-level

operations to their lower-level counterparts using the whole program knowledge we have

computed during the reachability analysis.

Lowering is represented through a translation function � • �lower . It goes through the body of

each method visiting one instruction at a time and replacing all ophl using combination of

opl l and oppr i m .

In addition to the lowered instructions, we might also emit guards (4.3.10). Guards represent

the in-place checks for unlikely error conditions that may share a common slow path.

4.3.1 Class Allocation and Garbage Collection Interface

Our interaction with the garbage collector is straightforward and relies on the wiring of the

allocation instructions to call corresponding runtime implementation of allocation for classes

and arrays:

�l = classalloc n�lower =
l = call[...] @"r unti me_al loc"(n)

�l = arrayalloc[T] v�l ower =
l = call[...] @"r unti me_ar r ay al loc"(T, v)

34

4.3. Lowering High-Level Operations

rtti f ld1 f ldn. . .class layout

idfromclass rtti layout idto size offsets dynmap
vtable

m1 . . . mk

ref

name

Figure 4.3 – Class and Runtime Type Information Memory Layout.

We are going to go through the details of the runtime support for the garbage collection in

Section 4.4.

4.3.2 Memory Layout and Runtime Type Information

Each reachable class in the linked program is backed by a statically allocated instance of

Runtime Type Information (Figure 4.3). It contains all the information necessary to reason

about classes from the runtime point of view, it includes:

• Type IDs. All classes get unique numeric ID range that starts from i d f r om and ends

with i dto . The unique IDs of the subclasses are nested within the ID range of its parents

which allows us to represent instance tests through simple range checks. In section 4.3.5,

we explain how this works with multiple inheritance.

• Type Name. Naming information is necessary for support a subset of the @" j ava.l ang .C l ass"

API that covers minimal runtime reflection capabilities.

• Memory Layout Information. This includes both the underlying class size and the

offsets of all fields that store references to other objects. The memory layout information

is used by the garbage collector to perform precise heap scanning.

• Virtual Dispatch Information. Each class is backed by a traditional virtual dispatch

table and a hash map used to implement reflective calls (that correspond to calls through

structural types in the original Scala program).

4.3.3 Field Access

Objects store field in a linear order. Access of the field is as simple as computing a derived

pointer into the middle of the object using the statically known offset for a given field:

35

Chapter 4. Baseline Compilation

�l = fieldload v, s�lower =
guardnotnull v

lptr = element[Tl ayout] v, int 0, int nvi ndex

l = load[T f i eld] lptr

�l = fieldstore v1, s, v2�l ower =
guardnotnull v

lptr = element[Tl ayout] v, int 0, int nvi ndex

l = store[T f i eld] lptr , v2

Similarly to the reference implementation, we preserve the exceptional behavior in case of null

dereference. In that case, the @" j ava.l ang .Nul lPoi nter E xcepti on" is thrown to indicate

the error condition.

4.3.4 Virtual Method Dispatch

Method resolution relies on the class summaries we have computed during the reachability

analysis. The very best case for a given method call is to have at most one target. In that case,

we can replace the virtual call with the statically known result:

�l = resolvemethod v, s�lower if t ar g et s(Tv , s) = {n} =
guardnotnull v

l = n

Otherwise, if there are multiple potential implementations, we must fall back to runtime

dispatch based on the runtime type information of a given instance. We distinguish three

types of virtual method calls that all have distinct method dispatch implementations:

• Class-Virtual. In cases when a receiver instance is a class, we may perform virtual

call through the virtual function table. This is the best case as it allows us to resolve

implementation in two memory loads:

�l = resolvemethod v, s�lower if i sC l assV i r tual (Tv , s) =
guardnotnull v

lr t t i = load[ptr] v

lptr = element[Tr t t i] lr t t i , int nvi ndex

l = load[ptr] lptr

• Trait-Virtual. Method calls on instances of a trait type can not rely on virtual function

tables because trait inheritance does not follow a simple hierarchical model. Instead,

we rely on selector-based row displacement [37] to resolve all trait-virtual calls.

36

4.3. Lowering High-Level Operations

Conceptually, row displacement is a technique that aims to efficiently represent a square

matrix that given a unique ID for the corresponding method signature and runtime type

of the receiver.

If implemented naively, this matrix would grow quadratically as the number of methods

and classes in the program. Instead, based on the observation that most cells in this

matrix are in fact zero, we can compact the table by overlaying rows one on top of the

other to minimize the gaps in-between.

Our implementation relies on a single global dispatch table @"__di spatch" that is

shared between all signatures called on trait instances in the program. The lowering for

the method lookup needs one extra memory access indirection to resolve a method call

compared to the virtual function tables:

�l = resolvemethod v, s�l ower if i sTr ai tV i r tual (Tv , s) =
guardnotnull v

lr t t i = load[ptr] v

. load class pointer

lt y pei d = load[int] lr t t i

. load integer class id

lr ow ptr = element[ptr] @"__di spatch", int nvi ndex

. find the the column for given method selector id

lptr = element[ptr] lr ow ptr , lt y pei d

. find the offset for given dynamic type id

l = load[ptr]lptr

. load the method pointer from the computer offset

• Reflective. As the name might suggest, the reflective calls are emitted as a result of

the dynamic method lookup at runtime. Their use in NIR corresponds to the method

dispatch based on structural types in Scala. Unlike the other two types of method

lookups, reflective calls may, in fact, fail at runtime and are not statically guaranteed to

succeed.

Given that this feature is used extremely rarely in Scala, we optimized the implementa-

tion for the smallest binary size footprint rather than the best runtime performance. The

implementation uses a hash map lookup that is generated for every class and contains

only the method implementations for any of the reflective calls we’ve observed in the

linked program:

�l = resolvemethod v, s�l ower if i sPr ox yV i r tual (Tv , s) =
guardnotnull v

l = call[...] @"r unti me_d yndi spatch"(v, s)

guardnosuchmethod l

If the hash map lookup returns a null value, the reflective method lookup may fail with

@" j ava.l ang .NoSuchMethodEr r or " at runtime.

37

Chapter 4. Baseline Compilation

4.3.5 Instance Checks and Checked Casts

Unlike all the other operations presented here, instance checks and casts are well-behaved

with respect to null values. Instance checks always fail by returning a false value and casts

always succeed with a null reinterpreted to the given type.

We structure the lowering of those operations in two steps. We first handle the null case on the

outside and then delegate to a utility-lowering transform that assumes no nulls are possible

for a given instance check or a cast:

�l = isinstanceof[T] v�lower =
lnotnul l = ine[v] v, null
if lnotnul l then lcheck else lr esul t (false)

lcheck :

�li s = isinstanceof[t] v�i s

jump lr esul t (li s)

lr esul t (l : bool) :

�l = asinstanceof[T] v�lower =
lnotnul l = ine[v] v, null
if lnotnul l then lcheck else lr esul t

lcheck :

�li s = isinstanceof[t] v�i s

guardclasscast li s

jump lr esul t

lr esul t :

l = bitcast[T] v

Here, the underlying implementation �l = isinstanceof[T] v�i s performs the lowering of

the actual runtime instance check under the assumption that the value v is guaranteed not to

be not null.

In the best case, we can statically guarantee that for all subtypes of the type of the value T the

instance check is going to succeed, and we can emit true constant as a result:

�l = isinstanceof[T] v�i s if i sSub(Tv , T) =
l = true

Otherwise, if the static information is inconclusive, we need to perform the test at runtime.

The implementation of the runtime test depends on the type T :

• If the type is a class type that has no subclasses we can turn the test into the check that

RTTI of the value v is exactly the RTTI of the given class:

38

4.3. Lowering High-Level Operations
rtti lengtharray class layout

array ref

v0 . . . vlength−1

Figure 4.4 – Array Memory Layout.

�l = isinstanceof[n] v�i s if i sC l ass(n) ∧ |i dRang e(T)| = 1 =
lr t t i = load[ptr] v

l = ieq [ptr] lr t t i , n

• Otherwise, if the type is a class that has multiple subclasses, we take advantage of the

nested nature of the class IDs and perform a numeric range test based on it:

�l = isinstanceof[n] v�i s if i sC l ass(n) ∧ |i dRang e(T)| > 1 =
lr t t i = load[ptr] v

lt y pei d = load[int] lr t t i

lg e = uge[int] int nvi d− f r om , lt y pei d

lle = ule[int] lt y pei d , int nvi d−to

l = and[bool] lg e , lle

• Lastly, if the type T is a trait we use a statically precomputed boolean table indexed by a

combination of the trait ID and the runtime type ID to lookup the boolean value stored

in it:

�l = isinstanceof[n] v�i s if i sTr ai t (n) =
lr t t i = load[ptr] v

lt y pei d = load[int] lr t t i

lptr = element[Tt able] @"__cl ass_has_tr ai t", int 0, lt y pei d , int nvtr ai t−i d

l = load[bool] lptr

4.3.6 Array Operations

Java-style arrays store their elements linearly in memory together with their length (Figure

4.4). The length is fixed and may not change after the array allocation.

Access of the array length closely mirrors the regular field access we have seen earlier:

�l = arraylength v�lower =
guardnotnull v

lptr = element[Tl ayout] v, int 0, int nvi ndex

l = load[int] lptr

39

Chapter 4. Baseline Compilation

Access of the array elements, on the other hand, needs to additionally ensure that the array

index is in fact in bounds with respect to the array length:

�l = arrayload v1, v2�lower =
�llen = arraylength v1�l ower

guardinbounds v2, llen

lptr = element[Tl ayout] v1, int 0, int nvi ndex , v2

l = load[Tel em] lptr

�l = arraystore v1, v2, v3�l ower =
�llen = arraylength v1�lower

guardinbounds v2, llen

lptr = element[Tl ayout] v1, int 0, int nvi ndex , v2

l = store[Tel em] lptr , v3

While this may incur seemingly redundant access to the array length on every element access,

we can take advantage of the fact that array length never changes. A simple pass of redundancy

elimination will remove all redundant memory accesses [57].

4.3.7 Primitive Operations

NIR does not rely on undefined behavior for arithmetic error conditions such as division by

zero. Instead, we throw exceptions similar to the reference implementation. To support this

semantics, we need to inject additional handling code in the following cases:

• The unsigned division needs to guard against the cast of a zero divisor:

�l = opbi n[T] v1, v2�lower if opbi n ∈ { urem, udiv } =
guardnotzero v2

l = opbi n[T] v1, v2

• Signed division not only needs to check for division by 0 but also needs to take into an

account the possibility of signed overflow that can occur when the smallest value of

given integer type is divided by -1:

�l = opbi n[T] v1, v2�lower if opbi n ∈ { srem, sdiv } =
guardnotzero v2

guardnodivoverflow v1, v2

l = opbi n[T] v1, v2

• The semantics of shifts is only defined if the number of bits is less than bits in the given

integer type. To account for that, we mask right-hand side by a mask bi t s −1.

40

4.3. Lowering High-Level Operations

�l = opbi n[T] v1, v2�lower if opbi n ∈ { shl, lshr, ashr } =
lmasked = and[T] v2, vbi t s−1

l = opbi n[T] v1, lmasked

• Lastly, the floating-point to integer conversions need to handle the case of potential

overflow when the resulting floating value does not fit in the range between minimum

and maximum values of the resulting type T :

�l = fptosi [T] v�lower =
guardfpinrange v, vTmi n , vTmax

l = fptosi [T] v

�l = fptoui [T] v�lower =
guardfpinrange v, vTmi n , vTmax

l = fptosi [T] v

4.3.8 Module Initialization

NIR modules correspond directly to Scala’s top-level object syntax. They provide an easy way

to define a type that has at most one instance at runtime. We store all of those instances in a

contiguous memory that is indexed by the unique ID of the module.

On first access modules needs to be allocated an initialized. Given that it happens only once

during the whole application runtime, we assume that modules are always initialized on the

fast path of the module access operation:

�l = moduleload n�lower =
guardinitialized n

lptr = element[ptr] @"__modul es", int nvi ndex

l = load[ptr] lptr

Whenever the condition is false, and a module instance at a given offset is, in fact, null, we go

on a slow path that performs the initialization.

4.3.9 Local Variables

Local variables provide a constrained version of general-purpose stack allocation. In the

baseline compilation, they map directly to stack allocation, and direct memory accesses to the

stack-allocated memory:

41

Chapter 4. Baseline Compilation

�l = var[T]�lower =
stackalloc[T] int 1

�l = varload v�lower =
load[Tvar] v

�l = varstore v1, v2�lower =
store[Tvar] v1, v2

As we are going to see later, local variables are always optimized away due to the fact that they

may never escape.

4.3.10 Guards

Guard is a flexible abstraction for error handling that gets compiled as an inline check that

fallbacks to a common slow path at the end of the method.

The error conditions that are verified by guards are assumed never to fail, but we still need to

keep the slow path handling of the code. Let us have a look at the result of the lowering of two

subsequent field accesses:

guardnotnull v1

lptr 1 = element[Tl ayout] v1, int 0, int 1

l = load[T f i eld] lptr 1

guardnotnull v2

lptr 2 = element[Tl ayout] v2, int 0, int 2

l = load[T f i eld] lptr 2

The naive representation of the guard would generate a full-blown branch that has handles

two possible cases for each of the accesses:

42

4.3. Lowering High-Level Operations

lnotnul l1 = ine [ptr] v1, null
if lnotnul l1 then lconti nue1 else l f ai l1

l f ai l1 :

call[...] @"r unti me_thr ow_null _der e f "()

unreachable
lconti nue1 :

lptr 1 = element[Tl ayout] v, int 0, int 1

l = load[T f i eld] lptr 1

lnotnul l2 = ine [ptr] v2, null
if lnotnul l2 then lconti nue2 else l f ai l2

l f ai l2 :

call[...] @"r unti me_thr ow_null _der e f "()

unreachable
lconti nue2 :

lptr 2 = element[Tl ayout] v, int 0, int 2

l = store[T f i eld] lptr 2, v2

Instead, guards reuse the same slow path across all guard uses that is generated at the end of

the method after all of the preexisting code:

lnotnul l1 = ine [ptr] v1, null
if lnotnul l1 then lconti nue1 else lcommon− f ai l

lconti nue1 :

lptr 1 = element[Tl ayout] v, int 0, int 1

l = load[T f i eld] lptr 1

lnotnul l2 = ine [ptr] v2, null
if lnotnul l2 then lconti nue2 else lcommon− f ai l

lconti nue2 :

lptr 2 = element[Tl ayout] v, int 0, int 2

l = store[T f i eld] lptr 2, v2

...

lcommon− f ai l :

call[...] @"r unti me_thr ow_null _der e f "()

unreachable

This code gets compiled into compact machine code with side-exiting branches that are never

taken. Moreover, the fact that the slow path code is at the end of the method minimizes the

risk of it being mistakingly loaded in cache memory instead of the actual application code. So

effectively, we perform an ad-hoc code positioning [67] based on the expectation that error

cases are unlikely to happen.

43

Chapter 4. Baseline Compilation

4.4 Runtime Support for Garbage Collection

4.4.1 Design Constraints

Scala Native is built upon the LLVM compilation toolchain and inherits some of its underlying

limitations. In particular, LLVM has no built-in garbage collector but only provides multiple

types of extension points to integrate the compiler with an existing collector.

As one possibility, we could have used those intrinsics to build a precise garbage collector.

Based on the initial investigation we have observed that the garbage collector interface is

immature and is not equally supported on all platforms. For example, as of this writing,

only x86_64 architecture is fully supported by the statepoint intrinsics [4]. While there is

nothing fundamental in those restrictions, the perceived cost of adopting those intrinsics was

considered to be high.

Instead of building upon those intrinsics, we have decided to limit ourselves to the conservative

garbage collectors [18, 26, 75]. A conservative collector is able to reclaim memory without

having the exact information about all of the memory locations. Such collectors treat values

as ambiguous references and conservatively classify them as a potential heap reference if they

are within the valid memory range.

As a positive benefit of the conservative root scanning, we can freely share Scala objects

between the runtime implemented in both C and Scala without having to have an additional

indirection such as object handles.

As a downside to this decision, the GC is not allowed to move objects referenced from the

stack. While this may limit our design space, this did not turn out to be a significant obstacle

to getting good runtime performance on our case study projects (Chapter 7).

Scala Native supports four distinct memory management strategies that all satisfy the conser-

vative root scanning restriction: No GC, Boehm GC, Immix GC, and Commix GC.

4.4.2 No GC

The simplest form of memory management that satisfies all of our design constraints is a toy

garbage collector that never reclaims any memory.

The allocator of this GC bump allocates across a large (4G) preallocated memory area. When-

ever the area is exhausted, it tries to claim another one from the operating system. The

allocator fails as soon as it can not claim any more memory.

While this collector is not practical for most applications, it offers the benefit of being a good

baseline to benchmark against. It effectively incurs close no runtime overhead as it never has

to reclaim any memory. Moreover, it uses the best-known allocation strategy that offers the

best mutator performance.

44

4.4. Runtime Support for Garbage Collection

large heapsmall heap
block seggregated free list

metadata

line

start

limit

size0 size0 size0 . . .

object

Figure 4.5 – Scala Native’s Immix Heap Layout

4.4.3 Boehm GC

The collector by Boehm and Weiser [26] is the most widely used conservative garbage collector.

It offers a simple garbage collector interface that can also be used as a leak detector for manual

memory managed code.

At its core, Boehm GC is a mark-and-sweep garbage collector. It provides support for incre-

mental and generational garbage collection. Our integration with Boehm relies on the fully

conservative variant of the API.

4.4.4 Immix GC

Lukas Kellenberger [6] implemented a collector that closely follows the design of the original

work by Blackburn and McKinley [24]. As suggested by Shahriyar et al. [75], Immix is an

excellent foundation for conservative garbage collectors.

Our implementation features:

• Small and Large Heap. Heap is structured into two separate areas for small and large

allocations. Small heap uses Immix algorithm, while the large heap uses mark-and-

sweep with segregated free lists to support allocations that do not fit in a single block.

• Block-Based Heap Structure. The small heap is structured as a sequence of blocks

(32K) that are composed of lines (256B). Objects may span multiple lines but can not

span blocks. Each block starts with an object header that stores metadata information

about the block itself in addition to metadata information for each of the lines within it.

• Bump Allocation. Allocator performs bump allocation to allocate within a contiguous

sequence of free lines. Medium-size objects are backed by an additional overflow

allocator that allocates purely in completely free blocks. The split between the two

allocators allows one to reduce the risk of space being wasted due to interleaving of

medium and small allocations.

45

Chapter 4. Baseline Compilation

metadata spaceheap
block

line

block free list
size0

size1
. . .

concurrent sweep cursor

start

limit

line metadata

object metadata

block metadata

Figure 4.6 – Commix Heap Layout

• Single-Threaded Stop-The-World Collection. The implementation reclaims memory

through a single-threaded stop-the-world collection that happens on the mutator thread.

It consists of marking and sweeping phases and may reclaim free lines and blocks. Given

that allocation happens on the per-line boundary, we do not reclaim memory on a

finer-grain level than a single line.

• Non-Moving Collection. Unlike the original Immix design [24] and the conservative

variation of it [75], our implementation is completely non-moving. Object’s location in

memory is fixed at allocation time and may not change until it has been reclaimed.

4.4.5 Commix GC

Valdis Adamsons [3] refined our original Immix implementation with support for parallel

and partially concurrent garbage collection. Besides, the implementation got rid off the split

between large and small heaps and changed the layout of the GC metadata.

The implementation builds upon the existing implementation with the following improve-

ments:

• Unified Heap. Rather than relying on separate small and large heaps, we unify it to

contain both small and large objects. Blocks are managed using segregated free lists

and can be claimed both for small object allocation and large allocation that can span

multiple blocks.

• Seggregated Metadata. The metadata is stored in a separate space that contains ad-

ditional information about blocks, lines, and objects. This ensures that the heap is

dedicated purely to the application memory. The change was originally motivated as

part of the implementation to support the unified heap, but we later found out that it

also improved runtime performance on our case study workloads.

• Parellel Stop-The-World Marking. Commix performs stop-the-world parallel marking

that scales up to 8 hardware threads. It uses gray packets [16, 63] as the means to

46

4.4. Runtime Support for Garbage Collection

schedule the marking across multiple threads.

Each thread takes a fixed-size packet that contains a sequence of objects to be visited

and may produce one or more packets as a result. The marking phase terminates when

there are no more packets left to process.

Due to the fact that work per object is not equal, we may split packets to avoid skewed

workloads. Arrays of objects are the typical example of a single work item that may

contain an amount of work that is not comparable to a single small object.

Work scheduler automatically spins the threads up based on the current number of

available gray packets. Due to the breadth-first nature of the marking implementation,

we may start with a few packets that grow as more of the heap is visited. The number of

threads will grow to accommodate the gradually increasing amount of work.

• Parallel Concurrent Sweeping. The sweeping phase visits the heap in linear order.

Naturally, the amount of work scales linearly with the increase in the heap size. Commix

removes the heap size as the factor for the garbage collection pause time by performing

sweeping concurrently with the application.

