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Positron Emission Tomography and ultrasound.

That none of these items found a place in this thesis is a testament to the co-
hesiveness, and ultimately significance, of the results that do and to the power
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Abstract

Many scientific inquiries in natural sciences involve approximating a spher-
ical field –namely a scalar quantity defined over a continuum of directions–
from generalised samples of the latter (e.g. directional samples, local averages,
etc.). Such an approximation task is often carried out by means of a convex
optimisation problem, assessing an optimal trade-off between a data-fidelity
and regularisation term. To solve this problem numerically, scientists typically
discretise the spherical domain by means of quasi-uniform spherical point sets.
Finite-difference methods for approximating (pseudo-)differential operators on
such discrete domains are however unavailable in general, making it difficult
to work with generalised Tikhonov (gTikhonov) or generalised total variation
(gTV) regularisers, favouring physically admissible spherical fields with smooth
and sharp variations respectively.

To overcome such limitations, canonical spline-based discretisation schemes
have been proposed. In the case of gTikhonov regularisation, the optimality of
such schemes has been proven for spherical scattered data interpolation prob-
lems with quadratic cost functionals. This result is however too restrictive for
most practical purposes, since it is restricted to directional samples and Gaus-
sian noise models. Moreover, a similar optimality result for gTV regularisation
is still lacking.

In this thesis, we propose a unified theoretical and practical spherical approx-
imation framework for functional inverse problems on the hypersphere S

d�1.
More specifically, we consider recovering spherical fields directly in the contin-
uous domain using penalised convex optimisation problems with gTikhonov
or gTV regularisation terms. Our framework is compatible with various mea-
surement types as well as non-differentiable convex cost functionals. Via novel
representer theorems, we characterise the solutions of the reconstruction prob-
lem for both regularisation strategies. For gTikhonov regularisation, we show
that the solution is unique and can be expressed as a linear combination of
the sampling linear functionals –modelling the acquisition process– primitived
twice with respect to the gTikhonov pseudo-differential operator. For gTV reg-
ularisation, we show that the solutions are convex combinations of spherical
splines with less innovations than available measurements. We use both results
to design canonical spline-based discretisation schemes, exact for gTikhonov
regularisation and with vanishing approximation error for gTV regularisation.



We propose efficient and provably convergent proximal algorithms to solve the
discrete optimisation problems resulting from both discretisation schemes. We
illustrate the superiority of our continuous-domain spherical approximation
framework over traditional methods on a variety of real and simulated datasets
in the fields of meteorology, forestry, radio astronomy and planetary sciences.
The sampling functionals, cost functions and regularisation strategies consid-
ered in each case are diverse, showing the versatility of both our theoretical
framework and algorithmic solutions.

In the last part of this thesis finally, we design an efficient and locally conver-
gent algorithm for recovering the spatial innovations of periodic Dirac streams
with finite rates of innovation, and propose a recurrent neural-network for
boosting spherical approximation methods in the context of real-time acoustic
imaging.

Keywords: functional inverse problem, spherical approximation, spherical splines,
generalised Tikhonov regularisation, generalised total variation regularisation,
representer theorems, continuous-domain recovery, canonical discretisation, prox-
imal algorithms, geomathematics, environmental sciences, radio astronomy, plan-
etary sciences, acoustic imaging



Résumé

Dans le domaine des sciences naturelles, de nombreuses investigations scien-
tifiques nécessitent l’approximation d’un champ sphérique –à savoir une quan-
tité scalaire définie sur un continuum de directions– à partir d’échantillons
généralisés de ce dernier (par exemple des échantillons directionnels, des
moyennes locales, etc.). Une telle approximation s’effectue souvent en pra-
tique par la résolution d’un problème d’optimisation convexe, visant à obtenir
un compromis optimal entre un terme de fidélité aux données et un terme de
régularisation. Pour résoudre numériquement ce problème d’optimisation, les
scientifiques discrétisent souvent le domaine sphérique au moyen de collec-
tions finies de directions distribuées de manière quasi uniforme. En général, de
tels domaines discrets ne permettent pas l’approximation d’opérateurs (pseudo-
)différentiels par la méthode des différences finies. Cela rend donc les régular-
isations de type Tikhonov généralisée (gTikhonov) et variation totale général-
isée (gTV) difficiles à mettre en oeuvre. Ces deux stratégies de régularisation
ont tendance à produire des solutions aux propriétés physiques intéressantes,
avec notamment des variations lisses pour gTikhonov et abrupte mais peu
nombreuses pour gTV.

Pour pallier à ces limitations, des schémas de discrétisation canoniques util-
isant des splines ont été proposés. L’optimalité de ces schémas a été montrée
dans le cadre de la régularisation gTikhonov, pour des problèmes d’interpolation
sphériques avec fonction de coût quadratique. Ce résultat est néanmoins trop
restrictif dans la plupart des cas pratiques, car limité à des échantillons di-
rectionnels et des modèles de bruit Gaussiens. De plus, un résultat similaire
pour la régularisation gTV reste à montrer, ce qui limite l’utilisation de cette
dernière par les praticiens.

Dans cette thèse, nous proposons un cadre d’approximation sphérique unifié,
à la fois théorique et pratique, pour les problèmes fonctionnels inverses définis
sur l’hyperpshère S

d�1. Plus spécifiquement, nous considérons la reconstruc-
tion de champs sphérique directement dans le domaine continu, faisant us-
age de problèmes d’optimisation convexes pénalisés au moyen de termes de
régularisation gTikhonov et gTV. Notre formulation est compatible avec de
nombreux types de mesures, ainsi qu’avec des fonctions de coût convexes
et potentiellement non différentiables. Par l’intermédiaire de théorèmes de
représentation inédits, nous caractérisons les solutions des problèmes de re-



construction pour les deux stratégies de régularisation. Pour la régularisation
gTikhonov, nous montrons que la solution est unique et peut être écrite comme
une combinaison linéaire des fonctionnelles d’échantillonnage –modélisant le
processus d’acquisition– primitivées deux fois par rapport à l’opérateur pseudo-
différentiel utilisé dans le terme de régularisation gTikhonov. Pour la régu-
larisation gTV, nous montrons que les solutions peuvent être écrites comme
combinaison convexes de splines sphériques dont les innovations sont en nom-
bre inférieur au nombre de mesures disponibles.

Nous utilisons ces résultats pour construire deux schémas de discrétisation
canoniques basés sur des splines, l’un exact pour la régularisation gTikhonov
et l’autre approximatif mais avec erreur controlée pour la régularisation gTV.
Nous proposons de plus des algorithmes proximaux efficients pour résoudre les
problèmes d’optimisation discrets résultant de ces deux schémas de discrétisa-
tion. Pour illustrer la supériorité de ces méthodes d’approximation sphérique en
domaine continu par rapport aux méthodes conventionnelles, nous les testons
sur de nombreux jeux de données, à la fois simulés et réels, issus des domaines
suivant: météorologie, foresterie, radioastronomie et planétologie. Les fonction-
nelles d’échantillonnage, fonctions de coût et stratégies de régularisation con-
sidérés dans ces cas sont diverses et variés, montrant la versatilité de notre
cadre théorique ainsi que de nos solutions algorithmiques.

Dans la dernière partie de cette thèse finalement, nous construisons un al-
gorithme efficient et convergeant localement pour estimer les innovations spa-
tiales de signaux périodiques à taux d’innovation finis, et proposons un réseau
neuronal récurrent pour accélérer les méthodes d’approximation sphérique
dans le cadre d’un problème d’imagerie acoustique en temps réel.

Mots clés: problème inverse fonctionnel, approximation sphérique, splines sphéri-
ques, régularisation Tikhonov généralisée, régularisation par variation totale
généralisée, théorèmes de représentation, reconstruction en domaine continu,
discrétisation canonique, algorithmes proximaux, géographie mathématique, sci-
ences de l’environ- nement, radioastronomie, planétologie, imagerie acoustique.
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1
Introduction

1 Environmental Motivation
The human population has increased by 35% over the last 25 years, reaching an
unprecedented size of 7 billion individuals. This ever-growing number exerts
considerable stress on Earth’s fragile ecosystem, pushed every year beyond
capacity in an attempt to satisfy the needs of the population. In December
2017, W. Ripple et al. [149] published, with the support of more than 15’000
scientists from all over the world, an alarming manifesto declaring a state of
ecological emergency and urging humanity to take a series of 13 concrete steps
to ensure a sustainable future. Their manuscript studied the evolution of key
environmental indicators over the past 25 years, and outlined troubling trends
with potentially irreversible consequences on Earth’s climate and biodiversity:

• Freshwater is becoming a scarce resource, with per capita availability
reduced by 26%.

• Land use for agricultural and industrial production, cities, and transporta-
tion infrastructures has increased dramatically, with more than 1.2 mil-
lion square kilometres of forest lost, a surface area equivalent to that of
South Africa.

• Greenhouse gases emissions have doubled as a result of burning fossil
fuels, hence accelerating the pace of global warming.

• The biosphere has entered the sixth mass extinction event in 540 million
years, with a 29% drop in the population of vertebrate species, many of
which are destined for extinction by the end of the century.

This unprecedented ecological crisis stresses the need for improved mathemat-
ical tools for Earth sciences –called geomathematics [60]– allowing scientists
to monitor more accurately the planet’s health. This task notably involves
recording and inferring the temporal and spatial evolution of various natural
phenomena occurring at a global scale, such as land and sea surface tempera-
tures, natural hazards (droughts, floods...), or population dynamics of various
life forms. Since the Earth’s surface deviates from a sphere by less than 0.4% of
its radius [60], such natural phenomena are often modelled as spherical fields,
e.g. functions, measures, or distributions defined over a continuum of directions.
A typical scientific inquiry consists then in approximating the spherical field
modelling a particular phenomenon using finitely many observations of the
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(a) Temperature distribution at the
surface of the globe (illustration
purposes only).

(b) Meteorological stations (dots),
and corresponding density heatmap
(shades of blue).

(c) Global tree density function at
the surface of the globe (illustration
purposes only).

(d) Tree counts in patches of size
5� ⇥ 5� (' 300’000 km2 at equator).

Figure 1.1: Examples of spherical approximation problems encountered in Earth
sciences. Figs. 1.1a and 1.1b: the goal is to recover the unknown global temperature
distribution Fig. 1.1a from temperature records of non-uniformly distributed weather stations
in Fig. 1.1b. Figs. 1.1c and 1.1d: the goal is to recover the unknown tree density function
Fig. 1.1c from low resolution tree counts in patches of size 5� ⇥ 5� displayed in Fig. 1.1d. The
illustrative temperature distribution in Fig. 1.1a was generated from average daytime surface
temperatures for November 2016, obtained by thermal infrared measurements from NASA’s
satellites [171]. Similarly, the theoretical tree density distribution in Fig. 1.1c was constructed
from the Leaf Area Index (LAI) map [169], estimating the density of the canopy from satellite
observations. Finally, the weather station locations were obtained from OSCAR/Surface,
WMO’s official repository [196], and the tree counts simulated as independent Poisson
realisations of an undersampled LAI map.

latter, collected by a linear sensing device.
For example, one may wish to recover the instantaneous temperature dis-

tribution at the surface of the Earth from various temperature records col-
lected by weather stations scattered across the globe (see Figs. 1.1a and 1.1b).
Mathematically speaking, this can be seen as an interpolation problem with
non-uniform spatial samples – Fig. 1.1b shows that there is indeed a higher
concentration of weather stations in western countries than in developing
countries or over the oceans. Similarly, the distribution of trees at the surface
of the globe is often modelled as a spatial point process [144, 161, 172]. Global
tree density maps [45] –crucial in forestry to fight deforestation and illegal

2



2 Spherical Approximation: An Overview 3

logging– are then obtained by estimating the intensity function of the point pro-
cess (see Fig. 1.1c for an illustration). In this case however, the data no longer
consists of spatial samples as in the previous meteorological example. Indeed,
tree density maps are typically constructed from global surveys that count the
number of trees in large geographical zones tiling the globe, either on the
ground with human agents or remotely by analysing satellite images. These
surveys are of course very expensive and tedious to conduct, and hence have
necessarily limited accuracy (see Fig. 1.1d). Obtaining high-resolution density
maps as in Fig. 1.1c from such datasets thus requires the use of advanced
spherical approximation methods such as those proposed in this thesis.

2 Spherical Approximation: An Overview
Many scientific inquiries in natural sciences, such as environmental and plan-
etary sciences [45, 101, 195], acoustics [142] or astronomy [120, 133, 163],
involve approximating a spherical field –a scalar quantity such as a function or
measure defined over a continuum of directions, from a finite number of mea-
surements acquired by probing sensors. During the reconstruction task, the
physical evidence is compared to some prior model of the unknown spherical
field, reflecting the analyst’s a priori beliefs about the latter. In practice, a trade-
off between fidelity to the data and compliance with this prior is assessed via a
composite convex optimisation problem, linear combination of a cost functional
and a regularisation term. Popular regularisation strategies include generalised
Tikhonov (gTikhonov) or generalised total variation (gTV) [72], which favour
physically admissible spherical fields with smooth and sharp variations respec-
tively. Since spherical fields encountered in nature are continuous and hence
have infinitely many degrees of freedom, scientists often constrain the approx-
imation problem using discretisation schemes, which help reducing the number
of degrees of freedom to something more manageable, ideally comparable to
the size of the available data. For Euclidean domains, it is for example com-
mon practice to approximate the continuum by means of discrete uniformly
distributed point sets, typically forming regular rectangular grids.1 The popu- 1 This discretisation

scheme is sometimes
called pixelisation in
visual computing.

larity of such domain discretisation schemes can be primarily explained by
their simplicity and computational conveniency. Indeed, signals defined over
rectangular grids admit a natural representation as multi-dimensional arrays,
a data structure commonly used in computer science for computation, storage
and visualisation purposes.

Unfortunately, the sphere manifold structure makes it much more difficult
to discretise by means of uniformly distributed point sets. For example, points
gridded regularly on the azimuth-elevation domain [0, 2⇡] ⇥ [�⇡/2,⇡/2] are
highly non-uniformly distributed at the surface of the sphere, with a much
higher concentration of points near the poles (see Fig. 1.2a). As a matter of
fact, uniform spherical point sets are only known [142, Chapter 3] for fixed
numbers of points: 4, 6, 8, 12 and 20. They are respectively obtained from
the vertices of the five Platonic solids: the tetrahedron, cube, octahedron, do-
decahedron and icosahedron. For arbitrary numbers of points, spherical point
sets with quasi-uniform distribution have been proposed [67, 78, 142]. The

3
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(a) Equal-angle
discretisation.

(b) Fibonacci
discretisation.

(c) Cubic discretisation.

(d) HEALPix
discretisation.

(e) Discretisation by
means of zonal basis
functions.

Figure 1.2: Examples of discretisation schemes on the sphere, with an approximate
resolution of 200 for each scheme. Figs. 1.2a to 1.2d show examples of non-uniform (Fig. 1.2a)
and quasi-uniform (Figs. 1.2b to 1.2d) spherical point sets (marked by black dots). Fig. 1.2e on
the other hand, shows an example of parametric discretisation by means of bell-shaped zonal
basis functions. The equal-angle point set in Fig. 1.2a is obtained by gridding the
azimuth-elevation domain. The point set in Fig. 1.2b is called the Fibonacci lattice, and can be
generated as explained in [66]. The point sets in Figs. 1.2c and 1.2d are obtained from the cell
centroids of the cubic and HEALPix spherical tessellations respectively. The cubic tessellation is
obtained by projecting the pixelated faces of a cube onto the sphere. The HEALPix tessellation,
very popular in cosmology and astronomy, is constructed by hierarchically subdividing the
faces of a dodecahedron [67].

spherical Voronoi diagrams of the latter typically tile the sphere with near-
regular polygonal tiles,2 see for example Fig. 1.2. Unfortunately, quasi-uniform2 In practice,

quasi-uniform
spherical point sets
are actually often
constructed from
centroids of spherical
tessellation cells.

spherical point sets are significantly more complicated to work with as they
are not easily represented by array-like data-structures. Moreover, derivatives
and more generally pseudo-differential operators are difficult to approximate
on quasi-uniform spherical point sets [30, 48], making it cumbersome to work
with gTikhonov and gTV priors.

The difficulty in designing domain discretisation schemes for the sphere has
led scholars to consider alternative parametric discretisation schemes, where
the unknown spherical field is constrained to a finite dimensional functional
space, typically spanned by zonal basis functions3[61, 65, 79, 91, 126], i.e.3 Zonal basis

functions are the
spherical analogs of
radial basis functions
[201], used for
scattered data
interpolation in
Euclidean settings.

functions with rotational invariance around a particular central direction on
the sphere. The majority of zonal basis functions used in practice take the form
of positive and smooth bell-shaped functions, sharply decaying to zero as the
angular distance from their central direction increases (see Fig. 1.2e). They
possess moreover many useful properties, particularly convenient for practical

4
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purposes:
• They are identical, spatially localised and highly symmetric, and thus

easy to evaluate and amenable to sparse, parallel computations.
• Their overlapping supports and strong regularity make them well-suited

for approximating smooth natural phenomena.
• Their centres can be positioned arbitrarily at the surface of the sphere,

permitting for example the concentration of more zonal basis functions
in regions more susceptible of welcoming the signal.

• Strictly positive definite zonal basis functions [65] are all linearly inde-
pendent, irrespective of the chosen centres [14]. This guarantees a non-
redundant representation and limits the risk of numerical instability.

• They are particularly well-suited for scattered data interpolation prob-
lems [61, 79, 126] where the spatial samples to interpolate may be non-
uniformly distributed.

This last fact is probably the main reason for their wide adoption in the litera-
ture. As a matter of fact, some zonal basis functions are not merely well-suited
but canonical to spherical scattered data interpolation. This is notably the case
for a specific type of zonal functions, called spherical splines [125], which arise
naturally as solutions of interpolation problems on the sphere. As an illustra-
tion, consider the simplest interpolation problem where one wishes to find
all maximally smooth functions with prescribed values {y1, . . . , yL} ⇢ R at
directions {r1, . . . , rL} ⇢ S

2. The relevant notion of smoothness is of course
application dependent, but is generally enforced by seeking an interpolant
with minimal generalised Tikhonov (gTikhonov) norm, induced by some lin-
ear, self-adjoint and strictly positive definite pseudo-differential operator D . In
mathematical terms, the prototypical interpolation problem can be formulated
as:

V = arg min
f2HD

{kDfk2 such that f(ri) = yi, i = 1, . . . , L} , (1.1)

where the search space HD is an appropriately chosen reproducing kernel
Hilbert space (RKHS) so that all the quantities involved in (1.1) are well-
defined. It is then possible to show that there exists a unique maximally smooth
interpolant V = {f?}, and that the latter has exactly L degrees of freedom.
Moreover, the maximally smooth interpolant f? can be expressed [125, Section
6.3] as a spherical spline4 with knots coinciding with the sampling directions 4 With respect to the

operator D
2.{r1, . . . , rL} ⇢ S

2. The L spline weights can moreover be recovered by solving
a square linear system [125, Section 6.3]. This result is quite remarkable, since
it provides us with a canonical discretisation scheme operating in a lossless fash-
ion: the infinite-dimensional optimisation problem (1.1) is transformed into
an equivalent finite-dimensional optimisation problem, amenable to numerical
optimisation. Theorem 6.40 in [125, Section 6.4.2] generalises this result to
the smoothing spline approximation problem:

V = arg min
f2HD

(
LX

i=1

|yi � f(ri)|2 + �kDfk22

)
, (1.2)
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used as an alternative to (1.1) in the context of noisy spatial samples, since it
is less prone to overfitting.

Unfortunately, both problems (1.1) and (1.2) are too restrictive for most
spherical approximation tasks encountered in practice. This is for example the
case when the measurements are corrupted by non Gaussian noise –hence
requiring a more general cost functional than a quadratic one– or do not con-
sist in directional samples of the spherical field, but rather in local averages
or more generally filtrations of the latter. In addition, gTikhonov-regularised
optimisation problems à la (1.1) and (1.2) suffer from two main drawbacks:
they tend to produce overly smooth interpolants and are too sensitive to the
sampling locations {r1, . . . , rL} ⇢ S

2. This is a general behaviour of smooth
spline approximation even in the Euclidean setting [72], which can be ex-
plained in part by the fact that the gTikhonov regularising norm is a weighted
L

2 norm. The latter favours indeed functions with relatively smooth varia-
tions, rendering the spline interpolant incapable of adapting to rapid changes
in the data. To overcome this limitation scholars have, motivated by empirical
studies [185], advocated the use of generalised total variation (gTV) regulari-
sation norms, promoting functions with relatively sparse but potentially sharp
variations, as often encountered in natural phenomena. However, representer
theorems [28, 29, 57, 72, 179] characterising the form of the solutions yielded
by the use of such regularisation strategies are, to date, unadapted to spherical
geometries (see Section 5 for a discussion on prior art). For this reason, and in
contrast with most fields of signal processing, total variation based penalties
are still very much unexplored in spherical setups. As explained in greater
detail in Section 3, one of the goals of this thesis is to close this theoretical gap
and promote the wider use of such recovery methods across the community of
geomathematicians.

3 Contributions of this Thesis

A primary goal of this thesis is to offer a unified theoretical and practical
approximation framework for gTikhonov and gTV regularised infinite dimen-
sional inference on the hypersphere S

d�1 of arbitrary dimension d � 2. Out
of concern for making the content of this thesis accessible to a wider audi-
ence, care has been taken in thoroughly interpreting and analysing the stated
results and their assumptions, with a particular focus on their practical im-
plications. Multiple real-life examples from environmental sciences and radio
astronomy are moreover considered. The main contributions of this thesis are
listed hereafter and, in agreement with the subtitle of this thesis, classified into
three categories: theory, algorithms and applications. A partial summary of the
contributions is also available in Table 1.1. For simplicity of exposition, our
theoretical results are stated here in the particular case of spline-admissible,
self-adjoint and invertible pseudo-differential operators D (see Chapter 4 for
details).

6



3 Contributions of this Thesis 7

Regularisation gTikhonov gTV

Representer
Theorems

Abstract
Theorem 5.3,
Corollary 5.6

Theorem 2.12

Continuous
Domain

Theorem 5.3 Theorem 5.4

Discrete
Domain

Theorem 6.7 Theorem 6.8

Generalised Sampling
Proposition 5.1,

Lemma 5.5
Propositions 5.2 and A.1,

Lemma 5.7

Discretisation Theorem 6.2 (exact) Theorem 6.5 (approx.)

Algorithms
PDS Algorithms 7.3 and 7.7 Algorithms 7.5, 7.9 and 7.10
APGD Algorithms 7.4 and 7.8 Algorithm 7.6

Applications (Chapter 9)
Meteorology 1,

Planetary Sciences 4
Meteorology 1, Forestry 2,

Radio Astronomy 3

Table 1.1: Summary of the various contributions of this thesis (Chapters 10 and 11 excluded).

3.1 Theory
3.1.1 Representer Theorems
The main theoretical contributions of this thesis are representer theorems. The
latter characterise the forms and degrees of freedom of the solutions to con-
vex optimisation problems formulated over various duality pairs of finite and
infinite dimensional Hilbert or Banach spaces. The novel representer theorems
established in this thesis are discussed hereafter in order of appearance.

(a) Abstract Representer Theorems
In Chapter 2, we establish abstract representer theorems pertaining to pe-
nalised convex optimisation in abstract Hilbert and Banach spaces. The latter
serve as foundations to the various representer theorems of Chapter 5 for func-
tional inverse problems on the sphere with gTikhonov and gTV regularisation.

First, Theorem 2.9 considers a generic penalised convex optimisation prob-
lem formulated over the topological dual B

0 of some Banach space B. The
penalised optimisation problem takes the form of a sum between a convex cost
functional and a strictly convex penalty term, related to the (strictly convex)
dual norm on B

0 via a (strictly) convex and strictly increasing function. The
measurement process is moreover modelled by means of linear sampling func-
tionals in the predual B of B

0. This penalised optimisation problem is shown
to admit a unique solution, related to a certain linear combination of the sam-
pling linear functionals via the isometric duality map between B and B

0. This
result is based on [177, Theorem 5], which is established on a different set of
assumptions,5 slightly more restrictive for practical purposes.6 In the Hilbert 5 Theorem 5 of [177]

assumes a strictly
convex cost functional
and convex penalty
term.
6 Indeed, some of the
cost functionals
commonly used in
practice are not
strictly convex.

case, we choose B = H
00 and B

0 = H and obtain Corollary 2.10, which
shows that the unique solution of the penalised optimisation problem is the
image by the linear Riesz map of a certain linear combination of the sampling
linear functionals. The proofs of the spherical representer theorems from Chap-
ter 5 pertaining to gTikhonov regularisation are all based on Corollary 2.10,
which can be seen as an abstract formulation of the latter.

7
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In Theorem 2.12 then, we relax the assumption of strict convexity on the
penalty term. More precisely, we consider a convex cost functional and penalty
term as well as a non strictly convex search space B

0. In this case, we show that
the solution set of the penalised optimisation problem is nonempty and the
(weak⇤) closed convex hull of extreme points, taking the form of linear combina-
tions of at most L extreme points of the regularisation ball, where L denotes
the number of available linear measurements. The proof of this result is based
on [177, Theorem 5], [72, Proposition 8] and [28, Theorem 3.1]. Note that, in
the case where the cost functional is strictly convex, it is also possible to invoke
[177, Theorem 5] and characterise the solution set in terms of the duality map
as before. Such a characterisation is however much less practical, since the
duality map for a non strictly convex search space B

0 is set-valued, and often
unknown. The proofs of the spherical representer theorems from Chapter 5
pertaining to gTV regularisation are all based on Theorem 2.12, which can be
seen as an abstract formulation of the latter.

(b) Continuous-Domain Representer Theorems for Spherical Approximation
In Chapter 5, we propose two representer theorems –Theorems 5.3 and 5.4,
for functional penalised Tikhonov (FPT) and functional penalised basis pur-
suit (FPBP) problems respectively. These two classes of optimisation problems
are envisioned for solving spherical approximation problems as in Section 1,
formulated as functional linear inverse problems on the hypersphere S

d�1. FPT
and FPBP problems essentially seek spherical functions, measures or distribu-
tions minimising an optimal trade-off between a convex cost functional and a
gTikhonov or gTV penalty term respectively. To accommodate various measure-
ments types, both classes of optimisation problems are built upon a convenient
generalised sampling framework, modelling the measurement process in terms
of sampling linear functionals.

First, Theorem 5.3 shows that FPT problems admit a unique solution with
finite degrees of freedom. This solution is moreover given by a linear combi-
nation of the sampling linear functionals primitived twice w.r.t. the invertible
pseudo-differential operator D involved in the definition of the gTikhonov
regularisation term. In the specific case of directional sampling, we show in
Corollary 5.6 that the solution can be characterised as a spherical D

2-spline,
with knots coinciding with the sampling directions. Theorem 5.3 can hence
be thought as a generalisation to arbitrary convex cost functionals and mea-
surement types of the classical spherical approximation results [125, Theorems
6.30 and 6.40] discussed in Section 2.

Theorem 5.4 then, shows that the solution sets of FPBP problems can be
characterised geometrically as the (weak⇤) closed convex hull of their extreme
points. These extreme points take moreover the form of spherical D-splines
with sparse innovations –i.e. fewer degrees of freedom than the total number
of measurements– and unknown knots. Corollary 5.8 specifies this result to
the specific case of directional interpolation.

Note that Theorems 5.3 and 5.4 are both formulated under the assumption
of an invertible pseudo-differential operator D in the gTikhonov and gTV reg-
ularisation terms respectively. With this assumption, Theorems 5.3 and 5.4

8
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can indeed be obtained as corollaries of Corollary 2.10 and Theorem 2.12 re-
spectively. In practice however, some pseudo-differential operators, such as the
Laplace-Beltrami operator �Sd�1 , are non-invertible. In Remarks 5.5 and 5.8
we show how such operators can be brought into the scope of Theorems 5.3
and 5.4 respectively, if properly regularised on their nullspaces.

(c) Discrete-Domain Representer Theorems for Spherical Approximation
In Section 2 of Chapter 6, we propose two representer theorems –Theorems 6.7
and 6.8 – for FPT and FPBP problems over discrete domains taking the form
of equidistributed spherical point sets. The conclusions of both theorems are
analogous to those of their continuous-domain counterparts, Theorems 5.3
and 5.4 respectively.

3.1.2 Continuous Sampling Functionals
In order for FPT and FPBP problems to be well-posed, the sampling linear
functionals modelling the acquisition system must be continuous w.r.t. the
particular topology7 chosen over the search space. In other words, the sampling 7 For FPT problems,

the search space is
equipped with its
canonical Hilbert
topology, while for
FPBP problems the
search space is
equipped with the
weak⇤ topology
defined in Section 1.3
of Chapter 2.

linear functionals must belong to the topological dual of the search space.
In the case of gTikhonov regularisation, we characterise in Proposition 5.1

the topological dual of the search space in terms of the regularising pseudo-
differential operator D . In Lemma 5.5, we consider the special case of direc-
tional sampling and provide a sufficient condition on the spectral growth order
of D so that all Dirac measures are included in this topological dual.

In the case of gTV regularisation, the topological dual of the search space
is more difficult to characterise entirely. Since the search space of an FPBP
problem is itself a topological dual, it is however possible to characterise the
predual of the search space, which can be embedded in the topological dual
of the search space if the latter is equipped with the weak⇤ topology.8 We 8 Again, see

Section 1.3 of
Chapter 2 for more
details.

do so in Proposition 5.2, therefore characterising a subset of sampling linear
functionals compatible with a particular gTV regularisation norm. Similarly
to FPT problems, we moreover provide in Lemma 5.7 and Proposition A.1
sufficient conditions on the spectral growth order of the regularising pseudo-
differential operator D such that all Dirac measures and square-integrable
functions are included in the predual.

3.2 Practical Aspects & Algorithms
3.2.1 Canonical Search Space Discretisation Schemes
In Chapter 6, we leverage Theorems 5.3 and 5.4 from Chapter 5 in order to
derive canonical search space discretisation schemes for gTikhonov and gTV
regularisation respectively. Such schemes convert FPT and FPBP problems
into simple finite dimensional optimisation problems –amenable to numerical
optimisation– by restricting their search spaces to well chosen finite dimen-
sional subspaces.

For FPT problems, we propose first to restrict the search space to the span of
the sampling linear functionals primitived twice w.r.t. the regularising pseudo-
differential operator. This discretisation, suggested by Theorem 5.3, is shown
in Theorem 6.2 to be exact, in the sense that the resulting finite dimensional

9
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optimisation problem is strictly equivalent to the original infinite dimensional
FPT problem.

For FPBP problems, we then propose a search space discretisation scheme
based on quasi-uniform D-splines, i.e. splines whose knot sets form quasi-
uniform spherical point sets [78]. This discretisation scheme is motivated by
Proposition 6.4, which shows that, under mild conditions on the pseudo-differential
operator D , quasi-uniform D-splines can approximate arbitrarily well most so-
lutions of FPBP problems9 when the number of knots tends to infinity. In9 Of course with gTV

regularisation norms
induced by D .

Theorem 6.5 finally, we show that the finite dimensional problem resulting
from this search space discretisation is a classical penalised basis pursuit (PBP)
problem [178].

3.2.2 Algorithms for Spherical Approximation
In Chapter 7, we propose to solve the various discrete optimisation problems
from Chapter 6 by means of provably convergent fully-split proximal itera-
tive methods [134], which only involve simple matrix-vector multiplications
and proximal steps. We treat the most general case where the cost function
is proximable but not necessarily differentiable with the primal-dual splitting
method (PDS) introduced by Condat in his seminal work [43]. In the simpler
(yet prevailing in practice) case where the cost functional is also differentiable
and with Lipschitz continuous derivative, we leverage an optimal first-order
method called accelerated proximal gradient descent (APGD) [16, 134], with
faster convergence rate than the PDS method. Table 7.2 page 133 summarises
the various algorithms presented in Chapter 7.

3.2.3 Practical Spherical Splines
Chapter 8 discusses suitable choices of pseudo-differential and spherical splines
for practical purposes. We recommend the use of Wendland and Matérn pseudo-
differential operators, whose Green kernels have simple closed-form expres-
sions and good localisation in space. The latter have moreover spectra equiv-
alent to those of Sobolev operators D� = [Id � �Sd�1 ]� , � > (d � 1)/2, often
used in functional analysis.

3.2.4 Cadzow Plug-and-Play Gradient Descent
In Chapter 10,10 we introduce a non-convex optimisation algorithm, baptised10 The material

presented in
Chapter 10 is the
result of joint work
with A. Besson, P.
Hurley and M.
Vetterli, and is the
topic of [162],
currently under
submission.

Cadzow plug-and-play gradient descent (CPGD), which estimates the spatial
innovations of a periodic Dirac stream with finite rate of innovation [25] from
generalised measurements of the latter. The algorithm is extremely simple and
very efficient, outperforming the state-of-the-art algorithm proposed for this
task in [130]. Unlike the latter, CPGD is moreover provably locally convergent.
This algorithm could notably be used for the purpose of estimating extreme
point solutions to FPBP problems formulated over the circle S

1. It has however
much wider applicability.

3.3 Applications
To demonstrate the versatility of our spherical approximation framework, we
put it to the test in Chapter 9 on a mix of real and simulated data originating

10
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from a variety of real-life spherical approximation problems encountered in
environmental sciences, radio astronomy and planetary sciences.11 A summary 11 Interactive

versions of the
spherical maps
produced in
Chapter 9 are
available at the
following link:
matthieumeo.github.io

of all experiments investigated in this chapter is available in Table 9.1 page
146. Finally in Chapter 11 we show, in the context of acoustic imaging, how the
convergence speed of the proximal algorithms from Chapter 7 can be “boosted”
by means of recurrent neural-networks, notably for the purpose of real-time
imaging.

3.3.1 Environmental Sciences
(a) Meteorology
In Section 1 of Chapter 9, we reconstruct a global map of sea surface tem-
perature anomalies from recordings collected by drifting floats of the ARGO
fleet [7, 98]. Such maps are used in environmental sciences to monitor global
climate change as well as manage the population of marine species and ecosys-
tems particularly sensitive to fluctuations in the water temperature. We com-
pare in this context continuous-domain and discrete-domain recovery methods,
for both choices of regularisation gTikhonov and gTV.

(b) Forestry
In Section 2.3 of Chapter 9, we build global density maps of trees and wildfires
across the globe for the year 2016, using tree and fire counts recorded by
NASA’s Aqua and Terra satellites. Tree density maps are used in environmental
sciences to monitor deforestation and illegal logging, as well as assess the
amount of vegetal photosynthesis. Similarly, wildfire maps allow scientists to
better understand atmospheric chemistry and its impact on climate. Because
of the Poisson-like distribution of count data, we investigate the use of KL-
divergence as a cost functional.

3.3.2 Radio Astronomy
In Section 3 of Chapter 9, we propose recovering full-sky intensity maps from
the raw-measurements of radio telescopes such as Planck [2]. Such maps dis-
play the intensity (or equivalently the temperature) of every astronomical radio
source across the celestial sphere. Using an FPBP problem with KL-divergence
as cost functional, we obtain sky intensity maps with far greater resolution
than the standard dirty maps outputted by radio telescopes.

3.3.3 Planetary Sciences
In Section 4 of Chapter 9, we build global distribution maps of radioactive ele-
ments at the surface of the Moon, using actual data collected by NASA’s Lunar
Prospector (LP) probe [101, 103]. Such maps, called elemental abundance maps,
are used by scientists to retrace the Moon’s geologic history [101]. The recon-
struction is performed by means of an FPT problem with `2-ball cost function.
For comparison purposes, we also provide the abundance map obtained with
the state-of-the-art Pixon method [141], reproduced from [195].

11
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3.3.4 Real-Time Acoustic Imaging
In Chapter 11,12 we propose a recurrent neural network for real-time re-12 The material

presented in
Chapter 11 is the
result of joint work
with S. Kashani, P.
Hurley and M.
Vetterli, and is the
topic of [166].

construction of acoustic camera spherical maps. The network, dubbed Deep-
Wave, is both physically and algorithmically motivated: its recurrent architec-
ture mimics the iterations from proximal algorithms, and its parsimonious
parametrisation is based on the natural structure of acoustic imaging problems.
Each network layer applies successive filtering, biasing and activation steps to
its input, which can be interpreted as generalised deblurring and sparsification
steps. Our real-data experiments show DeepWave has similar computational
speed to the state-of-the-art delay and sum (DAS) imager with vastly superior
resolution. While developed primarily for acoustic cameras, DeepWave could
easily be adapted to other applications with real-time imaging requirements.

4 Organisation of this Thesis
This thesis is organised as follows. In Part I, we lay down the theoretical foun-
dations of our functional approximation framework:

• In Section 1 of Chapter 2, we introduce the concept of duality in topolog-
ical vector spaces, central to the generalised sampling framework used
in Chapter 5 to model linear measurements of spherical fields.

• In Section 2 of Chapter 2, we establish abstract representer theorems
characterising the form of the solutions to a variety of penalised convex
optimisation problems defined over Hilbert or Banach spaces.

• In Chapter 3, we review important notions from Fourier analysis on the
hypersphere, namely spherical harmonics and spherical zonal functions.

• In Chapter 4, we use these notions of harmonic analysis to define hyper-
spherical splines, which can be thought of as primitives –w.r.t. a certain
pseudo-differential operator– of Dirac streams with finite innovations.

In Part II, we use the various concepts from Part I to perform infinite dimen-
sional inference on the hypersphere:

• In Section 1 of Chapter 5, we introduce functional inverse problems on
the hypersphere.

• In Section 2 of Chapter 5, we consider regularising functional inverse
problems by means of generalised Tikhonov (gTikhonov) and generalised
total variation (gTV) norms.

• In Section 3 of Chapter 5, we establish representer theorems for FPT and
FPBP problems, which are functional inverse problems with gTikhonov
and gTV regularisation respectively.

• In Chapter 6, we use Theorems 5.3 and 5.4 to design two canonical
search space discretisation schemes, exact for gTikhonov regularisation and
with vanishing approximation error for gTV regularisation. We moreover
investigate and compare ourselves to alternative domain discretisation
schemes, traditionally favoured by practitioners.

In Part III, we discuss practical aspects of the spherical approximation frame-
work from Part II:

• In Chapter 7, we design efficient and provably convergent proximal algo-
rithms for all discrete optimisation problems considered in Chapter 6.

12



5 Representer Theorems in the Literature 13

We moreover propose rules of thumb for setting their various hyper-
parameters and provide the proximal operators of most common cost
functionals.

• In Chapter 8, we discuss the use of Wendland and Matérn pseudo-differen-
tial operators when designing gTikhonov and gTV penalties, and their
convenient properties for practical purposes.

• In Chapter 9, we test the spherical approximation framework from Part II
and novel algorithms from Chapter 7 on a variety of real and simulated
datasets, coming from the fields of meteorology, forestry, radio astronomy
and planetary sciences. The sampling functionals, cost functionals and
regularisation strategies considered in each case are very diverse, show-
ing the versatility of both our theoretical framework and algorithmic
solutions.

In Part IV, we discuss further topics and conclude:
• In Chapter 10, we design Cadzow plug-and-play gradient descent (CPGD),

an efficient and locally convergent algorithm for recovering the spatial
innovations of periodic Dirac streams with finite rates of innovation. This
algorithm is envisioned as an alternative to the quasi-uniform spline dis-
cretisation scheme proposed in Chapter 6 for gTV regularised functional
inverse problems.

• In Chapter 11, we design the DeepWave RNN for purposes of real-time
acoustic imaging.

• In Chapter 12, we reflect back on the trajectory of this thesis and outline
a few prospective research avenues building on top of the material of
this work.

In Part V finally, we provide in Appendices A to C supplementary material to
Chapters 9 to 11 respectively, including proofs, additional experiments and
results.

5 Representer Theorems in the Literature

In this section, we review the most notable representer theorems proposed in
the literature for gTikhonov and gTV regularisation, and discuss their limita-
tions in the context of spherical approximation. A summary of this section is
provided in Table 1.3 page 18.

5.1 gTikhonov Regularisation
Representer theorems for gTikhonov regularisation are better known in the
context of statistical learning over reproducing kernel Hilbert spaces [93, 156].
Their origin can be traced back to the pioneering work of Kimeldorf and Wahba,
who characterised in [93] the solutions of gTikhonov-penalised least-squares
problems à la (1.2) in generic RKHSs. This result notably gave rise to smooth-
ing spline representer theorems in non-parametric regression [69], such as
[125, Theorems 6.30 and 6.40] in the spherical setup. Originally limited to
quadratic cost functionals, the work of Kimeldorf and Wahba was later ex-
tended to arbitrary cost functionals and more general gTikhonov-based penal-

13
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ties by Schölkopf, Herbrich, and Smola in [156]. More recently, Unser, Fageot
et al. considered in a series of publications [10, 72] more general forms of
measurements than spatial samples –not covered by the RKHS setup assumed
in the previously cited works. More specifically, Gupta, Fageot and Unser con-
sidered in [72] gTikhonov-penalised convex optimisation problems for solving
functional inverse problems over R

d. Just as in Theorem 5.3 of this thesis,
they considered arbitrary convex cost functionals and linear measurements.
Unlike Theorem 5.3 however, they do not assume that the gTikhonov pseudo-
differential operator is invertible, and allow it to have a finite dimensional
nullspace. The same setup is investigated by Badoual, Fageot and Unser in
[10], in the context of functional inverse problems involving periodic functions
–i.e. with domains isomorphic to S

1. In both cases, the conclusions of their
representer theorems are very similar to those of Theorem 5.3 derived in this
thesis. Unfortunately, both results were shown for the domains R

d and S
1 ex-

clusively, and do not cover hyperspherical domains S
d�1 for d � 3. Note that

the representer theorems proposed in [10, 72] were derived from the classical
Hilbert result [191, Theorem 16.1]. As explained in Remark 2.3, Corollary 2.10
used in this thesis to derive Theorem 5.3 can be seen as a generalisation of
[191, Theorem 16.1] to more general cost functionals than indicator functions
of convex sets.

5.2 gTV Regularisation

Inspired by the pioneering work of Fisher and Jerome in [56], Unser et al.
have investigated in a series of papers [46, 72, 179] gTV-regularised func-
tional inverse problems over Rd. As here, they consider a generalised sampling
framework, compatible with a great variety of linear measurements. Similarly
to the gTikhonov case, they moreover consider gTV pseudo-differential opera-
tors with finite dimensional nullspaces.

The conclusions of their representer theorem in [179] –derived for Euclidean
domains only– are analogous to the ones of Theorem 5.4, proposed in this
thesis for spherical domains. In subsequent publications [46, 72], the authors
proposed canonical discretisation schemes as well as numerical algorithms for
approximating extreme point solutions of gTV-penalised convex optimisation
problems. In [72], they consider a discretisation based on cardinal splines
of the gTV pseudo-differential operator, with uniform knots chosen over a
dense grid. In [46], they propose a numerically stabler discretisation scheme,
based this time on multi-resolution B-splines with refinable grid sizes. In both
cases they solve the resulting discrete optimisation problem with a two-stage
procedure leveraging proximal gradient descent and the simplex algorithm. In
contrast with the proximal algorithms proposed in this thesis, this optimisation
procedure is however limited to differentiable cost functionals with Lipschitz-
continuous derivatives. While remarkably generic, their spline approximation
framework is only valid for functions defined over Rd, and cannot be used in
the spherical setting.

In a subsequent work [57], Flinth et al. proposed an alternative proof of
the representer theorem proposed in [179]. Their proof is based on a limit

14
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argument, considering nested finite dimensional discretisations of the domain
⌦ ⇢ R

d based on finer and finer uniform rectangular grids. They claim that
such an approach, presented in the Euclidean case for the sake of simplicity,
could easily be adapted to domains more general than R

d, such as the torus
or any separable, locally compact topological space. They specify however
that such an extension would require modifying adequately the discretisation
scheme to the specific geometry of the domain, without giving additional de-
tails on how this could be achieved canonically. Unfortunately, such a task may
be very complex if even possible at all for geometries such as the sphere. In-
deed, discretising the sphere by means of nested quasi-uniform point sets with
finer and finer resolution is, as previously discussed, a nontrivial problem.

More recently, Boyer et al. [28] and Bredies et al. [29] have independently
shown that the solutions to infinite dimensional optimisation problems with
convex regularisers are convex combinations of extreme points of the regu-
lariser level sets. This result applies notably to gTV regularisers with not only
scalar but also vector pseudo-differential operators such as the gradient. This
is in contrast with the previously cited works which were all limited to scalar
pseudo-differential operators such as the Laplace-Beltrami operator. While
theoretically applicable to spherical geometries, their result neither addresses
existence conditions nor characterises the minimal search space (and its cor-
responding predual) associated to a certain gTV norm. This is problematic for
practical purposes, where it is crucial to know if a given optimisation prob-
lem admits a solution or understand which sampling linear functionals are
compatible with a specific choice of gTV penalty.

Finally, Unser [177] established a Banach representer theorem with very
broad applicability. Unlike the previously cited results, this representer theo-
rem relies on the notion of duality map, which generalises the Hilbert notion
of Riesz map to Banach spaces. More precisely, it shows that the solutions of
convex regularised inverse problems are contained in the image by a certain
duality map of a linear combination of the sensing linear functionals. As ac-
knowledged by the author, this result is however of limited use in the context
of gTV regularisation, since the duality map is unknown, nonlinear and set-
valued.

6 Notation and Terminology
Throughout the manuscript, we adopt the following conventions:

• We use the term spherical field to refer, depending on the context, to
functions, measures or generalised functions [180] defined over the sphere
S
d�1 for any dimension13 d � 2. In full generality, one shall think at a 13 Of course the cases

d = 2, 3 will be
particularly
prevailing in real-life
applications.

spherical field as an element of some infinite-dimensional Banach space
⌫ 2 B.

• It is traditional to call the 1-sphere S
1 ⇢ R

2 a circle, the 2-sphere S
2 ⇢ R

3

a sphere and the (d � 1)-sphere S
d�1 ⇢ R

d, d � 2 a hypersphere. For
the sake of simplicity, we break with tradition and use the appellation
“sphere” agnostic to the underlying dimension. Moreover, we denote by
ad the area of the unit sphere S

d�1, d � 2, given in general by: ad =

15
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Sets (V denotes a set)

N,Z,R,R+,C
Positive integers, integers, real numbers,
positive real numbers and complex numbers.

R Extended real line: R [ {�1,+1}.
[[1, L]] {1, . . . , L}
;, B,B Empty set, Borel set, Borel algebra.

�V,V�
Sets of extreme points and interior points of
V convex.

P(V),VT
,#V

Powerset, closure w.r.t. the topology T , and
cardinality of V.

Functions and Operators

Id,r Identity and gradient operators.
exp, ln (also log) Exponential and natural logarithm functions.
cos, sin, arccos, arcsin Cosine, sine and their reciprocal functions.
sinc Sinc function.
Jn, jn Bessel and spherical Bessel functions.

Probability

E[X] Expectation of a random variable X.
N (µ,�2), Poisson(�),�2(N) Normal, Poisson and chi-square distributions.
QF (↵) Quantile function of a distribution F .

Miscellaneous

o,O,!,⌦,⇥ Landau notations.
',⇠=, := Approximate equality, isomorphism, definition.
�nm Kronecker delta.
�k 2 R

n k-th element of the canonical basis of Rn.

Table 1.2: Miscellaneous notations used throughout this thesis.

2⇡d/2/�(d/2), with � denoting the Gamma function. We have notably
a2 = 2⇡ and a3 = 4⇡.

• Vectors and matrices are written in bold face, in an attempt to make finite-
dimensional quantities more apparent. The adjoint,14 Moore-Penrose14 In the specific case

of real and complex
matrices A, we
denote the adjoint by
AT and AH ,
respectively.

pseudo-inverse, range and nullspace of a linear operator � are denoted by
�⇤, �†, R(�) and N (�) respectively. For scalars z 2 C finally, we denote
by z̄, |z|,R(z), I(z) the conjugate, modulus, real part and imaginary part
of z respectively.

• A function F : CN ! R [ {�1,+1} is called convex if

8x,y 2 C
N , 8✓ 2 [0, 1] : F (✓x + (1� ✓)y)  ✓F (x) + (1� ✓)F (y),

(1.3)

16



6 Notation and Terminology 17

and strictly convex if

8x 6= y 2 C
N , 8✓ 2 [0, 1] : F (✓x + (1� ✓)y) < ✓F (x)+(1�✓)F (y).

(1.4)
If moreover, F (x) > �1 for all x 2 C

N and D = {x 2 C
N : F (x) <

+1} 6= ;, then F is called a proper convex function.15 15 In short, a convex
function is proper if
its domain is
nonempty and it
never attains �1.

• Let (X , T ) be a topological space. A function F : X ! R [ {�1,+1}
is said lower semi-continuous (lwsc)16 at x0 2 X if for every y < F (x0)

16 w.r.t. the topology
T on X .

there exists a neighborhood U of x0 such that F (x) > y for all x 2 U . A
function is lwsc i.f.f. all of its lower level sets

�
{x 2 X : F (x)  y}, y 2 R

 

are closed in T . When X is a metric space, we assume the metric topology
as underlying topology and do not specify it explicitly.

• Other miscellaneous notations used throughout this thesis are provided
in Table 1.2.

17
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I
In this part, we lay down the theoretical foundations of the spherical functional
approximation framework from Part II. Some of the highlights of this part are
the following:

• In Section 1 of Chapter 2, we introduce the concept of duality in topolog-
ical vector spaces, central to the generalised sampling framework used
in Chapter 5 to model linear measurements of spherical fields.

• In Section 1.5.3 of Chapter 2, we define and provide a dual characteri-
sation of the total variation norm for regular Borel measures. The latter
generalises the discrete `1 norm to continuous setups, and will be used
in Chapter 5 as a sparsity-promoting regularisation norm.

• In Section 2 of Chapter 2, we establish abstract representer theorems
characterising the form of the solutions to a variety of penalised convex
optimisation problems defined over Hilbert or Banach spaces.

• In Chapter 3, we review important notions from Fourier analysis on
the hypersphere, namely spherical harmonics and spherical zonal func-
tions.

• In Chapter 4, we use these notions of harmonic analysis to define hyper-
spherical splines, which can be thought of as primitives –w.r.t. a certain
pseudo-differential operator– of Dirac streams with finite innovations.

Theoretical
Foundations





2
Functional Analysis Primer

1 Duality in Topological Vector Spaces

In order to approximate a spherical field, modelled here as a generic element The main reference for
this section is
Chapter 3 of [180].

f of a vector space B, one must first collect evidence of the latter, often by
sensing it via a linear acquisition device. As we shall see in Chapter 5, these
linear measurements can in general be modelled as the outcomes of a collec-
tion of device-specific linear functionals acting on the object f of interest. In
this section, we investigate the structure of the space of all linear functionals
associated with a given vector space B, with a special focus on those that yield
well-defined measurements when acting on any element f 2 B.

1.1 Schwartz Duality Product
For a vector space B over a scalar field C, the space of all linear functionals
f : B ! C is a vector space called the algebraic dual and is denoted by B

⇤. It
is customary to write the action of a linear functional f 2 B

⇤ onto an element
h 2 B by means of a bilinear map h·|·i : B

⇤ ⇥ B ! C called the Schwartz
duality product defined as

h·|·i :

(
B

⇤ ⇥B ! C,

(f, h) 7! hf |hi := f(h).
(2.1)

The bra-ket notation used in (2.1) to denote the Schwartz duality product is
common in quantum mechanics and was introduced by Paul Dirac in 1939. Its
resemblance to the inner product is not fortuitous, and is motivated by Hilbert
space theory. Indeed, for a Hilbert space H , every linear functional in H

⇤

can be written as an inner product with some unique element g of H , i.e.
8f 2H

⇤, 9!g 2H such that hf |hi = hh, gi
H

(see Theorem 2.3).

1.2 Topological Dual
Any sensible acquisition system should react continuously to variations in its
input. It seems hence reasonable to require that the linear functionals mod-
elling it be continuous as well. The subset of continuous linear functionals in
the algebraic dual is a linear subspace, called the topological dual1 and de- 1 In the manuscript,

the shorthand
expression “dual
space” is sometimes
used to refer to the
topological dual
space.
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noted by B
0. In infinite dimensions, not all linear functionals are guaranteed

to be continuous so we have in general B
0 ⇢ B

⇤. Moreover, since continuity
is a topological notion, there can exist multiple topological duals of a given
space B depending on the topology chosen on the latter. In the special case
where (B, k ·k) is a Banach space equipped with its canonical normed topology,
continuous linear functionals can be characterised as:

B
0 =

(
f 2 B

⇤ : |||f ||| := sup
h2B,khk=1

|hf |hi| <1
)
. (2.2)

The norm |||·||| : B
0 ! R+ used in (2.2) makes B

0 a Banach space and is called
the dual norm induced by the norm k · k on B. In plain words, (2.2) states that
continuous linear functionals are bounded2 linear functionals in B

⇤. The latter2 Note that in finite
dimensions things are
much less
complicated since
every linear
functional is bounded
and all norms are
topologically
equivalent, hence
B

⇤ = B
0.

will hence produce bounded measurements, well-defined for any input ⌫ 2 B.

Vocabulary 2.1 — Predual and Duality Pair. A topological vector space B and
its topological dual B

0 are said to form a duality pair. Moreover, B is called the
predual of B

0.

1.3 Weak⇤ and Strong Topologies on the Topological Dual

Throughout, we will sometimes have cause to define a topology on the topologi-
cal dual B0. Two popular choices are the strong topology and the weak⇤ topology.
The strong topology is the Banach topology induced by the dual norm defined
in (2.2). This is also the topology of uniform convergence. Indeed, a sequence
{fn, n 2 N} ⇢ B

0 converges towards a limit functional f⇤ 2 B
0 with respect

to the strong topology if and only if (i.f.f.):

lim
n!+1

|||f⇤ � fn||| = lim
n!+1

sup
h2B, khk=1

|hf⇤ � fn|hi| = 0.

With this topology, the closed balls are necessarily not compact when B is infinite
dimensional. As we shall see, this renders the strong topology cumbersome to
work with. For this reason, we will prefer the weak⇤ topology, or topology of
pointwise convergence, which does not suffer from similar issues (see Theorem
2.1). It is the coarsest topology on B

0 such that elements h 2 B are continuous
functionals on B

0. It is induced by the family of seminorms:The weak⇤ topology is
the coarsest topology
such that all elements
of the predual are
continuous linear
functionals on the
dual.

k · kh :

(
B

0 ! R+

f 7! kfkh = |hf |hi|
8h 2 B.

Convergence with respect to the weak⇤ topology is pointwise. Indeed {fn, n 2
N} ⇢ B

0 converges towards a limit functional f⇤ 2 B
0 with respect to the

weak⇤ topology i.f.f.

lim
n!1

|hf⇤ � fn|hi| = 0, 8h 2 B.

22



1 Duality in Topological Vector Spaces 23

Clearly, uniform convergence is stronger than pointwise convergence, since:

|hf⇤ � fn|hi|  khk|||f⇤ � fn|||, 8h 2 B,

from the very definition of the dual norm. Throughout, we will employ expres-
sions such as “weak⇤ compact”, “weak⇤ closed” or “weak⇤ convergent” when it
is important to make obvious the underlying topology with respect to which
the topological notions should be understood.

1.3.1 Banach-Alaoglu Theorem
The Banach-Alaoglu theorem [153, p. 68] is one of the main reasons for our
interest in the weak⇤ topology. The latter provides us with an easy characteri-
sation of weak⇤ compact sets:

Theorem 2.1 — Banach-Alaoglu [153]. Let B be a normed topological vector
space. Then the closed unit ball of its dual space B

0 is weak⇤ compact.

The following proposition [179, Proposition 9] is a direct consequence of The- Weak⇤ compact sets
are weak⇤ bounded
and weak⇤ closed.

orem 2.1:

Proposition 2.2 — Compactness in the Weak⇤ Topology [179]. Let B be a
normed topological vector space. Then:

• Weak⇤ compact sets of B
0 are weak⇤ bounded3 and weak⇤ closed. In par- 3 i.e. bounded w.r.t.

the seminorms
inducing the
weak⇤ topology.

ticular, for every ✏ > 0, the closed ball B✏ = {f 2 B
0 : |||f |||  ✏} is

weak⇤ compact in B
0.

• If we assume further that B is separable, then any weak⇤ closed and bounded
set of B

0 is metrisable and hence sequentially weak⇤ compact. In particular,
if {fn}n2N ⇢ B

0 is a sequence bounded w.r.t. the operator norm |||·||| then
we can extract a convergent subsequence from it with limit in B

0.

1.4 Bidual and Reflexive Spaces
When equipped with the strong topology induced by the dual norm |||·|||, the
topological dual B

0 becomes a normed vector space of its own. It is then
possible to consider its own topological dual, called bidual and denoted by
B

00:

Definition 2.1 — Bidual. Let (B, k · k) be some normed vector space and
(B0, |||·|||) its topological dual equipped with the strong topology. Then, the
bidual B

00 is defined as the topological dual of (B0, |||·|||):

B
00 =

(
g 2 (B0)⇤ : |||g|||00 := sup

f2B0,|||f |||=1
|hg|fi| <1

)
, (2.3)

where the duality product is defined over (B0)⇤ ⇥B
0. The bidual norm |||·|||00

is the norm induced by the dual norm |||·|||.

When B ⇠= B
00 (i.e. B and B

00 are isometrically isomorphic), we say that the
space B is reflexive. For example, any Hilbert space H is reflexive. This is

23
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due to the Riesz-Fréchet representation theorem [59] –one of the most famous
results from functional analysis– which shows that every Hilbert space H is
isometrically isomorphic to its topological dual:

Theorem 2.3 — Riesz-Fréchet Representation Theorem [59]. Let (H , h·, ·i
H

)
be a Hilbert space and (H 0, |||·|||) its topological dual equipped with dual
norm |||·||| induced by k · kH defined in (2.2). Then for every continuous
linear functional ⌫ 2H

0 there exists a unique '⌫ 2H such that

⌫(h) = h⌫|hi = hh,'⌫iH , 8h 2H . (2.4)

We have moreover |||⌫||| = k'⌫kH .

The theorem yields the identification H ⇠= H
0: we say that H is self-dual.Hilbert spaces are

self-dual and reflexive. Moreover, the duality pair (H ,H 0) is trivially reflexive since H
00 ⇠= (H 0)0 ⇠=

H
0 ⇠= H . In general, Banach spaces are not always reflexive, as discussed in

Sections 1.5.1 and 1.5.3 respectively.

1.5 Duality Pairs for Common Functional Spaces

In this section we provide well-known duality pairs for common functional
spaces.

1.5.1 Duality Pairs of Lebesgue Spaces

The Riesz representation theorem [59] identifies duality pairs among the Lebesgue
spaces (L p(X ), k · kp), 1  p < +1:

Theorem 2.4 — Riesz Representation Theorem [59]. Let (X , µ) be a measur-
able space, 1  p < +1 and q the conjugate of p, i.e. 1/p+1/q = 1. Then for
every continuous linear functional f 2 (L p(X ), k · kp)0 there exists a unique
'f 2 (L q(X ), k · kq) such that

f(h) = hf |hi =

Z

X

h(x)'f (x)µ(dx) = hh,'f iX , 8h 2 L
p(X ).

We have moreover |||f ||| = k'fkq, where |||·||| is the dual norm induced by
k · kp on (L p(X ), k · kp)0.

When X = S
d�1 and µ is the Lebesgue measure on S

d�1, one obtains in partic-
ular:

• (L 2(Sd�1), k · k2)0 ⇠= (L 2(Sd�1), k · k2) with dual norm k · k2. The space
L

2(Sd�1) is self-dual and hence reflexive.
• (L p(Sd�1), k·kp)0 ⇠= (L q(Sd�1), k·kq) with dual norm k·kq, for 1 < p, q <

+1. These Lebesgue spaces are examples of reflexive Banach spaces.
• (L 1(Sd�1), k · k1)0 ⇠= (L 1(Sd�1), k · k1) with dual norm k · k1. Unlike

the previous cases however, L
1(Sd�1) is not reflexive: (L 1(Sd�1), k · k1)

is not4 the dual of (L 1(Sd�1), k · k1).4 As a matter of fact,
it can be shown that
L

1(Sd�1) has no
predual.
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1 Duality in Topological Vector Spaces 25

1.5.2 Schwartz Functions and Generalised Functions
The space of generalised functions or distributions is almost the largest func-
tional space that can be defined on S

d�1. It contains as subspaces the Lebesgue
spaces as well as the spaces of continuous functions or regular Borel measures.
It is denoted S

0(Sd�1) and is defined as the topological dual of the space of
Schwartz functions5 S (Sd�1) = C

1(Sd�1), equipped with the metric topology 5 The hypersphere
being compact and
bounded, Schwartz
functions simply
reduce to infinitely
smooth functions.

generated by the family of norms:

k · kn,1 :

(
C

1(Sd�1)! R+

h 7! khkn,1 := k(Id��Sd�1)nhk1
8n 2 N,

where �Sd�1 is the Laplace-Beltrami operator on S
d�1 (see Section 1 of Chap-

ter 3 for a definition of the Laplace-Beltrami operaor). The Schwartz space is
a locally convex Fréchet space6. It is not normable and in particular not com- 6 Fréchet spaces

generalise Banach
spaces with metrics
that do not originate
from norms.

plete with the supremum norm (indeed, it is dense in the space of continuous
functions). Note that since the metric topology on S (Sd�1) is not induced by
a norm7, it is not possible to define a strong topology on S

0(Sd�1). We will
7 As a matter of fact,
it is possible to show
that S (Sd�1) is not
normable [180].

hence always assume the weak⇤ topology as canonical topology on S
0(Sd�1).

1.5.3 Continuous Functions, Measures and Total Variation Norm
The Riesz-Markov theorem in its most general form establishes a duality pair
between vanishing continuous functions taking values in some locally compact
Hausdorff topological space X and C-valued regular Borel measures defined over
the Borel sets of X . When X is compact and bounded, as it is the case for
the hypersphere S

d�1, the theorem simplifies a little as vanishing continuous
functions simply become continuous functions. In the specific case X = S

d�1,
it reads [59, 68]: Spherical continuous

functions and
spherical regular Borel
measures form a
non-reflexive duality
pair.

Theorem 2.5 — Riesz-Markov Representation Theorem – Spherical Setup.
For any continuous linear functional ⌫ on (C (Sd�1), k · k1)0, there exists a
unique C-valued regular Borel measure �⌫ on S

d�1 such that

⌫(h) = h⌫|hi =

Z

Sd�1
h(r)�⌫(dr), 8h 2 C (Sd�1).

We have moreover |||⌫||| = k�⌫kTV = |�⌫ |(X ) the total variation (see Defini-
tion 2.2) of �⌫ , where |||·||| is the dual norm induced by k ·k1 on (C (Sd�1), k ·
k1)0.

The theorem establishes hence the duality pair8 8 It is a well-known
fact however that
C (Sd�1) is not
reflexive [179].

(C (Sd�1), k · k1)0 ⇠= (M(Sd�1), k · kTV ),

where M(Sd�1) is the space of C-valued regular Borel measures on S
d�1, and

provides us with a useful dual characterisation of M(Sd�1) (see (2.2)):

M(Sd�1) ⇠=

(
⌫ 2 C (Sd�1)⇤ : sup

h2C (Sd�1), khk1=1
|h⌫|hi| < +1

)
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⇠=

(
⌫ 2 S

0(Sd�1) : sup
h2S (Sd�1), khk1=1

|h⌫|hi| < +1
)
, (2.5)

where the second isomorphism results9 from the density of Schwartz functions9 See Section 3 of
[179] for more
details on the matter,
where the authors
used an analogous
characterisation for
M(Rd).

in the space of bounded continuous functions. Equation (2.5) permits us to see
M(Sd�1) as the subspace of generalised functions with finite dual norm. The
Riesz-Markov theorem tells us moreover that this dual norm is actually given
by the total variation (TV) norm. For measures on the hypersphere, the latter
is defined as follows:

Definition 2.2 — Total Variation Norm. Let ⌫ be a complex-valued measure
on S

d�1 with Borel algebra B ⇢ P(Sd�1). The total variation of ⌫ over a
Borel set B 2 B is defined as

|⌫|(B) := sup

(
X

n2N
|⌫(Bn)| : {Bn, n 2 N} ⇢ B, [n2NBn = B, Bn \Bm = ;, n,m 2 N

)
.

The total variation norm of ⌫ is obtained for B = S
d�1:

k⌫kTV :

(
M(Sd�1)! R+

⌫ 7! |⌫|
�
S
d�1
�
,

(2.6)

where M(Sd�1) is the space of C-valued regular Borel measures on S
d�1 with

finite total variation norm.

Remark 2.1 — TV, `1 and L
1 norms. The total variation norm can be thought

as an L
1 norm for measures.10 Indeed, consider for example discrete measures of10 This motivates the

use of the TV norm as
sparsity-inducing
regularisation norm
in convex
optimisation
problems involving
measures, such as the
ones investigated in
Chapter 5.

the form:

⌫ =
nX

k=1

↵k�rk , n 2 N, {↵1, . . . ,↵n} ⇢ C, {r1, . . . , rn} ⇢ S
d�1.

Then it is easy to show that the total variation norm of ⌫ is simply the discrete `1
norm of the Dirac amplitudes arranged as a vector:

|⌫|(Sd�1) =
nX

k=1

|↵k| = k↵k1,

with ↵ := [↵1, · · · ,↵n] 2 C
n. This behaviour extends also to absolutely con-

tinuous Borel measures whose total variation is given by the continuous L
1

norm of their “derivative”.11 Indeed, if ⌫ is absolutely continuous with respect to11 We find back here
the traditional notion
of total variation in
applied fields such as
signal and image
processing [185].

the Lebesgue measure µ then, from the Radon-Nikodym theorem, ⌫ admits a
Radon-Nikodym derivative ⇢ = @⌫

@µ
2 L

1(Sd�1). We get hence from Hölder’s
inequality:

|h⌫|hi| =

����
Z

Sd�1
h(r)⇢(r)µ(dr)

����  khk1k⇢k1, 8h 2 L
1(Sd�1),

which yields, from the dual characterisation of the TV norm provided by Theo-
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rem 2.5,
|⌫|
⇣
S
d�1
⌘

= sup
h2C (Sd�1),khk1=1

|h⌫|hi|  k⇢k1,

and finally |⌫|(Sd�1) =
��� @⌫
@µ

���
1

= k⇢k1 since the bounded and continuous function
identically equal to one saturates the inequality.

