
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Multi-armed Bandits in Action

Farnood SALEHI

Thèse n° 9935

2020

Présentée le 21 février 2020

Prof. O. N. A. Svensson, président du jury
Prof. P. Thiran, Prof. L. E. Celis, directeurs de thèse
Prof. S. Mandt, rapporteur
Dr S. Lattanzi, rapporteur
Prof. . M. Jaggi, rapporteur

à la Faculté informatique et communications
Laboratoire de la Dynamique de l’lnformation et des Réseaux 2
Programme doctoral en informatique et communications

Acknowledgments

It would not be possible for me to finish this thesis without the help and encouragement
of many people, and I am glad that I have the opportunity to express my gratitude to
them. First and foremost, I would like to express my warmest gratitude to my supervisors,
Patrick Thiran and Elisa Celis for their mentorship. Their patience with me, sense of
responsibility, passion for science, openness for new ideas, and constant and dedicated
support give me the courage to explore new research directions, for which I am extremely
grateful.

Next, I would like to thank the members of my jury committee: Ola Svensson, Martin
Jaggi, Stephan Mandt, and Silvio Lattanzi. I thank them for the time they made in their
busy schedules and for accepting to be my thesis reviewers.

I also would like to thank our wonderful staff at the lab: Holly Cogliati-Bauereis,
Patricia Hjelt, and Angela Devenoge. Holly Cogliati-Bauereis proofread all my manuscripts
and provided invaluable help to improve them. Patricia Hjelt and Angela Devenoge were
always there to help me with administrative tasks.

During my Ph.D., I was fortunate to collaborate with a group of clever researchers
who are also coauthors in some of my papers. Stephan and Robert, many thanks for
giving me the opportunity to do an internship at Disney in which I learned a lot. William,
working with you was one of the most fruitful collaborations that I had, thanks. Nicolas,
it was a great experience working with you.

One of the best parts of my Ph.D. was working along with nice colleges throughout
my time at EPFL. Brunella and Lucas, thank you for your support and feedback for
my manuscripts. William, Victor and Arnout, I sincerely appreciate your friendship,
you are always helpful. Thank you Farid, Vincent, Mohamed, Julien, Runwei, Christina,
Sébastien, Daniyar, Mahsa, Mladen, Greg and Aswin.

Many thanks to my Iranian friends at EPFL, whom I cannot name all. But I would
like to thank Ehsan and Pedram. You were more than just a friend to me and your
supportive advice played a big role during the toughest moments of my Ph.D. life.

Finally, I would like to thank my parents and my brother, who have always supported
me in all moments of my life. I cannot find any words that can describe my gratitude to

iii

Acknowledgments

them, so I would like to dedicate this thesis to them. Last but not least, I want to thank
Fatemeh for bringing energy and love into my life!

Lausanne, November 25, 2019 Farnood Salehi.

iv

Abstract

Making decisions is part and parcel of being human. Among a set of actions, we want to
choose the one that has the highest reward. But the uncertainty of the outcome prevents
us from always making the right decision. Making decisions under uncertainty can be
studied in a principled way by the exploitation-exploration framework. The multi-armed
bandit (MAB) framework is perhaps one of the simplest, and yet one of the most powerful
settings to optimize a sequence of choices within an exploitation-exploration framework.
In this thesis, I study several MAB related problems, from three different perspectives: I
study (1) how machine-learning (ML) can benefit from MAB algorithms, (2) how MAB
algorithms can affect humans, and (3) how human interactions can be studied in the
MAB framework.

(1) Optimization lies at the heart of almost all ML algorithms. Stochastic-gradient
descent (SGD) and stochastic-coordinate descent (CD) are perhaps two of the most
well known and widely used optimization algorithms. In Chapters 2 and 3, I revisit the
datapoint and coordinate-selection procedure of SGD and CD from an MAB point of
view. The goal is to reduce the training time of ML models. SGD works by estimating,
on the fly, the gradient of the cost function by sampling a datapoint uniformly at random
from a training set, and CD works by updating only a single decision variable (coordinate)
sampled at random. Updating the model’s parameters based on, respectively, different
datapoints or different coordinates, yields various improvements. However, a priori, it
is not clear which datapoint or coordinate improves the model the most. I address this
challenge by studying these problems in an MAB setting, and I develop algorithms
to learn the optimal datapoint or coordinate selection strategies. Our methods often
significantly reduce the training time of several machine-learning models.

(2) Although some MAB algorithms are designed to improve ML algorithms, they
can affect humans’ opinions about the outside world. In the personalized recommender
systems, the goal is to predict the preference of a user and to suggest the best content
to them. However, recent studies suggest that a personalized algorithm can learn and
propagate systematic biases and polarize opinions [Pariser, 2011]. In Chapter 4, to combat
bias, I propose to use constraints on the distribution from which a content is selected.

v

Abstract

The constraints can be designed to ameliorate polarization and biases. I combine the
classic MAB setting with these constraints and show how an adaptation of an MAB
algorithm can lead to a scalable algorithm with provable guarantees for the constrained
setting.

(3) Interacting with others is one of the main sources of information for us. In
Chapter 5, I study how this natural setting in the human world can be studied in
the bandit framework. I extend the classic single decision-maker setting of MAB to
multiple decision-makers, where a decision-maker observes her neighbors’ decisions and
rewards. Presumably, the additional information of the neighbors should improve the
decisions. I show how to model such a decision-making process that appeals to the
classic MAB framework. I study the new setting, in both stochastic and adversarial
MAB frameworks, and I develop algorithms that incorporate the additional knowledge
of the peers. Furthermore, I show that our algorithms often significantly outperform the
existing algorithms that we could apply to this setting.

Keywords multi-armed bandit, recommender systems, uncertainty, decision making,
machine learning, stochastic optimization, stochastic gradient descent, stochastic coordi-
nate descent, polarization

vi

Résumé

Prendre des décisions forme l’essence même des comportements humains. Parmi un
ensemble d’actions, nous cherchons à choisir celle qui procurera la plus haute récompense.
Mais l’incertitude du résultat nous empêche de toujours prendre la meilleure décision.
La prise de décision en présence d’incertitude peut être analysée de manière rigoureuse
et raisonnée par l’étude du compromis entre exploration (des différentes options) et
exploitation (de la meilleure option). Les bandits manchots (multi-armed bandits en
anglais, abrégé MAB) offrent peut-être l’une des approches les plus simples, et pourtant
l’une des plus puissantes, afin d’optimiser une séquence de choix dans le cadre exploration-
exploitation. Dans cette thèse, j’étudie plusieurs problèmes liés aux MAB sous trois
angles différents : j’étudie (1) comment l’apprentissage automatique (machine learning
en anglais) peut bénéficier des algorithmes de MAB, (2) comment les algorithmes de
MAB peuvent s’appliquer aux êtres humains et (3) comment les interactions humaines
peuvent être étudiées sous l’œil des MAB.

L’optimisation est au cœur de presque tous les algorithmes d’apprentissage auto-
matique. L’algorithme du gradient stochastique (stochastic gradient descent en anglais,
abrégé SGD) et la descente à coordonnées stochastiques (stochastic coordinate descent en
anglais, abrégé CD) sont peut-être deux des algorithmes d’optimisation les plus connus et
les plus largement utilisés. Dans les Chapitres 2 et 3, je revisite la procédure de sélection
des données de SGD et des coordonnées de CD du point de vue des MAB. L’objectif est de
réduire le temps d’apprentissage des modèles d’apprentissage automatique. L’algorithme
SGD fonctionne en estimant à la volée le gradient de la fonction de coût en échantillonnant
un point de donnée de manière uniforme et aléatoire au sein d’un ensemble de données
d’apprentissage. L’algorithme CD, lui, fonctionne en mettant à jour une seule variable
de décision (coordonnée) échantillonnée au hasard. La mise à jour des paramètres du
modèle basée respectivement sur différents points de donnée ou différentes coordonnées
fournit diverses améliorations. Cependant, il est difficile a priori de savoir quel point de
donnée ou quelle coordonnée améliore le plus le modèle. J’aborde ce problème dans un
contexte MAB et je développe des algorithmes pour apprendre les stratégies optimales
de sélection des points de donnée ou des coordonnées. Nos méthodes réduisent souvent

vii

Résumé

de manière significative le temps d’apprentissage de plusieurs modèles d’apprentissage
automatique.

Bien que certains algorithmes de MAB soient conçus pour améliorer les algorithmes
d’apprentissage automatique, ils peuvent également affecter la perception qu’ont les êtres
humains de leur environnement. Dans un système de recommandations personnalisées,
l’objectif est de prédire les préférences des utilisateurs et de leur recommander le meilleur
contenu. Cependant, des études récentes suggèrent qu’un algorithme de recommandations
personnalisées peut également apprendre et propager un biais systématique et polariser
les opinions [Pariser, 2011]. Dans le Chapitre 4, je propose de combattre ce biais en
utilisant des contraintes sur la distribution à partir de laquelle le contenu est sélectionné.
Ces contraintes peuvent être conçues spécifiquement pour atténuer les phénomènes de
polarisation et de biais. Je combine l’approche classique des MAB avec ces contraintes et
je montre comment l’adaptation d’un algorithme de MAB sous contraintes peut conduire
à un algorithme flexible avec des garanties théoriques démontrables.

Interagir avec ses pairs est une de nos sources principales d’information. Dans le
Chapitre 5, j’étudie comment ce trait inhérent aux êtres humains peut être étudié sous l’œil
des MAB. J’étends l’analyse classique des MAB de un à plusieurs agents, où chaque agent
peut observer les décisions et les récompenses de ses voisins. L’information supplémentaire
venant des voisins permet alors d’améliorer la prise de décision. J’étudie ce nouveau
problème dans le cadre des MAB stochastiques, ainsi que des MAB "adversaires". De
plus, je développe des algorithmes qui incorporent l’information additionnelle des voisins
et je montre que nos algorithmes peuvent fréquemment dépasser de façon significative les
performances des algorithmes existants applicables dans ce cas.

Mots-clés bandits manchots, systèmes de recommandations, incertitude, prise de
décision, apprentissage automatique, optimisation stochastique, algorithme du gradient
stochastique, descente à coordonnées stochastiques, polarisation

viii

Contents

Acknowledgments iii

Abstract / Résumé v

Mathematical Notation xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Multi-armed Bandits . 4

1.2.1 Framework . 5
1.2.2 Adversarial Multi-armed Bandit 6
1.2.3 Stochastic Multi-armed Bandit . 9

1.3 Outline and Contributions . 12

2 Stochastic Gradient Descent with Bandit Sampling 17
2.1 Introduction . 17
2.2 Preliminaries . 21
2.3 Related Work . 22
2.4 Technical Contributions . 25

2.4.1 Multi-armed Bandit Sampling . 28
2.5 Combining MABS with Stochastic Optimization Algorithms 38

2.5.1 SGD . 39
2.5.2 First-order Algorithms . 41

2.6 Empirical Evaluation . 42
2.6.1 Experimental Setup . 43
2.6.2 Empirical Results for Different Smoothness Ratios τ 45
2.6.3 Empirical Results on Real-World Data 47
2.6.4 Stability . 47
2.6.5 Training Time . 48

ix

Contents

2.7 Summary . 50

Appendix 51
2.A Proofs . 51

2.A.1 Omitted Proofs . 51
2.A.2 MABS with IS . 52
2.A.3 Omitted Proofs of Section 2.5 . 53

2.B PSGD . 57
2.C Definitions . 59

3 Coordinate Descent with Bandit Sampling 61
3.1 Introduction . 61
3.2 Preliminaries . 64
3.3 Related Work . 65
3.4 Technical Contributions . 66

3.4.1 Marginal Decreases . 66
3.4.2 Greedy Algorithms (Full Information Setting) 68
3.4.3 Bandit Algorithms (Partial Information Setting) 76

3.5 Empirical Evaluation . 78
3.5.1 Experimental Setup . 79
3.5.2 Empirical Results . 82

3.6 Summary . 83

Appendix 85
3.A Basic Definitions . 85

3.A.1 Basic Definitions . 85
3.B Proofs . 85

4 Controlling Polarization in Personalization 91
4.1 Introduction . 91

4.1.1 Groups and Polarization . 92
4.2 Preliminaries . 94

4.2.1 Polarization in Existing Models . 94
4.2.2 Constraint setting . 95

4.3 Related Work . 97
4.4 Technical Contributions . 98

4.4.1 Overview of Algorithm 4.1: Constrained-ε-Greedy 99
4.4.2 Alternate Approaches and Special Cases 102

4.5 Empirical Evaluation . 104
4.5.1 Experimental Setup . 105
4.5.2 Empirical Results on Effect of Reducing Polarization on the Reward108
4.5.3 Empirical Results on Polarization Over Time 109

4.6 Summary . 109

x

Contents

Appendix 111
4.A Constrained-L1-OFUL. 111
4.B Laminar Constraints . 115

4.B.1 Budget Type Constraints . 116

5 Learn from Thy Neighbor 119
5.1 Introduction . 119
5.2 Preliminaries . 122
5.3 Related Work . 123
5.4 Technical Contributions for the Stochastic Setting 125
5.5 Technical Contributions for the Adversarial Setting 126

5.5.1 The EXPN Algorithm . 127
5.5.2 Comparison to Alternate Approaches 130
5.5.3 A Centralized Solution for the Network 133

5.6 Empirical Evaluation . 134
5.6.1 Adversarial Setting: Experimental setup 134
5.6.2 Adversarial Setting: Empirical Results 134
5.6.3 Stochastic Setting: Empirical Results 136

5.7 Summary . 138

Appendix 141
5.A Adversarial Bandits . 141
5.B Stochastic Bandits . 142

5.B.1 UCBN on Complete Graphs . 146
5.B.2 Lower Bound . 147

6 Conclusion 149

Bibliography 153

Curriculum Vitae 165

xi

Mathematical Notation

Symbol Description

x Plain lowercase letters denote scalar values.

x = [xi] Boldface lowercase letters denote column vectors.

X = [xij] Boldface uppercase letters denote matrices.

X Calligraphic uppercase letters denote sets.

R,R>0,N Number types: real, positive real and natural numbers, respectively.

[N] Set of consecutive natural numbers {1, . . . , N}.

P [A] Probability of the event A.

1{A} Indicator variable of the event A.

E[x] Expectation of the random variable x.

V[x] Variance of the random variable x.

O(f(x)) g(x) = O(f(x)) ⇐⇒ lim supx→∞|g(x)|/f(x) <∞.

o(f(x)) g(x) = o(f(x)) ⇐⇒ limx→∞ g(x)/f(x) = 0.

Ω(f(x)) g(x) = Ω(f(x)) ⇐⇒ f(x) = O(g(x)).

ω(f(x)) g(x) = ω(f(x)) ⇐⇒ f(x) = o(g(x)).

‖ · ‖ Euclidean norm ‖ · ‖2.

B∞(q, η) {p : ‖p− q‖∞ ≤ η}.

xiii

Mathematical Notation

Distribution Domain Density function f(x)

N(µ,Σ) RD
1√

2π|Σ|
exp

[
−1

2(x− µ)>Σ−1(x− µ)
]

U(a, b) [a, b] 1
b− a

xiv

1 Introduction

1.1 Motivation

Our daily life consists of making choices with uncertain outcomes and consequences.
We choose the food we eat, the house where we live, the movies we watch, and the
destination of our next trip. In the process of making decisions, sometimes, we can be
certain of the outcome, hence we can choose the best decision for our objective. For
example, an environmental activist advocates using public transport, as she is assured of
its advantage over other transport means in terms of reducing pollution. But, other times
we lack the necessary knowledge and we are not aware of the consequences of certain
choices. We do not know if we are going to like the new food we ordered, the movie we
are going to watch, or the trip we are going to take. The risk of these actions is low and
can be appraised. For example, we can test a new food to check if we like the taste or not.
But appraising all actions is not without risk. For example, regarding a new medicine,
assessing its efficacy on a human might be dangerous.

In making a choice for an action, we are confronted with either exploiting an action whose
reward is known to us, or exploring a new action in the hope of finding something more
rewarding. This choice depends on whether we have sufficient information regarding the
consequences of our actions, or whether on the contrary we face inadequate information
regarding these consequences. Recent studies show that humans do uncertainty-driven
explorations (see e.g., [Frank et al., 2009, Payzan-LeNestour and Bossaerts, 2012]), where
the dilemma is solved between exploration and exploitation.

Exploration-exploitation is not unique to the human world, it arises in the digital world
as well. For example,

• Recommender systems seek to predict the preference of a user for an item [Cremonesi
et al., 2010]. A recommender algorithm either recommends an item to a user based on

1

Chapter 1. Introduction

the previous ratings (exploitation), or it recommends an item to gather information
about the user’s preference (exploration).

• In clinical trials, the effectiveness of different treatments on animals is assessed
during the full range of the stages of the disease [Durand et al., 2018]. The
effectiveness of a treatment might not be deterministic. For a specific animal,
a treatment is selected either based on the previous responses to the selected
treatment (exploitation), or to learn about its effectiveness (exploration).

• In the sequential portfolio selection, the objective is to maximize the cumulative
reward by optimizing the allocation of wealth across a set of assets [Shen et al.,
2015, Huo and Fu, 2017]. When allocating the resources across the set of assets, two
strategies are employed. Either the resources are allocated based on the previously
observed rewards of such an allocation (exploitation), or the resources are allocated
to learn about their potential reward across a particular set of assets (exploration).

• Online retailers want to dynamically price their products to maximize their revenue
[Misra et al., 2019]. The price of an item directly affects the number of purchases,
hence the final profit. A retailer might have some data about how pricing affects
the revenue. She could directly use this data (exploitation), or she could set a new
price and see how much profit she obtains (exploration).

• A telecommunication system has to choose the best wireless link to maximize the
quality perceived by the final user [Boldrini et al., 2018]. The quality of a link is
a function of network congestion, current load, throughput, etc. The system can
choose the link based on the previous quality that the users obtained (exploitation),
or it can choose a new link for gathering information about its quality (exploration).