The heap is swept by multiple worker threads that traverse batches of blocks and reclaim

the processed blocks back to the block free list. Special care needs to be taken for free

blocks on the batch boundary due to the fact that we need to reclaim all contiguous

areas together as a single memory area. Before reclaiming such blocks, we need to

coalesce all contiguous memory areas. This work is always done on the first GC thread.

Whenever marking is finished the control on the mutator thread will return back to the

application code. To prevent the case when the mutator outpaces the sweeping progress,

we reserve a small number of free blocks. In case the reserve is not enough, the mutator

thread will take a single sweeping batch to cooperate on advancing the sweep progress

and retry allocation afterward.

Due to the fact that both sweeping threads and mutator can concurrently update the

free block list, we must make sure that all of the updates a correctly synchronized.

• Improved Allocation Hot Path. As one of the refinements of the original implementa-

tion, we improved the allocation hot path to be fully inlined into the application code

(See 4.4.6). In addition, we also take advantage of prefetching hints to make sure that

memory that follows after the current bump allocation cursor is going to keep being in

the cache.

As a result of these changes, Commix improves upon both mutator performance and garbage

collection pause times.

47

Chapter 4. Baseline Compilation

4.4.6 Optimizing Across Runtime Boundary

The performance of the allocation hot path is crucial to provide mutator performance that is

competitive with state of the art garbage collectors. Modern JIT compilers specialize the bump

allocation hot path by injecting hand-tuned GC allocation fast path at each allocation site.

Rather than duplicating the GC implementation logic in our baseline compiler, instead we

opt-in for the use of LLVM’s Link Time Optimization (LTO) to optimize across the boundary

between the GC implementation and the application.

This allows compiling allocations as calls into runtime the implementation without any loss of

performance compared to a hand-tuned version. We annotate the hot path of the GC code

using alwaysinline attribute to ensure it is always inlined for all callers.

4.5 Related Work

Optimization of the virtual function dispatch in the context of object-oriented languages

has been studied in depth [13, 33, 37, 38]. We rely on Class Hierarchy Analysis to perform

devirtualization decisions. Methods that could not be devirtualized are compiled as either

virtual function tables and row displacement tables.

Scala.js [35] is an ahead-of-time compiler for Scala that emits statically JavaScripts programs

optimized under the closed-world assumption. Our reachability analysis algorithm is closely

related to their work. Unlike the Scala.js toolchain, we only support the non-incremental

batch compilation of the whole program.

Immix [24] is the original foundation for both of our garbage collector implementations.

Similarly to [75], we extend the original algorithm to add support for ambiguous root tracking.

The main difference to the prior work is that our garbage collector implementations are

non-moving.

4.6 Conclusion

In this chapter, we have walked through the baseline compilation model that relies on a

whole-program analysis for devirtualization.

In the next chapter, we are going to illustrate how we can improve upon through an addition

of a flow-sensitive optimization pass that happens in-between whole-program analysis and

lowering phases.

48

5 Interflow: Flow-sensitive Optimiza-
tion

In the previous chapter, we have walked through the baseline compilation model that takes

advantage of the class hierarchy analysis to transform programs with high-level instructions

into their lower-level counterparts.

While the baseline compilation model already takes advantage of the whole-program knowl-

edge, this knowledge is coarse-grained and spans the invariants across the whole program.

For example, a single method override can make all calls with the same method signature to

be dispatched dynamically through tables at runtime rather than statically.

Instead of relying purely on the whole-program invariants, in this chapter, we explore a design

for an aggressive flow-sensitive optimizer.

5.1 Introduction

As a motivating example, let’s have a look at Scala’s collection library. It relies heavily on virtual

dispatch to support a single implementation of combinator methods across a wide variety of

concrete collections. A typical example is the map method defined in the TraversableLike
trait (Figure 5.1).

Apart from the natural polymorphism on the element type, this method is simultaneously

polymorphic in:

1. The collection type of this. The same method implementation is used for most descen-

dants of this trait (e.g., wrapped arrays, vectors, maps, sets). Based on the collection

type, foreach dispatches with a new closure that wraps f and appends its result to the

collection builder b.

2. In the operation f that is being applied to every element of the collection. Scala’s closures

are compiled as anonymous classes that extend FunctionN trait (where N is from 0 to

22 depending on the number of parameters) trait that has an apply method that’s used

49

Chapter 5. Interflow: Flow-sensitive Optimization

1 def map[B, That](f: A => B)(implicit bf: CanBuildFrom[Repr, B, That]): That = {
2 def builder = {
3 val b = bf.apply(repr) // virtual call to apply
4 b.sizeHint(this) // virtual call to sizeHint
5 b
6 }
7 val b = builder
8 this.foreach { // virtual call to foreach
9 x => // virtual call to closure’s apply

10 b.+=(f.apply(x)) // 2 virtual calls per iteration: += and apply
11 }
12 b.result // virtual call to result
13 }

Figure 5.1 – Definition of the map method in Scala collections.

to invoke a closure.

3. In the builder for the resulting collection through the bf argument. This parameter

is implicit and is typically inferred by the compiler [62]. Nevertheless, users may still

provide a custom instance of CanBuildFrom to produce a different collection type as

the result of the map combinator.

The whole program analysis we presented previously would not be able to optimize any of

those virtual calls away by itself due to the fact that even the smallest program relies on

more than one collection type and a large number of closures. As a consequence, all of the

operations listed above will have to pay the price of performing dynamic dispatch at runtime.

Moreover, we will not be able to optimize across the method boundary due to the fact that

dynamic dispatch is an optimization barrier from an inlining point of view.

The reference implementation of Scala programming language is compiled to the JVM byte-

code that runs in a virtual machine that takes advantage of just-in-time compilation. Prokopec

et al. [69] studied techniques that a state-of-the-art JIT compiler such as GraalVM is going to

use to optimize this method:

1. Use Class Hierarchy Analysis [33] to check if methods such as foreach and closure’s

apply are never overridden. For our running example, this check would inevitably fail as

foreach is overridden for every collection (dozens of methods) and apply is overridden

for every closure (hundreds of methods).

2. Collect type profile on all of the three sources of polymorphism: this, f and bf local

variables in this method.

3. If a type profile shows a few dominant types, the compiler will speculatively optimize

this method assuming it is only used for dominant types. In that case, all of the virtual

50

5.2. Intuition

calls are going to be turned into static calls behind a guard that verifies that optimization

assumptions are correct (i.e., the method is used only for the types that it was compiled

for).

4. Otherwise, calls will be considered megamorphic, and all of the calls are going to be

compiled as virtual calls based on table lookups. In this case, the optimizer cannot

inline them, and the compiled code is going to incur a performance penalty.

In case of a megamorphic type profile, these techniques cannot optimize a given method

in isolation. Megamorphic virtual calls are optimization barriers that prevent optimizations

across the call boundary.

Inlining the whole map method and all of its transitive dependencies is the last resort to

optimize such combinators. However, inlining is based on heuristics, so it is not guaranteed to

succeed (for example if the caller is already big and does not have enough size budget to fit

the result of the inlining).

In summary: the problem of optimizing away multiple nested layers of virtual dispatch has not

been fully addressed. While there exist techniques that can be used towards that end, they rely

on heuristics that might fail unpredictably leaving the program with the cost of unoptimized

dynamic dispatch.

5.2 Intuition

We designed Interflow with the primary goal of static devirtualization in mind. Specifically, we

are interested in having collection combinators (such as map) in the Scala standard library not

to pay the cost of the megamorphic virtual dispatch.

At its core, Interflow is a single pass optimizer that fuses a number of techniques in a single

graph-free free traversal over the whole program [56]. The traversal aims to partially evaluate

all of the parts of the program that are known statically and additionally infer and propagate

precise type information across the code that could not be partially evaluated away.

The fundamental idea behind Interflow’s approach to devirtualization is method duplication

guided by whole-program flow-sensitive type propagation. Rather than attempting to create

a single optimized version of a collection combinator such a map, Interflow duplicates it per

context. For example, consider multiple calls to map with multiple different closures:

1 val arr = Array(1, 2, 3)
2 arr.map(_ + 1)
3

4 val vec = Vector(1, 2, 3)
5 vec.map(_ * 2)

51

Chapter 5. Interflow: Flow-sensitive Optimization

With Interflow, these two calls will be transformed to use duplicates of map that are special-

ized for a combination of the exact collection type, the exact anonymous class used to map

elements and exact builder for the resulting collection:

1 val arr = Array(1, 2, 3)
2 arr.‘map<WrappedArray.ofInt, AnonFun1, ArrayCBF>‘(_ + 1)
3

4 val vec = Vector(1, 2, 3)
5 vec.‘map<Vector, AnonFun2, VectorCBF>‘(_ * 2)

The duplicate versions of map will have more precise parameter types than the ones provided

in the original version. The process will start over within each duplicate, and the virtual calls to

foreach, += and apply are going to be statically routed to the corresponding implementations

guided by precise types of the arguments.

The resulting code will be completely free of virtual calls on the hot path. In turn, a combina-

tion of inlining, constant propagation, and allocation sinking is going to optimize it further

by removing intermediate closure and box allocations and avoiding allocation of the builder

altogether.

It is important to highlight that the success of devirtualization here does not depend on the

inlining of the calls to map. If map is not inlined, Interflow will have to allocate the outer closure,

but all of the dispatch within the map is still going to be static thanks to the propagation of the

caller context information to the duplicate of the implementation.

5.3 Operations

As we have illustrated in the NIR language definition, we can think of the language as having

three primary levels: static assignments, basic blocks with control-flow between them, and

lastly method definitions. We are going to define our optimization on each of those levels

separately and build up towards whole-program optimization one level at a time.

While all of the individual optimizations are well-known and have been previously studied in

isolation, our focus is to produce a single fused optimization pass that combines all of them

together. As we are going to explore in Section 5.5 this enables context-sensitive inlining that

considers the state of other optimizations (such as allocation sinking and code motion) as one

of the key inlining incentives.

We start with a simple subset of NIR that only contains a sequence of static assignments l = op.

Sequences of static assignments are the core of every basic block, and they may not contain

any control-flow apart from an early termination due to exceptional conditions. Later, in

Section 5.4, we are going to extend this framework to support optimization across multiple

basic blocks within a single method.

52

5.3. Operations

5.3.1 Intuition

The initial inspiration for the operation optimization rules comes from the evaluation seman-

tics for the operations in NIR that can be formulated as a small step evaluation semantics:

l = op | σ−→eval l = v | σ′

Evaluation goes through the static assignments in order and tries to evaluate them one at a

time. The final result of each side effect (be it an assignment or heap modification) is reified in

the state σ.

Given that we are looking at evaluation from an optimizer point of view, we are only interested

in the evaluation of exception-free operation reductions. If we can not prove the absence of

the exceptional condition, the instruction must remain in the generated code to preserve side-

effects. From this point of view we accept that evaluation rules might get stuck without making

progress; this means that the operation is emitted at runtime and could not be optimized

away.

If no evaluation rule applies (e.g., we could not prove the absence of error conditions) then

the result of an evaluation of an operation is an opaque named reference l : T , where T is

the result type of the operation. Opaque named references can also appear as basic block

parameters, and we assume nothing is known about them apart from their declared type.

From the evaluation semantics point of view, the state σ can be seen as a pair (φ,µ):

1. φ= l 7→ v – models the result values for all locals we’ve observed so far.

2. µ = k 7→ (T, v) – models the state of the heap as a mapping from unique key k to the

allocation state that persists runtime type T and state of all fields v .

Our optimization rules are going to be formulated in a manner similar to evaluation rules that

take an operation l = op, and a state σ as inputs and either produce a transformed operation

or have it evaluated statically to a value v . Additionally, we also produce an updated state σ′

that reflect any of the changes made to the state.

We are going to reuse φ and µ to model what is known about locals and the heap statically.

Some of the optimizations might require additional information in σ (e.g. ρ introduced in

Section 5.3.8) or refine the structure of the existing components such as µ (e.g. Sections 5.3.3,

5.3.6).

5.3.2 Constant Propagation

Our optimization rules are going to rely on the evaluation semantics directly. The most

straightforward application of evaluation semantics is constant propagation.

53

Chapter 5. Interflow: Flow-sensitive Optimization

Given a primitive operation that takes purely constant arguments, we can evaluate it and

replace the operation with a constant value that corresponds to its result. Moreover, we would

like to propagate the computed results throughout the rest of the program, which in turn can

enable further operations to be evaluated statically.

As we have noted before, not all operations are safe to evaluate statically due to exceptional

conditions. Therefore we are interested in sparsely propagating constants throughout the

parts which can be optimized away and leave the rest unchanged.

We represent constant propagation as an evaluation relation −→const :

v ∈ op i sConst (v) i sPr i m(op) i sPur e(op) op | σ−→eval v | σ′

l = op | σ−→const l = v | σ′ (CP-IS-CONST)

v ∈ op ¬i sConst (v)∨¬i sPr i m(op)∨¬i sPur e(op) v | σ−→v v ′

l = op | σ−→const l = [v 7→ v ′]op | σ
(CP-NON-CONST)

Constant propagation directly invokes the evaluation semantics on all pure primitive oper-

ations in our program. The results of evaluated operations is stored in φ as part of the σ

state.

If the operation can not be evaluated, we evaluate all of its nested values and replace them

with their corresponding results from φ:

l = v ′ ∈φ
l | σ−→v v ′ (CV-LOCAL)

v | σ−→v v ′

{v} | σ−→v {v ′}
(CV-STRUCT)

v | σ−→v v ′

[v] | σ−→v [v ′]
(CV-ARRAY)

¬i s Ar r ay(v)

¬i sStr uct (v)

¬i sLocal (v)

v | σ−→v v
(CV-OTHER)

5.3.3 Allocation Sinking

Evaluation of primitive operations oppr i m with constant inputs is trivial because they operate

based on primitive numeric values. Evaluation of higher-level object-oriented operations

ophl is more difficult because it operates on objects that have an identity that can be observed

at runtime.

A critical insight that enables us to optimize those operations away safely is the fact that

object allocations do not always escape. If an allocation is done locally and used immediately

afterward in a way that does not leak its reference to any location outside of the compile-

time heap, it can be evaluated away just like any other operation without loss of observable

language semantics.

54

5.3. Operations

Instead of focusing on the analysis and detection of non-escaping allocations, we provide an

evaluation semantics that aims to sink the allocations as far down as possible.

We redefine µ to store compile-time heap information about allocations and their current

allocation state (virtual or escaped):

µ ::= compile-time heap

; empty heap

k 7→ virtual (T, v),µ virtual allocation

k 7→ escaped l : T,µ escaped allocation

k 7→ var v,µ var allocation

Entries in µ are identified by their key k that serves as a compile-time object identity. Unlike

the direct evaluation semantics −→eval allocations may also escape, which makes them not

eligible for compile-time evaluation.

Virtual entries in µ closely mirror heap state in the direct evaluation semantics. They store an

exact type T that models an equivalent of runtime type information and the current state of

all fields v . Fields may refer to other virtual allocations by their key.

Initially, all allocations start as virtual heap allocations:

k 6∈µ T f = f i eldT y pes(n)

(φ,µ) =σ µ′ = k 7→ virtual (n, zero[T f]),µ σ′ = (φ,µ′)

l = classalloc n | σ−→si nk l = k | σ′ (SINK-CLASS-ALLOC)

k 6∈µ (φ,µ) =σ σ′ = (φ,µ′)
µ′ = k 7→ virtual (array[T], (int nv, zero[T])),µ

l = arrayalloc[T] int nv | σ−→si nk l = k | σ′ (SINK-ARRAY-ALLOC)

Keys k that can only be stored in the compile-time state σ. Whenever a compile-time key

is used in the operation op that could not be eliminated, we must materialize its allocation

right before the use since compile-time identity can not leak into runtime context. We model

materialization as one of the last layer evaluation semantics layers −→mater i al i ze that happens

after all other evaluation relations failed to eliminate the operation away (Section 5.3.9).

As long as the allocation did not escape, we can perform all of the operations directly on the

compile-time heap state µ similarly to the direct evaluation semantics:

v | σ−→v k k 7→ virtual (Tk , v) ∈µ vs ∈ v

l = fieldload v, s | σ−→si nk l = vs | σ
(SINK-FIELD-LOAD)

55

Chapter 5. Interflow: Flow-sensitive Optimization

v1 | σ−→v k v2 | σ−→v v ′
2

k 7→ virtual (n, v) ∈µ vs ∈ v

(φ,µ) =σ µ′ = k 7→ virtual (Tk , [vs 7→ v ′
2]v),µ σ′ = (φ,µ′)

l = fieldstore v1, s, v2 | σ−→si nk l = unit | σ′ (SINK-FIELD-STORE)

v | σ−→v k k 7→ virtual (Tk , v) ∈µ ns = r esol ve(Tk , s)

l = resolvemethod v, s | σ−→si nk l = ns | σ
(SINK-RESOLVE-METHOD)

v | σ−→p k k 7→ virtual (Tk , v) ∈µ v0 = i sSub(Tk ,T)

l = isinstanceof[T] v | σ−→si nk l = v0| σ
(SINK-IS-INSTANCE-OF)

v | σ−→v k k 7→ virtual (Tk , v) ∈µ i sSub(Tk ,T) = true

l = asinstanceof[T] v | σ−→si nk l = k | σ
(SINK-AS-INSTANCE-OF)

v | σ−→v k k 7→ virtual (array[T], (int nv, v)) ∈µ
l = arraylength v | σ−→si nk l = int nv | σ

(SINK-ARRAY-LENGTH)

v1 | σ−→v k v2 | σ−→v int nv1

k 7→ virtual (array[T], (int nv2, v)) ∈µ
0 ≤ nv1 < nv2 vnv1 ∈ v

l = arrayload v1, v2| σ−→si nk l = vnv1 | σ
(SINK-ARRAY-LOAD)

v1 | σ−→v k v2 | σ−→v int nv1 v3 | σ−→v v ′
3

k 7→ virtual (array[T], (int nv2, v)) ∈µ
0 ≤ nv1 < nv2 vnv1 ∈ v

(φ,µ) =σ µ′ = k 7→ virtual (n, [vnv1 7→ v ′
3]v),µ σ′ = (φ,µ′)

l = arraystore v1, v2, v3| σ−→si nk l = unit | σ′ (SINK-ARRAY-STORE)

Additionally, we also treat var operations a way similar to the object allocations by storing

their state in the compile-heap. Due to their second-class nature, they may never escape by

construction so all operations on them will always be optimized away:

k 6∈µ (φ,µ) =σ µ′ = k 7→ var zero[T],µ σ′ = (φ,µ′)

l = var [T] | σ−→si nk l = k | σ′ (SINK-VAR)

v1 | σ−→v k (φ,µ) =σ k 7→ var v2 ∈µ
l = varload v1 | σ−→si nk l = v2 | σ′ (SINK-VAR-LOAD)

v1 | σ−→v k v2 | σ−→v v ′
2

(φ,µ) =σ µ′ = k 7→ var v ′
2,µσ′ = (φ,µ′)

l = varstore v1, v2 | σ−→si nk l = unit | σ′ (SINK-VAR-STORE)

56

5.3. Operations

Lastly, if none of the rules above apply, we delegate the evaluation to the constant propagation:

l = op | σ−→const l = op ′ | σ′

l = op | σ−→si nk l = op ′ | σ′ (SINK-NON-VIRTUAL)

It is important to highlight that allocation sinking is still an optimization even for escaping

allocations. For example, fields loads and stores can be performed on the µ state directly,

and the memory access operations are elided away. Type-based operations such as method

dispatch, casts, or instance checks can also be resolved statically as well. So overall, the more

operations we sink a given allocation through, the higher the potential benefit even if the

allocation escapes in the end.

Another important insight, is that combination of allocation sinking and constant propagation

is sufficient to entirely partially evaluate any closed-form programs that consists of oppr i m

and ophl which are the two predominant classes of operations in Scala programs apart from

function calls which we are going to cover separately (Section 5.4)

We are going to illustrate how virtual objects are materialized in Section 5.3.9.

5.3.4 Type-based Evaluation

The evaluation rules we have defined so far let us evaluate the high-level operations ophl

statically, but they only apply if the allocation remains virtual in µ. Whenever it escapes, we

are only left with an opaque type reference l : T . Despite the much more limited information,

we can still make progress on some of the operations that rely on the type of the value T .

To avoid the loss of information about the escaping allocation type, we extend the base erased

type system with reference type qualifiers: exact and nonnull . Exact references are used

to distinguish class references that may only point to the given class but not to any of the

subclasses. Non-null references guarantee that the reference is dereferenceable. Qualifiers

are not present in the unoptimized intermediate representation and may only appear as a

result of type propagation in Interflow. We rely on type qualifiers to aid partial evaluation in

the removal of instance checks and virtual calls.

T ::= types:

...

Tqual−r e f qualified reference type

Tqual−r e f ::= qualified reference types:

exact Tr e f exact reference type

nonnull Tr e f nonnull reference type

exact nonnull Tr e f exact nonnull reference type

57

Chapter 5. Interflow: Flow-sensitive Optimization

Escaping allocations start with both qualifiers as part of their escaped opaque type reference.