1.6 Duality map

It is sometimes useful to map a Banach space B into its topological dual B
0,

so as to interpret elements of B as continuous linear functionals in B
0. This is The duality map

allows us to see
functions in a given
functional space as
linear functionals in
the dual.

typically done by means of the duality map [177] which is defined as:

Definition 2.3 — Duality Map. Let (B, k · kB) be a Banach space and B
0 its

topological dual with dual norm |||·|||. The duality map, is defined as:

JB :

(
B !P(B0),

h 7! JB(h) :=
�
⌫ 2 B

0 : khkB = |||⌫|||, h⌫|hi = khk2B
 
.

(2.7)

The pairs {(h, ⌫), ⌫ 2 JB(h)} are called dual pairs, and elements of the set
JB(h) are called Banach conjugates of h 2 B.

Note that the duality map is in general set-valued, i.e. it takes values in the
powerset of B

0. The Hahn-Banach theorem guarantees that this set is nonempty
for every h 2 B [177]. When J is single-valued, we see the duality map as
a function JB : B ! B

0. When B is reflexive, and both (B, k · kB) and
(B0, |||·|||) have strictly convex12 unit balls, then the duality map is single-valued 12 For brevity we say

that a Banach space is
strictly convex if its
unit ball is strictly
convex.

and bijective [177, Theorem 3]. This is notably the case for Hilbert spaces.

Vocabulary 2.2 — Riesz Map. In the context of a Hilbert space H , the inverse
duality map J�1

H
: H

0 !H is commonly called the Riesz map [177] which we
denote by RH := J�1

H
.

In Propositions 2.6 and 2.7 below, we derive the duality map for an arbitrary
Hilbert space and a strictly convex spherical Lebesgue space L

p(Sd�1) respec-
tively. We will see that in the Hilbert case, the duality map is antilinear, while
in the Lebesgue (Banach) case, the duality map is nonlinear. More generally, it
can be shown that for a strictly convex and reflexive space with strictly convex
dual, the duality map is antilinear i.f.f. the space is Hilbert [177, Proposition
4].

Proposition 2.6 — Hilbert Duality Map. Let (H , h·, ·i
H

) denote an arbitrary
Hilbert space. Then the duality map on H is single-valued, bijective and antilinear.
It is given by

JH :

(
H !H

0,

' 7! hJH (')|hi := hh,'i
H

, 8h 2H .
(2.8)
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Proof. Let ' 2H and consider the linear functional defined as

hJ'|hi := hh,'i
H

, 8h 2H .

Then, we have from the equality case of the Cauchy-Schwarz inequality

|||J'||| = sup
h2H ,khkH =1

|hJ'|hi| = sup
h2H ,khkH =1

| hh,'i
H

| = k'kH

and
hJ'|'i = h','i

H
= k'k2H .

From Definition 2.3, this hence yields J' 2 JH ('). Moreover, since every
Hilbert space is strictly convex [177] and reflexive, the duality map is actually
single-valued and bijective, hence J' = JH ('). Note that, since the inner
product is a sesquilinear form, the duality map is antilinear. We have indeed,
for every (�, h) 2 C⇥H :

hJH (�')|hi = hh,�'i
H

= �̄ hh,'i
H

= �̄hJH (')|hi =
⌦
�̄JH (')

��h
↵
,

and hence JH (�') = �̄JH ('). ⌅

Proposition 2.7 — Lebesgue Duality Map. Consider a Lebesgue space L
p(Sd�1),

with 1 < p < +1 and q its conjugate. Then, the duality map on L
p(Sd�1) is

single-valued, bijective and nonlinear. It is given by

JL p :

(
L

p(Sd�1)! (L p(Sd�1))0,

' 7! hJL p(')|fi := hf, g'iSd�1 , 8f 2 L
p(Sd�1),

(2.9)

where g' 2 L
q(Sd�1) is given by g' = 0 if ' = 0 and

g' =
sgn(')|'|p�1

k'kp�2
p

, 8' 6= 0.

The complex signum function is moreover defined as sgn(0) = 0 and sgn(z) =
z̄/ |z| , 8z 6= 0 (we have sgn(z)z = |z| , 8z 2 C.)

Proof. The case ' = 0 is trivial. Let hence ' 2 L
p(Sd�1)\{0} and consider the

linear functional defined as

hJ'|fi :=

*
f,

sgn(')|'|p�1

k'kp�2
p

+

Sd�1

, 8f 2 L
p(Sd�1).

Then, we have from Hölder’s inequality:

|||J'||| = sup
f2L p(Sd�1),kfkp=1

�����

*
f,

sgn(')|'|p�1

k'kp�2
p

+

Sd�1

����� 

�����
sgn(')|'|p�1

k'kp�2
p

�����
q

,

where p and q are conjugate. Since 1/p + 1/q = 1) ((p� 1)q = p) ^ (p� 1 =
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2 Abstract Representer Theorems 29

p/q), we have moreover
�����
sgn(')|'|p�1

k'kp�2
p

�����
q

=
1

k'kp�2
p

✓Z

Sd�1
|'|(p�1)q

◆1/q

=
1

k'kp�2
p

✓Z

Sd�1
|'|p

◆1/q

=
k'k

p

q

p

k'kp�2
p

=
k'kp�1

p

k'kp�2
p

= k'kp.

The inequality is hence saturated for f? = '/k'kp since
*

'

k'kp
,
sgn(')|'|p�1

k'kp�2
p

+

Sd�1

=
1

k'kp�1
p

Z

Sd�1
|'||'|p�1 =

k'kpp
k'kp�1

p

= k'kp,

(2.10)

and hence finally |||J'||| = k'kp since kf?kp = 1. From (2.10) we have more-
over

hJ'|'i =

*
',

sgn(')|'|p�1

k'kp�2
p

+

Sd�1

= k'k2p.

From Definition 2.3, this hence yields J' 2 JL p('). Moreover, for 1 < p < +1
the Lebesgue space L

p(Sd�1) is strictly convex and reflexive (from Theo-
rem 2.4) and hence the duality map is single-valued: J' = JL p('). Finally,
JL p is clearly nonlinear since it involves an absolute value and a norm which
are both nonlinear. ⌅

2 Abstract Representer Theorems
In Chapter 5, we consider optimisation problems formulated over infinite di-
mensional functional spaces. Solving such problems in practice is of course only
feasible if they admit solutions with a finite number of degrees of freedom (df).
In functional analysis, results characterising the form and degrees of freedom In infinite-dimensional

optimisation,
representer theorems
are used to
characterise the form
of the solutions to a
given problem, and
hopefully re-express
the optimisation task
in terms of finitely
many degrees of
freedom.

of the solutions to a particular (infinite-dimensional) optimisation problem are
called representer theorems. In Sections 2.1 and 2.3, we present and introduce
some important representer theorems pertaining to convex optimisation in ab-
stract Banach spaces, which are leveraged in Chapter 5 to establish representer
theorems for infinite-dimensional spherical approximation.

2.1 Banach Representer Theorem
Recently, Unser has established in [177, Theorem 5] a very generic represen-
ter theorem, characterising the solutions of a broad class of unconstrained
optimisation problems formulated over abstract Banach spaces. It is provided
hereafter13. 13 The notations from

[177] have been
slightly adapted to
better align with
those of the current
document.

Theorem 2.8 — Abstract Banach Representer Theorem [177]. Consider the
following assumptions:

A1 (B, k · kB) is a Banach space, with topological dual (B0, |||·|||) (where
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30 Functional Analysis Primer

|||·||| is the dual norm), and JB : B ! B
0 is the duality map;

A2 span{'i, i = 1, . . . , L} ⇢ B, with the 'i being linearly independent;
A3 � : B

0 ! C
L is a sampling operator, defined as

�(f) = (hf |'1i, · · · , hf |'Li), 8f 2 B
0;

A4 F : CL⇥CL ! R+[{+1} is a cost functional such that for all y 2 C
L,

F (y, ·) :

(
C
L ! R+ [ {+1}

z 7! F (y, z)

is proper, strictly convex and lower semi-continuous;
A5 ⇤ : R+ ! R+ is some arbitrary strictly increasing convex function.

Then, for any y 2 C
L, the solution set of the optimisation problem

V = arg min
f2B0

{F (y,�(f)) + ⇤ (|||f |||)} , (2.11)

is non-empty, convex and weak⇤ compact. Moreover, we have

V ⇢ JB

 
LX

i=1

↵i'i

!
, (2.12)

for some weights {↵1, . . . ,↵L} ⇢ C.

Remark 2.2 — Unicity Conditions. Notice that the solution set V degenerates to
a single point when the functional f 7! ⇤(|||f |||) is strictly convex –see point (i)
in the proof of [177, Theorem 5], which happens if at least one of the following
conditions is verified:

1. B
0 is strictly convex;

2. ⇤ is strictly convex.
Indeed, we have:

1. f 7! ⇤(|||f |||) is strictly convex as a composition between a strictly convex
function and a strictly increasing function.

2. f 7! ⇤(|||f |||) is strictly convex as a composition between a convex function
and a strictly convex increasing function.

In case 1, we moreover have from [177, Theorem 3, item 4] that the duality
mapping is single-valued, and hence V = {f?} = JB

⇣P
L

i=1 ↵i'i

⌘
. In case 2

however, the duality map may not necessarily be single-valued, and we only have
V = {f?} with f? 2 JB

⇣P
L

i=1 ↵i'i

⌘
.

Assumption A4 of Theorem 2.8 may in practice be slightly too restrictive, since
many cost functionals are convex but not strictly convex (see examples in
Section 5 of Chapter 7). Hopefully, an investigation of the proof of [177, Theo-
rem 3] reveals that this assumption is only used in the nonunique case where
f 7! ⇤(|||f |||) is not strictly convex, so as to guarantee the set �(V) ⇢ C

L is
a singleton –i.e. all solutions yield the same measurements. It is hence possi-
ble to relax A4, provided an additional assumption of strict convexity of the
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2 Abstract Representer Theorems 31

regularisation functional. We do so in the next theorem:

Theorem 2.9 — Representer Theorem (Non Strictly Convex Cost Functional).
Consider the following assumptions:

B1 (B, k · kB) is a Banach space, with topological dual (B0, |||·|||) (where
|||·||| is the dual norm), and JB : B ! B

0 is the duality map;
B2 span{'i, i = 1, . . . , L} ⇢ B, with the 'i being linearly independent;
B3 � : B

0 ! C
L is a sampling operator, defined as

�(f) = (hf |'1i, · · · , hf |'Li), 8f 2 B
0;

B4 F : CL⇥CL ! R+[{+1} is a cost functional such that for all y 2 C
L,

F (y, ·) :

(
C
L ! R+ [ {+1}

z 7! F (y, z)

is proper, convex and lower semi-continuous;
B5 ⇤ : R+ ! R+ is some arbitrary strictly increasing convex function;
B6 The functional f 7! ⇤(|||f |||) is strictly convex, i.e. B

0 is strictly convex
or ⇤ is strictly convex (see Remark 2.2).

Then, for any y 2 C
L, the solution to the optimisation problem

f? = arg min
f2B0

{F (y,�(f)) + ⇤ (|||f |||)} , (2.13)

exists and is unique. Moreover, we have

f? 2 JB

 
LX

i=1

↵i'i

!
,

for some weights {↵1, . . . ,↵L} ⇢ C.

Proof. The proof of [177, Theorem 5] remains valid under the assumptions
of Theorem 2.9. Indeed, in this case Assumption A4 is unnecessary since As-
sumptions B4 and B6 guarantee that the minimising functional in (2.13) is
strictly convex as a sum between a convex and a strictly convex function and
hence admits a unique solution f? 2 B

0, with unique measurement vector
�(f?) = z

?. Problem (2.13) can hence indeed be transformed into a gener-
alised interpolation problem of the form of (5) in the proof of [177, Theorem
5]. The rest of the proof remains unchanged. ⌅

2.2 Hilbert Representer Theorem
In the Hilbert case, we can deduce the following corollary from Theorem
2.9:

Corollary 2.10 — Hilbert Representer Theorem. Consider the following as-
sumptions:
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C1 (H , h·, ·i
H

) is a Hilbert space, with topological dual H
0, and RH :

H
0 !H is the Riesz map;

C2 span{'i, i = 1, . . . , L} ⇢H
0, with the 'i being linearly independent;

C3 � : H ! C
L is a sampling operator, defined as

�(h) = (h'1|hi, · · · , h'L|hi), 8h 2H ;

C4 F : CL⇥C
L ! R+[{+1} is a cost functional such that for all y 2 C

L,

F (y, ·) :

(
C
L ! R+ [ {+1}

z 7! F (y, z)

is proper, convex and lower semi-continuous;
C5 ⇤ : R+ ! R+ is some arbitrary strictly increasing convex function;

Then, for any y 2 C
L, the solution to the optimisation problem

h? = arg min
h2H

{F (y,�(h)) + ⇤ (khkH )} , (2.14)

exists and is unique. Moreover, we have

h? =
LX

i=1

�iRH ('i),

for some weights {�1, . . . ,�L} ⇢ C.

Proof. Every Hilbert space H is mapped isometrically on its bidual H
00 by the

linear isomorphism

SH :

(
H !H

00

h 7! gh(') = h'|hi, 8' 2H ,

where h·|·i : H
0 ⇥H ! C is the duality product between H

0 and H . We
have hence

�(h) =  (SH (h)), 8h 2H , with  (g) = (g('1), . . . , g('L)), 8g 2H
00.

Since SH is an isometry, we have moreover khkH = |||SH (h)|||00 where |||·|||00 is
the bidual norm. This allows us to rewrite (2.14) as the equivalent problem:

SH (V) = V 00 = arg min
g2H 00

�
F (y, (g)) + ⇤

�
|||g|||00

� 
. (2.15)

We then apply Theorem 2.9 to (2.15), choosing B
0 = H

00 and B = H
0.

Since H
00 is a Hilbert space (since isomorphic to H ), it is strictly convex

and Assumption B6 of Theorem 2.9 is verified. The solution is hence unique
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2 Abstract Representer Theorems 33

V 00 = {g?} and such that

g? 2 JH 0

 
LX

i=1

↵i'i

!
,

for some weights {↵1, . . . ,↵L} ⇢ C
L, where JH 0 : H

0 ! H
00 is the duality

map on H
0. Since H

00 is a (strictly convex) Hilbert space, the duality map is
moreover single valued and antilinear, yielding:

g? =
LX

i=1

↵̄iJH 0('i).

The solution h? to (2.14) is then obtained by applying the linear inverse map
S�1

H
: H

00 !H :

h? = S�1
H

 
LX

i=1

↵̄iJH 0('i)

!
=

LX

i=1

↵̄iS
�1
H

(JH 0('i)) .

Finally, notice that S�1
H

JH 0 : H
0 ! H is an isometric isomorphism between

H
0 and H , which is nothing else but the Riesz map RH : H

0 ! H . This
finally yields the desired result

h? =
LX

i=1

�iRH ('i),

with �i = ↵̄i, i = 1, . . . , L. ⌅

Remark 2.3 The above theorem can be seen as a generalisation of the classical
result [191, Theorem 16.1], which is obtained by choosing the cost function F as
the indicator function of some convex and compact subset of CL.

2.3 Extreme Point Representer Theorem

When the duality map is single-valued, i.e. B
0 is strictly convex, Theorem 2.8

tells us that the unique solution to (2.11) is the Banach conjugate of a certain
linear combination of the sampling functionals. When the duality map is set-
valued however, things are slightly more complicated. In this case, Theorem
2.8 tells us that the solutions to (2.11) are among the Banach conjugates of a
common linear combination of the sampling functionals. This characterisation
of the solution set is of course much weaker, since the theorem does not tell
us which of the Banach conjugates are actually solutions of (2.11). Moreover,
computing all candidate Banach conjugates can in practice be complicated if
not impossible. In this section, we propose hence an alternative characterisa-
tion of V in the case where B

0 is not strictly convex. To this end, we introduce
the concept of extreme point [178] of a convex set:
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34 Functional Analysis Primer

Figure 2.1: The convex set V is the closed convex hull (light blue) of its extreme points (dark
blue).

Definition 2.4 — Extreme Point. Let V be a convex subset of some topological
vector space X . An extreme point v 2 V is a point such that

@(w, ⌫) 2 V2, � 2]0, 1[: v = �w + (1� �)⌫.

In plain words, v is a point in V which does not lie in any open line segment
joining two points of V . We moreover call the set of all extreme points of V the
extreme set, denoted by �V, and its complementary V� = V\�V the interior
set.

Extreme points are particularly convenient as any closed convex set V with
extreme set �V ⇢ V can be represented as the closed convex hull of its extreme
points (see Fig. 2.1):

V =

(
nX

k=1

↵ik
vik

�����n 2 N, ik 2 N,
nX

k=1

↵ik
= 1, and 0  ↵ik

 1, vik 2 �V
)
.

(2.16)
Note that V being closed,14 it also contains infinite summations as limits of14 w.r.t. the topology

on X . convergent sequences of finite summations. Finally, the Krein-Milman theorem
[153, p. 75] tells us which sets in a locally-convex space admit extreme points
and can be represented as the convex hull of these extreme points:

Theorem 2.11 — Krein-Milman [153]. A convex and compact set V in a locally
convex topological space is the closed convex hull of its extreme points. In
particular, such a set has extreme points.

In the following theorem, we use Theorem 2.11 as well as results from [28,
72, 177] to characterise the solution set V of (2.11) as the weak⇤ closed convex
hull of extreme points with bounded df. Our result generalises [177, Theorem
6] to the case of non strictly convex cost functionals F , often encountered in
practice.

Theorem 2.12 — Extreme Point Representer Theorem. Consider the follow-
ing assumptions:
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2 Abstract Representer Theorems 35

D1 (B, k · kB) is a Banach space, with topological dual (B0, |||·|||);
D2 span{'i, i = 1, . . . , L} ⇢ B, with the 'i being linearly independent;
D3 � : B

0 ! C
L is a sampling operator, defined as

�(f) = (hf |'1i, · · · , hf |'Li), 8f 2 B
0;

D4 F : CL⇥CL ! R+[{+1} is a cost functional such that for all y 2 C
L,

F (y, ·) :

(
C
L ! R+ [ {+1}

z 7! F (y, z)

is proper, convex and lower semi-continuous;
D5 ⇤ : R+ ! R+ is some arbitrary strictly increasing convex function.

Then, for any y 2 C
L, the solution set of the optimisation problem

V = arg min
f2B0

{F (y,�(f)) + ⇤ (|||f |||)} , (2.17)

is non-empty and the weak⇤ closed convex hull of its extreme points. The latter
are moreover necessarily of the form:

f? =
MX

m=1

↵mem, (2.18)

where 1  M  L, {↵1, . . . ,↵M} ⇢ C and em are extreme points of the
closed unit regularisation ball B := {f 2 B

0 : ⇤(|||f |||)  1}.

Proof. Using the exact same arguments as in part i) of [177, Theorem 5]
(which remain valid under the assumptions of Theorem 2.12), one can show
that the functional f 7! F (y,�(f)) + ⇤ (|||f |||) is proper, weak⇤ lower semi-
continuous, convex and coercive on B

0. From [72, Proposition 8] the solution
set V is hence non-empty, convex and weak⇤ compact. Since B

0 equipped with
the weak⇤ topology is locally convex and Hausdorff, we can moreover invoke
the Krein-Milman theorem to conclude that V is the weak⇤ closed convex hull of
its extreme points. In particular it has extreme points. Let fe 2 V be an arbitrary
extreme point of V and let ze := �(fe) 2 C

L. Then fe is also in the solution
set of the generalised interpolation problem

Ve = arg min
f2B0

{⇤ (|||f |||) s.t. �(f) = ze} . (2.19)

Using [28, Theorem 3.1] (with j = 0) we can moreover show that extreme
points of Ve is of the form (2.18). Since Ve ⇢ V and fe 2 Ve, fe is also an
extreme point of Ve and hence is indeed of the form (2.18). This shows that
every extreme point of V is of the form (2.18), which achieves the proof. ⌅
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3
Fourier Analysis on the Hypersphere

The class of spherical pseudo-differential operators introduced in Chapter 4 are
defined implicitly in the Fourier domain. In this chapter, we hence introduce the
basic mathematical machinery needed for performing Fourier analysis on the
hypersphere. The material presented in this chapter is based on the formalism
adopted in [79, 125, 142].

1 Spherical Harmonics
One possible route towards defining the Fourier basis on the hypersphere is to
proceed analogously to Fourier and study fundamental solutions of the heat
differential equation on S

d�1:

@u

@t
� ↵�Sd�1u = 0, ↵ > 0, (3.1)

with u : R+ ⇥ S
d�1 ! C. The operator �Sd�1 in (3.1) is called the Laplace-

Beltrami operator on S
d�1, and generalises the Laplace operator �Rd in R

d to
the manifold setting. Both operators are linked by the relationship:

�Rd =
@2

@⇢2
+

d� 1

⇢

@

@⇢
+

1

⇢2
�Sd�1 , (3.2)

where, for every x 2 R
d\{0}, we define x := ⇢r with ⇢ := kxkRd 2 R+ and

r 2 S
d�1. The separation of variables technique reveals that the spherical

component of such fundamental solutions are eigenfunctions of the Laplace-
Beltrami operator on S

d�1 (see [125, Chapter 5]). They are called spherical Spherical harmonics
are orthonormal
eigenfunctions of the
Laplace-Beltrami
operator on S

d�1.

harmonics.

Definition 3.1 — Spherical Harmonics. Let �Sd�1 be the Laplace-Beltrami
operator on S

d�1 with spectrum {�n = �n(n+d�2), n 2 N}. We call spher-
ical harmonic of order n any eigenfunction Y in the eigenspace Harmn(Sd�1)
associated to the eigenvalue �n:

Harmn(Sd�1) :=
n
Y : Sd�1 ! C |�Sd�1Y = �n(n + d� 2)Y

o
.



38 Fourier Analysis on the Hypersphere

Moreover, we denote by

Bn := {Y m

n , m = 1, . . . , Nd(n)}

any orthonormal basis of Harmn(Sd�1), where Nd(n) is the geometric multi-
plicity of the eigenvalue �n = �n(n + d� 2).

Remark 3.1 — Geometric Multiplicity. The geometric multiplicity Nd(n) of each
eigenspace Harmn(Sd�1) can be computed explicitly [79, Chapter 2], and is given
in general by:

Nd(0) = 1, & Nd(n) =
2n + d� 2

n

✓
n + d� 3

n� 1

◆
, n � 1.

In particular, for d = 2, 3, we get

N2(n) = 2, N3(n) = 2n + 1, n � 1.

We have moreover the asymptotic behaviour [79, Chapter 2]:

Nd(n) = O
⇣
nd�2

⌘
. (3.3)

The eigenspaces Harmn(Sd�1) are orthogonal for different eigenvalues �n, al-
lowing us to represent the space of spherical harmonics of order at most n1 as:1 BLn is the spherical

analog to the space of
bandlimited functions
in traditional Fourier
analysis.

BLn(Sd�1) =
L

n

k=0 Harmk(Sd�1). It is possible to show2 [125, Chapter 5] that

2 The proof relies on
the equivalent
characterisation of
spherical harmonics
as polynomials and
the Stone-Weierstrass
theorem.

this space becomes asymptotically dense in L
2(Sd�1):

L
2(Sd�1) =

+1M

n=0

Harmn(Sd�1).

This allows us to state the Fourier expansion theorem on the sphere:

Theorem 3.1 — Spherical Fourier Expansion [125]. Let d � 2, n 2 N and
Bn = {Y m

n ,m = 1, . . . , Nd(n)} be an orthonormal basis of Harmn(Sd�1).
Then, every function f 2 L

2(Sd�1) admits a spherical Fourier expansion
given by

f
L 2

=
+1X

n=0

Nd(n)X

m=1

f̂m

n Y m

n , (3.4)

where the spherical Fourier coefficients {f̂m
n } ⇢ C of f are given by the

spherical harmonic transform (SHT):

f̂m

n = hf, Y m

n iSd�1 =

Z

Sd�1
f(r)Y m

n (r) dr, n 2 N, m = 1, . . . , Nd(n).

Remark 3.2 — L
2 convergence. Note that the equality (3.4) between f and its
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1 Spherical Harmonics 39

spherical Fourier expansion is in the L
2 sense, i.e.

lim
N!1

������
f �

NX

n=0

Nd(n)X

m=1

f̂m

n Y m

n

������
2

= 0.

Uniform convergence can be achieved for sufficiently smooth functions (see [125,
Chapter 5]).

Note that the spherical harmonics Y m
n in Definition 3.1 and Theorem 3.1 are

not uniquely specified, since there exists infinitely many orthonormal bases
Bn of Harmn(Sd�1). In practice, the convention is to work with the system of
so-called fully normalised spherical harmonics (FNSH),3 obtained inductively 3 The terminology

“fully normalised” is
slightly deceptive.
Indeed, all Y m

n are
normalised,
independently of the
orthonormal system
Bn chosen on
Harmn(S

d�1).

by the method of separation of variables applied to the eigenvalue problem
for the Laplace-Beltrami operator �Sd�1 . This construction is detailed in [125,
Section 5.2] for the case d = 2 and in [167] for the general case. In all that
follows, we will always assume the fully normalised spherical harmonics as
canonical Fourier basis. The following example provides closed-form analytical
expressions of the fully normalised spherical harmonics for d = 2, 3. Formulae
for the more general case d > 3 are available in [167].

Example 3.1 In this example, we detail the special cases of the circle S
1 ⇢

R
2 and the sphere S

2 ⇢ R
3.

• Fourier expansion on the circle S
1: The eigenvalues of the Laplace-

Beltrami operator are given by: �n = �n2, n 2 N. They all have
multiplicity N2(0) = 1 and N2(n) = 2, n � 1. The FNSH are given by

Y0 = 1, Y 1
n = ej2⇡✓n, Y 2

n = e�j2⇡✓n, n � 1.

The Fourier expansion is then given for all f 2 L
2(S1) by:

f(✓) =
+1X

n=�1

f̂n e
j2⇡n✓, where f̂n =

Z
⇡

�⇡

f(✓)e�j2⇡✓n d✓,

which corresponds to the traditional Fourier series expansion.
• Fourier expansion on the sphere S

2: The eigenvalues of the Laplace-
Beltrami operator are given by: �n = �n(n + 1), n 2 N. They have
multiplicity N3(n) = 2n + 1, n � 0. In this case, it is customary to
label the FNSH with m ranging from �n to n, for each n 2 N. The
latter are moreover given by [125, Section 5.2]

Y m

n
(�, ✓) :=

s
(2n + 1)(n�m)!

4⇡(n + m)!
Pm

n
(cos(✓))ejm�, 8(�, ✓) 2 [�⇡,⇡[⇥[0,⇡],

where Pm
n : [�1, 1] ! R denotes the associated Legendre functions

[142, Chapter 1]. They can be classified into three groups:
– Zonal harmonics: {Y 0

n , n 2 N},
– Tesseral harmonics: {Y m

n , 0 < |m| < n, n 2 N},
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40 Fourier Analysis on the Hypersphere

Zonal Tesseral Sectoral

(a) n = 4, m = 0 (b) n = 4, m = 2 (c) n = 4, m = 4

(d) n = 8, m = 0 (e) n = 8, m = 4 (f) n = 8, m = 8

(g) n = 12, m = 0 (h) n = 12, m = 6 (i) n = 12, m = 12

(j) n = 16, m = 0 (k) n = 16, m = 8 (l) n = 16, m = 16

Figure 3.1: Real part of selected fully normalised spherical harmonics Y m

n for S2 and various
n and m. As explained in Example 3.1, the spherical harmoncis are often classified into three
types: zonal, tesseral and sectoral.
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1 Spherical Harmonics 41

– Sectoral harmonics: {Y m
n , m = ±n, n 2 N}.

These designations are motivated by the patterns drawn by the zeros
of the real and imaginary part of these functions on the sphere (see
Fig. 3.1). Finally, the Fourier expansion is given for all f 2 L

2(S2) by:

f
L 2

=
+1X

n=0

nX

m=�n

f̂m

n Y m

n ,

where
f̂m

n =

Z
⇡

0

Z
⇡

�⇡

f(�, ✓)Y m
n (�, ✓) sin(✓)d�d✓.

⌅

Remark 3.3 — gSHT of Generalised Functions. It is possible to extend the SHT
to generalised functions. Indeed, consider a generalised function4 f 2 S

0(Sd�1) 4 see Section 1.5.2 of
Chapter 2 for a
definition of
generalised functions
on the hypersphere.

and a Schwartz function ' 2 S (Sd�1) = C
1(Sd�1), with SHT

' =
X

n2N

Nd(n)X

m=1

'̂m

n Y m

n .

Then we have, from the bilinearity of the Schwartz duality product,

hf |'i = lim
N!+1

NX

n=0

Nd(n)X

m=1

'̂m

n

:=f̂
m
nz }| {

hf |Y m

n i

= lim
N!+1

NX

n=0

Nd(n)X

m=1

h', Y m

n iSd�1 f̂m

n

= lim
N!+1

NX

n=0

Nd(n)X

m=1

hY m

n |'if̂m

n

=

*
lim

N!+1

NX

n=0

Nd(n)X

m=1

f̂m

n Y m

n

������
'

+
, 8' 2 S (Sd�1).

This observation motivates the definition of the generalised spherical harmonic
transform (gSHT) of a generalised function f 2 S

0(Sd�1) as

f
weak⇤
=

+1X

n=0

Nd(n)X

m=1

f̂m

n Y m

n , where f̂m

n = hf |Y m

n i. (3.5)

Notice that the convergence of the infinite series in (3.5) is w.r.t. to the weak⇤ topo-
logy and that the Fourier coefficients are well-defined. This is because the spheri-
cal harmonics are infinitely differentiable and hence in the predual S (Sd�1) of
S

0(Sd�1).
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42 Fourier Analysis on the Hypersphere

2 Spherical Zonal Kernels

Another route towards defining the Fourier basis consists of looking at eigen-
functions of linear shift invariant systems, or convolution operators [183, Chap-
ters 3 and 4]. As the hypersphere is a manifold, there is no intrinsically defined
notion of convolution.5 It is however possible to define a class of linear in-5 see Chapter 1 of

[142] for an in-depth
discussion on the
topic.

tegral operators which “behave” as traditional convolution operators. In the
Euclidean setting, convolution operators have shift-invariant kernels, whose
value at a pair (r, s) 2 R

d depends only on the distance kr�skRd between the
two points. We can extend this notion to the hypersphere by noticing that the
chord distance between two input directions r, s 2 S

d�1 is given by:

kr � skRd =
p
krk2 + ksk2 � 2 hr, si =

p
2� 2 hr, si.

Notice that this quantity depends only on the inner product between the two
directions r, s. This observation naturally leads to the notion of zonal ker-
nel:

Definition 3.2 — Spherical Zonal Kernel. A kernel  : Sd�1 ⇥ S
d�1 ! C is

called a spherical zonal kernel if there exists a function  : [�1, 1]! C such
that:

 (r, s) =  (hr, si), 8(r, s) 2 S
d�1 ⇥ S

d�1.

For brevity, the function  is often abusively referred to as the zonal kernel
and no reference is made to  .

Vocabulary 3.1 — Zonal Function. For every s 2 S
d�1, we call the trace  (h·, si) :

S
d�1 ! C of a zonal kernel a zonal function.

Fig. 3.2 shows various traces of example zonal kernels. The plots make obvi-
ous the rotational invariance of zonal kernels, analogous to the shift-invariant
kernels of convolution operators in Euclidean settings. Zonal kernels hence
seem like good candidates to construct spherical convolution operators [125]:

Definition 3.3 — Spherical Convolution Operator. Let  2 L
2([�1, 1]) be a

zonal kernel. The spherical convolution operator I : L
2(Sd�1)! L

2(Sd�1)
is defined as

I :

(
L

2(Sd�1)! L
2(Sd�1)

f 7! { ⇤ f} (r) =
R
Sd�1  (hr, si)f(s) ds, 8r 2 S

d�1.
(3.6)

Remark 3.4 It is shown in [125, Theorem 7.2] that, under the assumptions of
Definition 3.3, the image of the convolution operator (3.6) is indeed L

2(Sd�1).

Remark 3.5 Notice that the spherical convolution (3.6) is only defined between a
zonal kernel and a function on the sphere but not between two arbitrary functions
in L

2(Sd�1). This more general problem is addressed in [142, Chapter 1] for
the case d = 3, where the authors propose to define the convolution between two
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2 Spherical Zonal Kernels 43

(a) n = 7,
r = (1,�1, 1)/

p
3

(b) n = 7, r = (1, 1, 1)/
p
3 (c) n = 7,

r = (1,�1,�1)/
p
3

(d) n = 16,
r = (1,�1, 1)/

p
3

(e) n = 16, r = (1, 1, 1)/
p
3 (f) n = 16,

r = (1,�1,�1)/
p
3

Figure 3.2: Traces  (h·, ri) of the ultraspherical (a)-(c) and Shannon (d)-(f) zonal kernels
for three focus directions r 2 S

2. The ultraspherical kernel in (a)-(c) is the reproducing kernel
of Harm7(S

2) (see Proposition 3.3). The Shannon kernel in (d)-(f) is the reproducing kernel of
BL16(S

2), the space of bandlimited functions on the sphere with bandwidth 16 (see
Proposition 3.5). Observe that changing r simply rotates the kernel but does not change its
shape.

functions on the sphere by looking at the correlation existing between rotated
versions of themselves. Not surprisingly, eq. (3.6) can also be understood in terms
of rotations. Indeed, the effect of the term hr, si in eq. (3.6) is to rotate and
center the template function  around each direction r 2 S

d�1 (see Fig. 3.2 for
an example).

In the subsequent sections, we show that spherical convolution operators de-
fined from zonal kernels are indeed diagonalised by the spherical harmonics.
To this end, we first need to establish two important results: the addition theo-
rem and the Funk-Hecke formula.

2.1 Ultraspherical Polynomials and Addition Theorem
The addition theorem [79, 125] first, shows that the reproducing kernel of the
RKHS Harmn(Sd�1) is zonal and provides us with a closed-form expression for
this kernel in terms of ultraspherical polynomials [79]. These polynomials are
defined as follows:

Definition 3.4 — Ultraspherical Polynomials. The ultraspherical or Gegen-
bauer polynomials are polynomials Pn,d : [�1, 1] ! R of degree n 2 N,
defined via the Taylor expansion of generating functions:

1� ht

1 + h2 � 2ht
=

+1X

n=0

Pn,2(t)h
n, h 2]0, 1[, for d = 2,
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�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00
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(a) Chebyshev polynomials.

�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00
t
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0.75

1.00

P n
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n = 3
n = 4
n = 5
n = 6

(b) Legendre polynomials.

Figure 3.3: Examples of Chebyshev and Legendre polynomials.

and:

1

(1 + h2 � 2ht)(d�2)/2
=

+1X

n=0

Pn,d(t)h
n, h 2]0, 1[, for d � 3.

Moreover, the ultraspherical polynomials are standardised so that Pn,d(1) = 1.

Remark 3.6 — Orthogonality of Ultraspherical Polynomials. It is possible to
show [79, Chapter 2] that the ultraspherical polynomials verify the orthogonality
relationship:
Z 1

�1
Pn,d(t)Pk,d(t)(1� t2)(d�3)/2 dt =

ad
ad�1Nd(n)

�nk, 8n, k 2 N, d � 2,

where �nk is the Kronecker symbol and ad denotes the surface area of the hyper-
sphere S

d�1.

Remark 3.7 — Rodrigues’ formula. The ultraspherical polynomials can also be
defined via a recurrence relationship called Rodrigues’ formula [79, Chapter 2].

Example 3.2 We investigate here the special case of the circle S
1 ⇢ R

2 and
the sphere S

2 ⇢ R
3.

• Fourier expansion on the circle S
1: The ultraspherical polynomials
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2 Spherical Zonal Kernels 45

reduce to the Chebyshev polynomials (see Fig. 3.3a):
(
P0,2(t) = 1

Pn,2(t) = Tn(t) = cos(n arccos(t)), t 2 [�1, 1], n � 2.

They verify the recurrence relationship:

T0(t) = 1

T1(t) = t

Tn+1(t) = 2tTn(t)� Tn�1(t), n � 2.

• Fourier expansion on the sphere S
2: The ultraspherical polynomi-

als reduce to the Legendre polynomials (see Fig. 3.3b), which verify
Bonnet’s recurrence relationship:

P0(t) = 1

P1(t) = t

(n + 1)Pn+1(t) = (2n + 1)tPn(t)� nPn�1(t), n � 2.

⌅

We are now ready to formulate the addition theorem:

Theorem 3.2 — Addition Theorem [125]. Let d � 2, n 2 N, and Bn =
{Y m

n ,m = 1, . . . , Nd(n)} be an orthonormal basis of Harmn(Sd�1). Then, we
have

Nd(n)X

m=1

Y m

n (r)Y m
n (s) =

Nd(n)

ad
Pn,d(hr, si), 8(r, s) 2 S

d�1 ⇥ S
d�1, (3.7)

where Pn,d : [�1, 1]! R are the ultraspherical polynomials of degree n, and
ad > 0 denote the surface area of Sd�1.

Proof. See proof of [125, Theorem 5.11]. ⌅

Remark 3.8 Notice that (3.7) holds for all choices of orthonormal systems Bn

on Harmn(Sd�1), n 2 N, as is shown in [125, Theorem 5.11] and [79, Theorem
2.6].

An immediate corollary of this theorem is

Proposition 3.3 — Reproducing Kernel of Harmn(Sd�1). The reproducing ker-
nel of the RKHS Harmn(Sd�1) is zonal and given by

Nd(n)

ad
Pn,d(hr, si), 8(r, s) 2 S

d�1 ⇥ S
d�1.

It is called the ultraspherical kernel of order n 2 N.

45



46 Fourier Analysis on the Hypersphere

Proof. From the Fourier expansion theorem we have, for every f 2 Harmn(Sd�1):

f(r) =

Nd(n)X

m=1

hf, Y m

n iY m

n (r)

=

Z

Sd�1
f(s)

2

4
Nd(n)X

m=1

Y m

n (r)Y m
n (s)

3

5 ds

=

Z

Sd�1
f(s)


Nd(n)

ad
Pn,d(hr, si)

�
ds, 8r 2 S

2,

where the last equality results from the addition theorem. The kernel

Nd(n)

ad
Pn,d(hr, si)

hence verifies the reproducing property for any f 2 Harmn(Sd�1):

f(r) =

⌧
f,

Nd(n)

ad
Pn,d(hr, ·i)

�
8r 2 S

2.

⌅

Since the spaces {Harmn(Sd�1)}n2N are orthogonal, it follows that the ultra-
spherical kernels for different orders n are also orthogonal:

Proposition 3.4 — Orthogonality of Ultraspherical Kernels. Let d � 2 and
m,n 2 N. Then for every (r, ⇠) 2 S

d�1, we have
Z

Sd�1
Pn,d(hr, si)Pm,d(h⇠, si)ds =

Pn,d(hr, ⇠i)ad
Nd(n)

�mn.

In particular, for r = ⇠, we have

hPn,d(hr, ·i), Pm,d(hr, ·i)iSd�1 =
ad

Nd(n)
�mn.

Proof. First, note from the addition theorem that the function Pn,d(hr, ·i) be-
longs to Harmn(Sd�1) for every r 2 S

d�1 and n > 0. Moreover, we have seen in
Proposition 3.3 that the kernel Nd(n)

ad
Pn,d(hr, si) reproduces Harmn(Sd�1). It is

hence also the kernel of the orthogonal projection operator ⇧n : L
2(Sd�1)!

Harmn(Sd�1) with range Harmn(Sd�1). Since the spaces Harmn(Sd�1) are or-
thogonal, we have trivially for m 6= n 2 N:
Z

Sd�1
Pn,d(hr, si)Pm,d(h⇠, si)ds =

ad
Nd(n)

Z

Sd�1
Pm,d(h⇠, si)


Nd(n)

ad
Pn,d(hr, si)

�
ds

=
ad

Nd(n)
⇧n{Pm,d(h⇠, ·i)} = 0.
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2 Spherical Zonal Kernels 47

When m = n, we leverage the reproducing property:
Z

Sd�1
Pn,d(hr, si)Pn,d(h⇠, si)ds =

ad
Nd(n)

Z

Sd�1
Pn,d(hr, si)


Nd(n)

ad
Pn,d(h⇠, si)

�
ds

=
ad

Nd(n)
Pn,d(hr, ⇠i), 8(r, ⇠) 2 S

d�1 ⇥ S
d�1.

The last statement equality for r = ⇠ follows trivially since Pn,d(1) = 1 (by
definition). ⌅

We conclude this section by providing an expression for the reproducing
kernel of the RKHS BLN (Sd�1) in terms of ultraspherical kernels:

Proposition 3.5 — Reproducing Kernel of BLN (Sd�1). The reproducing kernel
of the RKHS BLN (Sd�1) is zonal and given by

NX

n=0

Nd(n)

ad
Pn,d(hr, si), 8(r, s) 2 S

d�1 ⇥ S
d�1. (3.8)

It is called the Shannon kernel of order N 2 N.

Proof. From the Fourier expansion theorem we have, for every f 2 BLN (Sd�1):

f(r) =
NX

n=0

Nd(n)X

m=1

hf, Y m

n iY m

n (r)

=

Z

Sd�1
f(s)

2

4
NX

n=0

Nd(n)X

m=1

Y m

n (r)Y m
n (s)

3

5 ds

=

Z

Sd�1
f(s)

"
NX

n=0

Nd(n)

ad
Pn,d(hr, si)

#
ds, 8r 2 S

d�1,

where the last equality results from the addition theorem. The kernel

NX

n=0

Nd(n)

ad
Pn,d(hr, si)

hence verifies the reproducing property for any f 2 BLN (Sd�1):

f(r) =

*
f,

NX

n=0

Nd(n)

ad
Pn,d(hr, ·i)

+
8r 2 S

d�1.

⌅

Example 3.3 We investigate here the special case of the circle S
1 ⇢ R

2 and
the sphere S

2 ⇢ R
3.
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48 Fourier Analysis on the Hypersphere

• Shannon kernel on the circle S
1: The Shannon kernel is called the

Dirichlet kernel [183, Chapter 4]. Moreover, the summation in (3.8)
simplifies to

DN (✓) = 1 + 2
NX

n=1

Tn(cos(✓)) =
sin((N + 1/2)✓)

sin(✓/2)
, ✓ 2 [�⇡,⇡[,

where Tn : [�1, 1] ! R are the Chebyshev polynomials (see Exam-
ple 3.2).

• Shannon kernel on the sphere S
2: The Shannon kernel is given by

[142, Christoffel formula], for r, s 2 S
d�1,

NX

n=0

2n + 1

4⇡
Pn(hr, si) =

⇢
(N + 1)2/(4⇡), if hr, si = 1,

N+1
4⇡(hr,si�1) [PN+1(hr, si)� PN (hr, si)] , otherwise,

where Pn : [�1, 1] ! R are the Legendre polynomials (see Exam-
ple 3.2).

⌅

2.2 Funk-Hecke Formula
The next result needed to show that spherical harmonics diagonalise convolu-
tion operators is the Funk-Hecke formula [125, Chapter 7]. It shows that the
zonal ultraspherical polynomials are eigenfunctions of convolution operators
on S

d�1:

Theorem 3.6 — Funk-Hecke Formula. Let  2 L
1([�1, 1]) and n 2 N. Then,

we have 8n 2 N:

{ ⇤Pn,d(h⌘, ·i)}(r) =

Z

Sd�1

 (hr, si)Pn,d(h⌘, si)ds =  ̂nPn,d(h⌘, ri), 8r 2 S
d�1,

where  ̂n, n 2 N are the Fourier-Legendre coefficients of  .

Proof. See proof of [125, Theorem 7.3]. ⌅

The Fourier-Legendre coefficients  ̂n above are obtained via a d-dimensional
Fourier-Legendre transform [125, Chapter 3]:

Theorem 3.7 — Fourier-Legendre Expansion. Let d � 2 and {Pn,d : [�1, 1]!
C, n 2 N} the ultraspherical polynomials. Then, any function  : [�1, 1]! C

such that Z 1

�1
| (t)|2(1� t2)(d�3)/2dt < +1

admits a d-dimensional Fourier-Legendre expansion given by

 
!�a.e.

=
+1X

n=0

 ̂n

Nd(n)

ad
Pn,d,

48



2 Spherical Zonal Kernels 49

with !(t) = (1 � t2)(d�3)/2, a1 = 1, and d-dimensional Fourier-Legendre
coefficients

 ̂n := ad�1

Z 1

�1
 (t)Pn,d(t)(1� t2)(d�3)/2dt, n � 0. (3.9)

Remark 3.9 — Computation of the Legendre Coefficients. In practice, the coef-
ficients can be computed numerically using Gaussian quadrature with nodes and
weights preserving the orthogonality property of the ultraspherical polynomials.

We finally obtain from Theorem 3.6 and Proposition 3.3 that spherical harmon-
ics diagonalise convolution operators:

Proposition 3.8 — Spherical Harmonics & Spherical Convolution. Consider a
function  2 L

1([�1, 1]) and a fixed n 2 N. Let moreover Bn = {Y m
n ,m =

1, . . . , Nd(n)} be an orthonormal basis of Harmn(Sd�1). Then, we have:

{ ⇤ Y m

n }(r) =

Z

Sd�1
 (hr, si)Y m

n (s)ds =  ̂nY
m

n (r), 8r 2 S
d�1,

where { ̂n, n 2 N} ⇢ C are the d-dimensional Fourier-Legendre coefficients of
 (3.9).

Proof. We have Y m
n 2 Harmn(Sd�1). Using the reproducing kernel derived in

Proposition 3.3, we get

{ ⇤ Y m

n }(r) =

Z

Sd�1
 (hr, si)Y m

n (s)ds

=

Z

Sd�1
 (hr, si)

Z

Sd�1

Nd(n)

ad
Pn,d(hs,⌘i)Y m

n (⌘)d⌘

�
ds

=
Nd(n)

ad

Z

Sd�1

Z

Sd�1
 (hr, si)Pn,d(hs,⌘i)ds

�
Y m

n (⌘)d⌘.

(3.10)

From Theorem 3.6 we have
Z

Sd�1
 (hr, si)Pn,d(hs,⌘i)ds =  ̂nPn,d(hr,⌘i). (3.11)

Injecting (3.11) into (3.10) and using once more the reproducing property
yields

{ ⇤ Y m

n }(r) =  ̂n

Z

Sd�1

Nd(n)

ad
Pn,d(hr,⌘i)Y m

n (⌘)d⌘ =  ̂nY
m

n (r).

⌅
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4
Hyperspherical Splines

In this chapter we introduce hyperspherical splines –or spherical splines for short,
which play a central role in spherical approximation theory [125, Chapter
6]. To this end, we extend the approach of [180, Chapter 6] to the spherical
setting and construct spherical splines as “primitives” of finite Dirac streams
w.r.t. a certain class of pseudo-differential operators, called spline-admissible. In
short, spline-admissible operators are such that their fundamental solutions,
called Green functions, are ordinary functions.1 We derive a sufficient condition 1 Ordinary functions

are functions which
are everywhere
defined pointwise.

for spline-admissibility and provide examples of spline-admissible operators
among the pseudo-differential operators most commonly used in practice.

1 Spherical Pseudo-Differential Operators

By analogy with the Euclidean case, we define spherical pseudo-differential
operators as Fourier multipliers with slowly growing spectra.

Definition 4.1 — Spherical Pseudo-Differential Operator. We call spherical
pseudo-differential operator any linear operator of the form

D :

8
>>><

>>>:

S (Sd�1)! S (Sd�1)

h 7! Dh :=
+1X

n=0

D̂n

2

4
Nd(n)X

m=1

ĥmn Y m

n

3

5 ,
(4.1)

where {ĥmn , n 2 N, m = 1, . . . , Nd(n)} are the spherical Fourier coefficients
of h and {D̂n}n2N 2 R

N is a sequence of real numbers such that the set

KD :=
n
n 2 N : |D̂n| = 0

o
, (4.2)

is finite, i.e. #KD := N0 < +1, and

|D̂n| = ⇥ (np) , (4.3)

for some real number p � 0, called the spectral growth order of D .
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Remark 4.1 The functions Y m
n in (4.1) denote the fully normalised spherical

harmonics, and the convergence of the series is w.r.t. the canonical topology on
S (Sd�1).

Remark 4.2 — Theta Notation. The condition |D̂n| = ⇥ (np) for some p � 0
means that |D̂n| = O (np) and |D̂n| = ⌦ (np), i.e. there exists n0 2 N such that
8n � n0 we have

C1n
p  |D̂n|  C2n

p,

for some positive constants C1, C2 2 R+. In other words, the sequence {|D̂n|}n2N
is asymptotically comparable to the polynomial np.

Remark 4.3 — Roughening Behaviour. Notice that a pseudo-differential opera-Pseudo-differential
operators exhibit a
“roughening”
behaviour, similar to
the derivative or
Laplace-Beltrami
operators.

tor D multiplies the Fourier coefficients of its argument h by a sequence {D̂n}n2N
with polynomial growth order. This filtering operation effectively “boosts” the high
frequency content of h, hence making it “rougher” (less regular). This behaviour
is reminiscent of those of standard differential operators such as the prototypical
Laplace-Beltrami operator.

Vocabulary 4.1 — Symbol of Pseudo-Differential Operator. In differential cal-
culus, the sequence {D̂n}n2N is sometimes called the symbol of the pseudo-differen-
tial operator D .

As illustrated in the subsequent example, most of the pseudo-differential op-
erators encountered in practice are constructed by transforming the Laplace-
Beltrami operator�Sd�1 by some polynomial or harmonic function:

Example 4.1 — Common Pseudo-Differential Operators. Consider the Lapla-
ce-Beltrami operator �Sd�1 on S

d�1, d � 2.
• Iterated Laplace-Beltrami operators: these operators are obtained

as integer powers (i.e. successive compositions) of the Laplace-Beltrami
operator D := �k

Sd�1 , with k 2 N. They are indeed pseudo-differential
operators (as a matter of fact they are even differential operators)
since they can be writtena as in (4.1) with

D̂n = (�n(n + d� 2))k, n 2 N.

We have indeed D̂n 2 R (since k 2 N), |D̂n| = ⇥(n2k), and KD = {0}
is finite. Notice that �k

Sd�1 is positive semi-definite for k even and
negative semi-definite for k odd.

• Fractional Laplace-Beltrami operators: these operators are obtained
as p-th roots of the negative Laplace-Beltrami operator

D := (��Sd�1)1/p,

with p 2 N
⇤. They are indeed pseudo-differential operators since they

can be written as in (4.1) with

D̂n = p

p
n(n + d� 2), n 2 N.
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1 Spherical Pseudo-Differential Operators 53

Since n(n + d � 2) > 0, 8n � 1, d � 2, we have indeed D̂n 2 R.
Moreover we also have |D̂n| = ⇥(n2/p), and KD = {0} is finite. Notice
that (��Sd�1)1/p is always positive semi-definite. The case p = 2 yields
the square-root of the Laplace-Beltrami operator, which is intimately
linked to the spherical divergence and gradient differential operators.
The latter are however vector-valued differential operators, and hence
do not belong to the class of pseudo-differential operators defined in
Definition 4.1.

• (Iterated) Beltrami operators: these operators are defined as [60,
Chapter 4]

@k = �Sd�1 + k(k + d� 2)Id,

where k 2 N and Id denotes the identity operator. Such operators are
indeed pseudo-differential operators, since their Fourier coefficients
are given by

D̂n = k(k + d� 2)� n(n + d� 2), n 2 N,

and hence D̂n 2 R, |D̂n| = ⇥(n2), and KD = {k} is finite. The iterated
Beltrami operators are obtained by composing the Beltrami operators
together:

@0···k = @0@1 · · · @k�1@k, k 2 N.

They are also pseudo-differential operators since in this case, we have

D̂n =
kY

j=0

(k(k + d� 2)� n(n + d� 2)), n 2 N,

and hence D̂n 2 R, |D̂n| = ⇥(n2(k+1)), and KD = {0, . . . , k} is finite.
• Sobolev operators: these operators are defined as D := (Id��Sd�1)� ,

with � > 0. They are indeed pseudo-differential operators since their
Fourier coefficients are given by

D̂n = (1 + n(n + d� 2))� , n 2 N,

and hence D̂n 2 R, |D̂n| = ⇥(n2�), and KD = ;. Notice that (Id �
�Sd�1)� is always positive definite.

⌅

aRecall that the spherical harmonics were defined as eigenfunctions of the Laplace-Beltrami
operator: 8Y 2 Harmn(S

d�1), �Sd�1Y = �n(n+ d� 2)Y (see Section 1 of Chapter 3).

In order to gain further insight on Definition 4.1 and the motivations behind
it, it is helpful to look at some key properties of pseudo-differential operators.

Proposition 4.1 — Properties of Pseudo-Differential Operators. Let D be a
spherical pseudo-differential operator as in Definition 4.1. Then the following
holds:

1. D is self-adjoint, i.e. D
⇤ = D .
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54 Hyperspherical Splines

2. D is isotropic, i.e. any Y 2 Harmn(Sd�1) is an eigenfunction of D , with
associated eigenvalue �n = D̂n.

3. D has finite-dimensional nullspace, given by

N (D) =
n
h 2 S (Sd�1) : hh, Y m

n iSd�1 = 0, n 2 N\KD , m = 1, . . . , Nd(n)
o

= span {Y m

n , n 2 KD , m = 1, . . . , Nd(n)} .

4. D is an endomorphism2 on S (Sd�1), i.e. it maps infinitely differentiable2 Incidentally, this
shows the
well-posedness of D

in Definition 4.1.

functions onto infinitely differentiable functions.

Proof. We prove below Items 1 to 4 of Proposition 4.1.

1. It trivially follows from the fact that the coefficients D̂n are real.
2. We expand Y in the orthogonal basis Bn = {Y m

n , m = 1, . . . , Nd(n)}
of Harmn(Sd�1): Y =

PNd(n)
m=1 hY, Y m

n iSd�1 Y m
n . From Definition 4.1, we

have hence DY = D̂n

PNd(n)
m=1 hY, Y m

n iSd�1 Y m
n = D̂nY . Y is therefore an

eigenfunction of D with associated eigenvalue D̂n.
3. Let h 2 S (Sd�1) be such that Dh = 0. Then, we have from Definition 4.1P+1

n=0 D̂n

PNd(n)
m=1 ĥmn Y m

n = 0, where ĥmn = hh, Y m
n iSd�1 . Since {Y m

n , n 2
N,m = 1, . . . , Nd(n)} forms a closed and complete orthonormal system
of L

2(Sd�1), this implies that

(D̂n = 0) _ (ĥmn = 0) 8n 2 N,m = 1, . . . , Nd(n).

When n 2 KD , we have |D̂n| = 0 and hence there is no constraint on
ĥmn . When n 2 N\KD however, we have |D̂n| > 0 and hence necessarily
ĥmn = hh, Y m

n iSd�1 = 0. This yields the following characterisation of the
nullspace N (D) of D:

N (D) =
n
h 2 S (Sd�1) : hh, Y m

n iSd�1 = 0, n 2 N\KD , m = 1, . . . , Nd(n)
o

From the SHT of h, we have moreover that h =
P

n2KD
ĥmn Y m

n . This
provides us with a second characterisation of N (D):

N (D) = span {Y m

n , n 2 KD , m = 1, . . . , Nd(n)} .

Since KD is by assumption finite, the collection of spherical harmon-
ics spanning N (D) is finite and hence the nullspace is indeed finite-
dimensional.

4. We use the Sobolev embedding theorem, that tells us that the angular
power spectrum sequence {Sn(h) :=

PNd(n)
m=1 |ĥmn |2, n 2 N} of a Schwartz

function h 2 S (Sd�1) decays faster than any rational function, i.e.

Sn(h) = O
⇣
n�k

⌘
, 8k 2 N.

Since the sequence {|D̂n|2, n 2 N} has at most polynomial growth of
order 2p from (4.3), the angular power spectrum sequence of Dh still
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1 Spherical Pseudo-Differential Operators 55

decays faster than any rational function –as multiplication between two
sequences with supra-rational decay and polynomial growth, and is hence
in S (Sd�1). D is hence indeed an endomorphism3 on S (Sd�1). 3 This fact is also

discussed in [10] for
the special case
d = 2.

⌅

The proof of Proposition 4.1 reveals intimate links between the assumptions
of Definition 4.1 and properties 1 to 4 of pseudo-differential operators:

• Properties 1 and 3 are direct consequences of the fact that the sequence
{D̂n}n2N is respectively real and null for at most finitely many integers.

• The isotropy property 2 is implicitly assumed in Definition 4.1 since the
spectrum of D was chosen in (4.1) to be constant for all m = 1, . . . , Nd(n)
in a given frequency level n 2 N. As shall be seen in Section 2, this con-
struction guarantees that –when they exist– the spherical splines associ-
ated to a given pseudo-differential operator are sums of zonal functions,
and hence fast to evaluate.

• Property 4 finally, results from the polynomial growth of the sequence
{D̂n}n2N. More specifically, it results from {D̂n}n2N being asymptotically
bounded from above by a polynomial sequence |D̂n| = O(np), implied4 4 As explained in

Remark 4.2,
|D̂n| = ⇥ (np) is
equivalent to
|D̂n| = O (np) and
|D̂n| = ⌦ (np), i.e.
|D̂n| is asymptotically
bounded from above
and below by the
polynomial sequence.

by |D̂n| = ⇥(np).
Surprisingly, the requirement that {D̂n}n2N is also asymptotically bounded
from below by a polynomial sequence –i.e. |D̂n| = ⌦(np)– has not been used so
far. This assumption comes into play when considering primitives w.r.t. a par-
ticular pseudo-differential operator D , obtained via the Moore-Penrose pseudo-
inverse D

† of D .

Proposition 4.2 — Moore-Penrose Pseudo-Inverse of D . Let D be a pseudo-
differential operator as in Definition 4.1. The Moore-Penrose pseudo-inverse D

†

of D is given by

D
† :

8
>>><

>>>:

S (Sd�1)! S (Sd�1)

h 7! D
†h :=

X

n/2KD

1

D̂n

2

4
Nd(n)X

m=1

ĥmn Y m

n

3

5 ,
(4.4)

where {ĥmn , n 2 N, m = 1, . . . , Nd(n)} are the spherical Fourier coefficients of
h.

Proof. First, notice that since |D̂n| = ⇥(np), we have in particular |D̂n| = ⌦(np)
and hence D

†h 2 S (Sd�1) for all h 2 S (Sd�1) (using similar arguments as
for the proof of point 4 of Proposition 4.1). The compositions DD

† and D
†
D

are hence well-defined. Finally, we have from (4.1) and (4.4) that, for all
h 2 S (Sd�1)

D
†
DD

†h =
X

n/2KD

D̂n

D̂2
n

2

4
Nd(n)X

m=1

ĥmn Y m

n

3

5 =
X

n/2KD

1

D̂n

2

4
Nd(n)X

m=1

ĥmn Y m

n

3

5D
†h,
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DD
†
Dh =

X

n/2KD

D̂2
n

D̂n

2

4
Nd(n)X

m=1

ĥmn Y m

n

3

5 =
X

n2N

D̂n

2

4
Nd(n)X

m=1

ĥmn Y m

n

3

5 = Dh,

which shows that D
† is a generalised inverse of D . Moreover, we have that

DD
†h =

X

n/2KD

D̂n

D̂n

2

4
Nd(n)X

m=1

ĥmn Y m

n

3

5 =
X

n/2KD

2

4
Nd(n)X

m=1

ĥmn Y m

n

3

5 = DD
†h.

Since both D and D
† are self-adjoint, we have (DD

†)⇤ = D
†
D = DD

† and
(D†

D)⇤ = DD
† = D

†
D , which shows that D

† is actually the Moore-Penrose
pseudo-inverse of D and concludes the proof. ⌅

As discussed in the proof of Proposition 4.2, the pseudo-inverse D
† is well-

defined since |D̂n| = ⌦(np). Note that the primitive operator D
† acts as an

integral operator and smooths out high frequency content with a polynomially
decaying sequence. In what follows, we will sometimes need to extend by du-
ality the action of D (respectively D

†) to generalised functions ⌫ 2 S
0(Sd�1).

Since D (respectively D
†) is self-adjoint, this can easily be achieved by under-

standing D⌫ as the element of S
0(Sd�1) with point-wise definition:

hD⌫|'i := h⌫|D'i, 8' 2 S (Sd�1). (4.5)

Equation (4.5) is indeed well-defined since, from Item 4 of Proposition 4.1, D

is an endomorphism on S (Sd�1).

2 Green Functions and Spline-Admissibility

The next important ingredient for the definition of spherical splines is the
notion of Green function of a pseudo-differential operator D . A Green function
is a fundamental solution of D , obtained by taking the primitive of some Dirac
measure.

Definition 4.2 — Green Function. Let D be a pseudo-differential operator
as in Definition 4.1. Consider moreover the Moore-Penrose pseudo-inverse
D

† of D , extended into an endomorphism on S
0(Sd�1) with (4.5). Then, a

generalised function  D
s 2 S

0(Sd�1) is said to be a Green function for D if:

 D

s = D
†�s, (4.6)

where �s 2 M(Sd�1) ⇢ S
0(Sd�1) is the Dirac measure for some direction

s 2 S
d�1.

Remark 4.4 From (4.5), the pointwise definition of  D
s in (4.6) is, for every

s 2 S
d�1,

D
 D

s

���'
E

=
D
D

†�s
���'
E

=
D
�s
���D†'

E
, 8' 2 S (Sd�1). (4.7)
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Remark 4.5 — Unicity. Observe that for each s, there exists a unique Green
function. Indeed, assume  D

s ,�
D
s 2 S

0(Sd�1) verify Definition 4.2. Then, by
linearity of the Schwartz duality product we have

D
 D

s � �D

s

���'
E

=
D
 D

s

���'
E
�
D
�D

s

���'
E

=
D
�s
���D†'

E
�
D
�s
���D†'

E
= 0,

for all ' 2 S (Sd�1). Therefore  D
s = �D

s .

In physics, it is more common to define a Green function  D
s of a pseudo-

differential operator D via the relationship
⌦
D D

s

��'
↵

= h�s|'i, for every test
function ' 2 S (Sd�1) verifying some specific boundary conditions. The next
proposition makes the link between Definition 4.2 and the physicist’s point of
view.

Proposition 4.3 — Green Function (Physicist’s Point of View). Let { D
s , s 2

S
d�1} ⇢ S

0(Sd�1) be Green functions for a spline-admissible pseudo-differential
operator D . We have then, for each s 2 S

d�1:
D
D D

s

���'
E

= h�s|'i, 8' 2 N (D)?, (4.8)

and D
 D

s

���Y m

n

E
= 0, 8n 2 KD , m = 1, . . . , Nd(n), (4.9)

where N (D)? is the orthogonal complement of N (D) in S (Sd�1), given by

N (D)? =
n
' 2 S (Sd�1) : h', Y m

n iSd�1 = 0, n 2 KD , m = 1, . . . , Nd(n)
o
.

Proof. From the pointwise definition (4.7) of  s we have, for each s 2 S
d�1

D
D D

s

���'
E

=
D
 D

s

���D'
E

=
D
�s
���D†

D'
E
, 8' 2 S (Sd�1).

Moreover, for ' 2 N (D)? we have

D
†
D' =

X

n2N\KD

D̂n

D̂n

Nd(n)X

m=1

'̂m

n Y m

n =
X

n2N

Nd(n)X

m=1

'̂m

n Y m

n = ',

since by definition of N (D)?, '̂m
n = 0 8n 2 K(D). We have hence indeed

D
D D

s

���'
E

= h�s|'i, 8' 2 N (D)?,

which proves (4.8). Finally we have, 8n 2 KD , m = 1, . . . , Nd(n),

D
 D

s

���Y m

n

E
=
D
�s
���D†Y m

n

E
=
X

n0 /2KD

1

D̂n0

2

4
Nd(n0)X

m0=1

�n0n�m0mY m

n (s)

3

5 = 0,

where �n0n is the Kronecker delta symbol, proving (4.9). ⌅
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58 Hyperspherical Splines

The Green functions of an operator D can be expressed as traces of a certain
zonal kernel, called the zonal Green kernel:

Proposition 4.4 — Zonal Green Kernel. Let { D
s , s 2 S

d�1} ⇢ S
0(Sd�1) be

Green functions for a spline-admissible pseudo-differential operator D . We have
then, for each s 2 S

d�1:
D
 D

s

���'
E

=

Z

Sd�1
 D(hr, si)'(r) dr, 8' 2 S (Sd�1). (4.10)

The zonal Green kernel  D is moreover such that { D(h·, si), s 2 S
d�1} ⇢

S
0(Sd�1), and is defined as

 D(hr, si) :=
X

n2N\KD

Nd(n)

adD̂n

Pn,d(hr, si), r 2 S
d�1, (4.11)

where ad is the area of the unit sphere S
d�1 and Pn,d : [�1, 1] ! R denotes the

d-dimensional ultraspherical polynomial of degree n 2 N (see Chapter 3).