We need a general framework that can model all of the above problems. The unified
framework should be able to take into account the uncertainty in the outcome of an
action/choice. Now, imagine a gambling machine with K possible choices (or arms),
where pulling each arm would result in a random reward from a probability distribution
specific to that arm. Both the rewards and the distribution of the rewards are a priori
unknown. A gambler wants to try her chance, and her budget allows her to play the game
T times. She wants to maximize the sum of the rewards she receives. After each pull,
she gathers information about the reward of each arm, and she can essentially use this
information to refine her selection strategy. The described gambling game is one instance
of a class of sequential decision-making problems called multi-armed bandits. It might be
one of the simplest examples of sequential decision-making problems under uncertainty,
yet it is powerful enough to model many applications in which exploration-exploitation
trade-offs arise [Bouneffouf and Rish, 2019] (including those described above).

The purpose of this thesis is to exploit the power of multi-armed bandit settings to
address four problems from three different perspectives: (1) how machine-learning (ML)

2

1.1. Motivation

can benefit from multi-armed bandit algorithms (Chapters 2 and 3), (2) how multi-armed
bandit algorithms can affect humans (Chapter 4), and (3) how human interactions can
be studied in the MAB framework (Chapter 5). We focus in particular on designing
algorithms that have a notion of versatility in practice and come with guarantees in
theory. The theoretical guarantees ensure that the developed algorithms should work in
practice, without leaving out any corner case. The versatility of the developed algorithms
ensures that the developed algorithms are indeed capable of coping with the needs of
the new large data era. Below, we present two important applications that we study
with the help of the multi-armed bandit framework and two important extensions of the
multi-armed bandit framework that were not studied before. They form the core of the 4
following chapters of this thesis.

1) Stochastic-Gradient Descent A machine-learning algorithm usually extracts
patterns from the data in two steps: (1) Data is assumed to follow a certain generative
model parameterized by θ ∈ Rd. (2) The parameters θ are found such that the model fits
the data the best. Gradient descent and its variants form classic and often very effective
methods for finding the parameters θ of the model. But, training a model on a large
dataset with gradient descent is impractical, because gradient descent uses all of the
data at once to update the parameters θ. Stochastic-gradient descent (SGD) reduces the
computational complexity of an iteration by sampling a single data point and updating
the parameters θ based on only that data point. At first glance, the connection between
SGD and multi-armed bandits might not seem clear. But updating the model based on
different data points yields various improvements in the model’s capability. We study the
iterative process of finding the data points that most improve the model in a multi-armed
bandit setting.

2) Stochastic-Coordinate Descent Stochastic-coordinate descent (CD) is another
algorithm that is developed to address the computational intractability of the gradient
descent algorithm. CD selects a single parameter (a.k.a. coordinate) θi uniformly at
random and updates it. CD has lower computational complexity because it does not
require computing the full gradient, with respect to all of the parameters θ. We note that
updating different coordinates does not yield the same improvement in the model. For
example, if the data is independent (or little dependent) on a parameter θi, updating θi
does not bring any (respectively, little) improvement. Ideally, we should update the
coordinate that yields the most improvement in the model’s capability, however, this
coordinate is a priori unknown. We mold the CD method into a multi-armed bandit
setting and choose the coordinates in an informed manner rather than purely at random.

3) Dealing with Polarization in Recommender Systems The purpose of a rec-
ommender system is to exploit the knowledge about the previously chosen items of a

3

Chapter 1. Introduction

user in order to suggest to the user an item that is potentially interesting to her. Because
there is always uncertainty about a user’s preference over different items, a recommender
system should carefully explore different options that the user might like. Even though
research on content selection algorithms has produced a number of well-established
methods, they share an imperative limitation: As the content-selection algorithm learns
more about a user, the corresponding probability distribution begins to concentrate the
mass on a small subset of items; this results in polarization where the feed is primarily
composed of a single type of content (see e.g., [Li et al., 2010]). The situation might
even escalate, as polarization can create biases that eventually influence decisions and
opinions (see e.g., [Pariser, 2011, Epstein and Robertson, 2015]). A premise of this thesis
is that these polarizations are unavoidable, but they can be dealt within a principled
way using constraints.

4) Beyond a Single Decision Maker Humans’ personal knowledge about the en-
vironment and outcome of actions are not limited to only ones’ own experience. One
of the main sources of knowledge for a person is the knowledge and experience of the
neighbors/peers with whom she interacts. For example,

• Yoo [2012] found that farmers’ decisions are based on (1) their own experience,
from previous years, of how different varieties performed, and (2) their peers’
experiences attained either directly (explicitly via conversations with social contacts)
or indirectly (implicitly by observing the farming practices of peers).

• Sanditov [2006] studied the spread of knowledge in a social network. In particular,
they consider a setting where neighboring nodes in a social network influence each
other.

• Zhang et al. [2007] showed how users with high expertise can provoke the adaption
of new technologies in industry.

In spite of this widespread knowledge and applications, classic bandit algorithms are still
limited to a single-player setting. This hinders a bandit algorithm in combining the extra
knowledge of the peers (or other decision makers) into their algorithm. This limitation
calls for new bandit-algorithms that can adjust themselves with the new information
coming from the neighbors.

1.2 Multi-armed Bandits

In this section, we introduce the multi-armed Bandit (MAB) framework that we use
throughout this thesis. First, in Section 1.2.1, we define the general setting of a MAB
problem. Then in Sections 1.2.2 and 1.2.3, we focus on two settings (adversarial and

4

1.2. Multi-armed Bandits

stochastic) that are related to the problems solved in this thesis. We present existing
algorithms for adversarial MAB and stochastic MAB with their theoretical guarantees.
This section is a simple summary of MAB, but it contains pointers for a more thorough
description of MAB and its applications.

1.2.1 Framework

MAB is the problem of making a sequence of decisions by a forecaster/player. The goal
of the player is to maximize (minimize) the gained cumulative rewards (losses). In an
MAB problem, there are K arms that a player can choose from. Selecting arm1 i ∈ [K]
at time t results in a reward (or loss) rti , that may vary among arms and time. After each
round t of selection, the player observes the reward only of the selected arm it, hence
has only access to partial information; that it, in turn, uses to refine its arm-selection
strategy for the next round.

The nature of the reward processes considered here falls into two categories: (1) stochastic,
and (2) adversarial. We formally define these two settings below.

Definition (Stochastic Multi-armed Bandit). In a stochastic multi-armed bandit, at each
time step t, the rewards rt = [rt1, . . . , rtK] are drawn from an unknown distribution D, i.e.,
[rt1, . . . , rtK] ∼ D for all t ∈ [T]. The distribution of the rewards D is fixed but unknown.
Let the expected reward of the arms be

[µ1, . . . , µK] = Er∼D[r]. (1.1)

Definition (Adversarial Multi-armed Bandit). In an adversarial multi-armed bandit, at
each time step t, an adversary chooses the rewards rt. An adversary can be oblivious
or non-oblivious. An oblivious adversary sets the sequence of rewards rt for t ∈ [T]
independently of the player’s strategy. A non-oblivious adversary, at each iteration t,
sets the reward rt based on the strategy of the player. Consequently, playing against a
non-oblivious adversary is harder.

The player’s goal is to maximize the cumulative reward

arg max
i1,i2,...,iT∈ [K]

E
[
T∑
t=1

rtit

]
,

where the expectation is taken over the randomness of the rewards.

In the MAB problem, the optimal cumulative reward that a player could obtain is not
known, because the player does not access all the rewards at each iteration t. Hence, it
is common to compare the performance of an algorithm to an ideal strategy. For both

1[K] = [1, 2, . . . ,K]

5

Chapter 1. Introduction

stochastic and adversarial multi-armed bandits, the ideal strategy is to select the arm
that has the maximum expected cumulative reward over the T rounds.

• In a stochastic multi-armed bandit, the distribution of rewards D is fixed, hence the
expected reward of the best arm arg maxi∈[K] E

[
rti
]
does not change with time t.

Therefore, in expectation, the ideal strategy is to select the arm arg maxi∈[K] E
[
rti
]

with the highest expected reward.

• In an adversarial multi-armed bandit, the rewards r have no pattern, and it is
impossible to choose the best arm arg maxi∈[K] E

[
rti
]
at each iteration t. Therefore,

the ideal strategy of selecting an arm i? that results in the highest cumulative
expected reward makes sense. The definition of the ideal strategy in the adversarial
setting might be a bit ambiguous because, although the efficacy of an algorithm is
measured with respect to the defined strategy, implementing this strategy against a
non-oblivious adversary would result in a small reward. Note that a non-oblivious
adversary knows the player’s strategy. If the player decides to deterministically
choose any arm i ∈ [K] throughout the game, then the adversary can exploit this
deterministic strategy and set a small reward for the selected arm i, in all T rounds
of the decision-making process.

For both settings, information-theoretic lower bounds show that there is no better strategy
than selecting the arm that has the maximum expected cumulative reward [Bubeck and
Cesa-Bianchi, 20120].

The efficacy of an algorithm is measured with respect to how well it minimizes regret – the
difference between the algorithm’s reward and the reward obtained from the (unknown)
optimal strategy.

Definition (Regret). The regret is defined as

R̄T := max
j∈[K]

E
[
T∑
t=1

rtj −
T∑
t=1

rtit

]
,

where the expectation is over the randomness of the rewards and the possible randomness
of the algorithm.2

Next, we present some of the well-known algorithms with their theoretical guarantees on
regret for both the adversarial and stochastic settings.

1.2.2 Adversarial Multi-armed Bandit

In an adversarial multi-armed bandit, an adversary chooses the sequence of rewards rt
in all rounds t ∈ [T]. The implication of an adversary choosing the rewards rt is that

2Sometimes, R̄T is referred as pseudo-regret in the literature.

6

1.2. Multi-armed Bandits

no deterministic algorithm would work in this setting, because the adversary can adapt
itself to the algorithm and then it enlarges the regret. The probabilistic algorithms for
the adversarial bandit setting can be seen as an extension of the algorithms for the
simpler full information adversarial setting, where the player observes all rewards at
each iteration t.

Many algorithms for the adversarial setting belong to the multiplicative weight-update
methods. The multiplicative weight-update method has been discovered many times in
many fields over the past century (see [Arora et al., 2012] for an overview). It is a simple
yet surprisingly powerful way to conservatively update beliefs about the benefit of a given
arm, it is extremely effective for adversarial settings, and it is asymptotically optimal up
to log factors (see, e.g., [Auer et al., 2002b, Flaxman et al., 2005, Alon et al., 2013]).

Full-information Setting

Definition (Full information). In a full-information setting, at each iteration t, the
player chooses arm it and receives the reward rtit . The player observes the rewards of all
other arms as well. The problem of making decisions under a full-information setting is
also known as online learning.

First, let us explain the Hedge algorithm [Freund and Schapire, 1997b] that belongs
to the family of multiplicative weight-update methods and was developed for the full-
information setting. The algorithms for the full-information setting (where all the rewards
are observed at each time step) maintain a vector of weights wi for each arm i, and
(multiplicatively) update it at each time step, by the rule

wt+1
i = wti exp(δrti),

where δ is the update parameter. The probability of choosing arm i at time t is proportional
to the weight wti, namely,

pti = wti
W t

,

where w0
i = 1, and W t = ∑K

i=1 wti.

Theorem 1.1 (Theorem 1.5 in [Hazan et al., 2016]). Let the rewards rti ∈ [0, 1] for all
i ∈ [K] and t ∈ [T]. Running Hedge (Algorithm 1.1) for T rounds results in a sequence
of chosen arms with rewards r1

i1 , r
2
i2 , . . . , r

T
iT

whose regret is bounded as follows

R̄T ≤ 2δT + logK
δ

(1.2)

for any choice of δ ∈ [0, 1].

7

Chapter 1. Introduction

Algorithm 1.1 Hedge Algorithm for full-information setting
1: Input: δ and T
2: Initialize: w0

i = 1 . for all i ∈ [K]
3: for t = 1 : T do
4: Play arm i with probability pti = wt−1

i∑K

j=1 wt−1
j

.

5: Observe all rewards rt = [rt1, . . . , rtK].
6: Update wti = wt−1

i · exp(δrti). . for all i ∈ [K]
7: end for

This algorithm, for an optimal choice of δ has regret O(
√
T lnK). The regret bound

R̄T = O(
√
T lnK) is optimal as it matches the lower bound Ω(

√
T lnK) in [Freund and

Schapire, 1999]. The full proof of Theorem 1.1 can be found in [Hazan et al., 2016]. A
general template for the proofs of multiplicative weight-update method is by upper and
lower bounding W T . Then, putting the lower and upper bounds on W T together leads
to a tight bound on the regret.

Bandit Setting

Given that, in the bandit setting, we no longer observe all of the rewards, the problem
becomes harder. Yet, surprisingly, with two simple but important tricks we can extend
the Hedge algorithm to the bandit setting.

The first trick is to update the weights wti by using an unbiased estimator r̂ti for rti , since
only rti is known at time t, but not rtj with j 6= i (see, e.g., [Auer et al., 2002b, Flaxman
et al., 2005]),

r̂ti =


rti
pti

if arm i is chosen at time t

0 otherwise.
(1.3)

The second trick ensures that some exploration is performed to estimate the rewards of
the arms, which are no longer directly observed as before. This is achieved by setting a
lower bound η ∈ [0, 1] (the exploration parameter) on the probability of selecting arms:

pti = (1− η) w
t
i

W t
+ η

K
.

The resulting algorithm is called EXP3 (which stands for “Exponential-Weight Algorithm
for Exploration and Exploitation”) [Auer et al., 2002b].

Theorem 1.2 (Lemma 6.3 in [Hazan et al., 2016]). Let the rewards rti ∈ [0, 1] for all
i ∈ [K] and t ∈ [T]. Running EXP3 (Algorithm 1.2) with η ∈ [0, 1] and δ = η/K for T
rounds results in a sequence of chosen arms with rewards r1

i1 , r
2
i2 , . . . , r

T
iT

whose regret is

8

1.2. Multi-armed Bandits

Algorithm 1.2 EXP3 Algorithm for Bandit Setting
1: Input: η and T
2: Set: δ = η/K
3: Initialize: w0

i = 1 . for all i ∈ [K]
4: for t = 1 : T do
5: Play arm i with probability pti = (1− η) wti

W t + η
K .

6: Observe the reward rtit of the selected arm it.
7: Update wti = wt−1

i · exp(δr̂ti). . for all i ∈ [K]
8: end for

bounded as follows

R̄T ≤ 2ηT +K
logK
η

. (1.4)

EXP3 for an optimal choice of η has regret O(
√
TK lnK), that is optimal up to log

factors.

The regret bound of EXP3 for bandit setting is
√
K times worse, compared to the

regret bound for Hedge. This difference is due to the lack of information that EXP3 has
access to, compared to Hedge. The proof follows the same template as the proof of a
multiplicative weight-update method, i.e., W T = ∑K

i=1 wTi is lower and upper bounded.
Then, by putting the lower and upper bounds onW T together the regret bound is derived.
See [Hazan et al., 2016] for further details.

1.2.3 Stochastic Multi-armed Bandit

In a stochastic-bandit setting, the rewards r are assumed to be drawn from an unknown
fixed distribution D. Therefore, the problem has more structure, and we could hope
for a smaller regret bound. The assumption that the rewards r are drawn from a fixed
distribution D enables us to use more tools such as concentration inequalities in our
algorithms. To the best of our knowledge, all stochastic-bandit algorithms work by
computing and using two metrics: (1) an empirical mean µ̄ of the rewards, and (2) an
estimation of the uncertainty around the empirical mean µ̄ by using a concentration
inequality. The estimation of the uncertainty is used either directly by the algorithm, or
indirectly to set its parameters. In the stochastic setting, if the arms are selected many
times, then the uncertainty is small and, with high probability, the arm with the highest
empirical mean is the arm with the highest expected reward as well. Note that this is
not the case in an adversarial setting, as the adversary can decide to change the pattern
of rewards at any time t.

9

Chapter 1. Introduction

Algorithm 1.3 UCB
1: Input: α and T
2: Initialize: µ̄ti = 0 and nti = 0 . for all i ∈ [K]
3: for t = 1 : T do
4: Set Ui = µ̄ti +

√
α ln(t)

2nti
. If nti = 0 replace nti with 1

5: Play arm it = arg maxi Ui.
6: Observe the reward rtit of the selected arm it.
7: Update the empirical mean µ̄tit .
8: Update the counts nt+1

it
= ntit + 1 and nt+1

i = nti for i ∈ [K] \ it.
9: end for

We describe below two of the most well-known algorithms used in the stochastic-bandit
setting. The first algorithm, UCB, is a deterministic algorithm that uses the estimated
uncertainty directly. The second algorithm, ε-Greedy, is a probabilistic algorithm that
uses the estimated uncertainty indirectly.

Upper Confidence Bound (UCB)

The UCB algorithm is an asymptotically optimal algorithm, which was first introduced
by Auer et al. [2002a] and has been widely extended and studied (see, e.g., [Bubeck, 2010,
Maillard et al., 2011, Garivier and Cappé, 2011]). The main idea behind the algorithm is
the principle of optimism in the face of uncertainty; the algorithm maintains an optimistic
upper bound on the mean reward of each arm, and selects the arm with the maximal
upper bound. The expected reward of arm j (µj) at time t has an upper bound

µj ≤ Uj(t)
def= µ̄tj +

√
α ln(t)

2ntj
(1.5)

that holds with probability at least 1− t−α, where α > 2 is a constant that depends on
the variance of the rewards distribution D, ntj is the number of samples we have for arm
j by time t, and µ̄tj is the sample mean of arm j over ntj samples.