We take advantage of it to evaluate method dispatch and instance checks away:

v | σ−→v v ′ Tv = t y peo f (v ′)
i sE xactRe f (Tv) i sNonNull Re f (Tv)

ns = r esol ve(T, s)

l = resolvemethod v, s | σ−→t y l = ns | σ
(TY-RESOLVE-METHOD)

v | σ−→v v ′ Tv = t y peo f (v ′)
i sE xactRe f (Tv) i sNonNull Re f (Tv)

v ′′ = i sSub(Tv ,T)

l = isinstanceofv, s | σ−→t y l = v ′′ | σ
(TY-IS-INSTANCE-OF-1)

As the last resort we can also use the results of the whole-program analysis to evaluate opera-

tions on non-exact references:

v | σ−→v v ′ Tv = t y peo f (v ′) i sNonNull Re f (Tv)

n = t ar g et s(T, s) |n| = 1

l = resolvemethod v, s | σ−→t y l = n0 | σ
(TY-RESOLVE-METHOD-CHA)

Evaluation of instance checks on non-exact references is slightly more involved because of the

special treatment of null value (which is not an instance of any reference type). In case we

could not statically ensure that value was not null, we have to emit a runtime null check:

v | σ−→v v ′ Tv = t y peo f (v ′)
¬i sE xactRe f (Tv) i sNonNull Re f (Tv)

true= i sSub(Tv ,T)

l = isinstanceofv, s | σ−→t y l = true | σ
(TY-IS-INSTANCE-OF-2)

v | σ−→v v ′ Tv = t y peo f (v ′)
¬i sE xactRe f (Tv) ¬i sNonNull Re f (Tv)

true= i sSub(Tv ,T)

l = isinstanceofv, s | σ−→t y l = ine [T] v ′, null | σ
(TY-IS-INSTANCE-OF-3)

Casts don’t suffer from the same special-case semantics and allow null to be cast to any

reference type:

v | σ−→v v ′ Tv = t y peo f (v ′) true= i sSub(Tv ,T)

l = asinstanceofv, s | σ−→t y l = v ′ | σ
(TY-AS-INSTANCE-OF)

Lastly, if none of the rules applied, we delegate the handling to the underlying −→si nk evalua-

tion rules:

58

5.3. Operations

l = op | σ−→si nk l = op ′ | σ′

l = op | σ−→t y l = op ′ | σ′ (TY-OTHER)

5.3.5 Canonicalization

Primitive operations with at least one non-constant input can come in multiple shapes. For

the sake of normalization, we invert the arguments of commutative operations so that any of

the constant arguments are always on the right:

l = op | σ−→t y opbi n[T]v1, v2 | σ′ i sCommut (opbi n) i sConst (v1)

l = op | σ−→canon l = opbi n[T]v2, v1 | σ′
(CN-COMMUT-BIN)

l = op | σ−→t y l = opcomp [T]v1, v2 | σ′ i sCommut (opcomp) i sConst (v1)

l = op | σ−→canon l = opcomp [T]v2, v1 | σ′
(CN-COMMUT-COMP)

l = op | σ−→t y l = op ′ | σ′ ¬i sCommut (opcomp)

l = op | σ−→canon l = op ′ | σ′ (CN-NON-COMMUT)

This is necessary to simplify the handling of these instructions in the evaluation relations that

follow, such as redundancy elimination (Section 5.3.8).

5.3.6 Code Motion

Instructions l = op closely follow the order of operations in the original source program.

Results of the operations might never be used or may span a long sequence of instructions

between the use and the definition.

From the semantics point of view, all pure instructions can be reordered arbitrarily as long as

their definition precedes their use. Instructions whose result is never used do not have to be

computed, even if we cannot eliminate them through partial evaluation.

We take advantage of the ability to reorder instruction and perform code motion that delays

instructions as late as possible. This allows us to push down the instructions from the common

path into less-frequently-used branches and also perform dead-code elimination if the result

of a delayed instruction is never used.

We extend context µ with more additional typed entry that allows us to delay instruction

materialization:

µ ::= compile-time heap

...

k 7→ delayed op,µ delayed operation

59

Chapter 5. Interflow: Flow-sensitive Optimization

So instead of computing, we delay all pure instructions by default. Similarly to virtual alloca-

tions, they are going to be materialized whenever their result is used from another non-delayed

instruction or escaping allocation:

l = op | σ−→canon l = op ′ | σ′ i sPur e(op ′)
(φ,µ) =σ′ k 6∈µ µ′ = k 7→ delayed op ′,µ σ′′ = (φ,µ′)

l = op | σ−→move l = k | σ′′ (MOV-IS-PURE)

l = op | σ−→canon l = op ′ | σ′ ¬i sPur e(op ′)

l = op | σ−→move l = op ′ | σ′ (MOV-NON-PURE)

Delayed operations reuse the same sinking infrastructure as virtual allocations. Keys that

correspond to such operations may appear as the value of local values in φ, be the value of

any of the fields in virtual objects in µ and additionally allow one to express dependencies

between multiple delayed allocations without having to materialize them in the generated

code.

As another benefit of code motion expressed above, we also get the benefit of dead code

elimination for free. Any delayed instruction, whose result was never used will never be

materialized.

The fact that we store both virtual allocations and delayed operations in the same graph

allows us to avoid dead code that interleaves allocations and computations, which would

be hard to express otherwise. For example, storing the result of an operation to an object

field could make it both reachable from both classical liveness and escape analysis points of

views. By performing both at the same time, we get more opportunities than in case of those

optimizations performed separately.

5.3.7 Combination

Even if a primitive instruction can not be fully evaluated statically, we could still have an

opportunity to combine longer chains into smaller ones based on algebraic properties of the

underlying operations.

To combine instruction, we first require it to be lifted to the delayed graph representation as

part of code motion. Delayed instructions form local graph clusters of pure operations that

have not been emitted yet. We simplify delayed instructions and produce a modified graph

result using combi ne that relies on domain-specific algebraic invariants about the primitive

instructions:

l = opbi n[T] v1, v2 | σ−→move l = k | σ′

(φ,µ) =σ′ k 7→ delayed op ′ ∈µ
(op ′′,µ′) = combi ne(op ′,µ) σ′′ = (φ,µ′)

l = opbi n[T] v1, v2 | σ−→combi ne l = op ′′ | σ′′ (COMB-DELAYED)

60

5.3. Operations

l = opconv [T] v | σ−→move l = op ′ | σ′

l = opconv [T] v | σ−→combi ne l = op ′ | σ′ (COMB-OTHER)

5.3.8 Redundancy Elimination

Another opportunity for an elision of operations is redundancy. Any idempotent operation that

performed twice can reuse previous statically known result without performing the operation

twice.

We extend state σ to contain another component ρ = op 7→ v that maps previously computed

operations to their last results. Given the strong normalizing nature of all evaluation rules

we have defined so far, we can index the operation into this store to see if it was previously

computed:

l = op | σ−→combi ne l = op ′ | σ′ (φ,µ,ρ) =σ′ op ′ 7→ v ∈ ρ
l = op | σ−→r edund ant l = v | σ′ (RE-REUSE-REDUNDANT)

l = op | σ−→combi ne l = op ′ | σ′ i sI dempotent (op ′)
(φ′,µ′,ρ′) =σ′ op ′ 6∈ ρ′ ρ′′ = op ′ 7→ l ,ρ′ σ′′ = (φ′,µ′,ρ′′)

l = op | σ−→r edund ant l = op ′ | σ′′ (RE-PERSIST-IDEMPOTENT)

l = op | σ−→combi ne l = op ′ | σ′ ¬i sI dempotent (op)

l = op | σ−→r edund ant l = op ′ | σ′ (RE-NON-IDEMPOTENT)

5.3.9 Materialization

As we have seen before, our current evaluation rules might produce keys k as their resulting

value for the evaluated operations. Keys are used for delaying operations and allocate objects

and variables in compile-time heap µ.

For example, a static assignment l = op can be evaluated to l = k. Such assignments are

reflected purely in φ and never produce any code. On the other hand, if a key k appears as an

argument of an actual operation that needs to be performed at runtime, this poses a problem

because keys are used as indexes into the compile-time heap state µ and have no runtime

semantics.

To avoid the inconsistency, we materialize keys by emitting code. Materialization implies deep

traversal of all reachable non-escaping entries in µ starting from the given key k. As the result

of traversal, we obtain a subset of all reachable keys that form a potentially cyclic graph of

allocations and delayed operations.

We schedule the graph into a sequence of operations l = op starting from the leftmost ar-

gument of a delayed operation and the first field of a virtual allocation. Cycles of virtual

61

Chapter 5. Interflow: Flow-sensitive Optimization

allocations are allocated together before any other operations are emitted.

As the result of scheduling, we obtain new locals for all of the emitted operations and alloca-

tions l : T . We modify µ to replace all of those keys with escaped entries that point back to

their resulting values.

l = op | σ−→r edund ant l = op ′ | σ′

k ∈ op ′ (l = op
′′

,σ′′) = mater i al i ze(l = op ′,σ)

l = op | σ−→mater i al i ze l = op
′′ | σ′′ (MAT-OP-HAS-KEYS)

l = op | σ−→r edund ant l = op ′ | σ′ k ∈ op ′ k =;
l = op | σ−→mater i al i ze l = op ′ | σ′ (MAT-OP-NO-KEYS)

l = op | σ−→r edund ant l = v | σ′

(φ′,µ′,ρ′) =σ′ φ′′ = l 7→ v,φ′ σ′′ = (φ′′,µ′,ρ′)

l = op | σ−→mater i al i ze ;| σ′′ (MAT-JUST-VALUE)

5.3.10 Summary

As the result we’ve obtained a stack of evaluation relations(−→eval , −→const , −→si nk , −→t y ,

−→canon , −→move , −→combi ne , −→r edund ant , −→mater i al i ze). We finalize it with our resulting

operation optimizing evaluation −→op that transforms a sequence of instructions to their

optimized form by invoking materialization on each static assignment in the original program

order:

∀li = opi ∈ l = op :

li = opi | σi −→mater i al i ze l ′i = op ′
i | σ′

i

l = op | σ−→op l ′i = op ′
i | σ′

l ast

(OP-OPT)

We implement formal semantics of −→op presented here using a single-pass fused traversal

over the sequence of operation that modifies the state similar to an imperative-style interpreter

over σ state.

In the best case, after the −→op , the majority of the visited operations ends up being evaluated

in one of the earlier layers and never produces any runtime code. The effects of the code are

reflected purely in the resulting σ′ which gets propagated across the method control-flow as

we are going to illustrate in the next section.

5.4 Intramethod Control-Flow

As we have seen previously, the optimization of static assignments can be expressed as an

evaluation rule −→op . In this section, we are going to generalize this relation to the level of

62

5.4. Intramethod Control-Flow

intramethod control-flow between a sequence of basic blocks bb based on the framework of

flow-sensitive state σ.

5.4.1 Basic Blocks

Similarly to the handling of static assignments, we can use σ as the flow-dependent context

for basic block optimization −→bb :

bb | σ−→bb bb′ | σ′

A basic block is exposed to multiple incoming states σ that correspond to incoming control-

flow edges. As we are going to illustrate later, it is possible to merge those states into a single

initial state σst ar t .

This makes optimization of the whole basic block be a matter of optimization of static assign-

ments within it that are followed by the transformation of the terminator instruction:

lop = op | σst ar t −→op l ′par am = op ′ | σend

t | σend | σend −→t lt = opt , t ′ | σout

l (lpar am : T) : lop = op t | σst ar t −→bb l : l ′op = op ′ lt = opt t ′ | σout

Even though it seems counter-intuitive, we never preserve original basic block parameters by

default. Parameters can only appear as an artifact of the state merging that unifies disparate

facts about the flow information coming from multiple predecessors. If a block has a single

predecessor (which is the common cause due to aggressive partial evaluation), its parameters

are always known statically and may only reside in the state σ.

5.4.2 Terminators

Similarly to how we optimize operations, we can eliminate indirect branching using another

optimizing relation −→t over terminators:

t | σ−→t l = op, t ′ | σ′

Due to materialization, we might have to emit additional static assignments prior to the

terminator instruction. For example, the values within break out terminators tbr eak−out need

to be materialized as a result of the terminator evaluation:

v | σ−→v v ′

(v ′′, l = op,σ′) = mater i al i ze(v)

ret v | σ−→t l = op, ret v ′′ | ;
(OT-RET)

63

Chapter 5. Interflow: Flow-sensitive Optimization

v | σ−→v v ′

(v ′′, l = op,σ′) = mater i al i ze(v)

throw v | σ−→t l = op, throw v ′′ | ;
(OT-THROW)

unreachable | σ−→t ;, unreachable | ; (OT-UNREACHABLE)

Handling of jump terminators attempts to always simplify all forms of t j ump to its simplest

form of a direct unconditional jump. Direct jumps update the state to propagate the parameter

values but otherwise do not cause any materialization. This allows us to sink virtual allocations

and delayed operations across basic block boundary:

v | σ−→v v ′

(φ,µ,ρ) =σ φ′ = lpar am = v ′,φ σ′ = (φ′,µ,ρ)

jump l (v) | σ−→t ;, jump l | σ′ (OT-JUMP)

Handling of if and switch try to simplify them to the direct jump if possible. Otherwise,

we have to materialize the underlying value and keep uncertain indirect jump with multiple

destinations. Even if the condition or scrutinee of the switch is materialized, it still doesn’t

require materialization of the passed argument values:

v | σ−→v true
jump l1(v1) | σ−→t ;,jump l1 | σ′

if v then l1(v1) else l2(v2) | σ−→t ;,jump l1 | σ′ (OT-IF-TRUE)

v | σ−→v false
jump l2(v2) | σ−→t ;,jump l2 | σ′

if v then l1(v1) else l2(v2) | σ−→t ;,jump l2 | σ′ (OT-IF-FALSE)

v | σ−→v v ′

(v ′′, l = op,σ′) = mater i al i ze(v ′)
jump l1(v1) | σ′ −→t ;,jump l1 | σ1

jump l2(v2) | σ′ −→t ;,jump l2 | σ2

if v then l1(v1) else l2(v2) | σ−→t l = op, if v ′′ then l1 else l2 | {σ1,σ2}
(OT-IF-UNKNOWN)

v | σ−→v v ′ i sConst (v)

case v ′ ⇒ li (vi) ∈ case v0 ⇒ l1(v1)

jump li (vi) | σ′ −→t ;,jump li | σ′

switch v case v0 ⇒ l1(v1) default ⇒ l2(v2) | σ−→t ;, jump li | σ′ (OT-SWITCH-CASE)

64

5.4. Intramethod Control-Flow

v | σ−→v v ′ i sConst (v)

case v ′ ⇒ li (vi) 6∈ case v0 ⇒ l1(v1)

jump l2(v2) | σ′ −→t ;,jump l2 | σ′

switch v case v0 ⇒ l1(v1) default ⇒ l2(v2) | σ−→t ;, jump l2 | σ′
(OT-SWITCH-DEFAULT)

v | σ−→v v ′ ¬i sConst (v)

(v ′′, l = op,σ′) = mater i al i ze(v ′)
jump l1(v2) | σ′ −→t ;,jump l1 | σ1

jump l2(v2) | σ′ −→t ;,jump l2 | σ2

switch v case v0 ⇒ l1(v1) default ⇒ l2(v2) | σ−→t

l = op, switch v case v0 ⇒ l1 default ⇒ l2(v2) | {σ1,σ2}

(OT-SWITCH-UNKNOWN)

5.4.3 State Merging

Basic blocks can have multiple incoming edges with completely different incoming states σ

for each of the incoming control-flow edged. To unify potentially disparate flow information,

we define a state merging procedure.

Whenever multiple states are merged, we produce a single resulting state σ′ that contains

information that’s valid for on all of the potential incoming control-flow paths. Additionally,

we might also introduce a sequence of basic block parameters l : T to pass any information

that differs between states in σ. Original parameters are discarded but can be reintroduced

back with more precise type information if necessary.

By definition, state σ is a triple of (φ,µ,ρ). Merging of states can be seen as merging of each of

the components independently:

1. ρ represents information about previously computed operations results of which can be

reused to avoid redundancy. Whenever an entry in ρ is available on all of the incoming

paths ρ it can be retained in the merged state:

op 7→ v ∈ ρ iff ∀ρ′ ∈ ρ : op 7→ v ∈ ρ′

If an entry in ρ is the same for each incoming state, it implies that current state domi-

nates the original definition of op on all paths flowing into the current basic block.

We do not attempt to persist results with different values v given that operations in ρ are

idempotent and can be recomputed cheaply without loss of semantics. If that was not

the case, we could have alternatively introduced a new basic block parameter to retain

the result on each of the incoming edges (for example if recomputation of a particular

operation is known to more expensive than an additional basic block parameter).

65

Chapter 5. Interflow: Flow-sensitive Optimization

2. φ represents the current state of all accessible local variables l . Given the semantics of

name binding in NIR that we have discussed previously, only locals l that are available

on all incoming control-flow paths can be accessed:

l ∈φ iff ∀φ′ ∈φ : l ∈φ′

The values of the locals, on the other hand, can be completely different for each of the

incoming states φ, and unlike entries in ρ we have no easy way to recompute them on

demand. So instead, we introduce a new basic block parameter for each of the locals

that has two or more distinct values in either of incoming states:

l introduces a parameter iff si ze({v | l 7→ v ∈φ′,φ′ ∈φ}) ≥ 2

The type of each parameter is expressed as the least upper bound of all values on

all incoming paths. This way we can propagate reference type qualifiers across the

basic boundary without loss of information due to coarse basic block parameter type

annotations in the original program.

Extra care needs to be applied to locals that have key k values and require a new basic

block parameter. Those values can not be passed at runtime so we must materialize

them on the edge coming from the corresponding predecessor.

3. Compile-time heap storage µ works similarly to the handling of local values l . We start

by computing an intersection of keys k available in all of the incoming states:

k ∈ k iff ∀µ′ ∈µ : k ∈µ′

The resulting state behind any given key is defined as follows:

(a) If key k escaped in any of the predecessor states, it must be materialized in all the

others. The resulting object identity is passed as a new basic block parameter l : T

and the resulting key state is marked as escaped. The type T is the qualified type

of the escaping allocation that must be the same for all preceding states.

(b) If key k represents a variable state, it can never escape by construction, so we

merge the resulting values of var v on each incoming path similar to the values of

the locals (i.e., introduce a parameter if there are more then two distinct values).

(c) If key k is virtual in all predecessor states, we go through each of its fields and merge

them similarly to the handling of local values. The resulting state is a new virtual

state. In case when field values are identical on all paths, it remains unchanged

from the predecessor state.

(d) If a key k represents a delayed operation, it must be the same on all incoming

edges due to the fact that delayed operations always obtain a unique key and are

never modified after the initial insertion into µ. We retain operation as delayed in

the resulting merged state.

66

5.4. Intramethod Control-Flow

(e) If in the process of handling the resulting keys k we transitively reach a key that

does not belong to the set, it must be materialized on the corresponding edge.

The state-merging process might trigger the materialization of a key. Given that the process

itself relies on whether a given key escaped, we must repeat the merge process whenever a

new escaped key is discovered until the escaped key set stabilizes.

5.4.4 Block Processing

1: procedure PROCESSBLOCKS(bb,σi ni t i al)
2: queue ← {bb0 } . Priority queue of blocks to process.
3: i ncomi ng ← {bb0 7→ {σi ni t i al }} . Maping of incoming states indexed per predecessor.
4: st ar t ← {bb0 7→;} . Mapping of merged start states per basic block.
5: pr ocessed ←; . Mapping to processed blocks and their parameters.
6: while nonEmpt y(queue) do
7: bb ← popE ar l i est (queue)
8: queue ← queue \ bb
9: σ← i ncomi ng (bb)

10: (σmer g ed , l : T) ← mer g e(σ)
11: if st ar t (bb) 6=σmer g ed then
12: i nval i d ate(bb)
13: st ar t (bb) =σmer g ed

14: bb | σmer g ed −→bb bb′ | σout

15: pr ocessed(bb) = (l : T ,bb′)
16: i ncomi ng = upd ateOut g oi ng (i ncomi ng ,bb′,σout)
17: for bbsuccessor ∈ tbb′ do
18: queue = queue ∪bbsuccessor

19: end for
20: end if
21: end while
22: (bb

′
,σr esul t) = f i nal i zePr ocessi ng (pr ocessed , i ncomi ng)

23: return (bb
′
,σr esul t)

24: end procedure

Figure 5.2 – Block Processing Algorithm

Now that we have introduced −→bb , mater i al i ze and mer g e, we have enough building

blocks to handle a sequence of basic blocks bb that represents a method body.

We define an iterative process called block processing (Figure 5.3) that handles the state

management and block evaluation order.

The process starts with an initial state σi ni t i al and a non-empty sequence of basic blocks bb.

Initial state initializes all of the parameters of the entry basic block to an opaque value with

the corresponding type. Otherwise, the state is completely blank and contains no additional

67

Chapter 5. Interflow: Flow-sensitive Optimization

information.

Block processing visits one block at a time starting from the entry point bb0. Entry block is

visited in the initial state σi ni t i al and produces zero or more successors that are added to the

queue. For each of the successors, we also update the i ncomi ng map with the corresponding

states σout . The process repeats until no more blocks are left in the queue.