Proof. Let s 2 S
d�1. From the generalised spherical harmonic transform (see

Remark 3.3 in Chapter 3) applied to  D
s we have:

 D

s =
X

n2N

Nd(n)X

m=1

D
 D

s

���Y m

n

E
Y m

n =
X

n2N\KD

Nd(n)X

m=1

1

D̂n

Y m

n (s)Y m

n ,

since from (4.7), we have
⌦
 D

s

��Y m
n

↵
=
⌦
�s
��D†Y m

n

↵
= D̂�1

n Y m
n (s) if n /2 KD

and zero otherwise. We have hence, from the bilinearity of the Schwartz duality
product and the addition theorem 3.2:

D
 D

s

���'
E

=
X

n2N\KD

1

D̂n

Nd(n)X

m=1

Y m

n (s)hY m

n |'i

=
X

n2N\KD

1

D̂n

Nd(n)X

m=1

Y m

n (s) h', Y m

n iSd�1

=
X

n2N\KD

1

D̂n

Nd(n)X

m=1

Y m

n (s)

Z

Sd�1
'(r)Y m

n (r) dr

=

Z

Sd�1
'(r)

2

4
X

n2N\KD

1

D̂n

Nd(n)X

m=1

Y m

n (s)Y m
n (r)

3

5 dr

=

Z

Sd�1
'(r)

2

4
X

n2N\KD

Nd(n)

adD̂n

Pn,d(hr, si)

3

5 dr

=

Z

Sd�1
'(r) D(hr, si) dr, 8' 2 S (Sd�1).
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2 Green Functions and Spline-Admissibility 59

⌅

Observe that the traces of the zonal Green kernel (4.11) are generalised
functions, which make sense when integrated against a Schwartz function but
which may not admit a pointwise interpretation. When they do admit a point-
wise interpretation, we say that the operator D is spline-admissible:

Definition 4.3 — Spline-Admissible Pseudo-Differential Operator. Let D be
a pseudo-differential operator with zonal Green kernel  D . We say that D

is spline admissible if all traces { D(h·, si), s 2 S
d�1} ⇢ S

0(Sd�1) of  D are
ordinary functions, i.e. they are pointwise defined.

The following result provides us with a sufficient condition for a pseudo-
differential operator to be spline-admissible:

Proposition 4.5 — Sufficient Condition for Spline-Admissibility. Let D be a
pseudo-differential operator, with spectral growth order p > d � 1 and zonal
Green kernel  D . Then we have Pseudo-differential

operators with spectral
growth order
p > d� 1 are
spline-admissible.

{ D(h·, si) : Sd�1 ! R, s 2 S
d�1} ⇢ C (Sd�1),

and hence D is spline-admissible.

Proof. Let s 2 S
d�1 be fixed but arbitrary. We show that, under the assumptions

of Proposition 4.5, the series

 D(hr, si) =
X

n2N\KD

Nd(n)

adD̂n

Pn,d(hr, si), r 2 S
d�1, (4.12)

converges uniformly (w.r.t. the variable r). Since every summand is continu-
ous, we can then conclude that the limit  D(hr, si) is continuous (see [125,
Theorem 2.14]) and hence in particular pointwise defined –i.e. D is spline-
admissible. To show that (4.12) is uniformly convergent, we consider its re-
mainder for some N > max(KD). Then, from the addition theorem 3.2 and
the Cauchy-Schwarz inequality we get, for each r 2 S

d�1:

�����

+1X

n=N

Nd(n)

adD̂n

Pn,d(hr, si)

����� =

������

+1X

n=N

1

D̂n

Nd(n)X

m=1

Y m

n (s)Y m
n (r)

������

=

�������

+1X

n=N

Nd(n)X

m=1

0

@ Y m
n (s)

sgn(D̂n)
q

|D̂n|

1

A

0

@Y m
n (r)q
|D̂n|

1

A

�������



�����

+1X

n=N

PNd(n)
m=1 |Y m

n (s)|2

|D̂n|

�����

�����

+1X

n=N

PNd(n)
m=1 |Y m

n (r)|2

|D̂n|

�����

=

�����

+1X

n=N

Nd(n)

ad|D̂n|

�����

2

.
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60 Hyperspherical Splines

Moreover, since |D̂n| = ⇥(np) we have from (3.3) Nd(n)|D̂n|�1 = O(nd�2�p).
Since p > d � 1 ) d � 2 � p < �1, the series

P
n2N\KD

Nd(n)

ad|D̂n|
is convergent

and hence its remainder tends to zero. Therefore
�������
 D(hr, si)�

N�1X

n=0
n/2KD

Nd(n)

adD̂n

Pn,d(hr, si)

�������
=

�����

+1X

n=N

Nd(n)

adD̂n

Pn,d(hr, si)

�����



�����

+1X

n=N

Nd(n)

ad|D̂n|

�����

2
N!+1�! 0.

Moreover, since the bound is independent of r (and s as a matter of fact) the
convergence is uniform, which achieves the proof. ⌅

We conclude this section by providing, for the specific case of S2, some ex-
amples (and non-examples) of spline-admissible pseudo-differential operators
among the ones introduced in Example 4.1.

Example 4.2 — Common Spline-Admissible Operators on S
2. Consider the

specific case d = 3 and the pseudo-differential operators introduced in
Example 4.1.

• Laplace-Beltrami operator: �S2 is not spline-admissible. Indeed, its
zonal Green kernel is given by [60, Lemma 4.3],

 �S2 (hr, si) =
1

4⇡
ln(1� hr, si) +

1

4⇡
� 1

4⇡
ln 2, 8r, s 2 S

d�1,

which is not defined for r = s. Note that we have p = 2 = d� 1 which
shows that the bound on the spectral growth order in Proposition 4.5
is tight.

• Squared Laplace-Beltrami operator: �2
S2

is, from Proposition 4.5,
spline-admissible. Indeed, its spectral order p is such that p = 4 >
2 = d� 1. Moreover, its zonal Green kernel is given by [60, Corollary
4.24],

 �2
S2

(hr, si) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

1

4⇡
, for hr, si = 1

1

4⇡
� ⇡

24
, for hr, si = �1

� 1

4⇡
ln(1� hr, si) ln(1 + hr, si)

+
ln 2

4⇡
ln(1� hr, si2)� 1

4⇡
L2

✓
1� hr, si

2

◆

+
1

4⇡
(1� (ln 2)2) otherwise,
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3 Spherical Splines 61

where L2 denotes the so-called Spence’s functions or dilogarithm:

L2(t) = �
Z

t

0

ln(1� u)

u
du, t 2 R.

See Fig. 4.1 for a graphical representation of the zonal Green kernel.
• Iterated Beltrami operator: @0···k is spline-admissible for every k � 1.

Indeed, in such cases, we have p = 2(k+1) > 2 = d�1 and hence the
spline-admissibility results from Proposition 4.5. For the specific case
k = 1, the zonal Green kernel is moreover given by [60, Lemma 4.25]

 @0···1(hr, si) =
1

8⇡
(1� hr, si) ln(1� hr, si) +

✓
1

12
+

ln 2

2

◆
hr, si
4⇡

+
1

4⇡

✓
1

4
� ln 2

2

◆
, 8r, s 2 S

d�1.

See Fig. 4.1 for a graphical representation of the zonal Green kernel.
• Sobolev operators: from Proposition 4.5, the Sobolev operators (Id�
�S2)

� are spline-admissible whenever � > 1 (more generally when-
ever � > (d � 1)/2). There exists no known closed-form expression
for their zonal Green kernel, which is given by

 �(hr, si) =
+1X

n=0

2n + 1

4⇡ (1 + n(n + 1))�
Pn(hr, si), 8r, s 2 S

d�1.

⌅

3 Spherical Splines
We are now in a position to introduce spherical splines. Roughly speaking,
spherical splines are primitives (w.r.t. a particular spline-admissible pseudo-
differential operator) of Dirac streams with finite innovations:

Definition 4.4 — D-Spline. Let ⌅M = {r1, . . . , rM} ⇢ S
d�1 be a set of points

on the hypersphere and D a spline-admissible pseudo-differential operator.
Then, a D-spline is a generalised function s 2 S

0(Sd�1) such that

Ds =
MX

i=1

↵i �ri , (4.13)

where {↵i, i = 1, . . . ,M} ⇢ C are called the amplitudes of the spline, while
the directions ri in the knot set ⌅M are called the knots of the spline. The pairs
(↵i, ri) of amplitudes and knots are called the innovations of the spline, and
their collection X(⌫) = {(↵i, ri), i = 1, . . . ,M} is called the innovation set of
the spline.
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Figure 4.1: Graphical representation (for d = 3) of the squared Laplace-Beltrami and iterated
Beltrami zonal Green kernels.

Finally, we denote by

SD(Sd�1,⌅M ) :=

(
s 2 S

0(Sd�1) : Ds =
MX

i=1

↵i�ri , ↵i 2 C, ri 2 ⌅M

)

the linear subspace of D-splines associated with the knot set ⌅M .

Remark 4.6 Equation (4.13) tells us that the innovations of a D-spline are
revealed by applying D to it.

Remark 4.7 — Non-trivial Nullspace and Constrained Amplitudes. Notice that
(4.13) implicitly constrains the spline amplitudes ↵i when D has a nontrivial
nullspace. Indeed, for a Schwartz function ' 2 N (D), we have from the definition
of D for generalised functions

hDs|'i = hs|D'i = 0.

However, we also have from the right hand-side of (4.13):

hDs|'i =
MX

i=1

↵i'(ri).

We have hence necessarily
P

M

i=1 ↵i'(ri) = 0 for all ' 2 N (D), which holds if
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and only if:

MX

i=1

↵iY
m

n (ri) = 0, 8n 2 KD , m = 1, . . . , Nd(n). (4.14)

The following result characterises the splines associated to a spline-admissible
operator in terms of its zonal Green kernel:

Proposition 4.6 — Characterisation of D-Splines. Let D be a spline-admissible
operator, with zonal Green kernel  D . Let further s 2 S

0(Sd�1) be a D-spline
with knot set ⌅M = {r1, . . . , rM} ⇢ S

d�1 and valid coefficients {↵i}i=1,...,M ⇢ C.
Then, we have

s(r) =
MX

i=1

↵i D(hr, rii) +
X

n2KD

Nd(n)X

m=1

�̂mn Y m

n (r), 8r 2 S
d�1, (4.15)

where �̂mn := hs|Y m
n i, 8n 2 KD ,m = 1, . . . , Nd(n). In particular, when KD = ;

and p > d� 1, we have

s(r) =
MX

i=1

↵i D(hr, rii), 8r 2 S
d�1, (4.16)

and

SD(Sd�1,⌅M ) := span { D(h·, rii), ri 2 ⌅M , i = 1, . . . ,M} ⇢ L
2(Sd�1).

(4.17)

Proof. Consider the function s0 : Sd�1 ! C defined as

s0(r) =
MX

i=1

↵i D(hr, rii) +
X

n2KD

Nd(n)X

m=1

hs|Y m

n iY m

n (r), r 2 S
d�1.

Notice that since D is spline-admissible, the functions  D(h·, rii) are ordinary
functions which are hence bounded on S

d�1 and hence  D(h·, rii) 2 L
2(Sd�1),

which implies in turn that s0 2 L
2(Sd�1). We can hence interpret s0 as an

element of S
0(Sd�1) with pointwise definition:

⌦
s0
��'
↵

=
⌦
', s0

↵
Sd�1 , 8' 2 S (Sd�1).

We now show that s = s0, i.e.

hs|'i =
⌦
s0
��'
↵
, 8' 2 S (Sd�1).

First, we write S (Sd�1) = R(D)�N (D) such that every element ' of S (Sd�1)
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can be written as ' = Dh + ⌘, with (h, ⌘) 2 R(D)⇥N (D). We have hence

hs|'i = hs|Dhi+ hs|⌘i

= hDs|hi+
X

n2KD

Nd(n)X

m=1

⌘̂mn hs|Y m

n i

=

*
NX

i=1

↵i�ri

�����h
+

+
X

n2KD

Nd(n)X

m=1

⌘̂mn hs|Y m

n i

=
NX

i=1

↵ih(ri) +
X

n2KD

Nd(n)X

m=1

hs|Y m

n i⌘̂mn .

Similarly we have from Proposition 4.4

⌦
s0
��'
↵

=
⌦
', s0

↵
Sd�1 =

MX

i=1

↵i h', D(h·, rii)iSd�1 +
X

n2KD

Nd(n)X

m=1

hs|Y m

n i h', Y m

n iSd�1

=
MX

i=1

↵i

D
 D

s

���'
E

+
X

n2KD

Nd(n)X

m=1

hs|Y m

n i h⌘, Y m

n iSd�1

=
MX

i=1

↵i

D
�ri

���D†
Dh
E

+
X

n2KD

Nd(n)X

m=1

hs|Y m

n i⌘̂mn

=
MX

i=1

↵ih�ri |hi +
X

n2KD

Nd(n)X

m=1

hs|Y m

n i⌘̂mn

=
MX

i=1

↵ih(ri) +
X

n2KD

Nd(n)X

m=1

hs|Y m

n i⌘̂mn ,

and hence we have indeed hs|'i = hs0|'i 8' 2 S (Sd�1) as claimed. Equa-
tion (4.16) then follows trivially from the fact that the summations involv-
ing KD vanish when KD = ;. Finally, (4.17) follows from the definition of
SD(Sd�1,⌅M ) (see Definition 4.4) and the fact that when KD = ; the spline
coefficients are unconstrained (see Remark 4.7). ⌅

Remark 4.8 Observe from (4.16) that when KD = ; the D-splines are linear
combinations of zonal functions, and hence very easy to evaluate. This nice feature
is due to the fact that we restricted ourselves to isotropic pseudo-differential
operators in Definition 4.1.
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II In this part, we use the various concepts from Part I to perform infinite
dimensional inference on the hypersphere. Some of the highlights of this part
are the following:

• In Section 1 of Chapter 5, we introduce functional inverse problems
on the hypersphere. Unlike the ad-hoc discrete methods traditionally
favoured by practitioners, functional inverse problems present the ad-
vantage of being directly formulated in the continuous spherical domain,
which is the natural domain of definition for the analog spherical signals
encountered in nature.

• In Section 2 of Chapter 5, we consider regularising functional inverse
problems by means of generalised Tikhonov (gTikhonov) and generalised
total variation (gTV) norms.

• In Section 3 of Chapter 5, we show that, with gTikhonov and gTV regular-
isation, functional inverse problems admit finite dimensional solutions.
For gTikhonov regularisation, we show in Theorem 5.3 that the solution
is unique and can be expressed as a linear combination of the sam-
pling linear functionals primitived twice w.r.t. the regularising pseudo-
differential operator D . For gTV regularisation, we show in Theorem 5.4
that the solutions are convex combinations of spherical D-splines with
less innovations than available measurements.

• In Chapter 6, we use Theorems 5.3 and 5.4 to design two canonical
search space discretisation schemes, exact for gTikhonov regularisation
and with vanishing approximation error for gTV regularisation. We
moreover investigate alternative domain discretisation schemes, tra-
ditionally favoured by practitioners.

Approximation on the
Hypersphere





5
Representer Theorems

In this chapter, we leverage the functional analysis tools introduced in Chap-
ter 2 to formulate functional inverse problems in a common generalised sam-
pling framework. Our formulation allows us to see most spherical approxi-
mation problems as specific instances of the penalised optimisation problem
(2.11) of Chapter 2. We investigate the latter in the specific case of generalised
Tikhonov and generalised total variation regularisation norms. In both cases,
we define the search space of the optimisation problem, and characterise the
predual in which the sampling linear functionals must be chosen. We more-
over provide representer theorems, characterising the form of the solutions to
both optimisation problems, and compare the effects of both regularisation
strategies. Finally, we illustrate the representer theorems in the specific case of
spherical interpolation.

1 Generalised Sampling & Functional Inverse Problems
Most real-life spherical approximation problems take the form of functional
inverse problems. In a typical inverse problem formulation, an unknown spher-
ical field1 f 2 B

0 is probed by some sensing device, resulting in a data vector 1 The generic
appellation “spherical
field” is used here to
designate any
element of S

0(Sd�1),
such as a function or
a measure defined
over the sphere.

y = [y1, . . . , yL] 2 C
L of L measurements. To account for potential inaccura-

cies in the measurement process, the data vector y is often modelled as the
outcome of a random vector Y = [Y1, . . . , YL] : ⌦ ! C

L, fluctuating accord-
ing to some application-dependent noise distribution.2 When the measurement

2 In the absence of
noise, Y can simply
be chosen as a
deterministic random
vector.

process is unbiased, entries of the expectation of Y can be thought of as the
ideal measurements which would be obtained in a noise-free environment. In
most cases, the ideal measurements are linked to the unknown spherical field
by some linear relationship, called generalised sampling [179]:

E [Yi] = hf |'ii, i = 1, . . . , L, (5.1)

where h·|·i : B
0⇥B ! C denotes the Schwartz duality product for some duality

pair (B,B0) and {'1, . . . ,'L} ⇢ B are linear sampling functionals modelling
the action of the sensing device on the spherical field f 2 B

0. Since most
real-life acquisition systems react continuously to variations in their inputs, the
dual space B

0 is generally equipped with the weak⇤ topology, so that the linear
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functionals {'1, . . . ,'L} ⇢ B modelling the instrument are all continuous
(see Section 1.3 of Chapter 2). In such a formalism, the ideal measurements
in (5.1) are often referred to as generalised samples [179] of f . This is because
the Schwartz duality product is a generalised evaluation map hf |'ii = f('i),
allowing us to interpret the ideal measurements as samples of f evaluated at
“points” '1, . . . ,'L 2 B. For convenience, it is moreover customary to write
the generalised sampling equations (5.1) in terms of a sampling operator33 In finite dimensions,

the sampling operator
is generally called
forward, design or
sensing matrix.

� : B
0 ! C

L (see [183, Chapter 5]) defined as:

� :

(
B

0 ! C
L

f 7! [hf |'1i, · · · , hf |'Li] .
(5.2)

Reformulating (5.1) in terms of � yields:

E[Y ] =

2

664

E[Y1]
...

E[YL]

3

775 =

2

664

hf |'1i
...

hf |'Li

3

775 = �(f). (5.3)

The goal of a functional inverse problem is then to recover a spherical field f 2
B

0 which best explains the observed generalised samples y, given a particular
noise and functional data model (5.3). Since the search space B

0 is infinite-
dimensional and the data finite-dimensional, this task is fundamentally ill-posed
and will in general elicit infinitely many candidate solutions. To discriminate
among such solutions, it is customary to resort to regularisation, which can
be seen as implementing Occam’s razor principle4 by favouring solutions with4 Occam’s razor

principle is a
philosophical
principle also known
as the “law of
briefness” or in Latin
lex parsimoniae. It
was supposedly
formulated by
William of Ockham in
the 14th century, who
wrote in Latin “Entia
non sunt
multiplicanda praeter
necessitatem”. In
English, this
translates to “More
things should not be
used than are
necessary”. In essence,
this principle states
that when two
equally good
explanations for a
given phenomenon
are available, one
should always favour
the simplest, i.e. the
one that introduces
the least explanatory
variables.

simple behaviours. This is typically achieved by means of penalised convex
optimisation problems of the form:

V = arg min
f2B0

{F (y,�(f)) + ⇤ (|||f |||)} , (5.4)

where

• F : CL ⇥ C
L ! R+ [ {+1} is a cost functional, measuring the discrep-

ancy between the observed and predicted generalised samples y and �(f)
respectively. Common choices of discrepancy measures are discussed in
Remark 5.1. In what follows, we will assume that F is such that for all
y 2 C

L,

F (y, ·) :

(
C
L ! R+ [ {+1}

z 7! F (y, z)

is proper, convex and lower semi-continuous.
• |||·||| : B

0 ! R+ is the dual norm on B
0, called regularisation norm, which

implements Occam’s razor principle. Intuitively, elements f 2 B
0 with

small regularisation norm are simple and well-behaved, typically with a
finite number of degrees of freedom (df).

• ⇤ : R! R+ is some convex regularisation function, strictly increasing on
R+. In practice, ⇤ often takes the form of a monomial t 7! �tp, where
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p � 1 and � > 0. The parameter � is called regularisation parameter and
controls the amount of regularisation by putting the regularisation norm
and the cost functional on a similar scale.

Remark 5.1 — Choosing the Cost Functional. In practice, the cost functional
F is often chosen in one of the following two ways:

• Noiseless case: In a noiseless setup, one has full trust in the generalised
samples. It is therefore natural to require that any solution of (5.4) be
consistent [183, Chapter 5] with the samples at hand, i.e. y = �(f), 8f 2
V. This can be achieved by choosing the cost functional as F (y,�(f)) =
◆(y ��(f)), where ◆ : CL ! {0,+1} is the indicator function

◆(z) =

(
0 if z = 0,

+1 otherwise.

Such cost functionals are for example used in interpolation problems as
discussed in Section 4.

• Noisy case: In a noisy setup, consistency is not desired anymore, as it al-
most always leads to overfitting the noisy data. In this case, one can use
general `p cost functionals F (y,�(f)) = ky ��(f)kpp, where p 2 [1,+1]
is typically chosen according to the tail behaviour5 of the noise distribution 5 The following rule

of thumb is proposed
in [146]: p should be
close to 1 for
heavy-tailed
distributions, close to
2 for Gaussian-like
distributions, and
close to +1 for
compactly supported
distributions.

[146]. Another approach consists in using the negative log-likelihood of
the data y as a measure of discrepancy, i.e. F (y,�(f)) = �`(y|�(f)).
This choice makes (5.4) resemble a maximum a posteriori problem with
improper prior. In the case of centred Gaussian white noise, both discrep-
ancy measures coincide, yielding the classical quadratic cost functional
F (y,�(f)) = ky ��(f)k22.

2 Regularisation Strategies

Notice that the regularisation norm |||·||| in (5.4) entirely determines the search
space B

0. Candidate regularisation norms for spherical approximation prob-
lems can hence be constructed as follows:

1. Identify interesting functional spaces B
0 ⇢ S

0(Sd�1), whose elements
are regular enough;

2. Find a norm |||·||| on B
0 such that B

0 admits a predual B and characterise
this predual.

For example, one could consider choosing B
0 as a generalised Sobolev space of

the form:

HD(Sd�1) =
n
f 2 S

0(Sd�1) : Df 2 L
2(Sd�1)

o
, (5.5)

where D : S
0(Sd�1) ! S

0(Sd�1) is some pseudo-differential operator as in
Definition 4.1. This is the space of generalised functions regular enough so that
their generalised derivatives w.r.t. D are square-integrable. While extensively
used in the literature, this notion of regularity may however be considered
too restrictive, since the Sobolev space (5.5) is notably not large enough6 to 6

D-splines are
indeed defined as
D-primitives of Dirac
streams, i.e.
Ds =

P
M

i=1 ↵i�ri .
Their D-derivatives
are hence not in
L

2(Sd�1).
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contain D-splines in cases where D is spline-admissible. This is particularly
cumbersome, since the latter are, by definition of spline-admissible operators,
ordinary functions and hence relatively well-behaved. To include D-splines, one
must consider the larger space

MD(Sd�1) =
n
f 2 S

0(Sd�1) : Df 2M(Sd�1)
o
, (5.6)

where M(Sd�1) denotes the space of spherical regular Borel measures intro-
duced in Section 1.5.3 of Chapter 2. This is the space of generalised functions
regular enough so that their generalised derivatives w.r.t. D are Borel measures.

In what follows, we investigate both regularisation strategies and derive their
associated regularisation norms, called generalised Tikhonov (gTikhonov) and
generalised total variation (gTV) norms respectively. For simplicity, we restrict
our attention to pseudo-differential operators D with trivial nullspaces, i.e.
KD = ;.

2.1 Generalised Tikhonov Regularisation

Generalised Tikhonov regularisation is obtained by choosing B
0 in (5.4) as the

generalised Sobolev space (5.5):

HD(Sd�1) =
n
f 2 S

0(Sd�1) : Df 2 L
2(Sd�1)

o
.

It is easy to see that HD(Sd�1) can be equipped with the inner product7:7 Notice that the
sesquilinear form
h·, ·i

D
is indeed

positive definite since
D is assumed to have
trivial nullspace.

hf, gi
D

:= hDf,Dgi2 , 8(f, g) 2HD(Sd�1)⇥HD(Sd�1).

We denote by kfkD ,2 :=
p
hDf,Dfi2 the inner product norm induced by h·, ·i

D
,

and call it the generalised Tikhonov (gTikhonov) norm. If the quantity Df is
understood as some generalised notion of curvature, then the gTikhonov norm
can be interpreted as measuring the bending energy or roughness of f .

Since D has a trivial nullspace, it is bijective and its inverse D
�1 defines an

isometric isomorphism between the two inner product spaces (L 2(Sd�1), h·, ·i2)
and (HD(Sd�1), h·, ·i

D
). Indeed, we can write uniquely any element f 2HD(Sd�1)

as:

f = D
�1h, h 2 L

2(Sd�1), with kfkD ,2 = kDfk2 = khk2. (5.7)

The space HD(Sd�1) is hence a Hilbert space. Since Hilbert spaces are reflexive,
we moreover have HD(Sd�1) ⇠= H

00

D
(Sd�1), allowing us to identify the predual

of HD(Sd�1) with its dual H
0

D
(Sd�1). The latter can moreover be characterised

as follows:

Proposition 5.1 — Dual of HD(Sd�1). The dual of the space (HD(Sd�1), h·, ·i
D

)
is given by

H
0

D(Sd�1) =
n
g 2 S

0(Sd�1) : D
�1g 2 L

2(Sd�1)
o
, (5.8)
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with dual norm

kgkD�1,2 := kD�1gk2, 8g 2H
0

D(Sd�1). (5.9)

Proof. From the definition of the dual space H
0

D
(Sd�1), and the isometric iso-

morphism (5.7) we have

H
0

D(Sd�1) =

(
g 2 S

0(Sd�1) : sup
f2HD(Sd�1),kfkD,2=1

|hg|fi| < +1
)

=

(
g 2 S

0(Sd�1) : sup
h2L 2(Sd�1),khk2=1

|
⌦
g
��D�1h

↵
| < +1

)

=

(
g 2 S

0(Sd�1) : sup
h2L 2(Sd�1),khk2=1

|
⌦
D

�1g
��h
↵
| < +1

)

=
n
g 2 S

0(Sd�1) : kD�1gk2 < +1
o
.

We have indeed

H
0

D(Sd�1) =
n
g 2 S

0(Sd�1) : D
�1g 2 L

2(Sd�1)
o
,

and

|||g||| = sup
f2HD(Sd�1),kfkD,2=1

|hg|fi| = kD�1gk2, 8g 2H
0

D(Sd�1).

⌅

Remark 5.2 — Canonical Inner Product on H
0

D(Sd�1). Notice that the dual
norm (5.9) is generated by the inner product on H

0

D
(Sd�1), defined as

hg, hi
H 0

D

:=
⌦
D

�1g,D�1h
↵
, 8g, h 2H

0

D(Sd�1).

We have hence established the duality pair

(H 0

D(Sd�1), kD�1 · k2)0 ⇠= (HD(Sd�1), k · kD ,2),

showing that the gTikhonov norm k · kD ,2 is actually a dual norm which can
hence be used as regularisation norm in (5.4). For such a choice of regularisa-
tion norm, it is customary to set the regularisation function to ⇤(t) = �t2 with
� > 0. This yields the following optimisation problem:

V = arg min
f2HD(Sd�1)

�
F (y,�(f)) + �kDfk22

 
, (5.10)

where the sampling operator � : HD(Sd�1) ! C
L, f 7! [h'1|fi, . . . , h'L|fi]

is such that {'1, . . . ,'L} ⇢ H
0

D
(Sd�1). We call (5.10) a functional penalised

Tikhonov (FPT) problem. Since the gTikhonov regularisation norm penalises
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the roughness of f , solutions to an FPT problem are expected to be smooth.
This intuition will be formalised in Section 3.1.

2.2 Generalised Total Variation Regularisation

Generalised total variation regularisation consists in choosing B
0 in (5.4) as

the space (5.6)

MD(Sd�1) =
n
f 2 S

0(Sd�1) : Df 2M(Sd�1)
o
,

where M(Sd�1) is the space of spherical regular Borel measures introduced in
Section 1.5.3 of Chapter 2. This space can be equipped with the generalised
total variation (gTV) norm, defined as88 Note that k·k

D,TV

is indeed a norm
since D is assumed to
have trivial nullspace.

kfk
D ,TV

:= kDfk
TV

= sup
'2S (Sd�1), k'k1=1

|hDf |'i|, 8f 2MD(Sd�1),

(5.11)
where we have used the dual characterisation of the total variation norm k·kTV

defined in Definition 2.2 and the density of Schwartz functions into the space
of bounded continuous functions (see (2.5) in Chapter 2). The gTV norm can
be interpreted as measuring the variations of the generalised derivative Df .

Again, since D is bijective we can consider its inverse which can be shown
[179] to define an isometric isomorphism between the spaces (M(Sd�1), k·kTV )
and (MD(Sd�1), k·kD ,TV ). Indeed, we can uniquely write any element f in
MD(Sd�1) as:

f = D
�1µ, µ 2M(Sd�1), with kfkD ,TV = kDfkTV = kµkTV . (5.12)

This isometry implies that the metric space (MD(Sd�1), k·kD ,TV ) is actually a
Banach space, and allows us to characterise its predual:

Proposition 5.2 — Predual of MD(Sd�1). The Banach space

CD(Sd�1) =
n
h 2 S

0(Sd�1) : h = D⌘, ⌘ 2 C (Sd�1)
o
, (5.13)

equipped with the norm

khkD ,1 = kD�1hk1 = k⌘k1,

is the predual of the Banach space (MD(Sd�1), k·kD ,TV ), i.e.

(CD(Sd�1), k · kD ,1)0 ⇠= (MD(Sd�1), k·kD ,TV ).

Proof. Notice first that D maps isometrically (C (Sd�1), k·k1) onto (CD(Sd�1), k·
kD ,1). Indeed, every element h of CD(Sd�1) can be uniquely written as

h = D⌘, ⌘ 2 C (Sd�1), with khkD ,1 = kD�1hk1 = k⌘k1.
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2 Regularisation Strategies 73

We have hence the isometries (C (Sd�1), k · k1) ⇠= (CD(Sd�1), k · kD ,1) and
(MD(Sd�1), k·kD ,TV ) ⇠= (M(Sd�1), k·kTV ). Moreover, we have from the Riesz-
Markov representation theorem 2.5 the duality pair

(C (Sd�1), k · k1)0 ⇠= (M(Sd�1), k·kTV ),

which yields

(CD(Sd�1), k·kD,1)0 ⇠= (C (Sd�1), k·k1)0 ⇠= (M(Sd�1), k·kTV ) ⇠= (MD(Sd�1), k·kD,TV ),

and hence (CD(Sd�1), k · kD ,1)0 ⇠= (MD(Sd�1), k·kD ,TV ) as claimed. ⌅

We have hence established the duality pair

(CD(Sd�1), k · kD ,1)0 ⇠= (MD(Sd�1), k·kD ,TV ),

showing that the gTV norm k · kD ,TV is actually a dual norm which can hence
be used as regularisation norm in (5.4). For such a choice of regularisation
norm, it is customary to set the regularisation function to ⇤(t) = �t with � > 0.
This yields the following optimisation problem:

V = arg min
f2MD(Sd�1)

{F (y,�(f)) + �kDfkTV } , (5.14)

where the sampling operator � : MD(Sd�1)! C
L, f 7! [hf |'1i, . . . , hf |'Li] is

such that {'1, . . . ,'L} ⇢ CD(Sd�1). We call (5.14) a functional penalised basis
pursuit (FPBP) problem. Because of the gTV regularisation norm, solutions to
FPBP problems will tend to have few variations in their generalised derivatives.
When D is spline-admissible, such functions are templated by the D-splines,
which, from Proposition 4.6, take the form

s =
MX

i=1

↵i D(h·, rii), (5.15)

where {r1, . . . , rM} ⇢ S
d�1 and  D is the zonal Green kernel of D . For such

functions, we have indeed (see Remark 2.1)

kDskTV =

�����

MX

i=1

↵iD D(h·, rii)

�����
TV

=

�����

MX

i=1

↵i�ri

�����
TV

=
MX

i=1

|↵i| k�rikTV| {z }
=1

= k↵k1.

Hence D-splines with small `1 norm in their coefficients will also have small
gTV norm. It is then expected for solutions f 2 V to take the form of D-splines
(5.15) with few innovations M . In Section 3.2 we will show that extreme points
of the solution set V indeed take such a form, with M < L.

Remark 5.3 Note that generalised total variation regularisation can be con-
sidered less stringent than generalised Tikhonov regularisation since the space
MD(Sd�1) is strictly larger that the generalised Sobolev space HD(Sd�1). Indeed,
we have HD(Sd�1) ⇢ MD(Sd�1) since every function in L

2(Sd�1) defines a
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74 Representer Theorems

regular Borel measure ⌫f (B) =
R
B
f(r)dr, for any Borel set B in a Borel algebra

B ⇢P(Sd�1). However, we have MD(Sd�1) 6⇢HD(Sd�1) since Green functions
of D are trivially9 in MD(Sd�1) but not in HD(Sd�1).9 Recall that for an

injective
pseudo-differential
operator D , Green
functions
{ D

s , s 2 S
d�1} are

such that D D
s = �s.

3 Representer Theorems
We now make use of Corollary 2.10 and Theorem 2.12 from Chapter 2 to es-
tablish representer theorems characterising the solution sets of the FPT and
FPBP problems (5.10) and (5.14) respectively. For simplicity, we state both the-
orems in the case where the pseudo-differential operator D used to define the
gTikhonov or gTV regularisation norm has a trivial null space10 (KD = ;). The10 See Remarks 5.5

and 5.8 for the case
where D has a
nontrivial nullspace.

first representer theorem shows that an FPT problem (5.10) admits a unique
solution, which can moreover be expressed as a linear combination of the sam-
pling linear functionals 'i primitived twice w.r.t. D . The second representer
theorem shows that the solution set of an FPBP problem is nonempty and the
weak⇤ closed convex-hull of extreme points taking the form of D-primitives of
Dirac streams11 with less innovations than available measurements. Both re-11 i.e. D-splines

when D is
spline-admissible.

sults can be seen as extensions to the spherical setup of [72, Theorem 3] and
[72, Theorem 4] respectively.

3.1 Representer Theorem for gTikhonov Regularisation
Our first representer theorem characterises the solutions of FPT problems:

Theorem 5.3 — Representer Theorem for gTikhonov Regularisation. Con-
sider the following scenario:

E1 D : S
0(Sd�1) ! S

0(Sd�1) is some pseudo-differential operator with
trivial nullspace;

E2 (HD(Sd�1), h·, ·i
D

) is the generalised Sobolev space defined in (5.5),
with topological dual H

0

D
(Sd�1) characterised in (5.8);

E3 span{'i, i = 1, . . . , L} ⇢H
0

D
(Sd�1), with the 'i being linearly indepen-

dent;
E4 � : HD(Sd�1)! C

L is a sampling operator, defined as

�(f) = [h'1|fi, · · · , h'L|fi], 8f 2HD(Sd�1);

E5 F : CL⇥CL ! R+[{+1} is a cost functional such that for all y 2 C
L,

F (y, ·) :

(
C
L ! R+ [ {+1}

z 7! F (y, z)

is proper, convex and lower semi-continuous;
E6 � is a positive regularisation constant.

Then, for any y 2 C
L, the solution to the FPT optimisation problem

f? = arg min
f2HD(Sd�1)

�
F (y,�(f)) + �kDfk22

 
, (5.16)
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exists and is unique. Moreover, we have

f? =
LX

i=1

↵i D
�2'i =

LX

i=1

↵i

2

4
X

n2N

Nd(n)X

m=1

h'i|Y m
n i

|D̂n|2
Y m

n

3

5 , (5.17)

for some weights {↵1, . . . ,↵L} ⇢ C. In particular, when {'i, i = 1, . . . , L} ⇢
L

2(Sd�1) and D is spline-admissible, we have

f? =
LX

i=1

↵i  D ⇤ ( D ⇤ 'i), (5.18)

where ⇤ is the spherical convolution and  D is the zonal Green kernel of D .

Proof. We apply Corollary 2.10 to (5.16), with H = HD(Sd�1), H 0 = H
0

D
(Sd�1),

k · kH = kD · k2 and ⇤(t) = �t2. Observe that the assumptions of the corollary
are indeed verified since HD(Sd�1) is a Hilbert space (see Section 2.1) and ⇤
is convex and strictly increasing. We have hence from Corollary 2.10 that the
FPT problem (5.16) admits a unique solution, given by

f? =
LX

i=1

↵iRHD(Sd�1)('i),

where RHD(Sd�1) is the Riesz map for HD(Sd�1), i.e. the isometric isomorphism
from H

0

D
(Sd�1) to HD(Sd�1). Since D is assumed to have a trivial nullspace,

the Riesz map coincides moreover in this case with the bijective operator D
�2.

Indeed, the latter maps isometrically H
0

D
(Sd�1) onto HD(Sd�1) since every

element f 2HD(Sd�1) can be uniquely written as

f = D
�2g, g 2H

0

D(Sd�1), with kfkD ,2 = kDD
�2gk2 = kD�1gk2 = kgkD�1,2,

where k · kD�1,2 is the dual norm on H
0

D
(Sd�1) as shown in Proposition 5.1.

We have hence RHD(Sd�1) = D
�2, yielding the first equality in (5.17):

f? =
LX

i=1

↵i D
�2'i.

The second equality in (5.17) is obtained by considering the gSHT of D
�2'i.

We have indeed, for each i = 1, . . . , L:

⌦
D

�2'i

��Y m

n

↵
=
⌦
'i

��D�2Y m

n

↵
=
h'i|Y m

n i
|D̂n|2

, 8n 2 N, m = 1, . . . , Nd(n),

where we have used the definition of pseudo-differential operators, the fact that
D has a trivial nullspace and the bilinearity of the Schwartz duality product.
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This yields the second equality in (5.17):

f? =
LX

i=1

↵i

2

4
X

n2N

Nd(n)X

m=1

h'i|Y m
n i

|D̂n|2
Y m

n

3

5 .

For (5.18) finally, notice that when {'i, i = 1, . . . , L} ⇢ L
2(Sd�1) (which is

possible since L
2(Sd�1) ⇢ H

0

D
(Sd�1) for any pseudo-differential operator),

we have

f? =
LX

i=1

↵i D
�2'i =

LX

i=1

↵i

2

4
X

n2N

Nd(n)X

m=1

('̂i)mn
|D̂n|2

Y m

n

3

5 , (5.19)

where ('̂i)mn = h'i, Y m
n iSd�1 for n 2 N, m = 1, . . . , Nd(n). From Propositions

3.8 and 4.4, we have moreover for any ' 2 L
2(Sd�1),

 D ⇤ ( D ⇤ ') =  D ⇤

2

4
X

n2N

Nd(n)X

m=1

'̂m
n

D̂n

Y m

n

3

5 =
X

n2N

Nd(n)X

m=1

'̂m
n

|D̂n|2
Y m

n . (5.20)

Plugging (5.20) into (5.19) hence finally yields

f? =
LX

i=1

↵i  D ⇤ ( D ⇤ 'i).

Observe that the spherical convolutions in (5.20) are all well-defined, since D

is spline-admissible. Indeed the kernel  D of a spline-admissible operator D

is (by definition of spline-admissibility) necessarily an ordinary function and
hence in particular square-integrable. We can therefore consider the spherical
convolution between  D and any function in L

2(Sd�1), and the result of this
convolution is again a function in L

2(Sd�1) (see Remark 3.4). ⌅

Remark 5.4 — Case D = Id. Observe that when D is chosen as the identity
(which is indeed a pseudo-differential operator as per Definition 4.1), the solution
f? is included in the span of the sampling functionals. This fact is of course well-
known for quadratic cost functionals, but much less so for arbitrary proper and
convex cost functionals.

It is important to note that Theorem 5.3 was established under the assumption
that the pseudo-differential operator D has a trivial nullspace. While this may
seem like a limiting assumption for practical purposes, we show in the next
remark that pseudo-differential operators with nontrivial nullspaces (such as
the Laplace-Beltrami operator�Sd�1) can be brought into the scope of Theorem
5.3 if properly regularised on their nullspace.

Remark 5.5 — gTikhonov Regularisation with Non-Injective Operators. Con-
sider a pseudo-differential operator D with Fourier coefficients {D̂n}n2N such that
KD =

n
n 2 N : |D̂n| = 0

o
6= ;. Then, we have from Proposition 4.1 that the
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nullspace N (D) of D is nontrivial and given by

N (D) = span{Y m

n , n 2 KD , m = 1, . . . , Nd(n)}.

Because of this nontrivial nullspace, the operator D cannot be used to define a
proper gTikhonov regularisation norm. To circumvent this issue, we propose to
regularise D by changing its definition on its nullspace. To this end, we consider
the orthogonal projection operator12 ⇧N (D) : S

0(Sd�1) ! N (D). Then, the 12 The latter is easily
shown to be given by
⇧N (D) = Id � DD

†,
where D

† is the
Moore-Penrose
pseudo-inverse of D

provided in (4.4).

regularised operator L� = D + �⇧N (D) with � > 0 is a pseudo-differential
operator with trivial nullspace. We have indeed

L�' =
X

n/2KD

D̂n

Nd(n)X

m=1

'̂m

n Y m

n + �
X

n2KD

Nd(n)X

m=1

'̂m

n Y m

n , 8' 2 S (Sd�1),

and hence the Fourier coefficients of L� are all nonzero and given by

L̂�n =

(
� if n 2 KD ,

D̂n if n /2 KD .

Note that the operator L� coincides exactly with D when restricted to N (D)?,
and behaves like an homothety when restricted to N (D). Being bijective, L� can
moreover be used to define a gTikhonov regularisation norm. Since D and �⇧N (D)

have orthogonal ranges, the Pythagorean theorem moreover gives us:

kL�fk22 = kDfk22+�2k⇧N (D)fk22 = kDfk22+�2
X

n2KD

Nd(n)X

m=1

|f̂m

n |2, 8f 2 S
0(Sd�1).

The FPT problem associated to this choice of gTikhonov regularisation norm is
then:

min
f2HL�

(Sd�1)

8
<

:F (y,�(f)) + �

2

4kDfk22 + �2
X

n2KD

Nd(n)X

m=1

|f̂m

n |2
3

5

9
=

; , (5.21)

where the sampling operator � : HL�
(Sd�1)! C

L, f 7! [h'1|fi, . . . , h'L|fi] is
such that {'1, . . . ,'L} ⇢H

0

L�
(Sd�1). Observe that the gTikhonov norm induced

by L� penalises both the bending energy kDfk22 of an element f 2 HL�
(Sd�1)

and the L
2 norm of its projection onto the nullspace of D . From the representer

Theorem 5.3, the solution to (5.21) exists, is unique, and given by

f? =
LX

i=1

↵i

⇥
D + �⇧N (D)

⇤
�2
'i

=
LX

i=1

↵i


D

2† +
1

�2
⇧N (D)

�
'i
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=
LX

i=1

↵i

2

4
X

n/2KD

Nd(n)X

m=1

h'i|Y m
n i

|D̂n|2
Y m

n +
X

n2KD

Nd(n)X

m=1

h'i|Y m
n i

�2
Y m

n

3

5 , (5.22)

for some coefficients {↵1, . . . ,↵L} 2 C. Note that if � is close to zero, the solution
is mainly contained in the nullspace N (D), while if � is very large, the solution
is mainly contained in the orthogonal complement N (D)? of the nullspace.

Finally, when {'1, . . . ,'L} ⇢ L
2(Sd�1) and D is spline-admissible, it is more-

over possible, using the addition theorem 3.2 and similar arguments as in the last
part of the proof of Theorem 5.3, to rewrite (5.22) as

f? =
LX

i=1

↵i

2

4 D ⇤ ( D ⇤ 'i) +
1

�2

X

n2KD

Nd(n)

ad
Pn,d ⇤ 'i

3

5 ,

where Pn,d : [�1, 1]! R is the ultraspherical polynomial of degree n defined in
Definition 3.4, and ad > 0 denotes the surface area of Sd�1.

3.2 Representer Theorem for gTV Regularisation
Our second representer theorem characterises the solutions of FPBP prob-
lems:

Theorem 5.4 — Representer Theorem for gTV Regularisation. Consider the
following assumptions:

F1 D : S
0(Sd�1) ! S

0(Sd�1) is some pseudo-differential operator with
trivial nullspace and Green functions { D

r , r ⇢ S
d�1};

F2 (MD(Sd�1), kD · kTV ) is the space defined in (5.6), with topological
dual CD(Sd�1) characterised in (5.13);

F3 span{'i, i = 1, . . . , L} ⇢ CD(Sd�1), with the 'i being linearly indepen-
dent;

F4 � : MD(Sd�1)! C
L is a sampling operator, defined as

�(f) = (hf |'1i, · · · , hf |'Li), 8f 2MD(Sd�1);

F5 F : CL⇥CL ! R+[{+1} is a cost functional such that for all y 2 C
L,

F (y, ·) :

(
C
L ! R+ [ {+1}

z 7! F (y, z)

is proper, convex and lower semi-continuous;
F6 � is a positive regularisation constant.

Then, for any y 2 C
L, the solution set of the FPBP problem

V = arg min
f2MD(Sd�1)

{F (y,�(f)) + �kDfkTV } , (5.23)

is nonempty, and the weak⇤ closed convex hull of its extreme points. The latter
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are moreover necessarily of the form:

f? =
MX

i=1

↵i D
�1�ri =

MX

i=1

↵i 
D

ri
=

MX

i=1

↵i

2

4
X

n2N

Nd(n)X

m=1

Y m
n (ri)

D̂n

Y m

n

3

5 , (5.24)

for some weights {↵1, . . . ,↵M} ⇢ C, directions {r1, . . . , rM} ⇢ S
d�1, and

where 1  M  L. In particular when D is spline-admissible, the extreme
points of V are ordinary functions and take the form of D-splines

f?(r) =
MX

i=1

↵i  D(hr, rii), 8r 2 S
d�1, (5.25)

where  D is the zonal Green kernel of D .

Proof. We apply Theorem 2.12 to (5.23). To this end, we set (B, k · kB) =
(CD(Sd�1), kD�1 · k1), (B0, |||·|||) = (MD(Sd�1), kD · kTV ) and ⇤(t) = �t. The
assumptions of Theorem 2.12 are then indeed verified since, from the discus-
sion in Section 2.2, (CD(Sd�1), kD�1 · k1) and (MD(Sd�1), kD · kTV ) form a
duality pair of Banach spaces, and ⇤ is convex and strictly increasing. We get
hence from Theorem 2.12 that the solution set to the FPBP problem (5.23) is
nonempty and the weak⇤ closed convex hull of its extreme points. The latter are
moreover necessarily of the form:

f? =
MX

i=1

�iei, (5.26)

where 1 M  L, {�1, . . . ,�M} ⇢ C and ei 2 S
0(Sd�1) are extreme points of

the closed regularisation ball

BgTV,1/� = {f 2MD(Sd�1) : kDfkTV  1/�}.

We now compute the extreme points of BgTV,1/�. Adopting the notations of
Definition 2.4, we denote by �V the extreme points of an arbitrary convex set
V. We define moreover the gTV unit ball on MD(Sd�1)

BgTV = {f 2MD(Sd�1) : kDfkTV  1},

as well as the TV unit ball on the space of C-valued regular Borel measures
M(Sd�1):

BTV = {f 2M(Sd�1) : kfkTV  1}.

First, we trivially have �BgTV,1/� = ��1�BgTV . Second, we have shown in
Section 2.2 that D

�1 is an isometric isomorphism from M(Sd�1) to MD(Sd�1),
which yields �BgTV = D

�1(�BTV ) [28]. Finally, it is well known [177, Section
3.5] that extremes points of the total variation unit ball of complex regular
Borel measures are of the form z�r with r 2 S

d�1 and z 2 C, |z| = 1. In
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conclusion, we hence get

�BgTV,1/� = ��1�BgTV = ��1
D

�1(�BTV ) =
n
z��1

D
�1�r, r 2 S

d�1, |z| = 1
o
.

(5.27)
Plugging (5.27) into (5.26) allows us to write any extreme point of the solution
set (5.23) as

f? =
MX

i=1

�izi
�

D
�1�ri =

MX

i=1

↵iD
�1�ri ,

for some constants {↵1, . . . ,↵M} ⇢ C and directions {r1, . . . , rM} ⇢ S
d�1, and

where 1 M  L. This provides us with the first equality in (5.24). The second
equality in (5.24) follows trivially from the definition of Green functions (see
Definition 4.2). The last equality in (5.24) is obtained by considering the gSHT
of D

�1�r, r 2 S
d�1. We have indeed,

⌦
D

�1�r
��Y m

n

↵
=
⌦
�r
��D�1Y m

n

↵
=

Y m
n (r)

D̂n

, 8n 2 N, m = 1, . . . , Nd(n),

and hence D
�1�r =

P
n2N

PNd(n)
m=1 D̂�1

n Y m
n (r)Y m

n . Finally, we have from Propo-
sition 4.4 that

f? =
MX

i=1

↵i 
D

ri
=

MX

i=1

↵i D(h·, rii),

where  D is the zonal Green kernel of D and where the equality is in the sense
of (4.10). Moreover, when D is spline-admissible, all traces { D(h·, ri), r 2
S
d�1} of the zonal Green kernel are ordinary functions and hence f? is also an

ordinary function. This shows (5.25) and achieves the proof. ⌅

Remark 5.6 Theorem 5.4 allows us to write the solution set V of (5.23) as the
weak⇤ closed convex-hull of a (potentially infinite) set of extreme points �V ⇢ V:

V = Hull (�V)
weak⇤

=

(
nX

k=1

↵ikf
?

ik

�����n 2 N, {i1, . . . , in} ⇢ N,
nX

k=1

↵ik = 1, and 0  ↵ik  1, f?

ik
2 �V

)weak⇤

,

(5.28)

where the extreme points f? 2 �V are, when D is spline-admissible, D-splines of
the form:

f?(r) =
X

(↵m,rm)2⌅(f?)

↵m D(hr, rmi), r 2 S
d�1, #⌅(f?) = M(f?)  L.

Note that the spline innovation sets {⌅(f?), f? 2 �V} ⇢ P(C ⇥ S
d�1) are a

priori unknown and different for each extreme point. However, they all have
bounded cardinality #⌅(f?)  L, where L corresponds to the dimension of the
data vector y. Extreme points are hence D-splines with sparse innovations: they
have at most as many degrees of freedom as available data. This remarkable
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result is reminiscent of a similar property of basis pursuit problems in discrete
setups (see [178, Theorem 19]). Unfortunately, it is only valid for extreme points
and does not hold for arbitrary interior points in V� = V\�V. Indeed, V� consists
in general of all finite convex combinations of extreme points in �V, as well as
limits of sequences of the latter under the weak⇤ topology. Such limits may take
the form of infinite summations and are hence not D-splines anymore.

Remark 5.7 — Case D = Id. Observe that when D is chosen as the identity
operator, the extreme points of V degenerate into Dirac measures and hence any
solution of (5.23) is a convex combination of Dirac measures. Such functions
are of course particularly cumbersome to work with in practice.13 It is hence 13 Indeed, they do

not even have a
pointwise
interpretation.

recommended to work with nontrivial pseudo-differential operators when using
gTV regularisation strategies.

Again, it is important to note that Theorem 5.3 was established under the
assumption that the pseudo-differential operator D has a trivial nullspace. The
case of pseudo-differential operators with nontrivial nullspaces can be treated
similarly as for the gTikhonov regularisation by regularising the non-injective
operator D (see Remark 5.5). In this case however, the gTV norm induced by
the regularised operator is harder to interpret, as explained in the subsequent
remark.

Remark 5.8 — gTV Regularisation with Non-Injective Operators. Consider a
pseudo-differential operator D with nontrivial nullspace N (D). Then, as ex-
plained in Remark 5.5, the regularised operator operator L� = D + �⇧N (D)

with � > 0 is an injective pseudo-differential operator. The latter can hence be
used to define a gTV regularisation norm. The FPBP problem associated to this
choice of gTV regularisation norm is then:

min
f2ML�

(Sd�1)

�
F (y,�(f)) + �k(D + �⇧N (D))fkTV

 
, (5.29)

where the sampling operator � : ML�
(Sd�1)! C

L, f 7! [hf |'1i, . . . , hf |'Li] is
such that {'1, . . . ,'L} ⇢ CL�

(Sd�1). Note that, in contrast with the gTikhonov
norm in Remark 5.5, the gTV regularisation norm used in (5.29) cannot easily
be related to the semi-norm kD · kTV and is hence harder to interpret physically.
It is however still possible to invoke the representer theorem 5.4 to show that the
solution set of (5.29) is nonempty and the weak⇤ closed convex hull of extreme
points of the form

f? =
MX

i=1

↵i

⇥
D + �⇧N (D)

⇤
�1
�ri =

MX

i=1

↵i


D

† +
1

�
⇧N (D)

�
�ri

=
MX

i=1

↵i

2

4
X

n/2KD

Nd(n)X

m=1

Y m
n (ri)

D̂n

Y m

n +
X

n2KD

Nd(n)X

m=1

Y m
n (ri)

�
Y m

n

3

5 , (5.30)

with 1  M  L, {↵1, . . . ,↵M} 2 C and {r1, . . . , rM} ⇢ S
d�1. Note that if �

is close to zero, the solution is mainly contained in the nullspace N (D), while if
� is very large, the solution is mainly contained in the orthogonal complement
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N (D)? of the nullspace.
Finally, when D is spline-admissible, it is moreover possible, using the addition

theorem 3.2 and similar arguments as in the last part of the proof of Theorem
5.4, to rewrite (5.30) as an ordinary function, given by

f?(r) =
MX

i=1

↵i

2

4 D(hr, rii) +
1

�

X

n2KD

Nd(n)

ad
Pn,d(hr, rii)

3

5 , r 2 S
d�1,

(5.31)

where Pn,d : [�1, 1]! R is the ultraspherical polynomial of degree n defined in
Definition 3.4, and ad > 0 denotes the surface area of Sd�1. Observe that although
resembling it, (5.31) is not a D-spline as the coefficients {↵1, . . . ,↵M} have a
priori no reason to verify

P
M

i=1 ↵iY m
n (ri) = 0, 8n 2 KD , m = 1, . . . , Nd(n), as

requested for spherical splines associated to a pseudo-differential operator with
nontrivial nullspace (see discussion in Remark 4.7).

3.3 Comparison
Given the conclusions of Theorems 5.3 and 5.4, gTikhonov regularisation ap-
pears like a much more efficient regularisation strategy than gTV regularisa-
tion, at least in terms of making the functional inverse problem well-posed.
Indeed, not only is the solution to the gTikhonov-regularised problem (5.16)
unique, but it also has exactly as many degrees of freedom (df) as the num-
ber of independent measurements, making it easy to approximate numerically.
In contrast, the gTV-regularised problem (5.23) is not guaranteed to have a
unique solution, and –as explained in Remark 5.6– its non-extreme solutions
may not even necessarily have finite df, making them potentially difficult to ap-
proximate numerically. In a sense, gTV regularisation can hence be considered
as failing to properly regularise the functional inverse problem. Nevertheless, it
still presents one main advantage over gTikhonov regularisation, which partly
explains its huge adoption by practitioners: it produces much “nicer-looking”
solutions. This is because, gTikhonov regularisation has a tendency of pro-
ducing overly-smooth estimates. Indeed, (5.17) reveals that the solution f?

to the gTikhonov-regularised problem (5.16) is a linear combination of the
sampling functionals primitived twice w.r.t. the pseudo-differential operator
D . Roughly speaking, this means that f? will be twice as smooth as the sam-
pling linear functionals 'i. In the case where the sampling functionals are
square-integrable and D spline-admissible, (5.18) makes even more obvious
this smoothing behaviour, by showing that primitiving twice the sampling func-
tionals is equivalent to convolving them twice with the zonal Green kernel  D

of D . In contrast, the solutions to the gTV-regularised problem (5.23) are in
general convex combinations of Green functions of D , which are by definition
D-primitives of Dirac measures and hence much less smooth.14 This makes14 As a matter of fact,

we showed in
Remark 5.3 that
Green functions are
not regular enough to
even be included in
the search space
HD(Sd�1) of the
gTikhonov-
regularised problem
(5.16).

gTV regularisation much more indicated for recovering spherical fields with
sharp variations, often encountered in practice.

One last important difference between the gTikhonov and gTV regularised
problems (5.16) and (5.23) is the dependency of their solutions on the sam-
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4 Spatial Interpolation 83

pling functionals. Indeed, the solution to the gTikhonov-regularised problem
(5.16) depends linearly on the linear functionals, while solutions to the gTV-
regularised problem (5.23) appear independent15 from the sampling function- 15 Indeed, the

sampling functionals
do not intervene
explicitly in (5.24)
characterising the
form of the extreme
points of the solution
set of (5.23).

als. Theorem 2.9 tells us that in reality there still exists a link between the
solution set of (5.23) and the sampling functionals. The latter is however
much more subtle since expressed through the unknown and nonlinear set-
valued duality map of the space MD(Sd�1) (see Definition 2.3). Nevertheless,
solutions to the gTV-regularised problem (5.23) are not as constrained as the
solution to the gTikhonov-regularised problem (5.16) by the specific shapes
of the sampling functionals, and should hence have a stronger approximation
power. This however, comes at the cost of additional unknowns, namely the
knots {r1, . . . , rM} intervening in the parametrisation of the extreme points of
the solution set of the gTV-regularised problem.

4 Spatial Interpolation

We specify here both representer theorems to the specific case of spatial inter-
polation, particularly relevant for practical purposes. The goal of interpolation
is to find a function, called interpolant, with minimal gTikhonov or gTV norm
respectively, and with prescribed values {yi, i = 1, . . . , L} ⇢ C at sampling
locations ⇥L = {r1, . . . , rL} ⇢ S

d�1:

yi = f(ri), 8i = 1, . . . , L.

Mathematically, this translates into an optimisation problem of the form

V = arg min
f2B0

{|||f ||| subject to f(ri) = yi, 8i = 1, . . . , L} , (5.32)

where (B0, |||·|||) is either (HD(Sd�1), kD ·k2) or (MD(Sd�1), kD ·kTV ) depend-
ing on the chosen regularisation strategy. Let ◆ : CL ! {0,+1} be the convex
and proper indicator function defined as

◆(z) =

(
0 if z = 0,

+1 otherwise.
(5.33)

Then, it is easy to see that the interpolation problem (5.32) can be seen as an
instance of (5.4), with ⇤ = Id, a cost function F (y,�(f)) = ◆(y ��(f)), and
a sampling operator � : B

0 ! C
L of the form

�(f) = [hf |�r1i, · · · , hf |�rLi], 8f 2 B
0, (5.34)

where {�r1 , . . . , �rL} ⇢M(Sd�1) are Dirac measures. We can hence use Theo-
rems 5.3 and 5.4 to characterise the solutions of the generic spherical interpo-
lation problem (5.32) in the specific case of gTikhonov and gTV regularisation
respectively.
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4.1 gTikhonov Regularised Interpolation
Given a set of sample values {y1, . . . , yL} ⇢ C

L and locations {r1, . . . , rL} ⇢
S
d�1, consider the gTikhonov-regularised interpolation problem:

arg min
f2HD(Sd�1)

{kDfk2 subject to f(ri) = yi, 8i = 1, . . . , L} , (5.35)

where D is some pseudo-differential operator and HD(Sd�1) is the generalised
Sobolev space introduced in Section 2.1. As previously discussed, this problem
is clearly equivalent to the following FPT problem:

arg min
f2HD(Sd�1)

�
◆(y ��(f)) + kDfk22

 
, (5.36)

where y = [y1, . . . , yL] 2 C
L, ◆ : C

L ! {0,+1} is the indicator function
(5.33) and the sampling operator � : HD(Sd�1) ! C

L is given by (5.34)
with B

0 = HD(Sd�1). Note that for � to be well-defined, we need the Dirac
sampling functionals to be included in the dual H

0

D
(Sd�1) of HD(Sd�1), i.e.

{�r1 , . . . , �rL} ⇢H
0

D
(Sd�1). Using the characterisation of H

0

D
(Sd�1) provided

in Proposition 5.1, we give a sufficient condition on the spectral growth order
of D for this to be true.

Lemma 5.5 — Spatial Sampling and gTikhonov Regularisation. Let D be a
pseudo-differential operator as in Definition 4.1 with spectral growth order
p > (d�1)/2, and (HD(Sd�1), kD ·k2) the generalised Sobolev space defined
in (5.5) equipped with the gTikhonov norm. Then, all Dirac measures are
included in the dual H

0

D
(Sd�1) of HD(Sd�1), i.e.

{�r, r 2 S
d�1} ⇢H

0

D(Sd�1).

In other words, HD(Sd�1) is a reproducing kernel Hilbert space (RKHS).

Proof. Using Proposition 5.1, we can show that �r 2H
0

D
(Sd�1) if D

�1�r is in
L

2(Sd�1), 8r 2 S
d�1. From the addition theorem 3.2 and Parseval’s theorem,

we have for all r 2 S
d�1

kD�1�rk22 =
X

n2N

1

|D̂n|2

Nd(n)X

m=1

|Y m

n (r)|2 =
X

n2N

Nd(n)

ad|D̂n|2
Pn,d(hr, ri) =

X

n2N

Nd(n)

ad|D̂n|2
,

where we have used the fact that ultraspherical polynomials are (by Defi-
nition 3.4) such that Pn,d(1) = 1. For p > (d � 1)/2, we have moreover
from (3.3) Nd(n)|D̂n|�2 = O(n��) with � = 2p � d + 2 > 1 and hence
kD�1�rk22 =

P
n2N

Nd(n)

ad|D̂n|
2
< +1, or equivalently D

�1�r 2 L
2(Sd�1). The

native space HD is hence a RKHS16, since its topological dual contains all16 See [18] for a
definition of a
reproducing kernel
Hilbert space.

Dirac measures. ⌅

We are now ready to formulate the representer theorem for gTikhonov-regulari-
sed spherical interpolation problems. This a classical result from spherical
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4 Spatial Interpolation 85

approximation theory (see [125, Theorem 6.30]), but we derive it here as a
corollary of Theorem 5.3.

Corollary 5.6 — Representer Theorem for gTikhonov Interpolation. Con-
sider the following scenario:

G1 D : S
0(Sd�1) ! S

0(Sd�1) is some pseudo-differential operator with
trivial nullspace and spectral growth order p > (d� 1)/2;

G2 (HD(Sd�1), h·, ·i
D

) is the generalised Sobolev space defined in (5.5),
with topological dual H

0

D
(Sd�1) characterised in (5.8).

Then, for any sample values {y1, . . . , yL} ⇢ C
L and sample directions

{r1, . . . , rL} ⇢ S
d�1, the solution to the gTikhonov-regularised interpolation

problem:

f? = arg min
f2HD(Sd�1)

{kDfk2 subject to f(ri) = yi, 8i = 1, . . . , L} , (5.37)

exists, is unique and is a D
2-spline, given by

f?(r) =
LX

i=1

↵i  D2(hr, rii), r 2 S
d�1, (5.38)

where  D2 is the zonal Green kernel of D
2. The weights ↵ := [↵1, . . . ,↵L| 2

C
L are moreover solutions to the square linear system

G↵ = y, where Gij :=  D2(hri, rji), 8i, j = 1, . . . , L. (5.39)

Proof. We formulate (5.37) equivalently as an unconstrained FPT problem

f? = arg min
f2HD(Sd�1)

�
◆(y ��(f)) + kDfk22

 
, (5.40)

where y = [y1, . . . , yL] 2 C
L, ◆ : C

L ! {0,+1} is the indicator function
(5.33), and the sampling operator � : HD(Sd�1)! C

L is given by

�(f) = [h�r1 |fi, · · · , h�rL |fi], 8f 2HD(Sd�1).

Notice that ◆ is proper convex and lwsc as indicator function of a convex set of
C
L (here the singleton {y}). Moreover, Lemma 5.5 tells us that, for a pseudo-

differential operator D with spectral growth order p > (d � 1)/2, all Dirac
measures are included in the dual H

0

D
(Sd�1), and hence in particular

{�r1 , . . . , �rL} ⇢H
0

D(Sd�1).

Finally, the Dirac measures associated to different directions are all linearly
independent. We can hence apply Theorem 5.3 to the specific problem (5.40).
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This gives us that f? exists, is unique, and given by

f? =
LX

i=1

↵iD
�2�ri =

LX

i=1

↵i 
D2

ri
,

where { D2

ri
, i = 1, . . . , L} ⇢ S

0(Sd�1) are Green functions of the operator
D

2 and {↵1, . . . ,↵L} ⇢ C
L. Proposition 4.4 allows us moreover to identify the

Green functions of D
2 as traces of its zonal Green kernel  D2 , yielding (5.38):

f?(r) =
LX

i=1

↵i  D2(hr, rii), r 2 S
d�1.

Note that f? is indeed an ordinary function with a pointwise interpretation
since it belongs to the search space HD(Sd�1) which is in this case an RKHS
(see Lemma 5.5). As a matter of fact, it is even a spherical spline for the
positive-definite pseudo-differential operator D

2, which, from Proposition 4.5,
is indeed spline-admissible under the assumption p > (d� 1)/2.

The linear system (5.39) is finally obtained by noticing that, as solution
of the constrained optimisation problem (5.40), f? verifies the L sampling
equations

yi = f?(ri) =
LX

j=1

↵j  D2(hri, rji), i = 1, . . . , L,

which can be rewritten as the system (5.40). ⌅

Remark 5.9 — Invertibility of G. Notice that the unicity and existence of f?

in Corollary 5.6 implies that the Gram matrix G 2 C
L⇥L defined in (5.39) is

necessarily invertible for any set of L sample directions {r1, . . . , rL} ⇢ S
d�1.

We say that the zonal Green kernel  D2 is strictly positive definite [125, Defi-
nition 6.25]. As shown in [125, Theorem 6.27], zonal Green kernels associated
to positive definite pseudo-differential operators (like D

2 here) are indeed strictly
positive definite.

4.2 gTV Regularised Interpolation
Assuming again a given set of sample values {y1, . . . , yL} ⇢ C

L and sample
locations {r1, . . . , rL} ⇢ S

d�1, we consider this time the gTV-regularised inter-
polation problem given by:

arg min
f2MD(Sd�1)

{kDfkTV subject to f(ri) = yi, 8i = 1, . . . , L} , (5.41)

where D is some pseudo-differential operator and MD(Sd�1) is the search
space introduced in Section 2.2. As previously discussed, this problem is clearly
equivalent to the following FPBP problem:

arg min
f2MD(Sd�1)

{◆(y ��(f)) + kDfkTV } , (5.42)
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where y = [y1, . . . , yL] 2 C
L, ◆ : CL ! {0,+1} is the indicator function (5.33)

and the sampling operator � : MD(Sd�1) ! C
L is given by (5.34) with

B
0 = MD(Sd�1). Again, for the sampling operator to be well-defined, we need

{�r1 , . . . , �rL} ⇢ CD(Sd�1).

Using the characterisation of CD(Sd�1) provided in Proposition 5.13, we give
a sufficient condition on the spectral growth order of D for this to be true.