At time t, UCB selects the arm it = arg maxj{Uj(t)}. After an initial period in which
UCB collects information about the rewards, UCB selects the arm with the highest
expected reward. The main idea behind UCB is that even if at a certain time UCB selects
a non-optimal arm, it would correct itself later and eventually distinguish the non-optimal
arms. Let us consider the situation in which UCB mistakenly considers a non-optimal arm
j as the optimal arm. This happens when Uj(t) > Ui?(t) ≥ µi? , where i? = arg maxi{µi}
is the index of the arm with the highest expected reward. But as UCB selects the arm j

increasingly often, the upper bound Uj(t) is refined and decreases with the rate
√

1/nt
j

because of the term
√
α ln(t)/2nt

j. The upper bound Uj(t) gets therefore closer to the true

10

1.2. Multi-armed Bandits

mean µj in (1.1). Therefore, eventually at some iteration t, Uj(t) ≤ Ui?(t) and UCB
ranks the arm j below the optimal arm i?.

Theorem 1.3 (Theorem 2.1 in [Bubeck and Cesa-Bianchi, 20120]). Let the rewards
rt ∈ [0, 1] be random with a fixed unknown distribution D. Running UCB (Algorithm 1.3)
with α > 2 for T rounds results in a sequence of chosen arms with rewards r1

i1 , r
2
i2 , . . . , r

T
iT

whose regret is bounded as follows

R̄T ≤ 2αK lnT
∆ + α

α− 2 , (1.6)

where ∆ = µi? −maxj 6=i? µj is the difference between the highest and the second highest
expected reward.

The regret of UCB grows with O(log T), whereas the regret of EXP3 grows with O(
√
T).

This means UCB learns at a much faster pace in a stochastic setting, compared to
how EXP3 learns in an adversarial setting. Note that running UCB in an adversarial
setting would result in a linear regret Ω(T), but the convergence guarantee of EXP3
(R̄T = O(

√
TK logK)) holds for any setting, including a stochastic one.

The convergence guarantee of UCB is proven by showing that when a sub-optimal arm i

is selected O(log T) times, then with high probability the upper bound of the optimal
arm i? is larger than the ones of the sub-optimal arms i (i.e., Ui? ≥ Ui). See [Bubeck and
Cesa-Bianchi, 20120] for further details.

ε-Greedy

As the name suggests ε-Greedy, is an (almost) greedy algorithm, and it is perhaps
one of the simplest algorithms for trading off exploration and exploitation (see [Sutton
et al., 1998]). At each time step t, with probability (1− ε), ε-Greedy selects the arm
with the highest empirical mean µ̄ti (exploitation); and in order to avoid converging to a
sub-optimal strategy with probability ε, ε-Greedy selects an arm uniformly at random
(exploration).

The exploration parameter ε ∈ [0, 1] controls the level of exploration and needs to be
determined carefully. For example, for a constant exploration parameter ε, ε-Greedy
would have a linear regret R̄ = O(T); also, a small exploration parameter ε can misguide
the algorithm to choosing a sub-optimal strategy. Auer et al. [2002a] found that by setting
εt ∼ 1/t, ε-Greedy has regret O(K log T/∆2).

Theorem 1.4 (Theorem 3 in [Auer et al., 2002a]). Let the rewards rt be random with a
fixed unknown distribution D. Running ε-Greedy (Algorithm 1.4) for T rounds results
in a sequence of chosen arms with rewards r1

i1 , r
2
i2 , . . . , r

T
iT

whose regret is bounded as

11

Chapter 1. Introduction

Algorithm 1.4 ε-Greedy
1: Input: γ < ∆ and T
2: Initialize: µ̄ti = 0 . for all i ∈ [K]
3: for t = 1 : T do
4: Set εt = min

{
1, K

γ2t

}
.

5: Let j = arg maxi µ̄ti.
6: Play arm j with probability 1− εt and with probability εt play a random arm.
7: Observe the reward rtit of the selected arm it.
8: Update the empirical mean µ̄tit .
9: end for

follows

R̄T = O

(
K lnT

∆2

)
, (1.7)

where ∆ = µi? −maxj 6=i? µj is the difference between the highest and the second highest
expected reward.

Although UCB has a better regret bound than ε-Greedy, in practice ε-Greedy usually
outperforms UCB (see e.g., [Kuleshov and Precup, 2014]). Note that ε-Greedy does
not use the uncertainty estimate directly in the algorithm as UCB does, but instead sets
the exploration rate ε based on the estimation of uncertainty. The exploration rate ε in
ε-Greedy is set such that all arms are at least O(log t) times selected up to time t. The
convergence guarantee of ε-Greedy is proven in [Auer et al., 2002a], by showing that
when the arms are chosen O(log t) times, the arm with the highest empirical mean is the
optimal arm with high probability.

1.3 Outline and Contributions

The MAB framework provides many strong tools for optimizing a sequence of decisions,
when there is uncertainty about their outcomes. In this thesis, we use the MAB framework
to handle several challenges that arise in modern optimization algorithms and their
applications. The problems studied here share a common feature: they all make a
sequence of choices, on the basis of limited information.

We will pay a particular attention to the scalability of the algorithms and their theoretical
guarantees of convergence. Indeed, as datasets grow, it is more important to develop
computationally efficient algorithms that achieve their best performance at a faster rate.
Moreover, the theoretical guarantees of the algorithms developed in this thesis assure
their performance under different conditions and different datasets.

12

1.3. Outline and Contributions

In Chapter 2, we focus on accelerating the stochastic-gradient descent (SGD) method by
using the MAB framework. SGD is one of the most well-known optimizers of an empirical
risk function, and improving its performance is of great interest. The SGD method
addresses the computational complexity obstacle of the gradient descent method by
computing and using only the gradient of one of the data points. We begin by computing
the variance of the estimator of the gradient and by noticing that sampling the data points
from a non-uniform distribution can significantly reduce the variance of the estimator.
The optimal sampling distribution depends on the gradient of each data point. As we
do not want to compute the full gradient of the cost function, we cannot compute this
distribution. Instead, we cast the variance-minimization problem as an MAB problem. As
the norm of the gradients change over time and as these changes do not follow any specific
pattern, we study the variance-minimization MAB problem in an adversarial setting. We
develop a bandit algorithm to learn this distribution while optimizing the cost function.
The proposed algorithm is called Multi-armed Bandit Sampling (MABS). MABS has a
sublinear computational complexity that makes it applicable for large models. We prove
that MABS can approximate the optimal distribution with regret O(

√
T) (Theorem 3.6

and Corollary 2.9 in Section 2.4.1). Next, we provide convergence guarantees of SGD and
projected SGD (PSGD) when they are combined with MABS (Theorems 2.1 and 2.14
in Section 2.5) and we show MABS’s effectiveness in improving the convergence rate of
SGD and PSGD. We also extensively evaluate the performance of MABS in conjunction
with SGD, SVRG, and SAGA on both synthetic and real-world data (Section 2.6), and
we verify its effectiveness in practice.

In Chapter 3, we shift our attention to the stochastic-coordinate descent (CD) method;
it is another optimizer for an empirical risk function. CD addresses the computational
complexity obstacle of the gradient descent method by optimizing the cost function along
one of the decision variables (coordinates) at a time, rather than optimizing all of them at
once. The CD method usually chooses a coordinate for the update, uniformly at random.
However, different coordinates contribute differently to the prediction variable or output.
Ideally, we would update the decision variable that contributes the most to the output.
But finding this decision variable requires checking all of them, which effectively negates
the improvement in computational tractability that CD is intended to afford. In this
chapter, we develop an effective coordinate-selection method. First, we show the great
enhancement in the convergence rate of CD with an optimal non-uniform coordinate-
selection method (Theorems 3.5 and 3.6 in Section 3.4.2). The optimal non-uniform
coordinate-selection method is found by a greedy procedure and is not computationally
plausible, we call the greedy algorithm max_r. We then exploit the bandit setting in order
to design a lightweight coordinate-selection mechanism, that maintains the computational
tractability of CD. While in Chapter 2, the gradients of different data points vary over
time and depend on each other, we notice that updating one coordinate has little impact
on the improvement that CD gets when updating other coordinates, therefore, we study
the coordinate-selection problem in a stochastic MAB setting and, inspired by ε-Greedy,

13

Chapter 1. Introduction

we propose a bandit algorithm called B_max_r. We prove the effectiveness of B_max_r
and we show that B_max_r can perform almost as well as max_r, yet it decreases the
number of calculations required significantly (Proposition 3.8 in Section 3.4.3). Finally, we
test B_max_r and max_r in practice and show their advantage over the state-of-the-art
CD methods (Section 3.5).

In Chapter 4, we focus on the problem of polarization and biases in online personalized
platforms such as online ad-services. Personalization is a must for online platforms, but it
is also the reason for polarization. Polarization has been observed on many social media
platforms (see, e.g., [Hong and Kim, 2016, Conover et al., 2011, Weber et al., 2013]),
and new studies have shown that, over the past eight years, polarization has increased
constantly [Garimella and Weber, 2017]. A feature of bandit algorithms is that the entire
probability mass ends up on a single arm (hence in a single group) – causing polarization
(see e.g., [Li et al., 2010]). For example, consider a news recommendation system. The
bandit algorithms used for recommendation keep a probability distribution over a set
of news, as the algorithm learns more about a user, the corresponding probability
distribution begins to concentrate the mass on a small subset of topics; this results in
polarization where the feed is primarily composed of a single type of content. To address
polarization, we introduce constraints on the probability distribution that the bandit
algorithm keeps. These constraints limit the total expected weights that can be allocated
to a group of items. Despite the simplicity of the constraints, they are versatile enough
to control polarization, with respect to a variety of metrics that can measure the extent
of polarization in a given algorithm. Inspired by ε-Greedy, we propose a new algorithm
called Cons-ε-Greedy: it respects the constraints at each iteration. We show that
Cons-ε-Greedy learns the optimal constrained mechanism with the sub-linear regret
O(log T) (Theorem 4.1 in Section 4.4). We evaluate Cons-ε-Greedy on a curated dataset
of online news articles, demonstrate that it can control polarization, and examine the
trade-off between decreasing polarization and the resulting loss in revenue (Section 4.5).

Lastly, in Chapter 5, we study the bandit setting extended to a network. In this setting,
multiple decision makers are connected in a network. The work of [Yoo, 2012] gives an
example of network setting with which it is shown that farmers use the information from
their neighbors in order to make the best decisions. Similar social learning phenomena
appear in many other areas; see [Sanditov, 2006, Zhang et al., 2007, Accinelli and
Sánchez-Carrera, 2012]. Although this setting is natural in the human world, it was
not yet studied from an algorithmic point of view. We study the problem in both
stochastic and adversarial settings. In the stochastic setting, the problem is easier: simply
incorporating side information to a stochastic-bandit algorithm, such as UCB, is enough
to have a near-optimal algorithm with the regret O(log T) (Theorem 5.1 in Section 5.4).
In the adversarial setting, the problem is more challenging, and a simple modification
of the existing algorithms does not work. Here, we use a new unbiased estimator of the
rewards of the arms, and using the amount of the exploration of the neighbors we set
the learning parameters of the algorithm. We show that the proposed algorithm (called

14

1.3. Outline and Contributions

EXPN) can exploit the side information efficiently: when the neighbors explore enough,
EXPN can perform similarly to the Hedge algorithm in the full information setting,
where the regret is O(

√
T) (Theorem 5.2 in Section 5.5). Finally, we experiment the

developed algorithms on different network topologies and confirm their effectiveness,
compared to several baselines (Section 5.6).

15

2 Stochastic Gradient Descent with
Bandit Sampling

In this chapter1, we study the problem of accelerating stochastic optimization algorithms
with an adaptive sampling method. Many stochastic optimization algorithms work by
estimating, on the fly, the gradient of the cost function by sampling datapoints uniformly
at random from a training set. However, the estimator might have a large variance, which
could slow down the convergence rate of the algorithm. One way to reduce this variance
is to sample the datapoints from a carefully selected non-uniform distribution.

We study the datapoint-selection of stochastic optimization algorithms as a decision-
making problem in the adversarial bandit setting (see Section 1.2.2). We develop bandit
algorithms for datapoint-selection and we show that our algorithm asymptotically ap-
proximates the minimal variance within a constant factor. We propose several such
approaches with different performance and running time. Empirically, we show that using
this datapoint-selection technique results in a significant reduction of the convergence
time and of the variance of several stochastic optimization algorithms such as SGD and
SAGA. This approach for sampling datapoints is general and can be used in conjunction
with any algorithm that uses an unbiased gradient estimation – we expect it to have a
broad applicability beyond the specific examples explored in this chapter.

2.1 Introduction

Consider the following optimization problem, known as empirical risk minimization,
which is ubiquitous in machine learning:

min
θ∈Rd

F (θ) := 1
n

n∑
i=1

φi(θ), (2.1)

1This chapter is based on [Salehi et al., 2017a].

17

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

where the coordinates θ ∈ Rd are the learning parameters. The empirical risk function
F (θ) is the mean of n convex functions φi(·) : Rd → R, which we call sub-cost functions.
The ith sub-cost function φi(·) is parameterized by the ith datapoint (xi, yi), where
xi ∈ Rd denotes its feature vector and yi ∈ R its label. Examples of common sub-cost
functions include

• Logistic regression: φi(θ) = log (1 + exp (−yi〈xi,θ〉)),

• SVM: φi(θ) = ([1− yi〈xi,θ〉)]+)2 (where [·]+ = max{0, ·} is the hinge loss), and

• Linear regression: φi(θ) = 1
2 (〈xi,θ〉 − yi)2.

Gradient descent and its variants form classic and often very effective methods for
solving (2.1). However, when F (θ) is minimized using gradient descent, the value∇θφi(θt)
is computed at each iteration t for all i ∈ [n] (there are n gradient calculations) which,
for large n, can be prohibitively expensive (see, e.g., [Bottou, 2010]). Stochastic gradient
descent (SGD) reduces the computational complexity of an iteration by sampling a
datapoint it ∈ [n] uniformly at random at each iteration t and by computing the gradient
only at this datapoint; ∇θφit(θt) is then an unbiased estimator for ∇θF (θt). However,
this estimator might have a large variance, which negatively affects the convergence rate
of the underlying optimization algorithm and requires an increased number of iterations.
In stochastic optimization algorithms such as SGD and proximal SGD (PSGD), reducing
this variance improves the speed of convergence to the optimal coordinate θ? (see, e.g.,
[Xiao and Zhang, 2014] and also Section 2.5).

This has motivated the development of several techniques to reduce this variance. One
such technique, closely related to this work, is to sample a datapoint it from a non-uniform
distribution p = {p1, · · · , pn} (see, e.g., [Needell et al., 2014, Zhao and Zhang, 2015a]),
where the sampling distribution p is chosen in order to minimize an upper bound of the
variance of the estimator for ∇θF in (2.1). The upper bound is set a priori, independently
from t and from θ. Therefore, the sampling distribution p is also not a function of t,
nor of the coordinates θ. The problem with this approach is that the gap between the
minimum variance and the upper bound of this variance attained under these assumptions
is, in general, unknown. Instead, if the non-uniform distribution pt? = {pt?1 , · · · , pt?n }
that minimizes the variance (and is a function of t and θ) is available, the stochastic
optimization algorithm converges much faster. In SGD, the ideal probability pt?i of
sampling the datapoint i at time t is proportional to ‖∇θφi(θt)‖. If the ∇θφi(θt)s have
similar magnitudes for all i ∈ [n], then the optimal distribution is close to the uniform
distribution. However, if the magnitude of ∇θφi(θt) at some datapoint i is comparatively
very large, then the optimal distribution is far from uniform; in this case, the variance
can be made roughly n times smaller than the variance when the uniform distribution is
used. The challenge lies in finding the appropriate non-uniform sampling distribution
with a lightweight mechanism that preserves the computational tractability of SGD.
18

2.1. Introduction

Update	coordinate

Datapoint
selection

i

Compute	the	
feedback

Update	sampling	
probability

Sa
m

pl
in

g
P

ro
ba

bi
lit

y
St

oc
ha

st
ic

O
pt

im
iz

at
io

n

(1)

(2)

✓t
✓t+1

✓t

pt

pt

pt+1

i ⇠ pt

Figure 2.1 – Our approach to stochastic optimization with bandit sampling. The green
(top) part of the mechanism updates the coordinates θt (using the selected datapoint
i and the distribution pt). One can use SGD, SVRG, SAGA, or any other stochastic
optimization method to do so in box (1) as long as they use an unbiased estimator
for the gradient of f(θ). The yellow (bottom) part of the mechanism handles the
selection of i ∈ [n] according to a sampling distribution pt which is updated via bandit
optimization in box (2) from feedback. For example, in SGD, the coordinates are updated
as θt+1 = θt − γ∇θφi(θ

t)
npti

and feedback is simply the norm of the gradient of the selected
datapoint i, i.e., ‖∇θφi(θt)‖.

Our Contributions

In this work, inspired by active learning methods, we use an adaptive approach to define
a probability distribution pt = {pt1, . . . ,ptn} over the datapoints, to sample a datapoint
i ∈ [n], instead of fixing it in advance (see the Sampling Probability part in Figure 2.1).
If the set of datapoints selected during the first ` iterations is {it}1≤t≤`, then we refer to
the corresponding gradients {∇θφit(θt)}1≤t≤` as feedback, which we use to refine p`+1.
The problem of how to best define the distribution p`+1, given feedback, falls under the
framework of multi-armed bandit problems. We call our approach multi-armed bandit
sampling (MABS) and we show that it finds a distribution that is asymptotically close to
the optimal. MABS can be used in conjunction with any algorithm that uses an unbiased
gradient estimator to reduce the variance of the estimator for the gradient, not just SGD
(see Stochastic Optimization part in Figure 2.1). This includes SAGA [Defazio et al.,
2014], SVRG [Xiao and Zhang, 2014], Prox_SGD [Zhao and Zhang, 2015a], and S2GD
[Konečnỳ and Richtárik, 2017]. We present the empirical performance of some of these
methods in Section 2.6, see Figures 2.2, 2.3 and 2.4.

In summary, our main contributions are as follows.