In the absence of backward edges, we visit each basic block exactly once. Our work queue

prioritizes blocks that appear earlier in the basic block sequence bb. This implies that every

time a block is visited, all of its predecessors have been already processed.

The situation gets a bit more challenging with the addition of backward edges. As we have

mentioned previously, well-formed NIR programs can only contain reducible control-flow.

This means that we can always partition the edges into forwards and backward sets.

As we have illustrated earlier processing of forwards edges is well behaved and requires no

special treatment. Backward edges introduce cycles that must affect the state in which a block

is transformed. The first traversal of the block is based purely on incoming forwards edges is

insufficient on its own, because it ignores the modified states coming from backward edges.

To address this problem, the process may revisit blocks every time an edge with the new

incoming state is discovered. We persist the initial starting state for each visited block in

st ar t . Whenever a discovery of a new backwards edge modifies the starting state, we rerun the

optimization of this block and invalidate all transitive successors blocks that were optimized

based on an outdated starting result.

Across the Scala Native’s standard library and a set of case study applications, we have observed

that most loop bodies are revisited just once. The largest number of invalidations we have seen

on our codebase is six invalidations for a method in the standard library that handles integer

to string conversion. That code contains multiple nested loops and complicated branching

that requires multiple invalidations for the block state to converge. Generally, such coding

style is uncommon in Scala which encourages the use of collection combinators instead of

explicit C-style loops.

More generally, we do not prove that our algorithm always terminates for all programs. As

a precaution, our implementation limits the number of times a single basic block can be

revisited to 256 times. In case this limit is reached, a given method is not going to be optimized

by Interflow.

5.5 Intermerthod Control-Flow

In the previous section, we have walked through whole-method optimization pass that is

guided by the block processing algorithm. All the optimizations that we have discussed

so far made judgments only within boundaries of a single method, and completely fail to

68

5.5. Intermerthod Control-Flow

handle method calls. To address this problem, we provide two approaches that increase the

optimization scope: inlining and method duplication. Additionally, we also define a whole

program traversal algorithm and show how it interacts with both techniques.

5.5.1 Inlining

Inlining is one of the most widely used techniques to increase the scope of the optimization

horizon. The technique is based on the substitution of the call with an expanded method

body.

The primary benefit of inlining is exposure of the method body to the caller context that

enables optimizations across the method boundary. This expands the scope of optimizations

local to a single method to apply to the mix of caller and callee code. So, for example, we can

apply redundancy elimination to remove redundant computation that happened in the caller

prior to the call with the same one happening in the callee.

In Interflow, we model inlining as a form of recursive block processing. As we have stated

earlier, block processing happens in a particular state σi ni t i al . In the basic case, we populate

this state with opaque type information about every entry block parameter and do not provide

any additional information.

Instead of using the coarse initial state, we can take advantage of the precise call-site specific

state σ of each individual call and apply block processing to it directly. A naive version of

inlining based on block processing can look like:

v0 | σ−→v n v | σ−→v v ′

def n : Tn = bb shal l Inl i ne(n, v ′,σ)

(bb
′
,σ′) = pr ocessBl ocks(bb, [lpar am 7→ v ′]σ)

(bb
′′

,σ′′, lr esul t) = mer g eRetur ns(bb
′
,σ′)

l = call[T] v0(v) | σ−→nai ve−i nl i ne jump lbb′′
0
,bb

′′
, lr esul t | σ′′

As we are going to see later, we can further improve upon this by tightly integrating inlining

into the whole-program traversal.

Given the analogy of block processing to the imperative interpretation, inlining effectively

creates an equivalent of nested call frame and then simulates application on the call-site state

σ. As a result, we collect the effects of the call reified as the outgoing state σ′ with additional

code emitted as bb
′

if necessary. In the best case, the whole call is performed completely

statically and does not emit any code, but only produces a modified state σ′.

Due to the fact that we want a single resulting output state, we need to merge all return states

to a single one using the same merging procedure that we have used previously for processing

of regular control-flow merges. Unlike regular processing, we allow returns to contain not-

69

Chapter 5. Interflow: Flow-sensitive Optimization

yet-materialized results. They can remain virtual within the resulting state σ′ similarly to the

handling of basic block parameters we have discussed earlier.

Inlining heuristic shal l Inl i ne takes current call-site state and the current values of all argu-

ments to decide if a call should be inlined. It considers the following inlining incentives:

• Method is small. A number of Scala methods do not perform any computation but

redirect to another method immediately (e.g., bridge methods).

• Method is a class or module constructor. Constructors often form deep dependency

chains due to deep inheritance hierarchy in Scala collections. They typically perform

trivial actions such as initializing object fields with given arguments.

• Method is a field getter or setter. Getters and setters abstract away field access to satisfy

Scala’s uniform access principle but otherwise serve no other purpose.

• Method is explicitly annotated with @inline. Interflow respects end-user annotations

even if they might produce suboptimal code.

• Method call has arguments that are virtual keys k. Emitting such a call would force

materialization incurring additional performance cost compared to an inlined call that

can delay or completely avoid materialization of said keys. So we bias inlining decisions

to inline calls with such arguments whenever possible.

The presence of an incentive is not sufficient to make an inlining decision. Additionally, we

ensure that none of the following conditions that prevent inlining, hold:

• Method is explicitly annotated with @noinline.

• Inlining a method overflows the inlining size budget for the current method.

• Inlined method is recursive. We rely on Scala’s built-in tailrec support to transform tail

recursion into loops.

• All of the arguments are opaque-typed values. As we are going to see later, method

duplication is sufficient to improve the context for such calls.

Those limitations limit inlining as it can not be guaranteed to happen at all times. Whenever

inlining fails, we have to materialize all call arguments and keep the call operation in the

generated code. To avoid loss of information in that case, we perform another technique

called method duplication that aims to propagate coarse type information from the caller to

the callee.

A cost model could be used to further improve the quality of inlining decisions. In its current

form, Interflow does not feature any form of direct performance impact estimation.

70

5.5. Intermerthod Control-Flow

5.5.2 Method Duplication and Whole-Program Traversal

1: d ← { ... } . Linked program after reachability analysis.
2: queue ←; . Queue of methods to visit with given types.
3: context ←; . Stack of currently visited or inlined methods.
4: pr ocessed ←; . Resulting optimized methods.
5:

6: procedure PROCESSPROGRAM(nentr y)
7: queue ← {(nentr y , si g natur eT y pes(nentr y)}∪queue
8: while nonEmpt y(queue) do
9: (n,T) ← pop(queue)

10: pr ocessMethod(n,T)
11: end while
12: return pr ocessed
13: end procedure
14:

15: procedure PROCESSMETHOD(n,T)
16: if visit (n,T) 6∈ context ∧ (n,T) 6∈ pr ocessed then
17: push(context ,visit (n,T))
18: bb = basi cBlocks(dn)
19: σi ni t i al = i ni t i al St ate(bb0,T)
20: (bb

′
,σr esul t) = pr ocessBl ocks(bb,σi ni t i al)

21: pr ocessed((n,T)) = upd ateDe f i ni t i on(dn ,T ,bb
′
,σr esul t)

22: pop(context)
23: end if
24: end procedure
25:

26: procedure REQUESTDUPLICATE(n,T)
27: T vi si t = vi si tT y pes(n,T)
28: pr ocessMethod(n,T vi si t)
29: return pr ocessed((n,T vi si t))
30: end procedure
31:

32: procedure VISITTYPES(n,T)
33: if shal lDupli cate(n,T) then
34: return T
35: else
36: return si g natur eT y pes(n)
37: end if
38: end procedure

Figure 5.3 – Program Processing Algorithm

Interflow visits the whole program starting from the application entry point nentr y (Figure

5.3). We visit all reachable methods per a sequence of call-site argument types T which we

refer to as the duplicate signature.

71

Chapter 5. Interflow: Flow-sensitive Optimization

Every single pair (n,T) corresponds to a new duplicate of a method ddup . Not all created

duplicates survive Interflow since inlining may make some of them unreachable. Signatures

do not contain return types; they are inferred through the type propagation within the method

body.

Every duplicate goes through the block processing algorithm starting with the coarse initial

state σi ni t i al . As we have alluded previously, the core idea of Interflow is to perform block

processing recursively. This means that the current method traversal might trigger an addi-

tional nested traversal as long as there are no cycles between the methods we have observed so

far. Nested traversals are triggered by r equestDupli cate which returns either an optimized

version of the requested duplicate or an empty result ; if the request could not be satisfied.

Method duplicates might form cyclic dependencies that prevent their return types from being

inferred without doing a fixpoint computation across the cycle. We perform cycle detection by

maintaining a stack of currently performed tasks context . Tasks could either be inline or

visit task. If a signature is visited a second time (i.e., it is part of a cycle), nested processing

fails by returning an original declared method instead of the optimized one to break the cycle.

Now that we have defined the program traversal, we can revisit the handling of calls as an addi-

tional evaluation relation −→cal l that extends −→op and precedes −→mater i al i ze . The inlining

rule we have sketched previously can be rewritten in the following way to take advantage of

the program processing state:

v0 | σ−→v n v | σ−→v v ′

ddup = r equestDupli cate(n,Tv ′)

shal l Inl i ne(ddup , v ′,σ) inline (n,Tv ′) 6∈ context

push(context ,inline (n,T))

(bb
′
,σ′) = pr ocessBl ocks(bbdup , [lpar am 7→ v ′]σ)

pop(context)

(bb′′,σ′′, lr esul t) = mer g eRetur ns(bb′,σ′)

l = call[T] v0(v) | σ−→cal l jump lbb′′
0
,bb′′, lr esul t : | σ′′ (CALL-INLINE)

The first difference is that we can take advantage of the stack of currently visited methods

context to detect cycles. Unlike most other techniques that take advantage of call graph

analysis, we detect cycles dynamically as we symbolically execute through the program. This

means that a single method can be cyclic or not depending on the context it’s being visited in

which is generally not easy to express in classic systems.

Moreover, another way we can take advantage of program processing is the ability to first

expand the method as a duplicate in the caller context and only then consider it for inlining.

This means that we consider already optimized code for inlining, which allows reducing

redundant reoptimization of the same code paths and makes it easier to balance between

caller and callee size budgets.

72

5.5. Intermerthod Control-Flow

If either the inlining heuristic or the cycle detection prevented us from inlining, we persist the

call to the duplicate as-is:

v0 | σ−→v n v | σ−→v v ′

¬shal l Inl i ne(n, v ′,σ)∨inline (n,Tv ′) ∈ context

ddup = r equestDupli cate(n,Tv ′) ddup 6= ;
l = call[T] v0(v) | σ−→cal l l = call[Tdup] ndup (v ′)

(CALL-USE-DUPLICATE)

This propagates the caller type information across the method boundary and still allows to

improve over the original declared method signature. Moreover, the return type of the call is

refined by the signature of the duplicate method, which improves precision by enabling type

propagation of qualified types back into the caller.

Even without inlining, method duplication needs to be aware of the cycles from the backward

type propagation point of view. If the signature we are trying to duplicate is currently on the

program processing stack, we bail by calling the original method:

v0 | σ−→v n v | σ−→v v ′

¬shal l Inl i ne(n, v ′,σ)∨inline (n,Tv ′) ∈ context

r equestDupli cate(n,Tv ′) =;
l = call[T] v0(v) | σ−→cal l l = call[T] n(v ′)

(CALL-NO-DUPLICATE)

5.5.3 Polymorphic Calls

The call handling we have discussed so far works only on the calls that we were able to

successfully devirtualize through either allocation sinking or type-based evaluation. However,

there are still cases that can not be handled this way, and we need to make sure Interflow can

handle them as well.

As a last resort, for methods that have a small number of targets according to the whole

program analysis information, we perform an equivalent of polymorphic inline caching that

replaces a virtual call with a sequence of static calls guarded by the type test:

v | σ−→v k k 7→ delayed resolvemethod v ′, s ∈σ
n = t ar g et s(t y peo f (v ′), s) |n| ≤ 4

l ′ = op ′ = expandPol y(v ′, s)

l = call[T] v0(v) −→pol y l ′ = op ′ | σ′ (POLY-EXPAND-METHOD)

In the worst case, virtual methods with a large number of method targets are visited conserva-

tively using their original method signature:

73

Chapter 5. Interflow: Flow-sensitive Optimization

v | σ−→v v ′ n = t ar g et s(t y peo f (v ′), s) |n| > 4

∀n′ ∈ n : vi si tDupl i cate(n′, si g natur eT y pes(n′))

resolvemethod v, s | σ−→pol y resolvemethod v ′, s
(POLY-METHOD)

This ensures that we optimize all reachable methods, even if we can not reach them statically

and take the complete advantage of the inlining and method duplication to optimize across

the boundary. The heavy focus on multiple approaches of method devirtualization we have

discussed so far are aimed at reducing the chance of this worst-case from happening.

As we are going to see in the next chapter, we can reduce the chance of unoptimized virtual

dispatch even further through the use of profiling information.

5.6 Related Work

Prokopec et al. [69] studies the impact of aggressive JIT compilation on Scala collections.

Their work postulates that profiling information enables a JIT compiler to better optimize

collection operations compared to a static compiler. Based on our performance evaluation

(Chapter 7) Interflow obtains comparable results on collections-heavy benchmarks such as

Kmeans purely ahead of time without any profile feedback. We still observe performance

improvements thanks to profile-guided optimization (Chapter 6), but our results suggest that

it is not essential to many of our benchmarks.

The Julia programming language [19] performs interprocedural type inference to recover

types from dynamically typed programs. Both Julia and Interflow visit programs in graph-free

forward dataflow manner [56]. Unlike Julia, Interflow does not rely on fixpoint to recover

return types of recursive definitions but instead uses original declared type. Both Julia and

Interflow duplicate methods to improve performance. Julia relies on heuristics to prune the

number of specialized instances that are possible due to its rich type system. Interflow, on the

other hand, uses a simpler type system to avoid this problem altogether. In particular, we do

not have any form of generic types apart from arrays, while Julia has tuples, union types, and

generic composite types.

Languages with specialized-by-default generics such as C# [46] and C++ [78] rely on the end-

user to annotate programs to guide method duplication. Interflow neither relies on generic

information (its type system is erased) nor provides any means for the user to influence

method duplication. Specialization is automatic and transparent to the end-user. Major C++

implementations such as GCC [77] and Clang [50] expand C++ templates once per use site and

later deduplicate generated code at link time. Interflow, similarly to [46], visits each specialized

method variant exactly once at link-time, reducing the impact of method duplication on the

application compile time.

Scala specialization [36] and Miniboxing [83] extend Scala’s erased generics with opt-in anno-

tations to enable code duplication to reduce boxing overhead. Even though they both offer

74

5.6. Related Work

means to perform method duplication, we do not rely on method duplication to address

the boxing problem, but rather as a means to enable devirtualization, which in turn enables

a combination of inlining, allocation sinking and partial evaluation to eliminate unneces-

sary intermediate allocations. Both [36] and [83] create a fixed number of variants per each

generic argument, leading to an exponential explosion of the number of specialized variants

per generic argument. Interflow only creates duplicates that are reachable through forward

dataflow from the application entry point at link time.

Petrashko et al. [66] suggests performing auto-specialization of Scala programs based on

context-sensitive call graphs. Interflow does not construct call graphs (or any other analysis

artifacts for that matter) but instead performs a single graph-free traversal of the original

program in forward dataflow order [56]. We trade off accuracy for compilation speed and

intentionally use an erased type system that closely mirrors the runtime type system, rather

than Scala’s rich type system. Our performance results (Chapter 7) illustrate that Interflow’s

precision is sufficient to devirtualize typical programs that rely on Scala collections.

Interflow’s allocation sinking is based on the work of Stadler et al. [76]. Our allocation sink-

ing directly builds upon the framework of Partial Escape Analysis (PEA) by performing this

transformation in the same pass as inlining and partial evaluation. This enables our imple-

mentation to perform inlining decisions based on current flow-sensitive state at a given call

site. For example, calls with virtual not-yet-materialized arguments are inlined if possible to

delay materialization.

LuaJIT [65] and PyPy [27] explored allocation sinking in the context of tracing just-in-time

compilers. Their implementation works at the scope of a single execution trace that dramati-

cally simplifies handling of control-flow and offers an equivalent of inlining as the side-effect

of trace recording.

Prokopec et al. [68] explored design for an inlining algorithm that relies on inlining trials in

combination with a cost model [53]. Their algorithm estimates the impact of inlining decisions

using a cost model over high-level intermediate representation that enables inlining based

on a cost-benefit analysis. In contrast to their work, Interflow makes decisions purely based

on static information. The use of cost modeling for inlining is an exciting direction of the

research, but it requires profile information which is not always available in ahead-of-time

context.

Similarly to the HotSpot C2 [64] compiler, we perform all key optimizations in a single pass.

One of the advantages of our approach compared to C2 is that we use allocation sinking as

one of the key inlining incentives. Moreover, we rely on type-driven method duplication as an

alternative to inlining to increase the optimization scope.

Partial inlining [59] improves the quality of inling decisions by inlining only the critical part

of the method. Similarly to partial inlining, Interflow is able to inline a subset of the called

method. We achieve this as a side effect of running inlining and the rest optimizations in the

75

Chapter 5. Interflow: Flow-sensitive Optimization

same context as the optimization of the caller.

5.7 Conclusions

In this chapter, we presented Interflow, a design for an optimizing compiler that performs

method duplication, partial evaluation, allocation sinking and inlining in a fused single-pass

traversal of the whole program.

As presented here, Interflow is a optimizer that transforms complete programs based on the

purely static information. In the next chapter, we are going to explore an extension that

augments it with profile knowledge to improve its optimization decisions.

76

6 Profile-guided Optimization

In the previous chapter, we have walked through a flow-sensitive whole-program optimization

called Interflow. At its core, Interflow is a purely static optimization that fuses several well-

known techniques into a single graph-free traversal of the whole program.

Even though Interflow is able to perform judgments about the code based on the flow-sensitive

information, its weakness lies in the fact that it does not have any means of distinguishing the

relative importance of code paths in the program. As a consequence, Interflow optimizes all

code equally aggressively to obtain the best runtime performance.

In this chapter, we are going to extend Interflow with support for profile feedback and see

how the optimizations we have discussed earlier can be improved based on it. Moreover,

we argue for an approach that allows us to use of JIT-style speculative optimizations in the

ahead-of-time setting.

6.1 Introduction

Statically-typed, object-oriented programming languages are predominantly implemented

using either purely static ahead-of-time (AOT) compilation or dynamic speculative just-in-

time (JIT) compilation.

AOT compilation performs all of the optimizations statically and outputs a precompiled

machine-specific binary. This approach produces efficient code for lower-level languages

like C that do not impose high abstraction cost that has to be eliminated by the optimizing

compiler.

On the other hand, high-level object-oriented programming languages such as Java or Scala

are hard to compile efficiently using pure static analysis. Whenever the high-level semantics

of the language does not map to the capabilities of the hardware, one has to emulate them

with additional runtime logic.

77

Chapter 6. Profile-guided Optimization

Virtual machines (VMs) bridge the performance gap between high-level programming lan-

guages and the underlying hardware through elaborate multi-tier execution pipelines. VMs

start their execution using either an interpreter or a simple baseline compiler combined with

a dynamic JIT compiler to aggressively optimize hot code paths.

The main advantage of dynamic optimizers is centered around their ability to collect additional

information through runtime profiling during earlier tiers of execution. Based on obtained

profiles, a JIT compiler can optimize the code by speculating that some properties that were

observed before are going to always hold in the future. Whenever speculative assumptions are

violated, a JIT compiler deoptimizes to one of the earlier tiers of execution.

This approach produces a speedup over pure static analysis, but it also introduces a major

negative side-effect: startup cost due to running unoptimized code during earlier tiers of

execution and runtime compilation overhead. These effects cause a negative and subjective

perception around VM-based languages as being resource-heavy and slow even though the

slowdown is only happening during the initial startup phase and often is diminished once the

VM is fully warmed-up.

As an alternative to JIT compilation, we focus purely on AOT compilation. Profile-guided

optimization (PGO) is a common technique to augment static compilation pipeline with

runtime knowledge:

1. Compile an instrumented version of the program that injects additional code to collect

the profile information.

2. Run the instrumented program on a sample workload that represents a typical use of

the application.

3. Recompile the program using profile feedback as an additional input to the optimizing

compiler.

While this approach has a potential of providing the same detail of profile information to an

AOT compiler, it has not been as widely studied and employed as the speculating JIT compilers

[11] in the context of high-level object-oriented languages. In particular, the domain of

speculative optimization is generally considered to be in the realm of JIT compilers that is not

available in the AOT context.

In this chapter, we are going to introduce an approach called white-gray code splitting that

can be used to apply arbitrary speculative optimizations without loss of correctness purely

ahead-of-time.

78

6.2. Intuition

6.2 Intuition

One of the key advantages of the just-in-time compilation is the ability to compile code based

on speculative assumptions. The overall structure of the speculatively optimized code looks

like:

if (speculationInvariant()) {
fastPathImplementation()

} else {
deoptimize()

}

As long as the invariant holds the compiler can emit code that works purely under the invariant

condition but might be incorrect otherwise.