Lemma 5.7 — Spatial Sampling and gTV Regularisation. Let D be a pseudo-
differential operator as in Definition 4.1 with spectral growth order p >
d� 1, and (MD(Sd�1), kD · kTV ) the space defined in (5.6) equipped with the
gTV norm. Then, all Dirac measures are included in the predual CD(Sd�1) of
MD(Sd�1), i.e.

{�r, r 2 S
d�1} ⇢ CD(Sd�1).

Proof. According to Proposition 5.2, CD(Sd�1) can be characterised as

CD(Sd�1) =
n
h 2 S

0(Sd�1) : h = D⌘, ⌘ 2 C (Sd�1)
o
.

Thus, the Dirac measures {�r, r 2 S
d�1} belong to CD(Sd�1) i.f.f. there exists,

for every r 2 S
d�1, a function  r 2 C (Sd�1) such that:

D r = �r.

The functions r satisfying the above equation are actually the Green functions
of D , which, from Proposition 4.4, can be identified with traces  D(h·, ri) of
the zonal Green kernel of D . Finally, we have shown in Proposition 4.5 that,
for a pseudo-differential operator with spectral growth order p > d� 1

{ D(h·, ri), r 2 S
d�1} ⇢ C (Sd�1),

and hence  r can indeed be identified with a continuous function and conse-
quently all Dirac measures belong to the predual CD(Sd�1). ⌅

We now state the representer theorem for gTV-regularised spherical interpola-
tion problems.

Corollary 5.8 — Representer Theorem for gTV Interpolation. Consider the
following assumptions:

H1 D : S
0(Sd�1) ! S

0(Sd�1) is some pseudo-differential operator with
trivial nullspace and spectral growth order p > d� 1;

H2 (MD(Sd�1), kD · kTV ) is the space defined in (5.6), with topological
dual CD(Sd�1) characterised in (5.13).

Then, for any sample values {y1, . . . , yL} ⇢ C
L and sample directions
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{r1, . . . , rL} ⇢ S
d�1, the solution set of the gTV-regularised interpolation

problem:

V = arg min
f2MD(Sd�1)

{kDfkTV subject to f(ri) = yi, 8i = 1, . . . , L} , (5.43)

is nonempty, and the weak⇤ closed convex hull of its extreme points. The
latter take moreover necessarily the form of a D-spline:

f?(r) =
MX

i=1

↵i  D(hr,⇢ii), 8r 2 S
d�1, (5.44)

for some weights {↵1, . . . ,↵M} ⇢ C, directions {⇢1, . . . ,⇢M} ⇢ S
d�1, and

where 1 M  L and  D is the zonal Green kernel of D .

Proof. Similarly as in the proof of Corollary 5.6, we reformulate the interpola-
tion problem (5.43) as an unconstrained FPBP optimisation problem:

V = arg min
f2MD(Sd�1)

{◆(y ��(f)) + kDfkTV } , (5.45)

where y = [y1, . . . , yL] 2 C
L, ◆ : CL ! {0,+1} is the indicator function (5.33)

and the sampling operator � : MD(Sd�1)! C
L is given by

�(f) = [hf |�r1i, · · · , hf |�rLi], 8f 2MD(Sd�1).

Notice that ◆ is proper convex and lwsc, as indicator function of a convex set of
C
L (here the singleton {y}). Moreover, Lemma 5.7 tells us that, for a pseudo-

differential operator D with spectral growth order p > d�1, all Dirac measures
are included in the predual CD(Sd�1), and hence in particular {�r1 , . . . , �rL} ⇢
CD(Sd�1). Finally, Dirac measures associated to different directions are all
linearly independent. We can hence apply Theorem 5.4 to (5.45), which tells
us that the solution set V is nonempty and the weak⇤ closed convex hull of its
extreme points. Since p > d� 1, the spline-admissibility of D is guaranteed by
Proposition 4.5. From (5.25), we obtain hence that the extreme points of V
are indeed D-splines of the form (5.44), which achieves the proof. ⌅

88



6
Discretisation

In order to solve the FPT and FPBP problems (5.16) and (5.23) in practice,
one must necessarily convert them into finite-dimensional optimisation prob-
lems. This process, called discretisation, can be performed in two ways. First,
by restricting the search space to a finite-dimensional subspace, for example
the span of some finite family of basis functions. Second, by approximating
the domain S

d�1 of the sought spherical fields by a discrete manifold [30], typi-
cally taking the form of a tessellation graph. We call these two strategies search
space discretisation and domain discretisation respectively. Due to its appeal-
ing conceptual simplicity, domain discretisation is the prevailing approach in
most applications. Unfortunately, it necessarily incurs some approximation er-
ror, sometimes even when the number of points composing the tessellation
graph tends to infinity [30, 189]. This approximation error is moreover often
very difficult to assess. In contrast, search space discretisation can in certain
cases be exact, resulting in a finite-dimensional problem strictly equivalent to
the original infinite-dimensional one. This is for example the case for the dis-
cretisation scheme proposed in Section 1.1 for FPT problems with gTikhonov
regularisation. For non-exact search space discretisation schemes, it is more-
over often possible to precisely assess the incurred approximation error, as we
will demonstrate in Section 1.2 for the discretisation scheme proposed for FPBP
problems with gTV regularisation. Finally, it is worth noting that the search
space discretisation schemes proposed in Section 1.1 and Section 1.2 are both
canonical to the gTikhonov and gTV regularisation norms respectively, in the
sense that they transform the latter into their discrete counterparts, namely
the `2 and `1 norm.

1 Canonical Search Space Discretisation

In this section, we use the representer theorems 5.3 and 5.4 to derive canon-
ical search space discretisation schemes for the FPT and FPBP problems (5.16)
and (5.23) respectively. The idea of search space discretisation schemes is to
restrict the search space B

0 of an optimisation problem to a well-chosen finite-
dimensional subspace of the form span{ 1, . . . , N} ⇢ B

0. To facilitate the for-
mulation of our discretisation schemes, we need to introduce the concept of syn-
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thesis operator associated to a family of (generalised functions) { 1, . . . , N}
[183, Chapter 5]:

Definition 6.1 — Synthesis Operator. Let F = { 1, . . . , N} ⇢ S
0(Sd�1)

be a family of generalised functions. The synthesis operator  : C
N !

span{ 1, . . . , N} associated with F is defined as

 :

8
>><

>>:

C
N ! span{ 1, . . . , N}

x 7!  (x) =
NX

k=1

xk k,

where xk denotes the kth entry of the vector x = [x1, . . . , xN ] 2 C
N .

Since it transforms vectors into functions, the synthesis operator is often called
an interpolation or backprojection operator. Observe that span{ 1, . . . , N} can
be seen as the image of CN by  :

span{ 1, . . . , N} =

(
NX

k=1

xk k, x1, . . . , xN 2 C

)
=
�
 (x), x 2 C

N
 

=  (CN ).

When the functions { 1, . . . , N} are linearly independent, the synthesis opera-
tor is injective and hence defines an isomorphism from C

N to span{ 1, . . . , N}.
The inverse map from span{ 1, . . . , N} to C

N is moreover given by the (right)
pseudo-inverse of  , which can be expressed in terms of its adjoint:

Proposition 6.1 — Pseudo-Inverse of Synthesis Operator. Let { 1, . . . , N} ⇢
S

0(Sd�1) be a family of linearly independent generalised functions, with associ-
ated synthesis operator : CN ! span{ 1, . . . , N}. Consider moreover some ar-
bitrary inner product1 h·, ·i on the finite dimensional subspace span{ 1, . . . , N},1 Recall that any

finite dimensional
complex vector space
can be made into an
inner product. One
possible inner
product is indeed the
sesquilinear form
h·, ·i s.t.
h k, ji = �kj , 8k, j.

and the canonical inner product h·, ·i
CN on C

N . Then, the (right) pseudo-inverse2

2 A is a right inverse
of B if AB = Id.

of  is given by
 † = ( ⇤ )�1 ⇤, (6.1)

where ⇤ : span{ 1, . . . , N}! C
N is the adjoint3 of w.r.t. the inner products

3 The adjoint of  is
defined by the
relationship
h (x), gi =
hx, ⇤(g)iCN , for all
x 2 C

N and g 2
span{ 1, . . . , N}.

on span{ 1, . . . , N} and C
N , given by

 ⇤(f) = [hf, 1i , . . . , hf, N i], 8f 2 span{ 1, . . . , N}. (6.2)

Proof. First, we have from the sesquilinearity of the inner product,

h (x), fi =

*
NX

k=1

xk k, f

+
=

NX

k=1

xk h k, fi =
NX

k=1

xkhf, ki = hx, ⇤(f)i
CN ,

for all x 2 C
N and f 2 span{ 1, . . . , N}. Hence  ⇤ in (6.2) is indeed the

adjoint of  . Consider now the composition map  ⇤ : CN ! C
N . For all
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x 2 C
N , we have

 ⇤( (x)) =  ⇤

 
NX

k=1

xk k

!
=

NX

k=1

xk 
⇤( k)

=
NX

k=1

xk

2

664

h k, 1i
...

h k, N i

3

775 =

2

664

h 1, 1i · · · h N , 1i
...

. . .
...

h 1, N i · · · h N , N i

3

775

| {z }
:=H2CN⇥N

x,

and hence  ⇤ can be identified with the square matrix H 2 C
N⇥N . This

matrix is moreover positive-definite since, from the linear independency of
{ 1, . . . , N}, we have 8z 2 C

N\{0}

z
H
Hz =

NX

i,j=1

zizj h j , ii =

*
NX

i=1

zi i,
NX

i=1

zi i

+
=

�����

NX

i=1

zi i

�����

2

> 0.

The matrix H admits hence an inverse and the operator  † = ( ⇤ )�1 ⇤ is
well-defined. We have moreover:

 † = ( ⇤ )�1 ⇤ = IN ,

and hence  † is a right inverse for  , yielding in particular  †  † =  †, and
  † =  . Finally, we trivially have ( † )⇤ = IN =  † and

(  †)⇤ = ( ( ⇤ )�1 ⇤)⇤ =  ( ⇤ )�1 ⇤,

which shows that  † in (6.1) is indeed the pseudo-inverse of  . ⌅

Vocabulary 6.1 — Analysis Operator. The adjoint ⇤ and pseudo-inverse † of
the synthesis operator  are both said to be analysis operators [183, Chapter 5].
The pseudo-inverse is moreover said to be the analysis operator ideally matched
with  , since  † = IN [183, Chapter 5].

1.1 Discretisation Scheme for gTikhonov Regularisation

The representer theorem 5.3 tells us that the solution to an FPT problem (5.16)
is unique, and can be expressed as a linear combination of the primitives of the
sampling functionals w.r.t. the pseudo-differential operator D used to define
the gTikhonov regularisation norm. This parametric representation provides us
with a natural search space discretisation scheme, which consists in restricting
the search space of gTikhonov-regularised problems to the finite dimensional
subspace

span

8
<

: k =
X

n2N

Nd(n)X

m=1

h'k|Y m
n i

|D̂n|2
Y m

n , k = 1, . . . , L

9
=

; ⇢HD(Sd�1),
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92 Discretisation

where {'1, . . . ,'L} ⇢ H
0

D
(Sd�1) are the sampling functionals. As proved in

the following result, this discretisation scheme is exact: the finite dimensional
optimisation problem resulting from this search space restriction is equiva-
lent4 to the original FPT problem. Of course, for this scheme to be useful in4 Two optimisation

problems are said
equivalent if their
solution sets are in
bijection with one
another.

practice, we need the functions { k, k = 1, . . . , L} to be ordinary functions,
with a pointwise interpretation. For this reason, we restrict our attention to
pseudo-differential operators D with spectral growth order p > (d� 1)/2. In-
deed, for such operators the generalised Sobolev space HD(Sd�1) is an RKHS
(see Lemma 5.5) and hence necessarily { k, k = 1, . . . , L} ⇢ HD(Sd�1) are
ordinary functions.

Theorem 6.2 — Canonical Discretisation of FPT Problems. Consider the
notations and assumptions E1 to E6 of Theorem 5.3. Consider additionally
the following:

E7 D has spectral growth order p > (d� 1)/2;
E8 { 1, . . . , L} ⇢HD(Sd�1) are interpolation functions, defined as

 k := D
�2'k =

X

n2N

Nd(n)X

m=1

h'k|Y m
n i

|D̂n|2
Y m

n , 8k = 1 . . . , L; (6.3)

E9  : CL ! span{ 1, . . . , L} ⇢ HD(Sd�1) is a synthesis operator, de-
fined as

 (x) =
LX

k=1

xk k, 8x 2 C
L.

Then, for any y 2 C
L, the FPT problem

f? = arg min
f2HD(Sd�1)

�
F (y,�(f)) + �kDfk22

 

and the following discrete problem

x
? = arg min

x2CL

�
F (y,Gx) + �xH

Gx
 
, (6.4)

are equivalent, in the sense that:

f? =  (x?) and x
? =  †(f?), (6.5)

where  † : HD(Sd�1)! C
N is the pseudo-inverse (6.1) of  . Moreover, the

entries of the square matrix G 2 C
L⇥L in (6.4) –called the Gram matrix, are

given by

Gmn := h'n,'miH 0
D

=
⌦
D

�1'n,D
�1'm

↵
Sd�1 , m, n = 1, . . . , L.

Proof. First, notice that the family of functions { 1, . . . , L} is linearly indepen-
dent as image by the bijective map D

�2 of a family {'1, . . . ,'L} of generalised
functions assumed linearly independent. The synthesis operator  hence de-
fines a bijection from C

L to span{ 1, . . . , L}. From this isomorphism, we

92



1 Canonical Search Space Discretisation 93

get

f? = arg min
f2HD(Sd�1)

�
F (y,�(f)) + �kDfk22

 

=  

✓
arg min

x2CL

�
F (y,� (x)) + �kD (x)k22

 ◆

=  

✓
arg min

x2CL

�
F (y,� (x)) + �xH

Gx
 ◆

(6.6)

since

kD (x)k22 =
LX

i,j=1

xixj hD j ,D iiSd�1 =
LX

i,j=1

xixj
⌦
DD

�2'j ,DD
�2'i

↵
Sd�1

=
LX

i,j=1

xixj
⌦
D

�1'j ,D
�1'i

↵
Sd�1 =

LX

i,j=1

xixj h'j ,'iiH 0
D

=
LX

i,j=1

xixjGij = x
H
Gx, 8x 2 C

L.

Notice that the linear operator � : CL ! C
L is finite dimensional, and can

hence be represented as a matrix. From the bilinearity of the Schwartz duality
product and the definition of the sampling operator �, we have indeed

(� x)k = h'k| (x)i =

*
'k

������

LX

j=1

xj j

+
=

*
'k

������

LX

j=1

xjD
�2'j

+

=
LX

j=1

xj
⌦
'k

��D�2'j

↵
=

LX

j=1

xj
⌦
D

�1'k

��D�1'j

↵
, k = 1, . . . , L.

Since D
�1 maps H

0

D
(Sd�1) onto L

2(Sd�1), we have moreover
⌦
D

�1'k

��D�1'j

↵
=
⌦
D

�1'j ,D
�1'k

↵
Sd�1 = h'j ,'kiH 0

D

= Gkj ,

and hence

(� x)k =
LX

j=1

xjGkj = (Gx)k, k = 1, . . . , L.

We can hence identify � with the matrix G 2 C
L⇥L. Equation (6.6) hence

reduces to

f? =  

✓
arg min

x2CL

�
F (y,Gx) + �xH

Gx
 ◆

=  (x?) .

From the inverse map (6.1) we furthermore get x? =  †(f?) = ( ⇤ )�1 ⇤(f?),
which concludes the proof. ⌅
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Remark 6.1 — Canonical Discretisation Scheme. Note that the Gram matrix
G is necessarily positive-definite since the sampling functionals are linearly in-
dependent (see Proposition 6.1). It therefore admits a Hermitian square root,
allowing us to interpret (6.4) as a discrete Tikhonov problem of the form

x
? = arg min

x2CL

n
F (y,Gx) + �kG1/2

xk22
o
.

The discretisation scheme is hence canonical to the gTikhonov regularisation norm,
in the sense that it transforms the latter into a discrete weighted `2 norm, with
weighting scheme described by G

1/2.

Remark 6.2 — Computing the Interpolation Functions. When the sampling
functionals 'i are in L

2(Sd�1), it is easy to show that the interpolation functions
(6.3) can be computed via the formula:

 k =  D2 ⇤ 'k, k = 1, . . . , L,

where  D2 denotes the zonal Green kernel of the pseudo-differential operator
D

2, which from Proposition 4.5 is spline-admissible for p > (d � 1)/2. Such
convolutions can moreover be computed efficiently when  D2 has small compact
support, as explained in Section 3.3 of Chapter 8.

Remark 6.3 — Practical Implementation. Theorem 6.2 provides us with a simple
two-step procedure for computing a practical solution to FPT problems:

1. Find the unique solution x
? 2 C

L to (6.4) using one of the algorithms
described in Chapter 7.

2. Using the bijective synthesis operator  : CL ! span{ 1, . . . , L}, map x
?

into the solution f? =  (x?) of the original FPT problem:

f?(r) = ( x?)(r) =
LX

k=1

x?
k
 k, 8r 2 S

d�1.

1.2 Discretisation Scheme for gTV Regularisation
A discretisation scheme for the FPBP problem (5.23) is more complicated to
obtain since the characterisation of its solution set V provided by the represen-
ter theorem 5.4 is geometric instead of parametric. Indeed, Theorem 5.4 tells
us that the solution set V is the closed convex-hull of D-splines5 with sparse65 Of course, under

the assumption that
the operator D used
to define the gTV
regularisation norm is
spline-admissible.
6 i.e. with cardinality
bounded by the
number of available
measurements.

innovation sets (see Remark 5.6). This essentially means that any non limit
point7 of V is itself a D-spline, as finite convex combination of D-splines. Our

7 As explained in
Remark 5.6, the limit
points are not
necessarily splines.
We are however not
interested in
approximating such
limit points, since
they may have
infinitely many df.

goal is therefore to find a finite family of functions capable of approximating
well enough any arbitrary D-spline. To this end, it will help to characterise
the functional space in which D-splines naturally live, called the native space
[125, Chapter 6]. When D is a positive-definite operator with spectral growth
order p > d� 1, the native space is the generalised Sobolev space H

D1/2(Sd�1)
associated to the Hermitian square-root D

1/2 of D:

Proposition 6.3 — Native Space for D-splines. Let D be a positive-definite
pseudo-differential operator with spectral growth order p > d � 1. Then the
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Hermitian square-root D
1/2 of D is a pseudo-differential operator with Fourier

coefficients {
p

D̂n, n 2 N} ⇢ R+. Moreover, the generalised Sobolev space
H

D1/2(Sd�1) is an RKHS which contains all D-splines.

Proof. It is easy to see that the Hermitian square-root of D is given by

D
1/2' =

X

n2N

q
D̂n

Nd(n)X

m=1

'̂m

n Y m

n , 8' 2 S (Sd�1).

The latter is moreover a pseudo-differential operator since the Fourier coeffi-
cients D̂n are all positive (from the assumption of positive-definiteness of D)
and hence {

p
D̂n, n 2 N} ⇢ R+. The rest of the assumptions of Definition 4.1

trivially follow from D being a pseudo-differential operator. Moreover, from
the assumption p > d� 1 we get that the spectral growth order of D

1/2, equal
to p/2, is strictly larger than (d � 1)/2. We can hence apply Lemma 5.5 to
conclude that the generalised Sobolev space H

D1/2(Sd�1) is an RKHS, con-
taining all Dirac measures in its dual. Moreover, using the same arguments
as in the proof of Theorem 5.3, it is possible to show that the Riesz map
RH

D1/2
: H

0

D1/2(S
d�1) ! H

D1/2(Sd�1) is D
�1. Therefore, D-splines8 are all 8

D-splines exist
indeed since
p > d� 1 implies that
D is spline-admissible
from Proposition 4.5.

contained in H
D1/2(Sd�1) as images9 by the Riesz map D

�1 of elements of the

9 From Definition 4.4,
a D-spline is such
that
Ds =

P
N

i=1 ↵i�ri

which, for D

invertible, is
equivalent to s =
D

�1(
P

N

i=1 ↵i�ri).

dual, namely linear combinations of Dirac measures. ⌅

The next proposition, adapted from [125, Theorem 6.36], shows the error
incurred by approximating elements of H

D1/2(Sd�1) –and hence in particular
arbitrary D-splines of interest here– with D-splines with fixed knot set ⌅N ⇢
S
d�1 of size N .

Proposition 6.4 — Approximation Error Analysis. Consider a knot set ⌅N =
{r1, . . . , rN} ⇢ S

d�1 with nodal width

⇥⌅N
:= max

r2Sd�1
min
s2⌅N

kr � skRd . (6.7)

Let further D denote a positive-definite, spline-admissible pseudo-differential
operator with spectral growth order p > d+1

2 and SD(Sd�1,⌅N ) be the space
of spherical D-splines associated to the knot set ⌅N . Then, for every function
h 2H

D1/2(Sd�1) we have

kh� s?
N
k1

khk
D1/2

 23/2LD

p
⇥⌅N

, (6.8)

where khk
D1/2 :=

q⌦
D1/2h,D1/2h

↵
Sd�1 , LD > 0 is a known10 positive constant 10 As shown in the

proof, LD is the
uniform Lispschitz
constant of the zonal
Green kernel  D .

depending only on D and s?
N
2 SD(Sd�1,⌅N ) is a D-spline verifying

s?N = arg min
s2SD(Sd�1,⌅N )

kh� sk
D1/2 ,

i.e. s?
N

is the orthogonal projection of h onto SD(Sd�1,⌅N ).
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Proof. Proposition 6.3 tells us that H
D1/2(Sd�1) is an RKHS. Therefore, any

element h 2 H
D1/2(Sd�1) is an ordinary function, and we have from Proposi-

tion 4.4

hh, D(h·, ri)i
D1/2 =

D
D

1/2h,D1/2 D(h·, ri)
E

Sd�1

=
D
D

1/2 D

r

���D1/2h
E

=
D
D D

r

���h
E

= h�r|hi
= h(r), 8r 2 S

d�1,

which shows that the zonal Green kernel  D is the reproducing kernel [18]
of H

D1/2(Sd�1). Additionally, since D is positive-definite, it is in particular
invertible, and we get from (4.17) that

SD(Sd�1,⌅N ) = span{ n

D :=  D(h·, rni), rn 2 ⌅N}.

The positive-definiteness of D implies moreover (see Remark 5.9 and [125,
Theorem 6.27]) that the family of functions { n

D
, n = 1, . . . , N} is linearly

independent and hence forms a basis for SD(Sd�1,⌅N ). Consequently, the or-
thogonal projection of h onto SD(Sd�1,⌅N ) can be written as

s?N =
NX

n=1

hh, n

DiD1/2
e n

D =
NX

n=1

h(rn) e n

D ,

where the second equality follows from the fact that  D reproduces functions
in H

1/2
D

(Sd�1) and { e n

D
, n = 1, . . . , N} ⇢ SD(Sd�1,⌅N ) is the dual basis [183,

Chapter 2] of { n

D
, n = 1, . . . , N}, verifying the biorthogonality property
D
e m

D , n

D

E

D1/2
= �mn, 8m,n = 1, . . . , N.

We have hence
D
s?N , n

D

E

D1/2
= h(rn) = hh, n

DiD1/2 , n = 1, . . . , N. (6.9)

Moreover, [125, Lemma 6.34] tells us that, for spline-admissible pseudo-differential
operators with growth order p > d+1

2 , the zonal Green kernel  D is uniformly
Lipschitz continuous, i.e. there exists LD > 0 which only depends on the se-
quence {D̂n}n2N such that for any ⇢ 2 S

d�1

| D(hr,⇢i)�  D(hs,⇢i)|  L2
Dkr � sk2, 8r, s 2 S

d�1. (6.10)

With these two observations, we are now ready to prove the result. First, we
get from (6.9) as well as the Cauchy-Schwarz and triangle inequalities

���h(r)� s?N (r)
��� = |h(r)� h(rn) + s?N (rn)� s?N (r)|
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1 Canonical Search Space Discretisation 97

= |
D
 r

D �  
rn

D
, h� h?N

E

D1/2
|

 k r

D �  
rn

D
k

D1/2(kh?NkD1/2 + khk
D1/2)

 2k r

D �  
rn

D
k

D1/2khkD1/2 .

Second, we obtain from the reproducing property, equation (6.10) and the
definition (6.7) of the nodal width ⇥⌅N

:

k r

D �  
rn

D
k2

D1/2 =
⌦
 r

D �  
rn

D
, r

D �  
rn

D

↵
D1/2

=  D(hr, ri) +  D(hrn, rni)�  D(hrn, ri)�  D(hr, rni)
 2L2

Dkr � rnkRd

 2L2
D⇥⌅N

.

In conclusion, this yields:

supr2Sd�1 |h(r)� s?
N

(r)|
khk

D1/2

 23/2LD

p
⇥⌅N

,

which achieves the proof. ⌅

Notice that the approximation error in Proposition 6.4 is bounded by the
nodal width (6.7) of the knot set, which can be interpreted geometrically as
the largest distance from an arbitrary point on the sphere to the knot set ⌅N

(see Fig. 6.1a). D-splines with knot sets minimising this quantity for a fixed
number of knots N will hence yield the smallest approximation error. From the
geometric interpretation of the nodal width, it is easy to see that knot sets with
minimal nodal width distribute their knots uniformly over the hypersphere.
Unfortunately, distributing points uniformly over S

d�1 is a notoriously hard
problem for d > 2 [78], making uniform knot sets inpractical. For d = 3
however, it is possible to obtain quasi-uniform knot sets with quasi-optimal
nodal widths [78]. An example of quasi-uniform knot set is the Fibonacci lattice
[66, 78] described in the subsequent example. In [78], the authors provide a
comprehensive list of quasi-uniform knot sets easy to generate in practice. For
each knot set, the asymptotic behaviour of the nodal width is assessed, either
numerically or theoretically.

Example 6.1 — Fibonacci Lattice. In nature, many plant leaves are ar-
ranged according to phyllotactic spiral patterns, which are well modelled by
the Fibonacci lattice. Points in the Fibonacci lattice are arranged uniformly
along a spiral pattern on the sphere linking the two poles (see Fig. 6.1b).
The lattice can very easily be generated from the following formula:
(
rn = [cos('n) sin(✓n), sin('n) sin(✓n), cos(✓n)] ,

where 'n = 2⇡n
⇣
1� 2

1+
p
5

⌘
& ✓n = arccos

�
1� 2n

N

�
,

(6.11)

with n = 1, . . . , N . It can be shown [78] that if the knot set ⌅N is constructed
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(a) The nodal width of a knot set
represents the largest distance from an
arbitrary point on the sphere to the
knot set.

(b) Fibonacci lattice with N = 41
points.

Figure 6.1: Visual representation of the nodal width (a) and the quasi-uniform Fibonacci
lattice (b).

according to the Fibonacci lattice (6.11), then the nodal width is quasi-
optimal and approximately given by ⇥⌅N

' 2.728/
p
N. ⌅

Notice that the nodal width of the Fibonacci lattice tends to zero as the num-
ber of knots N grows to infinity. This is a general behaviour of quasi-uniform
knot sets [78]. Consequently, the uniform approximation error (6.8) in Propo-
sition 6.4 tends to zero as the number of knots tends to infinity. In other words,
any element of H

D1/2(Sd�1) can be approximated arbitrarily well by D-splines
with quasi-uniform knot sets –called quasi-uniform spherical splines, provided
a sufficient number of knots. In light of this discussion, we therefore propose
to discretise FPBP problems by restricting their search spaces to subspaces
spanned by quasi-uniform D-splines. The following theorem shows that the
solutions to FPBP problems restricted this way can be obtained by solving a
discrete penalised basis pursuit (PBP) problem.

Theorem 6.5 — Canonical Discretisation of FPBP Problems. Consider the
notations and assumptions F1 to F6 of Theorem 5.4. Consider additionally
the following:

F7 D is spline-admissible and positive-definite;
F8 { 1, . . . , N} ⇢MD(Sd�1) are zonal functions of the form

 n :=  D(hr, rni), 8n = 1, . . . , N, (6.12)

where  D is the zonal Green kernel of D and ⌅N = {r1, . . . , rN} ⇢ S
d�1

for some N 2 N;
F9 SD(Sd�1,⌅N ) = span{ 1, . . . , N} ⇢ MD(Sd�1) is the space of D-

splines with knot set ⌅N ;
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1 Canonical Search Space Discretisation 99

F10  : CN ! SD(Sd�1,⌅N ) is a synthesis operator, defined as

 (x) =
NX

n=1

xn n, 8x 2 C
N .

Then, for each y 2 C
L, the restricted FPBP problem

V = arg min
f2SD(Sd�1,⌅N )

{F (y,�(f)) + �kDfkTV } (6.13)

and the following discrete PBP problem

U = arg min
x2CN

{F (y,Gx) + �kxk1} (6.14)

are equivalent, in the sense that their solution sets are in bijection with one
another:

V =  (U) and U =  †(V), (6.15)

where  † : SD(Sd�1,⌅N )! C
N is the pseudo-inverse (6.1) of  . Moreover,

the matrix G := � 2 C
L⇥N in (6.14) is given by

Gln := h D(h·, rni)|'li, l = 1, . . . , L, n = 1, . . . , N,

which simplifies to Gln = ( D ⇤ 'l)(rn) when the sampling functionals
{'l, l = 1, . . . , L} are in L

2(Sd�1).

Proof. The spline-admissible pseudo-differential operator D being positive-
definite, its Green kernel  D is strictly positive-definite (see [125, Definition
6.25 and Theorem 6.27]) and hence according to [125, Lemma 6.26], the fam-
ily of functions { n =  D(h·, rni), n = 1, . . . , N} is linearly independent for
every set ⌅N = {r1, . . . , rn} ⇢ S

d�1 of N distinct points. The synthesis operator
 defines hence a bijection between C

N and SD(Sd�1,⌅N ) = span{ n, n =
1, . . . , N}. From this isomorphism, we get notably

V = arg min
f2SD(Sd�1,⌅N )

{F (y,�(f)) + �kDfkTV }

= 

✓
arg min

x2CN

{F (y,� (x)) + �kD (x)kTV }
◆

= 

✓
arg min

x2CN

{F (y,� (x)) + �kxk1}
◆
, (6.16)

since we have (see Section 2.2)

kD (x)kTV =

�����

NX

n=1

xnD D(h·, rni)

�����
TV

=

�����

NX

n=1

xn�rn

�����
TV

= kxk1.

Notice that the linear operator � : CN ! C
L is finite-dimensional, and can

hence be represented as a matrix. From the bilinearity of the Schwartz duality
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product, we have indeed

(� x)l = h x|'li =

*
NX

n=1

xn D(h·, rni)

�����'l

+

=
NX

n=1

xnh D(h·, rni)|'li =
NX

n=1

xnGln, 8l = 1, . . . , L.

We can hence identify � with a matrix G 2 C
L⇥N , with entries given by

Gln := h D(h·, rni)|'li, l = 1, . . . , L, n = 1, . . . , N.

Since D is spline-admissible, the traces of the zonal Green kernel are ordinary
functions and hence in particular square-integrable. When the sampling func-
tionals {'1, . . . ,'L} are in L

2(Sd�1) we can hence obtain a simpler expression
for the entries of G:

Gln = h D(h·, rni)|'li = h'l, D(h·, rni)iSd�1

=

Z

Sd�1
 D(hr, rni)'l(r)dr

= ( D ⇤ 'l)(rn), l = 1, . . . , L, n = 1, . . . , N.

Equation (6.16) finally reduces to

V =  

✓
arg min

x2CN

{F (y,Gx) + �kxk1}
◆

=  (U) ,

as claimed. From the inverse map (6.1) we furthermore get U =  †(V) =
( ⇤ )�1 ⇤(V), which concludes the proof. ⌅

Remark 6.4 — Canonical Discretisation Scheme. Notice that the discretisation
scheme chosen in Theorem 6.5 is canonical w.r.t. the gTV norm induced by the
pseudo-differential operator D . Indeed, it conveniently transforms the gTV norm
kD ·kTV into a discrete `1 norm in (6.14). As detailed in the proof, this is because
the basis functions { D(h·, rni), n = 1, . . . , N} used in the discretisation are
Green functions of the operator D . Had the basis functions been chosen differently,
such simplifications would not have been possible, hence making the discrete
optimisation problem (6.14) considerably more difficult to solve in practice.

Remark 6.5 — Choice of N . The bound in (6.8) can be used in practice to set N .
Indeed, one can choose N such that the relative approximation error falls below
an acceptable accuracy threshold for any h 2H

D1/2(Sd�1), hence allowing us to
approximate the solutions of the FPBP problem with controlled error.

Remark 6.6 — Practical Implementation. Again, Theorem 6.5 provides us with
a simple two-step procedure for computing a practical solution to the restricted
FPBP problem (6.13):

1. Minimise (6.14) using one of the algorithms described in Chapter 7 and
obtain a solution u 2 U.
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2 Domain Discretisation 101

2. Using the synthesis operator  : C
N ! S(Sd�1,⌅N ) and the fact that

V =  (U), map u into a solution f =  (u) 2 V of the restricted FPBP
problem (6.13):

f(r) = ( u)(r) =
NX

n=1

un D(hr, rni), 8r 2 S
d�1.

The latter step can in this case be interpreted as an interpolation on S
d�1

of samples {un, n = 1, . . . , N} ⇢ C with sampling locations {rn, n =
1, . . . , N} ⇢ S

d�1 and interpolation kernel  D . Since the interpolating
functions  D(hr, rni) are zonal, such an interpolation can be carried out
very efficiently in practice (and even more so when  D has compact support,
as explained in Section 3.1).

Remark 6.7 — Form of the Solutions. Applying [178, Theorem 6] to the discrete
PBP problem (6.14) shows that U is convex and compact with L-sparse extreme
points. From the bijection (6.15), it implies in turn that V =  (U) is the closed
convex-hull of extreme points taking the form of sparse D-admissible spherical
splines with at most L non-zero amplitudes:

8f 2 �V, f =  u with kuk0  L,

where k · k0 denotes the “`0 norm”, counting the number of non-zero elements
in a vector. Solutions of the restricted FPBP problem (6.13) behave hence very
similarly as the ones of the unrestricted FPBP problem (5.23) investigated in
Theorem 5.4.

2 Domain Discretisation
In this section, we discuss an alternative discretisation strategy, called domain
discretisation. The latter, much appreciated by practitioners due to its simplic-
ity, operates on functional inverse problems by approximating their continuous
domain by some discrete manifold [30], hence implicitly converting them into
finite dimensional inverse problems. In our case, this amounts to approximat-
ing the hypersphere S

d�1 by some finite spherical point set ⇥ = {r1, . . . , rN} ⇢
S
d�1, often chosen equidistributed in practice (see Example 6.2 for more de-

tails). In this context, the aim of spherical approximation is then to recover
“functions” f : ⇥ ! C with discrete domain ⇥ and codomain C. Of course,
such objects do not naturally fall into the scope of the approximation frame-
work introduced in Chapter 5, which was primarily designed for spherical
fields, i.e. functions, measures or generalised functions defined over the con-
tinuous spherical domain. In the subsequent sections, we therefore adapt this
approximation framework to the discrete manifold setting, discussing notably
the discrete analogs of the L

2 and TV norms as well as the sampling and
pseudo-differential operators. As we shall see, although behaving similarly
as their continuous counterparts, discrete pseudo-differential operators lack a
canonical definition in the discrete manifold setting, complicating slightly the
comparison with the continuous approximation framework.
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(a) Cubic tessellation and
its associated point set.

(b) HEALPix tessellation
and its associated point set.

(c) Fibonacci Voronoi
tessellation and its
associated point set.

Figure 6.2: Examples of equidistributed point sets (marked by black dots) obtained from the
centres of spherical tessellation cells. In this experiment, we chose an approximate resolution
N = 200 for each point set. The cubic tessellation Fig. 6.2a is obtained by projecting the
pixelated faces of a cube onto the sphere.The HEALPix tessellation Fig. 6.2b is constructed by
hierarchical subdivision of the Voronoi cells of the dodecahedron vertices [67]. The Fibonacci
Voronoi tessellation Fig. 6.2c is obtained by constructing the spherical Voronoi tessellation of
the Fibonacci lattice (6.11).

Example 6.2 — Equidistributed Point Sets. Traditionally, the discrete set
⇥ = {r1, . . . , rN} ⇢ S

d�1 is chosen as an equidistributed spherical point
set [78], with the property that the sequence of normalised atomic measures

(
⌫N =

1

N

NX

n=1

�rn , N 2 N

)
⇢M(Sd�1)

converges in the weak⇤ sense towards the Lebesgue measure µ on S
d�1

when the number of points in the point set ⇥ grows to infinity. For d = 3,
there exists many equidistributed point sets [78], among which the Fibonacci
lattice discussed in Example 6.1 and the Hierarchical Equal Area isoLatitude
Pixelization (HEALPix) lattice [67], developed by NASA for analysing the cos-
mic microwave radiation background (CMB). In most cases, equidistributed
point sets are obtained from the barycentres of polygonal cells in spherical
tessellations, which tile the sphere with near equal-area and near identical
polygonal tiles (see [78] and Fig. 6.2). ⌅

Remark 6.8 — Domain Discretisation and Spherical Pixelisation. The duality
exhibited by Fig. 6.2 between equidistributed spherical point sets and spherical
tessellations has mislead many scholars into considering domain discretisation as
a form of spherical pixelisation. For example, signals defined over equidistributed
spherical point sets are often represented visually by colouring the faces of the
spherical tessellation associated to the specific point set configuration. Such a
representation implicitly assumes that a function over ⇥ can be interpolated by
the indicator functions of the tessellation cells, hence allowing us to interpret
domain discretisation as some sort of search space discretisation. Unfortunately,
the indicator functions of the tessellation cells are discontinuous step functions,

102



2 Domain Discretisation 103

and hence often not regular enough11 to be included in the search spaces of the 11 For example,
taking the second
derivative (in the
sense of distributions)
of the periodic box
function yields a
generalised function
which is neither in
L

2(S1) nor in
M(S1).

FPT and FPBP problems. As such, they cannot be considered as basis functions of
search space discretisation schemes for FPT and FPBP problems.

2.1 Discrete L
2 and TV Norms

The first ingredients we need for our discrete approximation framework are
discrete analogues of the L

2 and TV norms, which are central to the definitions
of the gTikhonov and gTV regularisation norms. To this end, it helps to notice
that, from the trivial bijection between ⇥ and {1, . . . , N}, one can identify the
functional space C

⇥ = {f : ⇥ ! C} with C
N . Indeed, any function f 2 C

⇥

can be written uniquely as a vector of CN given by

f = [f(r1), · · · , f(rN )]. (6.17)

In the next result, we leverage this bijection to show that the L
2 and TV

norms of a function f 2 C
⇥ are given by the `2 and `1 norm of its vector

representation f 2 C
N respectively. We also characterise the dual of C⇥ as

well as the important functional spaces L
2(⇥), C (⇥) and M(⇥).

Proposition 6.6 — Functional Analysis over Discrete Domains. Consider a
point set ⇥ = {r1, . . . , rN} ⇢ S

d�1 equipped with the discrete topology and the
vector space C

⇥ = {f : ⇥ ! C} of functions with domain ⇥ and co-domain C.
Then the following holds:

1. (L 2(⇥), k · k2) is isometrically isomorphic to (CN , k · k2).
2. (C (⇥), k · k1) is isometrically isomorphic to (CN , k · k1).
3. The algebraic dual (C⇥)⇤ of C⇥ is in bijection with C

N . Moreover, the
Schwartz duality product h·|·i : (C⇥)⇤ ⇥ C

⇥ ! C can be identified with
the canonical inner product h·, ·i

CN as follows

hg|fi = hf , gi
CN , 8f, g 2 C

⇥ ⇥ (C⇥)⇤,

and where f , g 2 C
N are the vector representations of f and g respectively.

4. (M(⇥), k · kTV ) is is isometrically isomorphic to (CN , k · k1).

Proof. Most of Items 1 to 4 are trivialities. For the sake of completeness, we
provide here succinct derivations of the latter:

1. From bijection (6.17), we get

kfk22 =
X

⇢2⇥

|f(⇢)|2 =
NX

n=1

|f(rn)|2 = kfk22, 8f 2 C
⇥.

This yields,

L
2(⇥) = {f : ⇥! C : kfk2 < +1} ⇠=

�
f 2 C

N : kfk2 < +1
 

= C
N .

2. Since ⇥ is equipped with the discrete topology, any function in C
⇥ is

continuous. We have hence C (⇥) = C
⇥ ⇠= C

N from bijection (6.17).
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104 Discretisation

Moreover, still from (6.17) we get

kfk1 = sup
⇢2⇥

|f(⇢)| = max
n=1,...,N

|f(rn)| = kfk1, 8f 2 C
⇥. (6.18)

3. Using bijection (6.17), we can write any element f of C⇥ uniquely as

f =
NX

n=1

f(rn)�n,

where �n is the function12 in C
⇥ associated to the nth vector �n 2 C

N of12 This function is
such that �n(rn) = 1
and �n(rm) = 0 for
all m 6= n,
m = 1, . . . , N.

the canonical basis of CN , for n = 1, . . . , N . Consequently, we have, for
any linear functional g 2 (C⇥)⇤:

hg|fi =
D
g
���
X

n = 1f(rn)�n
E

=
NX

n=1

f(rn)hg|�ni =
NX

n=1

f(rn)gn = hf , gi
CN .

(6.19)
Hence any linear functional g 2 (C⇥)⇤ can be written uniquely as a vector
of CN as:

g = [hg|�1i, . . . , hg|�N i].

4. From (6.17), (6.18) and (6.19) we get that the total variation norm is
given by:

kgkTV = sup
f2C⇥,kfk1=1

|hg|fi| = sup
f2CN ,kfk1=1

| hf , gi | = kgk1, 8g 2 (C⇥)⇤.

Therefore we have

M(⇥) = {g 2 (C⇥)⇤ : kgkTV < +1} ⇠= {g 2 C
N : kgk1 < +1} = C

N .

⌅

2.2 Discrete Sampling Operators

In agreement with the generic definition (5.2) of a sampling operator, we
define a discrete sampling operator � : C⇥ ! C

L over C⇥ as

�(f) = [hg1|fi, . . . , hgL|fi] 2 C
L, 8f 2 C

⇥,

where {g1, . . . , gL} are linear functionals in the dual of C⇥. Due to Item 3 of
Proposition 6.6, discrete sampling operators can be identified with matrices in
C
L⇥N . Indeed, we have, for all f 2 C

⇥:

�(f) =

2

664

hg1|fi
...

hgL|fi

3

775 =

2

664

hf , g1iCN

...
hf , gLiCN

3

775 =

2

664

g
H

1
...

g
H

L

3

775f = Gf , (6.20)
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2 Domain Discretisation 105

and hence � can be identified with the matrix G 2 C
L⇥N , whose lth row is

given by g
H

l
2 C

N . We call G the sensing matrix.

Remark 6.9 — The Sensing Matrix in Practice. In practice, the matrix G is cho-
sen so as to approximate well the acquisition system used to collect the data. Such
an approximation may in some cases be particularly cumbersome to establish. In-
deed, the physical world being analog, the operations performed by the acquisition
system are inherently continuous, and may hence be very difficult to represent as
discrete operations. This is for example the case for non-uniform spatial sampling
scenarios, where the sampling directions may not coincide with the directions in
⇥. In such cases, practitioners often have recourse to ad-hoc gridding steps13, so 13 Such as

nearest-neighbour
interpolation.

as to map the off-grid samples onto the point set ⇥ (see for example Section 1.4.2
of Chapter 9). Of course, the error incurred by such gridding steps are most often
difficult, if not impossible, to assess precisely.

2.3 Discrete Pseudo-Differential Operators

In Chapter 4, we defined pseudo-differential operators on the sphere as Fourier
multipliers. We adapt here this construction to discrete domains and introduce
discrete pseudo-differential operators as linear operators diagonalised by the
Fourier basis and with specific constraints on their spectrum. To this end, we
need to first define a Fourier basis over C⇥. From bijection (6.17), it may seem
tempting to choose to work with the canonical Fourier basis ej2⇡kn/N on C

N .
Unfortunately, it turns out that the latter is particularly ill-suited for harmonic
analysis purposes on C

⇥. Indeed, there is a fundamental mismatch14 between 14 This mismatch is
explained by the fact
that manifolds are by
definition not
homeomorphic to
Euclidean domains.

locality in the discrete manifold ⇥ and connectivity in the vector representation
f 2 C

N of a function f 2 C
⇥: points which are close to one another in the

discrete manifold can end up far apart from one another in the vector repre-
sentation. Consequently, applying naively the discrete Fourier transform (DFT)
to the vector representation f of a function f in C

⇥ would yield a fundamen-
tally flawed spectrum, where some of the frequency content would be due to
the unaccounted geometry of the underlying domain and not to the inherent
fluctuations of the analysed signal. To properly account for the correlations in
f arising from the underlying domain geometry, one possibility [47, 139] is
to define an explicit connectivity graph G = (⇥, E ,W ), where E ⇢ ⇥2 is an
edge set defining neighbouring vertices in ⇥ and W 2 R

N⇥N is a weighting ma-
trix, defining the similarity between two connected vertices. Given an arbitrary
spherical point set ⇥, the edge set can for example be defined as the Delaunay
triangulation of ⇥ (which can be computed in practice efficiently via the Quick-
hull algorithm [11]). Such a construction can be thought as linking the points
in ⇥ whose corresponding tessellation cells are adjacent (see Fig. 6.3). Con-
sequently, we call the graph obtained this way a tessellation graph. The edge
weights are moreover commonly defined as a function of the Euclidean dis-
tance separating two vertices in the lattice⇥. In [139], the authors recommend
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(a) Signal on the Fibonacci tessellation graph. (b) Signal on the HEALPix tessellation graph.

Figure 6.3: Examples of signals on spherical tessellation graphs (N = 48).

the following weighting scheme:

Wnm :=

8
><

>:

exp

✓
�krn � rmk22

⇢2

◆
if (rn, rm) 2 E ,

0 otherwise,

where ⇢ > 0 is given by ⇢ = 1
|E|

P
(rn,rm)2E krn � rmk2. With this additional

structure, a function f 2 C
⇥ can be seen as a signal on a graph (see Fig. 6.3),

which can be processed by means of graph signal processing tools [159]. Sim-
ilarly as in Chapter 3, the Fourier basis on a graph is typically defined as the
eigenvectors of the Laplacian of the graph G , which can be thought of as a dis-
crete analog of the negative Laplace-Beltrami operator ��Sd�1 . As explained
in [159], there exist many possible definitions of the graph Laplacian (see
Remark 6.10). For example, one can consider the normalised Laplacian [139]
given by:

L := I �⇤�1/2
W⇤�1/2, (6.21)

where I 2 R
N⇥N denotes the identity matrix and ⇤ 2 R

N⇥N is a diagonal
matrix defined as:

⇤ii =
NX

n=1

Win, i = 1, . . . , N.

The Laplacian operator (6.21) has many useful properties in common with the
negative Laplace-Beltrami operator [159, 189] (see however Remark 6.10). In
particular, it is often extremely sparse15, positive semi-definite and its induced15 At least in the

context of the
spherical tessellation
graphs explored here.
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semi-norm

kfkL := kL1/2
fk2 =

p
fHLf =

vuut
X

(i,j)2E

Wijp
⇤ii⇤jj

(fi � fj)2, 8f 2 C
N ,

(6.22)

can be thought of as a generalised finite-difference scheme for measuring the
global smoothness16 [159, Example 2] of a signal f 2 C

N defined on the 16 This explains why
the Laplacian is
considered a discrete
analog of the
continuous negative
Laplace-Beltrami
operator.

graph of G . This intimate link between the Laplacian and the Laplace-Beltrami
operator has lead scholars to define the graph Fourier transform (GFT) from
the eigenvectors U 2 R

N⇥N of the Laplacian L:

L = U�U
T ,

where� 2 R
N⇥N

+ is the diagonal matrix of eigenvalues of L sorted in ascending
order, and UU

T = U
T
U = IN . We have then the following analysis and

synthesis formulae for the GFT:

f̂ = U
T
f , & f = Uf̂ , 8f 2 C

N .

It can moreover be shown [159] that the eigenvectors associated to the largest
eigenvalues have more oscillatory behaviour than those associated to the small-
est eigenvalues, hence allowing one to interpret large eigenvalues of L as
high frequencies. With the availability of a suitable notion of Fourier transform
on graphs, we can then define discrete pseudo-differential operators as linear
operators D : CN ! C

N “boosting” the high frequency content of a graph
signal:

Df := Udiag(D̂1, . . . , D̂N )UT
f = Udiag(D̂1, . . . , D̂N )f̂ , f 2 C

N , (6.23)

where the sequence of coefficients {D̂n, n = 1, . . . , N} ⇢ R is non-decreasing,
non identically null, and such that

|D̂n| 2 {0} [ [1,+1[, 8n = 1, . . . , N.

Observe that this definition is reminiscent of Definition 4.1 for continuous
spherical pseudo-differential operators. In practice, we will mostly consider
discrete pseudo-differential operators that can be expressed as real polynomials
D =

P
K

k=0 ✓kL
k of the graph Laplacian, such as for example (L + IN )K for

some K 2 N, which can be thought of as the discrete counterpart of the Sobolev
operators from Example 4.1. Finally, we define discrete D-splines as vectors
s 2 C

N , such that

Ds =
KX

k=1

↵k�nk
, (6.24)

where 1  K  N , {↵k, k = 1, . . . ,K} ⇢ C and {nk, k = 1, . . . ,K} ⇢
{1, . . . , N}. Observe that (6.24) is the discrete analog to (4.13) in Defini-
tion 4.4.
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Remark 6.10 — Discrete Laplacian vs. Laplace-Beltrami Operator. Although
possessing many of the nice properties of the continuous (negative) Laplace-
Beltrami operator17, discrete graph Laplacians fail to verify them all at the same17 See for example

[139] for the specific
case of HEALPix
tessellation graphs.

time (see [189] for a detailed exposition of this theoretical limitation). This ex-
plains the multiple alternative definitions of graph Laplacians proposed in the
literature. Moreover, discrete Laplacians generally do not converge [30, 189]
towards the continuous (negative) Laplace-Beltrami operator as the number of
points N in the discrete manifold ⇥ grows to infinity. Therefore, the notion of
smoothness captured by (6.22) differs slightly from the traditional notion of
smoothness in the continuous setup.

2.4 Discrete gTikhonov and gTV Regularisation and Representer Theorems
The developments of Sections 2.1 to 2.3 lead us to consider the following
optimisation problems:

V = arg min
f2CN

�
F (y,Gf) + �kDfk22

 
, (6.25)

and
V = arg min

f2CN

{F (y,Gf) + �kDfk1} , (6.26)

as natural generalisations of the FPT and FPBP problems (5.10) and (5.14) to
discrete point set domains ⇥ with size N . For both problems (6.25) and (6.26),
we assume moreover the following

I1 y 2 C
L is an arbitrary data vector;

I2 G = [g1, . . . gL]H 2 C
L⇥N is some sensing matrix as in (6.20) with

independent sampling vectors {gi, i = 1, . . . , L} ⇢ C
N ;

I3 F : CL ⇥ C
L ! R+ [ {+1} is a cost functional such that for all y 2 C

L,

F (y, ·) :

(
C
L ! R+ [ {+1}

z 7! F (y, z)

is proper, convex and lower semi-continuous;
I4 � > 0 is some regularisation parameter;
I5 D 2 R

N⇥N is some invertible discrete pseudo-differential operator defined
in (6.23).

The assumption that the rows of G are linearly independent in I2 is the transla-
tion in discrete terms of the assumption of independent linear measurements in
FPT and FPBP problems (see Assumptions E3 and F3 of Theorems 5.3 and 5.4
respectively). Note that a necessary condition for I1 to hold is L  N . The as-
sumption that D is invertible in I5 guarantees that the discrete gTikhonov and
gTV norms kD · k2 and kD · k1 are indeed positive definite. Using the abstract
representer theorems Corollary 2.10 and Theorem 2.12 from Chapter 2, it is
possible to characterise the solutions of problems (6.25) and (6.26):
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Theorem 6.7 — Representer Theorem for Discrete gTikhonov Regularisa-
tion. Consider the assumptions I1 to I5 introduced above. Then, (6.25) ad-
mits a unique solution given by

f
? = D

�2
G

H
↵ =

LX

i=1

↵iD
�2

gi, (6.27)

for some ↵ = [↵1, . . . ,↵L] 2 C
L.

Proof. We apply Corollary 2.10 to (6.25), with H = (CN , hD·,D·i
CN ), H

0 =
(CN ,

⌦
D

�1·,D�1·
↵
CN

), ⇤(t) = �t2 and sampling operator � : CN ! C
L given

by

�(f) = [hg1|fi, . . . , hgL|fi] = [hf , g1iCN , . . . , hf , gLiCN ] = Gf , 8f 2 C
N .

Note that the assumptions of the corollary are indeed verified since H is an
Hilbert space, ⇤ is convex and strictly increasing and the sampling vectors
gi are assumed linearly independent. We deduce hence that (6.25) admits a
unique solution given by

f
? =

LX

i=1

↵iRgi,

for some coefficients ↵1, . . . ,↵L 2 C where R : H
0 !H denotes the isomet-

ric Riesz map. The latter is moreover given by D
�2 since any f 2 H can be

written uniquely as

f = D
�2

g, with kfkH = kDfk2 = kDD
�2

gk2 = kD�1
gk2 = kgkH 0 .

This finally yields

f
? =

LX

i=1

↵iD
�2

gi,

which can also be written equivalently as

f
? = D

�2
G

H
↵, where ↵ := [↵1, . . . ,↵L] 2 C

L.

⌅

Theorem 6.8 — Representer Theorem for Discrete gTV Regularisation. Con-
sider the assumptions I1 to I5 introduced above. The solution set V to (6.26)
is nonempty and the closed convex-hull of sparse extreme points taking the
form of discrete D-splines:

f
? =

MX

i=1

↵iD
�1

�ni
, (6.28)
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where 1 M  L, ↵ = [↵1, . . . ,↵L] 2 C
L, {ni, i = 1, . . . ,M} ⇢ {1, . . . , N}

and �i 2 C
N , denotes the ith element of the canonical basis of CN .

Proof. We apply Theorem 2.12 to (6.26). To this end, we set (B, k · kB) =
(CN , kD�1 · k1), (B0, |||·|||) = (CN , kD · k1), ⇤(t) = �t and sampling operator
� : CN ! C

L given by

�(f) = [hg1|fi, . . . , hgL|fi] = [hf , g1iCN , . . . , hf , gLiCN ] = Gf , 8f 2 C
N .

The assumptions of Theorem 2.12 are then indeed verified since (CN , kD�1 ·
k1) and (CN , kD ·k1) form indeed a duality pair of Banach spaces, ⇤ is convex
and strictly increasing and the sampling vectors gi are assumed linearly inde-
pendent. We get hence from Theorem 2.12 that the solution set V to (6.26)
is nonempty and the weak⇤ closed convex hull of its extreme points. Since in
finite dimension the weak⇤ topology coincides with the strong topology, V is
also closed w.r.t. the canonical Banach topology on (CN , kD · k1). From The-
orem 2.12, we have that the extreme points of V are moreover necessarily of
the form:

f
? =

MX

i=1

�iei, (6.29)

where 1  M  L, {�1, . . . ,�M} ⇢ C and ei 2 C
N are extreme points of the

closed regularisation ball

BgTV,1/� = {f 2 C
N : kDfk1  1/�}.

Using similar arguments as in the proof of Theorem 2.12, it is possible to show
that the latter are of the form

�BgTV,1/� =
�
z��1

D
�1

�i, i = 1, . . . , N, |z| = 1
 
, (6.30)

where {�i, i = 1, . . . , N} is the canonical basis on C
N . Plugging (6.30) into

(6.29) therefore allows us to write any extreme points of the solution set V as

f
? =

MX

i=1

�izi
�

D
�1

�ni
=

MX

i=1

↵iD
�1

�ni
,

for some constants {↵1, . . . ,↵M} ⇢ C and indices {n1, . . . , nM} ⇢ {1, . . . , N},
and where 1 M  L. ⌅

2.5 Comparison with Search Space Discretisation
Theorem 6.7 predicts that the solution of the discrete-domain FPT problem
(6.25) is in the span of {D�2

gi, i = 1, . . . , L}. This is reminiscent of Theo-
rem 5.3, which tells us that the solution to the continuous-domain FPT prob-
lem (5.16) is in the span of the functions {D

�2'i, i = 1, . . . , L}. Similarly,
Theorem 6.8 states that solutions of the discrete-domain FPBP problem (6.25)
are discrete D-splines18, just like (non-limit) solutions of the FPBP problem18 As convex

combinations of
sparse discrete
D-splines.

(5.23) are D-splines when D is spline-admissible (see Theorem 5.4). There-
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fore, for the discrete problem (6.25) (respectively (6.26)) to approximate well
(5.16) (respectively (5.23)), we would like that the vectors D

�2
gi (respec-

tively discrete D-splines) converge in a certain sense towards the functions
D

�2'i (respectively D-splines) as the dimension N –i.e. the number of points
in the discrete manifold ⇥– grows to infinity. Although this seems to be the
case in practice, such a convergence result has not been formally proven yet.
Moreover, the fact that discrete Laplacians do not converge [30] in general
towards the negative Laplace-Beltrami operator on S

d�1 make us doubtful that
such a convergence result could ever be established.

In contrast, the search-space discretisation schemes proposed in Section 1.1
and Section 1.2 yield solutions of the exact form predicted by Theorems 5.3
and 5.4 respectively. Unlike domain discretisation schemes (see Remark 6.9),
they moreover do not require the sampling operator to be discretised, hence
making it much easier to work with sampling operations inherent to the con-
tinuous domain, such as spatial sampling. For these reasons, we believe our
search-space discretisation schemes to be much better indicated than domain
discretisation schemes for solving FPT and FPBP problems in practice.
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III
In this part, we discuss practical aspects of the spherical approximation frame-
work from Part II. Some of the highlights of this part are the following:

• In Chapter 7, we design efficient and provably convergent proximal al-
gorithms for all discrete optimisation problems considered in Chapter 6.
We moreover propose rules of thumb for setting their various hyper-
parameters and provide the proximal operators of most common cost
functionals.

• In Chapter 8, we discuss the use of Wendland and Matérn pseudo-
differential operators when designing gTikhonov and gTV penalties, and
their convenient properties for practical purposes.

• In Chapter 9, we test the spherical approximation framework from Part II
and novel algorithms from Chapter 7 on a variety of real and simulated
datasets, coming from the fields of meteorology, forestry, radio astron-
omy and planetary sciences. The sampling functionals, cost functions and
regularising strategies considered in each case are very diverse, showing
the versatility of both our theoretical framework and algorithmic solu-
tions. In the meteorology example, we moreover illustrate the superiority
of continuous-domain vs. discrete-domain recovery, both in terms of ac-
curacy and resolution.

Algorithms &
Applications





7
Optimisation Algorithms

In this chapter, we propose to solve the discrete problems (6.4), (6.14), (6.25)
and (6.26) by means of provably convergent fully-split proximal iterative meth-
ods [134], which only involve simple matrix-vector multiplications and prox-
imal steps. We treat the most general case where the cost function F is prox-
imable but not necessarily differentiable with the primal-dual splitting method
(PDS) introduced by Condat in his seminal work [43]. In the simpler (yet pre-
vailing in practice) case where F is also differentiable and with �-Lipschitz con-
tinuous derivative, we leverage an optimal first-order method called accelerated
proximal gradient descent (APGD) [16, 134], with faster convergence rate than
the PDS method. For the sake of simplicity and without loss of generality, we
consider the real case only, where x 2 R

N and y 2 R
L –i.e. the coefficients and

data vector are assumed real. The complex case, less common in practice, can
be handled similarly by identifying C

N and C
L with R

2N and R
2L respectively

and reformulating optimisation problems (6.4), (6.14), (6.25) and (6.26) in
terms of real operations only, using the techniques described in [148, Section
7.8]. For reference purposes, we provide in Table 7.2 page 133 a summary of
the various algorithms investigated in this chapter.

1 The Primal-Dual Splitting Method

We review here the primal-dual splitting method (PDS) proposed in [43]. The
latter is an iterative method aiming to solve the following primal optimisation
problem:

Find x
? 2 arg min

x2X

{F(x) + G(x) + H(Kx)} , (7.1)

under the following assumptions:
J1 X and Y are two finite dimensional1 real Hilbert spaces with respective 1 The algorithm

presented in [43] is
actually also valid for
infinite dimensional
vector spaces, in
which case however
the assumptions for
the convergence of
the method are
slightly more
stringent.

inner products h·, ·i
X

and h·, ·i
Y

. We denote moreover the norms induced
by both inner products on X and Y as k · kX and k · kY respectively.

J2 F : X ! R is convex and differentiable, with �-Lipschitz continuous gradi-
ent:

krF(x)�rF(x0)kX  �kx� x
0kX , 8(x,x0) 2 X 2, (7.2)
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for some Lipschitz constant � 2 [0,+1[.
J3 G : X ! R [ {+1} and H : Y ! R [ {+1} are two proper, lower semi-

continuous (lwsc) and convex functions with simple proximal operators,
in the sense that the latter admit a closed-form representation or can be
computed efficiently and with high precision. As a reminder, the proximal
operator of G (respectively H with the norm k · kY) is given by [134,
Section 1.1]

prox
G
(u) := arg min

x2X

⇢
G(x) +

1

2
kx� uk2

X

�
, 8u 2 X . (7.3)

J4 K : X ! Y is a linear operator, with induced operator norm:

kKkX ,Y = sup
x2X ,kxkX=1

kKxkY . (7.4)

J5 The solution set in (7.1) is non-empty.

Vocabulary 7.1 — Proximable Function. We say that a function is proximable
if its proximity operator admits a closed-form representation.

As explained in [43], PDS solves jointly the primal problem (7.1) and its asso-
ciated dual [43, Equation 4] by combining them into the saddle-point problem

Find (x?, z?) 2 arg min
x2X

max
z2�(H⇤)

�
F(x) + G(x) � H⇤(z) + hKx, zi

Y

 
,

(7.5)
where H⇤ : Y ! R[{1} is the convex conjugate of H, with domain�(H⇤) ⇢ Y
and defined as [127]

H⇤(z) := max
y2Y

hz,yi
Y
�H(y), 8z 2 Y. (7.6)

Observe that the solutions of (7.5) w.r.t. the variable x are such that

x
? 2 arg min

x2X

{F(x) + G(x) + H⇤⇤(Kx)} ,

where H⇤⇤(y) := maxz2�(H⇤) hy, ziY �H⇤(z), y 2 Y is the conjugate of H⇤,
called the convex biconjugate2 of H [127]. When H is convex and regular2 The convex

biconjugate function
H⇤⇤ of a function H
can in general be
interpreted
geometrically as the
closed convex-hull of
the epigraph of H, i.e.
the largest lwsc
convex function such
that H⇤⇤  H [200].

enough –which is the case here– we have moreover, from the Fenchel-Moreau
theorem [99], equality between H and its biconjugate: H = H⇤⇤. Therefore,
solutions of the saddle-point problem (7.5) w.r.t. the variable x are indeed so-
lutions of the primal problem (7.1). The saddle-point problem (7.5) presents
however the advantage of splitting the complicated composite term H(Kx)
in (7.1) into a sum of two simpler terms hKx, zi

Y
�H⇤(z) which are easier

to optimise, since respectively differentiable and proximable. The proximal
operator of the convex conjugate H⇤ is moreover given by Moreau’s identity
[134]

prox
�H⇤(z) = z � � prox

H/�
(z/�), 8z 2 Y, � > 0. (7.7)

In [43], Condat proposes two PDS iterative methods for solving (7.5). In the
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1 The Primal-Dual Splitting Method 117

Algorithm 7.1: A primal-dual splitting method for solving (7.5).

1: procedure P D S(⌧,�, ⇢,x0, z0)
2: for all n � 1 do
3: x̃n = prox

⌧G
(xn�1 � ⌧rF(xn�1)� ⌧K⇤

zn�1)
4: z̃n = prox

�H⇤ (zn�1 + �K [2x̃n � xn�1])
5: xn = ⇢x̃n + (1� ⇢)xn�1

6: zn = ⇢z̃n + (1� ⇢)zn�1

7: return {(xn, zn)}n2N

context of this thesis, we will work with the one described in Algorithm 7.1.
The latter produces a sequence {(xn, zn)}n2N ⇢ X ⇥ Y converging towards
a solution pair (x?, z?) of (7.5) by iterating rows 3 to 6 of Algorithm 7.1,
starting from arbitrary initial guesses3 (x0, z0) 2 X ⇥Y. Notice that the update 3 Typically chosen

identically null or
random.

equations 3 and 4 are not too computationally intensive since they involve
only the simple proximal operators of G and H⇤, as well as linear operations
between the gradient rF , the operator K, its adjoint K⇤ and the primal/dual
variables. The hyperparameters ⌧,� in Algorithm 7.1 can be interpreted as step
sizes, which control the amount of improvement in the primal and dual variable
respectively, while the parameter ⇢ can be interpreted as a momentum term.4 4 Condat also

considers the more
general case of a
momentum varying
across iterations.

To ensure convergence of the method, these hyperparameters must verify the
conditions listed in [43, Theorem 3.1 and Theorem 3.3], depending on whether
the Lipschitz constant � is null5 or not. Both results are provided hereafter for

5 The Lipschitz
constant � is null
when F is an affine
function or F = 0.

reference purposes.

Theorem 7.1 — Convergence of the PDS Method (� 6= 0) [43]. Consider
problem (7.5) under the assumptions J1 to J5 and let ⌧ > 0, � > 0 and ⇢
be the hyperparameters of Algorithm 7.1. Suppose moreover that � > 0 and
that the following holds:

K1 1
⌧
� �kKk2

X ,Y
� �

2 ,

K2 ⇢ 2]0, �[, where � := 2� �

2

⇣
1
⌧
� �kKk2

X ,Y

⌘
�1
2 [1, 2[.

Then, there exists a pair (x?, z?) 2 X ⇥ Y solution to (7.5), s.t. the primal
and dual sequences of estimates (xn)n2N and (zn)n2N converge towards x?

and z
? respectively, i.e.

lim
n!+1

kx? � xnkX = 0, and lim
n!+1

kz? � znkY = 0.