19

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

Multi-armed Bandit Sampling First, we show that the convergence guarantee
of SGD linearly depends on the cumulative sum of variances over T rounds. Hence,
minimizing this variance results in a faster convergence rate. We then compute the
variance of the unbiased estimator for ∇θF (θt) as a function of the sampling distribution
pt and of the magnitude of gradient ∇θφi(θt). We recast the problem of minimizing the
variance of stochastic optimization over pt as a multi-armed bandit problem (Section 2.2).
We provide fast (sub-linear computational complexity) sampling algorithms (MABS) to
minimize the variance. MABS is inspired by EXP3 [Auer et al., 2002b] and Hedge [Freund
and Schapire, 1997a]. We show that MABS approximates the sum of variances over T
rounds attained by the optimal distribution within a constant factor (see Theorem 2.6
and Corollary 2.9 in Section 2.4.1). As we explain next, approximating this optimal
distribution is both necessary and sufficient (in our setting) when using SGD.

SGD in Conjunction with MABS The optimal sampling distribution depends on
the trajectories of the coordinates θ1,θ2, . . . ,θt, while the sequence θ1,θ2, . . . ,θt itself
depends on the sampling distribution p, therefore an optimal distribution for a sequence of
coordinates θ1,θ2, . . . ,θt might not reflect the minimum achievable cumulative variance.
To address this problem, we use a biased sampling distribution as in [Needell et al., 2014].
The biased distribution has a non-zero weight for sampling each datapoint and ensures
the convergence of SGD to the optimal coordinates θ?, which is the minimizer of (2.1).
The result of such a restriction is that no sampling algorithm can reach a sub-linear
regret (i.e., approximate the optimal distribution with factor 1). Yet, we show that this
is not an issue, as we prove that when θt converges to θ?, the approximation factor
only appears as a constant there. Interestingly, the term that dominates the minimum
cumulative variance is the variance of the unbiased gradient estimator at the optimal
coordinates θ?. We provide the convergence guarantee of SGD when it is combined with
MABS in Theorem 2.10, in Section 2.5, which we informally state below.

Theorem (Informal Statement of Theorem 2.10). Assume that F (θ) is strongly convex
and that each φi is convex and smooth. Then, with an appropriate learning rate, the
convergence rate of SGD with MABS satisfies

E
[
‖θT+1 − θ?‖2

]
= O

 1
Tn2

(
n∑
i=1
‖∇θφi(θ?)‖

)2
 .

Evaluation We extensively evaluate the performance of MABS in conjunction with
SGD, SVRG, and SAGA on both synthetic and real-world data. More precisely, using a
synthetic dataset, we vary the ratio τ between the average smoothness and the maximum
smoothness of φis, because it has been observed in many works (see, e.g., [Zhao and
Zhang, 2015b]) that non-uniform sampling method helps more if τ is large. We observe
that across different values of τ , SGD with MABS converges faster than other sampling

20

2.2. Preliminaries

methods, and that the improvement is more significant for large τ (Section 2.6.2). Using
real datasets, we test MABS with three different stochastic optimization algorithms and
also observe significant improvements in practice, compared to other sampling methods
(Section 2.6.3). We empirically show that using MABS makes a stochastic optimization
algorithm more robust and that the stochastic optimization algorithm can use larger
step sizes without diverging (Section 2.6.4). Finally, we evaluate the convergence rate
of SGD, SVRG, and SAGA with different sampling methods as a function of wall-clock
time, and we observe again that MABS improves the convergence rate (Section 2.6.5).

2.2 Preliminaries

First order stochastic optimization algorithms (such as SGD, SVRG, and SAGA) require
an unbiased estimator for the gradient ∇θf(θ). The end goal of MABS is to find the
sampling distribution pt? that keeps the estimator unbiased and minimizes its variance.
The first step is therefore to find this variance as a function of the sampling distribution
pt at timestep t, conditionally on θt.

Let us start with the example of SGD. In SGD with non-uniform sampling, the update
rule is

θt+1 = θt − γtĝ
(
θt,pt

)
, (2.2)

where γt is the step size and ĝ(θt,pt) is the unbiased estimator for ∇θF (θt) defined by

ĝ
(
θt,pt

)
= ∇θφit(θ

t)
nptit

, (2.3)

where it is the sampled datapoint at timestep t. Taking expectations over the sampling
distribution pt, conditionally2 on θt, the variance3 of ĝ

(
θt,pt

)
can be written as

V
(
θt,pt

)
, Ept

[∥∥∥ĝ (θt,pt)−∇θF (θt)
∥∥∥2
∣∣∣∣θt] = Ve

(
θt,pt

)
− Vc(θt), (2.4)

where

Ve
(
θt,pt

)
= Ept

[
‖ĝ
(
θt,pt

)
‖2
∣∣∣θt] = 1

n2

n∑
i=1

1
pti

∥∥∥∇θφi(θt)∥∥∥2
(2.5)

2More precisely, conditionally on the filtration F t−1 of all datapoints selected up to timestep t− 1.
3Note that ĝ

(
θt,pt

)
is a d-dimensional random vector, with d > 1 in general, hence strictly speaking

(2.4) is the sum of the variances of its d entries.

21

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

is referred to as the effective variance, and depends explicitly on pt contrary to

Vc(θt) = 1
n2

∥∥∥∥∥
n∑
i=1
∇θφi(θt)

∥∥∥∥∥
2

.

As the only term under our control is pt, to minimize the variance (2.4), it suffices to
minimize the effective variance Ve

(
θt,pt

)
. For SGD, this minimum is attained when

pt?i = ‖∇θφi(θt)‖∑n
j=1 ‖∇θφj(θt)‖

. (2.6)

To show that minimizing the effective variance Ve
(
θt,pt

)
improves the convergence rate

of SGD, we state a simple extension of a theorem by Lacoste-Julien et al. [2012], that
shows that the convergence rate of SGD is proportional to the expected value of the
cumulative effective variance ∑T

t=1 Eθt
[
Ve(θt,pt)

]
.

Theorem 2.1. Assume that F (θ) is µ-strongly convex. Then, if γt = 2/µ(1+t) in (2.2),
the following convergence guarantee holds for T > 1 in SGD:

E
[
‖θT+1 − θ?‖2

]
= O

(
1

µ2T 2

T∑
t=1

Eθt
[
Ve(θt,pt)

])
, (2.7)

where the expectation of the left-hand side of (2.7) is taken over all θ1, . . . ,θT .

The convergence guarantee in (2.7) shows that to improve the convergence rate of SGD
we can minimize the sum of the effective variances ∑T

t=1 Ve(θt,pt) over pt. Theorem 2.1
follows directly from [Lacoste-Julien et al., 2012], but for the sake of completeness, we
present the proof of Theorem 2.1 in Appendix 2.A.1.

2.3 Related Work

Non-uniform datapoint selection has been proposed first for constant (non-adaptive)
probability distribution p = [p1, . . . , pn] (see, e.g., [Zhao and Zhang, 2015a, Needell et al.,
2014, Kern and György, 2016, Zhao and Zhang, 2015b, 2014, Zhang et al., 2017, Schmidt
et al., 2015a, Csiba and Richtárik, 2016]). To compute these probability distributions,
a precomputation is required before starting the update of coordinates θ, for example
in [Zhao and Zhang, 2015a,b] the smoothness of each φi is computed. Then, using
these precomputed parameters a fixed distribution is found. For example, in [Zhao and
Zhang, 2015a,b], an upper bound on the effective variance Ve

(
θt,pt

)
is derived by upper

bounding ‖∇θφit(θt)‖2 in (2.5) as:

‖∇θφit(θt)‖2 ≤ sup{‖∇θφit(θt)‖2} = ai.

22

2.3. Related Work

Then, the effective variance is simply upper bounded as:

Ve
(
θt,pt

)
= 1
n2

n∑
i=1

1
pti

∥∥∥∇θφi(θt)∥∥∥2
≤ 1
n2

n∑
i=1

ai
pti
. (2.8)

If ais are known and fixed for all i ∈ [n] and 1 ≤ t ≤ T , the optimal sampling distribution
pt at which the upper-bound in (2.8) attains its minimum is time invariant and known.
This method is known as importance sampling (IS). A drawback of this method is that the
upper-bound on (2.8) might be loose, when ‖∇θφit(θt)‖2 is much smaller than ai, hence
the sampling distribution found by minimizing the upper-bound in (2.8) is far from the
optimal sampling distribution that minimizes the variance. Unlike our approach, there is
no theoretical guarantee on the distance between the importance sampling distribution
and the optimal sampling distribution. Shen et al. [2016] and Papa et al. [2015] developed
adaptive sampling methods that directly compute ‖∇θφit(θt)‖2. For example, in [Shen
et al., 2016] the whole gradient is computed every few epochs. If the number of datapoints
is not large, then the method works fine but if the number of datapoints is large then
the algorithm needs to wait considerably until the next update, which could affect its
performance. Schmidt et al. [2015b] also developed an adaptive method for the stochastic
average gradient algorithm (SAG) that uses a biased gradient. In [Schmidt et al., 2015b],
the smoothness ratio is estimated in an online manner.

In contrast, we use a simple and efficient learning procedure (that needs only O(logn)
computations per iteration) to learn the probability distribution pt that fits the data best.
We transform the problem of finding the optimal probability distribution as a multi-armed
bandit problem, where the observed gradient ∇θφit(θt) is used as feedback to update
the probability distribution pt. Therefore, instead of minimizing the upper bound on
the effective variance Ve

(
θt,pt

)
, the actual effective variance is directly minimized by

an online approach. Moreover, our sampling approach does not depend on any specific
type of optimization algorithm and can be used in conjunction with any stochastic
optimization algorithm, as long as they use an unbiased estimator for the gradient.

Several other techniques were also developed to reduce the variance of the estimator for
the gradient used in SGD: They use previous information to refine the estimation for
the gradient; e.g., by occasionally calculating and using the full gradient to refine the
estimation [Xiao and Zhang, 2014, Allen-Zhu and Yuan, 2016], or by using the previous
calculations of ∇θφi (at the most recent selection of each datapoint i) [Defazio et al.,
2014]. For example in SAGA (see [Defazio et al., 2014]), the following estimation for the
full gradient is maintained

g̃ = 1
n

n∑
i=1
∇θφi(θ̂i), (2.9)

23

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

where θ̂i is the coordinate at the most recent time that datapoint i was chosen. The
estimation g̃ has shown to have good correlation with the true gradient g. At time t,
the estimation g̃ and the gradient of selected sub-cost function φit are used to build an
unbiased estimator for the gradient, which is

ĝ(θt) =
(
∇θφit(θt)−∇θφit(θ̃it)

)
+ g̃.

As the coordinate θt approaches the optimal coordinate θ?, the variance of the estimator
ĝ(θt) decreases.

Independently of the work presented in this chapter, [Namkoong et al., 2017] developed
a similar approach by formulating the variance reduction for the problems of SGD
and coordinate descent as a bandit problem. The difference with our work is that
theoretical guarantees in our work are given with respect to the best achievable cumulative
variance, whereas the theoretical guarantee in [Namkoong et al., 2017] is limited to
the best distribution in hindsight for a random sequence of coordinates θ1, . . . ,θT in a
neighborhood of the uniform distribution. The proof of the regret guarantee in [Namkoong
et al., 2017] is based on Theorem 5.3 of [Bubeck and Cesa-Bianchi, 20120], which is a regret
analysis for online mirror descent. In contrast, the proof of the regret guarantee used in
this work is similar to the standard proofs used in multiplicative-weight update algorithms
(see for example [Auer et al., 2002b]). Following [Namkoong et al., 2017] and our work,
[Borsos et al., 2018] use a similar bandit formulation of the variance reduction problem,
and use an algorithm from the family of Follow-the-Regularized-Leader algorithms to
minimize the variance of SGD. In [Borsos et al., 2018], the approximation factor of the
bandit algorithm is 1 compared to 1 ≤ c ≤ 3 in this work; and the regret scales as
O(T 2/3), compared to O(T 1/2) in this work. Our smaller regret bound comes therefore
at the cost of having a larger approximation factor. The smaller regret bound means
that the online algorithm learns faster, hence we expect our algorithm to work better
in a setting where the gradients vary rapidly from an iteration to the next, e.g., when
the step size is large. On the other hand, when the gradients change smoothly, the
algorithm in [Borsos et al., 2018] should converge faster. In addition to [Namkoong et al.,
2017] and [Borsos et al., 2018], we prove that the fastest convergence rate of SGD with
non-uniform sampling, when the optimal sampling distribution is used, depends linearly
on the variance at the optimal coordinate θ?. We show that SGD in conjunction with
MABS can achieve this rate. To prove the fastest achievable convergence rate of SGD
with non-uniform sampling, we need to use a biased sampling distribution, which for
our setting means that approximation factor should be larger than 1. In our work, we
use the smoothness for proving the convergence and bounding the gradient, whereas
[Namkoong et al., 2017] and [Borsos et al., 2018] use a projection step to ensure that the
gradients are bounded. Using smoothness allows us to naturally bound the gradient and
to establish bounds on the minimum achievable cumulative variance.

24

2.4. Technical Contributions

2.4 Technical Contributions

Before introducing our variance minimization framework, we study the minimum achiev-
able cumulative effective variance∑T

t=1 minpt Ve(θt,pt) which is a function of the sequence
of coordinates θ1, . . . ,θt. In Lemma 2.2, we show that if θt converges to θ? with rate
Eθt

[
‖θt − θ?‖2

]
= O(1/t), then an upper and lower bound (depending on θ? but not θt)

on∑T
t=1 Eθt

[
minpt Ve(θt,pt)

]
can be established. By minimizing the cumulative effective

variance ∑T
t=1 Eθt

[
minpt Ve(θt,pt)

]
, SGD achieves its fastest rate in (2.7).

Lemma 2.2. Let φis be Li-smooth and assume that the coordinates θt converge to θ?
with rate Eθt

[
‖θt − θ?‖2

]
= O(1/t). Then, the minimum achievable cumulative effective

variance ∑T
t=1 Eθt

[
minpt Ve(θt,pt)

]
lies in the range

T

4 min
p

Ve(θ?,p)−O
(

log T
(∑n

i=1 Li
n

)2)
≤

T∑
t=1

Eθt
[
min
pt

Ve(θt,pt)
]

≤ 4T min
p

Ve(θ?,p) +O

(
log T

(∑n
i=1 Li
n

)2)
, (2.10)

where minpVe(θ?,p) is the minimum effective variance at the optimal coordinates θ?.

Lemma 2.2 shows that when minpVe(θ?,p) > 0, the minimum achievable cumulative
effective variance ∑T

t=1 Eθt
[
minpt Ve(θt,pt)

]
= O(T minpVe(θ?,p)). As a result, the

fastest convergence rate that SGD can achieve in (2.7) is

E
[
‖θT+1 − θ?‖2

]
= O

(1
µ2T

min
p

Ve(θ?,p)
)
. (2.11)

SGD attains this rate under the condition Eθt
[
‖θt − θ?‖2

]
= O(1/t), and we design

MABS to be such that this condition is satisfied.

Proof of Lemma 2.2. From the triangle inequality,

‖∇θφi(θt)‖2 ≤ 2‖∇θφi(θt)−∇θφi(θ?)‖2 + 2‖∇θφi(θ?)‖2

≤ 2L2
i ‖θt − θ?‖2 + 2‖∇θφi(θ?)‖2,

where the second inequality follows from the Li-smoothness of φi. As a result, the effective
variance in (2.5) is bounded as

Ve(θt,pt) ≤
2
n2

n∑
i=1

1
pti

(
L2
i ‖θt − θ?‖2 + ‖∇θφi(θ?)‖2

)
,

25

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

and therefore, for any distribution q,

min
pt

Ve(θt,pt) ≤
2
n2

n∑
i=1

1
qi

(
L2
i ‖θt − θ?‖2 + ‖∇θφi(θ?)‖2

)
. (2.12)

Setting
qi = 1

2
Li∑n
j=1 Lj

+ 1
2

‖∇θφi(θ?)‖∑n
j=1 ‖∇θφj(θ?)‖

in (2.12), it becomes

min
pt

Ve(θt,pt) ≤
4
n2

‖θt − θ?‖2(n∑
i=1

Li

)2

+
(

n∑
i=1
‖∇θφi(θ?)‖

)2


= 4

 1
n2 ‖θ

t − θ?‖2
(

n∑
i=1

Li

)2

+ min
p

Ve(θ?,p)

 ,
where the last equality follows from (2.5) and (2.6). By taking expectations over θt, and
next by summing the inequality above over all t and finally by using the assumption
Eθt

[
‖θt − θ?‖2

]
= O(1/t) we obtain the desired upper bound. The lower bound can be

proven using the same technique and tools.

The values {∇θφi(θt)}i∈[n] change over time because they depend on θt, which itself
varies over time during the iterative process, and they are therefore difficult to estimate
in the rounds that follow t. As a result, finding arg minpt Ve(θt,pt) at each timestep t
is hard. Alternatively, we can solve the easier problem of finding the optimal invariant
distribution over T timesteps, which we denote by p̂:

p̂ := p̂(T) = arg min
p

T∑
t=1

Ve(θt,p). (2.13)

If θt converges to the optimal coordinates θ?, the cumulative effective variance of the
optimal invariant distribution minp

∑T
t=1 Ve(θt,p) should also be close to the cumulative

minimum effective variance ∑T
t=1 minpt Ve(θt,pt). Indeed, Lemma 2.3 shows that we can

replace the latter by the former in (2.10).

Lemma 2.3. Under the assumptions of Lemma 2.2, the minimum cumulative effective
variance Eθ1,...,θT

[
minp

∑T
t=1 Ve(θt,p)

]
when the optimal invariant distribution p̂ is used

lies in the range

T

4 min
p

Ve(θ?,p)−O
(

log T
(∑n

i=1 Li
n

)2)
≤ Eθ1,...,θT

[
min
p

T∑
t=1

Ve(θt,p)
]

≤ 4T min
p

Ve(θ?,p) +O

(
log T

(∑n
i=1 Li
n

)2)
, (2.14)

26

2.4. Technical Contributions

where minpVe(θ?,p) is the minimum effective variance at the optimal coordinates θ?.