In case the invariant check fails, the JIT deoptimizes [64] out of the current compiled code back

to the previous tier of execution such as an interpreter or a baseline compiler. Consequently,

deoptimization invalidates the previously compiled code.

Whenever deoptimization is triggered, it takes the currently captured runtime state at a deop-

timization point and transfers it into an equivalent state of the baseline implementation. After

the transfer, the code can resume its execution back in the original baseline implementation

with potential for performance degradation. In the meantime, the JIT compiler recompiles

the method without relying on the invalidated assumption.

Some of the key optimizations that rely on method invalidation in modern JIT compiler such

as HotSpot JVM [49, 64, 71] are the following:

1. Class Hierarchy Analysis [33]. In the presence of dynamic class loading, whole-program

static analysis requires method invalidation for soundness. If a newly loaded class

invalidates the static analysis assumptions used in the already optimized code, it has to

be recompiled using the modified class hierarchy information.

2. Profile-guided Devirtualization [43]. Virtual call site with a large number of targets

can not be optimized statically. Using type profile information, we can distinguish

monomorphic and bimorphic call sites that respectively observe one or two types as the

result of the profiling information. Such virtual calls can be optimized assuming only

those types are ever used at a given location and deoptimize otherwise.

3. Untaken Branch Pruning. As long as a code path is never taken based on the profile

information, it does not have to be included in the compiled code. Instead, the deop-

timization stub is inserted as the replacement in case the branch is visited after the

method is compiled.

79

Chapter 6. Profile-guided Optimization

4. Error Handling Elimination. Profile feedback can be used to detect cases when unex-

pected error conditions such as null dereference have never been observed at a given

location. Instead, null dereference can be checked implicitly by relying on the memory

fault handler as a means to trigger deoptimization instead of emitting an actual runtime

check right away.

Our goal is to find an approach that is equivalent to deoptimization for the ahead-of-time com-

pilation. This way, we can take advantage of the same key optimizations that are performed by

modern JIT compilers to improve the quality of the optimized code on the application hot

path.

Unlike a JIT compiler, we can not perform any form of dynamic recompilation by design. The

optimized code always has to retain a slow path version to preserve the correctness of the

compiled program.

A naive approach would include both slow and hot paths in the generated optimized code:

if (speculationInvariant()) {
fastPath()

} else {
slowPath()

}

As originally noted by Paleczny et al. [64], emitting the diamond control-flow is counter-

productive as it destroys the precise information acquired through the invariant check.

In Interflow, any diamond control-flow triggers a state merge that computes a new flow state

σ that has to be valid for both fast and slow code paths after the merge. Moreover, any of the

results will have to be materialized due to the uncertainty of the invariant condition.

The situation is aggravated in combination with aggressive inlining and method duplication

that can greatly amplify the code size increase due to duplication of the same hot and slow

paths in multiple contexts.

To address the problem, we take the naive version and automatically transform it into an

equivalent form that hoists out the slow path into a stand-alone method:

if (!speculationInvariant()) {
return hoistedSlowPath(...)

}
fastPath()

We hoist the code for the slow path itself and any of its control-flow successors into a stand-

alone version of the method. If the invariant is invalidated, the execution tail calls [45] the

80

6.3. Collecting Profile Information

slow path method with arguments that correspond to a snapshot of all locals that are live at

that point. In contrast, the deoptimized version may not rely on the invariant and must be

compiled conservatively.

Because we terminate early, the slow path will never interfere with the flow state on the

hot path. This is possible because the slow path defined this way is not considered to be a

predecessor from the intramethod control-flow point of view. As a consequence, the hot path

is safe to be optimized assuming the speculative assumptions always hold.

6.3 Collecting Profile Information

Apart from the ability to deoptimize, we also need to obtain profile feedback to find out

additional information about the program that can be used for speculative optimization. To

collect this information, we run an instrumented version of the program that records method

frequency, edge frequency, and type profile feedback.

Instrumentation is performed as a special compilation mode that emits additional code to

collect all the relevant runtime events into an in-memory profile data structure.

6.3.1 Profile Information in NIR

We extend NIR with support for profiling data:

1. A new weight attribute allows us to store the number of method invocations:

a ::= attributes:

...

weight nv weight attribute

If a method does not contain weight information, we assume it should be optimized

based purely on static knowledge. Methods which were never called must have an

explicit zero-weight attribute attached.

2. Indirect jump terminators such as if and switch may contain additional information

about the frequency of each of the outgoing branches:

t j ump ::= jump terminators:

...

t j ump weight nv jump with edge weights

Weight count for each of the branches corresponds to the number of times the individual

control-flow edge has been taken. If weight information is not present, we assume that

all branches are equally likely. Explicit 0 weights are required to express that some of the

branches were never taken.

81

Chapter 6. Profile-guided Optimization

3. High-level operations that dispatch on the runtime type of the object, such as dynamic

method dispatch, may contain a weighted distribution of the receiver types:

ophl ::= high-level operations:

...

ophl weight (T,nv) operation with receiver type weights

The weight information is represented as a sequence of pairs of types with corresponding

weight, where weight count is the number of times a given receiver-type was observed

at this location. The sequence can be empty, which corresponds to instruction that was

never executed during the instrumented run. If no weight information is available, we

must handle the operation conservatively and only rely on static analysis.

6.3.2 In-memory Profile Representation

n1 n2 nk

ccall cedge1

. . .

cedge2 . . .

method profile table

method profile storage

edge prof ile t ype frequency prof ile

hm1 hm1 . . .

Figure 6.1 – Profile In-memory Represetation.

We collect profiling information using an in-memory data structure (Figure 6.1). The profiling

information is split into two levels: a method profile table and a method profile storage for

each of the methods.

Each method is identified by a unique numeric identifier that associates it to array slots of

the data structure with the profile storage for each of the methods. The storage of this array

is allocated statically and contains a single pointer-sized cell for each of the methods that is

reachable according to the reachability analysis.

Profile storage represents all the recorded events we’ve observed for a given method. It’s

allocated dynamically on the first invocation of the method even though its size is statically

known. This lets us avoid allocating profile storage for methods that are never invoked.

The storage is laid out in the following order:

1. At an offset 0, we store the method invocation count. If a method got non-null profile

storage, it must have been called at least once, so this count is always non-zero. We use

null profile storage as a zero invocation count instead.

2. Invocation count is followed by frequency of all indirect branches (i.e., conditional

and switch jumps) within a given method. For each edge (l f r om , lto) discovered in the

82

6.3. Collecting Profile Information

depth-first traversal of the control-flow graph, we assign a single slot that corresponds

to the frequency that edge was taken.

3. At the end, we store type profiling information for each virtual dispatch call site. Each

call site is identified by a hash map that maps runtime type ids to their corresponding

frequency at a given call site. The hash map is allocated lazily upon the first time a given

call site is visited.

Each of the counters above is represented as an unsigned 64-bit integer and represents the

exact number a given event was observed.

6.3.3 Profile Instrumentation

We instrument the code through a custom lowering � • �i nstr ument that builds upon the trans-

lation function � • �l ower we defined for the baseline compilation. In addition to the baseline

lowering transformations, we modify the code by injecting calls to the profile collection

runtime that operates on the in-memory profile storage model:

1. Instrumentation for the entry basic block to obtain the profile storage pointer and

update the call count.

�l (lpar am : T) :�i nstr ument if i sEntr yBlock(l) =
l (lpar am : T) :

lpr o f i l e = call[...] @"r unti me_r ecor dcal l "(long nvmethod−i d)

The r unti me_r ecor dcal l function is responsible for initializing the profile storage for

the given method if it has not been allocated yet and additionally increments the call

count. The function returns a pointer to the profile storage for a given method.

2. Instrumentation for each non-direct jump to record the edge frequency.

�if v then l1(v1) else l2(v2)�i nstr ument =
if v then l ′1 else l ′2
l ′1 :

call[...] @"r unti me_r ecor ded g e"(lpr o f i l e , long nvthen−ed g e−i d)

jump l1(v1)

l ′2 :

call[...] @"r unti me_r ecor ded g e"(lpr o f i l e , long nvel se−ed g e−i d)

jump l2(v2)

83

Chapter 6. Profile-guided Optimization

�switch v case v0 ⇒ l1(v1) default ⇒ l2(v2)�i nstr ument =
switch v case v0 ⇒ l ′1 default ⇒ l ′2
l ′11 :

call[...] @"r unti me_r ecor ded g e"(lpr o f i l e , long nvcase1−ed g e−i d)

jump l11(v11)

l ′12 :

...

l ′2 :

call[...] @"r unti me_r ecor ded g e"(lpr o f i l e , long nvde f aul t−ed g e−i d)

jump l2(v2)

For each of the outgoing branches, we update the branch frequency counter before

jumping to the original destination with the given argument values. The edge id di-

rectly corresponds to the memory index of the profile storage, so we perform a single

increment on a statically known memory offset relative to the lpr o f i l e .

3. Instrumentation for each of the virtual call sites to record the type profile information:

�l = resolvemethod v, s�i nstr ument =
call[...] @"r unti me_r ecor d t y pe"(lpr o f i l e , long nvcal l−si te−i d , v)

l = resolvemethod v, s

Profile runtime extracts the runtime type id for a given object v and updates the profile

storage data structure to reflect the type frequency at a given call site for each of the

invocations.

The recorded events are collected throughout the complete application run. Right before

termination, we serialize the in-memory representation to disk using a format that mirrors

in-memory representation. This data is used in subsequent compilation to provide the profile

feedback that is needed to perform speculative optimizations.

6.4 Optimizing based on the Profile Information

Interflow was designed to produce highly optimized code based purely on the flow-sensitive

and whole-program static information. In this section, we are going to present a number of

extensions that take advantage of profile information to make better optimization decisions.

The profile-guided optimizations rely on a technique we call white-gray code splitting that

lets us employ similar reasoning to JIT-style speculative optimizations in the ahead-of-time

setting.

84

6.4. Optimizing based on the Profile Information

original fallback optimistic

check

. . .

optimistic

check exit

speculate split

. . .

Figure 6.2 – 2-step White-Gray Code Splitting.

6.4.1 White-Gray Code Splitting

As we have outlined earlier, we are interested in performing optimizations that hold purely

under a given invariant. To represent such optimizations, we define a framework called

white-gray code splitting that consists of two transformation steps:

As a first step, we start with transforming the code into an equivalent naive form of the

speculatively optimized code. It represents speculation using an explicit check that leads to

an optimistic fast path (white) and falls back to a slow path otherwise (gray).

While this transformation step could work on its own, due to the generated code structure,

we can not assume that the invariant holds after we merge back the results from both the

optimistic and pessimistic cases.

As a second step, once all of the speculations have been applied, we are going to split the

method such that all of the gray code is hoisted out it.

For any method with non-zero weight, the execution always starts with a white basic block.

We traverse the method body by following purely the white to white edges in depth-first order.

This way, we obtain a transitive closure of all-white blocks reachable from the original method

entry point.

Any block that did not make it to the transitive closure of white blocks are marked as gray.

White blocks can be demoted to gray if they are only reachable through other gray blocks.

We revisit the transitive closure of white blocks and collect all the edges that go from white to

gray. The edge is replaced with a tail call to a hoisted gray method that early returns with the

result of the method call. If multiple paths fall back to the same gray block, we reuse the same

hoisted method for all of those edges.

Gray methods always start with a gray basic block. Additionally, they must also include any

of the blocks that are transitively reachable from it throughout the original method body

(including both gray and white blocks). Apart from the original gray basic block parameters,

85

Chapter 6. Profile-guided Optimization

we must also pass any of the previously defined local variables that are still live in the hoisted

code.

Special care needs to be taken for hoisting the gray code out of loops. The hoisted method for

such a block would require an effective side-entry into the loop code that does not respect our

reducible control-flow restriction. We exempt such blocks from being hoisted and retain them

as is in the original method.

As a result of the white-gray code splitting, we obtain an optimized version of the method

that contains purely the optimistically optimized code. All of the slow path handling code is

hoisted out and may not affect the highly optimized optimistic code path.

We apply white-gray code splitting to all methods that have been invoked at least once through-

out the instrumented run. Only a subset of the called methods is eligible for speculation based

on the collected profile information. In cases when no speculation has been applied in a first

step, we have no code to split out.

The profile-guided version of Interflow takes the transformed code after white-gray code

splitting and optimizes white paths exclusively. The simplified control-flow improves the

quality of flow-sensitive information. Moreover, slow path hoisting improves the quality of the

inlining decisions due to the reduced risk of hitting the code size inlining limit.

To illustrate the framework on a more concrete example, we have implemented two opti-

mizations in this way: profile-guided devirtualization and untaken branch pruning. Both

optimizations transform the code through the addition of gray blocks.

6.4.2 Profile-guided Devirtualization

l0 = resolvemethod v, s

l1 = call[. . .] l0(v)
. . .

. . .

lcheck = is[Tdominant] v

if lcheck then lwhite else lgray

. . .

lgray :
l0 = resolvemethod v, s

l2 = call[. . .] l0(v)
merge lresult(l1)

lwhite :
l3 = call[. . .] mT(v)
jump lmerge(l3)

lmerge(l1 : Tresult) :
. . .

Figure 6.3 – Profile-guided Devirtualization

As we have discussed earlier, Interflow relies on whole-program propagation of qualified

86

6.4. Optimizing based on the Profile Information

reference types to optimize away virtual dispatch. Nevertheless, polymorphic method calls

can not be optimized statically in cases when the call site has more than four potential targets.

Type profile feedback gives us another opportunity to revisit this problem.

Given the type profile information for a given call site, one may observe that some call sites

have a few dominant types at runtime. Using this information, virtual calls are compiled to

a sequence of tests for frequent type cases that redirect control flow to a static call before at-

tempting a virtual method lookup. This opens up the opportunity to inline the implementation

of the virtual method for the dominant types.

We implement profile-guided devirtualization using the white-gray block framework intro-

duced earlier. Basic blocks for all of the devirtualized static calls are marked as white, while

the full-blow virtual call remains as a gray slow path. The slow path gets hoisted out of the

method so only the optimistic case of the call to the implementation for the dominant type

remains. The call itself is going to be considered for either inlining or method duplication by

Interflow which in turn can enable other optimizations.

Our implementation uses the standard handling of virtual call sites [64] that distinguishes

monomorphic and megamorphic call sites. For call sites with two or fewer receiver types, we

insert the corresponding type tests and deoptimize if the runtime type does not match any of

them. Megamorphic call sites only cache the dominant type that has relatively probability of

0.9 or higher and otherwise fall back to full virtual call as a slow path.

6.4.3 Untaken Branch Pruning

Methods might contain code paths that are rarely or never exercised but are included in the

application for correctness (e.g., error handling code). Those code paths contribute to code a

considerable size increase that gets amplified if those methods are aggressively inlined.

Untaken branch pruning uses edge frequencies collected from the profile feedback to detect

the edges that are never taken. For every conditional branch that is never visited, we create an

intermediate gray block that immediately forwards to the target of the corresponding branch.

This effectively removes the edge from the transitive closure of white to white control-flow

graph.

As an example, let us consider a conditional branch that has one taken and one untaken code

path. There are two potential effects of this transformation applied to it:

1. If the target of the untaken branch has no other incoming edges, the introduction of an

intermediate gray block will mark it and any of its transitive successors as gray:

This can dramatically simplify the control-flow of the method by hoisting out never

taken code paths such as error-handling code.

As a consequence, the extracted slow-path code will never be duplicated if a method is

87

Chapter 6. Profile-guided Optimization

l1 :

l2 :
jump l1

lgray :

. . .
if lcond then l1 else l2

l1 : l2 :
. . .

. . .

. . .
if lcond then lgray else l2

.

inlined. Instead, it is going to be compiled exactly once as part of the hoisted out cold

path.

2. Otherwise, if the target block has any other incoming edges coming from white blocks,

we still get a benefit of the reduced number of predecessors on the white to white

control-flow graph:

l1 :

jump l1
lgray :

. . .
if lcond then l1 else l2

l1 :

l2 :

. . .

. . .
if lcond then lgray else l2

. . .
l2 :. . .

. . .

Since merging of multiple predecessor states is the only way for Interflow to reduce the

precision of flow-sensitive information, the decrease of the number of incoming edges

has a direct effect on the precision of the resulting merged state.

In the very best case, through the introduction of the gray blocks, we can reduce the

number of incoming edges from multiple to a single edge. This means that we do not

need to perform any state merging and can keep the predecessor state as is without any

loss of information.

As a consequence of untaken branch pruning used in combination with white-gray code

splitting, we are left with white to white control-flow where aggressive optimizations have

the potential to make the most impact. In the very best case, we can go from a complicated

control-flow in the original program to effectively linear code with side exits hoisted out of the

hot path.

88

6.4. Optimizing based on the Profile Information

6.4.4 Profile-guided Inlining and Method Duplication

Interflow employs inlining and method duplications as a means to increase the optimization

context beyond the scope of a single method. Both techniques are prone to code size increase

due to the fact that they duplicate the same code in multiple contexts.

Profile feedback gives us another angle to reconsider when those optimizations should apply.

Based on the relative method frequency we distinguish the treatment of cold and hot methods:

• Cold methods are the methods that are never called throughout the instrumented

run. Despite the best efforts to minimize the number of reachable methods through

reachability analysis and flow-sensitive optimization, not all methods can be excluded

statically.

We avoid both inlining and duplication of the cold methods. Calls to such methods may

only appear on the gray code paths of another method or be called from another cold

method. Inlining and method duplication of the cold paths is unlikely to increase the

runtime performance and risks contributing to the binary size increase.

• Hot methods are the methods that contribute top 80% of all instrumented calls (which

tends to correspond to less than 10% of the called methods on our case benchmarks).

These methods are the major contributors to the runtime performance and should

always be optimized aggressively.

We incentivize the inlining to inline them as long as they do not violate any of the original

inlining restrictions. If inlining fails, hot methods are duplicated based on the call site

type information instead.

If a method is neither cold nor hot, we optimize using the same optimization heuristics we

have discussed for purely static optimization.

6.4.5 Optimizing Cold and Hoisted Methods

Cold and hoisted methods created after white-gray code splitting must remain in the generated

code to preserve the correctness of the program after the profile-guided optimization. The

profiling information of an instrumented run, might not reflect the exact behavior of all of

the subsequent application runs and the cold paths might still be taken on the some of the

executions.

From the optimization point of view, we assume that those methods are never going to be

called and optimize them for the best size rather than the best runtime performance:

• Method traversal. Interflow’s method traversal is based on the propagation of the flow-

sensitive context σ. Interflow aggressively tries to sink allocations and pure operations

by emitting them the first time they are used.

89

Chapter 6. Profile-guided Optimization

This can lead to code size increase due to the fact that a single operation or allocation

sunk down through a branch that could not be eliminated might duplicate the same

code multiple times in some of its successors.

For cold methods, we can avoid the risk of code size increased by restricting the context

propagation not to perform any code motion. Allocations are always emitted, and

instructions are preserved in their original order.

• Inlining. Inlining into the cold method might still decrease the overall method size

through the removal of small methods such as field accessors, bridges, and constructors

which are often trivial and can be eliminated from the program if we inline them into all

of their callers.

We do not consider aggressive inlining incentives such as inlining of hot methods or

inlining based on the flow-sensitive state to avoid the potential code size increase of the

cold method.

• Method Duplication. Given the reduced inlining incentives, more of the call sites

become eligible for method duplication. Similarly to inlining, method duplication is

a technique that increases code size by specializing a method to a sequence of more

precise types propagated from the caller.

Propagating the type information from the cold path can contribute to a significant

impact on the binary size. As a consequence, we prohibit duplication initiated from a

cold method.

6.4.6 Profile-guided Native Code Generation

LLVM [51] provides built-in support for profile metadata that can improve the code quality

of the generated machine code. We annotate emitted code with method call and branch

frequency information collected through profile instrumentation.

The additional profile metadata allows LLVM to optimize the code layout of the hot paths by

positioning the more likely branches together in the generated machine code. Besides, the

branch weight metadata provides additional feedback to the loop optimizer about the relative

importance and frequency of the loop edges and trip count.

Additionally, we annotate the cold and hoisted method with a directive that forces them to be

optimized for size rather the best runtime performance. This is equivalent to compiling the

lowered code of those methods using -Os optimization pipeline.

Similarly to our optimizer, this lets LLVM to avoid optimizations that have a risk of increasing

code size and use instruction selection algorithm with the smallest size output rather than

best peak performance. Moreover, it also enables the use of optimizations that aim primarily

to reduce code such as outlining that are not used for regular compilation.

90

6.5. Related Work

6.5 Related Work

Speculative feedback-driven optimizations have been researched in-depth in a number of

commercial and open-source JVMs [64, 71, 86]. We implement profile-directed inlining, un-

taken branch pruning, and polymorphic inline caching similarly to well-known JIT compilers

for Java.

The main difference in our approach is that we do not perform any compilation at runtime, but

instead rely on white-gray code splitting to separate optimistic hot path from the pessimistic

gray path that gets hoisted out into stand-alone methods.