Proof. See [43, Section 4]. ⌅

Remark 7.1 Note that Theorem 7.1 above is a specialisation of [43, Theorem
3.1] to the case where both X and Y are finite dimensional, the proximal and
gradient steps are computed exactly, and the momentum term ⇢ is chosen constant
across iterations as in Algorithm 7.1.
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Theorem 7.2 — Convergence of the PDS Method (� = 0) [43]. Consider
problem (7.5) under the assumptions J1 to J5 and let ⌧ > 0, � > 0 and ⇢
be the hyperparameters of Algorithm 7.1. Suppose moreover that � = 0 and
that the following holds:

L1 ⌧�kKk2
X ,Y
 1,

L2 ⇢ 2 [✏, 2� ✏], for some ✏ > 0.
Then, there exists a pair (x?, z?) 2 X ⇥ Y solution to (7.5), s.t. the primal
and dual sequences of estimates (xn)n2N and (zn)n2N converge towards x?

and z
? respectively, i.e.

lim
n!+1

kx? � xnkX = 0, and lim
n!+1

kz? � znkY = 0.

Proof. See [43, Section 4]. ⌅

Remark 7.2 Again, Theorem 7.1 is a specialisation of [43, Theorem 3.3] to
the case where the proximal and gradient steps are computed exactly, and the
momentum term ⇢ is chosen constant across iterations as in Algorithm 7.1.

In practice, the convergence speed of Algorithm 7.1 is improved by choosing
� and ⌧ as large as possible and relatively well-balanced –so that both the
primal and dual problems converge at the same pace. Consequently, we chose
in our implementation of Algorithm 7.1 the perfectly balanced parameters
� = ⌧ saturating the inequalities K1 and L1. For the scenario considered in
Theorem 7.1 this yields:

1

⌧
� ⌧kKk2X ,Y =

�

2
() �2⌧2kKk2X ,Y � �⌧ + 2 = 0,

which admits one positive root

⌧ = � =
1

kKk2
X ,Y

 
��

4
+

r
�2

16
+ kKk2

X ,Y

!
. (7.8)

For the scenario considered in Theorem 7.2 finally, this yields

⌧ = � = kKk�1
X ,Y

. (7.9)

Note that the theoretical convergence rate of the PDS method has only been
assessed in particular cases. For example, Chambolle and Pock have shown in
[35, Theorem 1] that, in the case where F = 0, the PDS method converges6 at6 More precisely they

showed that the
partial duality gap
decreases at a rate
inversely proportional
to the number of
iterations.

a suboptimal rate O(1/n). This rather slow convergence is also observed em-
pirically in more general cases. In the subsequent section, we propose, for the
common case H = 0, a more efficient optimisation method called accelerated
proximal gradient descent (APGD), with optimal convergence rate o(1/n2).

Remark 7.3 — Stopping Criterion. In practice, we stop Algorithm 7.1 when
the relative improvement in the primal variable xn falls below a certain pre-
determined accuracy threshold " > 0. This stopping criterion, which monitors
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improvement of the primal variable, is motivated by the fact that we are in this
context only interested in solving the primal problem (7.1).

2 Accelerated Proximal Gradient Descent
Consider the specific case H = 0 in optimisation problem (7.1). Then, the
latter can be solved by means of the accelerated proximal gradient descent
(APGD) method [8, 34], implemented in Algorithm 7.2. It has been shown in
[8, Theorem 1] that, under the assumptions J1, J2, J3, J5, 0 < ⌧  1/� and
d > 2, APGD achieves the following optimal convergence rates:

lim
n!1

n2 |J (x?)� J (xn)| = 0 & lim
n!1

n2kxn � xn�1k2X = 0,

for some minimiser x
? 2 arg minx2X {J (x) := F(x) + G(x)} 6= ;. In other

words, both the objective functional and the APGD iterates {xn}n2N converge
at a rate o(1/n2). In our practical implementation of Algorithm 7.2, we chose
the step size ⌧ as large as possible ⌧ = 1/� and set d to the value d = 75. The
latter choice was motivated by the results reported in [111, 113], which show
significant practical acceleration for values of d in the range [50, 100].

Remark 7.4 — Stopping Criterion. Similarly as for Algorithm 7.1, we stop in
practice Algorithm 7.2 when the relative improvement kxn � xn�1kX /kxn�1kX
falls under a certain pre-determined accuracy threshold " > 0.

Algorithm 7.2: APGD method for solving (7.1) when H = 0.

1: procedure A P G D(⌧, d,x0)
2: for all n � 1 do
3: zn = prox

⌧G
(xn�1 � ⌧rF(xn�1))

4: xn = zn + n�1
n+d (zn � zn�1)

5: return {xn}n2N

3 Algorithms for Search Space Discretisation Schemes
In this section, we apply Algorithms 7.1 and 7.2 to the optimisation problems
(6.4) and (6.14) obtained by the canonical search space discretisation schemes
proposed in Sections 1.1 and 1.2 of Chapter 6 respectively. In all that follows,
we assume that the Hilbert spaces RN and R

L are equipped with their canonical
inner products and induced norms. Moreover, all operator norms are defined
w.r.t. these induced norms on R

N and R
L. Since such canonical norms are

unambiguous, we simplify their notations by dropping their subscripts.

3.1 gTikhonov Regularisation
Consider the (real) optimisation problem (6.4):

Find x
? = arg min

x2RL

�
F (y,Gx) + �xT

Gx
 
, (7.10)
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where y 2 R
L, F (y, ·) : RL ! R[ {+1} is proper convex and lwsc, G 2 R

L⇥L

and � > 0. We propose in the subsequent sections various algorithms for
solving (7.10) depending on the nature of the cost functional F .

3.1.1 Proximable Cost Functional

Assume that the cost functional Ey = F (y, ·) : RL ! R [ {+1} is proximable
but not necessarily smooth. Then, (7.10) can be seen as a specific instance of
(7.1), with

X = Y = R
L, F(x) = �xT

Gx, G(x) = 0 ,H(z) = Ey(z), and K = G,

and
rF(x) = 2�Gx, 8x 2 R

L and � = 2�kGk.

We can therefore solve (7.10) by specialising the generic Algorithm 7.1 to
this particular setup. The resulting algorithm –with stopping criterion as in
Remark 7.3– is implemented in Algorithm 7.3. The convergence condition K1
from Theorem 7.1 becomes in this case

1

⌧
� �kGk2 � �kGk,

and the rule of thumb (7.8) for setting the step sizes ⌧ and � yields

⌧ = � =
1

kGk

 
��

2
+

r
�2

4
+ 1

!
.

Finally, condition K2 of Theorem 7.1 tells us that for such step sizes, the mo-
mentum parameter ⇢ should be chosen in the open interval ]0, 1[.

Algorithm 7.3: PDS method for solving (7.10) when F is
proximable but not necessarily smooth.

1: procedure P D S(y, ⌧,�, ⇢,x0, z0, ✏)
2: n = 0
3: repeat
4: n n + 1
5: x̃n = xn�1 � 2⌧�Gxn�1 � ⌧GT

zn�1

6: z̃n = prox
�E⇤

y
(zn�1 + �G [2x̃n � xn�1])

7: xn = ⇢x̃n + (1� ⇢)xn�1

8: zn = ⇢z̃n + (1� ⇢)zn�1

9: until kxn � xn�1k  ✏kxn�1k
10: return xn

3.1.2 Smooth Cost Functional

Assume this time that the cost functional Ey = F (y, ·) : RL ! R is differen-
tiable with �-Lipschitz continuous derivative. Then, (7.10) can be seen as a
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3 Algorithms for Search Space Discretisation Schemes 121

specific instance of (7.1), with

X = R
L, F(x) = Ey(Gx) + �xT

Gx, and G = H = 0,

and
rF(x) = G

TrEy(Gx) + 2�Gx, 8x 2 R
L.

Note moreover that rF is Lipschitz continuous since, from the triangle in-
equality

krF(x)�rF(x0)k  kGT (rEy(Gx)�rEy(Gx
0))k+ 2�kG(x� x

0)k

�
�kGk2 + 2�kGk

�
kx� x

0k, 8(x,x0) 2 R
L ⇥ R

L.

The Lipschitz constant � of rF is moreover such that �  �kGk2 + 2�kGk.
Since H = 0, we can in this case solve (7.10), by means of the APGD method
described in Algorithm 7.2. The resulting algorithm –with stopping criterion as
in Remark 7.4– is implemented in Algorithm 7.4. The step size ⌧ can optimally
be chosen as ⌧ = 1/� or underestimated as

⌧ = (�kGk2 + 2�kGk)�1  1/�,

which may be easier to compute in practice.

Algorithm 7.4: APGD method for solving (7.10) when F is
smooth.

1: procedure A P G D(y, ⌧, d,x0, ✏)
2: n = 0
3: repeat
4: n n + 1
5: zn = xn�1 � ⌧GTrEy(Gxn�1)� 2⌧�Gxn�1

6: xn = zn + n�1
n+d (zn � zn�1)

7: until kxn � xn�1k  ✏kxn�1k
8: return xn

3.2 gTV Regularisation

Consider the (real) optimisation problem (6.14):

Find x
? 2 arg min

x2RN

{F (y,Gx) + �kxk1} , (7.11)

where y 2 R
L, F (y, ·) : RL ! R[{+1} is proper convex and lwsc, G 2 R

L⇥N

and � > 0. We propose in the subsequent sections various algorithms for
solving (7.11) depending on the nature of the cost functional F .

3.2.1 Proximable Cost Functional
Assume that the cost functional Ey = F (y, ·) : RL ! R [ {+1} is proximable
but not necessarily smooth. Then, (7.11) can be seen as a specific instance
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of (7.1), with

X = R
N , Y = R

L, F = 0, G(x) = �kxk1 ,H(z) = Ey(z), and K = G.

Note that G is moreover simple, since its proximal operator is given by the
so-called soft-thresholding operator [134, Chapter 6]:

prox
⌧�k·k1

(x) = soft⌧�(x) = max(|x|� ⌧�, 0) sgn(x), 8x 2 R
N , ⌧ > 0,

(7.12)

where the functions max : RN ! R
N and sgn : RN ! R

N are the element-
wise maximum and signum functions respectively. We can therefore solve
(7.10), by specialising the generic Algorithm 7.1 to this particular setup. Since
F = 0, the convergence of Algorithm 7.5 is guaranteed this time by Theo-
rem 7.2. In particular, the convergence condition L1 becomes in this case

�⌧kGk2  1,

and the rule of thumb (7.9) for setting the step sizes ⌧ and � yields

⌧ = � = kGk�1.

Finally, condition L2 of Theorem 7.2 tells us that the momentum parameter ⇢
should be chosen in the closed interval [✏, 2 � ✏], for some ✏ > 0. For simplic-
ity, we choose ⇢ = 1. The resulting algorithm –with stopping criterion as in
Remark 7.3– is implemented in Algorithm 7.5.

Algorithm 7.5: PDS method for solving (7.11) when F is
proximable but not necessarily smooth.

1: procedure P D S(y, ⌧,�,x0, z0, ✏)
2: n = 0
3: repeat
4: n n + 1
5: xn = soft⌧�

�
xn�1 � ⌧GT

zn�1

�

6: zn = prox
�E⇤

y
(zn�1 + �G [2xn � xn�1])

7: until kxn � xn�1k  ✏kxn�1k
8: return xn

3.2.2 Smooth Cost Functional
Assume this time that the cost functional Ey = F (y, ·) : RL ! R is differen-
tiable with �-Lipschitz continuous derivative. Then, (7.11) can be seen as a
specific instance of (7.1), with

X = R
N , F(x) = Ey(Gx), G(x) = �kxk1, and H = 0,

and
rF(x) = G

TrEy(Gx), 8x 2 R
N .
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4 Algorithms for Domain Discretisation Schemes 123

The Lipschitz constant � of rF is moreover such that �  �kGk2. Again, G
is simple, and its proximal operator is given by (7.12). Since H = 0, we can
solve (7.11) via the APGD Algorithm 7.2, which yields in this case the famous
fast iterative soft-thresholding algorithm (FISTA) [16, 112, 113]. Again, the
resulting algorithm –with stopping criterion as in Remark 7.4– is implemented
in Algorithm 7.6. The step size ⌧ can optimally be chosen as ⌧ = 1/� or
underestimated as

⌧ =
1

�kGk2 
1

�
,

which may be easier to compute in practice.

Algorithm 7.6: FISTA method for solving (7.11) when F is
smooth.

1: procedure F I S TA(y, ⌧, d,x0, ✏)
2: n = 0
3: repeat
4: n n + 1
5: zn = soft⌧�(xn�1 � ⌧GTrEy(Gxn�1))
6: xn = zn + n�1

n+d (zn � zn�1)
7: until kxn � xn�1k  ✏kxn�1k
8: return xn

4 Algorithms for Domain Discretisation Schemes

In this section, we apply Algorithms 7.1 and 7.2 to the optimisation problems
(6.25) and (6.26) obtained by domain discretisation in Section 2.4 of Chap-
ter 6. Again, we consider canonical norms on R

N and R
L as well as canonical

operator norms, all noted without subscripts since unambiguous.

4.1 gTikhonov Regularisation

Consider the (real) optimisation problem (6.25):

Find x
? 2 arg min

x2RN

�
F (y,Gx) + �kDxk2

 
, (7.13)

where y 2 R
L, F (y, ·) : RL ! R[{+1} is proper convex and lwsc, D 2 R

N⇥N ,
and � > 0. We propose in the subsequent sections various algorithms for
solving (7.13) depending on the nature of the cost functional F .

4.1.1 Proximable Cost Functional
Assume that the cost functional Ey = F (y, ·) : RL ! R [ {+1} is proximable
but not necessarily smooth. Then, (7.13) can be seen as a specific instance
of (7.1), with

X = R
N ,Y = R

L, F(x) = �kDxk2, G(x) = 0 ,H(z) = Ey(z), and K = G,
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and
rF(x) = 2�DT

Dx, 8x 2 R
N and � = 2�kDk2.

We can therefore solve (7.13), by specialising the generic Algorithm 7.1 to
this particular setup. The resulting algorithm –with stopping criterion as in
Remark 7.3– is implemented in Algorithm 7.7. The convergence condition K1
from Theorem 7.1 becomes in this case

1

⌧
� �kGk2 � �kDk2,

and the rule of thumb (7.8) for setting the step sizes ⌧ and � yields

⌧ = � =
kDk2
kGk2

 
��

2
+

s
�2

4
+
kGk2
kDk4

!
.

Finally, condition K2 of Theorem 7.1 tells us that for such step sizes, the mo-
mentum parameter ⇢ should be chosen in the open interval ]0, 1[.

Algorithm 7.7: PDS method for solving (7.13) when F is
proximable but not necessarily smooth.

1: procedure P D S(y, ⌧,�, ⇢,x0, z0, ✏)
2: n = 0
3: repeat
4: n n + 1
5: x̃n = xn�1 � 2⌧�DT

Dxn�1 � ⌧GT
zn�1

6: z̃n = prox
�E⇤

y
(zn�1 + �G [2x̃n � xn�1])

7: xn = ⇢x̃n + (1� ⇢)xn�1

8: zn = ⇢z̃n + (1� ⇢)zn�1

9: until kxn � xn�1k  ✏kxn�1k
10: return xn

4.1.2 Smooth Cost Functional
Assume this time that the cost functional Ey = F (y, ·) : RL ! R is differen-
tiable with �-Lipschitz continuous derivative. Then, (7.13) can be seen as a
specific instance of (7.1), with

X = R
N , F(x) = Ey(Gx) + �kDxk2, and G = H = 0.

and
rF(x) = G

TrEy(Gx) + 2�DT
Dx, 8x 2 R

N .

We have moreover

krF(x)�rF(x0)k 
�
�kGk2 + 2�kDk2

�
kx� x

0k, 8(x,x0) 2 R
N ⇥ R

N ,

and hence rF is �-Lipschitz continuous, with �  �kGk2 + 2�kDk2. Since
H = 0, we can in this case solve (7.13) by means of the APGD method de-
scribed in Algorithm 7.2. The resulting algorithm –with stopping criterion as
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4 Algorithms for Domain Discretisation Schemes 125

in Remark 7.4– is implemented in Algorithm 7.8. The step size ⌧ can optimally
be chosen as ⌧ = 1/� or underestimated as

⌧ = (�kGk2 + 2�kDk2)�1  1/�,

which may be easier to compute in practice.

Algorithm 7.8: APGD method for solving (7.13) when F is
smooth.

1: procedure A P G D(y, ⌧, d,x0, ✏)
2: n = 0
3: repeat
4: n n + 1
5: zn = xn�1�⌧GTrEy(Gxn�1)�2⌧�DT

Dxn�1

6: xn = zn + n�1
n+d (zn � zn�1)

7: until kxn � xn�1k  ✏kxn�1k
8: return xn

4.2 gTV Regularisation
Consider the (real) optimisation problem (6.26):

Find x
? 2 arg min

x2RN

{F (y,Gx) + �kDxk1} , (7.14)

where y 2 R
L, F (y, ·) : R

L ! R [ {+1} is proper convex and lwsc, G 2
R
L⇥N , D 2 R

N⇥N , and � > 0. We propose in the subsequent sections various
algorithms for solving (7.14) depending on the nature of the cost functional F .

4.2.1 Proximable Cost Functional
Assume that the cost functional Ey = F (y, ·) : RL ! R [ {+1} is proximable
but not necessarily smooth. Then, we proceed as in [43, Section 5] and see
(7.14) as a specific instance of (7.1), with

Y = R
L ⇥ R

N , F = 0, G = 0,

H :

(
R
L ⇥ R

N ! R

(z,x) 7! Ey(z) + �kxk1
and K :

(
R
N ! R

L ⇥ R
N

x 7! (Gx,Dx).
(7.15)

We can therefore solve (7.14), by specialising the generic Algorithm 7.1 to this
particular setup. To this end, we need an expression for the proximal operator
of H⇤ and the adjoint of K. First, note that the convex conjugate of H in (7.15)
is given by

H⇤(z,x) = sup
(u,v)2RL⇥RN

h(z,x), (u,v)i
RL⇥RN �H(u,v)

= sup
(u,v)2RL⇥RN

hz,ui
RL + hx,vi

RN � Ey(u)� �kvk1| {z }
:=J(v)
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=

 
sup
u2RL

hz,ui
RL � Ey(u)

!
+

 
sup
v2RN

hx,vi
RN � J(v)

!

= E⇤

y(z) + J⇤(x), 8(z,x) 2 R
L ⇥ R

N .

Since H⇤ is separable across the two variables z and x, its proximal is easily
obtained by (see [134, Section 2.1])

prox
�H⇤(z,x) = (prox

�E⇤
y
(z),prox

�J⇤(x))

= (prox
�E⇤

y
(z),x� � soft�/�(x/�)), 8(z,x) 2 R

L ⇥ R
N ,

where the last equality results from Moreau’s identity (7.7) and (7.12).

Next, we compute the adjoint of K. We have

hKx, (u,v)i
RL⇥RN = h(Gx,Dx), (u,v)i

RL⇥RN

= hGx,ui
RL + hDx,vi

RN

=
⌦
x,GT

u
↵
RN

+
⌦
x,DT

v
↵
RN

=
⌦
x,GT

u + D
T
v
↵
RN

, 8(x, (u,v)) 2 R
N ⇥

�
R
L ⇥ R

N
�
,

and hence from the definition of the adjoint we get

K
⇤(z,x) = G

T
z + D

T
x, 8(z,x) 2 R

L ⇥ R
N .

Using these ingredients, we can finally implement the PDS algorithm for this
specific setup, provided in Algorithm 7.9. Note that the update steps 7 and
8 of the dual variables in Algorithm 7.9 are independent, and can hence be
executed in parallel. The convergence condition L1 becomes in this case

�⌧kKk2  1,

where we have

kKk2 = kK⇤
Kk =

��GT
G + D

T
D
��  kGk2 + kDk2.

The step sizes ⌧ and � can hence be set according to the rule of thumb (7.9) as

⌧ = � =
1p

kGTG + DTDk
,

or, for computational conveniency, underestimated as

⌧ = � =
1p

kGk2 + kDk2

Finally, condition L2 of Theorem 7.2 tells us that the momentum parameter ⇢
should be chosen in the closed interval [✏, 2� ✏], for some ✏ > 0. For simplicity,
we chose ⇢ = 1 in Algorithm 7.9.
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4 Algorithms for Domain Discretisation Schemes 127

Algorithm 7.9: PDS method for solving (7.14) when F is
proximable but not necessarily smooth.

1: procedure P D S(y, ⌧,�,x0, z0,v0, ✏)
2: n = 0
3: repeat
4: n n + 1
5: xn = xn�1 � ⌧GT

zn�1 � ⌧DT
vn�1

6: un = 2xn � xn�1

7: zn = prox
�E⇤

y
(zn�1 + �Gun)

8: vn = vn�1 + �Dun � � soft�/�
�vn�1

�
+ Dun

�

9: until kxn � xn�1k  ✏kxn�1k
10: return xn

4.2.2 Smooth Cost Functional
Assume this time that the cost functional Ey = F (y, ·) : RL ! R is differen-
tiable with �-Lipschitz continuous derivative. Then, (7.14) can be seen as a
specific instance of (7.1), with

X = Y = R
N , F(x) = Ey(Gx), G = 0, H(x) = �kxk1, K = D,

with
rF(x) = G

TrEy(Gx), 8x 2 R
N , and �  �kGk2.

We can therefore solve (7.14), by specialising the generic Algorithm 7.1 to
this particular setup. The resulting algorithm –with stopping criterion as in
Remark 7.3– is implemented in Algorithm 7.10. The convergence condition K1
from Theorem 7.1 becomes in this case

1

⌧
� �kDk2 � �

2
,

and the rule of thumb (7.8) for setting the step sizes ⌧ and � yields

⌧ = � =
1

kDk2

 
��

4
+

r
�2

16
+ kDk2

!
.

For computational conveniency, we can underestimate the step sizes by replac-
ing � by �kGk2 in the above equation. Finally, condition K2 of Theorem 7.1
tells us that for such step sizes, the momentum parameter ⇢ should be chosen
in the open interval ]0, 1[.

4.3 Matrix-free Formulation

Observe that Algorithms 7.7 to 7.10 perform at each iteration multiple matrix-
vector multiplications involving the discrete pseudo-differential operator D. If
done naively, this operation can be quite computationally and memory intensive
since D 2 R

N⇥N and the resolution N of the point set can be quite large
in practice. Hopefully, this operation can be performed efficiently when the
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Algorithm 7.10: PDS method for solving (7.14) when F is
smooth.

1: procedure P D S(y, ⌧,�, ⇢,x0, z0, ✏)
2: n = 0
3: repeat
4: n n + 1
5: x̃n = xn�1 � ⌧GTrEy(Gxn�1)� ⌧DT

zn�1

6: un = 2x̃n � xn�1

7: z̃n = zn�1 + �Dun � � soft�/�
�zn�1

�
+ Dun

�

8: xn = ⇢x̃n + (1� ⇢)xn�1

9: zn = ⇢z̃n + (1� ⇢)zn�1

10: until kxn � xn�1k  ✏kxn�1k
11: return xn

pseudo-differential operator D takes the form of an order-K polynomial in
terms of the sparse Laplacian L (see Section 2.3):

D =
KX

k=0

✓kL
k.

In which case, the matrix-vector multiplication Dx (respectively D
T
x) can

be implemented as a cascade of multiplications between the sparse matrix L

and the vector x. In particular, if z0 = x and x0 = ✓0x, then the output vector
x̃ = Dx is given by the outcome xK of the following recursion:

(
zk = Lzk�1

xk = xk�1 + ✓kzk
, k = 1, . . . ,K. (7.16)

Such an implementation is said matrix-free [51] since it does not require form-
ing nor storing the large matrix D, but rather rely on sparse matrix-vector
multiplications, which can be implemented in a memory and computationally
efficient manner. As recommended in [139, 159], we consider for stability rea-
sons an equivalent version of (7.16) provided in Algorithm 7.11. The weights
{✓̃0, . . . , ✓̃K} ⇢ R in Algorithm 7.11 are such that

KX

k=0

✓kL
k =

KX

k=0

✓̃kTk(L̃),

where Tk : [�1, 1]! R are Chebyshev polynomials and L̃ is the Laplacian with
rescaled and shifted spectrum in the interval [�1, 1] [139]:

L̃ =
2

�max

L� I.

Note that steps 2, 3 and 6 of Algorithm 7.11 result from the recursion formula
defining Chebyshev polynomials: Tk(x) = 2xTk�1(x)�Tk�2(x), with T1(x) = x
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5 Proximal Operators of Common Cost Functionals 129

Algorithm 7.11: Sparse implementation of a matrix-vector
product Dx involving a polynomial discrete pseudo-differential
operator of the form D =

P
K

k=0 ✓̃kTk(L̃).

1: procedure FA S T M U LT(L̃,K, {✓̃1, . . . , ✓̃K},x)
2: x0 = z0 = x

3: z1 = L̃x

4: x1 = ✓̃1z1 + ✓̃0z0
5: for k=2,. . . , K do
6: zk = 2L̃zk�1 � zk�2

7: xk = xk�1 + ✓̃kzk
8: return xK . We have xK = Dx.

and T0(x) = 1.

5 Proximal Operators of Common Cost Functionals
In this section, we provide examples of common cost functionals which are
proximable but non-smooth, and explain in which context they are used in
practice. We moreover derive their proximal operators, allowing their use in
Algorithms 7.3 to 7.10. Table 7.1 summarises the results of this section.

5.1 Exact Match
Consider the data-fidelity functional:

F (y, z) := ◆(z � y), 8z 2 R
L,

where y 2 R
L and ◆ : RL ! {0,+1} defined in (5.33). This functional en-

forces an exact match between the predicted and observed samples, as required
in the interpolation problems explored in Section 4 of Chapter 5. Such a func-
tional is mainly useful in the context of noiseless data as it can lead to serious
overfitting issues in the presence of noise. Its proximal operator is given, for
all ⌧ > 0, by

prox
⌧F (y,·)(z) = arg min

x2CL

◆(x� y) +
1

2⌧
kz � xk2

RL

= y, 8z 2 R
L, (7.17)

since ◆(z � y) is unbounded for every z 6= y.

5.2 `1-norm
Consider the data-fidelity functional:

F (y, z) := kz � yk1, 8z 2 R
L,

where y 2 R
L and k · k1 : R

L ! R+ denotes the discrete `1-norm. This
functional leads to sparse residuals, with most of the predicted samples match-
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Name F (y, z), y, z 2 R
L prox

⌧F (y,·)(z), ⌧ > 0, z 2 R
L Useful for

Exact Match ◆(z � y) y
Noiseless data,
interpolation.

`1-Norm kz � yk1 soft⌧ (z � y) + y

Strong outliers
and heavy-tailed
noise distributions.

`2-Ball ◆B2,✏(z � y), ✏ > 0 ✏ z�y

kz�yk
+ y

Gaussian noise with
known noise level.

`1-Norm kz � yk1 See [134, Section 6.5.2]
Quantisation noise
and compact
noise distributions.

Generalised
KL-Divergence

P
L

i=1 yi log
⇣
yi

zi

⌘
� yi + zi

8z,y 2 R
L
+

1
2(z � ⌧ +

p
(z � ⌧)2 + 4y⌧)

Count data with
Poisson noise.

Table 7.1: Common data-fidelity functionals and their associated proximal operators.

ing exactly the observed samples, and a few –potentially large– misfits [128].
Such a functional is particularly useful in the context of strong outliers [4, 128],
or more generally for noise distributions with heavy tails,7 templated by the7 In imaging, we

speak of
salt-and-pepper noise.

Laplace distribution [146]. Using the precomposition property of proximal op-
erators and the know proximal operator of the `1-norm (7.12), it is easy to
show that its proximal operator is given, for all ⌧ > 0, by

prox
⌧F (·,y)(z) = arg min

x2CL

kx� yk1 +
1

2�
kz � xk2

RL

= soft⌧ (z � y) + y, 8z 2 R
L. (7.18)

5.3 `2-ball
Consider the data-fidelity functional:

F (y, z) := ◆B2,✏(z � y), 8z 2 R
L, (7.19)

where y 2 R
L and ◆B2,✏ : RL ! R+ denotes the indicator function of the `2-ball

on R
L with radius ✏ > 0:

◆B2,✏(x) =

(
0 if kxkRL  ✏
+1 otherwise,

8x 2 R
L. (7.20)

Such a functional is particularly useful in the context of Gaussian white noise
with known standard deviation � > 0. Indeed, assume that y ⇠ N (ỹ,�2IL)
with ỹ 2 R

L. Then, we have

ky � ỹk2
RL

�2
=

LX

k=1

(yi � ỹi)2

�2
⇠ �2(L),

and hence

Py({z 2 R
L : ky � zk2

RL  �2Q�2(L)(1� ↵)} 3 ỹ})
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= Py({z 2 R
L : ky � zkRL  �

q
Q�2(L)(1� ↵)} 3 ỹ})

= 1� ↵,

and hence, if ✏ = �
q
Q�2(L)(1� ↵), the support of ◆B2,✏(·�y) has a probability

1� ↵ of containing the true mean ỹ 2 R
L. Using the precomposition property

of proximal operators and the fact that the proximal operator of a convex
set indicator function is the convex set orthogonal projection operator [134,
Section 1.2], it is easy to show that the proximal operator of (7.19) is given,
for all ⌧ > 0, by

prox
⌧F (y,·)(z) = ✏

z � y

kz � ykRL

+ y, 8z 2 R
L. (7.21)

5.4 `1-norm
Consider the data-fidelity functional:

F (y, z) := kz � yk1 = max
i=1,...,L

|zi � yi|, 8z 2 R
L,

where y 2 R
L and k · k1 : R

L ! R+ denotes the discrete `1-norm. Such
a functional is particularly useful in the context of quantisation noise [26],
or more generally noise distributions with compact support, templated by the
uniform distribution [146]. Using the precomposition property of proximal
operators and the known proximal operator of the `1-norm [134, Chapter 6],
it is easy to show that its proximal operator is given, for all ⌧ > 0, by

prox
⌧F (y,·)(z) = arg min

x2RL

kx� yk1 +
1

2⌧
kz � xk2

RL

= prox
⌧k·k1 (z � y) + y, 8z 2 R

L. (7.22)

The proximal operator prox
⌧k·k1 does not admit a closed-form formula, but

can however be evaluated very efficiently and with high accuracy (see [134,
Section 6.5.2]).

5.5 Generalised Kullback-Leibler Divergence
Consider the data-fidelity functional:

F (y, z) := DKL(y||z) =
LX

i=1

yi log

✓
yi
zi

◆
� yi + zi, 8z 2 R

L

+, (7.23)

where y 2 R
L
+ and DKL(·||·) : RL

+⇥R
L
+ ! R+ denotes the generalised Kullback-

Leibler (KL) divergence [19, 20] for discrete positive vectors which do not
necessarily sum to one.8 In information theory, and in the case where 1Tz = 8 Notice that if the

vectors y and z
represent discrete
probability density
functions, then the
last two terms of
(7.23) cancel out and
we get back the
traditional
Kullback-Leibler
divergence.

1Ty = 1 so that z and y can be interpreted as discrete probability distributions,
the KL-divergence (7.23) can be interpreted as the relative entropy of y with
respect to z, i.e. the amount of information lost when using z to approximate
y. It is particularly useful in the context of count data with Poisson distribution
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[19, 20], as encountered in positron emission tomography for example [161].
Indeed, (7.23) corresponds –up to an additive constant– to the likelihood of
the data y where each component is independent with Poisson distribution
and respective intensities given by the entries of z. Its proximal operator is
given, for all ⌧ > 0, by

prox
⌧F (y,·)(z) = arg min

x2R
L

+

LX

i=1

yi log

✓
yi
xi

◆
� yi + xi +

1

2⌧
(zi � xi)

2 (7.24)

Notice that (7.24) is the sum of L independent objective functionals, which
can each be independently minimised by solving an optimisation problem of
the form:

x̂ = arg min
x>0

y log
⇣y
x

⌘
� y + x +

1

2⌧
(z � x)2, (7.25)

for y, z � 0. Using the postcomposition, precomposition and affine addition
properties of proximal operators and the known proximal operator of the log-
barrier function in [134, Section 6.1.3] we find:

x̂ =
z � ⌧ +

p
(z � ⌧)2 + 4y⌧

2
,

and finally

prox
⌧F (y,·)(z) =

z � ⌧ +
p

(z � ⌧)2 + 4y⌧

2
. (7.26)
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8
Practical Spherical Splines

One key insight of Theorem 5.4 is that the solutions of the FPBP problem
(5.23) are D-splines. As such, they inherit all their analytical properties from
the zonal Green kernel associated to the pseudo-differential operator D used
in the gTV regularisation term. To a lesser extent, this is also true for the FPT
problem (5.16) whose unique solution can be expressed as a linear combina-
tion of the sampling functionals convolved twice with the zonal Green kernel
of D (see Theorem 5.3). For practical purposes, it is hence important to choose
the pseudo-differential operator in agreement with the desired analytical prop-
erties of the solution(s). In Example 4.1, we have for example introduced
Sobolev operators D� := [Id��Sd�1 ]�, whose associated zonal Green kernels
reproduce, for � > (d� 1)/2 (see Lemma 5.5), the Sobolev spaces

H
�(Sd�1) =

8
<

:f 2 S
0(Sd�1) :

X

n2N

(1 + n(n + d� 2))�
Nd(n)X

m=1

|f̂m

n |2 < +1

9
=

; .

The latter are nested RKHSs,

H
�(Sd�1) ⇢H

�(Sd�1) ⇢ L
2(Sd�1), 8� � � >

d� 1

2
,

containing functions with �-increasing degrees of smoothness. For example,
a function f 2 H

�(Sd�1) for � 2 N is differentiable up to order �, with
all its derivatives up to that order square-integrable. Sobolev operators seem
hence particularly well-suited to enforce a certain degree of smoothness in the
solutions of FPT or FPBP problems. Unfortunately, the Sobolev zonal Green
kernel, given from (4.11) by

 �(hr, si) =
+1X

n=0

Nd(n)

ad (1 + n(n + d� 2))�
Pn,d(hr, si), 8r, s 2 S

d�1, (8.1)

does not admit a convenient closed-form expression, making Sobolev operators
–and consequently Sobolev splines– very cumbersome to work with in practice.
In this chapter, we hence discusss two kernels, named Matérn and Wendland
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kernels, with similar smoothness properties as the Sobolev kernel (8.1), but
much better suited for practical purposes since expressible in terms of simple
functions and well-localised in space. Both Matérn and Wendland kernels are
obtained from restrictions of scaled radial kernels to the hypersphere [64, 104]:

 ✏
�
(hr, si) =

1

✏n
 �
�
✏�1kr � skRd

�

=
1

✏n
 �
⇣
✏�1
p

2� 2 hr, si
⌘
, 8(r, s) 2 S

d�1 ⇥ S
d�1, (8.2)

where 0 < ✏  1 is a scale parameter and  � : R+ ! R, � > (d� 1)/2, is such
that the kernel  �(kx � ykRd), x,y 2 R

d, reproduces the Euclidean Sobolev
space H

�+1/2(Rd) (see [104, Section 2] for more details, and Sections 1 and 2
for examples of such radial basis functions).

The resulting kernels (8.2) are zonal by construction, with Fourier-Legendre
coefficients { ̂✏

�
[n]}n2N verifying [104, Section 2]:

c1(1 + ✏n)�2�   ̂✏
�
[n]  c2(1 + ✏n)�2� , 8n � 0. (8.3)

From (8.3), we deduce that  ̂✏
�
[n] > 0, 8n 2 N, and  ̂✏

�
[n] = ⇥(n�p) with

p = 2� > d � 1. Hence, the kernels (8.2) can moreover be interpreted (see
Definition 4.1) as the zonal Green kernels of a family of spline-admissible11 Since

p = 2� > d� 1, we
have indeed from
Proposition 4.5 that
D

✏

� is
spline-admissible.

pseudo-differential operators given by:

D
✏

�
:

8
>>><

>>>:

S (Sd�1)! S (Sd�1)

h 7! D
✏

�
h :=

+1X

n=0

1

 ̂✏
�
[n]

2

4
Nd(n)X

m=1

ĥmn Y m

n

3

5 .
(8.4)

Still thanks to (8.3), it is moreover possible to show [64, 104] that, for a
given � > (d � 1)/2, the norms kfkD✏

�
=
P

n2N
 ̂✏
�
[n]�1PNd(n)

m=1 |f̂m
n |2, are all

equivalent to the canonical Sobolev norm

kfkD�
=
X

n2N

(1 + n(n + d� 2))�
Nd(n)X

m=1

|f̂m

n |2.

The native RKHS

ND✏

�
=

8
<

:f 2 S
0(Sd�1) :

X

n2N

1

 ̂✏
�
[n]

Nd(n)X

m=1

|f̂m

n |2 < +1

9
=

; ,

contains therefore exactly the same elements as the Sobolev space H
�(Sd�1):

ND✏

�
= H

�(Sd�1), 8� > (d� 1)/2, ✏ 2]0, 1].

In conclusion, the zonal Green kernels  ✏
�

in (8.2) reproduce the Sobolev space
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1 Matérn Kernel and Matérn Spherical Splines 137

H
�(Sd�1) when the latter is equipped with the inner product :

hh, gi
D✏

�

=
+1X

n=0

1

 ̂✏
�
[n]

2

4
Nd(n)X

m=1

ĥmn ĝmn

3

5 ,

and can hence be used as a replacement for the Sobolev zonal Green kernel to
build practical spherical splines. In the subsequent sections, we give examples
of kernels  ✏

�
as in (8.2), called the Matérn and Wendland kernels, and plotted

in Fig. 8.3.

Remark 8.1 — About the Scale Parameter ✏. For a fixed � > (d � 1)/2, we
have seen that the kernels  ✏

�
for 0 < ✏  1 all reproduce the Sobolev space

H
�(Sd�1). As such, one could question the relevancy of this parameter in the

construction (8.2) proposed in [64, 104]. Such doubts are however dispelled when
considering approximation errors made by projecting functions from H

�(Sd�1)
into specific spline spaces SD✏

�
(Sd�1,⌅M ) with fixed knot sets ⌅M ⇢ S

d�1. Indeed,
it was shown in [64, 104] that the approximation error is proportional to the
quantity (⇥⌅M

/✏)�, where ⇥⌅M
> 0 is the nodal width of ⌅M defined in (6.7)

page 95. As such, choosing ✏ at least as large as the nodal width ⇥M helps in
reducing the approximation error.

Remark 8.2 The previous developments illustrate well the two dual ways in
which splines can be built. The first approach, adopted in Chapter 4, consists of
starting from a known pseudo-differential operator and computing its zonal Green
kernel. The latter may however not admit a convenient closed-form expression, as
is the case for the Sobolev zonal Green kernel (8.1) which can only be expressed
as an infinite series. The second approach, adopted above, starts from a kernel
with known analytical expression and shows that it corresponds indeed to the
Green kernel of some pseudo-differential operator. The latter may however not be
expressible in terms of standard pseudo-differential operators anymore as is the
case in (8.4).

1 Matérn Kernel and Matérn Spherical Splines

The Matérn functions S✏⌫ : R+ ! R are defined as [143, Chapter 4, p. 84]

S✏⌫(r) :=
21�⌫

�(⌫)

⇣r
✏

⌘
⌫

K⌫

⇣r
✏

⌘
, 8r > 0,

where ⌫ and ✏ are nonnegative parameters, � is the Gamma function and K⌫ is
the modified Bessel function of the second kind [1, Section 9.6]. For half integers
⌫ = p + 1/2 with p 2 N, it is possible to write the Matérn function as the
product of an exponential and a polynomial of order p. We have notably:

• ⌫ = 1/2, p = 0:
S✏1/2(r) = exp

⇣
�r

✏

⌘
, 8r > 0,
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p 2 N ⌫ = p + 1/2
Reproducing Zonal Kernel  ✏

�
(r(t))

r(t) =
p

2� 2t, t 2 [�1, 1], 0 < ✏  1

�-Sobolev Space

� = ⌫ + (d� 1)/2

d = 2 d = 3

0 1/2 exp(�r/✏) H
1(S1) H

1.5(S2)

1 3/2 [1 + r/✏] exp(�r/✏) H
2(S1) H

2.5(S2)

2 5/2 [3 + 3r/✏+ r2/✏2] exp(�r/✏) H
3(S1) H

3.5(S2)

3 7/2 [15 + 15r/✏+ 6r2/✏2 + r3/✏3] exp(�r/✏) H
4(S1) H

4.5(S2)

Figure 8.1: Matérn reproducing kernels for various spherical Sobolev spaces, for d = 2, 3.
The plots are for ✏ = 0.25.

• ⌫ = 3/2, p = 1:

S✏3/2(r) =
h
1 +

r

✏

i
exp

⇣
�r

✏

⌘
, 8r > 0,

• ⌫ = 5/2, p = 2:

S✏5/2(r) =


3 +

3 r

✏
+

r2

✏2

�
exp

⇣
�r

✏

⌘
, 8r > 0,

• ⌫ = 7/2, p = 3:

S✏7/2(r) =


15 +

15 r

✏
+

6 r2

✏2
+

r3

✏3

�
exp

⇣
�r

✏

⌘
, 8r > 0.

In the limit ⌫ ! 1, the Matérn function converges towards the Gaussian
function [143, Chapter 4, p. 84]:

S✏1(r) = exp

✓
� r2

2✏2

◆
, 8r > 0.

For practical purposes, ⌫ � 7/2 yield Matérn functions almost indistinguishable
from the Gaussian function [143, Chapter 4, p. 84]. It was shown in [104] that
the radial kernels S✏

⌫(�)(kx � ykRd), x,y 2 R
d reproduce the Sobolev spaces

H
�+1/2(Rd) for ⌫(�) = � � (d � 1)/2, � > (d � 1)/2 and 0 < ✏  1. From

[104, Lemma 2.1] and the above developments, the restriction of these radial
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k 2 N
Reproducing Zonal Kernel  ✏3,k(r(t))

r(t) =
p

2� 2t, t 2 [�1, 1], 0 < ✏  1

�-Sobolev Space

� = 3/2 + k
Smoothness

0 (1� r/✏)2+ H
1.5(S2) C

0

1 (1� r/✏)4+(1 + 4r/✏) H
2.5(S2) C

2

2 (1� r/✏)6+(3 + 18r/✏+ 35r2/✏2) H
3.5(S2) C

4

3 (1� r/✏)8+(15 + 120r/✏+ 375r2/✏2 + 480r3/✏3) H
4.5(S2) C

6

Figure 8.2: Wendland reproducing kernels for various spherical Sobolev spaces and d = 3.
The support of  ✏

3,k(r(t)) is r(t) 2 [0, ✏]. The plots are for ✏ = 0.6.

kernels to S
d�1 hence yields zonal kernels

 ✏
�
(hr, si) = S✏

⌫(�)(
p

2� 2 hr, si), 8(r, s) 2 S
d�1 ⇥ S

d�1, (8.5)

which reproduce the spherical Sobolev spaces H
�(Sd�1) for ⌫(�) = � � (d�

1)/2, � > (d�1)/2 and 0 < ✏  1. Fig. 8.1 lists the Matérn zonal Green kernels
for various Sobolev spaces in the specific cases where d = 2, 3. Examples of
Matérn splines are moreover plotted in Fig. 8.3.

2 Wendland Kernel and Wendland Spherical Splines
Wendland’s functions �d,k : R+ ! R, k 2 N are constructed by repeatedly
applying and integral operator I to Askey’s truncated power functions �l:

�d,k(r) := (Ik�l)(r), k 2 N, l := bd/2c+k+1, �l(r) := (1�r)l+, a+ := max(a, 0),

where I is given by :

(I�)(r) =

Z +1

r

t�(t) dt, r � 0.

It can be shown [201] that Wendland’s functions can be represented as:

�d,k(r) = (1� r)l+k

+ pk,l(r), r � 0,

where pk,l is a polynomial of degree k whose coefficients depend on l.
These functions are compactly supported piecewise polynomials with support
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(a) Matérn
p = 0

(b) Matérn
p = 1

(c) Matérn
p = 2

(d) Matérn
p = 3

(e) Wendland
k = 0

(f) Wendland
k = 1

(g) Wendland
k = 2

(h) Wendland
k = 3

Figure 8.3: Figs. 8.3a to 8.3d: Matérn spline (8.5) for � = p+ 3/2, ✏ = 0.1, p = 0, 1, 2, 3 and
focus direction r = (1,�1, 1)/

p
3. Figs. 8.3e to 8.3h: Wendland spline (8.6) for � = k + 3/2,

✏ = 0.6, k = 0, 1, 2, 3 and focus direction r = (1,�1, 1)/
p
3.

[0, 1] which yield positive definite radial kernels in R
d with minimal degree and

prescribed smoothness [39, 201]. They have been introduced by Wendland
[190] in the context of high-dimensional approximation/interpolation. For
d � 3, Wenland’s radial kernels �d,k(kx � ykRd), x,y 2 R

d were moreover
proven [39, 201] to reproduce Sobolev spaces of the form H

k+(d+1)/2(Rd).
A similar result was established in the spherical setup [64, 126], stating that
restrictions of scaled Wendland’s radial kernels to the sphere

 ✏
d,k

(hr, si) = �d,k

 p
2� 2 hr, si

✏

!
, (r, s) 2 S

d�1 ⇥ S
d�1, (8.6)

yield zonal kernels reproducing spherical Sobolev spaces H
k+d/2(Sd�1) for

d � 3. In the case d = 2, similar results can be obtained via a generalisation
of Wendland’s functions called the missing Wendland’s functions[201]. These
are however significantly more complicated to work with and will hence not
be investigated in this work. Examples of Wendland zonal Green kernels and
their associated RKHSs are provided in Figs. 8.2 and 8.3 for d = 3.

3 Computational Advantages of Matérn and Wendland Splines
Having rapide decay, the Matérn and Wendland kernels present multiple com-
putational advantages in practice, listed in the subsequent sections.

3.1 Sparse Spline Synthesis
Notice that the pseudo-differential operators associated to the Matérn and
Wendland zonal Green kernels are positive definite by (8.3). From Propo-
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3 Computational Advantages of Matérn and Wendland Splines 141

sition 4.6 we can hence write a Matérn or Wendland spline with knot set
⌅N = {r1, . . . , rN} and coefficients ↵ = [↵1, . . . ,↵N ] 2 C

N as

s(r) =
NX

n=1

↵n 
✏

�
(hr, rni) =  (↵)(r), 8r 2 S

d�1, (8.7)

where  is the synthesis operator (see Definition 6.1) associated to the family
of functions { ✏

�
(h·, rni), rn 2 ⌅N}, and  ✏

�
denotes the Matérn or Wendland

kernel respectively. From the rapid decays of the Matérn and Wendland kernels,
we have moreover:

 ✏
�
(hr, rni) ' 0, if

p
2� 2 hr, rni � R(✏),

for some chord distance R(✏) 
p

2, proportional to the scale parameter ✏ 2
]0, 1]. For the Wendland kernel (8.6) for example, we have R(✏) = ✏:

 ✏
�
(hr, rni) = 0, if

p
2� 2 hr, rni � ✏. (8.8)

Therefore, if the scale parameter ✏ is chosen small enough, then the nth term
of the summation in (8.7) will be zero outside of a local neighbourhood2 of 2 This neighbourhood

is defined as the
points in S

d�1 with a
chord distance to rn

smaller than
R(✏) ⌧

p
2.

the knot rn. This fact can be leveraged in practice for designing efficient sparse
synthesis schemes for Matérn and Wendland splines. As explained in Remark 6.6,
this is particularly relevant for the gTV search space discretisation scheme from
Theorem 6.5.

3.2 Sparse Gram Matrices
In many experimental setups, the rapid decays of the Matérn and Wendland
kernels cause the Gram matrices G in Theorems 6.2 and 6.5 to be sparse,
allowing them to be conveniently implemented as such in the various algo-
rithms of Chapter 7. For example, consider Theorem 6.5 in the context of the
pseudo-differential operator associated to the Wendland kernel  ✏

�
and spa-

tial sampling functionals {'l = �⇢l
, l = 1, . . . , L} with sampling directions

{⇢l, l = 1, . . . , L} ⇢ S
d�1. Then, the entries of the Gram matrix G 2 R

L⇥N

are given by

Gln =  ✏
�
(h⇢l, rni), l = 1, . . . , L, n = 1, . . . , N.

From (8.8) it is easy to see that, for ✏ small enough and the point sets {⇢l, l =
1, . . . , L} and {rn, n = 1, . . . , N} reasonably well distributed over Sd�1, most
of the entries of G are null. This behaviour extends to many spatially-localised
measurement processes such as local averages or filtrations (see Chapter 9 for
real-life examples).

3.3 Fast Spherical Convolution
In certain cases, the search space discretisation schemes considered in The-
orems 6.2 and 6.5 require computing the spherical convolution between a
zonal Green kernel  D and some functions {'i, i = 1 . . . , L} ⇢ L

2(Sd�1).

141



142 Practical Spherical Splines

When the zonal Green kernel has relatively small support –as is the case for
Matérn and Wendland kernels– such a convolution can be implemented very
efficiently using tools from Section 2 of Chapter 6 and Section 4.3 of Chap-
ter 7. Indeed, consider an equidistributed spherical point set ⇥ = {r1, . . . , rN}
as in Example 6.2. Then, provided there are a sufficient number of points N ,
we can approximate with high accuracy the Lebesgue measure µ on S

d�1 by
the measure ⌫N = (1/N)

P
N

n=1 �rn (since by definition of an equidistributed
point set, the measure ⌫N converges in the weak⇤ sense towards µ). This yields
8f 2 L

2(Sd�1),

g(r) = ( D ⇤ f)(r) =

Z

Sd�1
 D(hr, si)f(s)µ(ds)

'
Z

Sd�1
 D(hr, si)f(s)⌫N (ds)

=
1

N

NX

n=1

 D(hr, rni)f(rn), 8r 2 S
d�1.

Evaluating the convolution for all directions in the point set ⇥ gives us

g(rm) =
1

N

NX

n=1

 D(hrm, rni)f(rn), m = 1, . . . , N,

or in matrix notations:

g = Hf , (8.9)

where g = [g(r1), . . . , g(rN )] 2 C
N , f = [f(r1), . . . , f(rN )] 2 C

N and Hmn =
 D(hrm, rni), m, n = 1, . . . , N. Using the formalism from Section 2.3 of Chap-
ter 6, it is moreover possible to interpret (8.9) as a linear transformation of
some signal f defined over the spherical tessellation graph associated to the
point set ⇥. Since  D is zonal and has small support, the linear operator H

is moreover very well approximated by a graph filter with finite taps K ⌧ N
[159]. Such filters take necessarily the form of a K-order polynomial of the
graph Laplacian L [47, 48]:

H '
KX

k=0

✓kL
k, (8.10)

where ✓ = [✓0, . . . , ✓K ] 2 C
K+1 are some coefficients obtained by solving:

✓ = arg min
⌘2CK+1

�����H �
KX

k=0

⌘kL
k

�����
F

.

From the representation (8.10) of H, we can then use Algorithm 7.11 from
Section 4.3 to implement (8.9) efficiently as a cascade of multiplications be-
tween the sparse matrix L and the vector f . This provides us with an efficient
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3 Computational Advantages of Matérn and Wendland Splines 143

scheme for approximating spherical convolutions between a kernel with small
support and an arbitrary function in L

2(Sd�1).
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9
Test Cases

In this chapter, we test the spherical approximation framework proposed in
Chapters 5 and 6 on a mix of real and simulated datasets originating from a
variety of real-life spherical approximation problems encountered in environ-
mental sciences, radio astronomy and planetary sciences. In all these applica-
tions, various sampling and cost functionals are investigated, demonstrating
the versatility and genericity of the approximation framework. A summary of
all experiments investigated in this chapter is available in Table 9.1. Interactive
versions of the spherical maps provided in this chapter are moreover available
at the following link: matthieumeo.github.io.

1 Sea Surface Temperature Anomalies
In this example, we propose to establish global maps of sea surface temperature
anomalies for the month of January 2011. Such maps are used in environmen-
tal sciences to monitor global climate change as well as manage the population
of marine species and ecosystems particularly sensitive to fluctuations in wa-
ter temperature. The data consists of 6745 simulated anomalies sampled at
various points across the globe by drifting floats of the Argo fleet [7, 98], and
corrupted by Gaussian white noise. The various maps produced are obtained
by means of canonically discretised FPT and FPBP problems (6.4) and (6.14),
as well as their discrete domain counterparts (6.25) and (6.26). Since the
noise distribution is Gaussian, we consider the indicator function of an `2-ball
as cost functional. The latter being nonsmooth but proximable (see Section 5.3
of Chapter 7), we make use of the PDS Algorithms 7.3, 7.5, 7.7 and 7.9 to solve
optimisation problems (6.4), (6.14), (6.25) and (6.26) respectively. Motivated
by the discussion in Chapter 8, we consider a Matérn pseudo-differential opera-
tor for the gTikhonov and gTV regularisation terms in the continuous FPT and
FPBP problems. For their discrete domain counterparts, we consider a discrete
Sobolev operator (see Section 2.3).

1.1 Background
Sea surface temperature is usually defined as the temperature of the one mil-
limetre upper layer of the oceans, reflecting the thermal energy stored in the

https://matthieumeo.github.io
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Experiment
Name

Sea Surface
Temperature

Anomaly

Wildfires and
Deforestation

Planck and
the CMB

Lunar Elemental
Abundance Maps

Discussed in
Section

1, 2 (Appendix A) 2 3 4

Results in
Figures

9.2, 9.3,
A.1, A.2

9.5, 9.7 9.9c, 9.9g 9.12, 9.13

Field of
Application

Meteorology Forestry Radio astronomy Planetary science

Data
Source

NASA’s Aqua [3],
Argo [97, 98]

LAI [169],
Fire [170]

Simulated,
Planck [54]

PDS [102],
Pixon [195]

Data in
Fig(s).

9.1 9.4, 9.6 9.9b, 9.9f 9.10

Sampling
Functional

Dirac
(spatial sampling)

Rectangular
step function

Squared Jinc (9.8),
Gaussian

Kappa (9.11)

Number of
Samples (L)

6745 24000
768,
9248

14986

Cost
Function

`2-ball
KL-divergence,

Quadratic
KL-divergence `2-ball

Regularisation
gTikhonov,

gTV
gTV gTV gTikhonov

Discretisation
Domain,

Search space
(N = 7386)

Search space
(N = 210216)

Search space
(N = 118181)
(N = 652997)

Search space

Green
Kernel

Matern (p = 1),
Wendland (k = 1)

Wendland (k = 1) Wendland (k = 1) Matern (p = 0)

Noise
Model

Gaussian Poisson Gaussian Poisson

PSNR (dB) 10 – 30 –

Algorithms
7.3, 7.5, 7.7,

7.9, 7.11
7.6, 7.5

7.5,
Dirty Imaging [181]

7.3,
Pixon [141]

Table 9.1: Summary of the various experiments presented in Chapter 9.

latter. Sea surface temperatures departing from long-term averages (typically
12 years) are called temperature anomalies. While some anomalies are tran-
sient and simply due to ocean circulation patterns (such as El Niño and La
Niña), others persist over many years and can hence be potential indicators of
global climate changes [145]. Sea surface temperature anomalies are also very
important in the monitoring and management of marine ecosystems particu-
larly sensitive to water temperature fluctuations. For example, above-average
sea water temperatures can result in coral bleaching, a phenomenon suspected
to be responsible of the disappearance of between 29 and 50% of the Great
Barrier Reef in 2016 [80]. Similarly, high water temperatures are contribut-
ing factors to harmful algal blooms, which lead to oxygen depletion in natural
waters, with disastrous consequences on marine life [74].
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1 Sea Surface Temperature Anomalies 147

1.2 Data Description
For this experiment, we simulated sea surface temperature anomalies by sam-
pling at 6745 locations the global map of sea surface temperature anomalies
produced by NASA’s Aqua satellite [136] in January 2011 [3]. These anomalies,
which serve here as a ground truth, were derived by comparing the sea surface
temperatures recorded in January 2011 by NASA’s Aqua satellite to the 12-year-
averaged historical data for the same month collected by the Pathfinder satellite
[188] between 1985 and 1997. The resulting map is depicted in Fig. 9.1a. The
6745 sampling locations were chosen as the positions of all floats from the
Argo fleet [7] during the month of January 2011, obtained from [97] and cu-
rated by the authors of [98]. Argo is an international program, initiated in the
early 2000’s that uses 4000 drifting floats to monitor temperature, salinity and
currents in the Earth’s oceans. The samples were further polluted by Gaussian
white noise with peak signal to noise ratio (PSNR) 10 dB. The resulting samples
are plotted in Fig. 9.1b.

1.3 Data Model
Let f : S2 ! R denote the sea surface temperature anomaly function defined
at every location on the globe (modelled as the unit sphere S

2). Since tempera-
tures typically have smooth variations at the surface of the Earth, we assume f
to be an element of some Sobolev space H

�(S2), with � > 1 (see Chapter 8).
The L = 6745 measurements {y1, . . . , yL} ⇢ R correspond here to noisy

anomaly records collected by the Argo floats across the globe at locations

{p1, . . . ,pL} ⇢ S
2.

Assuming a Gaussian white noise model, the float records can moreover be
modelled as realisations of independent Gaussian random variables {Y1, . . . , YL},
centred around the true temperature anomalies obtained by ideal spatial sam-
pling of f :

Yi
ind⇠ N (f(pi),�

2), (9.1)

where N denotes the Gaussian distribution and �2 > 0 is the (unknown) noise
variance, assumed uniform. Note that we have

E[Yi] = f(pi) = h�pi
|fi, i = 1, . . . , L,

which fits well in our generic data model (5.1) page 67, if we choose the sam-
pling functionals as Dirac measures �pi

. Note moreover that spatial sampling
is indeed well-defined for f since for � > 1 the Sobolev space H

�(S2) is an
RKHS.
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1.4 Methods

1.4.1 Continuous Domain Methods

(a) gTikhonov Regularisation

We consider first recovering f by means of the following FPT problem:

f? = arg min
f2HD✏

2.5
(S2)

�
◆B2,⇢ (y ��(f)) + kD ✏

2.5fk22
 
, (9.2)

where:

• ◆B2,⇢ : RL ! {0} [ {+1} is the indicator function (7.20) of the `2-ball
with radius ⇢ = 0.5%⇥kyk2. As explained in Section 5.3 of Chapter 7, the
indicator function in (9.2) defines, under the Gaussian noise model (9.1),
a confidence region containing the true samples E[y] with probability
1� ↵, for some 0 < ↵ < 1 dependent on ⇢.

• � : HD✏

2.5
(S2)! R

L is the sampling operator given by

�(f) = [h�p1 |fi, . . . , h�pL
|fi], 8f 2HD✏

2.5
(S2).

Note that � is well defined since HD✏

2.5
(S2) is an RKHS (see Chapter 8).

• D
✏

2.5 : S
0(S2)! S

0(S2) is the pseudo-differential operator associated to
the Matérn zonal Green kernel with fixed scale ✏ ' 0.017 –corresponding
to an angular resolution1 of approximately 4�:1 The angular

resolution is
measured here as the
full width at half
maximum (FWHM)
of the Matérn kernel.

 ✏2.5(hr, si) = S✏3/2(
p

2� 2 hr, si), 8(r, s) 2 S
2 ⇥ S

2. (9.3)

From Theorems 6.2 and 5.3, the solution to optimisation problem (9.2) is
unique and given by:

f?(r) =
LX

l=1

x?
l
 ✏2.5 ⇤  ✏2.5(hr,pli), 8r 2 S

2,

where ⇤ denotes the spherical convolution2 operator (see Definition 3.3) and2 As discussed in
Section 3.3, spherical
convolution with the
Wendland kernel can
be implemented
efficiently.

x
? = [x?1, . . . , x

?

L
] 2 R

L is the unique solution to the discrete optimisation
problem:

x
? = arg min

x2RL

�
◆B2,⇢ (y �Hx) + x

T
Hx

 
. (9.4)

Entries of the matrix H 2 R
L⇥L are moreover given by

Hlk =  ✏2.5 ⇤  ✏2.5(hpl,pki), 8l, k 2 [[1, L]].

We solve (9.4) using Algorithm 7.3. Since the Matérn kernel is spatially lo-
calised (see Fig. 8.1), the matrix H is in practice sparse (as discussed in Sec-
tion 3.2 of Chapter 8) and is implemented as such in the iterations of the
numerical solver for computational and storage efficiency.
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1 Sea Surface Temperature Anomalies 149

(b) gTV Regularisation

Next, we consider recovering f by means of the following FPBP problem:

f? 2 arg min
f2MD✏

2.5
(S2)

�
◆B2,⇢ (y ��(f)) + kD ✏

2.5fkTV

 
, (9.5)

where the sampling operator � : MD✏

2.5
(S2)! R

L is this time given by:

�(f) = [hf |�p1i, . . . , hf |�pL
i], 8f 2MD✏

2.5
(S2).

Again, � is well-defined over M✏

D2.5
(S2) since the Matérn kernel  ✏2.5 has con-

tinuous traces, and hence from Proposition 5.2, the predual C
✏

D2.5
(S2) contains

all Dirac measures.

From the discussion in Section 1.2 of Chapter 6, solutions of the optimisation
problem (9.5) can be approximated as quasi-uniform Matérn splines:

f?(r) =
NX

n=1

x?n  
✏

2.5(hr, rni), 8r 2 S
2,

where N = 7386, ⌅N = {rn, n = 1, . . . , N} ⇢ S
2 is a Fibonacci lattice (see

Example 6.1) and x
? = [x?1, . . . , x

?

N
] 2 R

N is some solution to the discrete
optimisation problem:

x
? 2 arg min

x2RN

�
◆B2,⇢ (y �Gx) + kxk1

 
. (9.6)

The matrix G 2 R
L⇥N is moreover given by

Gln =  ✏2.5(hpl, rni), 8(l, n) 2 [[1, L]]⇥ [[1, N ]].

We solve (9.6) using the PDS Algorithm 7.5. Again, since the Matérn kernel
is spatially localised, the matrix G is in practice sparse and is implemented as
such in Algorithm 7.5 for computational and storage efficiency.

1.4.2 Discrete Domain Methods

For comparison purposes, we also consider recovering f by means of the do-
main discretisation schemes described in Section 2 of Chapter 6. To this end,
we consider the restriction f 2 R

N of f to the discrete set of directions
⌅N = {rn, n = 1, . . . , N} ⇢ S

2, where ⌅N is the same Fibonacci lattice as
in Paragraph (b). We recover f via the discrete domain counterparts of (9.2)
and (9.5), given in this case by:

f
? = arg min

f2RN

�
◆B2,⇢ (y � Jf) + kDfk22

 
, (9.7)

and
f
? 2 arg min

f2RN

�
◆B2,⇢ (y � Jf) + kDfk1

 
, (9.8)
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respectively. The entries of the sensing matrix J 2 R
L⇥N are defined as

Jij = �nij
, 8i = 1, . . . , L, j = 1, . . . , N,

where �ij is the Kronecker delta and

ni = arg min
n=1,...,N

kpi � rnk2, i = 1, . . . , L.

Roughly speaking, J corresponds to a discrete sampling matrix on the lat-
tice ⌅N , where the off-lattice sampling locations {pi, i = 1, . . . , L} have been
mapped to their closest neighbour in ⌅N . The discrete pseudo-differential op-
erator D 2 R

N⇥N finally is chosen as the discrete Sobolev operator D =
(IN + L)2, where L is the Laplacian of the spherical tessellation graph asso-
ciated to the point set ⌅N . Note that D = (IN + L)2.5 would have been a
more canonical choice since D

✏

2.5 in Section 1.4.1 is equivalent to the Sobolev
operator (Id � �S2)

2.5 (see discussion in Chapter 8 and Fig. 8.2). However,
computing D = (IN + L)2.5 requires computing the eigenvalue decomposi-
tion of the matrix D 2 R

N⇥N , which is often impossible in practice due to
the size of the latter. Moreover, such a choice of discrete pseudo-differential
operator would make Algorithms 7.7 and 7.9 used to solve (9.7) and (9.8)
much more computationally and memory intensive since the latter could no
longer perform matrix-vector products involving D with the matrix free Al-
gorithm 7.11. Indeed, this algorithm was designed in Section 4.3 for dis-
crete pseudo-differential operators taking the form of polynomials of L, and
D = (IN + L)2.5 is not a polynomial in L.

1.5 Results

The various estimates of the sea surface temperature anomaly function ob-
tained by solving (9.2), (9.5), (9.7) and (9.8) are provided in Figs. 9.2a, 9.2b,
9.3a and 9.3b respectively. The smoothing induced by the gTikhonov regulari-
sation is clearly visible for both the continuous and discrete domains estimates
in Figs. 9.2a and 9.3a respectively. The nature of this smoothing seem however
different for the two estimates: in Fig. 9.2a, the large scale structures of the
actual anomaly map are clearly visible, while in Fig. 9.3a, only the strongest
features remain.

In contrast, the continuous and discrete gTV estimates in Figs. 9.2b and 9.3b
capture far more of the fine fluctuations in the true anomaly map: see for
example the eastern coast and southern tip of Africa, as well as the regions
surrounding Greenland, Japan or the Indian ocean. This time, both estimates
exhibit much more similar features. The discrete gTV estimate in Fig. 9.3b
however appears rougher than the continuous gTV estimate in Fig. 9.2b due
to the clearly visible pixelisation artefacts.

Remark 9.1 In Appendix A, we consider replacing the Matérn pseudo-differential
operator D

✏

2.5 in (9.2) and (9.5) with an equivalent Wendland pseudo-differential
operator. This yields two new estimates of the surface temperature anomaly func-
tion provided in Figs. A.1 and A.2. Not surprisingly, they appear very similar
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1 Sea Surface Temperature Anomalies 151

(a) Global map of sea surface temperature anomalies in January 2011
produced from NASA’s Aqua satellite data.

(b) Simulated anomalies recorded by Argo floats in January 2011. Float
locations are marked by dots coloured according to the recorded anomaly
(red=warmer temperatures, blue=colder temperatures).