As minp
∑T
t=1 Ve(θt,p) ≥∑T

t=1 minpt Ve(θt,pt), the lower bound follows automatically
from (2.10). The proof of the upper bound is similar to the proof of the upper bound in
Lemma 2.2, and is omitted.

Lemmas 2.2 and 2.3 yield that

Eθ1,...,θT

[
min
p

T∑
t=1

Ve(θt,p)
]
≈

T∑
t=1

Eθt
[
min
pt

Ve(θt,pt)
]
∈ O

(
T min

p
Ve(θ?,p)

)

asymptotically with T when minpVe(θ?,p) > 0. They make it therefore possible to
replace the difficult selection of pt? = arg minpt Ve(θt,pt) at each timestep t, by the
easier task of finding only one distribution p̂ as in (2.13).

Note that the optimal sampling distribution p? at θ? is in general different from the
distribution p̂ given by (2.13), and that

1
T

T∑
t=1

Ve
(
θt, p̂

)
≤ 1
T

T∑
t=1

Ve
(
θt,p?

)
.

Using p? at each iteration can easily make the variance large (or even unbounded). As
an example, assume ‖∇θφi(θ?)‖2 is small for some i compared to the other gradients for
j 6= i: then because of (2.6), p?i is small. However, there is no need for ‖∇θφi(θt)‖2 to
be small, which makes ‖∇θφi(θt)‖2/p?i large. Using a biased distribution as in [Needell
et al., 2014] can solve this issue.

Both Lemmas 2.2 and 2.3 require θt to converge to θ?. Indeed, if this condition is not
satisfied, finding an optimal sampling distribution for a sequence of coordinates θ1, . . . ,θt

that does not converge to the optimal coordinates θ? is useless. In Section 2.5, we find
that the simple constraint pti ≥ η/n for all 1 ≤ t ≤ T and for some 0 < η ≤ 1 guarantees
that in expectation θt to converge to θ? with the rate E[‖θt − θ?‖2] = O(1/t). To satisfy
this constraint we can simply use a biased distribution pti. A consequence of this biasing
is that no algorithm can find the optimal invariant distribution (2.13).

We relax the problem of finding the optimal sampling distribution p̂ in (2.13) to find an
approximate solution of (2.13), i.e., a sequence of distributions {pt} for t ∈ [T] such that

1
T

T∑
t=1

Ve
(
θt,pt

)
≤ c

T

T∑
t=1

Ve
(
θt, p̂

)
for some constant 1 ≤ c ≤ c̄. We design algorithms such that c̄ ≤ 3.

27

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

We note that the framework is not limited to the SGD, and that it is general enough to
construe the variance of a broader class of stochastic optimization algorithms such as
CD, SVRG, and SAGA in a similar way. Using an unbiased estimator for the gradient
is the common property that these algorithms share. In Section 2.6, we show how to
decompose the variance of the unbiased gradient of SVRG and SAGA into Ve and Vc
similar to (2.4).

2.4.1 Multi-armed Bandit Sampling

To find a sampling distribution pt that can be computed at time t and that approximates
p̂ as well as possible, we transform the problem (2.13) into an adversarial multi-armed
bandit (MAB) problem (see [Bubeck and Cesa-Bianchi, 20120] and Section 1.2 for more
details about MAB). From now on and for the sake of simplicity, we drop the explicit
dependence on θt in Vte(pt) = Ve

(
θt,pt

)
and use the shorthand

ati = 1
n2

∥∥∥∇θφi(θt)∥∥∥2
. (2.15)

The effective variance in (2.5) becomes

Vte
(
pt
)

=
n∑
i=1

ati
pti
. (2.16)

To use the classic framework of MAB, we need to formulate the effective variance
minimization problem minpt

∑
tVte(pt) as an adversarial MAB with the cost function

Ct = 〈pt − p̂, rt〉, where the losses rt need to be defined, as a function of the effective
variance Vte(pt). The following lemma provides the basis for this definition.

Lemma 2.4. For any real value constant ζ ≤ 0.5 and arbitrary sampling distributions
p1 and p2 we have

(1− 2ζ)Vte(p1)− (1− ζ)Vte(p2) ≤
〈
p1 − p2,∇pVte(p1)

〉
+ ζ

〈
p2,∇pVte(p1)

〉
. (2.17)

Take p1 = pt and p2 = p̂ in (2.17), then it becomes

(1− 2ζ)Vte(pt)− (1− ζ)Vte(p̂) ≤
〈
pt − p̂,∇pVte(pt)

〉
+ ζ

〈
p̂,∇pVte(pt)

〉
. (2.18)

After rearranging (2.18) we get

Vte
(
pt
)
≤ 1− ζ

1− 2ζV
t
e (p̂)+ 1

1− 2ζ 〈p
t− p̂,∇pVte

(
pt
)
〉+ ζ

1− 2ζ
〈
p̂,∇pVte

(
pt
)〉
. (2.19)

Observe that the first term in the right-hand side of (2.19) is the optimal effective
variance we are looking for, the second term is the cost function Ct of an adversarial

28

2.4. Technical Contributions

MAB with the ith loss

rti =
(
∇pVte(pt)

)
i

= − ati
(pti)2 . (2.20)

and the last term is a residual term that we can control by lowering ζ. Although the
loss (2.20) is a function of pt, it is not an issue here, because our MAB algorithm is
adversarial, and in an adversarial MAB, the losses can take any arbitrary form, including
being dependent on pt (see Section 1.2.2). By upper bounding the last two terms in
(2.19), we can guarantee the closeness of Vte(pt) to the optimal solution Vte (p̂).

Proof of Lemma 2.4. The effective variance Vte(p) is a convex function with respect to
p, hence for any two p1, p2 and any ζ < 1 we have

(1− ζ)Vte(p1)− (1− ζ)Vte(p2) ≤ (1− ζ)
〈
p1 − p2,∇pVte(p1)

〉
. (2.21)

By rearranging the terms of (2.21) we get

(1− ζ)Vte(p1) + ζ
〈
p1,∇pVte(p1)

〉
− (1− ζ)Vte(p2) ≤〈
p1 − p2,∇pVte(p1)

〉
+ ζ

〈
p2,∇pVte(p1)

〉
.

(2.22)

Note that (2.16) yields that

〈
p1,∇pVte(p1)

〉
= −

n∑
i=1

p1
i

ati
(p1
i)2 = −Vte(p1). (2.23)

By plugging (2.23) in (2.22) we obtain (2.17), which concludes the proof.

Building on this analogy between MAB and datapoint sampling, we propose an algorithm,
based on EXP3 (see [Auer et al., 2002b] and Section 1.2.2), which we call MABS (for
Multi-Armed Bandit Sampling). The loss in the MAB problem is given by (2.20) for all
arms (datapoints) i ∈ [n]. The MABS algorithm has n weights {wti}i∈[n], each initialized
to 1. The sum of weights is called potential function W t = ∑n

j=1 wtj . The distribution pt
is a combination of the distribution {wti/W t}i∈[n] computed from the weights at time t
and of the uniform distribution {1/n}i∈[n]:

pti = (1− η) w
t
i

W t
+ η

1
n
. (2.24)

MABS trades off exploration with exploitation. The sampling distribution {wti/W t}i∈[n]
is responsible for exploitation. It increases the sampling probability of the datapoints with

29

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

Algorithm 2.1 MABS
1: Input: η, and δ
2: Initialize: w1

i = 1 . for all i ∈ [n]
3: for t = 1 : T do
4: W t = ∑n

j=1 wtj
5: ptj ← (1− η) wtj

W t + η 1
n . for all j ∈ [n]

6: Sample i ∼ pt
7: Update θt using ∇θφi(θt)
8: wt+1

i = wti · exp(δati
(pti)3)

9: wt+1
j = wtj . for all j 6= i

10: end for

a larger ati. The uniform distribution {1/n}i∈[n] is responsible for exploration. It ensures
that MABS gathers enough information about ati through the course of optimization.
The parameter η determines how much exploration is needed and how much pti deviates
from the uniform distribution.
MABS updates the weights by using an unbiased estimator for rti , i.e.,

r̂ti =


rti
pti

if i is chosen at time t,

0 otherwise,
(2.25)

according to the updating rule

wt+1
i = wti exp

(
−δr̂ti

)
, (2.26)

where δ is a parameter that controls how much wti can change from one iteration t to the
next iteration t+ 1 based on the value of unbiased estimator r̂ti . More precisely, MABS
only updates the weight wtit of the selected datapoint it at timestep t and keeps all the
other ones fixed, i.e., wt+1

i = wti for all i 6= it.

Remark 2.5. A difference between the variance-reduction problem (2.13) and multi-
armed bandits is that in the latter the losses are assumed to be upper bounded almost surely.
Whereas in the former, the losses might be unbounded, depending on the distribution pt.
This occurs if the probability pti is close to 0, making the term ati/pti in (2.16) very large.
By taking pti from (2.24), one ensures that pti ≥ η/n > 0, which avoids this problem.

Theorem 2.6. Using MABS (Algorithm 2.1) with 0 < η < 0.5 in (2.24) and δ =√
η4 lnn/

(
n5Ta2

) in (2.26) to minimize (2.16) with respect to {pt}1≤t≤T , we have

T∑
t=1

Vte(pt) ≤
1− η
1− 2η

T∑
t=1

Vte(p̂) + 2− η
η2 (1− 2η)

√
n5Ta2 lnn, (2.27)

30

2.4. Technical Contributions

where T ≥
(
nmaxi(ai)2/η2

∑
j

(aj)2
)
n lnn for some ai ≥ supt{ati}, and some

a2 ≥
∑T
t=1

∑n
i=1(ati)2

nT
.

The complexity of MABS is O(log2 n) per iteration.

The condition T ≥
(
nmaxi(ai)2/η2

∑
j

(aj)2
)
n lnn ensures that −δr̂ti ≤ 1, which we need in

the proof. We could also replace ati with ai = supt{ati} in δ and the result of theorem
still holds. In Theorem 2.6, the second term of the right-hand side of (2.27) shows how
fast the algorithm converges. To understand the effect of η on (2.27), note that a small η
in (2.24) pushes the algorithm to exploit more often, which makes the first term of (2.27)
smaller, and the second term larger. As an example, if we choose η = 0.2 in Theorem 2.6,
asymptotically as T →∞, (2.27) becomes

T∑
t=1

Vte(pt) ≤ 1.4
T∑
t=1

Vte(p̂) + 75

√√√√n4
T∑
t=1

n∑
i=1

(ati)2 lnn.

Finding the optimum η that minimizes the right-hand side of (2.27) is impossible because
we do not know ∑T

t=1 Vte(p̂) a priori. But it is not necessary either, because tuning η only
changes the constants in the convergence guarantee of Theorem 2.10. In experiments, we
find that setting η = 0.4 yields good performance on different datasets. With η = 0.4,
(2.27) then becomes

T∑
t=1

Vte(pt) ≤ 3
T∑
t=1

Vte(p̂) + 50

√√√√n4
T∑
t=1

n∑
i=1

(ati)2 lnn. (2.28)

In SGD, PSGD, SVRG, and SAGA the effective variance Vte(pt) scales as
√
n lnn because

ati ∼ 1/n2 and ai ∼ 1/n2. In addition, note that the second term of the right-hand side of
(2.28) increases as

√
T , whence

1
T

T∑
t=1

Vte(pt) ≤
3
T

T∑
t=1

Vte(p̂) +O

√n lnn
T

 .
Therefore, as T becomes large, the solution pt returned by MABS approximates the solu-
tion p̂ of (2.13). The computation of the gradient ∇θφi(θt) requires O(d) computations
so that the computational overhead of MABS is insignificant if logn is small compared to
the coordinate dimension d. Such is the case for almost all datasets, in particular for the
two datasets in Table 2.2 used in the evaluation section (see Section 2.6). The condition
T = O(n lnn) on T might be prohibitive if n is large, but we can relax it at the expense
of having a slightly worse bound (see Appendix 2.A).

31

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

The proof uses Lemma 2.4 to linearize the effective variance∑T
t=1 Vte(pt), and next defines

a potential function W t = ∑n
i=1 wti and adopts the approach of multiplicative-weight

update algorithms (see for example [Auer et al., 2002b]) combined with Lemma 2.4. By
upper and lower bounding the potential function θT+1 at iteration T + 1, we derive the
result of Theorem 2.6. We present the full proof below.

Proof of Theorem 2.6. Remember that rti = −ati/(pti)2 is the loss of datapoint i, because
of (2.20), that r̂ti = rti · 1{It=i}/pti is an unbiased estimator for rti , because of (2.25), and
that the update rule for the weight wti at timestep t is wt+1

i = wti · exp(−δr̂ti), because of
(2.26). Therefore, wT+1

i = exp
(
−δ
∑T
t=1 r̂

t
i

)
and the potential function at time T + 1 is

W T+1 =
n∑
i=1

wT+1
i ≥ wT+1

j = exp
(
−δ

T∑
t=1

r̂tj

)

for all j ∈ [n]. Since W 1 = ∑n
i=1 w1

i = n, we get the following lower bound on lnWT+1/W 1,

−δ
T∑
t=1

r̂tj − lnn ≤ ln W
T+1

W 1 . (2.29)

Now, let us upper bound W T+1. Observe that

W t+1

W t
=
∑n
i=1 wt+1

i

W t
=
∑n
i=1 wti exp(−δr̂ti)

W t
=

n∑
i=1

(
pti − η/n

1− η

)
exp(−δr̂ti), (2.30)

where wti/W t = (pti−η/n)/1−η follows from (2.24). If −δr̂ti ≤ 1, we can plug the inequality
exp(x) ≤ 1 + x+ x2, which holds for all x ≤ 1, in (2.30), and it becomes

W t+1

W t
≤

n∑
i=1

(
pti − η/n

1− η

)(
1− δr̂ti + (δr̂ti)2

)
≤ 1− δ

1− η

n∑
i=1

ptir̂
t
i + δ2

1− η

n∑
i=1

pti(r̂ti)2.

(2.31)

We provide later in the proof a condition that ensures −δr̂ti ≤ 1. As −r̂ti ≥ 0, all terms
of the right-hand side of (2.31) are non-negative, hence we can plug the inequality
ln(1 + x) ≤ x, which holds for all x ≥ 0, in (2.31) and it becomes

ln W
t+1

W t
≤ − δ

1− η

n∑
i=1

ptir̂
t
i + δ2

1− η

n∑
i=1

pti(r̂ti)2. (2.32)

Summing (2.32) for 1 ≤ t ≤ T , we get the following upper bound on lnWT+1/W 1

ln W
T+1

W 1 =
T∑
t=1

ln W
t+1

W t
≤ − δ

1− η

T∑
t=1

n∑
i=1

ptir̂
t
i + δ2

1− η

T∑
t=1

n∑
i=1

pti(r̂ti)2. (2.33)

32

2.4. Technical Contributions

Combining the lower bound (2.29) and the upper bound (2.33), we get

−δ
T∑
t=1

r̂tj − lnn ≤ − δ

1− η

T∑
t=1

n∑
i=1

ptir̂
t
i + δ2

1− η

T∑
t=1

n∑
i=1

pti(r̂ti)2. (2.34)

From (2.25), E[r̂ti] = rti and E[(r̂ti)2] = (rti)2/pti, hence by taking expectations over pt in
(2.34), we get

−δ
T∑
t=1

rtj − lnn ≤ − δ

1− η

T∑
t=1

n∑
i=1

ptir
t
i + δ2

1− η

T∑
t=1

n∑
i=1

(rti)2. (2.35)

By multiplying (2.35) by p̂j and summing over j, we get

−δ
T∑
t=1

n∑
j=1

p̂jr
t
j − lnn ≤ − δ

1− η

T∑
t=1

n∑
i=1

ptir
t
i + δ2

1− η

T∑
t=1

n∑
i=1

(rti)2. (2.36)

As rti = −ati/(pti)2 =
(
∇pVte(pt)

)
i, we have

∑n
i=1 pir

t
i =

〈
p,∇pVte(pt)

〉
for any distribution

p. By plugging this in (2.36) and rearranging, we find

T∑
t=1

〈
pt − p̂,∇pVte(pt)

〉
+ η

T∑
t=1

〈
p̂,∇pVte(pt)

〉
≤ 1− η

δ
lnn+ δ

T∑
t=1

n∑
i=1

(rti)2. (2.37)

Setting ζ = η in (2.18) and combining it with (2.37) gives

(1− 2η)
T∑
t=1

Vte(pt)− (1− η)
T∑
t=1

Vte(p̂) ≤ 1− η
δ

lnn+ δ
T∑
t=1

n∑
i=1

(rti)2, (2.38)

and by rearranging the terms of (2.38) and noting that 0 < η < 0.5, we finally get

T∑
t=1

Vte(pt) ≤
1− η
1− 2η

T∑
t=1

Vte(p̂) + 1− η
δ(1− 2η) lnn+ δ

1− 2η

T∑
t=1

n∑
i=1

(rti)2. (2.39)

Because of (2.20) and (2.24), (2.39) becomes

T∑
t=1

Vte(pt) ≤
1− η
1− 2η

T∑
t=1

Vte(p̂) + 1− η
δ(1− 2η) lnn+ δn4

(1− 2η) η4

T∑
t=1

n∑
i=1

(ati)2. (2.40)

Setting δ =
√
η4 lnn/

(
n5Ta2

) for some a2 ≥ {
∑T
t=1

∑n
i=1 (ati)

2/nT} in (2.40) concludes the
proof. The condition T ≥

(
nmaxi(ai)2/η2

∑
j

(aj)2
)
n lnn in the assumptions of Theorem 2.6

ensures that δ is small and −δr̂ti ≤ 1, which is needed to use exp(x) ≤ 1 + x + x2 for
x = −δr̂ti in (2.31).