Arnold et al. [12] performs an in-depth survey of techniques used in high-performance JVM

implementation. One of the insights of their work is the discussion of the connection between

speculative optimization and multi-versioning in static compilers. White-gray code splitting

can be seen as a direct bridge between the two approaches that does not rely on runtime

recompilation to break the diamond control-flow as we discussed earlier.

Deoptimization to optimized code has been previously explored by Wimmer et al. [84]. We

do not attempt to keep a single copy of a method for all deoptimization points but instead

generate a new method explicitly tailored for each deoptimization location. Most of the time,

those methods are rather small as they only contain a small subset split from the original

method.

Combination of white-gray code splitting and speculative untaken path pruning produces the

same effect as procedure splitting [67]. Rather than relying on procedure splitting as purely a

code layout and memory locality optimization, we advocate for compiler design that relies on

code splitting to emit both slow path (gray) and fast path (white) code at the same and can

reliably optimize assuming only the white path is taken. Our implementation uses tail calls to

stand-alone methods rather than long jumps to transfer control-flow to split procedures. This

implementation is mostly dictated by the fact that we emit LLVM IR rather than machine code

as the result of our compilation.

LLVM [51] supports profile-guided block placement [67] based on information collected

through code instrumentation. We built directly upon this work by relying on the same

implementation.

A number of more techniques have been developed to decrease the runtime cost of profiling

instrumentation. Ball and Larus [15] suggests taking advantage of the static control-flow struc-

ture to decrease the number of profiling counters in instrumented versions of the code. Path

profiling can provide the same information as edge profiling with reduced instrumentation

cost.

Duesterwald and Bala [40] perform hot path prediction based on Next Executing Tail (NET)

model. Their approach maintains frequency counts purely for backward taken edges of the

loops. Whenever counter reaches a certain threshold, they record an execution trace through

91

Chapter 6. Profile-guided Optimization

the loop body. Their approach manages to provide a reasonable estimate of hot paths with

extremely low overhead.

Tracing JIT compilers [14, 27, 65] rely on trace profiling to extract hot paths out of the programs.

The hot paths are optimized aggressively and contain side exits to bail out in case some of

the trace conditions have been invalidated. White-gray code splitting coupled with untaken

branch pruning achieves a similar effect by isolating the optimistic fast path execution and

bailing out in case any of the optimistic invariants have been invalidated.

Nuzman et al. [60] explored the application of dynamic recompilation to statically compiled

languages such as C++. Their approach relies on an existing Java JIT compiler repurposed to

compile C/C++ programs. They compile programs as fat binaries that include profiling instru-

mentation and recompile the application code at runtime once the profiling information has

been collected. Compared to them, our approach relies on a separate run of an instrumented

code to collect profile information and doesn’t perform any runtime recompilation in the final

optimized code.

6.6 Conclusion

In this chapter, we introduced a technique, called white-gray code splitting that enables the

use of speculative optimizations in the ahead-of-time setting.

We have implemented profile directed devirtualization and untaken branch splitting as two

case study optimizations build on top of white-gray code splitting framework. Besides, we

have also augmented our previous purely static optimizations such as inlining and method

duplication, with profile knowledge.

The combination of these techniques produces efficient code that does not depend on multi-

tier compilation to achieve high performance and gets the full advantage of the zero-overhead

startup time that is inherent to AOT-compiled code.

In the following chapter, we are going to perform a performance evaluation that contrasts

our baseline compilation, flow-sensitive static optimization, and profile-guided speculative

optimization implemented as part of the Scala Native project.

92

7 Performance Evaluation

In this chapter, we report performance results of our implementation and compare it against

ahead-of-time compiled code produced by Graal Native Image and warmed-up just-in-time

compiled code of the HotSpot JVM.

Specifically, we are interested in evaluating:

• Performance overhead of our garbage collection techniques.

• Impact of our optimizations on peak performance.

• Impact of our optimizations on binary size.

• Warm-up profile relative to just-in-time compiled code.

• Peak performance relative to just-in-time compiled code.

As the result of this evaluation, we aim to evaluate if the techniques used in Scala Native are

sufficient to match the peak performance of just-in-time compiled code of the HotSpot JVM

and quantify the impact of those techniques.

7.1 Environment

We use the following versions of the software projects for the evaluation:

• A development snapshot of Scala Native 0.4.0 in combination with LLVM 8.0.

• OpenJDK 1.8.0_212 which refer to as HotSpot JVM.

• Graal Native Image 19.1.0 (EE) which we refer to as Native Image.

• Ubuntu 18.04.2 LTS.

93

Chapter 7. Performance Evaluation

Benchmarks are executed on a workstation-class machine with the following hardware:

• Intel i9 7900X CPU locked at a fixed 4GHz frequency.

• 128GB of DDR4 3200 MHz memory.

• 512GB of Samsung SSD storage connected over NVMe.

The machines uses a clean install of the minimal distribution of Ubuntu Server [5] and is used

purely for the performance evaluation.

94

7.2. Configurations

7.2 Configurations

We compare performance of the following runtime configurations:

1. Baseline Compilation is the simplest compilation mode supported by Scala Native that

relies on whole-program analysis for devirtualization. Using the baseline compiled code,

we compare our currently supported memory management strategies relative to the No

GC collector.

2. Interflow is our main static optimizer. It performs a flow-sensitive optimization of the

whole program in a single graph-free traversal of the whole program.

In addition to the full-fledged Interflow, we also evaluate a conservative variant of the

same optimizer that does not perform method duplication. Additionally, it also does

not consider virtual not-yet-materialized arguments as an inlining incentive.

3. Interflow with PGO makes decisions taking both static knowledge and profile data into

account while optimizing the program.

4. Graal Native Image [2] is a state-of-the-art AOT compiler for the JVM-based languages.

Similarly to Scala Native, it relies on whole program analysis and profile data to emit

highly optimized statically linked binaries.

5. HotSpot JDK is the reference JDK implementation. Its C2 [64] JIT compiler is con-

ventionally used as the baseline for performance evaluation in the JVM ecosystem

[9, 41, 71, 86].

7.3 Benchmarks

Our performance evaluation relies on Scala Native benchmarking suite [74]. The majority of

benchmarks (bounce, json, cd, deltablue, richards, permute, nbody, mandelbrot) are based on

the original benchmarks of Marr et al. [55]. Scala Native’s version of these benchmarks uses

Scala collections to replace Java-style looping constructs. The Permute benchmark uses the

built-in permutations method of Scala Collections, rather than its own implementation to

compute permutations.

Kmeans and Sudoku are exclusively collection benchmarks. Kmeans is the same benchmark

as the one studied by Prokopec et al. [69].

Tracer benchmark is a raytracer written idiomatic Scala using an object-oriented representa-

tion for the Scene that includes the use of Scala collection’s lists, ranges, and iteration over

them.

Brainfuck benchmark is a naive interpreter of the Brainfuck [58] esoteric programming lan-

guage. It exercises recursive descent parsing and interpretation based on pattern matching

95

Chapter 7. Performance Evaluation

of a hierarchy of case classes. The interpreter runs a program that generates the lyrics of a

programming folklore song 99 Bottles of Beer [48].

Gcbench is a binary trees benchmark by Boehm and Weiser [26] that is commonly used to

evaluate the throughput of the garbage collectors.

Rsc [29] is a command-line tool that computes signatures information for Scala programs.

It parses Scala source code into an abstract syntax tree and constructs a graph of semantic

information that describes it. Our benchmark uses Rsc to compute signatures for a regular

expression engine based on RE2 [32].

7.4 Methodology

For each of the benchmarks, we record 4000 in-process iterations over 20 independent runs.

We record all measurements without discarding any of the data early on.

Barrett et al. [17] suggests that at least 2000 in-process iterations are required to evaluate VM-

based language implementations. We audited the performance results of all of the benchmarks

(Appendix A) running on the HotSpot JVM and concluded that our benchmarks require up to

2500 iterations to warm-up. AOT-based implementations warm-up much faster.

Our warm-up charts show a single sample execution run that contains individual data points

against the current in-process iteration number for the first 300 iterations. The data points

correspond to the pure raw data as recorded without any post-processing.

Our warmed-up performance charts show box plots of the running time of the last 1000 of

4000 iterations across the 20 runs (less is better). Box plots use quartiles for the box itself

and first and 99th percentile for the whisker lines. Any data points outside of this range are

displayed with individual dots outside the whisker ticks.

We generally do not discard outliers and keep them as explicit outlier dots on the box plots.

The only exception is No GC configuration. Given that we are only interested in looking at it as

a case of zero-overhead garbage collection, we discard results, which are over ten times slower

than the median. These results correspond to calls that memory map the next segment of 4GB

memory used for allocation (and there are no more than 32 of such data points across a single

run based on the amount of total memory on the workstation machine).

Another difference in the No GC configuration is that since it does not perform any garbage

collection, it exhausts the complete 128Gb of the available memory before the end of a single

4000 iteration run on some of the benchmarks. We adjust the number of in-process iterations

for cd (1000), kmeans (1000), gcbench (200), kmeans (2000), nbody (2000), rsc (2000). In those

cases, we discard half of the measurements to account for warm-up.

For the ahead-of-time compilation configurations, we also have a look at the binary size

96

7.4. Methodology

emitted for each benchmark. No additional post-processing steps have been performed on

the binary (such as symbol stripping), and it corresponds to the size of the direct output of the

corresponding compiler.

97

Chapter 7. Performance Evaluation
gc

b
o

u
n

ce

ri
ch

ar
d

s

p
er

m
u

te

d
el

ta
b

lu
e

tr
ac

er

js
o

n

su
d

o
ku

b
ra

in
fu

ck

cd

km
ea

n
s

n
b

o
d

y

rs
c

gc
b

en
ch

m
an

d
el

b
ro

t

ge
o

m
ea

n

none 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
commix 1.00 0.99 1.05 0.99 1.05 0.97 0.98 0.98 0.94 1.01 1.00 1.01 1.09 1.00 1.01
immix 1.02 1.03 2.33 1.14 1.60 1.71 1.27 1.35 1.29 1.27 1.05 1.25 2.21 1.01 1.34
boehm 1.03 1.06 8.69 2.23 6.05 3.00 2.33 1.81 1.98 1.31 1.42 1.79 4.46 1.01 2.16

Figure 7.1 – Baseline running time at 50 percentile, normalized by No GC, less is better.

7.5 Baseline Compilation and Garbage Collection

As the first comparison in our evaluation we consider performance of our garbage collection

strategies under the baseline compilation model (Figures 7.1, 7.2).

No GC provides a baseline to compare the other collectors against. Given that we discard

the measurements that involve memory mapping overhead, it presents a case of a garbage

collection strategy that does not incur any runtime overhead.

Fully conservative Boehm GC generally can not keep up with No GC on most of our bench-

marks. Most notably, the 50 percentile of the running time of a single iteration on permute

benchmark is over 8 times slower, while tracer gets up to 6 times slower, gcbench is over 4

times slower. Benchmarks such as mandelbrot, nbody, kmeans, cd, sudoku are relatively less

affected but are still consistently slower than the baseline. Across the whole benchmark suite,

the geometric mean suggests a 2.16 times slower performance when baseline compilation is

coupled with Boehm GC rather than the No GC.

Our initial implementation of Immix GC offers a significant performance uplift compared to

Boehm. The majority of our workloads fall within 30% overhead compared to the baseline.

Geometric mean indicated 1.34 slow-down compared to the No GC.

Finally, Commix GC shows our current best-of-breed performance. It is able to get extremely

close to the performance of the baseline compiled code in combination with No GC. Across

the benchmark suite, we see just a 1% degradation compared to our target performance. In

fact, some of the benchmarks show a slightly better runtime performance while running with

a garbage collector.

Given that Commix is our best garbage collector, we are going to use it for the remaining

performance comparisons.

98

7.5. Baseline Compilation and Garbage Collection

1 2 3 4 5 6

boehm

immix

commix

none

bounce

1.0 1.5 2.0 2.5 3.0 3.5

boehm

immix

commix

none

richards

2 4 6 8 10

boehm

immix

commix

none

permute

1.0 1.5 2.0 2.5

boehm

immix

commix

none

deltablue

2 4 6

boehm

immix

commix

none

tracer

1.0 1.5 2.0 2.5 3.0 3.5 4.0

boehm

immix

commix

none

json

1.0 1.5 2.0 2.5 3.0

boehm

immix

commix

none

sudoku

1.00 1.25 1.50 1.75 2.00 2.25

boehm

immix

commix

none

brainfuck

1.00 1.25 1.50 1.75 2.00 2.25

boehm

immix

commix

none

cd

1.0 1.2 1.4 1.6 1.8

boehm

immix

commix

none

kmeans

1.0 1.2 1.4 1.6 1.8

boehm

immix

commix

none

nbody

1.0 1.2 1.4 1.6 1.8 2.0 2.2

boehm

immix

commix

none

rsc

1 2 3 4 5

boehm

immix

commix

none

gcbench

0.995 1.000 1.005 1.010 1.015

boehm

immix

commix

none

mandelbrot

Figure 7.2 – Baseline compilation performance, less is better.
99

Chapter 7. Performance Evaluation
m

o
d

e

b
o

u
n

ce

ri
ch

ar
d

s

p
er

m
u

te

d
el

ta
b

lu
e

tr
ac

er

js
o

n

su
d

o
ku

b
ra

in
fu

ck

cd

km
ea

n
s

n
b

o
d

y

rs
c

gc
b

en
ch

m
an

d
el

b
ro

t

ge
o

m
ea

n

pgo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
aggressive 1.14 1.09 1.13 1.04 1.11 1.08 1.20 1.60 1.17 1.11 1.00 1.24 0.98 1.00 1.13

conservative 2.21 1.12 1.42 1.39 1.40 2.47 1.37 3.05 1.36 2.18 1.30 1.51 1.02 1.00 1.54
baseline 2.66 1.27 8.63 2.39 2.10 4.83 2.18 4.27 1.49 2.34 1.46 2.06 1.18 0.99 2.24

Figure 7.3 – Interflow running time at 50 percentile, normalized by Interflow with PGO, less is
better.

m
o

d
e

b
o

u
n

ce

ri
ch

ar
d

s

p
er

m
u

te

d
el

ta
b

lu
e

tr
ac

er

js
o

n

su
d

o
ku

b
ra

in
fu

ck

cd

km
ea

n
s

n
b

o
d

y

rs
c

gc
b

en
ch

m
an

d
el

b
ro

t

ge
o

m
ea

n

baseline 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
conservative 0.63 0.67 0.67 0.68 0.67 0.67 0.68 0.69 0.66 0.67 0.60 0.74 0.67 0.67 0.67

aggressive 0.70 0.79 0.81 0.82 0.82 0.86 0.97 0.90 0.82 0.82 0.69 4.56 0.80 0.80 0.92
pgo 0.64 0.71 0.72 0.69 0.71 0.76 0.73 0.61 0.77 0.70 0.63 0.94 0.73 0.74 0.72

Figure 7.4 – Interflow binary size, normalized by baseline compilation, less is better
.

7.6 Flow-sensitive and Profile-Guided Optimization

We evaluate the impact of flow-sensitive and profile-guided optimization relative to the per-

formance of the baseline compiled code we have explored earlier (Figures 7.3, 7.4, 7.5)

As an intermediate step between fully aggressive optimization and baseline compilation, we

also consider a conservative variant of Interflow that does not perform method duplication

and takes more conservative inlining decisions. Conservative mode offers the best binary

size (33% geomean improvement over baseline) due to the fact that it only performs a limited

amount of inlining.

Aggressive optimization gets us the best runtime performance in the absence of profiling

information. In particular, we see near 1.98x geomean improvement compared to the baseline-

compiled code. The increased performance comes at the cost of increased code size relative

to the conservatively optimized code, but it still close to the size of the baseline compiled code

except for Rsc benchmark.

The Rsc benchmark is an example of the worst-case impact of the method duplication in

the absence of profiling information. The benchmark uses a large hierarchy of classes that

represents abstract syntax trees. Method duplication took the opportunity to specialize some

of the methods for concrete tree subtypes at the expense of significant code size increase.

These results suggest that we may have overfitted method duplication for the best runtime

performance without enough concern for potential binary size increase.

100

7.6. Flow-sensitive and Profile-Guided Optimization

Profiling information eliminates this issue since we make inlining and duplication decisions

based on the weights attributed to methods. Moreover, when coupled with white-gray code

splitting, we are able to enjoy the best runtime performance (2.24x faster than baseline) at a

modest binary size increase (7.5% larger than the conservative mode).

101

Chapter 7. Performance Evaluation

1 2 3 4

baseline

conservative

aggressive

pgo

bounce

1.0 1.2 1.4 1.6 1.8

baseline

conservative

aggressive

pgo

richards

2 4 6 8 10

baseline

conservative

aggressive

pgo

permute

1.0 1.5 2.0 2.5 3.0 3.5

baseline

conservative

aggressive

pgo

deltablue

1.00 1.25 1.50 1.75 2.00 2.25 2.50

baseline

conservative

aggressive

pgo

tracer

2 4 6 8 10

baseline

conservative

aggressive

pgo

json

1.0 1.5 2.0 2.5 3.0

baseline

conservative

aggressive

pgo

sudoku

1 2 3 4 5

baseline

conservative

aggressive

pgo

brainfuck

1.0 1.2 1.4 1.6 1.8

baseline

conservative

aggressive

pgo

cd

1.0 1.5 2.0 2.5 3.0

baseline

conservative

aggressive

pgo

kmeans

1.0 1.2 1.4 1.6 1.8

baseline

conservative

aggressive

pgo

nbody

1.0 1.5 2.0 2.5

baseline

conservative

aggressive

pgo

rsc

1.0 1.2 1.4 1.6 1.8 2.0

baseline

conservative

aggressive

pgo

gcbench

0.99 1.00 1.01

baseline

conservative

aggressive

pgo

mandelbrot

Figure 7.5 – Performance impact of flow-sensitive and profile-guided optimization, less is
better.102

7.7. Performance relative to Native Image

b
o

u
n

ce

ri
ch

ar
d

s

p
er

m
u

te

d
el

ta
b

lu
e

tr
ac

er

js
o

n

su
d

o
ku

b
ra

in
fu

ck

cd

km
ea

n
s

n
b

o
d

y

rs
c

gc
b

en
ch

m
an

d
el

b
ro

t

ge
o

m
ea

n

interflow+pgo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
interflow 1.14 1.09 1.13 1.04 1.11 1.08 1.20 1.60 1.17 1.11 1.00 1.24 0.98 1.00 1.13

nativeimage+pgo 1.03 1.09 0.93 1.45 1.85 2.49 1.49 2.87 1.58 1.73 1.24 2.07 1.66 1.11 1.53
nativeimage 4.08 1.49 2.64 3.50 1.99 3.68 2.28 5.55 1.97 3.96 1.83 2.24 1.85 1.15 2.49

Figure 7.6 – Native Image running time at 50 percentile, normalized by Interflow with PGO,
less is better.

b
o

u
n

ce

ri
ch

ar
d

s

p
er

m
u

te

d
el

ta
b

lu
e

tr
ac

er

js
o

n

su
d

o
ku

b
ra

in
fu

ck

cd

km
ea

n
s

n
b

o
d

y

rs
c

gc
b

en
ch

m
an

d
el

b
ro

t

ge
o

m
ea

n

interflow+pgo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
interflow 1.10 1.13 1.12 1.19 1.17 1.13 1.33 1.47 1.08 1.17 1.10 4.83 1.10 1.09 1.29

nativeimage+pgo 3.63 3.62 3.66 3.90 3.61 3.50 3.66 3.67 3.69 3.74 3.63 1.21 3.62 3.50 3.37
nativeimage 3.47 3.47 3.35 3.55 3.42 3.21 3.14 3.37 3.04 3.35 3.43 1.16 3.38 3.35 3.10

Figure 7.7 – Native Image binary size, normalized by Interflow with PGO, less is better.

7.7 Performance relative to Native Image

Native Image [2] is a state-of-the art ahead-of-time compiler that takes advantage of the

Graal [86] optimizing compiler to emit whole-program optimized code. It offers support for

both purely static and profile-guided optimization. We compare both our flow-sensitive and

profile-guided results with Native Image (Figures 7.6, 7.7, 7.8).

Interflow is able to surpass the performance results by the static variant of Native Image

optimized code. Moreover, we produce smaller binaries on most benchmarks apart from the

rsc, that we have discussed earlier.

With the addition of profile-guided optimization, Interflow can outperform Native Image by

a factor of 1.53x across our benchmark suite. Moreover, we generate consistently smaller

binaries ranging from 1.2 to 3.69 times smaller on these benchmarks.

The performance gap with Native Image gets bigger on benchmarks such as gcbench, which is

sensitive to the garbage collector performance. Gcbench sees a 1.66 performance degradation

compared to Interflow results. This benchmark focuses purely on a synthetic high allocation

rate to stress out the garbage collector.

In addition to binary size and warmed-up performance, we also study individual run charts to

gain an insight into the warm-up behavior (Figure 7.9). In case of Scala Native, the warm-up

period is caused by the automatic scaling of the garbage collected heap and may lead to

performance degradation until the heap size stabilizes as seen on permute, deltablue, tracer,

103

Chapter 7. Performance Evaluation

brainfuck, and nbody benchmarks.