Figure 9.1: The data for the experiments in Section 1 consists of 6745 anomalies sampled
from a global sea surface temperature map produced from NASA’s Aqua satellite data in
January 2011. The sample locations correspond to the locations of the Argo drifting floats
during that month.
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(a) Sea surface temperature anomaly function obtained by solving the FPT
problem (9.2) with gTikhonov regularisation.

(b) Sea surface temperature anomaly function obtained by solving the FPBP
problem (9.5) with gTV regularisation.

Figure 9.2: Estimates of the sea surface temperature anomaly function obtained with the
continuous domain methods from Section 1.4.1.
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1 Sea Surface Temperature Anomalies 153

(a) Sea surface temperature anomaly function obtained by solving the
discrete problem (9.7), with discrete gTikhonov regularisation.

(b) Sea surface temperature anomaly function obtained by solving the
discrete problem (9.8), with discrete gTV regularisation.

Figure 9.3: Estimates of the sea surface temperature anomaly function obtained with the
discrete domain methods from Section 1.4.2.
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to those of Figs. 9.2a and 9.2b: the two kernels can be used interchangeably in
practice.

2 Wildfires and Deforestation
In this example, we propose to establish global density maps of trees and
wildfires across the globe for the year 2016. Tree density maps are used in
environmental sciences to monitor deforestation and illegal logging, as well as
assess the amount of vegetal photosynthesis. Similarly, wildfire maps allow sci-
entists to better understand atmospheric chemistry and its impact on climate.
In both experiments, the data used consists of tree and fire counts recorded by
NASA’s Aqua and Terra satellites. The resolution of the raw data is moreover
deliberately reduced by a factor of 3 by binning the counts in patches of angu-
lar size ' 1.5� ⇥ 1.5�. The goal of this resolution reduction is to show that the
lost resolution can be successfully recovered by spline-based approximation.
In both cases, two density maps are obtained by solving with Algorithms 7.5
and 7.6 respectively two FPBP problems: one with a least-squares cost func-
tional, and one with a KL-divergence cost functional –ideally suited for count
data with Poisson-like distribution (see Section 5.5 of Chapter 7).

2.1 Background
Home to 80% of terrestrial species, forests host most of Earth’s biodiversity
and contribute largely to its preservation [63]. Indeed, tree canopies play a
crucial role in the regulation of the water cycle, creation of litter and exchange
of energy between the ground and the atmosphere, which are all contribut-
ing factors to the overall good health of an ecosystem [45]. Changes to forest
habitats can lead to the extinction of endangered species and disrupt the en-
tire food chain equilibrium. But forests are more than animal shelters: they
also protect humans from natural hazards such as floods or droughts[63]. In
addition, forests represent natural and cost-efficient solutions for mitigating
climate-change, and can provide 30% of the solution for keeping global warm-
ing below 2 �C [63]. Indeed, the photosynthesis, used by trees and plants to
convert light into energy, cleans the atmosphere by absorbing carbon emissions
and releasing oxygen.
In order to enlighten policy-makers and hopefully stem the current environmen-
tal crisis, it is hence crucial to monitor deforestation and understand its causes,
such as agricultural conversion, commodity production, urbanisation, illegal
logging or fires. Fires deserve perhaps a special attention as they contribute
largely to the overall greenhouse gas emissions, with an estimated contribution
of 30% to the net annual increase in the concentration of atmospheric carbon
dioxide [62, 170].

2.2 Data Description
For this experiment, we worked with the Leaf Area Index (LAI) [94] and Fire
[89] data products provided by NASA for the year 2016. The datasets, available
at [169, 170], provide monthly counts of trees and active fires respectively at a
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2 Wildfires and Deforestation 155

resolution of 0.1 degrees square. The counts are estimated from multispectral
images captured by the MODIS aboard NASA’s Terra and Aqua satellites [197].
For a better visual appreciation of the results, we aggregated the data from
every month of 2016 (see Figs. 9.4a and 9.6a) and binned it to a lower resolu-
tion of approximately 1.5 degrees square (this corresponds to a reduction of
resolution by a factor 3). The goal of this resolution reduction is to show that
the lost resolution can be successfully recovered by spline-based approxima-
tion. We further corrupted the binned data with Poisson noise, a common noise
model for count data. The processed data for both experiments is displayed in
Figs. 9.4b and 9.6b.

2.3 Data Model

In both cases, one wishes to estimate the spatial density of trees (respectively
fires) f at the surface of the Earth, using counts {y1, . . . , yL} ⇢ N from non-
overlapping equal-angle patches {B1, . . . , BL} ⇢ S

2 tiling the sphere. Since the
data at hand consists of counts, a Poisson noise model is a suitable choice. This
can be achieved by modelling tree locations as random occurrences of some
spatial Poisson point process [38, 172], often used in spatial statistics to model
random spatial scattering of objects [144, 161]. The distribution of a Poisson
point process is entirely determined by its intensity measure ⇤ 2M(S2), which
counts the expected number of objects (in this case trees or fires) observed
in a given region of the sphere. The sought spatial density of the Poisson
process is then given –assuming it exists– by the Radon-Nikodym derivative
[157] f : S2 ! R of ⇤, also called density or intensity function of the point
process. Similarly as in Section 1, we assume f to be an element of the RKHS
H

�(S2) for some � > 1. With such a formalism, the reported counts can then
be seen as realisations of L = 24000 independent Poisson random variables
{Y1, . . . , YL}:

Yi
ind⇠ Poisson (�i) , i = 1, . . . , L, (9.9)

with rates �i > 0 given by:

�i =

Z

S2
f(r)�Bi

(r)dr =

Z

Bi

f(r)dr, i = 1, . . . , L, (9.10)

and where �Bi
2 L

2(S2) are the characteristic functions of the surveyed
patches {Bi, i = 1, . . . , L} ⇢ S

2. We can reinterpret the rates in (9.10) as
generalised samples of f :

Yi
ind⇠ Poisson

�
hf,�Bi

i
S2

�
, i = 1, . . . , L,

where E[Yi] = hf,�Bi
i
S2
, i = 1, . . . , L, hence yielding a data model falling into

the scope of the generalised sampling framework (5.1).
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2.4 Methods

2.4.1 KL-Divergence Cost Function
Since the data consists of counts, we consider recovering f by means of the
following FPBP problem:

f? 2 arg min
f2MD✏

3,1
(S2)

�
DKL(y||�(f)) + �kD ✏

3,1fkTV

 
, (9.11)

where:
• DKL denotes the generalised Kullback-Leibler divergence defined in Sec-

tion 5.5 of Chapter 7. As explained there, the KL-divergence cost function
can be shown to be proportional to the negative log-likelihood of the data
y = [y1, . . . , yL] 2 R

L under the Poisson data model (9.9).
• � : MD✏

3,1
(S2)! R

L is the sampling operator given by:

�(f) = [hf |�B1i, . . . , hf |�BL
i], 8f 2MD✏

3,1
(S2).

• � is a strictly positive constant, tuned manually.
• D

✏

3,1 : S
0(S2)! S

0(S2) is the pseudo-differential operator associated to
the Wendland zonal Green kernel with a scale ✏ ' 0.026 –corresponding
again to an angular resolution3 of approximately 1�:3 The angular

resolution is
measured here as the
full width at half
maximum (FWHM)
of the Wendland
kernel.

 ✏3,1(hr, si) = �3,1

 p
2� 2 hr, si

✏

!
, 8(r, s) 2 S

2 ⇥ S
2.

Note that since the sampling functions are square-integrable and D
✏

3,1 is invert-
ible and with spectral growth order p = 2.5 > (d � 1)/2 = 1 (see Chapter 8),
we can use Proposition A.1 to show that {�Bi

, i = 1, . . . , L} ⇢ CD✏

3,1
(S2) and

hence the sampling operator � is indeed well defined.
From the discussion in Section 1.2 of Chapter 6, the solutions of (9.11) can

be approximated as quasi-uniform Wendland splines:

f?(r) =
NX

n=1

x?n  
✏

3,1(hr, rni), 8r 2 S
2,

where N = 210216, ⌅N = {rn, n = 1, . . . , N} ⇢ S
2 is a Fibonacci lattice (see

Example 6.1) and x
? = [x?1, . . . , x

?

N
] 2 R

N is some solution to the discrete
optimisation problem:

x
? 2 arg min

x2RN

{DKL(y||Gx) + �kxk1} . (9.12)

From Theorem 6.5, the matrix G 2 R
L⇥N is moreover given by

Gln = ( ✏3,1 ⇤ �Bl
)(rn), 8(l, n) 2 [[1, L]]⇥ [[1, N ]].

We solve (9.12) using Algorithm 7.5. Since the Wendland kernel and the
patches have compact support, the matrix G is in practice sparse and is imple-
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3 Planck and the Cosmic Microwave Background 157

mented as such in Algorithm 7.5 for computational and storage efficiency.

2.4.2 Quadratic Cost Function
For sufficiently large rates, the Poisson distribution can be well approximated
by a Gaussian distribution. This motivates the use of a least-squares data
functional in (9.11), yielding:

f? 2 arg min
f2MD✏

3,1
(S2)

�
ky ��(f)k22 + �kD ✏

3,1fkTV

 
. (9.13)

The discrete optimisation problem (9.12) then becomes:

x
? 2 arg min

x2RN

�
ky �Gxk22 + �kxk1

 
, (9.14)

which can be solved efficiently using Algorithm 7.6.

2.5 Results
The tree and fire density functions estimated with both recovery strategies
(9.11) and (9.13) are provided in Figs. 9.5a and 9.5b and Figs. 9.7a and 9.7b
respectively. For both experiments, we observe that the recovered estimates
(with KL-divergence and least-squares cost functions respectively) have a much
higher resolution than the original corrupted binned counts in Figs. 9.4b
and 9.6b, recovering almost the natural resolution of the unprocessed data in
Figs. 9.4a and 9.6a. We observe however that the KL-divergence cost function
seems to better recover regions with low intensity count, such as the Arabian
Peninsula or Australia. In contrast, the least-squares data-fidelity functional
has a tendency of yielding sparser density estimates, where all low intensity
count regions are set to zero. This behaviour was already observed in image
restoration under Poisson noise [187].

3 Planck and the Cosmic Microwave Background
In this example, we propose to recover full-sky intensity maps from the raw
measurements of radio telescopes such as Planck [2]. Such maps display the
intensity (or equivalently the temperature) of every astronomical radio source
across the celestial sphere. In this example, we use a realistic physical model
to simulate radio data from first a simplistic point source sky model and then
a more realistic sky model built from high-resolution images from Planck. We
recover the sky intensity maps by solving with Algorithm 7.5 a FPBP problem
with a KL-divergence data-fidelity term. We moreover compare the accuracy
and resolution of the recovered map to the dirty map, a common radio astron-
omy imaging product obtained by naive smoothing of the data [181].

3.1 Background
The brightest celestial objects in the universe are stars such as the Sun. The light
they shine is the result of the thermonuclear fusion of hydrogen and helium in
their core, with peak emission wavelength proportional to their temperature.
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(a) Aggregated tree counts at full resolution (0.1 degree).

(b) Aggregated tree counts with reduced resolution (1.5 degree) and
additional Poisson corruption.

Figure 9.4: Aggregated tree counts for the year 2016 produced from MODIS data, a sensor
aboard NASA’s Terra/Aqua satellites.
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(a) KL-divergence cost function.

(b) Quadratic cost function.

Figure 9.5: Estimates of the tree density function obtained by solving the FPBP optimisation
problems (9.12) and (9.14), with KL-divergence (a) and quadractic (b) cost functions
respectively.

159



160 Test Cases

(a) Aggregated fire counts at full resolution (0.1 degree).

(b) Aggregated fire counts with reduced resolution (1.5 degree) and
additional Poisson corruption.

Figure 9.6: Aggregated fire counts for the year 2016 produced from MODIS data, a sensor
aboard NASA’s Terra/Aqua satellites.
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(a) KL-divergence cost function.

(b) Quadratic cost function.

Figure 9.7: Estimates of the fire density function obtained by solving the FPBP optimisation
problems (9.12) and (9.14), with KL-divergence (a) and quadractic (b) cost functions
respectively.
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Most stars emit in the visible range: red dwarfs, which are relatively cold (
3’500 K), appear red to our eyes, while supergiant stars, much hotter (� 10’000
K), appear blue. The light coming from distant stars however can appear shifted
towards larger wavelengths for an observer on Earth. This phenomenon, called
redshift, is a simple manifestation of the Doppler effect due to the expansion of
the universe. From Hubble’s law, the further a celestial object is from us, the
faster it is moving away from us, and hence the more its emission spectrum
is redshifted. At some point, the light reaching us from distant stars falls into
the infrareds and below (microwaves and radiowaves), making it impossible
to observe them with traditional optical telescopes. To probe the universe
deeper, astronomers hence need radio telescopes, capable of observing radio
emissions. A rudimentary radio telescope was first built by Karl Jansky in 1930,
who observed radiation coming from the Milky Way. This major discovery gave
birth to the field of radio astronomy and opened a myriad of new horizons
for astronomers and cosmologists. Nowadays, modern radio telescopes often
take the form of dish antennae with a central feed, such as Planck [2], which
was sent into space to observe the cosmic microwave radiation background
(CMB) [90] and test cosmological models.

3.2 Data Description

We simulate realistic radio data from two sky models. The first one is a point
source sky model, taking the form of a stream of 120 Diracs on the sphere,
with uniformly distributed directions and log-normal distributed intensities
(see Fig. 9.9a). The second is a high resolution intensity map of the sky at
857 GHz produced by the Planck Collaboration using the data from the entire
Planck mission (see Fig. 9.9e). It is available on the Planck Legacy Archive
platform [54]. In both cases, the data (see Figs. 9.9b and 9.9f respectively)
consists of noisy directional samples4 of the sky intensity map, convolved with4 Distributed

according to a
Fibonacci tessellation.
For the point source
case, we chose
L = 768, while for
the Planck model, we
chose L = 9248.

a model of the point spread function of the radio telescope, in this case the
beamshape [81] of the dish antenna.

For the point source case, we modelled the point spread function ' : S2 ⇥
S
2 ! R+ by a squared jinc function (see Fig. 9.8):

'(hr, si) =
�20J

2
1

⇣
2⇡R

p
2� 2 hr, si/�0

⌘

R2(2� 2 hr, si) , 8(r, s) 2 S
2 ⇥ S

2, (9.15)

where J1 is the Bessel function of the first kind with order 1, �0 = 3 and R = 9.
Equation (9.15) corresponds [82, 85] to the far-field beamshape of an ideal
circular aperture with radius R = 9 m, steered towards a direction s 2 S

2 and
operating at a wavelength �0 = 3 m.

For the Planck sky model, we considered a wavelength �0 = 10 cm and a
dish with radius R = 1 m. Moreover, we approximated (9.15) by a Gaussian
beam with properly chosen scale � > 0:

'(hr, si) = exp

✓
hr, si � 1

�2

◆
, (r, s) 2 S

2 ⇥ S
2,
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Figure 9.8: Beamshape at 100 MHz of a dish antenna with ideal circular aperture of radius
9m.

allowing us to perform efficiently the spherical convolution of the high resolu-
tion Planck map with the instrument beam. To this end, we used the routine
named healpy.sphtfunc.smoothing from the healpy Python3 package [202].

In both cases finally, we corrupted the directional samples of the blurred
intensity maps with Gaussian white noise of PSNR of 30 dB.

3.3 Data Model
In both cases, one wishes to estimate the intensity field f of stars on the
celestial sphere using samples {y1, . . . , yL} ⇢ R obtained by steering the dish
antenna towards various directions {⇢1, . . . ,⇢L} ⇢ S

2. Similarly as before, we
assume f to be an element of the Sobolev space H

�(S2) for some � > 1. With
a Gaussian white noise assumption, the samples recorded by the dish antenna
can be modelled as Gaussian random variables:

Yi
ind⇠ N

�
(' ⇤ f)(⇢i),�

2
�
, i = 1, . . . , L, (9.16)

for some � > 0. We can reinterpret the means in (9.16) as generalised samples
of f :

E[Yi] =

Z

S2
'(hr,⇢ii)f(r)dr, i = 1, . . . , L,

hence yielding a data model falling into the scope of the generalised sampling
framework (5.1).

3.4 Methods
3.4.1 gTV Regularisation
We consider recovering f by means of the FPBP problem:

f? 2 arg min
f2MD✏

3,1
(S2)

�
DKL(y||�(f)) + �kD ✏

3,1fkTV

 
, (9.17)

where:
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• � > 0 is fixed manually,
• � : MD✏

3,1
(S2)! R

L is the sampling operator given by

�(f) = [hf |'(h·,⇢1i)i, . . . , hf |'(h·,⇢Li)i], 8f 2MD✏

3,1
(S2).

Note that, with the same arguments as in Section 2.4.1, it is possible to
show that � is well defined, i.e. {'(h·,⇢ii), i = 1, . . . , L} ⇢ CD✏

3,1
(S2).

• D
✏

3,1 : S
0(S2) ! S

0(S2) is the pseudo-differential operator associated
to the Wendland zonal Green kernel with scales ✏ corresponding to an
angular resolution of approximately 2� and 1� for the point source and
Planck sky models respectively:

 ✏3,1(hr, si) = �3,1

 p
2� 2 hr, si

✏

!
, 8(r, s) 2 S

2 ⇥ S
2.

The KL-divergence cost function in (9.17) helps to better recover low-intensity
sources in the sky. From the discussion in Section 1.2 of Chapter 6, solutions
to the optimisation problem (9.17) can be approximated by quasi-uniform
Wendland splines:

f?(r) =
NX

n=1

x?n  
✏

3,1(hr, rni), 8r 2 S
2,

where ⌅N = {rn, n = 1, . . . , N} ⇢ S
2 is a Fibonacci lattice5 (see Example 6.1)5 For the point source

case, we chose
N = 118181, while
for the Planck model,
we chose
N = 652997.

and x
? = [x?1, . . . , x

?

N
] 2 R

N is some solution to the discrete optimisation
problem:

x
? 2 arg min

x2RN

{DKL(y||Gx) + �kxk1} . (9.18)

The matrix G 2 R
L⇥N is moreover given by

Gln =  ✏3,1 ⇤ '(h⇢l, rni), 8(l, n) 2 [[1, L]]⇥ [[1, N ]].

We solve (9.18) using Algorithm 7.5. Since Wendland splines and the instru-
ment beamshape ' are well localised in space, the matrix G is in practice
sparse and is implemented as such in Algorithm 7.5 for computational and
storage efficiency.

3.4.2 Dirty Image

For comparison purposes, we also produce the dirty image, commonly used in
radio astronomy [181]. In our context, the latter is obtained by interpolating
the samples with the telescope beamshape:

fD(r) =
LX

i=1

yi '(hr,⇢ii), r 2 S
2. (9.19)

Notice that if the functions '(hr,⇢ii) were all orthogonal (which is certainly
not the case in general) then (9.19) would be the orthogonal projection of f
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onto span {'(h·,⇢1i), . . . ,'(h·,⇢Li)} . In the absence of orthogonality, (9.19)
can be interpreted as a smoothing of the true sky intensity.

3.5 Results
The sky intensity estimates obtained by spline-based imaging (9.18) and dirty
imaging (9.19) are available in Figs. 9.9c and 9.9d for the point source sky
model and Figs. 9.9g and 9.9h for the Planck sky model. In both cases, we
observe that the sky intensity estimates obtained by spline approximation have
far greater resolution than dirty sky estimates. This is particularly obvious
for the point source sky model where neighbouring celestial sources, fused
together in the dirty estimate Fig. 9.9d, are successfully resolved in the spline-
based estimate Fig. 9.9c. Similarly, the extended structures in Fig. 9.9g appear
much sharper than in Fig. 9.9h.

4 Lunar Elemental Abundance Maps
In this example, we build global distribution maps of radioactive elements on
the surface of the Moon using real data collected by NASA’s Lunar Prospec-
tor (LP) probe [101, 103]. Such maps, called elemental abundance maps, are
used by scientists to retrace the Moon’s geologic history [101]. For example,
abundance of Thorium (Th) reveals past magmatic activity and differentiation
[195]. In this experiment, the data consists in 377367 geolocalised gamma ray
counts, obtained by orbital gamma-ray spectroscopy (GRS) and recorded over
a period of approximately six months by the Lunar Prospector probe on its
lowest orbit.6 To reduce the size of the data, the latter was moreover binned 6 Which was at an

average altitude of 30
km.

on a Fibonacci Delaunay tessellation consisting of 14986 triangular cells with
average angular diameter of 1�. The abundance map is obtained by solving
with Algorithm 7.3 an FPT problem with `2-ball cost function. For comparison
purposes, we also provide an abundance map obtained with the state-of-the-art
Pixon method [141] and reproduced from the data provided in the supplemen-
tary material of [195].

4.1 Background
The giant-impact hypothesis7 suggests that the Moon was formed by the accre- 7 The giant-impact

hypothesis is
sometimes also called
Big Splash or Theia
Impact.

tion of debris originating from a collision between the proto-Earth and Theia,
an hypothesised planetoid of the size of Mars (approximately 6500 km in di-
ameter) in the early Solar system [24, 49]. This hypothesis, currently favoured
by the scientific community, is notably supported by Moon rock samples col-
lected by the Apollo missions [24]. These indicate that the primordial Moon’s
crust was largely liquified, forming the so-called lunar magma ocean. This past
magmatic activity is well explained by the giant-impact hypothesis given the
high energy that such a collision would generate. In order to understand better
the geologic history of the Moon, NASA launched the Lunar Prospector (LP)
mission [24, 101, 103] in January 1998. The latter orbited around the Moon
for two years, probing its surface by means of gamma-ray spectroscopy (GRS)
in search of a material called KREEP (potassium (K), rare earth elements (REE),
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(a) Point sources convolved with a 2� wide
Gaussian beam.

(b) Raw samples from the radio telescope
(L = 768).

(c) Sparse spline approximation, solution of
(9.18).

(d) Dirty field obtained by the smoothing
(9.19).

(e) Planck sky model. (f) Raw samples from the radio telescope
(L = 9248).

(g) Sparse spline approximation, solution of
(9.18).

(h) Dirty field obtained by the smoothing
(9.19).

Figure 9.9: Spline-based and dirty imaging of radio sources. In Figs. 9.9a to 9.9d we
investigate a point source sky model with 120 sources. In Figs. 9.9e to 9.9h we use
high-resolution data from the entire Planck mission as sky model. In both cases, the sparse
spline approximation of the sky intensity field appear much sharper than the one obtained by
dirty imaging. All images were enhanced by contrast stretching for better visualisation.
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4 Lunar Elemental Abundance Maps 167

Figure 9.10: Per-bin average of gamma-ray counts within the Th line (2.62 ± 0.2 MeV),
during the LOW2 phase of the Lunar Prospector mission.

phosphorus (P)), of which lunar magma was largely composed [101]. Among
the various chemical elements involved in the composition of KREEP, the Tho-
rium (Th) is the most easily observed. Indeed, its 2.61 MeV peak in the Moon’s
gamma ray spectrum is both strong and well separated from other peaks [194].
In this experiment, we will hence build an abundance map for Thorium.

4.2 Data Description

For this experiment, we worked with reduced spectrometer data collected dur-
ing the LOW2 phase of the Lunar Prospector mission, which lasted for a total
of 180.023 days [103]. During this period, the spacecraft was on its lowest
orbit at an average altitude of 30 km. The data is available in the NASA Plane-
tary Data System (Goesciences Node) [102] and consists of 377367 counts of
gamma rays originating from the natural decay of radioactive elements in the
top 10 centimetres of the lunar crust [194]. Since we are interested here in
building an abundance map for Thorium only, we removed all counts with en-
ergy outside the Th line: 2.62 ± 0.2 MeV [101]. The counts are obtained over
integration times of 32 seconds, and geolocalised on the surface of the Moon
using the spacecraft’s position at the time of the observation [103]. In order to
reduce the data size to something more manageable, we furthermore bin the
data on a Fibonacci Delaunay tessellation, consisting in 14986 triangular cells
with average angular diameter of 1�. The average number of counts in each
bin is displayed in Fig. 9.10.
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Figure 9.11: Point spread function of the orbital gamma-ray spectrometer onboard the Lunar
Prospector probe at an altitude of h = 30 km.

4.3 Data Model

Using the formalism introduced in Section 2.3, it is possible to model the
random emissions of gamma rays at the surface of the Moon as occurences
of some spatial Poisson point process with intensity function f : S

2 ! R+,
assumed here to belong to the RKHS H

�(S2), for some � > 1. Denoting by Ni

the number of observations in each of the Fibonacci bins, the binned counts
{y1, . . . , yL} ⇢ R+ can be seen as realisations of independent Poisson random
variables {Y1, . . . , YL}:

Yi
ind⇠ Poisson(Ni�i), i = 1, . . . , L,

The rates �i > 0 are moreover given by:

�i = (' ⇤ f)(ri) =

Z

S2
'(hr, rii)f(r)dr, i = 1, . . . , L,

where {r1, . . . , rL} ⇢ S
2 are the centres of each bin. The function ' : [�1, 1]!

R+ is the point spread function (PSF) of the orbital gamma-ray spectrome-
ter which, as demonstrated in [101], is well fitted by a kappa function (see
Fig. 9.11):

'(hr, si) =


1 +

R2 arccos2(hr, si)
2�(h)2

��(h)�1

,

where R = 1737.1 km is the radius of the Moon, h is the altitude (in km) of
the spacecraft, and [101]

�(h) = 0.704h + 1.39, (h) = �4.87⇥ 10�4h + 0.631.

From properties of the Poisson distribution we have finally:

1

Ni

E[Yi] = ' ⇤ f(ri), i = 1, . . . , L,

which falls indeed into the scope of the generalised sampling framework (5.1).
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4.4 Methods
4.4.1 gTikhonov Regularisation
We consider recovering f by means of the following FPT problem:

f? = arg min
f2HD✏

1.5
(S2)

�
◆B2,⇢ (y ��(f)) + kD ✏

1.5fk22
 
, (9.20)

where:
• ◆B2,⇢ : RL ! {0} [ {+1} is the indicator function (7.20) of the `2-ball

with radius ⇢ = 3%⇥ kyk2.
• � : HD✏

1.5
(S2)! R

L is the sampling operator given by

�(f) = [h'1|fi, . . . , h'L|fi], 8f 2HD✏

1.5
(S2),

where h'i|fi = hf,'(h·, rii)i = ' ⇤ f(ri), i = 1, . . . , L. Note that � is
well defined since, from Proposition 5.1, we have L

2(S2) ⇢H
0

D✏

1.5
(S2).

• D
✏

1.5 : S
0(S2)! S

0(S2) is the pseudo-differential operator associated to
the Matérn zonal Green kernel with fixed scale ✏ ' 0.016:

 ✏1.5(hr, si) = exp

 
�
p

2� 2 hr, si
✏

!
, 8(r, s) 2 S

2 ⇥ S
2.

From Theorems 6.2 and 5.3, the solution to optimisation problem (9.20) is
unique and, using properties of zonal kernels, can be written as:

f?(r) =
LX

l=1

x?
l
( ✏1.5 ⇤  ✏1.5 ⇤ ')(hr, rli), 8r 2 S

2,

where ⇤ denotes the spherical convolution8 operator (see Definition 3.3) and 8 As discussed in
Section 3.3, spherical
convolution with the
Wendland kernel can
be implemented
efficiently.

x
? = [x?1, . . . , x

?

L
] 2 R

L is the unique solution to the discrete optimisation
problem:

x
? = arg min

x2RL

�
◆B2,⇢ (y �Hx) + x

T
Hx

 
. (9.21)

Entries of the matrix H 2 R
L⇥L are moreover given by

Hlk = (' ⇤  ✏1.5 ⇤  ✏1.5 ⇤ ')(hrl, rki), 8l, k 2 [[1, L]].

We solve (9.21) using Algorithm 7.3. Since the Matérn kernel is spatially lo-
calised (see Fig. 8.1), the matrix H is in practice sparse (as discussed in Sec-
tion 3.2 of Chapter 8) and is implemented as such in the iterations of the
numerical solver for computational and storage efficiency.

4.4.2 Pixon Method
For comparison purposes, we also provide an abundance map obtained with the
state-of-the-art Pixon method [141] and reproduced from the data provided in
the supplementary material of [195]. The Pixon method is a discrete Bayesian
method, reported to achieve from 1.5 to 2 times better spatial resolution than
other deconvolution methods in planetary sciences [195]. It is locally adaptive:
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during the reconstruction pixels are grouped together into pixons, whose size
is modified so as to minimise a local misfit statistic [195]. Note that the image
produced in [195] was obtained from the aggregated data from the phases
LOW1 and LOW2 of the Lunar Prospector mission [103], which spanned on a
period of 220.506 days (against 180.023 days for the data we used). Moreover,
the data was binned on a finer grid with cells of angular size 0.5�.

4.5 Results
The Thorium abundance maps obtained by solving (9.21) and the Pixon method
are provided in Figs. 9.12 and 9.13 respectively. Both maps successfully sharpen
the empirical distribution of the data in Fig. 9.10 and suppress the statistical
noise polluting it. The Pixon map Fig. 9.13 however appears slightly sharper
than the gTikhonov map Fig. 9.12. It moreover exhibits fine details not dis-
tinguishable in Fig. 9.12 (especially in the regions surrounded by the green
and yellow boxes respectively). This could be due to the local adaptivity of
the Pixon method, and the fact that the data used to produce this estimate
was more abundant and binned on a finer grid. Nevertheless, the sharpness of
the gTikhonov map Fig. 9.12 is quite remarkable, especially given the known
limitations of gTikhonov regularisation (see Section 3.3 of Chapter 5) and the
relative simplicity of the optimisation problem (9.21).
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Figure 9.12: Estimate of the Thorium density function obtained by solving the FPT problem
(9.21).

Figure 9.13: Estimate of the Thorium density function obtained with the Pixon method [141].
This figure was reproduced from the data provided in the supplementary material of [195].
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IV
In this part, we discuss further topics and conclude this thesis. Some of the

highlights of this part are the following:
• In Chapter 10, we design an efficient and locally convergent algorithm

for recovering the spatial innovations of periodic Dirac streams with
finite rates of innovation. This algorithm is envisioned as an alternative
to the quasi-uniform spline discretisation scheme proposed in Chapter 6
for gTV regularised functional inverse problems.

• In Chapter 11, we show how the convergence speed of proximal algo-
rithms can be “boosted” by means of recurrent neural networks, for
purposes of real-time acoustic imaging.

• In Chapter 12 finally, we reflect back on the trajectory of this thesis and
outline a few prospective research avenues building on top of the material
of this thesis.

Further Topics &
Conclusion





10
Generalised Sampling of FRI Signals⇤

In this chapter, we introduce a non-convex optimisation algorithm, baptised
Cadzow plug-and-play gradient descent (CPGD), allowing the estimation of
the spatial innovations of a periodic Dirac stream with finite rate of innovation ⇤The material

presented in this
chapter is the result of
joint work with A.
Besson, P. Hurley and
M. Vetterli, and is the
topic of [162],
currently under
submission.

[25] from generalised measurements of the latter. The algorithm is extremely
simple and very efficient, outperforming the state-of-the-art algorithm proposed
in [130]. Unlike the latter, CPGD is moreover provably locally convergent. As
discussed in Section 1, this algorithm could be used for the purpose of esti-
mating extreme point solutions to FPBP problems formulated over the circle
S
1. However, it has much wider applicability, and is hence presented here in a

more general context (in particular, we consider Dirac streams with arbitrary
period T > 0). Note that the notations of this chapter have been adapted to the
conventions generally adopted in the finite rate of innovation (FRI) framework
[25, 130, 184], and may hence differ slightly from those of Parts I to III of this
thesis.

1 Motivation in the Context of this Thesis

A common belief about generalised total variation regularisation is that it
enforces sparsity in the variations of the functions recovered by functional
penalised basis pursuit. As shown by Theorem 5.4, this is actually only true for
very specific FPBP solutions, namely extreme point solutions, which –assuming
that the gTV pseudo-differential operator D is spline-admissible– take the form
of sparse D-splines, i.e. with less innovations K than the total number L of
measurements:

f?(r) =
KX

k=1

↵k D(hr, rki), r 2 S
d�1, (10.1)

with ↵ = [↵1, . . . ,↵K ] 2 C
K and {r1, . . . , rK} ⇢ S

d�1. Extreme point solutions
are hence, in virtue of Occam’s razor principle (see Chapter 5), particularly
interesting since relatively simple: they use as little as possible degrees of
freedom to fit the data. It is hence desirable to come up with algorithmic
solutions capable of approximating specifically the extreme point solutions
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(10.1) of an FPBP problem. Of course, one could always approximate (10.1)
by a quasi-uniform D-spline, and solve the discrete PBP problem (6.14), as
proposed in Theorem 6.5. Unfortunately, there is a priori no reason that the
spline obtained in this way would approximate specifically an extreme point
solutions of the continuous FPBP problem. Indeed, the quasi-uniform D-spline
approximation scheme leveraged in (6.14) is meant to approximate well any
non-limit FPBP solution, irrespective of it being an extreme point or not. More-
over, the quasi-uniform D-spline approximation of (10.1) for a fixed knot set
size N may not necessarily have sparse innovations –i.e. bounded by the num-
ber of measurements– hence making it very hard to distinguish extreme point
solutions from regular interior point solutions once discretised by means of
quasi-uniform D-splines.

In this chapter, we therefore propose an alternative discretisation strategy
yielding solutions with guaranteed sparse form (10.1). The idea is to enforce
the sparse parametric form (10.1) by replacing the unknown f in the FPBP
problem (5.23) by a non-uniform D-spline of the form

P
L

k=1 ↵k D(hr, rki),
whose amplitudes and knot directions are both assumed unknown and learnt
from the data. Similarly as in Theorem 5.4, it can be shown that the resulting
discrete optimisation problem then takes the form:

↵
?, {r?1, . . . , r?L} = arg min

{r1,...,rL}⇢S
d�1

↵2C
L

(
F

 
y,�

 
LX

k=1

↵k D(hr, rki)
!!

+ �k↵k1

)
,

(10.2)

where y 2 C
L and F , �, D and � are as in Theorem 5.4. Note that from the

definition of a spline and the fact that D is invertible, we can moreover rewrite
(10.2) as

↵
?, {r?1, . . . , r?L} = arg min

{r1,...,rL}⇢S
d�1

↵2C
L

(
F

 
y,�D

�1

 
LX

k=1

↵k�rk

!!
+ �k↵k1

)
.

(10.3)

The problem is hence to find a Dirac stream
P

L

k=1 ↵k�rk whose unknown in-
novations minimise (10.3). Since the directions {r1, . . . , rL} have a nonlinear
dependency on the data and are optimised over the continuous domain S

d�1,
(10.3) appears like a very hard optimisation problem. Fortunately, the gen-
eralised finite rate of innovation (FRI) sampling framework [25, 130, 184],
shows that, at least for the circle when d = 2 (see [52] for extensions to
the sphere when d = 3), the optimisation problem can actually be decoupled.
Indeed, the directions {r1, . . . , rL} can be learnt by finding the roots of the so-
called annihilating filter, which is independent of the Dirac amplitudes. Once
the directions are found, the latter can simply be plugged into (10.3) and the
amplitudes are easily obtained by means of Algorithms 7.5 and 7.6 for exam-
ple, depending on the nature of the cost function F . Unfortunately, finding
the annihilating filter of a Dirac stream from generalised measurements of
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the latter is a non-convex problem [130]. As a result, the only optimisation
procedure [130] available in the literature for carrying out this task in full gen-
erality is very computationally intensive, and lacks convergence guarantees.
In this chapter, we propose a novel optimisation procedure, baptised Cadzow
plug-and-play gradient descent (CPGD), which is more efficient than the state
of the art and has local convergence guarantees.

2 Introduction to FRI
Sampling theorems are at the foundation of modern digital signal process-
ing [148, 183] as they permit to navigate conveniently between the analog and
digital worlds. The most famous of these theorems is undoubtedly the Shannon
sampling theorem [158] which states that bandlimited signals can be recovered
exactly from their discrete samples, provided a sufficient sampling rate. This
major result has had tremendous impact on the field of signal processing and
by extension on many fields of natural sciences. But this unanimous celebration
has lead many scientists to start thinking about sampling theory exclusively
in terms of bandlimitedness, which was nothing but a sufficient condition for
a signal to admit a discrete representation. In reality, sampling theorems can
also be devised for non-bandlimited signals, as long as they possess finitely
many degrees of freedom (df).

This remarkable fact was brought to the attention of the signal processing
community by Vetterli et al. in their seminal work [184], where they introduced
the finite rate of innovation (FRI) framework, concerned with the sampling of
sparse non-bandlimited signals such as the prototypical sparse signal, namely
the T -periodic1 Dirac stream: 1 In the context of

Section 1, we have of
course T = 2⇡.

x(t) =
X

k02Z

KX

k=1

xk�(t� tk � Tk0), 8t 2 R, (10.4)

with xk 2 C and tk 2 [0, T [. In the FRI framework, the sparsity of a signal is
measured in terms of its rate of innovation, defined as the number of degrees of
freedom per unit of time. For instance, the Dirac stream (10.4) has 2K degrees
of freedom {xk, tk}k=1,...,K per period T , yielding a finite rate of innovation of
⇢ = 2K/T . Intuitively, any lossless sampling scheme for (10.4) must therefore
have a sampling rate at least as large as the rate of innovation ⇢, or it will
be impossible to fix all the degrees of freedom. In [25], Blu et al. described
a sampling scheme achieving the second best sampling rate after the critical
innovation rate, permitting to perfectly recover the signal innovations from the
knowledge of 2K + 1 consecutive Fourier coefficients of x.

Unfortunately, this scheme is very sensitive to noise perturbations in the
collected samples. This is because the recovery of the innovations tk relies on
the resolution of a so-called annihilating equation, whose solvability requires
the Toeplitz matrix built from the Fourier coefficients to be rank deficient.
While this structural constraint is guaranteed to hold in the case of noiseless
recovery of Dirac streams, it can break in the presence of noise, inevitable in
practical applications. As a remedy to this stability issue, Blu et al. proposed
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to denoise the collected samples prior to solving the annihilating equation. To
this end, they leveraged the well-known Cadzow algorithm [33] which aims
to retrieve the closest rank-deficient Toeplitz matrix to a high-dimensional
embedding of the data via an alternating projection method. When upgraded
with this extra denoising step, simulations results from Blu et al. in [25] re-
vealed that the overall accuracy of the recovery procedure remains very good
for a signal to noise ratio (SNR) as low as 5 dB. While the Cadzow algorithm
empirically provides accurate results after a few iterations, its theoretical con-
vergence has however not been demonstrated to date, due to the non-convex
nature of the space of rank-deficient matrices. Condat and Hirabayashi [44]
revisited Cadzow denoising as a structured low-rank approximation (SLRA)
problem and proposed a Douglas-Rachford splitting algorithm to solve it [42],
which has higher accuracy. Unfortunately, the gain comes at the price of sig-
nificantly higher computational cost, the Douglas-Rachford splitting method
requiring many more iterations to converge than Cadzow denoising. In ad-
dition to their somewhat heuristic nature, neither Cadzow denoising nor its
upgrade can handle more general types of input measurements as considered
in the generalised finite rate of innovation (genFRI) framework introduced
by Pan et al. in [130]. The latter extends FRI to very generic cases, where
the measurements are related to the unknown Fourier coefficients of signals
satisfying the annihilating property by a linear map. In such configurations, it
is therefore necessary to estimate both the Fourier coefficients and their corre-
sponding annihilating filter. Pan et al. proposed to perform this joint estimation
task by solving a non-convex constrained optimisation problem which recovers
the Fourier coefficients, required to minimise a quadratic data-fidelity term,
and their corresponding annihilating filter coefficients. The annihilating equa-
tion linking the two unknowns is moreover explicitly enforced as a constraint.
They suggested to solve this optimisation problem via an iterative alternating
minimisation algorithm with multiple random initialisations [130]. However,
the proposed algorithm comes without convergence guarantees, requires fine
tuning of many hyper-parameters, and is computationally intensive.

In this chapter, we propose to solve the implicit genFRI problem via proximal
gradient descent (PGD) [16, 134]. We first consider PGD with exact proximal
steps which is shown to converge towards critical points of the implicit genFRI
problem. The latter is however impractical since the proximal step involved at
each iteration does not have a closed-form expression. We therefore consider
an inexact PGD [71], with proximal steps approximated by means of alternat-
ing projections, which amount to Cadzow denoising in the case of injective
forward matrices G. Such an approach is reminiscent of the plug-and-play
(PnP) framework in which proximal operators involved in first-order iterative
methods are replaced by generic denoisers [73, 154, 182]. For this reason, we
baptise our reconstruction algorithm Cadzow plug-and-play gradient descent
(CPGD). We demonstrate that CPGD converges locally towards fixed points of
the update equation for injective matrices G. Through simulations of irregular
and noisy time sampling of periodic stream of Diracs we show that CPGD is
more acurate and efficient by several orders of magnitude than the procedure
proposed by Pan et al. in [130].
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3 Preliminaries
In this section we introduce a linear operator, baptised Toeplitzification oper-
ator,2 which transforms a vector into a Toeplitz matrix. This operator will be 2 The alternative

appellation
Toeplitzication is used
in [44].

used in the regularisation term of our implicit genFRI optimisation problem.
We then briefly review the method of alternating projections [55] as well as
the FRI [184] framework and Cadzow denoising [44].

3.1 Toeplitzification Operator
Assume that we are given an arbitrary vector x 2 C

N , N = 2M + 1, with
entries indexed as follows:

x = [x�M , x�M+1, . . . , xM�1, xM ]T.

Then, for any P M , we can embed x into the space TP of Toeplitz matrices
of C(N�P )⇥(P+1) by means of the following Toeplitzification operator:

TP :

(
C
N ! TP ⇢ C

(N�P )⇥(P+1)

x 7! [TP (x)]
i,j

:= x�M+P+i�j ,
(10.5)

where i = 1, . . . , N � P , j = 1, . . . , P + 1. Note from (10.5) that the value
of an entry [TP (x)]

i,j
of the matrix TP (x) depends only on the distance i � j

between the row and column indexes: TP (x) is therefore a Toeplitz matrix
and the vector x is called its generator. The Toeplitzification operator (10.5)
can be used to implement linear convolutions. Indeed, it can be shown (see
Section 1 of Appendix B) that the multiplication of TP (x) with a vector u =
[u1, · · · , uP+1]

T 2 C
P+1 returns the valid part of the convolution between the

two zero-padded sequences x̃ =
h
. . . , 0, x�M , . . . , x0 , . . . , xM , 0, . . .

i
2 C

Z

and ũ =
h
. . . , 0 , u1, . . . , uP+1, 0, . . .

i
2 C

Z.

3.2 Inverse Toeplitzification Operator
The inverse Toeplitzification operator is the pseudo-inverse of the Toeplitzifi-
cation operator, mapping a Toeplitz matrix H 2 C

(N�P )⇥(P+1) to its genera-
tor h 2 C

N . As we shall prove in Proposition 10.2, inverse Toeplitzification
is achieved by averaging across each diagonal of TP (x). It is interesting to
note that this operation is also leveraged in Cadzow denoising as described
in [25], in order to map back the data from its high dimensional Toeplitz em-
bedding. The formal interpretation of this inverse map as the pseudo-inverse
of the Toeplitzification operator proposed hereafter is nevertheless not proven
in [25], nor anywhere else we may be aware of.
To compute the pseudo-inverse of TP , we first need an expression for its adjoint
map, detailed in the proposition hereafter.
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Proposition 10.1 — Adjoint operator of TP . The adjoint operator T ⇤

P
of TP

defined in (10.5) is given by

T ⇤

P :

8
><

>:

C
(N�P )⇥(P+1) ! C

N

H 7! hj =
X

i=k+j�1�P

Hik, j = 1, . . . , N. (10.6)

Proof. Consider a matrix H 2 C
(N�P )⇥(P+1) and define the following Frobe-

nius inner product

hTP (x) ,Hi
F

= tr
�
TH

P (x)H
�

=
N�PX

i=1

P+1X

k=1

TP (x)
ik
Hik

=
N�PX

i=1

P+1X

k=1

x̄�M+P+i�kHik

s=i�k+P
=

N�1X

s=0

x�M+s

 
X

i=k+s�P

Hik

!

(10.7)

The term
P

i=k+(s�P )
Hik sums the elements of H along lines with equation

i = k + (s � P ). These lines have slope 1 and intercept b = s � P . Notice
that these lines have non-null intersection with the lattice (k, i) 2 [1, P + 1]⇥
[1, N � P ] for b 2 [�P,N � P � 1]. Indeed, the two extreme cases occur when
the lines hit the points (1, N � P ) and (P + 1, 1). This happens respectively
when 1 + b = N � P ) b = N � P � 1 and P + 1 + b = 1 ) b = �P . Since
s 2 [0, N�1] the intercept b varies indeed in the range [�P,N�P�1] and each
term in the summation is non-null. The summation

P
i=k+(s�P )

Hik corresponds

then to summing across each diagonal of H. We finally get:

hTP (x) ,Hi
F

= hx, T ⇤

P (H)i ,

with

T ⇤

P :

8
<

:
C
(N�P )⇥(P+1) ! C

N

H 7! hj =
P

i=k+j�1�P

Hik, j = 1, . . . , N.

⌅

Note that the adjoint map T ⇤

P
proceeds by summing across each diagonal of

the input matrix H. We are now ready to derive an expression for the (left)
pseudo-inverse of TP , described in the proposition hereafter.

Proposition 10.2 — Pseudo-Inverse of TP . The pseudo-inverse

T †

P
: C

(N�P )⇥(P+1) ! C
N
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of TP defined in (10.5) is given by

T †

P
= ��1T ⇤

P , (10.8)

where � 2 C
N⇥N is a diagonal matrix with diagonal entries given by:

�i,i =

8
><

>:

i for 1  i  P,

P + 1 for P < i  N � P,

N + 1� i for N � P < i  N.

(10.9)

Proof. From (10.6) and the definition of TP , it is straightforward to observe
that the operator � = T ⇤

P
TP : CN ! C

N is a diagonal matrix, with diagonal
entries given by:

�i,i =

8
><

>:

i for i  P

P + 1 for P < i  N � P

N + 1� i for N � P < i  N.

(10.10)

The operator T †

P
= ��1T ⇤

P
is hence a left inverse for TP :

T †

P
TP = ��1T ⇤

PTP = (T ⇤

PTP )�1T ⇤

PTP = IN . (10.11)

Moreover, the latter is actually the pseudo-inverse of TP . Indeed, we have
trivially:

TPT
†

P
TP = TP , T †

P
TPT

†

P
= T †

P
, (T †

P
TP )⇤ = T †

P
TP .

Finally, we have
(TPT

†

P
)⇤ = TP�

�⇤T ⇤

P = TPT
†

P
, (10.12)

since � is diagonal and hence symmetric. T †

P
verifies thus the definition of the

pseudo-inverse of TP . ⌅

Observe that the composition of T ⇤

P
and ��1 in the expression of the pseudo-

inverse (10.8) corresponds indeed to a diagonal averaging: T ⇤

P
first sums across

each diagonal of the matrix H 2 C
(N�P )⇥(P+1) and ��1 then divides the sums

by the number of elements on each diagonal.

3.3 The Method of Alternating Projections

In this section we briefly discuss the method of alternating projections (MAP)
[55], central to Cadzow denoising. It is used in computational mathematics to
approximate projections onto intersecting sets. In its simplest form proposed
by von Neumann in 1933 [186], the MAP performs a cascade of n projection
steps onto subsets {M1, . . . ,MK} of some Hilbert space H, starting from a
point z 2 H:

ž = [⇧MK
· · ·⇧M1 ]

n (z). (10.13)
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In (10.13), ⇧Mk
denotes the orthogonal projection map onto Mk, defined for

k = 1, . . . ,K as

⇧Mk
:

(H!Mk,

z 7! arg min
x2Mk

kz � xk,

for some norm k·k on H. In the case of closed linear subspaces {M1, . . . ,MK},
von Neumann and Halperin showed that [12, 75, 186]

lim
n!1

���[⇧MK
· · ·⇧M1 ]

n (z)�⇧T
K

k=1 Mk

(z)
��� = 0, 8z 2 H. (10.14)

The MAP equation (10.13) can hence be used to approximate the complex pro-
jection map ⇧T

K

k=1 Mk

. For closed convex sets {M1, . . . ,MK}, Bregman [55]
showed moreover the weak convergence of the MAP towards a point in the
intersection

T
K

k=1 Mk. Strong convergence towards the actual projection was
achieved by Dysktra’s MAP [13], one of the most popular variant to von Neu-
mann’s original algorithm. In the case of non-convex intersecting sets finally,
the convergence of the MAP has only been established locally [5, 107, 108,
175]. For example, Andersson et al. considered in [5] the case of two (poten-
tially non-convex) finite-dimensional manifolds M1,M2 ⇢ H and showed the
following local convergence result [5, Theorem 1.6]:

Theorem 10.3 — Local Convergence of MAP for Non-Convex Sets [5]. Let
x 2 M1 \M2 be non-tangential, i.e. the angle between M1 and M2 at
x is positive.a Then, for z 2 H and ✏ > 0, there exists � � 0 such that, if
kx� zk  �,

[⇧M2⇧M1 ]
n (z)

n!1! z1 2M1 \M2,

and
kz1 �⇧M1\M2(z)k < ✏ kx�⇧M1\M2(z)k .

aSee [5, Definition 4.2] and [5, Definition 4.3] for a precise definition of the angle between
two manifolds and the concept of non-tangentiality.

Roughly speaking, Theorem 10.3 states that if the starting point z is close
enough to a non-tangential point of M1 \M2 (which as explained in [5] are
all but very exceptional points of M1\M2), then the MAP converges to a point
in M1 \M2. Moreover, the error kz1 �⇧M1\M2(z)k can be made arbitrarily
small with respect to kx�⇧M1\M2(z)k . Theorem 10.3 is however difficult
to apply in practice since the value of � guaranteeing a relative error below a
given threshold ✏ is unknown. The MAP is hence often used as a heuristic in
non-convex settings with no convergence guarantees. This is notably the case
of Cadzow denoising, discussed further in Section 3.5.

3.4 FRI in a Nutshell

The classical FRI framework, introduced in [184], aims at estimating the in-
novations {(xk, tk), k = 1, . . . ,K} ⇢ C ⇥ [0, T [, of a T -periodic3 stream of3 In the context of

Section 1, we have of
course T = 2⇡.
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Diracs:

x(t) =
X

k02Z

KX

k=1

xk�(t� tk � Tk0), 8t 2 R.

In standard FRI, the estimation procedure is divided into two stages. The
locations tk are first estimated by a nonlinear method, and then arranged into
a Vandermonde system whose solution yields the Dirac amplitudes [25]. The
recovery of the locations tk relies on the so-called annihilating equation, dating
from Prony’s work [147], which cancels out the Fourier series coefficients of x
by convolving them with a particular filter, called the annihilating filter. The
latter is defined as the finite-tap sequence h = [· · · , 0, h0, h1, . . . , hK , 0, · · · ] 2
C
Z, with z-transform vanishing at roots {uk := e�j2⇡tk/T , k = 1, . . . ,K}:

H(z) =
KX

k=0

hk z
�k =

KY

k=1

(1� ukz
�1). (10.15)

For such a filter, we have indeed

(x̂ ⇤ h)m =
KX

k=0

hkx̂m�k =
KX

k0=1

xk0

 
KX

k=0

hku
�k

k0

!
um
k0 = 0, m 2 Z, (10.16)

where x̂m =
P

K

k=1 xku
m

k
,m 2 Z, are the Fourier coefficients of x in (10.4).

Notice that the roots uk of the z-transform H(z) in (10.15) of h are in one-
to-one correspondence with the locations tk. Recovering them amounts to
estimating the coefficients h = [h0, . . . , hK ] 2 C

K+1 of h from the annihilating
equation (10.16). Assuming, for instance, that we dispose of N = 2M + 1
consecutive Fourier coefficients of x, e.g. x = [x̂�M , . . . , x̂M ] 2 C

2M+1, we can
extract the N �K equations from (10.16) corresponding to the convolution
indices m = �M + K, . . . ,M , and use the Toeplitzification operator4 defined 4 Remember the link

between the
Toeplitzification
operator and
convolution discussed
in Section 3.1.

in (10.5) to form the following matrix equation:

TK(x)h = 0N�K , khk 6= 0. (10.17)

Observe that any nontrivial element of the nullspace of TK(x) is a solution to
(10.17). For M � K, it can be shown [25] that TK(x) has rank K and therefore
a nontrivial nullspace with dimension 1. Up to a multiplicative constant, the
annihilating equation (10.17) admits hence a unique solution. The latter is
obtained numerically by means of total least-squares [25], which computes the
eigenvector associated to the smallest5 eigenvalue of TK(x). In the critical 5 An eigenvalue

exactly equal to zero
may in practice be
impossible to obtain
due to numerical
inaccuracies.

case M = K, the matrix TK(x) is square, while in the oversampling case
M > K it is rectangular and tall. As explained in [25], oversampling makes
the estimation procedure more resilient to potential noise perturbations in the
Fourier coefficients. In such cases, Blu et al. recommend moreover to perform
Cadzow denoising on the Fourier coefficients x (see Section 3.5) as well as
replace (10.17) by a more general annihilating equation:

TP (x)h̃ = 0N�P , kh̃k 6= 0. (10.18)
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with K  P  M ,6 and h̃ 2 C
P+1. The generalised annihilating equation6 The case P = M is

reported to yield the
best empirical results
in [25].

(10.18) presents the advantage of involving more coefficients from x, hence
offering resilience to noise. Again, it is possible to show that TP (x) has rank
K, and hence a nontrivial nullspace with dimension P + 1�K. Solutions to
(10.18) are hence nonunique in this case, but all equally valid for practical
purposes.

3.5 Cadzow Denoising

For strong noise perturbations, the generalised annihilating equation (10.18)
may fail to admit a nontrivial solution. Indeed, noisy generators x can yield
full column rank matrices TP (x) with trivial nullspace. As a potential cure,
Blu et al. proposed to denoise the Fourier coefficients x prior to solving the
annihilating equation. This denoising step attempts to transform TP (x) into a
Toeplitz matrix with rank at most K, thus guaranteeing the existence of non-
trivial solutions to (10.18). This operation is carried out by means of Cadzow
denoising [44], an alternating projection method (see Section 3.3) applied
heuristically to the subspace TP of Toeplitz matrices and the subset HK of
matrices with rank at most K:

HK :=
n
M 2 C

(N�P )⇥(P+1) | rankM  K
o
. (10.19)

Using the notations introduced in Sections 3.1, 3.2 and 3.3, Cadzow denoising
can be seen as processing the noisy coefficients x as follows:

x̌ = T †

P
[⇧TP

⇧HK
]n TP (x), (10.20)

for some suitable n 2 N. Note that the inverse Toeplitzification operator T †

P

applied after the alternating projection method is used to recover the denoised
Fourier coefficients x̌ 2 C

N . Since HK is a non-convex set the convergence
of the MAP in (10.20) is not guaranteed. Nevertheless, experimental results
[25, 44] suggest that Cadzow denoising almost always converges after a few
iterations (typically n  20), which could theoretically7 be explained by the lo-7 As explained in

Section 3.3, the
assumptions of
Theorem 10.3 are in
practice very difficult
to verify in practice.

cal convergence result in Theorem 10.3. We conclude this section by providing
closed-form expressions for the projection operators ⇧TP

and ⇧HK
, needed in

(10.20).

3.5.1 Projection onto TP

The orthogonal projection operator onto the subspace TP ⇢ C
(N�P )⇥(P+1) of

rectangular Toeplitz matrices can be written in terms of the Toeplitzification
operator and its pseudo-inverse as:

⇧TP
= TPT

†

P
= TP�

�1T ⇤

P .

Proof. The operator TP is actually a surjection onto the subspace TP of rectan-
gular Toeplitz matrices with size (N � P )⇥ (P + 1). Indeed, it is easy to see
that every such matrix can be written as in (10.5) for some generator x 2 C

N .
Moreover, we have from (10.11) that T †

P
TP = IN and hence from [183, Theo-
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rem 2.29], TPT
†

P
is a projection operator onto the range TP of TP . Since TPT

†

P

is moreover self-adjoint from (10.12), it is actually an orthogonal projection
operator, which achieves the proof. ⌅

3.5.2 Projection onto HK

The orthogonal projection operator onto the space HK of matrices with rank
at most K is given by the Eckart-Young-Minsky theorem [53]. The latter indeed
states that the projection map

⇧HK
(X) = arg min

H2HK

kX �Hk
F
, X 2 C

(N�P )⇥(P+1),

can be computed in closed-form as:

⇧HK
(X) = U⇤KV

⇤, X 2 C
(N�P )⇥(P+1), (10.21)

where X = U⇤V ⇤ is the singular value decomposition (SVD) of X, and ⇤K

is the diagonal matrix of sorted singular values truncated to the K strongest
ones. Note that the output of the projection map is unique as long as the K�th
and (K +1)�th largest singular values are different. Fortunately, this is almost
always the case in practice, due to numerical inaccuracy.

4 Generalised FRI as an Inverse Problem

4.1 Generalised FRI

In Section 3.4, we described a procedure for recovering the locations tk from
consecutive Fourier coefficients of x. Remains now the issue of computing
these Fourier coefficients from a collection of arbitrary measurements y 2 C

L

of x, L � N . Blu et al. treated the simple scenario of measurements result-
ing from regular time sampling with ideal low-pass prefiltering [25]. In such a
case, they showed that, for a well chosen prefilter bandwidth, the Fourier coeffi-
cients could simply be obtained by applying a discrete Fourier transform to the
measurements y. For more general measurement types, the situation is more
complex, and the Fourier coefficients x 2 C

N must in general be estimated by
solving a linear inverse problem:

y = Gx + n, (10.22)

where the forward matrix G 2 C
L⇥N , L � N, is application dependent, and

n accounts for additive noise, usually assumed to be a white Gaussian ran-
dom vector. In [130], Pan et al. have proposed the generalised finite rate of
innovation (genFRI) optimisation problem for inverting (10.22). The latter
is a non-convex constrained optimisation problem which jointly recovers the
Fourier coefficients x 2 C

N –required to minimise a quadratic data-fidelity
term– and their corresponding annihilating filter coefficients h 2 C

P+1. The
annihilating equation linking the two unknowns is moreover explicitly enforced
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as a constraint, yielding an optimisation problem of the form:

min
x2C

N

h2C
P+1

kGx� yk22 subject to

(
TP (x)h = 0N�P ,

khk = 1.
(10.23)

The normalisation8 khk = 1 is used to exclude trivial solutions to the anni-8 In [130], the
authors also propose
less natural
normalisation
strategies with
improved empirical
performances.

hilating equation in (10.23). In the case of known noise level, the authors
propose a relaxed version of (10.23), and suggest to solve it via an iterative
alternating minimisation algorithm with multiple random initialisations. The
latter comes however without convergence guarantees and is computationally
very intensive.

4.2 Implicit Generalised FRI

The annihilating equation constraint in (10.23) can be thought of as regular-
ising the genFRI problem. Indeed, minimising the quadratic term kGx� yk22
alone in the presence of noise would not necessarily yield Fourier coefficients
x with non-trivial annihilating filter, which the annihilating constraint enforces
explicitly. Unfortunately, this regularisation also complicates significantly the
optimisation procedure. Indeed, it requires the introduction of an extra un-
known variable with non-linear dependency on the data, namely the annihi-
lating filter h. Moreover, the non-linear constraint TP (x)h = 0N�P is highly
non-convex, and state-of-the-art algorithms, such as alternating minimisation
or gradient descent [134], may suffer from getting trapped in local minima
[36]. To circumvent these issues, we propose the following implicit formulation
of the genFRI problem, in which only the Fourier coefficients are recovered:

min
x2CN

kGx� yk22 subject to

(
rankTP (x)  K,

kxk�  ⇢,
(10.24)

where K  P M , ⇢ 2]0,+1], and kxk� is the norm induced by the diagonal
and positive definite matrix � 2 C

N⇥N in (10.10):

kxk� :=
p
xH�x, 8x 2 C

N . (10.25)

Similarly to (10.23), the quadratic term kGx� yk22 in (10.24) is used to guar-
antee high fidelity of the recovered coefficients with the observed data. Unlike
(10.23) however, (10.24) leverages a regularising rank constraint on TP (x)
which does not explicitly involve the unknown annihilating filter. As already
discussed in Section 3.5 in the context of Cadzow denoising, requiring TP (x)
to be of rank at most K is indeed a sufficient condition for the generalised
annihilating equation (10.18) to admit nontrivial solutions. This implicit regu-
larisation greatly simplifies the genFRI problem, since it decouples the problem
of estimating the Fourier coefficients from the problem of estimating the an-
nihilating filter. The normalisation constraint kxk�  ⇢ finally, requires the
recovered Fourier coefficients to have finite weighted energy (10.25). As shall
be seen in Section 5, it can be relaxed when the forward matrix G is injective by
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setting ⇢ = +1. Indeed, it is only used to ensure that the objective functional
in (10.24) is coercive in underdetermined cases, where the forward matrix G

has a nontrivial null space. Coercivity is indeed a key assumption [109] for
the convergence of the proximal gradient descent method envisioned in Sec-
tion 5.1 to solve (10.24). We conclude this section by noting that the choice
of � as weighting matrix in the energy normalisation constraint is arbitrary
and purely motivated by computational considerations. Indeed, any choice of
positive definite weighting matrix in (10.25) would have been suitable for
the sole purpose of making the objective functional coercive. As explained in
Section 5.2 however, defining the weighting matrix as � greatly simplifies the
computations involved at each iteration of the numerical solver proposed in
Section 5.1.

5 Optimisation Algorithm
5.1 Non-Convex Proximal Gradient Descent
The optimisation problem (10.24) can be rewritten in unconstrained form as:

min
x2CN

kGx� yk22 + ◆HK
(TP (x)) + ◆B�

⇢
(x) , (10.26)

where HK is the non-convex set of matrices with rank lower than K defined in
(10.19), B�

⇢ := {x 2 C
N : kxk�  ⇢} is the �-ball with radius ⇢ > 0, and ◆HK

:

C
(N�P )⇥(P+1) ! {0,+1}, ◆B�

⇢
: CN ! {0,+1} are indicator functions with

domains HK and B
�
⇢ , respectively. Observe that the unconstrained optimisation

problem (B.8) can be written as a sum between a convex and differentiable
quadratic term

F (x) := kGx� yk22 , x 2 C
N ,

and a non-convex and non-differentiable term

H(x) := ◆HK
(TP (x)) + ◆B�

⇢
(x), x 2 C

N .

It is moreover easy to see that the gradient of F

rF (x) = 2GH(Gx� y), x 2 C
N , (10.27)

is �-Lipschitz continuous with respect to the �-norm (10.25), with Lipschitz
constant given by

� = 2kGH
Gk�

= sup
�
2kGH

Gxk� : x 2 C
N , kxk� = 1

 

= sup
n

2
����1/2

G
H
G��1/2

x̃

���
2

: x̃ 2 C
N , kx̃k2 = 1

o

= 2
����1/2

G
H
G��1/2

���
2
. (10.28)

It is hence possible to optimise (B.8) by means of proximal gradient descent
(PGD) [134], an iterative method alternating between gradient and proximal
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steps according to the following update equation:

xk+1 2 prox�
⌧H

(xk � ⌧rF (xk)) , (10.29)

for k � 0, x0 2 C
N , ⌧ > 0 and prox�

⌧H
defined in (10.30). Given a current

estimate xk 2 C
N , the update equation (B.2) decreases the value of the objec-

tive function (B.8) by selecting a proximal point [134] –with respect to H– of
a target located at a distance ⌧ from xk along the direction of steepest descent
�rF (xk). The operator mapping a point x 2 C

N to its proximal points with
respect to H is called proximal operator, and is defined as [134]

prox�
⌧H

(x) :

8
<

:

C
N !P

�
C
N
�
,

x 7! arg min
z2CN

1

2⌧
kx� zk2� + H(z),

(10.30)

where P(CN ) is the power set of CN , and ⌧ > 0 controls the relative impor-
tance of H with respect to the squared distance to x measured in terms of
the �-norm (10.25). The function H being non-convex, the proximal operator
(10.30) will in general return multiple proximal points, which can all be used
interchangeably in (B.2). The convergence of the sequence {xk}k2N of PGD
iterates (B.2) towards critical points of (B.8) is established in the following
theorem.

Theorem 10.4 — Convergence of PGD for Arbitrary G. Assume that ⇢ 2
]0,+1[ in (B.8), and ⌧ < 1/� with � defined in (B.2). Then, any limit point
x? of the sequence {xk}k2N generated by (B.2) is a local minimum of (B.8).

Proof. The proof of this theorem is given in Section 2 of Appendix B. ⌅

As stated by Theorem 10.5 hereafter, the convergence of PGD furthermore
extends to the case ⇢ = +1, at least for injective forward matrices G. Setting
⇢ = +1 in (10.24) can be interpreted as dropping the energy normalisation
constraint, since kxk�  +1 is trivially verified and hence the associated
indicator function ◆B�

⇢
in (B.8) is always null.

Theorem 10.5 — Convergence of PGD for Injective G. Assume that ⇢ =
+1 in (B.8), ⌧ < 1/� with � defined in (B.2), and G 2 C

L⇥N in (B.8)
is injective, i.e. ker(G) = {0N}. Then, any limit point x? of the sequence
{xk}k2N generated by (B.2) is a local minimum of (B.8).

Proof. The proof of this theorem is given in Section 2 of Appendix B. ⌅

A practical implication of Theorem 10.5 is that, for injective forward matrices
G, PGD applied to the following relaxed implicit genFRI problem is convergent:

min
x2CN

kGx� yk22 + ◆HK
(TP (x)) , (10.31)

where F (x) := kGx� yk22 , and H(x) := ◆HK
(TP (x)) . As discussed in Sec-
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tion 5.2, (10.31) should always be favoured over (B.8) for injective forward
matrices G, since solving it via PGD requires less computations at each proxi-
mal step.