33

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

Algorithm 2.2 MABS2
1: Input: η, δ, and ai . for all i ∈ [n]
2: Initialize: qi = |ai|2/5/(

∑n
j=1 |aj |2/5) and w1

i = 1 . for all i ∈ [n]
3: for t = 1 : T do θt = ∑n

j=1 wtj
4: ptj ← (1− η) wtj

W t + ηqj . for all j ∈ [n]
5: Sample i ∼ pt
6: Update θt using ∇θφi(θt)
7: wt+1

i = wti · exp(δati
(pti)3)

8: wt+1
j = wtj . for all j 6= i

9: end for

Finally, as in Section A.4 of [Salehi et al., 2017b], with a tree structure (similar to the
interval tree) we can update wit and sample from pt in O(log2 n) computations per
step.

Remark 2.7. If we know ai = supt{ati}, then we can refine MABS and improve the bound
(2.27). In MABS2 (Algorithm 2.2), instead of combining the distribution {wti/W t}i∈[n] with
a uniform distribution, the idea is to combine {wti/W t}i∈[n] with a non-uniform distribution
q = {qi}i∈[n]. In other words (2.24) is replaced by

pti = (1− η) w
t
i

W t
+ ηqi, (2.41)

where distribution q should be such that if aj is large for some j ∈ [n], then qj is large as
well. This way the worst-case guarantee on ati/pti can be strengthened, because the lower
bound ηqi on pti is larger for a datapoint i for which ai is large as well. In Corollary 2.12
(in Appendix 2.A.2), we find that the optimal distribution is

qi = a
2/5
i∑n

j=1 a
2/5
j

for all i ∈ [n].

Remark 2.8. The idea of decoupling exploration and exploitation from Avner et al. [2012]
can also be used to obtain a lower effective variance Vte. The decoupling of exploration
and exploitation enables us to explore better while exploiting the existing information and
achieve better performance. More precisely, in MABS3 (Algorithm 2.3), a datapoint i
is selected with probability pti for updating the coordinate θt, and another datapoint j is
selected with probability qtj for gathering information about the loss rtj and for updating
pt. An estimator for rti = −ati/(pti)2 is built from qt as

r̂ti =

r
t
i/qti if i is chosen at time t,

0 otherwise,
(2.42)

34

2.4. Technical Contributions

Algorithm 2.3 MABS3
1: Input: η, δ, and ai . for all i ∈ [n]
2: Initialize: zi = a

2/5
i /(

∑n

j=1 a
2/5
j) and w1

i = 1 . for all i ∈ [n]
3: for t = 1 : T do θt = ∑n

j=1 wtj
4: ptj ← (1− η) wtj

W t + ηzi . for all j ∈ [n]
5: qti = ai/(pti)

1.5∑n

j=1 aj/(p
t
j)1.5 . for all i ∈ [n]

6: Sample i ∼ pt
7: Update θt using ∇θφi(θt)
8: Sample i ∼ qt

9: wt+1
i = wti · exp(δ‖a

t
i‖

2

(pti)2qti
)

10: wt+1
j = wtj . for all j 6= i

11: end for

where in Corollary 2.9, qt is set as

qti = ai/(pti)1.5∑n
j=1 aj/(ptj)1.5 ,

to minimize the variance of the estimator r̂ti for rti.

Corollary 2.9. Using MABS3 with 0 < η < 0.5 and δ =
√
η3 lnn/

(
T

(∑n

i=1 a
2/5
i

)5
)

to

minimize (2.16) with respect to {pt}1≤t≤T , we have

T∑
t=1

Vte(pt) ≤
1− η
1− 2η

T∑
t=1

Vte(p̂) + 2− η
η1.5 (1− 2η)

√√√√T (n∑
i=1

a
2/5
i

)5

lnn. (2.43)

where T ≥
√(∑n

i=1 a
2/5
i

)
/mini a1/5

i lnn for some ai ≥ supt{ati}. The complexity of MABS3
is O(n) per iteration.

The condition T ≥
√(∑n

i=1 a
2/5
i

)
/mini a1/5

i lnn ensures that −δr̂ti ≤ 1, which is needed in
the proof. Comparing (2.43) to (2.27), we observe that for the same η (that yields the
same approximation factor) MABS3 finds the approximate distribution faster, because
the second term in the upper bound in (2.43) is smaller than the second term in the
upper bound in (2.27), even if both terms increase as

√
T . In particular, if ais vary a lot

across i ∈ [n] (for example, if maxi ai ≥ c
∑n
j=1 aj for some 1/n ≤ c ≤ 1), after dropping

the constants, the second term in the upper bound in (2.43) is (cn)2/
√
η times smaller

than the second term in the upper bound in (2.27). The proof is similar to the proof of
Theorem 2.6 and uses the idea of decoupling from [Avner et al., 2012]. We present the
full proof below.

35

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

Proof of Corollary 2.9 . Similar to the proof of Theorem 2.6, we define the potential
function W t = ∑n

i=1 wti. Remember that the loss of the datapoint i is rti = −ati/(pti)2,
because of (2.20), that r̂ti = rti · 1{It=i}/qti is an unbiased estimator for rti , because of
(2.42), and that the update rule for the weight wti is wt+1

i = wti · exp(−δr̂ti), because of
(2.26). Following the same steps as the proof of Theorem 2.6, if −δr̂ti ≤ 1 by lower and
upper bounding W T+1 as in (2.34), we get

−δ
T∑
t=1

r̂tj − lnn ≤ − δ

1− η

T∑
t=1

n∑
i=1

ptir̂
t
i + δ2

1− η

T∑
t=1

n∑
i=1

pti(r̂ti)2, (2.44)

we provide later in the proof a condition that ensures −δr̂ti ≤ 1. From (2.42), E[r̂ti] = rti
and E

[
(r̂ti)2] = (rti)2/qti , hence by taking expectations over qt in (2.44), we get

−δ
T∑
t=1

rtj − lnn ≤ − δ

1− η

T∑
t=1

n∑
i=1

ptir
t
i + δ2

1− η

T∑
t=1

n∑
i=1

pti
qti

(rti)2. (2.45)

With (rti)2 = (ati)
2/(pti)

4 because of (2.20) and ai ≥ supt{ati}, (2.45) becomes

−δ
T∑
t=1

rtj − lnn ≤ − δ

1− η

T∑
t=1

n∑
i=1

ptir
t
i + δ2

1− η

T∑
t=1

n∑
i=1

(ai)2

(pti)3qti
. (2.46)

The only term in (2.46) that is a function of qt is ∑n
i=1 (ai)2/(pti)

3qti , so we choose qti such
that ∑n

i=1 (ai)2/(pti)
3qti is minimized, which is

qti = ai/(pti)1.5∑n
j=1 aj/(ptj)1.5 . (2.47)

Plugging (4.4) in (2.46) yields

−δ
T∑
t=1

rtj − lnn ≤ − δ

1− η

T∑
t=1

n∑
i=1

ptir
t
i + δ2

1− η

T∑
t=1

(
n∑
i=1

ai
(pti)3/2

)2

. (2.48)

Recall that

ptj = (1− η)
wtj
W t

+ ηzj (2.49)

in MABS3, where zj is a fixed distribution over the datapoints. Because of (2.49), the
right-hand side of (2.48) is upper bounded as

−δ
T∑
t=1

rtj − lnn ≤ − δ

1− η

T∑
t=1

n∑
i=1

ptir
t
i + δ2

η3(1− η)T
(

n∑
i=1

ai
(zi)3/2

)2

. (2.50)

36

2.4. Technical Contributions

We choose zi such that the upper bound in (2.50) is minimized, which is zi = a
2/5
i /
∑n

j=1 a
2/5
j .

By plugging zi = a
2/5
i /
∑n

j=1 a
2/5
j in (2.50), we find

−δ
T∑
t=1

rtj − lnn ≤ − δ

1− η

T∑
t=1

n∑
i=1

ptir
t
i + δ2

η3(1− η)T
(

n∑
i=1

a
2/5
i

)5

. (2.51)

By multiplying (2.51) by p̂j and summing over j, we get

−δ
T∑
t=1

n∑
j=1

p̂jr
t
j − lnn ≤ − δ

1− η

T∑
t=1

n∑
i=1

ptir
t
i + δ2

η3(1− η)T
(

n∑
i=1

a
2/5
i

)5

. (2.52)

As rti = −ati/(pti)2 =
(
∇pVte(pt)

)
i, we have ∑n

i=1 pir
t
i =

〈
p,∇pVte(pt)

〉
for any distribu-

tion p, by plugging this in (2.52) and rearranging it, we find

T∑
t=1

〈
pt − p̂,∇pVte(pt)

〉
+η

T∑
t=1

〈
p̂,∇pVte(pt)

〉
≤ 1− η

δ
lnn+ δ

T

η3

(
n∑
i=1

a
2/5
i

)5

. (2.53)

Setting ζ = η in (2.18) and combining it with (2.53) gives

(1− 2η)
T∑
t=1

Vte(pt)− (1− η)
T∑
t=1

Vte(p̂) ≤ 1− η
δ

lnn+ δ
T

η3

(
n∑
i=1

a
2/5
i

)5

, (2.54)

and by rearranging the terms of (4.10) and noting that 0 < η < 0.5, we finally get

T∑
t=1

Vte(pt) ≤
1− η
1− 2η

T∑
t=1

Vte(p̂) + 1− η
δ(1− 2η) lnn+ δ

1− 2η
T

η3

(
n∑
i=1

a
2/5
i

)5

. (2.55)

Setting δ =
√
η3 lnn/

(
T

(∑n

i=1 a
2/5
i

)5
)

in (2.55) concludes the proof. The condition T ≥√(∑n

i=1 a
2/5
i

)
/mini a1/5

i lnn in Corollary 2.9 ensures that δ is small and −δr̂ti ≤ 1 which is
needed to use exp(x) ≤ 1 + x+ x2 with x = −δr̂ti in the derivation of (2.44).

Table 2.1 summarizes the performance and running time of three versions of MABS
(MABS in Theorem 2.6, MABS2 in Corollary 2.12 in Appendix 2.A.2, and MABS3 in
Corollary 2.9). To ease comparison, we recast (2.27) and (2.43) under the more general
form

1
n2

T∑
t=1

Vte(pt) ≤ approx · 1
n2

T∑
t=1

Vte(p̂) +R, (2.56)

where approx is the approximation factor and R is the regret, both of which are listed in
Table 2.1 for the three versions of MABS. In uniform sampling and importance sampling

37

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

Table 2.1 – Performance of the different versions of MABS. In the performance metrics,
approx is the approximation factor of the algorithms and running_time is the total
computational complexity of the algorithms per iteration.

method approx Regret running_time

MABS 1−η
1−2η O

(
2−η

η2(1−2η)

√
T
∑n
i=1 a

2
i lnn

)
O(logn)

MABS2 1−η
1−2η O

(
2−η

η2(1−2η)

√
T

(
∑n

i=1 a
2/5
i)5

n4 lnn
)

O(logn)

MABS3 1−η
1−2η O

(
2−η

η1.5(1−2η)

√
T

(
∑n

i=1 a
2/5
i)5

n4 lnn
)

O(n)

methods, the approximation factor and R are unknown, hence they are not included in
Table 2.1.

In a classic bandit problem, it is important to perform (in hindsight) as well as the
optimal solution, i.e., to have approx = 1. Otherwise, the difference between the optimal
solution and the solution found by a bandit algorithm is O(T). In this work, however,
recall that the end goal of minimizing the effective variance with a bandit algorithm
is to have a better estimator for the gradient, and as a result to converge faster to the
optimal coordinates θ?. In the next section, we can guarantee the convergence of SGD,
if η in (2.24) is a positive constant. Therefore, an approximation factor larger than 1
(approx > 1) is needed in this setting, yet it only appears as a constant factor in the
final convergence rate, and it might be more important to have a smaller R and to find a
good distribution fast, especially in a scenario where the norm of the gradients varies a
lot from one iteration to the next.

2.5 Combining MABS with Stochastic Optimization Algo-
rithms

In this section, we provide some intuition behind the improvement of the convergence
rate brought by the reduction of the effective variance Vte(pt). We derive (in Section 2.5.1)
the convergence guarantee for SGD in conjunction with MABS in order to highlight the
impact of the effective variance Vte(pt) on it. In particular, let the sub-optimality gap be
ε(θ) = F (θ) − F (θ?), i.e., the difference between the cost function F at coordinate θ
and the minimum cost function F reached at the optimal coordinate θ?. We show (in
Section 2.5.1) that the convergence guarantee on ε(θ) for SGD is linearly proportional to
the expected sum of effective variances over T iterations Eθ1,...,θT

[∑T
t=1 Vte(pt)

]
, and we

derive the convergence rate of SGD in conjunction with MABS. In Section 2.5.2, we derive
a general upper bound on the per-iteration convergence rate for first-order stochastic

38

2.5. Combining MABS with Stochastic Optimization Algorithms

optimization algorithms that use an unbiased estimator ĝ(θt,θt) for the gradient ∇θF (θ),
that is reduced together with the effective variance Vte(pt). In this section, we use
ĝ(θt) = ĝ(θt,pt) and we drop the explicit dependence on pt.

2.5.1 SGD

We start with SGD and show that the convergence guarantee on ε(θ) = F (θ)− F (θ?) is
directly proportional to the expected cumulative effective variance Eθ1,...,θT

[∑T
t=1 Vte(pt)

]
.

In SGD, given θt, the unbiased estimator for the gradient ∇θF (θ) is ĝ(θt) = ∇φit (θ
t)/npit

and Vte(pt) = Ept
[
‖ĝ(θt)‖2

∣∣θt]. In the seminal work of [Robbins and Monro, 1951], it
has been shown that in order for SGD to converge the step size γt should be decreasing
in time, and the step size should satisfy

T∑
t=1

γt =∞ and
T∑
t=1

γ2
t <∞.

We can use SGD in conjunction with MABS to minimize the cumulative effective
variance Eθ1,...,θT

[∑T
t=1 Vte(pt)

]
. However, as ∑T

t=1 Vte(pt) depends on the trajectory of
the coordinates θ1, . . . ,θt, it is not clear what the convergence bound in (2.7) becomes,
unless we upper bound ∑T

t=1 Vte(pt). In particular, if pt becomes close to 0, then Vte(pt)
can be very large because of (2.5). Trivial bounds on Vte(pt) can be established by
assuming that the gradients ∇θφi(θt) are bounded. This can be achieved by assuming
that the optimal coordinate θ? is contained in a bounded set X ∈ Rd, and by adding a
projection step to SGD in order to establish a bound on ‖∇θφi(θt)‖.

Here, we assume that φis are Li-smooth, and use the smoothness to bound ‖∇θφi(θt)‖
as is done in [Needell et al., 2014, Csiba et al., 2015, Schmidt et al., 2015a]. For simplicity,
we assume that there is no regularizer in F (θ). Similar results hold when a convex
regularizer r(θ) is added to the cost function F (θ).

Theorem 2.10. Assume that F (θ) is µ-strongly convex and let each φi be convex and
Li-smooth. Also, assume that minpVe(θ?,p) > 0. Then, if γt = 2/µ(t+t0) in (2.2), the
following convergence guarantee holds for any T ≥ 2.5 (maxi(Gi)2/(G2))n lnn in SGD with
MABS:

E
[
‖θT+1 − θ?‖2

]
≤ 24
µ2n2T

(
n∑
i=1
‖∇θφi(θ?)‖

)2

+ 20
µ2nT 2α

n∑
i=1

Li + t20
T 2 ‖θ

0 − θ?‖2

+ 200t0
µ2T 2

√√√√2 lnn
(
T (

n∑
i=1
‖∇θφi(θ?)‖2) + α

n∑
i=1

Li

)
(2.57)

=O

(1
µ2T

min
p

Ve(θ?,p)
)

= O

 1
µ2n2T

(
n∑
i=1
‖∇θφi(θ?)‖

)2
 ,
39

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

for some Gi ≥ max{θ1,...,θt} ‖∇θφi(θt)‖2, where the expectations are over the sequence of
the updated coordinates {θt}t∈[T], t0 ≥ max {1, 4 supLi/µ}, α = µ2t0‖θ0−θ?‖2+20σ2

u/µ2 log(T +
t0) and σ2

u = Ei∼U [1,n]
[
‖∇θφi(θ?)‖2

]
.

The constants in (2.57) are not optimized and better rates can be found by tuning η in
(2.24). The first term in (2.57) scales as O (1/T), the second term scales as O (log T/T 2),
the third term scales as O(1/T 2) and the last term scales as O(1/T 3/2). So asymptotically
for large T , the first term is the most important term in the convergence rate, which is
asymptotically

E
[
‖θT+1 − θ?‖2

]
= O

(1
µ2T

min
p

Ve(θ?,p)
)

= O

 1
µ2n2T

(
n∑
i=1
‖∇θφi(θ?)‖

)2
 ,

and which is of the same order as the fastest convergence rate (2.11). The full proof of
Theorem 2.10 is presented in Appendix 2.A.3. First, in Lemma 2.13 in Appendix 2.A.3 we
show that θt converges to θ? when SGD with pti > 0.4/n is used, so that the conditions
of Lemma 2.3 hold. The analysis of the theorem is then based on showing that the
convergence rate depends linearly on the cumulative effective variance ∑T

t=1 Vte(pt).
Therefore, by using MABS and the results of Lemma 2.13 we can directly bound the
sum ∑T

t=1 Vte(pt).

In addition, when the effective variance Vte(pt) is small (meaning that (2.3) is a good
estimator), we expect a more stable algorithm, i.e., we can choose a larger step size γt
without diverging. Assume that the cost function F (θ) is L-smooth. Using the smoothness
property (see Definition 2.C in Appendix where h(·) = F (·), y = θt+1 and x = θt), we
get

F (θt+1)− F (θt) ≤
〈
∇θF (θt),θt+1 − θt

〉
+ L

2 ‖θ
t+1 − θt‖2. (2.58)

Plugging the update rule (2.2) of SGD in (2.58) yields

F (θt+1)− F (θt) ≤ −γ
〈
∇θF (θt), ∇θφit(θ

t)
nptit

〉
+ γ2L

2

∥∥∥∥∥∇θφit(θt)nptit

∥∥∥∥∥
2

. (2.59)

By taking expectations over pt, conditionally on θt, we obtain

Ept [F (θt+1)|θt]− F (θt) ≤ −γ‖∇θF (θt)‖2 + γ2L

2 Vte(pt).

To guarantee that the cost function F decreases (in expectation), we need to have
γ ≤ 2‖∇θF (θt)‖2/

(
L · Vte(pt)

)
. Therefore, by lowering Vte(pt), we can afford a larger

step size γ.