104

7.7. Performance relative to Native Image

1 2 3 4 5 6

nativeimage

nativeimage+pgo

interflow

interflow+pgo

bounce

1.0 1.5 2.0 2.5

nativeimage

nativeimage+pgo

interflow

interflow+pgo

richards

2.5 5.0 7.5 10.0 12.5 15.0

nativeimage

nativeimage+pgo

interflow

interflow+pgo

permute

0 5 10 15 20

nativeimage

nativeimage+pgo

interflow

interflow+pgo

deltablue

1 2 3 4 5

nativeimage

nativeimage+pgo

interflow

interflow+pgo

tracer

2 4 6 8 10

nativeimage

nativeimage+pgo

interflow

interflow+pgo

json

1.0 1.5 2.0 2.5 3.0 3.5

nativeimage

nativeimage+pgo

interflow

interflow+pgo

sudoku

2 4 6

nativeimage

nativeimage+pgo

interflow

interflow+pgo

brainfuck

1.0 1.5 2.0 2.5

nativeimage

nativeimage+pgo

interflow

interflow+pgo

cd

1 2 3 4 5 6

nativeimage

nativeimage+pgo

interflow

interflow+pgo

kmeans

1.0 1.5 2.0 2.5

nativeimage

nativeimage+pgo

interflow

interflow+pgo

nbody

1 2 3 4 5 6

nativeimage

nativeimage+pgo

interflow

interflow+pgo

rsc

1.0 1.5 2.0 2.5 3.0 3.5

nativeimage

nativeimage+pgo

interflow

interflow+pgo

gcbench

1.00 1.05 1.10 1.15

nativeimage

nativeimage+pgo

interflow

interflow+pgo

mandelbrot

Figure 7.8 – Warmed-up performance relative to Native Image, less is better.
105

Chapter 7. Performance Evaluation

0 50 100 150 200 250 300

1

2

bounce

0 50 100 150 200 250 300

1.0

1.4
richards

0 50 100 150 200 250 300

1

2

permute

0 50 100 150 200 250 300

1

2

deltablue

0 50 100 150 200 250 300

1

2

4

tracer

0 50 100 150 200 250 300

1

2

4

json

0 50 100 150 200 250 300

1

2

sudoku

0 50 100 150 200 250 300

1

2

4

brainfuck

0 50 100 150 200 250 300
1

2

4
cd

0 50 100 150 200 250 300

1

2

kmeans

0 50 100 150 200 250 300

1.0

1.4

nbody

0 50 100 150 200 250 300

1

2

4

rsc

0 50 100 150 200 250 300

1

2

gcbench

0 50 100 150 200 250 300
1.0

1.4
mandelbrot

Figure 7.9 – Warm-up performance of Interflow with PGO (gray) relative to Native Image with
PGO (black), less is better.

106

7.8. Performance relative to HotSpot JDK

b
o

u
n

ce

ri
ch

ar
d

s

p
er

m
u

te

d
el

ta
b

lu
e

tr
ac

er

js
o

n

su
d

o
ku

b
ra

in
fu

ck

cd

km
ea

n
s

n
b

o
d

y

rs
c

gc
b

en
ch

m
an

d
el

b
ro

t

ge
o

m
ea

n

interflow+pgo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
interflow 1.14 1.09 1.13 1.04 1.11 1.08 1.20 1.60 1.17 1.11 1.00 1.24 0.98 1.00 1.13

jvm-pargc 0.87 0.91 2.17 1.51 1.67 2.05 1.00 1.24 1.04 1.57 1.09 1.22 1.12 1.07 1.27
jvm-g1gc 0.88 1.29 3.28 1.97 1.77 2.14 1.04 1.33 1.10 1.72 1.09 1.37 1.11 1.07 1.42

Figure 7.10 – Warm HotSpot JVM running time at 50 percentile, normalized by Interflow with
PGO, less is better.

7.8 Performance relative to HotSpot JDK

As our final comparison, we compare Interfow’s performance with HotSpot JVM after warm-up

(Figures 7.10, 7.11).

HotSpot JVM offers several built-in garbage collectors. Parallel GC is the standard high-

throughput garbage collector that aims to provide the best performance at the expense of the

collection pause times. G1 GC [34] is a concurrent collector aims to offer decreased garbage

collector pauses at the expense of the peak throughput.

In comparison to the HotSpot with Parallel GC, the purely static code produced by Interflow in

combination with Commix GC offers 12% better geomean running time across our benchmark

suite. Using purely static optimization techniques, we are not able to match the HotSpot

performance on bounce, richards, brainfuck, cd, sudoku, and rsc benchmarks. Nevertheless,

kmeans and permute show significant performance improvements even with purely static

optimizations.

With the addition of profile-guided optimization, the geomean indicates 27% better perfor-

mance. We are able to surpass HotSpot on all benchmarks except bounce and richards.

An advantage of ahead-of-time compiled code comes from quick warm-up compared to the

just-in-time compiled runtime such as HotSpot JVM (Figure 7.12). The initial iterations can

have over 8x faster runtime performance before the code is fully optimized by the runtime.

AOT compilation offers a significant performance increase for short-lived applications such as

rsc where the JIT warm-up overhead affects the performance of a cold run.

107

Chapter 7. Performance Evaluation

0.75 1.00 1.25 1.50 1.75 2.00 2.25

jvm-g1gc

jvm-pargc

interflow

interflow+pgo

bounce

1.00 1.25 1.50 1.75 2.00 2.25

jvm-g1gc

jvm-pargc

interflow

interflow+pgo

richards

0 5 10 15 20

jvm-g1gc

jvm-pargc

interflow

interflow+pgo

permute

0 10 20 30 40

jvm-g1gc

jvm-pargc

interflow

interflow+pgo

deltablue

0 10 20 30

jvm-g1gc

jvm-pargc

interflow

interflow+pgo

tracer

2 4 6 8

jvm-g1gc

jvm-pargc

interflow

interflow+pgo

json

1.0 1.5 2.0 2.5 3.0 3.5

jvm-g1gc

jvm-pargc

interflow

interflow+pgo

sudoku

1 2 3 4

jvm-g1gc

jvm-pargc

interflow

interflow+pgo

brainfuck

1.0 1.2 1.4 1.6 1.8

jvm-g1gc

jvm-pargc

interflow

interflow+pgo

cd

1.00 1.25 1.50 1.75 2.00 2.25

jvm-g1gc

jvm-pargc

interflow

interflow+pgo

kmeans

1.0 1.2 1.4 1.6 1.8

jvm-g1gc

jvm-pargc

interflow

interflow+pgo

nbody

1.0 1.2 1.4 1.6 1.8

jvm-g1gc

jvm-pargc

interflow

interflow+pgo

rsc

1.0 1.2 1.4 1.6 1.8 2.0

jvm-g1gc

jvm-pargc

interflow

interflow+pgo

gcbench

1.00 1.02 1.04 1.06 1.08

jvm-g1gc

jvm-pargc

interflow

interflow+pgo

mandelbrot

Figure 7.11 – Warmed-up performance relative to HotSpot JDK, less is better.
108

7.8. Performance relative to HotSpot JDK

0 50 100 150 200 250 300

1
3
8

32

bounce

0 50 100 150 200 250 300

1
3
8

32

richards

0 50 100 150 200 250 300

1
3
8

32

permute

0 50 100 150 200 250 300

1
3
8

32

deltablue

0 50 100 150 200 250 300

1

3

8

32

tracer

0 50 100 150 200 250 300

1

2

4

8

16

json

0 50 100 150 200 250 300

1

2

4

8

16
sudoku

0 50 100 150 200 250 300

1

3

8

32

brainfuck

0 50 100 150 200 250 300

1

2

4

8
cd

0 50 100 150 200 250 300

1

2

4

8
kmeans

0 50 100 150 200 250 300

1

2
nbody

0 50 100 150 200 250 300

1

2

4

8

16
rsc

0 50 100 150 200 250 300

1

2

4
gcbench

0 50 100 150 200 250 300

1.0

1.4
mandelbrot

Figure 7.12 – Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with
Paralell GC (black), less is better.

109

Chapter 7. Performance Evaluation

7.9 Conclusion

In this section, we evaluated the performance of the compiled code emitted by the Scala

Native toolchain.

We have evaluated the impact of our optimizations against the baseline compiled code. Inter-

flow offers a significant performance uplift based on its purely static optimization pipeline.

The cost of the performance comes at the risk of increased binary size as seen on Rsc bench-

mark.

We observed that while the runtime impact of PGO is less pronounced than the impact of

Interflow, it is still necessary to achieve the best throughput on some of the benchmarks.

The most significant impact of profile feedback lies in better binary size thanks to improved

inlining and method duplication decisions. In fact, with profile information, we can produce

code that consistently beats baseline compilation on size and offers only a slightly binary size

increase compared to the conservative version of our optimizer.

Moreover, our evaluation shows that results demonstrated by Interflow in combination with

PGO outperform the HotSpot JVM as well as Native Image on most of our benchmarks.

110

8 Conclusion

In this thesis, we presented the complete design and implementation of the Scala Native

optimizing compiler that fulfills the following design goals (Section 1.1):

1. Startup time.

2. Peak performance.

3. Compatibility.

To achieve these goals, we rely on a whole-program optimizing compilation model.

First, we introduced a design for flow-sensitive optimizer called Interflow. It relies on a single

graph-free traversal of the whole program to perform a number of optimizations including

method duplication, partial evaluation, allocation sinking and inlining in a fused single-pass

traversal of the whole program.

Moreover, we extended the Interflow with support for profile feedback obtained through

runtime instrumentation. We proposed white-gray code splitting as an underlying framework

to reason about JIT-style speculative optimizations in the ahead-of-time setting. These tech-

niques allow us to selectively optimize hot paths of the programs while ignoring the cold paths

and optimizing them for size rather than the best runtime performance.

Finally, we evaluated the runtime performance of our implementation and compared it against

Graal Native Image and HotSpot JVM. Our evaluation suggests that our implementation

outperforms existing AOT compilers for Java. Furthermore, with the addition of the profile-

guided optimizations, we are able to outperform HotSpot JVM on most of our benchmarks.

111

A Raw Benchmark Results

In this appendix, we provide charts for complete runs of Interflow with PGO as compared to

HotSpot JDK and Native Image. The data here is presented without any post processing and

corresponds to direct measurements as obtained during our performance evaluation.

113

Appendix A. Raw Benchmark Results

0 500 1000 1500 2000 2500 3000 3500 4000

1

3

8

32

bounce

Figure A.1 – Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with
Paralell GC (black) on the bounce benchmark, less is better.

114

0 500 1000 1500 2000 2500 3000 3500 4000

1

3

8

32

brainfuck

Figure A.2 – Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with
Paralell GC (black) on the brainfuck benchmark, less is better.

115

Appendix A. Raw Benchmark Results

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

4

8
cd

Figure A.3 – Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with
Paralell GC (black) on the cd benchmark, less is better.

116

0 500 1000 1500 2000 2500 3000 3500 4000

1

3

8

32

deltablue

Figure A.4 – Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with
Paralell GC (black) on the deltablue benchmark, less is better.

117

Appendix A. Raw Benchmark Results

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

4
gcbench

Figure A.5 – Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with
Paralell GC (black) on the gcbench benchmark, less is better.

118

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

4

8

16

json

Figure A.6 – Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with
Paralell GC (black) on the json benchmark, less is better.

119

Appendix A. Raw Benchmark Results

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

4

8
kmeans

Figure A.7 – Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with
Paralell GC (black) on the kmeans benchmark, less is better.

120

0 500 1000 1500 2000 2500 3000 3500 4000

1.0

1.4
mandelbrot

Figure A.8 – Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with
Paralell GC (black) on the mandelbrot benchmark, less is better.

121

Appendix A. Raw Benchmark Results

0 500 1000 1500 2000 2500 3000 3500 4000

1

2
nbody

Figure A.9 – Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with
Paralell GC (black) on the nbody benchmark, less is better.

122

0 500 1000 1500 2000 2500 3000 3500 4000

1

3

8

32

permute

Figure A.10 – Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with
Paralell GC (black) on the permute benchmark, less is better.

123

Appendix A. Raw Benchmark Results

0 500 1000 1500 2000 2500 3000 3500 4000

1

3

8

32

richards

Figure A.11 – Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with
Paralell GC (black) on the richards benchmark, less is better.

124

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

4

8

16
rsc

Figure A.12 – Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with
Paralell GC (black) on the rsc benchmark, less is better.

125

Appendix A. Raw Benchmark Results

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

4

8

16

sudoku

Figure A.13 – Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with
Paralell GC (black) on the sudoku benchmark, less is better.

126

0 500 1000 1500 2000 2500 3000 3500 4000

1

3

8

32

tracer

Figure A.14 – Warm-up performance of Interflow with PGO (gray) relative to HotSpot JDK with
Paralell GC (black) on the tracer benchmark, less is better.

127

Appendix A. Raw Benchmark Results

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

bounce

Figure A.15 – Warm-up performance of Interflow with PGO (gray) relative to Native Image
(black) on the bounce benchmark, less is better.

128

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

4

brainfuck

Figure A.16 – Warm-up performance of Interflow with PGO (gray) relative to Native Image
(black) on the brainfuck benchmark, less is better.

129

Appendix A. Raw Benchmark Results

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

4
cd

Figure A.17 – Warm-up performance of Interflow with PGO (gray) relative to Native Image
(black) on the cd benchmark, less is better.

130

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

deltablue

Figure A.18 – Warm-up performance of Interflow with PGO (gray) relative to Native Image
(black) on the deltablue benchmark, less is better.

131

Appendix A. Raw Benchmark Results

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

gcbench

Figure A.19 – Warm-up performance of Interflow with PGO (gray) relative to Native Image
(black) on the gcbench benchmark, less is better.

132

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

4

json

Figure A.20 – Warm-up performance of Interflow with PGO (gray) relative to Native Image
(black) on the json benchmark, less is better.

133

Appendix A. Raw Benchmark Results

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

kmeans

Figure A.21 – Warm-up performance of Interflow with PGO (gray) relative to Native Image
(black) on the kmeans benchmark, less is better.

134

0 500 1000 1500 2000 2500 3000 3500 4000

1.0

1.4
mandelbrot

Figure A.22 – Warm-up performance of Interflow with PGO (gray) relative to Native Image
(black) on the mandelbrot benchmark, less is better.

135

Appendix A. Raw Benchmark Results

0 500 1000 1500 2000 2500 3000 3500 4000

1.0

1.4

nbody

Figure A.23 – Warm-up performance of Interflow with PGO (gray) relative to Native Image
(black) on the nbody benchmark, less is better.

136

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

permute

Figure A.24 – Warm-up performance of Interflow with PGO (gray) relative to Native Image
(black) on the permute benchmark, less is better.

137

Appendix A. Raw Benchmark Results

0 500 1000 1500 2000 2500 3000 3500 4000

1.0

1.4

richards

Figure A.25 – Warm-up performance of Interflow with PGO (gray) relative to Native Image
(black) on the richards benchmark, less is better.

138

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

4

rsc

Figure A.26 – Warm-up performance of Interflow with PGO (gray) relative to Native Image
(black) on the rsc benchmark, less is better.

139

Appendix A. Raw Benchmark Results

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

sudoku

Figure A.27 – Warm-up performance of Interflow with PGO (gray) relative to Native Image
(black) on the sudoku benchmark, less is better.

140

0 500 1000 1500 2000 2500 3000 3500 4000

1

2

4

tracer

Figure A.28 – Warm-up performance of Interflow with PGO (gray) relative to Native Image
(black) on the tracer benchmark, less is better.

141

Bibliography

[1] (2001). Itanium c++ abi. https://itanium-cxx-abi.github.io/cxx-abi/abi.html. Accessed:

2019-09-01.

[2] (2018). Graal native image. https://www.graalvm.org/docs/reference-manual/

aot-compilation/. Accessed: 2019-09-01.

[3] (2019). Commix: parallel mark and concurrent sweep gc. https://github.com/scala-native/

scala-native/pull/1423. Accessed: 2019-09-01.

[4] (2019). Garbage collection safepoints in llvm. https://llvm.org/docs/Statepoints.html.

Accessed: 2019-09-01.

[5] (2019). Mimal ubuntu. https://wiki.ubuntu.com/Minimal. Accessed: 2019-09-01.

[6] (2019). Mostly precise gc. https://github.com/scala-native/scala-native/pull/726. Ac-

cessed: 2019-09-01.

[7] (2019). Swift intermediate language. https://github.com/apple/swift/blob/master/docs/

SIL.rst. Accessed: 2019-09-01.

[8] Allen, F. E. (1970). Control flow analysis. In ACM Sigplan Notices, volume 5, pages 1–19.

ACM.

[9] Alpern, B., Augart, S., Blackburn, S. M., Butrico, M., Cocchi, A., Cheng, P., Dolby, J., Fink, S.,

Grove, D., Hind, M., et al. (2005). The jikes research virtual machine project: building an

open-source research community. IBM Systems Journal, 44(2):399–417.

[10] Appel, A. W. (2006). Compiling with continuations. Cambridge University Press.

[11] Arnold, M., Fink, S. J., Grove, D., Hind, M., and Sweeney, P. F. (2004a). A survey of adaptive

optimization in virtual machines. In PROCEEDINGS OF THE IEEE, 93(2), 2005. SPECIAL

ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION.

[12] Arnold, M., Fink, S. J., Grove, D., Hind, M., and Sweeney, P. F. (2004b). A survey of adaptive

optimization in virtual machines. In PROCEEDINGS OF THE IEEE, 93(2), 2005. SPECIAL

ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION.

143

https://itanium-cxx-abi.github.io/cxx-abi/abi.html
https://www.graalvm.org/docs/reference-manual/aot-compilation/
https://www.graalvm.org/docs/reference-manual/aot-compilation/
https://github.com/scala-native/scala-native/pull/1423
https://github.com/scala-native/scala-native/pull/1423
https://llvm.org/docs/Statepoints.html
https://wiki.ubuntu.com/Minimal
https://github.com/scala-native/scala-native/pull/726
https://github.com/apple/swift/blob/master/docs/SIL.rst
https://github.com/apple/swift/blob/master/docs/SIL.rst

Bibliography

[13] Bacon, D. F. and Sweeney, P. F. (1996). Fast static analysis of c++ virtual function calls.

ACM Sigplan Notices, 31(10):324–341.

[14] Bala, V., Duesterwald, E., and Banerjia, S. (2011). Dynamo: a transparent dynamic

optimization system. ACM SIGPLAN Notices, 46(4):41–52.

[15] Ball, T. and Larus, J. R. (1996). Efficient path profiling. In Proceedings of the 29th An-

nual ACM/IEEE International Symposium on Microarchitecture, MICRO 29, pages 46–57,

Washington, DC, USA. IEEE Computer Society.

[16] Barabash, K., Ben-Yitzhak, O., Goft, I., Kolodner, E. K., Leikehman, V., Ossia, Y., Owshanko,

A., and Petrank, E. (2005). A parallel, incremental, mostly concurrent garbage collector for

servers. ACM Transactions on Programming Languages and Systems (TOPLAS), 27(6):1097–

1146.

[17] Barrett, E., Bolz-Tereick, C. F., Killick, R., Knight, V., Mount, S., and Tratt, L. (2017). Virtual

machine warmup blows hot and cold. In OOPSLA. ACM.

[18] Bartlett, J. F. (1988). Compacting garbage collection with ambiguous roots. ACM SIGPLAN

Lisp Pointers, 1(6):3–12.

[19] Bezanson, J., Karpinski, S., Shah, V. B., and Edelman, A. (2012). Julia: A fast dynamic

language for technical computing. arXiv preprint arXiv:1209.5145.

[20] Blackburn, S. M., Cheng, P., and McKinley, K. S. (2004a). Myths and realities: The perfor-

mance impact of garbage collection. In ACM SIGMETRICS Performance Evaluation Review,

volume 32, pages 25–36. ACM.

[21] Blackburn, S. M., Cheng, P., and McKinley, K. S. (2004b). Oil and water? high performance

garbage collection in java with mmtk. In Proceedings. 26th International Conference on

Software Engineering, pages 137–146. IEEE.

[22] Blackburn, S. M. and Hosking, A. L. (2004). Barriers: Friend or foe? In Proceedings of the

4th international symposium on Memory management, pages 143–151. ACM.

[23] Blackburn, S. M. and McKinley, K. S. (2008a). Immix: a mark-region garbage collector

with space efficiency, fast collection, and mutator performance. In ACM SIGPLAN Notices,

volume 43, pages 22–32. ACM.

[24] Blackburn, S. M. and McKinley, K. S. (2008b). Immix: a mark-region garbage collector

with space efficiency, fast collection, and mutator performance. In ACM SIGPLAN Notices,

volume 43, pages 22–32. ACM.

[25] Blackburn, S. M., Singhai, S., Hertz, M., McKinely, K. S., and Moss, J. E. B. (2001). Pre-

tenuring for java. In ACM SIGPLAN Notices, volume 36, pages 342–352. ACM.