5.2 Cadzow PnP Gradient Descent

As seen in the previous section, PGD requires the computation of the proximal
operator (10.30) at each iteration, which amounts to finding a minimiser to
the following non-convex optimisation problem:

x̌ 2 arg min
z2CN

⇢
1

2⌧
kx� zk2� + ◆HK

(TP (z)) + ◆B�
⇢

(z)

�
, (10.32)

for some input x 2 C
N . Observe that the proximal step (10.32) can be seen as

a generalised projection step, aiming to find a point x̌ as close as possible –in
terms of the �-norm9– from x while verifying some convex and non-convex 9 Observe that the

weighting matrix �
puts more emphasis
on the coefficients
that appear more
often in the Toeplitz
matrix TP (x).

constraints specified by the indicator functions. This is formalised by Proposi-
tion 10.6, which shows that solutions to (10.32) can be identified with those
of an orthogonal projection problem:

Proposition 10.6 — Proximal Operator as MAP. The proximal operator (10.30)
of H(x) := ◆HK

(TP (x)) + ◆B�
⇢
(x), for ⇢ 2]0,+1] and K  P M is given by

prox�
⌧H

(x) = T †

P
⇧TP\HK\B⇢

TP (x), 8x 2 C
N , (10.33)

where B⇢ := {X 2 C
(N�P )⇥(P+1) : kXkF  ⇢} and ⇧TP\HK\B⇢

is the or-
thogonal projection operator onto TP \HK \ B⇢ with respect to the Frobenius
norm:

⇧TP\HK\B⇢
(X) :

8
><

>:

C
(N�P )⇥(P+1) ! P

⇣
C
(N�P )⇥(P+1)

⌘
,

X 7! arg min
H2TP\HK\B⇢

kX �Hk
F
.

Proof. Recall the definition of the proximal set associated to a point x 2 C
N :

prox�
⌧H

(x) = arg min
z2CN

⇢
1

2⌧
kx� zk2� + ◆HK

(TP (z)) + ◆B�
⇢

(z)

�
. (10.34)

When mapped via the Toeplitzification operator TP , the proximal set (10.34)
becomes

TP

�
prox�

⌧H
(x)
�

=

=
�
TP (x̌), x̌ 2 prox�

⌧H
(x)
 

=
n
X̌ 2 TP , T

†

P
(X̌) 2 prox�

⌧H
(x)
o

= arg min
Z2TP

⇢
1

2⌧
kT †

P
(Z)� xk2� + ◆HK

(Z) + ◆B�
⇢

⇣
T †

P
(Z)

⌘�
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= arg min
Z2TP\HK

⇢
1

2⌧
kT †

P
(Z)� xk2� + ◆B�

⇢

⇣
T †

P
(Z)

⌘�
, (10.35)

where we have used the fact that T †

P
TP (z) = z for all z 2 C

N . We have
moreover:

kT †

P
(Z)� xk2� =h�T †

P
(Z)� x, T †

P
(Z)� xi2

=h�T †

P
(Z), T †

P
(Z)i2 + h�x,xi2 � h�T †

P
(Z),xi2 � h�x, T †

P
(Z)i2

=h���1T ⇤

P (Z),��1T ⇤

P (Z)i2 + hT ⇤

PTP (x),xi2
� h���1T ⇤

P (Z),xi2 � h�x,��1T ⇤

P (Z)i2
=hZ, TP�

�1T ⇤

P (Z)iF + hTP (x), TP (x)iF � hZ, TP (x)iF
� hTP (x),ZiF

=hZ,⇧TP
(Z)iF + kTP (x)k2F � hZ, TP (x)iF � hTP (x),ZiF

=hZ,ZiF + kTP (x)k2F � hZ, TP (x)iF � hTP (x),ZiF
=kZk2F + kTP (x)k2F �R (hZ, TP (x)iF )

=kZ � TP (x)k2F , 8Z 2 TP , (10.36)

where we have used the fact that � = �H = T ⇤

P
TP and TP��1T ⇤

P
= ⇧TP

(see
Propositions 10.1 and 10.2). With similar arguments, we have 8Z 2 TP :

���T †

P
(Z)

���
�
 ⇢,

q
h�T †

P
(Z), T †

P
(Z)i2  ⇢

,
p
hZ,ZiF  ⇢

, kZkF  ⇢.

so that
◆B�

⇢

⇣
T †

P
(Z)

⌘
= ◆B⇢

(Z) , 8Z 2 TP , (10.37)

where B⇢ :=
�
Z 2 C

(N�P )⇥(P+1) : kZkF  ⇢
 
. Plugging (10.36) and (10.37)

into (10.35) hence yields

TP

�
prox�

⌧H
(x)
�

=

= arg min
Z2TP\HK

⇢
1

2⌧
kT †

P
(Z)� xk2� + ◆B�

⇢

⇣
T †

P
(Z)

⌘�

= arg min
Z2TP\HK

⇢
1

2⌧
kZ � TP (x)k2F + ◆B⇢

(Z)

�

= arg min
Z2TP\HK\B⇢

⇢
1

2⌧
kZ � TP (x)k2F

�

= arg min
Z2TP\HK\B⇢

kZ � TP (x)kF

= ⇧TP\HK\B⇢
TP (x). (10.38)
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Using the fact that T †

P
TP = IN we can finally rewrite (10.38) as

prox�
⌧H

(x) = T †

P
⇧TP\HK\B⇢

TP (x),

which completes the proof. ⌅

Equation (10.38) provides us with a practical way of computing the proxi-
mal set (10.30) associated to a point x 2 C

N . Unfortunately, the orthogonal
projection operator ⇧TP\HK\B⇢

admits no simple closed-form expression. We
therefore propose to approximate it by the method of alternating projections
(MAP) (see Section 3.3):

⇧TP\HK\B⇢
'
⇥
⇧TP

⇧HK
⇧B⇢

⇤
n
, (10.39)

for some n 2 N. Observe that when ⇢ = +1 (which is possible for injective
matrices G, see Theorem 10.5) we have ⇧B⇢

= Id and hence the right-hand
side of (10.39) simplifies to [⇧TP

⇧HK
]n. Note that since HK is non-convex, the

convergence as n grows to infinity of the product
⇥
⇧TP

⇧HK
⇧B⇢

⇤
n towards the

actual projection map ⇧TP\HK\B⇢
is not guaranteed in general (see discussion

in Section 3.3). For the specific case ⇢ = +1 however, it is possible to apply
Theorem 10.3 to show the local convergence of the MAP (10.39):

Corollary 10.7 — Convergence of Approximate Proximal Operator. Let Z 2
HK \ TP be a non-tangential point [5, Definition 4.3].
Then, for X 2 C

(N�P )⇥(P+1) and ✏ > 0, there exists � � 0 such that, if
kX �ZkF  �,

1. [⇧TP
⇧HK

]n (X)
n!1! X1 2 HK \ TP ,

2. kX1 �⇧HK\TP
(X)k

F
< ✏ kX �⇧HK\TP

(X)k
F
.

Proof. Similarly to the proof of [6, Theorem 7], Corollary 10.7 is obtained by
applying Theorem 10.3 to the manifolds M1 = RK of matrices with rank
exactly K –which is dense in HK [5, Proposition 2.1]– and M2 = TP . For
more details, see the proof of [6, Theorem 7], which discusses the local con-
vergence of the MAP for HK \HP where HP denotes the space of rectangular
Hankel matrices. Since Hankel matrices are just reflected Toeplitz matrices,
their analysis extends easily to the case of Toeplitz matrices. ⌅

Roughly speaking, Corollary 10.3 states that, if applied to a matrix X close
enough to a non-tangential point of TP \HK (which as discussed in [5] for
the case of Hankel matrices are all but very exceptional matrices of TP \HK),
the MAP (10.39) converges to a point in TP \HK . Moreover, the error

kX1 �⇧HK\TP
(X)k

F

can be made arbitrarily small with respect to kX �⇧HK\TP
(X)k

F
. While dif-

ficult to verify in practice, the local convergence result Corollary 10.7 reassures
us however on the well-foundedness of approximation (10.39).
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Algorithm 10.12: Cadzow plug-and-play gradient descent
(CPGD)

1: procedure C P G D(y,x0, ⌧, n, ⇢, ✏)
2: k = 0
3: repeat
4: k  k + 1
5: zk = xk�1 � 2⌧GH(Gxk�1 � y)
6: if ⇢ = +1 then
7: xk = T †

P
[⇧TP⇧HK ]n TP (zk)

8: else
9: xk = T †

P

⇥
⇧TP⇧HK⇧B⇢

⇤n
TP (zk)

10: until kxk � xk�1k  ✏kxk�1k
11: return xn

Plugging (10.39) into (10.38) finally yields the following approximate prox-
imal step:

prox�
⌧H

(x) ' T †

P

⇥
⇧TP

⇧HK
⇧B⇢

⇤
n
TP (x), 8x 2 C

N , (10.40)

for some n � 0. The PGD algorithm with approximate proximal step (10.40)
is provided in Algorithm 10.12. Observe that when ⇢ = +1, (10.40) reduces
to Cadzow denoising (10.20). The effect of heuristic (10.39) is hence to re-
place the proximal step in the PGD iterations by a generic denoising step. Such
an approach is reminiscent of the plug-and-play (PnP) framework [154, 182]
in image processing, which leverages deep learning-based denoisers to ap-
proximate complex projection or proximal operators [73]. For this reason, we
baptise our algorithm Cadzow plug-and-play gradient descent (CPGD). In the
next section, we study the convergence of Algorithm 10.12.

5.3 Local Fixed-Point Convergence of CPGD
In Section 5.1, we established Theorems 10.4 and 10.5 which show the conver-
gence of PGD towards critical points of (B.8). However, such results required
the computation of exact proximal steps (10.30) in the PGD iterations, and do
not apply to CPGD which leverages the inexact proximal step (10.40). Conver-
gence of PGD in non-convex setups with inexact proximal steps was studied in
[71, 199]. The results established in both papers require the proximal step ap-
proximation errors incurred at each iteration to be decreasing and summable,
which may not necessarily be the case for the MAP approximation (10.39).
It is nevertheless possible to demonstrate that the iterations of CPGD are lo-
cally contractive, and therefore locally convergent towards a fixed point by the
Banach contraction principle.

Theorem 10.8 — CPGD is a Local Contraction. Let RK ⇢ C
(N�P )⇥(P+1) be

the set of matrices of rank exactly K  P  bN/2c, and U⌧,n : CN ! C
N
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the update CPGD map

U⌧,n(x) := Hn (x� ⌧rF (x)) , x 2 C
N , (10.41)

with Hn(x) := T †

P
[⇧TP

⇧HK
⇧B⇢

]nTP (x). Let G 2 C
L⇥N be injective, and �

be the diagonal and positive definite matrix defined in (10.10). Define

↵ := 2�min

⇣
�1/2

G
H
G��1/2

⌘
,

� := 2�max

⇣
�1/2

G
H
G��1/2

⌘
,

where �min(M) and �max(M) denote the minimum and maximum eigen-
values of a matrix M respectively.

Then, U⌧,n is locally well-defined (single-valued) and Lipschitz continuous
with respect to the �-norm

kU⌧,n(x)� U⌧,n(z)k�  L⌧kx� zk�,

for all x, z 2 C
N such that TP (x), TP (z) are in some neighbourhood of some

matrix R 2 RK . The Lipschitz constant L⌧ is given by

L⌧ = max {|1� ⌧↵|, |1� ⌧�|} .

Moreover,U⌧,n is contractive, i.e. 0 < L⌧ < 1, for 0 < ⌧ < 2/�, and minimised
for ⌧ = 2/(↵+ �).

Proof. The proof of this theorem is given in Section 3 of Appendix B. ⌅

The following corollary shows the local convergence of CPGD towards a
fixed-point of the update map (10.41):

Corollary 10.9 — CPGD Converges Locally. With the same notations as in
Theorem 10.8, assume that all CPGD iterates {xk}k2N are such that

{TP (xk+1), TP (xk)} ⇢ Uk, 8k 2 N, (10.42)

for some neighbourhood Uk of some point Rk 2 RK . Assume further that
0 < ⌧ < 2/�. Then, xk

k!1! x? where x? 2 C
N is a fixed-point of U⌧,n, i.e.

U⌧,n(x?) = x?. Moreover, we have

kx? � xkk� 
Lk
⌧

1� L⌧
kx1 � x0k�, 8k � 1. (10.43)

Proof. First, we note that from Theorem 10.8, we have under the assumptions
of the corollary that

kxk+1 � xkk�  kU⌧,n(xk)� U⌧,n(xk�1)k�  L⌧kxk � xk�1k�,
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for all k � 1 and hence by induction

kxk+1 � xkk�  Lk

⌧kx1 � x0k�, 8k � 1. (10.44)

By assumption 0 < ⌧ < 2/� and therefore 0 < L⌧ < 1. We deduce hence from
(10.44) that {xk}k2N is a Cauchy sequence. Let j, k 2 N with j > k:

kxj � xkk� 
j�1X

m=k

kxm+1 � xmk�


j�1X

m=k

Lm

⌧ kx1 � x0k�

= kx1 � x0k�Lk

⌧

j�1�kX

m=0

Lm

⌧ (10.45)

 kx1 � x0k�Lk

⌧

1X

m=0

Lm

⌧

=
Lk
⌧

1� L⌧
kx1 � x0k�.

For every ✏ > 0, we can choose a J 2 N such that

LJ

⌧ <
✏(1� L⌧ )

kx1 � x0k�
,

and hence for all j > k > J

kxj � xkk� < ✏.

The sequence {xk}k2N is hence a Cauchy sequence, and since C
N is complete,

it converges towards a limit point x? 2 C
N . We have moreover, since U⌧,n is

continuous

x? = lim
n!1

xk = lim
n!1

U⌧,n(xk�1) = U⌧,n
⇣

lim
n!1

xk�1

⌘
= U⌧,n(x?),

and hence x? is a fixed-point of U⌧,n. Note moreover that, from (10.45) we get

kx? � xkk� = lim
j!+1

kxj � xkk�

 lim
j!+1

kx1 � x0k�Lk

⌧

j�1�kX

m=0

Lm

⌧

 kx1 � x0k�Lk

⌧

+1X

m=0

Lm

⌧ =
Lk
⌧

1� L⌧
kx1 � x0k�,

which proves (10.43) of Corollary 10.9. ⌅

Remark 10.1 — Speed of Convergence. From Theorem 10.8 and (10.9), we
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Figure 10.1: Geometric interpretation of condition (10.42) in Corollary 10.9.

see that the sequence {xk}k2N converges the fastest when L⌧ is minimised, i.e.
⌧ = 2/(↵+ �).

Remark 10.2 — Fixed Points vs. Critical Points. Note that Corollary 10.9 is a
much weaker result than Theorems 10.4 and 10.5. Indeed, Corollary 10.9 only
shows the local convergence of CPGD towards fixed points of U⌧,n, which may
not necessarily be critical points of the optimisation problem (B.8). Theorems
10.4 and 10.5 on the other hand, show the global convergence of PGD with exact
proximal step towards critical points of (B.8). This is however the price to pay for
computing the proximal step (10.32) efficiently in practice.

Remark 10.3 — Geometric Interpretation of Condition (10.42). Roughly speak-
ing, Corollary 10.9 guarantees the convergence of CPGD towards a fixed point
of the update map (10.41), provided that the forward matrix G is injective, and
that any two consecutive lifted estimates TP (xk), TP (xk+1), are in a common
neighbourhood Uk of some matrix Rk 2 RK . Note that this is much less stringent
than requiring the entire lifted path {TP (xk)}k2N to belong to some neighbour-
hood U of some fixed matrix R 2 RK . Indeed, condition (10.42) allows for the
lifted estimates to travel from one neighbourhood of the manifold RK to another,
provided that every visited neighbourhood contains at least two consecutive lifted
estimates (see Fig. 10.1 for an illustration). This condition, although difficult to
verify in practice, seems however likely to hold for ⇢ = +1, small enough step
sizes, large enough n and x0 = 0N . Indeed, in such a case, we have:

• TP (x0) 2 HK is in some neighbourhood of RK since RK is dense in HK .
• For n large enough, TP (xk) is very likely to be in some neighbourhood of

RK , since the denoising step in the update map (10.41) makes TP (xk)
close to be in the intersection HK \ TP (see Corollary 10.7).

• For a small enough step size ⌧ , TP (xk) and TP (xk+1) are likely to belong
to the same neighbourhood of RK .

6 Experimental Results

In this section we validate the CPGD method numerically, considering as a
testbed the scenario of irregular time sampling from [130, Section IV.A]. More

195



196 Generalised Sampling of FRI Signals⇤

precisely, we define a 1-periodic stream of K = 9 Diracs (see Fig. 10.2):

x(t) =
X

m2Z

KX

k=1

xk�(t� tk �m), 8t 2 R, (10.46)

where the amplitudes xk 2 R+ and locations tk 2 [0, 1[ are random, with log-
normal and uniform10 distributions respectively. We then generate N = 2M +110 To avoid

degenerate cases, the
Diracs are
furthermore required
to have a minimum
separation distance of
1% of the total
period.

noisy samples as

yn =
MX

m=�M

x̂m exp(j2⇡m✓n) + ✏n, n = 1, . . . , N, (10.47)

where x̂m =
P

K

k=1 xk exp(�j2⇡mtk) are the Fourier coefficients of the Dirac
stream x, {✓n}n=1,...,N ⇢ [0, 1[ are chosen uniformly11 at random, and {✏n}n=1,...,N

11 To avoid
degenerate cases, the
sampling locations
are furthermore
required to have a
minimal separation
distance of 0.5% of
the total period.

are independent realisations of a Gaussian random variable N (0,�2). As ex-
plained in [130, Section IV.A], the samples yn thus obtained correspond to
noisy samples of the low-pass filtered12 Dirac stream x at irregular times

12 Where the
low-pass filter is
chosen as an ideal
low-pass filter with
bandwidth 2M + 1.

{✓n}n=1,...,N ⇢ [0, 1[ (see Fig. 10.2). Using the formalism of Section 4, we
can rewrite (10.47) as

y = Gx + ✏, (10.48)

where x = [x̂�M , . . . , x̂M ] 2 C
N , ✏ = [✏1, . . . , ✏N ] 2 R

N , and G 2 C
N⇥N is

given by

G =

2

66666664

e�j2⇡M✓1 · · · 1 · · · ej2⇡M✓1

e�j2⇡M✓2 · · · 1 · · · ej2⇡M✓2

... · · ·
... · · ·

...
e�j2⇡M✓N�1 · · · 1 · · · ej2⇡M✓N�1

e�j2⇡M✓N · · · 1 · · · ej2⇡M✓N

3

77777775

.

Note that from the periodicity of complex exponentials, it is possible to flip the
columns of G so as to rewrite it as a Vandermonde matrix [130]. This shows
that G is injective –since the irregular time samples are all distinct. From the
samples y and the data model (10.48), we consider recovering the Fourier
coefficients x 2 C

N by means of three algorithms:

• The CPGD algorithm 10.12 with ⇢ = +1 (since G is injective) and step
size ⌧ = 1.5/� (where � is as in Theorem 10.8).

• The state-of-the-art algorithm of Pan et al. [130], referred to hereafter
as GenFRI. We use the Python 3 implementation of GenFRI provided by
Pan et al. in their official Github repository [76]. We moreover set the
number of random initialisations to its default value 50.

• The baseline method, referred to hereafter as LS-Cadzow, which consists
in naively applying Cadzow denoising to the least-squares estimate of
the Fourier coefficients

8
<

:

xLS = arg min
x2CN

kGx� yk22 ,

xLS-Cadzow = T †

P
[⇧TP

⇧HK
]n TP (xLS) .

(10.49)
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Figure 10.2: Dirac stream with K = 9 sources (dark grey, round coloured heads) and
noiseless irregular time samples (light grey, diamond heads), for various oversampling
parameters �.
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We solve the least-squares optimisation problem in (10.49) by means of
the lstsq function in the Python 3 package numpy [129], with cut-off
ratio rcond = 5⇥ 10�5.

For CPGD and GenFRI, we fix the maximum number of iterations to 500 and
consider that convergence is reached if the iterate norm is changed by less
than 0.08% from one iteration to the other. For Cadzow denoising, we fix the
number of iterations to 10 both for LS-Cadzow and CPGD. The reconstruction
accuracy is assessed by matching the true Dirac locations {tk}k=1,...,K to the
recovered ones, denoted by {!k}k=1,...,K . To do so, we proceed as explained
in Section 3.4 and infer the Dirac locations {!k}k=1,...,K from the z-transform
roots of the annihilating filter associated to the Fourier coefficients estimated
by each method.13 Then, we solve by means of the Hungarian algorithm14 [96]13 See [44] for

additional details on
the procedure for
recovering the Dirac
locations from the
annihilating filter
coefficients.
14 The Hungarian
algorithm is available
in the Python 3
package scipy [87].

the following matching problem

min

(
1

K

KX

k=1

d(tk,!jk
), j1, . . . , jK 2 {1, . . . ,K}

)
, (10.50)

where d(t,!) = min{|t� !|, 1� |t� !|} 8t,! 2 [0, 1[ is the canonical distance
on the periodised interval [0, 1[. Finally, we report the average positioning
error, corresponding to the value of the cost function

P
K

k=1 c(tk,!ik
)/K for the

indices {i1, . . . , iK} solutions to the matching problem (10.50). This metric is
computed for 192 noise realisations, different M = �K with the oversampling
factor � 2 {2, 3, 4, 5} (see Figs. 10.2a, 10.2b, 10.2c and 10.2d respectively)
and various noise levels

� = max
k=1,...,K

|xk|⇥ exp

✓
�PSNR

10

◆
,

where the peak signal to noise ratio PSNR ranges from �30 to 30 decibels. The
results of the experiments are displayed on Figs. 10.3, 10.4, 10.5 and 10.6.
In Fig. 10.3, 10.4 and 10.6 we plot –for different oversampling factors and
PSNR, the median and inter-quartile region of the empirical distributions of
the average positioning error, reconstruction time and number of iterations of
the three methods respectively. The reported reconstruction times are for a
dual-socket Intel E5-2680v3 (2x 12C/24T) @ 2.5GHz with 256GB RAM. In
Fig. 10.5, we plot –for each source, different oversampling factors and PSNR,
the median and inter-quartile region of the empirical distribution of the source
location as estimated by the three methods against the true source location. All
empirical distributions are obtained over 192 independent noise realisations.

In terms of reconstruction accuracy, Figs. 10.3 and 10.5 reveal that CPGD is
superior to GenFRI which is itself superior to the baseline method LS-Cadzow
in nearly all cases, with the exception of very low PSNRs (⇠ -30 dB), where
the three methods have comparable reconstruction accuracy. For oversampling
parameters � � 4 and a PSNR larger than 0, CPGD is moreover more accurate
than GenFRI and LS-Cadzow by a few orders of magnitude (from 1 to 3 orders
of magnitude depending on the PSNR). Fig. 10.5 also reveals that the CPGD
locations are much less variable than the GenFRI or LS-Cadzow locations.
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In terms of speed and number of iterations, Fig. 10.4 reveals that LS-Cadzow
is superior to GenFRI by approximately three orders of magnitude, and superior
to CPGD by one to two orders of magnitude. CPGD is itself superior to GenFRI
by approximately one order of magnitude (two for high PSNRs and � = 5).
The reconstruction time and number of iterations for CPGD tend to decrease
as the PSNR increases, and are more variable for small PSNRs. In comparison,
both GenFRI and LS-Cadzow have relatively constant reconstruction times
and number of iterations, with low to none variability for various PSNRs and
oversampling factors.
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Figure 10.3: Positioning error (10.50) (in percent of period) for LS-Cadzow, CPGD and
GenFRI, various oversampling parameters � 2 {2, 3, 4, 5} and a PSNR in
{�30,�20,�10, 0, 10, 20, 30} dB. For each case, plain lines and shaded areas represent
respectively the median and inter-quartile region of the positioning error’s empirical
distribution obtained from 192 independent noise realisations.
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Figure 10.4: Reconstruction time for LS-Cadzow, CPGD and GenFRI, various oversampling
parameters � 2 {2, 3, 4, 5} and a PSNR in {�30,�20,�10, 0, 10, 20, 30} dB. For each case,
plain lines and shaded areas represent respectively the median and inter-quartile region of the
reconstruction time’s empirical distribution obtained from 192 independent noise realisations.
The reported reconstruction times are for a dual-socket Intel E5-2680v3 (2x 12C/24T) @
2.5GHz with 256GB RAM.
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Figure 10.5: Actual vs. recovered Dirac locations for LS-Cadzow, CPGD and GenFRI, various
oversampling parameters � 2 {2, 3, 4, 5}, a PSNR in {�30, 0, 30} dB. For each case and each
source (denoted by different colours), the markers and horizontal lines represent respectively
the median and inter-quartile region of the estimated locations’ empirical distribution obtained
from 192 noise realisations. The closer a marker is from the line y = x (in dark grey), the
better the recovery is.
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Figure 10.6: Number of iterations for LS-Cadzow, CPGD and GenFRI, various oversampling
parameters � 2 {2, 3, 4, 5} and a PSNR in {�30,�20,�10, 0, 10, 20, 30} dB. For each case,
plain lines and shaded areas represent respectively the median and inter-quartile region of the
empirical distribution of the number of iterations obtained from 192 independent noise
realisations.
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RNN-Powered Spherical Approximation⇤

In Chapter 7 we have introduced various iterative proximal algorithms for ⇤The material
presented in this
chapter is the result of
joint work with S.
Kashani, P. Hurley
and M. Vetterli, and is
the topic of [166].

solving spherical approximation problems in practice. While computationally
efficient, such algorithms can in certain applications be too slow to reach con-
vergence. This is notably the case in the context of real-time imaging, where
dozens of images per second are typically produced. In this chapter, we pro-
pose to boost proximal methods by approximating them by finite-depth neural-
networks with recurrent architectures. The idea is to replace the various gradient
and proximal steps from proximal methods by a cascade of recurrent layers
with trainable parameters. Roughly speaking, the trained recurrent neural-
network (RNN) improves convergence speed by navigating more efficiently
in the search space via learnt “shortcuts”. For concreteness, we illustrate this
approach for proximal gradient descent (PGD) applied to the problem of live
acoustic imaging. However, the methodology could easily adapted to different
applications and any of the algorithms from Chapter 7.

1 Introduction
1.1 Motivation
An acoustic camera (AC) [32, 77, 86, 92] is a multi-modal imaging device
that allows one to visualise in real-time sound emissions from every direction
in space. This is typically achieved by overlaying on the live video from an
optical camera a heatmap representing the intensity of the ambient directional
sound field, recovered from the simultaneous recordings of a microphone array
[17, 142]. Most commercial acoustic cameras recover the sound intensity field
by combining linearly the correlated microphone recordings with a delay and
sum (DAS) beamformer [142, Chapter 5]. The beamformer acts as an angular
filter [81, 82], steering sequentially the array sensitivity pattern –or beamshape–
towards various directions where the sound intensity field is probed. Acous-
tic images obtained this way are cheap to compute, but are blurred by the
beamshape of the microphone array, and hence exhibit poor angular resolution
[31, 160, 165]. The severity of this blur can be shown [181] to be proportional
to the ratio �/D, where D is the diameter of the microphone array and �
the sound wavelength. Because of the relatively large wavelengths of acoustic
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waves in the audible range, this blur can be significant in practice: a 30 cm
diameter microphone array has an angular resolution at 5 kHz (an E[) of ap-
proximately 10 degrees, against 7·10�4 degrees for a standard optical camera
at 790 THz (violet). Moreover, acoustic cameras are often deployed in confined
environments [124], requiring them to be as compact and portable as possible,
which limits1 further the achievable angular resolution.1 Remember that the

blur spread is
inversely proportional
to the microphone
array diameter.

The advent of compressed sensing techniques [58, 151] –and their wide
adoption in imaging sciences [21, 119, 192]– have inspired algorithmic so-
lutions [31, 40, 41, 160] to the acoustic imaging problem, promising vastly
improved angular resolutions. Unfortunately, these methods proved ill-suited
for real-time purposes. Indeed, they often rely on iterative solvers, such as
proximal gradient descent (PGD) [134] or its accelerated variants [16, 112].
While exhibiting a fast convergence rate [16], such methods still require on the
order of a few dozen iterations to converge in practice, making them unable
to cope with the high refresh-rate2 of acoustic cameras. For this reason, and2 An acoustic camera

typically updates the
acoustic image a
dozen times per
second.

despite their clear superiority in terms of resolving power, nonlinear imaging
methods have not yet replaced the suboptimal DAS imager in the software
stack of commercial acoustic cameras.
The recent eruption of deep learning [37, 122, 198] in the field of imaging
sciences may however seal the fate of DAS for good. Indeed, this new imaging
paradigm leverages neural-networks [105] to reduce dramatically the image
formation time. Unlike compressed-sensing methods which proceed iteratively,
neural-networks encode the image reconstruction process in a cascade of linear
and nonlinear transformations trained on a very large number of input/output
example pairs. Once properly trained, a neural-network can be efficiently eval-
uated for some input data to produce images of high quality, with similar
accuracy and resolution as state-of-the-art compressed sensing methods [122].
Network architectures used for inverse imaging [37, 73, 83, 138, 198] are most
often convolutional neural-network (CNNs), directly adapted from generic ar-
chitectures developed for image classification and segmentation [152]. While
suitable for image processing tasks such as denoising, super-resolution or deblur-
ring [23, 135], such architectures are ill-suited [122] for more complex image
reconstruction problems where the input data may not consist of an image, as
is the case in biomedical imagery [21, 119], interferometry [192] or acoustic
imaging. Moreover, and particularly limiting for our current purposes, standard
convolutional architectures cannot handle images with non-Euclidean domains
[47] such as spherical maps [139] produced by omnidirectional acoustic or op-
tical cameras.
To overcome these limitations, recurrent architectures [70, 110, 122, 173]
have been proposed, by unrolling iterative convex optimisation algorithms.
Such networks are not only able to handle non-image inputs, but also have
greater interpretability than generic CNNs. For example, Gregor and LeCun
proposed in their pioneering work [70] a recurrent neural-network (RNN)
dubbed LISTA3, inspired from the popular iterative soft-thresholding algorithm3 LISTA stands for

learned iterative
soft-thresholding
algorithm.

(ISTA) [16].4 Their network can be seen as generalising ISTA, allowing for

4 ISTA is an instance
of proximal gradient
descent for penalised
basis pursuit
problems [178].

the normally fixed gradient and proximal steps occurring at each iteration of
the algorithm to be learnt from the data: update steps of ISTA are replaced
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by a cascade of recurrent layers with trainable parameters. The depth of the
resulting RNN is typically much smaller than the number of iterations required
for ISTA to converge. Roughly speaking, the network is learning shortcuts in
the reconstruction space, allowing it to achieve a prescribed reconstruction
accuracy faster than gradient-based iterative methods.5 5 Of course, such

shortcuts will most
likely only be valid
for the distribution of
inputs and outputs
implicitly defined by
the training set,
which should hence
be carefully crafted
for the network to
generalise well in
practice.

While the effectiveness of ISTA was verified on small images from the MNIST
dataset (784 pixels) [70], its application to large-scale imaging problems re-
mains challenging. This is mainly due to the huge number of weights parametris-
ing the network which, in the fully-connected case, grows as the number of
pixels to the square. Storing6 –let alone learning– all those weights quickly

6 For a 1 megapixel
image, the weights
parametrising the
network would be
approximately 8 Gb
in size.

becomes intractable for increasing resolutions. As a potential fix, Gregor and
LeCun recommended sparsifying the network by pruning layer connections.
While they showed that such a pruning could reduce the number of parame-
ters in the network by 80% without affecting too much the performance of the
latter, this is still insufficient for large-scale problems, and additional structure
must be considered on network layers. Such structure is however often very
dependent on the problem at hand.

1.2 Contributions

In this work, we propose the first realistic architecture of a LISTA neural-
network adapted to acoustic imaging. Our custom architecture, dubbed Deep-
Wave, is capable of rendering high-resolution spherical maps of real-life sound
intensity fields in milliseconds. DeepWave is tailored to the acoustic imaging
problem, leveraging fully its underlying structure so as to minimise the num-
ber of network parameters. The latter is easy to train, with a typical training
time of less than an hour on a general-purpose CPU. Unlike most state-of-the-
art neural-network architectures, it moreover readily supports complex-valued
input vectors, making it capable of directly processing the raw correlated mi-
crophone recordings. Assuming a microphone array with M microphones, the
instantaneous covariance matrix ⌃̂ 2 C

M⇥M of the microphone recordings is
processed by the network as follows (see also Fig. 11.1):

x
l = �

⇣
P✓ (L)xl�1 +

⇥
B �B

⇤H
vec(⌃̂)� ⌧

⌘
, l = 1, . . . , L, (11.1)

where vec : C
M⇥M ! C

M
2 is the vectorisation operator and � denotes the

Khatri-Rao product (see Appendix 1 for definitions). The neurons {x1, . . . ,xL} ⇢
R
N
+ at the output of each layer l of the depth L neural-network correspond to

the acoustic image as it is processed by the network, with N the number of
pixels. The neuron x

0 2 R
N
+ defines the initial state of the network. The non-

linear activation function7 � : R ! R induces sparsity in the acoustic image, 7 Typified by a
rectilinear unit.and is inspired by the proximal operator of an elastic-net penalty [134]. The

remaining quantities, namely P✓(L), B and ⌧ are trainable parameters of the
network, with various roles:

• Deblurring: the matrix P✓(L) :=
P

K

k=0 ✓kL
k 2 R

N⇥N can be inter-
preted as a deblurring matrix, cleaning potential artefacts from the array
beamshape. Following the approach of [139], it is defined as a poly-
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Figure 11.1: DeepWave’s recurrent architecture (11.1) for L = 2 layers and random
initialisation. Learnable parameters of the network are denoted by dashed boxes. Affine
operations are denoted by white boxes and nonlinear activations by grey boxes.

nomial of the graph Laplacian L 2 R
N⇥N based on the connectivity

graph of the spherical tessellation in use, with learnable coefficients
✓ = [✓0, . . . , ✓K ] 2 R

K+1 (see Section 2.3 of Chapter 6). Such parametri-
sation permits notably the interpretation of P✓(L) as a finite-support
filter defined on the tessellation graph. Moreover, fast graph convolution
algorithms are available for such filters [47] (see Algorithm 7.11).

• Back-projection: the operation
⇥
B �B

⇤H
vec(⌃̂) = diag

⇣
B

H⌃̂B
⌘

(C.8)
is a back-projection, mapping the raw microphone correlations to the
image domain. Thanks to the convenient Khatri-Rao structure, this linear
operation depends only on the matrix B 2 C

M⇥N .
• Bias: the vector ⌧ 2 R

N is a non-uniform bias, boosting or shrinking
the neurons of the network. Since only positive neurons are activated by
the nonlinearity �, this biasing operation helps sparsify the final acoustic
image.

The total number of learnable coefficients in DeepWave is linear in the number
of pixels. The rationale behind DeepWave’s architecture is detailed in Sec-
tion 2, with theoretical justifications for the structures of the deblurring and
back-projection linear operators. In Section 3, we discuss network training,
including initialisation and regularisation. We moreover derive the forward
and backward-propagation recursions8 for our custom architecture, required8 DeepWave

implementation can
be found on https:

//github.com/

imagingofthings/

DeepWave.

for forming gradient steps. Finally, we test the architecture on synthetic as well
as real data acquired with the Pyramic array [22, 155]. DeepWave is shown to
have similar resolving power as state-of-the-art compressed-sensing methods,
with a computational overhead similar to the DAS imager. To our knowledge,
this is the first time a nonlinear imager of the kind achieves real-time per-
formance on a standard computing platform. While developed primarily for
acoustic cameras, DeepWave can easily be applied in neighbouring array signal
processing fields [95], including radio astronomy, radar and sonar technolo-
gies.
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2 Network Architecture

In this section, we proceed similarly to [70, 110, 173] and construct Deep-
Wave by studying the update equations of an iterative solver, namely proximal
gradient descent applied to acoustic imaging.

2.1 Proximal Gradient Descent for Acoustic Imaging
In all that follows, we model the sound intensity field as a discrete spherical
map with resolution N , specified by an intensity vector x 2 R

N
+ defined over an

equidistributed point set ⇥ = {r1, . . . , rN} ⇢ S
2 (see Section 2 of Chapter 6).

Using the classical far-field array signal processing data model [95, 164, 181],
we propose to recover the sound intensity map by solving the following convex
optimisation problem:

x̂ = arg min
x2R

N

+

1

2

���⌃̂�A diag(x)AH

���
2

F

+ �
⇥
�kxk1 + (1� �)kxk22

⇤
,

(11.2)

where k · kF denotes the Frobenius norm, � 2]0, 1[ and � > 0 are hyperpa-
rameters, and ⌃̂ 2 C

M⇥M is the empirical covariance matrix of the micro-
phone recordings. In a far-field context, the forward map A 2 C

M⇥N –linking
the intensity vector to the microphone recordings– is commonly modelled
by the so-called steering matrix [95]: Amn := exp (�2⇡jhpm, rni/�0) , where
{p1, . . . ,pM} ⇢ R

3 are the microphone locations and �0 > 0 the sound wave-
length. Using properties (C.5) and (C.6) of the vectorisation operator and the
Frobenius norm [84, 181], problem (11.2) can be re-written in vectorised form
as:

x̂ = arg min
x2R

N

+

1

2

���vec
⇣
⌃̂
⌘
�
�
A �A

�
x

���
2

2
+ �

⇥
�kxk1 + (1� �)kxk22

⇤
,

(11.3)

where � denotes the Khatri-Rao product (see Definition C.3). Problem (11.3)
is an elastic-net penalised least-squares problem [203], which seeks an optimal9 9 The notion of

optimality is defined
here by the penalty
parameter �.

trade-off between data-fidelity and group-sparsity. Group-sparsity is in this
context better suited than traditional sparsity since acoustic sources are often
diffuse. It is worth noting that, since the elastic-net functional is strictly convex
for � 2 [0, 1[, problem (11.3) admits a unique solution. The latter can moreover
be approximated by means of proximal gradient descent (PGD) [16], whose
update equations are given here by (see Section 2 of Appendix C):

x
k = ReLu

0

@
x
k�1 � ↵

�
A �A

�H h�
A �A

�
x
k�1 � vec

⇣
⌃̂
⌘i
� �↵�

2�↵(1� �) + 1

1

A , k � 1,

(11.4)

where x
0 2 R

N is arbitrary, ↵  1/
��A �A

��2
2

is the step size and ReLu(x) :=
max(x, 0) is the rectified linear unit [106], applied element-wise to a real vec-
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tor.10 The sequence of iterates {xk}k2N defined in (11.4) reduces the objective10 Note that with
x0 2 R

N , every
gradient step
produces a real
vector.

function in (11.3) at a rate O(1/k) [16]. Accelerated variants of proximal gra-
dient descent have been proposed [16], which modify (11.4) with an extra
momentum term:
8
>>>><

>>>>:

y
k = ReLu

0

@
x
k�1 � ↵

�
A �A

�H h�
A �A

�
x
k�1 � vec

⇣
⌃̂
⌘i
� �↵�

2�↵(1� �) + 1

1

A

x
k = y

k + !k

⇣
y
k � y

k�1
⌘

,

(11.5)

where k � 1 and the momentum sequence {!k}k2N can be designed in various
ways [34, 112]. In our experiments, we will use (11.5) as a baseline for speed
comparisons, where !k is updated according to Chambolle and Dossal’s strat-
egy [34]: !k = (k � 1)/(k + d), k � 0, with d = 50 [112]. The accelerated
proximal gradient descent (APGD) method thus obtained is the fastest reported
in the literature, with convergence rate o(1/k2) [112] (see Section 2 of Chap-
ter 7). Finally, we leverage the formulae

�
A �A

�
x = vec(A diag(x)AH) (C.5),

and
�
A �A

�H
vec(R) = diag(AH

RA) (C.8), to compute gradient steps effi-
ciently in (11.5).

2.2 DeepWave : a PGD-inspired RNN for Fast Acoustic Imaging

In practice PGD is terminated according to some stopping criterion. The in-
tensity map x

L obtained after L iterations of (11.4) can then be seen as the
output of an RNN with depth L and intermediate neurons linked by the recur-
sion formula:

x
l = ReLu

⇣
Dx

l�1 + B vec
⇣
⌃̂
⌘
� ⌧

⌘
, l = 1, . . . , L. (11.6)

We call this RNN the oracle RNN, since its weights D 2 R
N⇥N , B 2 C

N⇥M
2

and ⌧ 2 R
N are not learnt but simply given to us by identifying (11.6) with

(11.4):

D =
1

�

h
I � ↵

�
A �A

�H �
A �A

�i
, B =

↵

�

�
A �A

�H
, ⌧ =

�↵�

�
1N ,

(11.7)

where � = 2�↵(1��)+1. An analysis of (11.7) allows us moreover to interpret
physically the affine operations performed by the oracle RNN. The matrix B
first is a back-projection operator, mapping the vectorised correlation matrix
into a spherical map by applying the adjoint of the forward operator used in
(11.3). The resulting spherical map is called a dirty map, and is equivalent to
the DAS image [181, Section 5.2][193]. The matrix D then is a deblurring
operator, which subtracts at each iteration a fraction of the array beamshape
from the spherical map, hence cleaning the latter of blur artefacts. The vector
⌧ finally is an affine shrinkage operator, which biases uniformly the spherical

210



2 Network Architecture 211

map. The latter permits –in conjunction with the rectified linear unit– the spar-
sification of the spherical map and hence improve its angular resolution.
Since the oracle RNN is merely a reinterpretation of PGD, it inherits all its
properties. In particular, it is capable of solving (11.3) with high accuracy for
arbitrary input correlation matrices. Unfortunately, this great generalisability
is typically obtained at the price of a very large number11 of layers L, resulting 11 Even with

momentum
acceleration, PGD
typically requires
more than 50
iterations to converge.
The oracle RNN
obtained by unrolling
PGD will
consequently be very
deep.

in impractical reconstruction times. If one is however willing to sacrifice some
of this generalisability, it is possible to reduce drastically the network depth
by unfreezing the weights D, B, ⌧ in (11.6), and allowing them to be learnt
for some specific input distribution. This idea was first explored in the context
of sparse coding by Gregor and LeCun [70], resulting in the LISTA network.
A fully-connected architecture, corresponding to unconstrained D, B and ⌧ ,
would however result in O(N2) weights to be learnt, which is unfeasible in
large-scale acoustic imaging problems. To overcome this issue, we propose in
the next paragraphs a parsimonious parametrisation of D and B. The result-
ing RNN architecture, dubbed DeepWave, is given in (11.1) and depicted in
Fig. 11.1.

2.2.1 Parametrisation of the Deblurring Operator
Our parametrisation of D is motivated by the following result, characterising
the oracle deblurring kernel for spherical microphone arrays[142].

Proposition 11.1 — Oracle Deblurring Operator for Spherical Microphone Ar-
rays. Consider a spherical microphone array, with diameter D and microphone
directions {p̃1, . . . , p̃M} ⇢ S

2, forming a equidistributed spherical point set.
Then, we have 8i, j 2 {1, . . . , N}
h
I � ↵

�
A �A

�H �
A �A

�i

ij

'

�ij � ↵M2 sinc2

✓
D

�0
kri � rjk

◆�
, (11.8)

where �0 is the wavelength, �ij denotes the Kronecker delta and

sinc(x) :=
sin(⇡x)

⇡x

is the cardinal sine. Moreover, the approximation (11.8) is extremely good for
M � 3b2⇡D

�0
c2.

Proof. To prove (11.8), it is sufficient to show that

h�
A �A

�H �
A �A

�i

ij

'M2 sinc2
✓
D

�0
kri � rjk

◆
. (11.9)

To this end, we first use (C.11) and obtain:
�
A �A

�H �
A �A

�
=
��AH

A
���2

. (11.10)

For a spherical array with diameterD and microphone directions {p̃1, . . . , p̃M} ⇢
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(a) Beamshape of the Pyramic array.

(b) Approximate beamshape obtained with (11.9).

Figure 11.2: Accuracy of approximation (11.9) for the Pyramic array [155] (D = 30[cm],
M = 48) at 1 kHz.

S
2, we get moreover from the definition of the steering matrix that:

[AH
A]ij =

MX

m=1

exp

✓
j
⇡D

�0
hri � rj , p̃mi

◆
, i, j = 1, . . . , N. (11.11)

Since the microphone directions are assumed to form an equidistributed spher-
ical point set (such as the Fibonacci or HEALPix tessellations discussed in
Section 2 of Chapter 6), we can interpret (11.11) as a quadrature rule on the
sphere [125, Chapter 3], yielding:

4⇡

M

MX

m=1

exp

✓
j
⇡D

�0
hri � rj , p̃mi

◆
'
Z

S2
exp

✓
j
⇡D

�0
hri � rj , p̃i

◆
dp̃ (11.12)

= 4⇡ sinc

✓
D

�0
kri � rjk

◆
, (11.13)

where the second equality (11.13) follows from the result on [168, p. 154].
From (11.13), (11.11) and (11.10) we obtain (11.9) from which (11.8) triv-
ially follows.
Regarding the quality of the approximation (11.9) finally, we use the approxi-
mate bandlimitedness of complex plane-waves in the spherical domain [142,
Chapter 2]. Indeed, quadrature rules such as (11.12) are almost exact for
bandlimited functions [142, Chapter 3], provided a high-enough number of
quadrature points M . For example, a function with spherical harmonic band-
width L 2 N is extremely well approximated by the HEALPix quadrature rule
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for M � 3L2 [67]. In our case, the plane-wave expansion [142, Chapter 2]
gives us

exp

✓
j
⇡D

�0
hri � rj , p̃i

◆
= 4⇡

+1X

l=0

lX

k=�l

jl(2l + 1)jl

✓
⇡D

�0
kri � rjk2

◆
Y k

l
(r̃ij)Y

k

l
(p̃),

where jl are spherical Bessel functions, Y k

l
spherical harmonics, and r̃ij =

(ri � rj)/kri � rjk22 [142]. Since jl(x) ' 0 for l � x [142, Chapter 2] we
have hence that complex plane-waves are approximately bandlimited with
bandwidth L = b⇡D

�0
kri � rjk2c  b2⇡D�0 c. As a result, choosing M � 3b2⇡D

�0
c2

makes the approximation (11.9) very accurate. ⌅

Remark 11.1 While proven for spherical arrays only, approximation (11.9) (and
hence (11.8)) remains quite accurate in practice, even for non-spherical micro-
phone arrays such as the Pyramic array used in our real-world experiments [155].
In Fig. 11.2, we investigated visually the quality of the approximation (11.9) for
the Pyramic array at 1 kHZ. To this end, we plotted a row of

��AH
A
���2 (which

corresponds to the beamshape of the instrument for a particular direction [181])
with and without approximation. We observe that the approximation is already
very good, even if the Pyramic array possesses only M = 48 microphones against
the 90 required by Proposition 11.1 for an optimal approximation accuracy at
this frequency.

Proposition 11.1 tells us that, for spherical arrays with sufficient number of
microphones12, the oracle deblurring operator D in (11.7) corresponds actu- 12 For a spherical

array with diameter
D = 30 cm operating
at 1 kHz, M � 90 is
sufficient.

ally to a sampled zonal kernel: [D]ij = (kri � rjk) for some  : R+ ! R.
Since zonal kernels are used to define spherical convolutions (see Chapter 3),
D can hence be seen as a discrete convolution operator over the discrete do-
main ⇥ = {r1, . . . , rN}. Its bandwidth is moreover essentially finite, since
coefficients [D]ij decay as 1/kri � rjk2. As discussed in [47, 139], discrete
spherical convolution operators with finite scope can be efficiently represented
and implemented by means of the graph signal processing [159] techniques
discussed in Section 2.3 of Chapter 6. This leads us to consider the following
parametrisation:

D = P✓(L) :=
KX

k=0

✓kL
k,

where ✓ = [✓0, . . . , ✓K ] 2 R
K+1, K controls the scope of the discrete convo-

lution and L 2 R
N⇥N is the Laplacian associated to the spherical tessellation

graph of ⇥ (see Section 2.3 of Chapter 6). Note that with this parametrisation,
the number of parameters characterising D drops from N2 to K + 1, with
K ⌧ N .

2.2.2 Parametrisation of the Back-projection Operator
The oracle back-projection operator (11.7) admits a factorisation in terms of
the Khatri-Rao product. We decide hence to equip B with a similar structure:
B = (B �B)H for some learnable matrix B 2 C

M⇥N . With such a parametrisa-
tion, the number of parameters characterising B drops from NM2 to NM . The
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Algorithm 11.13: DeepWave forward
propagation.

1: Input: ⌃̂t, x
0
t
, x̂t, ✓, B, ⌧ , �

2: Output: Lt 2 R+,
�
s
l

t

 
⇢ R

N

3:
4: yt  diag(BH⌃̂tB)� ⌧

5: for l in [1, . . . , L] do
6: s

l

t
 P✓(L)xl�1

t
+ yt

7: x
l

t
 �(sl

t
)

8: Lt  1
2

��x̂t � x
L

t

��2
2
/ kx̂tk22

Algorithm 11.14: DeepWave backward
propagation.

1: Input: ⌃̂t, x
0
t
, x̂t, ✓, B, �,

�
s
l

t

 
l=1,...,L

2: Output: @✓ 2 R
K+1, @B 2 C

M⇥N , @⌧ 2
R

N

3: (@x, @✓, @⌧ ) (
�
�(sL

t
)� x̂t

�
/ kx̂tk22 ,0,0)

4: for l in [L, . . . , 1] do
5: @s diag

�
�0(sl

t
)
�
@x

6: @x P✓(L)@s
7: @⌧  @⌧ � @s
8: [@✓]

k
 [@✓]

k
+ @sT Tk(L)�(sl�1

t
)

9: @B  �2⌃̂tB diag (@⌧ )

Figure 11.3: Forward and backward algorithms to compute gradients of Lt with respect to
✓,B, ⌧ . For notational simplicity we use the shorthand @↵ = @Lt/@↵, and assume
�(s0

t ) = x0
t .

Khatri-Rao structure guarantees moreover real-valued –and hence physically-
interpretable– dirty maps.

3 Network Training
To facilitate the description of the training procedure, we adopt the following
shorthand notations.

• DeepWave(⌦, L) denotes a specific instance of the DeepWave network
(11.1) with parameters ⌦ := {✓,B, ⌧} and depth L.

• APGD(↵,�, �) denotes an instance of APGD (11.5), with tuning param-
eters (↵,�, �) 2 R

3
+.

The network parameters are chosen as minimisers of the following optimisation
problem:

⌦̂ 2 arg min
✓2R

K+1

B2C
M⇥N

⌧2R
N

1

T

TX

t=1

��x̂t � x
L
t (⌦)

��2
2

2 kx̂tk22| {z }
:=Lt

+
�✓

2(K + 1)
k✓k22

| {z }
:=L✓

+
�B

2MN
kBk2

F

| {z }
:=LB

+ · · ·

· · · +
�⌧
2N

���L1/2
⌧

���
2

2| {z }
:=L⌧

. (11.14)

The quantities {xL
t (⌦)}t and {x̂t}t in (11.14) correspond respectively to the

outputs of DeepWave(⌦, L) and APGD(↵,�, �) with identical example input
data {(⌃̂t,x0

t )}t. The first term 1
T

P
T

t=1 Lt is a data-fidelity term, which at-
tempts to bring x̂t and x

L
t (⌦) as close as possible from one another.13 The13 in a mean relative

squared-error sense. additional terms L✓,LB,L⌧ are smoothing regularisers, fighting against over-
fitting, a common issue in deep learning. Since the shrinkage operator ⌧ can
be interpreted as a signal on the spherical tessellation graph associated to ⇥,
the smoothing term L⌧ is defined via the graph Laplacian L 2 R

N⇥N , as is
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customary in graph signal processing (see Section 2.3 of Chapter 6).
Optimisation of (11.14) is carried out by stochastic gradient descent (SGD)
with momentum acceleration [174]. Gradients of Lt with respect to ✓,B, ⌧
are efficiently evaluated using reverse-mode algorithmic differentiation [15] and
are given in Algorithms 11.13 and 11.14 (see 3 of Appendix C for a derivation).
While random initialisation of neural-networks is a common practice in deep
learning [174], this strategy failed for our specific architecture, leading to poor
validation loss and considerably increased training times. Instead, we hence
use the oracle parameters (11.7) to initialise SGD:

✓
0 := arg min

✓2RK+1

kP✓(L)�Dk2
F
, B

0 :=

r
↵

�
A, ⌧

0 :=
�↵�

�
1N . (11.15)

For greater numerical stability during training, we proceed as in Section 4.3
of Chapter 7 and reparameterise the deblurring filter as P✓(L̃) =

P
K

k=0 ✓kTk(L̃),
where Tk(·) is the Chebychev polynomial of order k and L̃ is the normalised
Laplacian with spectrum in [�1, 1]. Finally, we substitute the ReLu activation
function by a scaled rectified tanh to avoid the exploding gradient problem
[137].14 14 An alternative is to

use a truncated ReLu.
Given initialisation
strategy eq. (11.15),
network training will
still converge with
similar step sizes as
those used with tanh
non-linearities.

4 Experimental Results
In this section, we compare the accuracy, resolution and runtime performance
of DeepWave to DAS and APGD on real-world (RW) and simulated (SIM)
datasets. More comprehensive dataset descriptions and additional results, in-
cluding an ablation study, are provided in Appendices 4 to 6.

4.1 Real-data Experiments
Dataset 1 [131] (RW) reproduces a conference room setup depicted in
Figs. 11.4a and 11.4b, where 8 people15 are gathered around a table and 15 The 8 people are

represented in the
experiment by
loadspeakers playing
male and female
speech samples.

speak either in turns or simultaneously (with at most 3 concurrent speakers).
Recordings of the conversation are collected by the 48-element Pyramic array
[155] (Fig. 11.4f) positioned at the centre of the table. Since human speech is
wide-band, the audible range [1500, 4500] Hz in the latter are pre-processed
every 100 ms and split into 9 uniform bins to form a suitable training set
{(⌃̂t, x̂t,x0

t )}t of 2760 data points per frequency band for DeepWave (with
N = 2234). Frequency channels are processed independently by each algo-
rithm. DeepWave is trained by splitting the data points into a training and
validation set (respectively 80% and 20% in size). For each frequency band,
we chose an architecture with 5 layers.
In Fig. 11.4, Fig. C.5 and Table C.1 respectively, we compare the accuracy and
runtime of DeepWave, DAS and APGD. A video showing the evolution in time
of DeepWave and DAS azimuthal sound fields (as in Figs. 11.4a and 11.4b)
is also available online at https://www.youtube.com/watch?v=PwB3CS2rHdI.
In terms of resolution, DeepWave and APGD perform similarly, outperforming
DAS by approximately 27%. The mean contrast scores for DeepWave and DAS
over the test set of Dataset 1 are 0.99 (±0.0081) and 0.89 (±0.07), respec-
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(a) DAS azimuthal sound field. (b) DeepWave azimuthal sound field.

(c) DAS spherical sound field (resolution: 25.3�, contrast: 0.78).

(d) Frequency-colour
mapping.

(e) DeepWave spherical sound field (resolution: 18.5�, contrast:
0.97).

(f) Pyramic array.

Figure 11.4: Snapshots at time t = 1.7 s of the sound intensity fields produced by DeepWave
and DAS for the Pyramic recordings with speakers 2, 6 and 16 active. Sound frequencies range
from 1.5 to 4.5 kHz and were mapped to true colours (see Fig. 11.4d, colour shades
correspond to lower intensities). The spherical maps of DAS and DeepWave are plotted in
Figs. 11.4c and 11.4e, respectively. In Figs. 11.4a and 11.4b we plot the azimuthal projections
of Figs. 11.4c and 11.4e, respectively.
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(a) DAS vs. DeepWave sound fields for
Dataset 2.

(b) DAS vs. DeepWave sound fields for
Dataset 2.

(c) DAS vs. DeepWave sound fields for synthetic data trained on Dataset 2.

Figure 11.5: Snapshots of the sound intensity fields produced by DeepWave and DAS when
trained on Dataset 2 (with 10 held-out source directions). Each subplot contains a DAS image
(top) and a DeepWave image (bottom). The frequency color mapping is identical to Fig. 11.4d.
Figs. 11.5a and 11.5b show azimuthal sound field slices on [�20�, 150�] using real-world
covariance matrices with sources from unseen directions during training. Fig. 11.5c shows a
full 360� sound field on a synthetic covariance matrix from unseen directions during training.
Elevations span [�15�,+15�].

tively. Note that since the metrics used for assessing resolution and contrast16 16 As is customary,
resolution is
measured as the
width at
half-maximum of the
impulse response of
the algorithms.
Contrast is measured
as the difference
between the
maximum and mean
of the greyscale
image.

are not perfectly reflective of human-eye perception, the reported image qual-
ity improvements appear even more striking through visual inspection of the
sound intensity fields (see for example Fig. 11.4).

Dataset 2 [150] (RW) consists of 2700 template recordings from the Pyramic
array taken in an anechoic chambre at an angular resolution of 2 degrees in
azimuth and three different elevations (-15, 0, 15 degrees). Recordings contain
both male and female speech samples to cover a wide audible range. The audio
samples can be combined to simulate complex multi-source sound fields, hence
we leverage this property to augment the dataset to 5700 distinct recordings
with one, two, or three active speakers simultaneously. The raw time-series
are then pre-processed as for Dataset 1 to obtain a training set of 151,980
data points per frequency band (with N = 1568). Network training is identical
to that of Dataset 1, except that 10 azimuth directions are also witheld from
the training set to assess how well the network generalises to emissions from
unseen directions.
Figs. 11.5a and 11.5b show sample DAS and DeepWave reconstructions with
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real sources from directions withheld from the training set. Similarly, Fig. 11.5c
shows sample reconstructions when the network is trained on real data but
tested on synthetic narrow-band covariance matrices induced by sources from
directions absent from the training set. In both cases we see that DeepWave
outperforms DAS in resolution and contrast (i.e. sharper blobs and darker
background).

4.2 Further experiments
Dataset 3 (SIM) finally is a simulated dataset with recordings from a spheri-
cal microphone array using a narrow-band point-source data-model at 2 kHz
[181]. The sources are randomly positioned over a 120� field-of-view, with up
to 10 concurrent sources per recording. Experiment results available in Fig. C.6
corroborate the real-data results, hence showing that DeepWave generalises
well to a large number of sources with unconstrained positions. We further in-
vestigated in Fig. C.7 the influence of network depth, and concluded that 5 or 6
layers are generally sufficient for the investigated dataset. In terms of runtimes
finally, DeepWave and DAS both reach real-time requirements (6.5 ms and 2.0
ms respectively), largely outperforming APGD (211 ms). (See Table C.1 for
more details.)
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Conclusion

1 The Trajectory of this Thesis
As this thesis is coming to an end, let us reflect back on its positioning and
trajectory. We started off Chapter 1 with an environmental manifesto, outlining
the role that spherical approximation techniques could play in mitigating the
current environmental crisis. A subsequent goal was then to empower scien-
tists and practitioners by providing them with more performant algorithms for
sensing, processing and recovering signals defined on the surface of the Earth,
or more generally any spherical surface.

This pragmatic motivation was however quickly challenged by the first few
chapters of this dissertation. In the latter, we took indeed a 180 degree turn,
asking for the reader to take a small leap of faith while embarking on a journey
into theory. Chapter 2 reviewed some key concepts from functional analysis
and established very general representer theorems, pertaining to optimisation
in abstract Hilbert and Banach spaces. Chapters 3 and 4 used the theory of
spherical harmonic analysis to construct spherical pseudo-differential operators
and spherical splines.

In Chapter 5 the reasons for this mathematical prelude became clearer. We
showed how the various concepts of Chapters 2 to 4 came naturally into
play when revisiting spherical approximation problems as specific instances
of generic functional inverse problems on the sphere. Unlike ad-hoc discrete
methods traditionally favoured by practitioners, functional inverse problems
present the advantage of being directly formulated in the continuous spheri-
cal domain, the natural domain for analogue spherical signals encountered in
nature. In Theorems 5.3 and 5.4 we showed that, if regularised by means of
gTikhonov and gTV regularisation, functional inverse problems admitted finite
dimensional solutions, which could hence be estimated in practice despite being
defined over a continuous domain. For gTikhonov regularisation, we showed
in Theorem 5.3 that the solution was unique and could be expressed as a lin-
ear combination of the sampling linear functionals –modelling the instrument–
primitived twice with respect to the regularising pseudo-differential opera-
tor D . For gTV regularisation, we showed in Theorem 5.4 that the solutions
were convex combinations of spherical D-splines with sparse innovations, i.e.
less than available measurements. These two representer theorems not only
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allowed us to compare the effects of both regularisation strategies, but also
inspired in Chapter 6 two canonical search space discretisation schemes, exact
for gTikhonov regularisation and with controlled approximation error for gTV
regularisation (see Theorems 6.2 and 6.5 respectively).

In Chapter 7, we proposed algorithmic solutions adapted from the primal-
dual splitting method and APGD to solve the discrete optimisation problems
resulting from both discretisation schemes. The proposed algorithms were
shown to be computationally efficient, provably convergent and compatible with
most common cost functionals –including non-differentiable ones, such as the
KL-divergence often used in the context of Poisson noise.

In Chapter 8, we introduced the last ingredient to our spherical approx-
imation framework, namely the Wendland and Matérn splines, particularly
convenient for practical purposes.

In Chapter 9, we were finally in a position to deliver on our promises from
Chapter 1. We tested our continuous-domain spherical approximation frame-
work and novel algorithms on a variety of real and simulated datasets, coming
from the fields of meteorology, forestry, radio astronomy and planetary sci-
ences. The sampling functionals, cost functions and regularisation strategies
considered in each case were diverse, showing the versatility of both the theo-
retical framework and algorithmic solutions. In the meteorology example, we
moreover illustrated the superiority of continuous-domain vs. discrete-domain
recovery, both in terms of accuracy and resolution. This superiority was par-
tially explained by the fact that continuous-domain methods could, unlike their
discrete-domain counterparts, directly process the irregular spatial samples
without resorting to ad-hoc gridding steps.

The last part of the thesis discussed related topics and paved the road to-
wards promising new research avenues. In Chapter 10 we designed an efficient
and locally convergent algorithm for recovering the spatial innovations of peri-
odic Dirac streams with finite rates of innovation. If generalised to the sphere
–and more generally the hypersphere, this algorithm could be envisioned as
an alternative to the quasi-uniform spline discretisation scheme proposed in
Chapter 6 for gTV regularised functional inverse problems.

In Chapter 11 finally, we showed how the convergence speed of proximal
algorithms could be “boosted” by means of recurrent neural networks for pur-
poses of real-time imaging. For simplicity, we illustrated the scheme with the
specific case of PGD applied to acoustic imaging. The described methodol-
ogy could easily be generalised to different spherical approximation tasks as
well as more general algorithms such as the primal-dual splitting methods of
Chapter 7.

In conclusion, we hope that the contributions of this thesis will spark interest
among the community of practitioners, and give rise to the development of new
reconstruction algorithms for spherical approximation problems. For readers
looking for inspiration on how to continue this work further, we provide in the
subsequent section a few additional research avenues.
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2 Prospective Research Avenues

2.1 Robust Non-Convex Cost Functionals

A common remedy to misspecified noise models and/or strong outliers in data
consists in using non-convex cost functionals [117, 123]. For example, Tukey’s
bisquare function is commonly used in robust M-estimation theory [121] to
eliminate the effect of strong outliers. Being non-convex –as a matter of fact it
is semistrictly quasi-convex,1 this cost functional is unfortunately unusable in 1 See Remark 3.5 of

[28] for a definition
of strict, semistrict
and standard
quasi-convexity.

the context of the spherical approximation framework described in this thesis.
Indeed, the abstract results Corollary 2.10 and Theorem 2.12 from Chapter 2
were both established under the assumption of a convex cost functional. It is
hence necessary to extend these results to the case of non-convex cost function-
als, or at least to the case of semistrictly/strictly quasi-convex cost functionals.
We have good reasons to believe that this can be achieved:

• For Corollary 2.10, the convexity of the cost functional is exclusively
used to show the existence and unicity of the solution. The form of the
solutions should hence be unaffected by the use of a non-convex cost
functional.

• For Theorem 2.12, the convexity of the cost functional is primarily used
to show that the solution set is non-empty, convex and weak⇤ compact
–and hence from Theorem 2.11, the weak⇤ convex hull of its extreme
points. As explained in [28, Remark 3.5], it is still possible to invoke [28,
Theorem 3.1] to characterise the form of the extreme points under the
assumption of semistrict quasi-convexity of the cost functional. Moreover,
the convexity of the solution set is still guaranteed for quasi-convex cost
functionals (see [28, Remark 3.10]). It should therefore be possible to
show the weak⇤ compacity of the solution set in this case too, with similar
arguments as in [72, Proposition 8].

Note that the use of non-convex cost functionals would also require adapting
the primal-dual splitting and APGD methods from Chapter 7, whose conver-
gence was only shown for convex cost functionals. In the case where the cost
functional is differentiable and with Lipschitz continuous derivative,2 one pos- 2 Which is for

example the case for
Tukey’s bisquare
function.

sibility could be to use the non-convex extension of APGD introduced in [109].

2.2 Spherical Gaussian White Noise

Some spherical fields encountered in nature are well modelled by Gaussian
random fields [114, 115, 180]. This is notably the case in radio astronomy
where the source amplitudes typically fluctuate randomly and independently
from one another [164, 181], making the source field resemble a (complex-
valued) spherical Gaussian white noise [114, 115] entirely determined by an
unknown control measure ⌫ 2 M(Sd�1). The typical estimation task consists
then in recovering this control measure using K independent realisations
{y1, . . . ,yK} ⇢ C

L of a random measurement vector of integral white noises:

Y =

Z

Sd�1
'1(r)f(dr), · · · ,

Z

Sd�1
'L(r)f(dr)

�
,
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where {'1, . . . ,'L} ⇢ L
2(Sd�1, ⌫). Considering the empirical covariance ma-

trix ⌃̂ 2 C
L⇥L of the data, we can show that

E

h
⌃̂ij

i
=

Z

Sd�1
'i(r)'j(r)⌫(dr) = h⌫|'i'ji, i, j = 1, . . . , L. (12.1)

Since (12.1) falls into the scope of the generalised sampling framework from
Chapter 5, we could consider recovering ⌫ by means of an FPT or FPBP problem
with sampling operator constructed from data model (12.1).