40

2.5. Combining MABS with Stochastic Optimization Algorithms

A similar analysis holds for PSGD, that updates θ according to

θt+1 = arg min
θ

[
〈∇θφit(θt),θ〉+ λr(θ) + 1

γt
Bψ(θ,θt)

]
,

where r(θ) is a convex regularizer. We defer the explanation of PSGD to Appendix 2.B.
Deriving the convergence results for SVRG and SAGA in conjunction with MABS is
left for future work, below we describe why reducing the variance with a non-uniform
sampling distribution should improve the convergence rate of first-order optimization
algorithms (such as SVRG and SAGA).

2.5.2 First-order Algorithms

Let θt be the coordinate at the current iteration t, and θt+1 be the coordinate at the
next iteration t+ 1 that is reached by using a first-order optimization algorithm. Let us
also consider a more general cost function

F (θ) = 1
n

n∑
i=1

φi(θ) + λr(θ),

where r(·) is a convex regularizer. Consider the following updating rule

θt+1 = proxλrγ
(
θt − γĝ(θt)

)
,

where ĝ(θ) is an unbiased estimator for the gradient g(θ) = ∑n
i=1∇θφi(θ)/n, where γ is

the step size, and where

proxλrγ (y) = arg min
x

{ 1
2γ ‖x− y‖

2 + λr(x)
}

(2.60)

is the proximal operator. We can then upper bound ‖θt+1 − θ?‖2 by using a similar
technique as in [Defazio et al., 2014]

‖θt+1 − θ?‖2 =
∥∥∥proxλrγ (

θt − γĝ(θt)
)
− proxλrγ (θ? − γg(θ?))

∥∥∥2

≤
∥∥∥θt − θ? + γ

(
g(θ?)− ĝ(θt)

)∥∥∥2
, (2.61)

where the inequality follows from the non-expansiveness of the proximal operator, i.e.,∥∥∥proxλrγ (x)− proxλrγ (y)
∥∥∥2
≤ ‖x− y‖2 for any x and y ∈ Rd. Next, by taking expectations

of the right-hand side of (2.61) over pt, conditionally on θt, we have

E
[∥∥∥θt − θ? + γ

(
g(θ?)− ĝ(θt)

)∥∥∥2∣∣∣∣θt] = ‖θt − θ?‖2 + γ2‖g(θ?)‖2 + γ2E
[
‖ĝ(θt)‖2

∣∣∣θt]
+ 2γ(θt − θ?)>

(
g(θ?)− g(θt)

)
− 2γ2g(θ?)>g(θt),

(2.62)

41

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

because E
[
ĝ(θt)

∣∣θt] = g(θt). Combining (2.61) and (2.62), we get

E
[∥∥∥θt+1 − θ?

∥∥∥2
∣∣∣∣θt]− ‖θt − θ?‖2 ≤

γ2‖g(θ?)‖2 + γ2E
[
‖ĝ(θt)‖2

∣∣∣θt]+ 2γ(θt − θ?)>
(
g(θ?)− g(θt)

)
− 2γ2g(θ?)>g(θt).

(2.63)

From (2.63), it is clear that, given θt, all terms except E
[
‖ĝ(θt)‖2

∣∣θt] are constant
with respect to pt. In many optimization algorithms such as SGD, PSGD, SAGA,
and SVRG the effective variance Vte(pt) = E

[
‖ĝ(θt)‖2

∣∣θt] + Vg
(
{i`,θ`}1≤`≤t

)
, where

Vg
(
{i`,θ`}1≤`≤t

)
is a function of the history of the algorithm (past coordinates θ` and

sampled datapoints i` for 1 ≤ ` ≤ t), but not of pt. Therefore, to bring θt+1 closer in
expectations to θ?, minimizing Vte(pt) over pt amounts to minimizing E

[
‖ĝ(θt)‖2

∣∣θt].
As a result, by minimizing Vte(pt) (hence E

[
‖ĝ(θt)‖2

∣∣θt]) in (2.63) we can afford a larger
step size γ without diverging. In Section 2.6.4, the stability of the SGD, SAGA and
SVRG in conjunction with MABS, for a range of step sizes γ, is tested, and we observe a
significant improvement in the stability compared to the corresponding algorithms with
uniform sampling.

2.6 Empirical Evaluation

We evaluate the performance of MABS in conjunction with several stochastic optimization
algorithms and address the question: How much can bandit-based sampling improve the
convergence rate? Towards this goal, we compare the performance of several stochastic
optimization algorithms that use uniform sampling, importance sampling (IS) and MABS.
We conduct two types of experiments.

In the first one, in Section 2.6.2, we create a set of synthetic datasets. Each dataset has a
different ratio τ of maximum smoothness Lm = maxi∈[n]{Li} to the average-smoothness
L̄ = ∑n

i=1 Li/n, where Li is the smoothness parameter of the sub-cost function φi in
(2.1). We refer to the ratio τ = Lm/L̄ as smoothness ratio. It is observed in several works
(e.g., [Zhao and Zhang, 2015a]) that a non-uniform sampling technique speeds up the
convergence rate more for a dataset with larger τ . With a synthetic dataset, we can
vary τ and compare the convergence rate of different sampling methods for a range of
values of τ .

In the second one, in Section 2.6.3, we compare the convergence rate of different sampling
methods on real datasets to observe how the algorithms works in practice. We address the
question: How stable is a stochastic optimization algorithm in conjunction with different
sampling methods? To answer this question, in Section 2.6.4, we vary the step size (a.k.a.,
learning rate) in the stochastic optimization algorithms and find empirically the maximum
step size for different sampling methods for which the stochastic optimization algorithm

42

2.6. Empirical Evaluation

sill converges to the optimum coordinates θ?. Finally, we address the question: How
much can bandit-based sampling improve the convergence rate in terms of the wall-clock
time? Towards this goal in Section 2.6.5, we report the convergence rate of SGD with
different sampling methods as a function of the wall-clock time, instead of epochs.

2.6.1 Experimental Setup

In this paper, we consider a broader class of stochastic optimization algorithms, which
includes not only SGD but also other optimization algorithms that use

ĝ
(
θt,pt

)
= bit(θt)

ptit
+ ḡ

(
{i`,θ`}1≤`≤t

)
(2.64)

as an unbiased estimator for ∇θF (θt), where bit(θt) is a function of θt but not of pt, and
where ḡ

(
{i`,θ`}1≤`≤t

)
is a function of the history of the algorithm (past coordinates θ`

and sampled datapoints i` for 1 ≤ ` ≤ t), but not of pt. The exact expressions of bit(·)
and ḡ(·) depend on the stochastic optimization algorithm (we present some examples
next) and the cost function F . For example, if a smooth convex regularizer λr(θ) is
used in the cost function, then bit = ∇θφit(θt)/n and ḡ

(
{i`,θ`}1≤`≤t

)
= λ∇θr(θt) in

SGD. This class includes not only SGD, but also PSGD, SVRG, and SAGA, and is
characterized by the property that the variance V(θt, pt) of ĝ

(
θt,pt

)
can be written as

in (2.4), as the difference of the effective variance Ve that takes the form

Vte
(
pt
)

=
n∑
i=1

ati
pti
, (2.65)

where

ati =
∥∥∥bi(θt)∥∥∥2

, (2.66)

and of a term Vc
(
{i`,θ`}1≤`≤t

)
that does not depend on pt. If ĝ

(
θt,pt

)
is given by (2.3)

(as in SGD), then the effective variance Vte
(
pt
)
is given by (2.5) and

ati = 1
n2

∥∥∥∇θφi(θt)∥∥∥2

in (2.65). We first define the appropriate unbiased estimator ĝ(θt) for ∇θF (θt) and ati
in (2.65) for each algorithm. As the goal of the experiments is to show the advantage
of MABS over other sampling methods, in each experiment, we fix the optimization
algorithm and change the sampling method. In particular, we assume that the cost
function

F (θ) = 1
n

n∑
i=1

φi(θ) + λr(θ),

43

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

where r(θ) is a smooth convex regularizer. We compare the following algorithms and
present below the necessary definitions for MABS:

• Stochastic Gradient Descent (SGD):

ĝ(θt) = ∇θφit(θ
t)

nptit
+ λ∇θr(θt) and ati = 1

n2

∥∥∥∇θφi(θt)∥∥∥2
.

• Stochastic Variance-Reduced Gradient (SVRG):

ĝ(θt) = ∇θφit(θ
t)−∇θφit(θ̂)
nptit

+
∑n
i=1∇θφi(θ̂)

n
+ λ∇θr(θt)

and

ati = 1
n2

∥∥∥∇θφi(θt)−∇θφi(θ̂)
∥∥∥2
,

where θ̂ is defined as follows. Time is divided into bins of size n, and at the
beginning of each bin c (in the cth bin cn ≤ t < (c+ 1)n) θ̂ is updated as

θ̂ =
∑cn
`=(c−1)n θ

`

n
,

see [Xiao and Zhang, 2014] for more details and [Allen-Zhu and Yuan, 2016, Kern
and György, 2016] for improved versions of the algorithm.

• SAGA:

ĝ(θt) = ∇θφit(θ
t)−∇θφit(θ̂it)
nptit

+
∑n
i=1∇θφi(θ̂i)

n
+ λ∇θr(θt)

and

ati = 1
n2

∥∥∥∇θφi(θt)−∇θφi(θ̂i)∥∥∥2
,

where ∇θφi(θ̂i) is the gradient of the sub-cost function φi at the last time that
datapoint i was chosen (see Defazio et al. [2014] for more details).

For each stochastic optimization algorithm, we use three sampling methods: (1) uniform
sampling (denoted by suffix _U), (2) IS (denoted by suffix _IS), and (3) MABS (denoted
by suffix _MABS). If the regularizer λr(θ) is not smooth (as for L1-penalized logistic
regression in Section 2.6.4), we will use the proximal operator to update the coordinates θt.

44

2.6. Empirical Evaluation

6 8 10 12 14 16 18 20 22
τ

0

200

400

600

800

1000

F
(θ

T
)
−
F

�

SGD U

SGD IS

SGD MABS

(a) The difference between the cost
function F (θT) found by SGD with
different sampling methods and the
cost function F ? found by gradient de-
scent method for different smoothness
ratios τ .

6 8 10 12 14 16 18 20 22
𝜏

105

106

107

av
g
va
ria
nc
e

SGD_U
SGD_IS
SGD_MABS

(b) The average effective variance∑T
t=1 Vt

e(θt)/T for different smooth-
ness ratios τ .

Figure 2.2 – We study SGD for minimizing mean squared error with different sampling
methods by comparing the convergence and the effective variance as a function of
smoothness ratio τ = maxi{Li}/

∑n

j=1 Lj/n (a measure of the dissimilarity of the ∇θφis).
We observe that both are lowest when MABS is used. The standard deviation is also
depicted in the plots.

2.6.2 Empirical Results for Different Smoothness Ratios τ

As discussed in Section 2.1, the benefit of MABS (and of non-uniform sampling more
generally) will depend on how dissimilar the ∇θφis are. Recall that the smoothness
ratio τ is the ratio between the maximum-smoothness Lm = maxi∈[n]{Li} and the
average-smoothness L̄ = ∑n

i=1 Li/n. As observed in [Zhao and Zhang, 2015a], when the
smoothness ratio τ is large, we expect non-uniform sampling (and in particular MABS)
to be more advantageous. To study this effect, we present results on synthetic datasets
with different smoothness ratios τ using SGD_U, SGD_IS, and SGD_MABS.4

Dataset. The datasets have n = 101 datapoints and d = 5 features.5 The labels
are defined to be yi , 〈xi,β〉 + Ni, where β ∈ R5 is the coefficient of the hyperplane
generated from a Gaussian distribution with mean 0 and standard deviation 10, and Ni

is a Gaussian noise with mean 0 and variance 1. The features xi ∈ R5 are generated
from a Gaussian distribution whose mean and variance are generated randomly. In order
to obtain different smoothness ratios τ , we choose the datapoint m with the largest
smoothness Lm and multiply its entire feature vector xm by a number c > 1, whereas
all labels and all other features remain fixed. This increases Lm, hence the smoothness
ratio τ and we scale down the learning rate by c for all algorithms. The sub-cost function

4In SGD_IS, the sampling distribution is pi = Li/(
∑n

j=1 Lj) (see [Zhao and Zhang, 2015a]).
5Similar results are obtained for different values of n and d.

45

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

0 1 2 3 4 5 6 7 8 9
t/n

−4.5
−4.0
−3.5
−3.0
−2.5
−2.0
−1.5
−1.0
−0.5
0.0

lo
g
(F

(θ
t)

−
F
(θ

�
))

SGD U

SGD IS

SGD MABS

(a) SGD on w8a dataset.

0 1 2 3 4 5 6 7 8 9
t/n

−9
−8
−7
−6
−5
−4
−3
−2
−1
0

lo
g
(F

(θ
t)

−
F
(θ

�
))

SVRG U

SVRG IS

SVRG MABS

(b) SVRG on w8a dataset.

0 1 2 3 4 5 6 7 8 9
t/n

−6

−5

−4

−3

−2

−1

0

lo
g
(F

(θ
t)

−
F
(θ

�
))

SAGA U

SAGA IS

SAGA MABS

(c) SAGA on w8a dataset.

0 1 2 3 4 5 6 7 8 9
t/n

−4.5
−4.0
−3.5
−3.0
−2.5
−2.0
−1.5
−1.0
−0.5
0.0

lo
g
(F

(θ
t)

−
F
(θ

�
))

SGD U

SGD IS

SGD MABS

(d) SGD on w6a dataset.

0 1 2 3 4 5 6 7 8 9
t/n

−9
−8
−7
−6
−5
−4
−3
−2
−1
0

lo
g
(F

(θ
t)

−
F
(θ

�
))

SVRG U

SVRG IS

SVRG MABS

(e) SVRG on w6a dataset.

0 1 2 3 4 5 6 7 8 9
t/n

−6

−5

−4

−3

−2

−1

0

lo
g
(F

(θ
t)

−
F
(θ

�
))

SAGA U

SAGA IS

SAGA MABS

(f) SAGA on w6a dataset.

Figure 2.3 – Comparison of three different stochastic optimization algorithms (SGD,
SVRG, and SAGA) on two datasets (w8a and w6a) when using different sampling
methods. MABS is never suboptimal and often significantly outperforms the other
sampling methods.

used here is φi(θ) = (〈xi,θ〉−yi)2/2, i.e., mean square error. Each experiment is run for
2000 epochs and repeated k = 20 times. We report the difference of values F (θt) found
by three sampling versions of SGD and the value F ? found by gradient descent at the
final iteration T , this way we compare the stochastic algorithms (SGD_U, SGD_IS, and
SGD_MABS) to the ideal gradient descent algorithm.

Results. In Figure 2.2a, we observe that MABS has the best performance of all three
sampling methods as the value of F (θt) for SGD_MABS is the closest to F ? for all
smoothness ratios τ . Additionally, as the smoothness ratio τ increases, the performance of
SGD_MABS further improves, thus confirming that when there is a datapoint with large
gradient, the convergence of MABS to the optimal sampling distribution is faster. As
expected, the performance of SGD_U degrades in τ , as SGD_U needs more iterations to
converge. As SGD_IS appears to be less affected by τ , the advantage of MABS over IS is
stronger for large τ . Figure 2.2b depicts the average effective variance ∑T

t=1 Vte(θt)/T as
a function of the smoothness ratio τ , and similar observations can be made. In particular,
the average effective variance of SGD_MABS is the lowest, and the average effective
variance of SGD_MABS and SGD_IS are decreasing in τ , whereas the effective variance
SGD_U is increasing in τ .

46

2.6. Empirical Evaluation

Table 2.2 – Statistics of the datasets used in the experiments.

Dataset n d τ

synthetic 101 5 3.7-83.9
w6a 17188 300 9.08
w8a 49749 300 9.79
ijcnn1 49990 22 2.61

2.6.3 Empirical Results on Real-World Data

We consider two binary classification datasets, w8a with the smoothness ratio τ = 9.8
and w6a with the smoothness ratio τ = 9.1 from [Chang and Lin, 2011] (see Table 2.2).
For each of SGD, SVRG, and SAGA, we compare the effect of different sampling methods.
We report the log of the sub-optimality gap (log ε(θ) = log

(
F (θt)− F (θ?)

)
) reached by

the three sampling versions of stochastic optimization algorithms, as a function of the
number of iterations t.

First, as a cost function F (θ) we use L2-penalized logistic regression (r(θ) = ‖θ‖22 and
φi(θ) = log (1 + exp(−yi〈xi,θ〉))) with the regularization parameter λ = 10−4. The
regularization parameter λ is chosen such that the test error and the train error are
comparable. Each experiment is run for T = 10n iterations and repeated 100 times. In
the experiments for SGD, the step size γ = 1/maxi{Li} (recall that Li is the smoothness
of φi); this choice of step size performs the best in our experiments). In the experiments
for SAGA, we choose the larger step size γ = 1/(3L̄) as in [Hofmann et al., 2015], where
L̄ is the average smoothness. In the experiments for SVRG, the step size γ = 1/L̄ as in
[Xiao and Zhang, 2014]. In SGD and SAGA, using MABS benefits more as it consistently
improves the convergence rates (see Figures 2.3a, 2.3d, 2.3c, and 2.3f). In SVRG, MABS
improves the convergence over uniform sampling, and the convergence rates of MABS
and IS are similar (see Figures 2.3b and 2.3e).