[26] Boehm, H.-J. and Weiser, M. (1988). Garbage collection in an uncooperative environment.

Software: Practice and Experience, 18(9):807–820.

144

Bibliography

[27] Bolz, C. F., Cuni, A., Fijalkowski, M., and Rigo, A. (2009). Tracing the meta-level: Pypy’s

tracing jit compiler. In Proceedings of the 4th workshop on the Implementation, Compilation,

Optimization of Object-Oriented Languages and Programming Systems, pages 18–25. ACM.

[28] Bothner, P. (2003). Compiling java with gcj. Linux Journal, 2003(105):4.

[29] Burmako, E. (2017). Rsc. https://github.com/twitter/rsc. Accessed: 2019-09-01.

[30] Click, C. and Cooper, K. D. (1995). Combining analyses, combining optimizations. ACM

Trans. Program. Lang. Syst., 17(2):181–196.

[31] Click, C., Tene, G., and Wolf, M. (2005). The pauseless gc algorithm. In Proceedings of the

1st ACM/USENIX international conference on Virtual execution environments, pages 46–56.

ACM.

[32] Cox, R. (2010). Regular expression matching in the wild. https://swtch.com/~rsc/regexp/

regexp3.html. Accessed: 2019-09-01.

[33] Dean, J., Grove, D., and Chambers, C. (1995). Optimization of object-oriented programs

using static class hierarchy analysis. In European Conference on Object-Oriented Program-

ming, pages 77–101. Springer.

[34] Detlefs, D., Flood, C., Heller, S., and Printezis, T. (2004). Garbage-first garbage collection.

In Proceedings of the 4th international symposium on Memory management, pages 37–48.

ACM.

[35] Doeraene, S. (2018). Cross-platform language design in scala. js (keynote). In Proceedings

of the 9th ACM SIGPLAN International Symposium on Scala, pages 1–1. ACM.

[36] Dragos, I. (2010). Compiling scala for performance.

[37] Driesen, K. and Hölzle, U. (1995). Minimizing row displacement dispatch tables. In ACM

SIGPLAN Notices, volume 30, pages 141–155. ACM.

[38] Driesen, K. and Hölzle, U. (1996). The direct cost of virtual function calls in c++. In ACM

Sigplan Notices, volume 31, pages 306–323. ACM.

[39] Duboscq, G., Stadler, L., Würthinger, T., Simon, D., Wimmer, C., and Mössenböck, H.

(2013). Graal ir: An extensible declarative intermediate representation. In Proceedings of

the Asia-Pacific Programming Languages and Compilers Workshop.

[40] Duesterwald, E. and Bala, V. (2000). Software profiling for hot path prediction: Less is

more. In Proceedings of the Ninth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS IX, pages 202–211, New York, NY,

USA. ACM.

[41] Geoffray, N., Thomas, G., Lawall, J., Muller, G., and Folliot, B. (2010). Vmkit: a substrate

for managed runtime environments. In ACM Sigplan Notices, volume 45, pages 51–62. ACM.

145

https://github.com/twitter/rsc
https://swtch.com/~rsc/regexp/regexp3.html
https://swtch.com/~rsc/regexp/regexp3.html

Bibliography

[42] Hall, C. V., Hammond, K., Peyton Jones, S. L., and Wadler, P. L. (1996). Type classes in

haskell. ACM Transactions on Programming Languages and Systems (TOPLAS), 18(2):109–

138.

[43] Hölzle, U., Chambers, C., and Ungar, D. (1991). Optimizing dynamically-typed object-

oriented languages with polymorphic inline caches. In Proceedings of the European Confer-

ence on Object-Oriented Programming, ECOOP ’91, pages 21–38, London, UK, UK. Springer-

Verlag.

[44] Huang, X., Blackburn, S. M., McKinley, K. S., Moss, J. E. B., Wang, Z., and Cheng, P. (2004).

The garbage collection advantage: improving program locality. ACM SIGPLAN Notices,

39(10):69–80.

[45] Jones, R. (1992). Tail recursion without space leaks. Journal of Functional Programming,

2(1):73–79.

[46] Kennedy, A. and Syme, D. (2001). Design and implementation of generics for the. net

common language runtime. In ACM SigPlan Notices, volume 36, pages 1–12. ACM.

[47] Klonatos, Y., Koch, C., Rompf, T., and Chafi, H. (2014). Building efficient query engines in

a high-level language. Proceedings of the VLDB Endowment, 7(10):853–864.

[48] Knuth, D. E. (1984). The complexity of songs. Communications of the ACM, 27(4):344–346.

[49] Kotzmann, T., Wimmer, C., Mössenböck, H., Rodriguez, T., Russell, K., and Cox, D. (2008).

Design of the java hotspot™ client compiler for java 6. ACM Transactions on Architecture

and Code Optimization (TACO), 5(1):7.

[50] Lattner, C. (2008). Llvm and clang: Next generation compiler technology. In The BSD

Conference, pages 1–2.

[51] Lattner, C. and Adve, V. (2004). Llvm: A compilation framework for lifelong program anal-

ysis & transformation. In Proceedings of the international symposium on Code generation

and optimization: feedback-directed and runtime optimization, page 75. IEEE Computer

Society.

[52] Leopoldseder, D., Schatz, R., Stadler, L., Rigger, M., Würthinger, T., and Mössenböck, H.

(2018a). Fast-path loop unrolling of non-counted loops to enable subsequent compiler

optimizations. In Proceedings of the 15th International Conference on Managed Languages

& Runtimes, ManLang ’18, pages 2:1–2:13, New York, NY, USA. ACM.

[53] Leopoldseder, D., Stadler, L., Rigger, M., Würthinger, T., and Mössenböck, H. (2018b).

A cost model for a graph-based intermediate-representation in a dynamic compiler. In

Proceedings of the 10th ACM SIGPLAN International Workshop on Virtual Machines and

Intermediate Languages, VMIL 2018, pages 26–35, New York, NY, USA. ACM.

146

Bibliography

[54] Leopoldseder, D., Stadler, L., Würthinger, T., Eisl, J., Simon, D., and Mössenböck, H.

(2018c). Dominance-based duplication simulation (dbds): Code duplication to enable

compiler optimizations. In Proceedings of the 2018 International Symposium on Code

Generation and Optimization, CGO 2018, pages 126–137, New York, NY, USA. ACM.

[55] Marr, S., Daloze, B., and Mössenböck, H. (2016). Cross-language compiler benchmarking:

Are we fast yet? In Proceedings of the 12th Symposium on Dynamic Languages, DLS 2016,

pages 120–131, New York, NY, USA. ACM.

[56] Mohnen, M. (2002). A graph—free approach to data—flow analysis. In International

Conference on Compiler Construction, pages 46–61. Springer.

[57] Morel, E. and Renvoise, C. (1979). Global optimization by suppression of partial redun-

dancies. Communications of the ACM, 22(2):96–103.

[58] Müller, U. (1993). Brainfuck–an eight-instruction turing-complete programming lan-

guage. http://en.wikipedia.org/wiki/Brainfuck. Accessed: 2018-06-04.

[59] Muth, R. and Debray, S. (1997). Partial inlining. Unpublished technical summary.

[60] Nuzman, D., Eres, R., Dyshel, S., Zalmanovici, M., and Castanos, J. (2013). Jit technology

with c/c++: Feedback-directed dynamic recompilation for statically compiled languages.

ACM Transactions on Architecture and Code Optimization (TACO), 10(4):59.

[61] Odersky, M., Blanvillain, O., Liu, F., Biboudis, A., Miller, H., and Stucki, S. (2017). Sim-

plicitly: Foundations and applications of implicit function types. In 45th ACM SIGPLAN

Symposium on Principles of Programming Languages, number CONF.

[62] Odersky, M. and Moors, A. (2009). Fighting bit rot with types (experience report: Scala

collections). In LIPIcs-Leibniz International Proceedings in Informatics, volume 4. Schloss

Dagstuhl-Leibniz-Zentrum für Informatik.

[63] Ossia, Y., Ben-Yitzhak, O., Goft, I., Kolodner, E. K., Leikehman, V., and Owshanko, A.

(2002). A parallel, incremental and concurrent gc for servers. In ACM SIGPLAN Notices,

volume 37, pages 129–140. ACM.

[64] Paleczny, M., Vick, C., and Click, C. (2001). The java hotspot tm server compiler. In

Proceedings of the 2001 Symposium on Java TM Virtual Machine Research and Technology

Symposium, volume 1.

[65] Pall, M. (2008). The luajit project. Web site: http://luajit. org.

[66] Petrashko, D., Ureche, V., Lhoták, O., and Odersky, M. (2016). Call graphs for languages

with parametric polymorphism. Acm Sigplan Notices, 51(10):394–409.

[67] Pettis, K. and Hansen, R. C. (1990). Profile guided code positioning. In Proceedings of the

ACM SIGPLAN 1990 Conference on Programming Language Design and Implementation,

PLDI ’90, pages 16–27, New York, NY, USA. ACM.

147

http://en.wikipedia.org/wiki/Brainfuck

Bibliography

[68] Prokopec, A., Duboscq, G., Leopoldseder, D., and Würthinger, T. (2019). An optimization-

driven incremental inline substitution algorithm for just-in-time compilers. In Proceedings

of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization, CGO

2019, pages 164–179, Piscataway, NJ, USA. IEEE Press.

[69] Prokopec, A., Leopoldseder, D., Duboscq, G., and Würthinger, T. (2017). Making collection

operations optimal with aggressive jit compilation. In Proceedings of the 8th ACM SIGPLAN

International Symposium on Scala, pages 29–40. ACM.

[70] Rastello, F. (2016). SSA-based Compiler Design. Springer Publishing Company, Incorpo-

rated.

[71] Reames, P. (2017). Falcon: an optimizing java jit. In LLVM Developers Meeting, pages

2017–10.

[72] Rompf, T. and Odersky, M. (2010). Lightweight modular staging: a pragmatic approach

to runtime code generation and compiled dsls. In Acm Sigplan Notices, volume 46, pages

127–136. ACM.

[73] Rossberg, A., Titzer, B. L., Haas, A., Schuff, D. L., Gohman, D., Wagner, L., Zakai, A., Bastien,

J., and Holman, M. (2018). Bringing the web up to speed with webassembly. Commun.

ACM, 61(12):107–115.

[74] Shabalin, D. (2019). Scala native benchmarks. https://github.com/scala-native/

scala-native-benchmarks. Accessed: 2019-09-01.

[75] Shahriyar, R., Blackburn, S. M., and McKinley, K. S. (2014). Fast conservative garbage

collection. In ACM SIGPLAN Notices, volume 49, pages 121–139. ACM.

[76] Stadler, L., Würthinger, T., and Mössenböck, H. (2014). Partial escape analysis and scalar

replacement for java. In Proceedings of Annual IEEE/ACM International Symposium on Code

Generation and Optimization, page 165. ACM.

[77] Stallman, R. (2001). Using and porting the gnu compiler collection. In MIT Artificial

Intelligence Laboratory. Citeseer.

[78] Stroustrup, B. (2000). The C++ programming language. Pearson Education India.

[79] Sujeeth, A., Lee, H., Brown, K., Rompf, T., Chafi, H., Wu, M., Atreya, A., Odersky, M., and

Olukotun, K. (2011). Optiml: an implicitly parallel domain-specific language for machine

learning. In Proceedings of the 28th International Conference on Machine Learning (ICML-

11), pages 609–616.

[80] Sujeeth, A. K., Brown, K. J., Lee, H., Rompf, T., Chafi, H., Odersky, M., and Olukotun,

K. (2014a). Delite: A compiler architecture for performance-oriented embedded domain-

specific languages. ACM Transactions on Embedded Computing Systems (TECS), 13(4s):134.

148

https://github.com/scala-native/scala-native-benchmarks
https://github.com/scala-native/scala-native-benchmarks

Bibliography

[81] Sujeeth, A. K., Brown, K. J., Lee, H., Rompf, T., Chafi, H., Odersky, M., and Olukotun, K.

(2014b). Delite: A compiler architecture for performance-oriented embedded domain-

specific languages. ACM Transactions on Embedded Computing Systems (TECS), 13(4s):134.

[82] Tene, G., Iyengar, B., and Wolf, M. (2011). C4: The continuously concurrent compacting

collector. In ACM SIGPLAN Notices, volume 46, pages 79–88. ACM.

[83] Ureche, V., Talau, C., and Odersky, M. (2013). Miniboxing: improving the speed to code

size tradeoff in parametric polymorphism translations. ACM SIGPLAN Notices, 48(10):73–92.

[84] Wimmer, C., Jovanovic, V., Eckstein, E., and Würthinger, T. (2017). One compiler: De-

optimization to optimized code. In Proceedings of the 26th International Conference on

Compiler Construction, CC 2017, pages 55–64, New York, NY, USA. ACM.

[85] Würthinger, T., Wimmer, C., Humer, C., Wöß, A., Stadler, L., Seaton, C., Duboscq, G.,

Simon, D., and Grimmer, M. (2017). Practical partial evaluation for high-performance

dynamic language runtimes. In Proceedings of the 38th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI 2017, pages 662–676, New York,

NY, USA. ACM.

[86] Würthinger, T., Wimmer, C., Wöß, A., Stadler, L., Duboscq, G., Humer, C., Richards, G.,

Simon, D., and Wolczko, M. (2013). One vm to rule them all. In Proceedings of the 2013 ACM

international symposium on New ideas, new paradigms, and reflections on programming &

software, pages 187–204. ACM.

149

Denys Shabalin
den.shabalin@gmail.com
M.S. (Ph.D. expected) Computer Science
Lausanne, Switzerland
Ukrainian Citizen

My mission is to advance the state of the art of compiler construction and managed runtimes.
In particular, I'm interested in optimizing compilers for modern high-level garbage-collected
languages.

The majority of my work has been on the Scala programming language. I designed and
implemented Scala Native, an ahead-of-time compiler and managed runtime for Scala based
on LLVM, and co-founded Scalameta, infrastructure that enables next-generation developer
tools for Scala.

Expertise

● Optimizing compilers
● Managed runtimes

Work History

● École polytechnique fédérale de Lausanne (EPFL)
Research Assistant
September 2014 — Present

My research at EPFL has been centered around Scala Native, an ahead-of-time
compiler and managed runtime for the Scala programming language built on top of the
LLVM compiler infrastructure. I designed and implemented the project from the ground
up, starting from the NIR, Scala Native’s intermediate representation.

My main focus has been on the development of the compiler infrastructure such as the
design of the compilation pipeline from Scala to LLVM IR. In particular, I've developed a
whole-program flow-sensitive optimizer called Interflow that in combination with LLVM
optimizer is 10% faster than the HotSpot JVM on the benchmark suite from our paper.
When used to optimize idiomatic Scala code, Interflow produces up to 3x faster results
than bare LLVM through a combination of type-driven flow-sensitive devirtualization,
partial escape analysis, and inlining.

151

I coordinated and supervised the design and development of a custom parallel garbage
collector that fits into Scala Native runtime based on the Immix garbage collector
design. It obtains comparable allocation rates to the parallel collector of the reference
JDK implementation while consuming significantly less memory due to its non-copying
nature.

I coordinated the open-source development of the project at large. Scala Native has
attracted over 80 contributors who have made a major impact on the work towards
library compatibility between JVM and Native implementations.

Additionally, as part of my research, I developed Scala Offheap, a library for
high-performance off-heap memory management for Scala. It's based upon an efficient
implementation of memory pools and completely eliminates the garbage collection cost
for applications that are sensitive to the GC pause times.

● Lightbend Inc. (formely Typesafe Inc.)
Software Engineer Intern
August 2013 — August 2014

As an intern at Typesafe Inc, I participated in the development of the official Scala
compiler. I designed and implemented quasiquotes — a user-friendly notation for
creating and matching abstract syntax trees that made a major impact on how users
implement macros in Scala. Quasiquotes are implemented as a compile-time
transformation that maps textual snippets of Scala code into lower-level code that
constructs or deconstructs its corresponding AST.

Moreover, I also co-founded Scalameta together with Eugene Burmako. The project has
grown to be the foundation for next-generation tools for Scala such as Scalafmt source
code formatter, Scalafix migration tool, and Metals language server, as championed by
Ólafur Páll Geirsson. I co-authored the initial design of the syntactic APIs (AST and
token level introspection and rewriting) and implemented a Scala parser that works on
top of those APIs.

● Fotobooka.com
Software Engineer Contractor
May 2011 — August 2012

Fotobooka.com is a photo album printing service that lets users compose their custom
albums using WYSIWYG software. During my work at the company, I implemented a
desktop client software for using a combination of Python and Qt technologies.

I also participated in the design and implementation of the backend software that

152

integrated the user-provided album designs into the publishers printing workflow. This
includes the devops infrastructure for the deployment of the underlying web service.

Education

● École polytechnique fédérale de Lausanne (EPFL)
Ph.D. Computer Science: September 2014 — October 2019 (expected)
M.S. Computer Science: September 2012 — June 2014

● National University of Kyiv-Mohyla Academy
B.S. Applied Mathematics: September 2008 — June 2012

Written Work and Publications

● “​Interflow: interprocedural flow-sensitive type inference and method duplication​”
Denys Shabalin, Martin Odersky. Scala Symposium 2018, St. Louis, MO, 2018.

● “​Region-based off-heap memory for Scala​”
Denys Shabalin, Martin Odersky, Technical Report, 2015.

● “​Hygiene for Scala​”
Denys Shabalin, Jason Zaugg, Martin Odersky. Master Thesis, 2014.

● “​Quasiquotes for Scala​”
Denys Shabalin, Eugene Burmako, Martin Odersky. Technical Report, 2013.

Tech Talks

● “Interflow”
Scala Symposium 2018, St Louis, MO, September 2018.

● "Scala Native"
SF Scala meetup talk, San Francisco, CA, July 2017.

● "Fast startup & low latency: pick two"
Tech talk at Scala Days 2017, Copenhagen, Denmark, June 2017.

● "Coding up your first game in Scala Native"
Live coding tech demo at Scala Matsuri 2017, Tokyo, Japan, March 2017.

153

● "Managing Your Resources"
Tech talk at Scala World 2016, Lake District, UK, 2016.

● "Scala goes Native"
Tech talk at Scala Days 2016, New York City, NY, May 2016.

● "Type-safe off-heap memory for Scala"
Tech talk at Scala Days 2015, Amsterdam, Netherlands, June 2015.

● "Quote or be quoted"
Tech talk at Scala Days 2014, Berlin, Germany, June 2014.

154

	Acknowledgements
	Abstract (English/Français)
	Contents
	List of Figures
	Introduction
	Design Goals
	Related Work
	Structure
	Contributions

	Overview
	Compilation Model
	Baseline Compilation
	Flow-sensitive Optimization
	Profile-guided Optimization
	Conclusion

	Native Intermediate Representation
	Introduction
	Language Definition
	Programs
	Definitions
	Names, Signatures and Scoping
	Instructions and Control-Flow
	Operations and Values
	Types
	Summary

	Typing
	Typing Environments
	Program and Definition Typing
	Basic Block and Terminator Typing
	Operation typing
	Value typing
	Subtyping

	Related Work
	Conclusion

	Baseline Compilation
	Introduction
	Reachability Analysis
	Summaries
	Semantic Queries
	Computing Summaries and Reachability
	Class Loading

	Lowering High-Level Operations
	Class Allocation and Garbage Collection Interface
	Memory Layout and Runtime Type Information
	Field Access
	Virtual Method Dispatch
	Instance Checks and Checked Casts
	Array Operations
	Primitive Operations
	Module Initialization
	Local Variables
	Guards

	Runtime Support for Garbage Collection
	Design Constraints
	No GC
	Boehm GC
	Immix GC
	Commix GC
	Optimizing Across Runtime Boundary

	Related Work
	Conclusion

	Interflow: Flow-sensitive Optimization
	Introduction
	Intuition
	Operations
	Intuition
	Constant Propagation
	Allocation Sinking
	Type-based Evaluation
	Canonicalization
	Code Motion
	Combination
	Redundancy Elimination
	Materialization
	Summary

	Intramethod Control-Flow
	Basic Blocks
	Terminators
	State Merging
	Block Processing

	Intermerthod Control-Flow
	Inlining
	Method Duplication and Whole-Program Traversal
	Polymorphic Calls

	Related Work
	Conclusions

	Profile-guided Optimization
	Introduction
	Intuition
	Collecting Profile Information
	Profile Information in NIR
	In-memory Profile Representation
	Profile Instrumentation

	Optimizing based on the Profile Information
	White-Gray Code Splitting
	Profile-guided Devirtualization
	Untaken Branch Pruning
	Profile-guided Inlining and Method Duplication
	Optimizing Cold and Hoisted Methods
	Profile-guided Native Code Generation

	Related Work
	Conclusion

	Performance Evaluation
	Environment
	Configurations
	Benchmarks
	Methodology
	Baseline Compilation and Garbage Collection
	Flow-sensitive and Profile-Guided Optimization
	Performance relative to Native Image
	Performance relative to HotSpot JDK
	Conclusion

	Conclusion
	Raw Benchmark Results
	Bibliography
	Curriculum Vitae