2.3 Spherical Fields Varying in Time

In certain applications, it can be interesting to monitor the evolution of a spher-
ical field through time. This is notably the case in environmental monitoring
tasks such as the meteorology and forestry examples from Chapter 9. To this
end, one possibility consists in extending the approximation framework of this
thesis to generalised functions defined over the product domain S

d�1 ⇥ [0, T [,
where the interval [0, T [⇢ R represents the time-window of interest. Such
an extension would notably require the definition of spatio-temporal pseudo-
differential operators. Following Definition 4.1, the latter could be defined as
“roughening” operators diagonalised by the Fourier basis on S

d�1⇥ [0, T [, given
by

Y m

n (r) exp

✓
j
2⇡

T
kt

◆
, n 2 N, m = 1, . . . , Nd(n), k 2 Z.

Note that for efficiency reasons, it could be beneficial to consider only spatio-
temporal pseudo-differential operators with separable symbols and hence sep-
arable Green kernels. Finally, Theorems 5.3 and 5.4 should be relatively easy
to extend to this particular setup, since they are based on the abstract results
Corollary 2.10 and Theorem 2.12 which are in no way specific to the spherical
domain.

2.4 Vector-Valued Spherical Fields

The spherical approximation framework from Chapter 5 is limited to scalar
spherical fields f : Sd�1 ! C. In some applications however, one may wish to
recover vector-valued spherical fields f : Sd�1 ! C

n, for some n 2 N. This is
typically the case in meteorology or oceanography, where wind and oceanic
currents are studied via vector velocity maps. Since a vector-valued spherical
field f : Sd�1 ! C

n can be seen as tuple (f1, . . . , fn) of scalar spherical fields,
one could envision recovering such vector-valued spherical fields by finding
solutions to the following FPT problem:

min
(f1,...,fn)2⇧n

k=1HD
k
(Sd�1)

(
F (y,�(f1, . . . , fn)) + �

nX

k=1

kDkfkk22

)
, (12.2)

where:
• ⇧n

k=1HDk
(Sd�1) denotes the direct product of the Hilbert spaces HDk

(Sd�1),
equipped with its canonical inner product norm,
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• {Dk : S (Sd�1)! S (Sd�1)}k=1,...,n are suitable spherical pseudo-differential
operators,

• F : CL ⇥ C
L ! R+ [ {+1} is some proper and convex cost functional,

• y 2 C
L is some measurement vector,

• � is a real positive constant,
• � : ⇧n

k=1HDk
(Sd�1)! C

L is a sampling operator given by:

�(f1, . . . , fn) =
nX

k=1

(h'1,k|fki, . . . , h'L,k|fki),

where {('i,1, . . . ,'i,n)}i=1,...,L ⇢ ⇧n

k=1H
0

Dk
(Sd�1) are some linearly inde-

pendent sampling functionals.

It should then be doable to derive a representer theorem for (12.2) using
Corollary 2.10. Similarly, one could consider recovering vector-valued spherical
fields by means of the following FPBP problem:

min
(f1,...,fn)2⇧n

k=1MD
k
(Sd�1)

(
F (y,�(f1, . . . , fn)) + �

nX

k=1

kDkfkkTV

)
, (12.3)

with this time, a sampling operator � : ⇧n

k=1MDk
(Sd�1)! C

L given by:

�(f1, . . . , fn) =
nX

k=1

(hfk|'1,ki, . . . , hfk|'L,ki),

for some linearly independent sampling functionals {('i,1, . . . ,'i,n)}i=1,...,L in
⇧n

k=1CDk
(Sd�1). Again, provided that one can characterise the extreme points

of the unit ball of the composite gTV norm
P

n

k=1 kDkfkkTV on⇧n

k=1MDk
(Sd�1),

it should be possible to use Theorem 2.12 so as to derive a representer theo-
rem for (12.3). Note that an optimisation problem very similar to (12.3) was
considered in [9] in the case of vector fields defined over Rd.

2.5 Biased Measurements

The generalised sampling framework introduced in Chapter 5 assumes an
unbiased measurement process, i.e. E[y] = �(f). In practice however, it can
happen that the measurements provided by each sensor are systematically
biased yielding a new data model of the form

E[y] = �(f) + µ,

where µ 2 C
L is an unknown vector describing the bias introduced at each

sensor. In such a case, it is possible to update the FPT and FPBP problems from
Chapter 5 so as to jointly estimate the spherical field and the unknown sensor
biases:

min
(f,µ)2HD(Sd�1)⇥CL

�
F (y,�(f) + µ) + �

�
kDfk22 + kDµk22

� 
, (12.4)
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min
(f,µ)2MD(Sd�1)⇥CL

{F (y,�(f) + µ) + � (kDfkTV + kDµk1)} , (12.5)

where D 2 C
L⇥L. Again, it should be relatively easy to reinterpret (12.4) and

(12.5) as specific instances of the generic optimisation problems (2.14) and
(2.17) from Corollary 2.10 and Theorem 2.12 respectively. This would allow
us to derive representer theorems for these two cases as well, provided that the
extreme points of the regularisation ball in (12.5) can indeed be characterised.
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A
Supplementary Material to Chapter 9

1 Sufficient Condition for L
2(Sd�1) ⇢ CD(Sd�1)

Proposition A.1 — Sufficient Condition for L
2(Sd�1) ⇢ CD(Sd�1). Let D be

a pseudo-differential operator as in Definition 4.1 with trivial nullspace and
spectral growth order p > (d � 1)/2, and (MD(Sd�1), kD · kTV ) the space
defined in eq. (5.5) equipped with the gTV norm. Then, all square-integrable
functions are included in the predual CD(Sd�1) of MD(Sd�1), i.e.

L
2(Sd�1) ⇢ CD(Sd�1).

Proof. From Proposition 5.2, a function f 2 L
2(Sd�1) is in CD(Sd�1) is there

exists ⌘ 2 C (Sd�1) s.t. f = D⌘. Since D is assumed invertible, this is equivalent
to requiring that D

�1f 2 C (Sd�1), which is guaranteed if the series of functions

(D�1f)(r) =
X

n2N

1

D̂n

Nd(n)X

m=1

f̂m

n Y m

n (r), r 2 S
d�1, (A.1)

converges uniformly (see [125, Theorem 2.14]). To show that (A.1) is uni-
formly convergent, we consider its remainder for some N 2 N. Then, from
the addition theorem 3.2 and the Cauchy-Schwarz inequality we get, for each
r 2 S

d�1:
������

+1X

n=N

1

D̂n

Nd(n)X

m=1

f̂m

n Y m

n (r)

������


�����

+1X

n=N

PNd(n)
m=1 |Y m

n (r)|2

|D̂n|2

�����

������

+1X

n=N

Nd(n)X

m=1

|f̂m

n |2
������

=

�����

+1X

n=N

Nd(n)

ad|D̂n|2

�����

������

+1X

n=N

Nd(n)X

m=1

|f̂m

n |2
������
.

Since f 2 L
2(Sd�1) we have trivially limN!+1

���
P+1

n=N

PNd(n)
m=1 |f̂m

n |2
��� = 0.

Moreover, since |D̂n| = ⇥(np) we have from (3.3) Nd(n)|D̂n|�2 = O(nd�2�2p).
Since p > (d � 1)/2 ) d � 2 � 2p < �1 we have hence that the series
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P
n2N

Nd(n)

ad|D̂n|
2

is convergent and hence is remainder tends to zero. We have
hence
������
(D�1f)(r)�

N�1X

n=0

1

D̂n

Nd(n)X

m=1

f̂m

n
Y m

n
(r)

������
=

������

+1X

n=N

1

D̂n

Nd(n)X

m=1

f̂m

n
Y m

n
(r)

������



�����

+1X

n=N

Nd(n)

ad|D̂n|2

�����

������

+1X

n=N

Nd(n)X

m=1

|f̂m

n
|2
������
N!+1�! 0.

Moreover, since the upper bound is independent on r the convergence is
uniform, which achieves the proof. ⌅

2 Sea Surface Temperature Anomalies

In this section, we consider the same setup as in Section 1 of Chapter 9, but re-
place the pseudo-differential operator D

✏

2.5 in (9.2) and (9.5) with the pseudo-
differential operator D

⌘

3,1 associated to the Wendland zonal Green kernel with
scale ⌘ ' 0.09 –corresponding again to an angular resolution1 of approxi-1 The angular

resolution is
measured here as the
full width at half
maximum (FWHM)
of the Wednland
kernel.

mately 4�:

 ⌘3,1(hr, si) = �3,1

 p
2� 2 hr, si

⌘

!
, 8(r, s) 2 S

2 ⇥ S
2.

Figure A.1: Sea surface temperature anomaly function obtained by solving the FPT problem
(9.2), with Wendland gTikhonov regularisation.
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Figure A.2: Sea surface temperature anomaly function obtained by solving the FPBP problem
(9.5), with Wendland gTV regularisation.

Note that D
✏

2.5 and D
⌘

3,1 are both equivalent (in a sense described in Chapter 8)
to the Sobolev operator (Id��S2)

2.5. The estimates obtained by solving (9.2)
and (9.5) with the redefined Wendland gTikhonov and gTV regularisation
terms are provided in Figs. A.1 and A.2 respectively. Not surprisingly, they look
very similar to those displayed in Figs. 9.2a and 9.2b, with the only difference
that the spherical map in Fig. A.2 appears slightly sparser than the one in
Fig. 9.2b.
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B
Main Proofs of Chapter 10

1 The Toeplitzification Operator and Convolutions

Consider the Toeplitzification operator defined in (10.5). When multiplied with
a vector u = [u1, · · ·uP+1] 2 C

P+1, the matrix TP (x) returns the valid part of
the convolution between the two zero-padded sequences:

x̃ =
h
· · · , 0, x�M , · · · , x0 , · · · , xM , 0, · · ·

i
2 C

Z

and
ũ =

h
· · · , 0 , u1, · · · , uP+1, 0, · · ·

i
2 C

Z.

Indeed,

(x̃ ⇤ ũ)[k] =
X

j2Z

x̃k�j ũj =
P+1X

j=1

x̃k�juj .

The valid part corresponds to the indices i for which all the terms in the sum-
mation are non-zero. This is the case when

k 2 [�M + P + 1, . . . ,M + 1].

Consider i = k + M � P we get that the valid part of the convolution is given
by

(x̃ ⇤ ũ)[i�M + P ] =
P+1X

j=1

x�M+P+i�juj ,

=
P+1X

j=1

[TP (x)]
i,j

uj , i = 1, . . . , N � P,

which corresponds precisely to TP (x)u.
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2 Proofs of Theorems 10.4 and 10.5

The proofs of Theorems 10.4 and 10.5 rely on the following lemma, adapted
from [109, Theorem 1], which establishes the convergence of PGD in a general
setup:

Lemma B.1 — Convergence of PGD. Consider the norm kxk :=
p
hx,xi,

x 2 R
n, induced by some inner product h·, ·i on R

n. Consider moreover the
general problem:

min
x2Rn

�(x) = F (x) + H(x), (B.1)

where F : R
n ! R [ {+1} and H : R

n ! R [ {+1} are potentially
non-convex functions such that:

1. F is a proper function, i.e. its domain is non-empty, differentiable and
with Lipschitz continuous gradient for some Lipschitz constant 0  � <
+1,

krF (x)�rF (y)k  �kx� yk, 8x,y 2 R
n.

2. H is a proper and lower semi-continuous (lwsc) function, potentially
non-smooth.

3. � = F + H is coercive, i.e. � is bounded from below and

lim
kxk!+1

�(x) = +1.

Then, the iterates {xk}k2N generated by the proximal gradient descent (PGD)
applied to (B.1):

xk+1 2 prox
⌧H

(xk � ⌧rF (xk)) , k � 0, (B.2)

with ⌧ < 1/� and x0 2 R
n, are bounded. Moreover, any limit point x? of

{xk}k2N is a local minimum of �.

Proof. The lemma is easily shown by specifying the proof of [109, Theorem 1] to
the non-accelerated case. For the sake of completeness, it is provided hereafter.
From the definition of the proximal operator,

prox
⌧H

(x) :

8
<

:

R
n ! P (Rn) ,

x 7! arg min
z2Rn

1

2⌧
kx� zk2 + H(z),

we can reinterpret (B.2) as

xk+1 2 arg min
z2Rn

1

2⌧
kz � xkk2 + hrF (xk), z � xki+ H(z). (B.3)

We have hence

1

2⌧
kxk+1 � xkk2 + hrF (xk),xk+1 � xki+ H(xk+1)  H(xk).

232



2 Proofs of Theorems 10.4 and 10.5 233

From the Lipschitz continuity of rF we have moreover

�(xk+1) H(xk+1) + F (xk) + hrF (xk),xk+1 � xki

+
�

2
kxk+1 � xkk2

H(xk)�
1

2⌧
kxk+1 � xkk2 � hrF (xk),xk+1 � xki

+ F (xk) + hrF (xk),xk+1 � xki+
�

2
kxk+1 � xkk2

=�(xk)�
✓

1

2⌧
� �

2

◆
kxk+1 � xkk2. (B.4)

Since ⌧ < 1/� we have hence (1/2⌧ � �/2) � 0 and

�(xk+1)  �(xk)  �(x0), 8k � 1.

The sequence {�(xk)}k2N is hence bounded and since � is coercive so is
{xk}k2N. The sequence {xk}k2N admits hence limit points. Moreover, since
�(xk) is decreasing and bounded from below, it takes the same value �? 2 R

at all of these limit points. Summing (B.4), we obtain hence:

✓
1

2⌧
� �

2

◆ +1X

k=0

kxk+1 � xkk2  �(x0)� �? < +1.

Since ⌧ < 1/�, we have necessarily
P+1

k=0 kxk+1 � xkk2 < +1, which yields

lim
k!+1

kxk+1 � xkk = 0. (B.5)

From the optimality condition (B.3) and Items 1 and 3 of Proposition 1 of the
supplementary material of [109], we have moreover

0n 2rF (xk) +
1

⌧
(xk+1 � xk) + @H(xk+1)

= @�(xk+1)�rF (xk+1) +rF (xk) +
1

⌧
(xk+1 � xk), (B.6)

where @H : R
n ! P(Rn) and @� : R

n ! P(Rn) denote the (set-valued)
subdifferential operators of H and � respectively (see Definition 2 of the sup-
plementary material of [109]).

Equation (B.6) can moreover be rewritten as

rF (xk+1)�rF (xk)�
1

⌧
(xk+1 � xk) 2 @�(xk+1).

Furthermore, from the Lipschitz continuity of F , we have

krF (xk+1)�rF (xk)�
1

⌧
(xk+1 � xk)k 

✓
� +

1

⌧

◆
kxk+1 � xkk,
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and hence from (B.5):

lim
kxk!+1

����rF (xk+1)�rF (xk)�
1

⌧
(xk+1 � xk)

���� = 0. (B.7)

Let {xkj
}j2N be a convergent subsequence of {xk}k2N, with limit x?. Then, we

have from (B.7) and Item 2 of Proposition 1 of the supplementary material of
[109]:

0n 2 lim
j!+1

@�(xkj
) = @�(x?),

which completes the proof. ⌅

We now show Theorems 10.4 and 10.5 by applying Lemma B.1 to the implicit
genFRI problem in unconstrained form (B.8)

min
x2CN

kGx� yk22 + ◆HK
(TP (x)) + ◆B�

⇢
(x) . (B.8)

To do so, we must first convert (B.8) into an optimisation problem of the form
(B.1), defined over R

n for some n 2 N. We achieve this by proceeding as in
[148, Section 7.8] and identifying C

N with R
2N (respectively C

L with R
2L) in

the canonical way

x 2 C
N $ x̂ :=

"
R(x)

I(x)

#
2 R

2N ,

where R and I denote the real and imaginary parts respectively. Such an
identification makes the canonical inner products and norms on C

N and R
2N

(respectively C
L and R

2L) consistent with one another, i.e. for all x, z 2 C
N ,

we have

hx, ziCN = z
H
x = R(z)TR(x) + I(z)TI(x) = ẑ

T
x̂ = hx̂, ẑiR2N ,

and
kxkCN =

p
xHx =

q
kR(x)k2

RN
+ kI(x)k2

RN
= kx̂kR2N .

Still following [148, Section 7.8], we moreover identify the linear map G :
C
N ! C

L with a linear map Ĝ : R2N ! R
2L with matrix representation:

Ĝ :=

"
R(G) �I(G)

I(G) R(G)

#
2 R

2L⇥2N .

Again, it is easy to show that the two operators are consistent, in the sense that

dGx = Ĝx̂, and [GHx = Ĝ
T
x̂, 8x 2 C

N .

Similarly, the Toeplitzification operator TP : CN ! C
(N�P )⇥(P+1) is identified

with the linear operator T̂P : R2N ! C
(N�P )⇥(P+1) defined as

T̂P (x̂) := TP (R(x)) + jTP (I(x)), 8x 2 C
N ,
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where j is the complex 2-root of unity. From the linearity of TP , this definition
yields indeed TP (x) = T̂P (x̂). Finally, the �-ball B�

⇢ ⇢ C
N is identified with

B
�̂
⇢ :=

�
x̂ 2 R

2N : kx̂k�̂  ⇢
 
,

where �̂ 2 R
2N⇥2N is a positive definite and diagonal matrix defined as

�̂ :=

"
� 0N⇥N

0N⇥N �

#
.

Again, we trivially have kx̂k�̂ = kxk� and hence x 2 B
�
⇢ , x̂ 2 B

�̂
⇢ for all

x 2 C
N .

In summary, the optimisation problem (B.8) is hence equivalent to the follow-
ing optimisation problem with search space R

2N :

min
x̂2R2N

���Ĝx̂� ŷ

���
2

R2L
+ ◆HK

⇣
T̂P (x̂)

⌘
+ ◆

B�̂
⇢

(x̂) . (B.9)

Letting F̂ (x̂) :=
���Ĝx̂� ŷ

���
2

R2L
and Ĥ(x̂) := ◆HK

⇣
T̂P (x̂)

⌘
+ ◆

B�̂
⇢

(x̂) we have

F̂ : R2N ! R+ and Ĥ : R2N ! {0,+1}, so that (B.9) is indeed of the form
(B.1). We must now verify assumptions 1, 2 and 3 of Lemma B.1:

1. F̂ is proper, differentiable and rF̂ Lipschitz continuous. F̂ is proper since

F̂ (02N ) = kŷk2
R2L = kyk2

CL < +1.

It is differentiable, with gradient given by

rF̂ (x̂) = 2ĜT (Ĝx̂� ŷ) = \rF (x), x̂ 2 R
2N . (B.10)

The gradient (B.10) is moreover �̂-Lipschitz continuous with respect to the
norm k · k�̂ on R

2N , and its Lipschitz constant is given by:

�̂ = 2kĜT
Ĝk�̂

= sup
n

2
���ĜT

Ĝx̂

���
�̂

: x̂ 2 R
2N , kx̂k�̂ = 1

o

= sup
�
2
��GH

Gx
��
�

: x 2 C
N , kxk� = 1

 

= � < +1. (B.11)

⌅

2. Ĥ is proper and lower semi-continuous. Ĥ is proper since for all ⇢ > 0, and K,

Ĥ(02N ) = ◆HK

�
0(N�P )⇥(P+1)

�
+ ◆

B�̂
⇢

(02N ) = 0 < +1.

The indicator functions are moreover lower semi-continuous since the sets HK

and B
�̂
⇢ are both closed. Since TP is a bounded linear operator, it is contin-
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uous and hence Ĥ is indeed lower semi-continuous as composition between
continuous and lower semi-continuous functions. ⌅

3. �̂ = F̂ + Ĥ is coercive. It is easy to see that �̂ = F̂ + Ĥ � 0. To show that
�̂ is coercive, it is hence sufficient to show that

lim
kx̂k�̂!+1

�̂(x̂) = +1.

To this end, we distinguish two cases, which correspond respectively to the
assumptions of Theorems 10.4 and 10.5:

1. ⇢ 2]0,+1[: in this case �̂ is trivially coercive since

◆
B�̂
⇢

(x̂) = +1, 8kx̂k�̂ � ⇢.

2. ⇢ = +1 and G injective: When ⇢ = +1, the term ◆
B�̂
⇢

is always null and

�̂ simplifies to

�̂(x̂) =
���Ĝx̂� ŷ

���
2

R2L
+ ◆HK

⇣
T̂P (x̂)

⌘
, x̂ 2 R

2N .

From [148, Section 7.8], we have moreover that

det
⇣
Ĝ

T
Ĝ

⌘
= | det(GH

G)|2 6= 0, (B.12)

since G is injective by assumption. From the reverse triangle inequality,
we have hence

���Ĝx̂� ŷ

���
R2L
� �minkx̂kR2N � kŷkR2L , 8x̂ 2 R

2N ,

where �min =
q
�min(ĜT Ĝ) > 0 is the square root of the eigenvalue of

Ĝ
T
Ĝ with lowest magnitude, which is non-null from (B.12). From the

equivalence of norms in finite dimensions, there exist moreover c1, c2 > 0
such that

c1kx̂k�̂  kx̂kR2N  c2kx̂k�̂, 8x̂ 2 R
2N .

This yields
���Ĝx̂� ŷ

���
R2L
� �minc1kx̂k�̂ � kŷkR2L , 8x̂ 2 R

2N ,

and hence

lim
kx̂k�̂!+1

���Ĝx̂� ŷ

���
R2L
� lim

kx̂k�̂!+1

�minc1kx̂k�̂ = +1,

which shows that �̂ is indeed coercive.
⌅
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We can hence apply Lemma B.1, to show that the iterates {x̂k}k2N ⇢ R
2N

generated by PGD applied to (B.9):

x̂k+1 2 prox�̂
⌧Ĥ

⇣
x̂k � ⌧rF̂ (x̂k)

⌘
, (B.13)

with ⌧ < 1/�̂ and x̂0 2 R
2N , are bounded. Moreover, any limit point x̂? of

{x̂k}k2N is a critical point of (B.9).
Observe finally, that the iterations (B.13) can be rewritten in complex form

as

xk+1 2 prox�
⌧H

(xk � ⌧rF (xk)) , (B.14)

with ⌧ < 1/� and x0 2 C
N , and where we have used (B.10), (B.11) and

prox�̂
⌧Ĥ

(x̂) = arg min
ẑ2R2N

1

2⌧
kx̂� ẑk2

�̂
+ Ĥ(z)

= \prox�
⌧H

(x), 8x̂ 2 R
2N ,

which follows trivially from the previous identifications. By identification and
equivalence between the real and complex optimisation problems (B.9) and
(B.8), we can hence conclude that limit points of the iterates {xk}k2N ⇢ C

N

generated by (B.14) are critical points of (B.8), which achieves the proof.
⌅

3 Proof of Theorem 10.8
The proof of Theorem 10.8 relies on the four lemmas hereafter. The first lemma
shows that gradient descent is Lipschitz continuous, and exhibits step size
ranges for which it is also a contraction. This is a famous result in optimisation
[88, 176], traditionally stated in terms of the `2 canonical norm. Lemma B.2
in contrast assumes the �-norm as underlying norm, since the latter is more
natural for our particular problem.

Lemma B.2 — Contractive Gradient Descent. Let G 2 C
L⇥N be injective,

and � be the diagonal and definite positive matrix defined in (10.10). Define

↵ := 2�min

⇣
�1/2

G
H
G��1/2

⌘
, (B.15)

� := 2�max

⇣
�1/2

G
H
G��1/2

⌘
, (B.16)

where �min(M) and �max(M) denote the minimum and maximum eigenvalue
of a matrix M respectively. Let ⌧ 2 R be a positive constant and consider the
linear map

D⌧ :

(
C
N ! C

N ,

x 7! x� 2⌧GH (Gx� y) ,
(B.17)
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for some y 2 C
L. Then, D⌧ is Lipschitz continuous with respect to the norm

induced by �:

kD⌧ (x)�D⌧ (z)k�  L⌧ kx� zk� , 8x, z 2 C
N ,

with Lipschitz contant:

L⌧ = max {|1� ⌧↵|, |1� ⌧�|} . (B.18)

Moreover, D⌧ is contractive, i.e. 0 < L⌧ < 1, for 0 < ⌧ < 2/�, and minimised
for ⌧ = 2/(↵+ �).

Proof. We have

kD⌧ (x)�D⌧ (z)k� =
��(IN � 2⌧GH

G)(x� z)
��
�


��IN � 2⌧GH

G
��
�
kx� zk� ,

= L⌧ kx� zk�

where the Lipschitz constant L⌧ :=
��IN � 2⌧GH

G
��
�
> 0 is the operator norm

of IN � 2⌧GH
G induced by the �-norm on C

N :
��IN � 2⌧GH

G
��
�

= sup
kxk�=1

k
�
IN � 2⌧GH

G
�
xk�

= sup
kxk�=1

����1/2
�
IN � 2⌧GH

G
�
x

���
2

= sup
kx̃k2=1

����1/2
�
IN � 2⌧GH

G
�
��1/2

x̃

���
2

=
���IN � 2⌧�1/2

G
H
G��1/2

���
2
. (B.19)

Note that since G is injective, GH
G is positive definite and hence we easily

get [88] that the eigenvalues of IN � 2⌧�1/2
G

H
G��1/2 are contained in the

interval [1 � ⌧�, 1 � ⌧↵], where � � ↵ > 0 are defined in (B.15) and (B.16)
respectively. Its spectral norm is hence given by:

���IN � 2⌧�1/2
G

H
G��1/2

���
2

= max {|1� ⌧↵|, |1� ⌧�|} ,

which proves (B.18). Finally, the restriction on ⌧ for L⌧ to be smaller than one
follows from basic algebra, and is discussed in [176]. ⌅

The second lemma states that in a Hilbert space, orthogonal projection maps
onto closed convex sets are non-expansive. This is a known result of approxi-
mation theory [50, 118].

Lemma B.3 — Non-Expansiveness of Closed Convex Projections. Let H

be some Hilbert space with some inner-product norm k ·k and C ⇢H a closed,
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convex set. Then the orthogonal projection map onto C, defined as

⇧C(x) = arg min
z2C

kx� zk, 8x 2H ,

is non-expansive, i.e.

k⇧C(x)�⇧C(z)k  kx� zk, 8x, z 2H .

Proof. Lemma B.3 is proven in [50, Theorem 5.5]. ⌅

The third lemma states that the singular value projection map ⇧Hk
is locally

non-expansive in every neighbourhood of the manifold of matrices with rank
exactly k.

Lemma B.4 — Local Non-Expansiveness of the Singular Value Projection.
Let Cm⇥n be the space of complex-valued rectangular matrices of size m ⇥ n,
and Hk ⇢ C

m⇥n, Rk ⇢ C
m⇥n the sets of matrices with rank at most and

exactly k  max{m,n} respectively. Denote further by ⇧Hk
the orthogonal

projection map onto Hk given in (10.21). Then, for every R 2 Rk, the map
⇧Hk

is well-defined (single-valued) and locally non-expansive

k⇧Hk
(X)�⇧Hk

(Z)kF  kX �ZkF , 8X,Y 2 U ,

for some neighbourhood U 3 R.

Proof. Since Rk is dense in Hk [5, Proposition 2.1], we have ⇧Hk
= ⇧Rk

in a neighbourhood W of every R 2 Rk (see [108, Example 2.3] for a de-
tailed proof of this fact). Moreover, [100, Lemma 3] tells us that, for every
R 2 Rk, ⇧Rk

is, in a neighbourhood U 3 R such that U ⇢ W, well-defined
(single-valued), continuous and differentiable, with gradient given by:r⇧Rk

=
⇧TR

k
(R) where TRk

(R) ⇢ C
m⇥n is the tangent plane of the manifold Rk in

R (see [108, Example 2.2]). Since TRk
(R) is by definition a linear subspace

of C
m⇥n, the orthogonal projection operator ⇧TR

k
(R) is bounded with unit

spectral norm. The map ⇧Rk
= ⇧Hk

is consequently 1-Lipschitz continuous
(i.e. non-expansive) with respect to the Frobenius norm in the neighbourhood
U of R 2 Rk. ⌅

The last lemma finally, makes use of Lemmas B.3 and B.4 to show that the
denoising operator Hn(x) = T †

P
[⇧TP

⇧HK
⇧B⇢

]nTP (x) is locally non-expansive
with respect to the �-norm:

Lemma B.5 — Local Non-Expansiveness of Denoiser. Let C(N�P )⇥(P+1) be
the space of complex-valued rectangular matrices of size (N � P ) ⇥ (P + 1),
P  bN/2c, and HK ⇢ C

(N�P )⇥(P+1), RK ⇢ C
(N�P )⇥(P+1) the sets of
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matrices with rank at most and exactly K  P respectively. Let

Hn(x) := T †

P
[⇧TP

⇧HK
⇧B⇢

]nTP (x), 8x 2 C
N ,

be the approximate proximal operator (10.40). Then,Hn is locally well-defined
(single-valued) and non-expansive with respect to the �-norm

kHn(x)�Hn(z)k�  kx� zk�,

for all x, z 2 C
N such that TP (x), TP (z) are in some neighbourhood of some

matrix R 2 RK .

Proof. First, we have, for all x, z 2 C
N :

kHn(x)�Hn(z)k� =
���T †

P
(DnTP (x)�DnTP (z))

���
�
, (B.20)

where Dn = [⇧TP
⇧HK

⇧B⇢
]n. Notice that for X 2 TP , we have

���T †

P
(X)

���
2

�
= h�T †

P
(X), T †

P
(X)i2

= h���1T ⇤

P (X), T †

P
(X)i2

= hX, TPT
†

P
(X)iF

= hX,⇧TP
XiF

= hX,XiF
= kXk2F .

Since the range of Dn is TP , (B.20) becomes:

kHn(x)�Hn(z)k� = kDnTP (x)�DnTP (z)k
F
.

Assuming now that TP (x) and TP (z) are in some neighbourhood of some point
R 2 RK , we can invoke Lemmas B.3 and B.4 recursively to obtain:

kDnTP (x)�DnTP (z)k
F
 kTP (x)� TP (z)k

F

= kx� zk� ,

where we have used:

kTP (x)k2
F

= hTP (x), TP (x)iF = hT ⇤

PTP (x),xi2 = kxk�, 8x 2 C
N .

We finally get
kHn(x)�Hn(z)k�  kx� zk� ,

for all x, z 2 C
N such that TP (x), TP (z) are in some neighbourhood of some

matrix R 2 RK . ⌅

We are now ready to show Theorem 10.8. Let

U⌧,n(x) := Hn (x� ⌧rF (x)) = Hn(D⌧ (x)), x 2 C
N .
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Then, for every x, z 2 C
N such that TP (x), TP (z) are in some neighbourhood

of some matrix R 2 RK , U⌧,n is locally Lipschitz continuous as composition
between two (locally) Lipschitz continuous functions Hn and D⌧ , see Lemmas
B.5 and B.2 respectively. Moreover, the Lipschitz constant is the product of the
Lipschitz constants of Hn and D⌧ , 1 and L⌧ in (B.18) respectively. We have
therefore

kU⌧,n(x)� U⌧,n(z)k�  L⌧kx� zk�,

for all x, z 2 C
N such that TP (x), TP (z) are in some neighbourhood of some

matrix R 2 RK . Finally, the restriction on ⌧ for L⌧ to be smaller than one
results from Lemma B.2.

⌅
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C
Supplementary Material to Chapter 11

1 Linear Algebra Tools
Chapter 11 makes heavy use of the Kronecker product and related operators. To
ease the user’s understanding, we provide a short description of these operators
along with proofs of common transforms used throughout the text. Useful
references for this section are [84, 116].

1.1 Conventions
In this chapter, we adopt the following conventions:

• Vectors are denoted with bold lowercase letters: y.
• Matrices are denoted with bold uppercase letters: A.
• If A 2 C

M⇥N , ak 2 C
M denotes the k-th column of A.

• The i-th entry of vector y is denoted [y]
i
.

• The (i, j)-th entry of matrix A is denoted [A]
ij

.
• The conjugation operation is denoted by overlining a vector or a matrix

respectively: a, A.
• The modulus of a complex number z 2 C is denoted by |z|.

1.2 Hadamard, Kronecker and Khatri-Rao products
The Hadamard product is the element-wise multiplication operator:

Definition C.1 — Hadamard Product. Let A 2 C
M⇥N and B 2 C

M⇥N . The
Hadamard product A�B 2 C

M⇥N is defined as

[A�B]
ij

= [A]
ij

[B]
ij
.

Moreover, we denote by A
�2 the Hadamard square of a matrix: A�A.

The Kronecker product generalises the vector outer product to matrices, and
represents the tensor product between two finite-dimensional linear maps:

Definition C.2 — Kronecker Product. Let A 2 C
M1⇥N1 and B 2 C

M2⇥N2 .
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The Kronecker product A⌦B 2 C
M1M2⇥N1N2 is defined as

A⌦B =

2

664

[A]11B · · · [A]1N1
B

...
. . .

...
[A]

M11
B · · · [A]

M1N1
B

3

775 .

The main properties of the Kronecker product are [116]:

(A⌦B)H = A
H ⌦B

H , (C.1)
(A⌦B) (C ⌦D) = (AC)⌦ (BD) , (C.2)

(A⌦B)� (C ⌦D) = (A�C)⌦ (B �D) . (C.3)

The Khatri-Rao product finally, is a column-wise Kronecker product:

Definition C.3 — Khatri-Rao Product. Let A 2 C
M1⇥N and B 2 C

M2⇥N .
The Khatri-Rao product A �B 2 C

M1M2⇥N is defined as

A �B = [a1 ⌦ b1, . . . ,aN ⌦ bN ] .

1.3 Matrix identities

In imaging problems, A⌦B and A�B are often too large to be stored in mem-
ory. However it is not the matrix itself that is of interest in many circumstances,
but rather the effect of a linear map such as f(x) = (A ⌦ B)x. The matrix
identities below allow us to evaluate f(x) without ever having to compute
large intermediate arrays. They make use of the vectorisation operator, defined
hereafter:

Definition C.4 — Vectorisation. Let A 2 C
M⇥N . The vectorisation operator

vec(·) reshapes a matrix into a vector by stacking its columns:

[vec(A)]
M(j�1)+i

= [A]
ij
.

Conversely, the matricisation operator matM,N (·) reshapes a vector into a
matrix:

[matM,N (a)]
ij

= [a]
M(j�1)+i

.

Commonly used matrix identities are the following [84, 181]:

vec(ABC) =
�
C

T ⌦A
�
vec(B) (C.4)

vec(A diag(b)C) =
�
C

T �A
�
b (C.5)

hA,BiF = tr
�
A

H
B
�

= vec(A)H vec(B) (C.6)

vec(baT ) = a⌦ b (C.7)
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In this work, we furthermore make use of the following nonstandard matrix
identities, proven hereafter:

(A �B)H vec(C) = diag
�
B

H
CA

�
(C.8)

(A⌦B)H (A⌦B) vec(C) = vec(BH
BCA

T
A) (C.9)

(A �B)H (A �B) c = diag(BH
B diag(c)AT

A) (C.10)

(A �B)H (A �B) = A
H
A�B

H
B. (C.11)

Proof. (C.8)
h
(A �B)H vec(C)

i

i

= h[A �B]
i
, vec(C)i = (ai ⌦ bi)

H vec(C)

(C.7)
= vec(bia

T

i )H vec(C)
(C.6)
= tr

�
aib

H

i C
�

= tr
�
b
H

i Cai

�
=
⇥
B

H
CA

⇤
ii

=
⇥
diag

�
B

H
CA

�⇤
i

⌅

Proof. (C.9)

(A⌦B)H (A⌦B) vec(C)
(C.1)
=
�
A

H ⌦B
H
�
(A⌦B) vec(C)

(C.3)
=
⇥�
A

H
A
�
⌦
�
B

H
B
�⇤

vec(C)

(C.4)
= vec(BH

BCA
T
A)

⌅

Proof. (C.10)

(A �B)H (A �B) c
(C.5)
= (A �B)H vec

�
B diag(c)AT

�

(C.8)
= diag

�
B

H
B diag(c)AT

A
�

⌅

Proof. (C.11)
h
(A �B)H (A �B)

i

ij

= hai ⌦ bi,aj ⌦ bji
(C.7)
= hvec(bia

T

i ), vec(bja
T

j )i

(C.6)
= tr

�
aib

H

i bja
T

j

�
= tr

�
b
H

i bja
T

j ai

�

= hbi, bjihai,aji

When put in matrix form, the above yields

(A �B)H (A �B) = A
H
A�B

H
B

⌅
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2 Derivation: PGD for elastic-net problem 11.3

This section shows how to obtain proximal iteration (11.4) from (11.3).
Recall that the sound intensity map is obtained by solving the convex opti-

misation problem:

x̂ = arg min
x2R

N

+

f(x) + g(x), (C.12)

f(x) =
1

2

���⌃̂�A diag(x)AH

���
2

F

(C.5)
=

1

2

���vec(⌃̂)�
�
A �A

�
x

���
2

2
, (C.13)

g(x) = �
h
� kxk1 + (1� �) kxk22

i
, (C.14)

where g is an elastic-net regularizer with � � 0 and � 2]0, 1[.
PGD is a fixed-point method to solve problems of the form (C.12) where

f , g are closed proper convex with f differentiable. It consists of iterating the
proximal update equation until convergence:

x
k = prox

↵g

⇣
x
k�1 � ↵rf(xk�1)

⌘
, (C.15)

where ↵ > 0 is the step size and prox
↵g

is the proximal operator associated
with (C.14), given by (see proof below):

prox
↵g

(x) = arg min
u2R

N

+

g(u) +
1

2↵
ku� xk22 , (C.16)

= ReLu
✓

x� �↵�
2�↵(1� �) + 1

◆
, 8x 2 R

N . (C.17)

The quantity rf 2 R
N finally is obtained using the rules of vector calculus

[140]:

rf(x) =

⇢
@

@x

h
vec(⌃̂)�

�
A �A

�
x

i�
·
h
vec(⌃̂)�

�
A �A

�
x

i

=
�
A �A

�H h�
A �A

�
x� vec(⌃̂)

i
. (C.18)

Combining (C.15), (C.17) and (C.18) leads to (11.4).

Proof: (Analytic expression for prox
↵g

). Replacing (C.14) in (C.16), we get for
x 2 R

N :

prox
↵g

(x) = arg min
u2R

N

+

�
h
� kuk1 + (1� �) kuk22

i
+

1

2↵
ku� xk22

= arg min
(u1,...,uN )2RN

+

NX

n=1

�
⇥
�|un| + (1� �)u2n

⇤
+

1

2↵
(un � xn)2

= arg min
(u1,...,uN )2RN

+

NX

n=1

�
⇥
�un + (1� �)u2n

⇤
+

1

2↵

⇥
u2n + x2n � 2unxn

⇤

246



3 Network gradient evaluation 247

= arg min
(u1,...,uN )2RN

+

NX

n=1

'n(un). (C.19)

Notice that (C.19) is the sum of N independent objective functionals, hence
each can be independently minimised. (We drop the subscript of 'n below for
simplicity.) Let û be the minimiser:1 1 Which exists since

the optimisation
problem is convex.û = arg min

u�0
'(u) = arg min

u�0
�
⇥
�u + (1� �)u2

⇤
+

1

2↵

⇥
u2 + x2 � 2ux

⇤
, (C.20)

for some fixed x 2 R. Then two cases can occur:
• x  0: the objective functional being composed of positive terms only,

any û > 0 will increase the objective. Therefore û = 0.
• x > 0: In this case the Karush Kuhn Tucker (KKT) conditions [27, 161]

tell us that û is a minimizer of (C.20) if

û'0(û) = 0

'0(û) � 0 if û = 0.

Plugging '0(u) = ��+
�
2�(1� �) + ↵�1

�
u�↵�1x and solving the above

yields

û =

(
x��↵�

2�↵(1��)+1 x > �↵�,

0 x  �↵�
.

Both cases can be written in short as

û = arg min
u�0

'(u) =


x� �↵�

2�↵(1� �) + 1

�

+

, 8x 2 R,

leading to an element-wise proximal operator of the form

prox
↵g

(x) =


x� �↵�

2�↵(1� �) + 1

�

+

= ReLu
✓

x� �↵�
2�↵(1� �) + 1

◆
, 8x 2 R

N .

⌅

3 Network gradient evaluation
This section shows how to obtain derivatives of data-fidelity term Lt from
eq. (11.14) w.r.t. network parameters ✓,B, ⌧ .2 2 For notational

simplicity, this section
drops the subscript in
Lt.

3.1 Problem statement
Recall that

rL(⌦) =

⇢
@L
@✓
2 R

K+1,
@L
@B
2 C

M⇥N ,
@L
@⌧
2 R

N

�
,

L(⌦) =
1

2

��x̂� x
L(⌦)

��2
2

kx̂k22
, (C.21)
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Figure C.1: L-layer computational graph of L.

where x
L(⌦) 2 R

N
+ is given by recurrence relation (11.1):

x
l(⌦) = �

h
P✓(L)xl�1 +

�
B �B

�H
vec(⌃̂)� ⌧

i
(C.22)

= �
h
u
l + w � ⌧

i
(C.23)

= �
h
s
l

i
, l = 1, . . . , L (C.24)

with x
0 2 R

N
+ some arbitrary constant, � : R ! R a point-wise non-linearity,

and P✓(L) =
P

K

k=0 ✓kTk(L) a polynomial filter of order K expressed in terms
of Chebychev polynomials.

rL can be efficiently evaluated using reverse-mode algorithmic differentia-
tion[15] in a two-stage process:

• Forward pass: evaluate eq. (C.21) while storing all intermediate values
w, ⌧ ,

�
s
l
 
l=1,...,L

;
• Backward pass: walk the computational graph (Fig. C.1) backwards to

evaluate derivatives w.r.t. ✓,B, ⌧ .

3.2 Conventions

• If u 2 R
N , v 2 R

M , the Jacobian matrix @u

@v
2 R

N⇥M is defined as

@u

@v

�

ij

=
@ [u]

i

@ [v]
j

.

Gradients of scalar-valued functions are therefore row vectors.
• If u 2 R

N , V 2 R
M⇥Q, the Jacobian tensor @u

@V
2 R

N⇥M⇥Q is defined as

@u

@V

�

ijk

=
@ [u]

i

@ [V ]
jk

.
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3.3 Common intermediate gradients


@L
@xL

�

i

=
@L

@ [xL]
i

=

"
x
L � x̂

kx̂k22

#

i

(C.25)


@xl

@sl

�

ij

=
@
⇥
x
l
⇤
i

@ [sl]
j

= �i�j�
0

✓h
s
l

i

j

◆
=
h
diag

⇣
�0
⇣
s
l

⌘⌘i

ij

, l = 1, . . . , L

(C.26)

@L
@sl

=
@L
@xl

@xl

@sl
(C.26)
=

@L
@xl

diag
⇣
�0
⇣
s
l

⌘⌘
, l = 1, . . . , L (C.27)


@sl

@ul

�

ij

=
@
⇥
s
l
⇤
i

@ [ul]
j

=
@

@ [ul]
j

h
u
l + w � ⌧

i

i

= �i�j = [IN ]
ij

(C.28)

@L
@ul

=
@L
@sl

@sl

@ul

(C.28)
=

@L
@sl

, l = 1, . . . , L (C.29)


@ul

@xl�1

�

ij

=


@

@xl�1
P✓(L)xl�1

�

ij

= [P✓(L)]
ij
, l = 1, . . . , L (C.30)


@sl

@w

�

ij

=
@
⇥
s
l
⇤
i

@ [w]
j

=
@

@ [w]
j

h
u
l + w � ⌧

i

i

= �i�j = [IN ]
ij

(C.31)

@L
@w

=
LX

l=1

@L
@sl

@sl

@w
(C.31)
=

LX

l=1

@L
@sl

(C.32)

3.4 @L/@✓


@ul

@✓

�

ij

=
@

@ [✓]
j

KX

k=0

[✓]
k

h
Tk(L)xl�1

i

i

=
h
Tj(L)xl�1

i

i

, l = 1, . . . , L

(C.33)


@L
@✓

�

i

=
LX

l=1


@L
@ul

@ul

@✓

�

i

(C.29)
=

(C.33)

LX

i=1

@L
@sl

Ti(L)xl�1, i = 0, . . . ,K (C.34)
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3.5 @L/@B

@L

@B
can be obtained by evaluating @L

@w

@w

@B
, but @w

@B
2 C

N⇥M⇥N is difficult to
obtain directly. We therefore proceed in multiple steps:

1. Decompose w as (w1 + w2 + w3) and express {wk}k=1,2,3 explicitly in
terms of ⌃̂R, ⌃̂I ,BR,BI :

w =
�
B �B

�H
vec(⌃̂)

(C.8)
= diag

⇣
B

H⌃̂B
⌘

(C.35)

= diag
⇣
[BR + jBI ]

H

h
⌃̂R + j⌃̂I

i
[BR + jBI ]

⌘

= diag
⇣⇥

B
T

R � jBT

I

⇤ h
⌃̂R + j⌃̂I

i
[BR + jBI ]

⌘

= diag
⇣
B

T

R⌃̂RBR + B
T

I ⌃̂RBI + B
T

I ⌃̂IBR �B
T

R⌃̂IBI

⌘

+ j diag
⇣
B

T

R⌃̂IBR + B
T

I ⌃̂IBI + B
T

R⌃̂RBI �B
T

I ⌃̂RBR

⌘

w2R
N

+
= diag

⇣
B

T

R⌃̂RBR + B
T

I ⌃̂RBI + B
T

I ⌃̂IBR

⌘
� diag

⇣
B

T

R⌃̂IBI

⌘

= diag
⇣
B

T

R⌃̂RBR + B
T

I ⌃̂RBI + B
T

I ⌃̂IBR

⌘
� diag

⇣
B

T

I ⌃̂
T

I BR

⌘

⌃̂I=�⌃̂T

I= diag
⇣
B

T

R⌃̂RBR + B
T

I ⌃̂RBI + B
T

I ⌃̂IBR

⌘
+ diag

⇣
B

T

I ⌃̂IBR

⌘

= diag
⇣
B

T

R⌃̂RBR + B
T

I ⌃̂RBI + 2BT

I ⌃̂IBR

⌘

(C.8)
= (BR �BR)T vec(⌃̂R)| {z }

w1

+ (BI �BI)
T vec(⌃̂R)| {z }

w2

+ 2 (BR �BI)
T vec(⌃̂I)| {z }

w3

.

2. Derive analytic forms for
n

@wk

@BR/I

o

k=1,2,3
:


@w1

@BR

�

ijk

=
@ [w1]i
@ [BR]

jk

(C.8)
=

@

@ [BR]
jk

h
diag

⇣
B

T

R⌃̂RBR

⌘i

i

(C.36)

=
@

@ [BR]
jk

(bRi )T ⌃̂Rb
R

i

= �i�k

@

@ [BR]
jk

(bR
k
)T ⌃̂Rb

R

k

= �i�k

MX

q=1

MX

g=1

h
⌃̂R

i

qg

@

@ [BR]
jk

n
[BR]

qk
[BR]

gk

o

= �i�k

MX

q=1

✓h
⌃̂R

i

jq

+
h
⌃̂R

i

qj

◆
[BR]

qk

⌃̂R=⌃̂T

R= 2�i�k(b
R

k
)T�R

j
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@w2

@BI

�

ijk

=
@ [w2]i
@ [BI ]jk

(C.8)
=

@

@ [BI ]jk

h
diag

⇣
B

T

I ⌃̂RBI

⌘i

i

(C.37)

=
@

@ [BI ]jk
(bIi )

T ⌃̂Rb
I

i

= �i�k

@

@ [BI ]jk
(bI

k
)T ⌃̂Rb

I

k

= �i�k

MX

q=1

MX

g=1

h
⌃̂R

i

qg

@

@ [BI ]jk

n
[BI ]qk [BI ]gk

o

= �i�k

MX

q=1

✓h
⌃̂R

i

jq

+
h
⌃̂R

i

qj

◆
[BI ]qk

⌃̂R=⌃̂T

R= 2�i�k(b
I

k
)T�R

j


@w3

@BR

�

ijk

=
@ [w3]i
@ [BR]

jk

(C.8)
= 2

@

@ [BR]
jk

h
diag

⇣
B

T

I ⌃̂IBR

⌘i

i

(C.38)

= 2
@

@ [BR]
jk

(bIi )
T ⌃̂Ib

R

i

= 2�i�k

@

@ [BR]
jk

(bI
k
)T ⌃̂Ib

R

k

= 2�i�k(b
I

k
)T�I

j


@w3

@BI

�

ijk

=
@ [w3]i
@ [BI ]jk

(C.8)
= 2

@

@ [BI ]jk

h
diag

⇣
B

T

I ⌃̂IBR

⌘i

i

(C.39)

= 2
@

@ [BI ]jk
(bIi )

T ⌃̂Ib
R

i

= 2�i�k

@

@ [BI ]jk
(bI

k
)T ⌃̂Ib

R

k

⌃̂I=�⌃̂T

I= �2�i�k

@

@ [BI ]jk
(bR

k
)T ⌃̂Ib

I

k

= �2�i�k(b
R

k
)T�I

j

3. Combine
n

@wk

@BR/I

o

k=1,2,3
with @L

@w
to obtain @L

@B
2 C

M⇥N :


@w

@wk

�

ij

=
@ [w]

i

@ [wk]j
=

@

@ [wk]j
[w1 + w2 + w3]i = �i�j = [IN ]

ij
, k = 1, 2, 3

(C.40)
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@L
@wk

=
@L
@w

@w

@wk

(C.32)
=

(C.40)

LX

l=1

@L
@sl

, k = 1, 2, 3 (C.41)


@L
@w1

@w1

@BR

�

jk

=
NX

i=1


@L
@w1

�

i


@w1

@BR

�

ijk

(C.36)
= 2

NX

i=1


@L
@w1

�

i

�i�k(b
R

k
)T�R

j

(C.42)

= 2


@L
@w1

�

k

(bR
k
)T�R

j =


2⌃̂T

RBR diag

✓
@L
@w1

◆�

jk

⌃̂R=⌃̂T

R=


2⌃̂RBR diag

✓
@L
@w1

◆�

jk


@L
@w2

@w2

@BI

�

jk

=
NX

i=1


@L
@w2

�

i


@w2

@BI

�

ijk

(C.37)
= 2

NX

i=1


@L
@w2

�

i

�i�k(b
I

k
)T�R

j

(C.43)

= 2


@L
@w2

�

k

(bI
k
)T�R

j =


2⌃̂T

RBI diag

✓
@L
@w2

◆�

jk

⌃̂R=⌃̂T

R=


2⌃̂RBI diag

✓
@L
@w2

◆�

jk


@L
@w3

@w3

@BR

�

jk

=
NX

i=1


@L
@w3

�

i


@w3

@BR

�

ijk

(C.38)
= 2

NX

i=1


@L
@w3

�

i

�i�k(b
I

k
)T�I

j

(C.44)

= 2


@L
@w3

�

k

(bI
k
)T�I

j =


2⌃̂T

I BI diag

✓
@L
@w3

◆�

jk

⌃̂I=�⌃̂T

I=


�2⌃̂IBI diag

✓
@L
@w3

◆�

jk


@L
@w3

@w3

@BI

�

jk

=
NX

i=1


@L
@w3

�

i


@w3

@BI

�

ijk

(C.39)
= �2

NX

i=1


@L
@w3

�

i

�i�k(b
R

k
)T�I

j

(C.45)

= �2


@L
@w3

�

k

(bR
k
)T�I

j =


�2⌃̂T

I BR diag

✓
@L
@w3

◆�

jk

⌃̂I=�⌃̂T

I=


2⌃̂IBR diag

✓
@L
@w3

◆�

jk
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@L
@BR

=
@L
@w1

@w1

@BR

+
@L
@w3

@w3

@BR

(C.46)

(C.42)
=

(C.44)
2

⇢
⌃̂RBR diag

✓
@L
@w1

◆
� ⌃̂IBI diag

✓
@L
@w3

◆�

(C.41)
= 2

n
⌃̂RBR � ⌃̂IBI

o
diag

 
LX

l=1

@L
@sl

!

= 2<
n
⌃̂B

o
diag

 
LX

l=1

@L
@sl

!

@L
@BI

=
@L
@w2

@w2

@BI

+
@L
@w3

@w3

@BI

(C.47)

(C.43)
=

(C.45)
2

⇢
⌃̂RBI diag

✓
@L
@w2

◆
+ ⌃̂IBR diag

✓
@L
@w3

◆�

(C.41)
= 2

n
⌃̂RBI + ⌃̂IBR

o
diag

 
LX

l=1

@L
@sl

!

= 2=
n
⌃̂B

o
diag

 
LX

l=1

@L
@sl

!

@L
@B

=
@L
@BR

+ j
@L
@BI

= 2⌃̂B diag

 
LX

l=1

@L
@sl

!
(C.48)

3.6 @L/@⌧


@sl

@⌧

�

ij

=
@
⇥
s
l
⇤
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Combining eqs. (C.34), (C.48) and (C.50) leads to Algorithms 11.13 and 11.14.
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4 Real Data Experiments (Supplement)
Results in the main text present a summary of DeepWave’s performance on a
specific real-world dataset. The goal of this section is to provide a more elab-
orate description of the dataset, training process, and emphasise interesting
observations.

4.1 Dataset Description
Two real-world datasets are considered:

Dataset 1 [131] consists of a series of 92 microphone recordings from the
Pyramic[155] array (Fig. C.2) taken in an anechoic chamber to evaluate the
performance of different direction-of-arrival algorithms [132]. Specifically, the
dataset contains a series of 3 second recordings of human speech emitted by
loudspeakers positioned around the edge of the chamber and located at the
same height. Each recording has one, two, or three speakers active simulta-
neously. Recordings contain both male and female speech samples to cover a
wide audible range.

Dataset 2 [150] consists of a larger collection of microphone recordings
from the Pyramic[155] array (Fig. C.2) taken in an anechoic chamber. The
goal of this dataset is to provide a generic dataset on which to evaluate the
performance of array processing algorithms on real-life recordings with all
the non-idealities involved. Specifically, the dataset contains 2700 recordings
of human speech emitted from every direction of the anechoic chamber at
a resolution of 2 degrees in azimuth and three different elevations ({-15, 0,
15} degrees). Recordings contain both male and female speech samples to
cover a wide audible range. While the total number of recordings is signifi-
cant, since each recording contains emissions from a single source, different
audio samples can be combined to simulate complex multi-source sound fields.
This data-augmentation task therefore allows us to assess the generalizability
of DeepWave to such setups. Concretely, we construct a synthetic dataset of
5700 distinct microphone recordings with one, two, or three active speakers
simultaneously.

4.2 Data Pre-Processing
The raw time-series are pre-processed to get a suitable training set for Deep-
Wave as follows:

• Instantaneous empirical covariances
n
⌃̂t

o

t

are obtained for 9 equi-spaced
frequency bands spanning [1500, 4500] Hz every 100 ms using Short-Time
Fourier Transforms (STFT) [95, 183].

• APGD ground truths {x̂t}t were estimated by solving eq. (11.3) with
� = 0.5, step size ↵ = 1/

��A �A
��2
2
, and �t = max([x1

t ]1, . . . , [x
1
t ]N )/(↵�),

where x
1
t 2 R

N is the APGD estimate obtained after one iteration of
eq. (11.5).
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Figure C.2: Pyramic 48-element microphone array [155] used to acquire real-world dataset
[131]. Eight microphones are mounted on six PCBs that form the edges of a tetrahedron.

After pre-processing, we obtain 2760 training samples T =
n⇣
⌃̂t, x̂t

⌘o

t

per
frequency band.

4.3 Network Training
DeepWave is trained by solving (11.14) using stochastic gradient descent
(SGD) with momentum acceleration [174]. The optimisation problem is ini-
tialised as given in eq. (11.15). Training is done on an 80% random subset of
T using mini-batches of size Nbatch = 100, with the remaining 20% serving as
a validation set. The learning rate was set to 10�8.

Regularisation parameters were chosen based on a grid search with optimal
values �✓ = �B = �⌧ = 0.1. It was noticed during our experiments that regu-
larising ✓ and B provides little benefit to generalisation error and hence can
be omitted. Regularisation of ⌧ is important however to ensure convergence
to smooth biases. This is particularly relevant for rich acoustic fields where
sources have no spatial constraints (see Section 5).

Training and validation losses converged in less than 10 epochs for the opti-
mal parameterisation, i.e. when L = 5 and K ranges from 10 to 23 depending
on the frequency band. Total training time for Dataset 1 was 10 minutes per
band on an i7-8550U CPU with 32GB memory. Due to disk space constraints,
Dataset 2 was trained on a dual-socket Intel E5-2680v3 with 256GB memory.
Total training time for Dataset 2 was roughly 3 hours per band.

4.4 Experimental Results
In this section, we provide the supporting plots for the claims made in Section 4
of the main paper:

• Fig. C.3 shows DeepWave’s learnt bias parameter on Dataset 1. Unlike
APGD, the latter is highly nonuniform in space, and slightly stronger in
magnitude.

• Fig. C.4 shows the impulse response of DAS and DeepWave trained on
Dataset 1 at 3.5 kHz, obtained by simulating the data from a single point-
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source in the field. Such plots were used to compute resolution scores of
all algorithms across frequency bands.

• Fig. C.5 shows example spherical fields obtained with DeepWave, DAS,
APGD and APGD prematurely terminated applied to recordings in the
validation set of Dataset 1. Resolution and contrast comparisons are
moreover carried out. The true colour images displayed in Fig. C.5 were
obtained by mapping frequency channels into a colour spectrum (see the
color-frequency mapping in Fig. 11.4d).

• A video showing the evolution in time of DeepWave and DAS azimuthal
sound fields (as in Figs. 11.4a and 11.4b) is also available online: https:
//www.youtube.com/watch?v=PwB3CS2rHdI.

5 Further Experiments in Simulation

Results in Chapter 11 present a summary of DeepWave’s performance on two
real-world datasets. Though the datasets represent real-world scenarios, the
downside is that sound emissions are assumed to come from few directions
in space. It is therefore challenging to test DeepWave’s generalisability on this
dataset alone. The goal of this section is to investigate how well DeepWave
generalises to richer datasets through simulation.

Figure C.3: Bias parameter ⌧ learnt by SGD run on the dataset described in Section 4.1. We
observe that the biasing is more prominent at sidelobes and around actual sources. This results
in an increased angular resolution with fewer artefacts.

Figure C.4: Impulse response of DeepWave (top) vs. DAS (bottom). We notice a shrinkage of
the main lobe, resulting in increased angular resolution.
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(a) DAS spherical sound field (resolution: 25.3�, contrast: 0.78).

(b) DeepWave spherical sound field (resolution: 18.5�, contrast: 0.97).

(c) APGD spherical sound field (resolution: 13�, contrast: 0.97).

(d) APGD (terminated) spherical sound field (resolution: 21.4�, contrast: 0.94).

Figure C.5: Intensity field reconstruction comparison between DAS, DeepWave (L = 5),
APGD (converged, Niter = 17), APGD (premature termination, Niter = 5). In terms of
resolution and contrast, DeepWave and APGD have similar performance, outperforming DAS
by approximately 27% resolution-wise and 20% contrast-wise across frequency bands. When
limited to a number of iterations equal to the depth L of DeepWave, APGD performances
degrade considerably.
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5.1 Dataset description

The simulated dataset is designed to mimic a key application of acoustic cam-
eras: accurate mapping of the sound field in an open-air setting from a given
direction. To this end, the setup is modelled as follows:

• The scene is assumed to be a 120� spherical viewport in which sources
are uniformly distributed.

• Source emissions follow a narrow-band point-source model at 2 kHz [95,
181], where their intensities are either uniform or Rayleigh-distributed
with rate parameter r = 1. All images below show equi-amplitude visual-
isations only as they are easier to assess through visual inspection.

• Emissions from the scene are captured by a 64-element spherical micro-
phone array of radius r = 20 cm.

• Empirical covariances matrices ⌃̂ 2 C
64⇥64 are synthesised using the tra-

ditional far-field measurement equation [181, eq.(12)] for point sources.
• APGD ground truths are obtained as described in Section 4.2.

The final dataset consists of 20,000 images that contain up to 10 sources
in the field. Training the network is identical to Section 4.3, except for the
batch-size which increases to 200 and the learning rate that is set to 10�7.
In particular training converges in less than 10 epochs, with a total runtime
proportionally larger than in Section 4.3 due to the increased dataset size. The

Figure C.6: Intensity field reconstruction comparison between (a) APGD (Niter = 48), (b)
DeepWave (L = 5), and (c) DAS. The image quality results corroborate with the observations
made in Fig. C.5.
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optimal parameterisation of the network is achieved with L = 6 and K = 18.

5.2 Experimental results
• Fig. C.6 shows example spherical fields obtained with DeepWave, DAS

and APGD applied to recordings in the validation set of DeepWave.
• Fig. C.7 investigates the influence of DeepWave’s depth on the validation

loss. Profiles show that 5 or 6 layers are sufficient for the investigated
dataset.

• Table C.1 investigates the runtime of APGD, DAS and DeepWave for
different depths. DAS and DeepWave execute several orders of magni-
tude faster than APGD, regardless of network depths. Similar conclusions
apply to the real-data setup investigated in Section 4.

Figure C.7: Influence of network depth on validation loss. The plot shows the relative
squared-error on the validation set between APGD ground truth x̂ and DeepWave output xL as
a function of network depth L using simulated data. The red curve corresponds to the full
unconstrained dataset with up to 10 sources present in the field. The blue curve is obtained by
retraining the network on a subset of the dataset where only up to 3 sources are present.
Precision loss for small L comes from insufficient sparsification of network output w.r.t. ground
truth. On the other hand error increase for L large are due to amplitude mismatches between
ground truth and network output. This is presumably caused by the use of the rectified tanh
activation function to avoid gradient explosion during training.
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Method Niter/L Execution time [s]

APGD (converged) 48 7.26
DeepWave 6 0.0072
DeepWave 5 0.0063
DeepWave 3 0.0059
DeepWave 1 0.0031
DAS 0.0024

Table C.1: Runtime comparison of imaging methods on simulated dataset. Execution times
averaged over 50 runs for a specific ⌃̂ 2 C

64⇥64. DeepWave inference time is comparable to
Delay-and-Sum and is adequate to obtain a fluid framerate on an acoustic camera. Runtimes in
DeepWave weakly depends on network depth L due to strong sparsity of the deblurring
operator D: the main contributor to the former is evaluation of the backprojection term
B vec(⌃̂). In stark contrast to DeepWave, APGD requires three orders of magnitude more time
to reach similar accuracy.

✓ B ⌧ Ltest rel. improv. [%] rel. improv. [%]

7 7 7 0.160417
7 7 3 0.054927 65.76 (777)
7 3 7 0.159698 0.45 (777)
3 7 7 0.159948 0.29 (777)

3 7 3 0.054910 65.77 (777) 0.03 (773)
3 3 7 0.159234 0.74 (777) 0.29 (737)
7 3 3 0.054917 65.77 (777) 0.02 (773)
3 3 3 0.054900 65.78 (777) 0.03 (733)

Table C.2: DeepWave performance comparison on simulated dataset described in
Appendix 5.1 as a function of parameter degrees of freedom. A 7 in the first three columns
means that the associated parameter was frozen during training. In contrast a 3 means that
the parameter is optimized during training. Ltest represents the data-fidelity loss term of
eq. (11.14) evaluated over the test set. Finally, the last two columns show the relative
improvement of Ltest w.r.t. the baseline parameterisation given in parentheses. The results
show that learning the shrinkage operator ⌧ has the strongest net effect on improving
predictive performance, while for this setup the deblurring P✓(L) and backprojection operators
B provide marginal gains.
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6 Ablation study
Results in the main text and above present a summary of DeepWave’s perfor-
mance after optimal tuning of network parameters ✓, B, ⌧ during training.
Given the physical interpretation of these parameters as deblurring, backpro-
jection and shrinkage operators respectively, we carry out an ablation study to
investigate the relative importance of each parameter on DeepWave’s ability to
reconstruct ground truth APGD images.

Concretely, eight instances of DeepWave with L = 6 are trained on the
simulated dataset described in Appendix 5.1. Each instance corresponds to
a particular combination of free/frozen parameters such that all possible pa-
rameter triplets are taken into consideration. Frozen parameters remain at
the initialisation point (11.15) of SGD. Network performance is assessed by
computing the data-fidelity term 1

T

P
T

t=1 Lt from (11.14) over the test set. The
results are shown in Table C.2.

As expected, freezing all three parameters (777) produces the worst recon-
structions as the network fails to converge to the ground truth after so few iter-
ations. At the other end of the spectrum, learning all parameters (333) leads
to the best predictive performance, with a relative improvement of 65.78%
over not learning anything. However the contributions of each parameter vary
significantly: Learning ⌧ (773) has the strongest net effect (65.76%), whereas
learning ✓ (377), B (737) provide minimal gains over no learning (777). The
second half of Table C.2 shows similar observations hold when training param-
eter pairs, where learning any parameter in addition to ⌧ only provides small
marginal gains over just learning the latter (773). The reason for the marginal
gains obtained when learning ✓ and B is that the deblurring and backprojec-
tion operators are, for the specific experimental conditions investigated (point
sources, non-reverberant environments (i.e. anechoic chambre), near-spherical
geometries), very well modelled by initialisation scheme (11.15). However, for
environments containing reverberation and non-spherical array geometries,
the observations above may differ significantly. In these contexts, learning ✓

and B may lead to better predictive performance.
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APGD accelerated proximal gradient descent.

CBP constrained basis pursuit.
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CNN convolutional neural-network.
CNNs convolutional neural-network.
CPGD Cadzow plug-and-play gradient descent.
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df degrees of freedom.
DFT discrete Fourier transform.
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e.g. exempli gratia.
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GRS gamma-ray spectroscopy.
gSHT generalised spherical harmonic transform.
gTikhonov generalised Tikhonov.
gTV generalised total variation.

HEALPix Hierarchical Equal Area isoLatitude Pixelization.



290 Acronyms

i.e. id est.
i.f.f. if and only if.
IBM International Business Machines.
ISTA iterative soft-thresholding algorithm.

KL Kullback-Leibler.
KREEP KREEP (potassium (K), rare earth elements (REE), phosphorus (P)).

LAI Leaf Area Index.
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PGD proximal gradient descent.
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s.t. such that.
SGD stochastic gradient descent.
SHT spherical harmonic transform.
SLRA structured low-rank approximation.
SNR signal to noise ratio.
SVD singular value decomposition.

Th Thorium.
TV total variation.

vs. versus.

w.r.t. with respect to.
WMO World Meteorological Organisation.
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