2.6.4 Stability

Following the discussion in Section 2.5, we study the robustness of SGD, SVRG, and
SAGA when using a large step-size γ. In particular, we consider the w8a dataset and
L1-penalized logistic regression. We use the proximal operator (2.60) to update the
coordinates θt. We run different stochastic optimization algorithms in conjunction with
different sampling methods and with different step sizes γ, and we collect the value F (θt)
at final iteration T = 60n. Each experiment is repeated 50 times.

The results are depicted in Figure 2.4 and show that MABS is indeed a more robust
sampling method: SGD_MABS is able to find the optimal coordinate θ? with step sizes
up to γ = 5 (see Figure 2.4a), whereas SGD_U and SGD_IS diverge after γ = 0.5. In

47

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

0 1 2 3 4 5 6 7 8
γ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

F
(θ

T
)

SGD U

SGD IS

SGD MABS

(a) SGD.

0 1 2 3 4 5 6 7 8
γ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

F
(θ

T
)

SVRG U

SVRG IS

SVRG MABS

(b) Prox-SVRG.

0 1 2 3 4 5 6 7 8
γ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

F
(θ

T
)

SAGA U

SAGA IS

SAGA MABS

(c) SAGA.

Figure 2.4 – Comparison of three different stochastic optimization algorithms (SGD,
SVRG, and SAGA) on w8a dataset when using different sampling methods and different
step sizes γ. The standard deviation is also depicted in the plots. MABS significantly
outperforms the other methods and is able to find the optimal value even for a large γ.

Figure 2.4b, the difference between the three sampling methods is less significant, but
SVRG_MABS still slightly outperforms the others. SAGA_MABS is also more robust
than SAGA with other sampling methods, and it is able to find the optimal coordinate
θ? with step sizes up to γ = 2.5, whereas SAGA_U and SAGA_IS diverge after γ = 0.7
(see Figure 2.4c).

0 50 100 150 200 250 300
wall time

−5

−4

−3

−2

−1

0

lo
g
(F

(θ̃
t)

−
F
(θ

�
))

SGD U

SGD IS

SGD AP

SGD MABS

(a) SGD on w8a dataset.

0 50 100 150 200 250 300
wall time

−4

−3

−2

−1

0

lo
g
(F

(θ̃
t)

−
F
(θ

�
))

SGD U

SGD IS

SGD AP

SGD MABS

(b) SGD on ijcnn1 dataset.

0 50 100 150 200 250 300
wall time

−5

−4

−3

−2

−1

0

lo
g
(F

(θ̃
t)

−
F
(θ

�
))

SGD U

SGD IS

SGD AP

SGD MABS

(c) SGD on w6a dataset.

Figure 2.5 – Comparison of the convergence of SGD when using different sampling
methods as a function of the wall-clock time in seconds.

2.6.5 Training Time

We note that adding MABS does not cost much with respect to training time. For
example, given high-dimensional data with d = 4000 and n = 50000, we find empirically
that SGD_MABS uses only 10% more clock-time than SGD_U.

We compare the convergence of SGD, SVRG, and SAGA as a function of the wall-clock
time in seconds. For SGD, in addition to the uniform and importance samplings, we
consider the adaptive sampling method in [Papa et al., 2015]. In the adaptive sampling
method (AP), at the beginning of an epoch, the full gradient ∇θφi(θt) is computed, then
the sampling probability p is computed according to (2.6) and is used for sampling the

48

2.6. Empirical Evaluation

datapoints in that epoch. We test the algorithms with different sampling methods and
with weighted averaging as in [Lacoste-Julien et al., 2012] and Theorem 2.10, i.e.,

θ̃t = 2
t(t+ 1)

t∑
j=1

j · θj . (2.67)

The cost function F (θ) is the same as the cost function in Section 2.6.3 (i.e., L2-penalized
logistic regression). The simulations are done in Python on an OS X with 2.9 GHz Intel
Core i5 processor and 16 GB 2133 MHz LPDDR3 memory. The results are shown in
Figures 3.4 and 2.6. As shown in Figure 3.4, MABS and AP sampling methods converge
faster than other algorithms. The difference on w8a and w6a datasets is larger than
on the ijcnn1 dataset because τ is larger in w8a and w6a (it is 9 in w8a and w6a
compared to 2.6 in ijcnn1), thus non-uniform sampling is more effective for w8a and w6a
dataset. Figure 2.6 also shows that MABS is a better sampling method, and improves the
convergence speed. We also see that the running average (2.67) improves the convergence
rate compared to the results with θt in Figure 2.3.

0 25 50 75 100 125 150
wall time

−10

−8

−6

−4

−2

0

lo
g
(F

(θ̃
t)

−
F
(θ

�
))

SVRG U

SVRG IS

SVRG MABS

(a) SVRG on w8a dataset.

0 25 50 75 100 125 150
wall time

−6

−5

−4

−3

−2

−1

0

lo
g
(F

(θ̃
t)

−
F
(θ

�
))

SAGA U

SAGA IS

SAGA MABS

(b) SAGA on w8a dataset.

0 25 50 75 100 125 150
wall time

−14

−12

−10

−8

−6

−4

−2

0

lo
g
(F

(θ̃
t)

−
F
(θ

�
))

SVRG U

SVRG IS

SVRG MABS

(c) SVRG on w6a dataset.

0 25 50 75 100 125 150
wall time

−7

−6

−5

−4

−3

−2

−1

0

lo
g
(F

(θ̃
t)

−
F
(θ

�
))

SAGA U

SAGA IS

SAGA MABS

(d) SAGA on w6a dataset.

Figure 2.6 – Comparison of the convergence of SGD when using different sampling
methods as a function of the wall-clock time in seconds.

49

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

2.7 Summary

In this chapter, a novel sampling method (called MABS) is presented to reduce the
variance of gradient estimation. The method is inspired by multi-armed bandit algorithms
(in particular EXP3) and does not require any preprocessing. First, the variance of the
unbiased estimator of the gradient at iteration t is defined as a function of the sampling
distribution pt and of the gradients of sub-cost functions ∇θφi(θt). Next, using the past in-
formation, MABS minimizes this cost function by appropriately updating the distribution
pt, and learns the optimal distribution given the set of selected datapoints {it}1≤t≤T and
gradients {∇θφit(θt)}1≤t≤T . We have shown that under a natural assumption (bounded
gradients) MABS can asymptotically approximate the optimal variance within a factor
of 3. Moreover, MABS combined with three stochastic optimization algorithms (SGD,
Prox_SVRG, and SAGA) is tested on real data. We observe its effectiveness on variance
reduction and the rate of convergence of these optimization algorithms as compared to
other sampling approaches. Furthermore, MABS is tested on synthetic datasets, and its
effectiveness is observed for a large range of τ (i.e., the ratio of maximum smoothness
to the average smoothness). It is also observed that SGD_MABS is significantly more
stable than SGD with other sampling methods. Several important directions remain open.
First, one would like to improve the constants in the bound in Theorem 2.6. Secondly,
although we observe robustness, finding the optimal step size γ for Prox_SVRG and
SAGA remains open. Lastly, it could be of interest to extend the work to other stochastic
optimization methods, both by providing theoretical guarantees and observing their
performance in practice.

50

Appendix

2.A Proofs

2.A.1 Omitted Proofs

Proof of Theorem 2.1 The starting point is the inequality

t
(
E[F (θt)]− F (θ?)

)
≤ E[Vte(pt)]

µ
+µ

4
(
t(t− 1)E

[
‖θt − θ?‖

]
− t(t+ 1)E

[
‖θt+1 − θ?‖

])
(2.68)

where the expectations are over the randomness of SGD, (2.68) holds for all pt and it is
established in [Lacoste-Julien et al., 2012]. By summing (2.68) over t = 1, . . . , T we find

T∑
t=1

t
(
E[F (θt)]− F (θ?)

)
≤ 1
µ
E
[
T∑
t=1

Vte(pt)
]
− µ

4T (T + 1)E
[
‖θT+1 − θ?‖

]
, (2.69)

which as t
(
E[F (θt)]− F (θ?)

)
≥ 0 implies

E
[
‖θT+1 − θ?‖

]
≤ 4
µ2T (T + 1)E

[
T∑
t=1

Vte(pt)
]
.

In addition, as the cost function F is convex, Jensen’s inequality yields

E
[
F

(
1∑T
t=1 t

T∑
t=1

t · θt
)]
− F (θ?) ≤ 1∑T

t=1 t

T∑
t=1

t
(
E[F (θt)]− F (θ?)

)
. (2.70)

51

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

Noting that ∑T
t=1 t = T (T+1)/2, plugging (2.70) in (2.69) yields

E
[
F

(
2

T (T + 1)

T∑
t=1

t · θt
)]
− F (θ?) ≤ 2

µT (T + 1)E
[
T∑
t=1

Vte(pt)
]
.

That concludes the proof. �

Corollary 2.11. Using MABS with 0 < η < 0.5 in (2.24) and δ = 1/c
√
η4 lnn/(Tn4

∑n

i=1 a
2
i)

in (2.26), for some c > 1, to minimize (2.16) with respect to {pt}1≤t≤T , we have

T∑
t=1

Vte(pt) ≤
1− η
1− 2η

T∑
t=1

Vte(p?) + c(1− η) + 1/c

η2 (1− 2η)

√√√√n4T
n∑
i=1

a2
i lnn, (2.71)

where T ≥ n lnn ·maxi(ai)2/
(
η2c2(a2)

), for some ai ≥ supt{ati}, and where (a2) = ∑n
i=1 a

2
i/n.

The complexity of MABS is O(logn) per iteration.

Proof. Following the same steps as Theorem 2.6, we have (2.39), where by plugging
the new δ = 1/c

√
η4 lnn/(Tn4

∑n

i=1 a
2
i) in (2.39) we get (2.71). Recall that to get (2.31)

and hence (2.39), we need to have −δr̂ti ≤ 1, where now by choosing a smaller δ we
can decrease the minimum acceptable T . By choosing δ = 1/c

√
η4 lnn/(Tn4

∑n

i=1 a
2
i) the

constraint on T becomes T ≥ n lnn · maxi(ai)2/(η2c2(a2)), which allows us to use a c2 times
smaller T than the one used in Theorem 2.6. Changing δ does not affect the running
time of MABS in Theorem 2.6, which is O(logn) per iteration.

2.A.2 MABS with IS

Similar to IS, assume that we can compute the bounds ai = supt{ati} exactly, then we
can refine the algorithm and improve the results. The idea is that, instead of mixing
the distribution {wti/W t}1≤i≤n with a uniform distribution, we mix {wti/W t}1≤i≤n with
distribution {a2/5

i /
∑n

j=1 a
2/5
j }1≤i≤n:

pti = (1− η) w
t
i

W t
+ η

a
2/5
i∑n

j=1 a
2/5
j

.

Corollary 2.12. Using MABS2 (Algorithm 2.2) with 0 < η < 0.5 in (2.41) and δ =√
η4 lnn/

(
T

(∑n

i=1 a
2/5
i

)5
)

in (2.26) to minimize (2.16) with respect to {pt}1≤t≤T , we have

T∑
t=1

Vte(pt) ≤
1− η
1− 2η

T∑
t=1

Vte(p?) + 2− η
η2 (1− 2η)

√√√√T (n∑
i=1

a
2/5
i

)5

lnn, (2.72)

52

2.A. Proofs

where T ≥ lnn · (a2/5)/(η2·mini a2/5
i) for ai = supt{ati}, with (a2/5) = ∑n

i=1 a
2/5
i /n. The

complexity of MABS2 is O(logn) per iteration.

Proof. Following the same steps as Theorem 2.6, we have (2.39). With ai ≥ supt{ati}
and with pti ≥ ηqi because of (2.41) we can minimize the upper bound on ∑n

i=1(rti)2 in
(2.39) as

n∑
i=1

(rti)2 =
n∑
i=1

(ati)2

(pti)4 ≤
1
η4

n∑
i=1

(ai)2

(qi)4 . (2.73)

The right-hand side of (2.73) reaches its minimum for qi = a
2/5
i /
∑n

j=1 a
2/5
j , and it is

n∑
i=1

(rti)2 ≤ 1
η4 (

n∑
i=1

(ai)2/5)5. (2.74)

Plugging the upper bound (2.74) in (2.39) with δ =
√
η4 lnn/T

(∑n

i=1 a
2/5
i

)5
concludes

the proof. Note that to get (2.39), we need to have −δr̂ti ≤ 1, where given δ =√
η4 lnn/T

(∑n

i=1 a
2/5
i

)5
– to have −δr̂ti ≤ 1– the constraint on T becomes T ≥ lnn ·

(a2/5)/(η·mini a2/5
i). Finally, as in Section A.4 of [Salehi et al., 2017b], with a tree structure

(similar to the interval tree) we can update wit and sample from pt in O(logn) per
iteration.

With the same line of reasoning as in Section 2.1, MABS2 can reduce the second term of
the right-hand side of (2.27) by n2 in extreme cases (that happens when one of the ai is
very large compared to the rest).

2.A.3 Omitted Proofs of Section 2.5

Lemma 2.13. Assume that F (θ) is µ-strongly convex and let each φi be convex and
Li-smooth. Then, if γt = 2/µ(t+t0) in (2.2) and the sampling distributions pti ≥ 0.4/n for
all t, the SGD iterates satisfy:

E
[
‖θt − θ?‖2

]
≤ µ2t0‖θ0 − θ?‖2 + 20σ2

u

µ2(t0 + t) , (2.75)

where

σ2
u = Ei∼U [1,n][‖∇θφi(θ?)‖2]

53

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

and

t0 ≥ max
{

1, 4 supLi
µ

}
. (2.76)

Proof The proof is based on Theorem 2.1 of [Needell et al., 2014]. Needell et al. [2014]
established that

E
[
‖θt+1 − θ?‖2

]
≤ (1− 2γtµ(1− γt supLi))E

[
‖θt − θ?‖2

]
+ 2γ2

t σ
2, (2.77)

where

σ2 = Ei∼pt

∥∥∥∥∥∇θφi(θ?)npti

∥∥∥∥∥
2
 .

For pti ≥ 0.4/n, we have

σ2 = Ei∼pt

∥∥∥∥∥∇θφi(θ?)npti

∥∥∥∥∥
2
 ≤ 2.5Ei∼U [1,n]

[
‖∇θφi(θ?)‖2

]
. (2.78)

where σ2
u = Ei∼U [1,n][‖∇θφi(θ?)‖2]. Note that σ2

u is fixed and does not change with time t.
Plugging (2.78) in (2.77) yields

E
[
‖θt+1 − θ?‖2

]
≤ (1− 2γtµ(1− γt supLi))E

[
‖θt − θ?‖2

]
+ 5γ2

t σ
2
u. (2.79)

We prove the lemma by induction. Let (2.75) hold for some t ∈ [T], we validate the
guarantee for t+ 1. Plugging (2.75) in (2.79) yields

E
[
‖θt+1 − θ?‖2

]
≤ (1− 2γtµ(1− γt supLi))

µ2t0‖θ0 − θ?‖2 + 20σ2
u

µ2(t0 + t) + 5γ2
t σ

2
u

≤
(

1− 2
t+ t0

)
µ2t0‖θ0 − θ?‖2 + 20σ2

u

µ2(t0 + t) + 5γ2
t σ

2
u, (2.80)

where the last inequality follows from the definition of t0 in (2.76). After some alge-
braic manipulations it can be shown that the right-hand side of (2.80) is less than
µ2t0‖θ0−θ?‖2+20σ2

u/µ2(t0+t+1), which validates the hypothesis for t+ 1. To prove the base of
induction, set t = 0 in (2.79) and get ‖θ0 − θ?‖2 ≤ ‖θ0 − θ?‖2 + 20σ2

u/µ2t0, that is simply
correct. �

Proof of Theorem 2.10 The starting point is the inequality

E[F (θt)]−F (θ?) ≤ γtE[Vte(pt)]
2 +γ−1

t − µ
2 E

[
‖θt − θ?‖2

]
−γ
−1
t

2 E
[
‖θt+1 − θ?‖2

]
, (2.81)

54

2.A. Proofs

where the expectations are over the randomness of SGD, (2.81) holds for all sampling
distributions pt and it is established in [Lacoste-Julien et al., 2012]. Substituting γt =
2/µ(t+t0) into (2.81) gives

E[F (θt)]−F (θ?) ≤ E[Vte(pt)]
µ(t+ t0) +µ(t+ t0 − 2)

4 E
[
‖θt − θ?‖2

]
−µ(t+ t0)

4 E
[
‖θt+1 − θ?‖2

]
.

(2.82)

Multiply (2.82) by (t+ t0 − 1) and sum it over t = 1, . . . , T

T∑
t=1

(t+ t0 − 1)
(
E[F (θt)]− F (θ?)

)
≤

T∑
t=1

E[Vte(pt)]
µ

+ µ(t0 − 2)(t0 − 1)
4 ‖θ0 − θ?‖2 − µ(T + t0)(T + t0 − 1)

2 E
[
‖θt+1 − θ?‖2

]
.

Invoking Jensen’s inequality yields

E
[
F

(
2

T (T + 2t0 − 1)

T∑
t=1

(t+ t0 − 1)θt
)]
− F (θ?) ≤

2
T (T + 2t0 − 1)

[
T∑
t=1

E[Vte(pt)]
µ

+ µ(t0 − 2)(t0 − 1)
4 ‖θ0 − θ?‖2

]
− µ

2E
[
‖θt+1 − θ?‖2

]
,

which implies

E
[
F

(
2

T (T + 2t0 − 1)

T∑
t=1

(t+ t0 − 1)θt
)]
− F (θ?) ≤

2
T (T + 2t0 − 1)

[
T∑
t=1

E[Vte(pt)]
µ

+ µ(t0 − 2)(t0 − 1)
4 ‖θ0 − θ?‖2

]
(2.83)

and

E
[
‖θt+1 − θ?‖2

]
≤ 4
µT (T + 2t0 − 1)

[
T∑
t=1

E[Vte(pt)]
µ

+ µ(t0 − 2)(t0 − 1)
4 ‖θ0 − θ?‖2

]
.

(2.84)

Next, let us bound ∑T
t=1 E[Vte(pt)]. MABS (with η = 0.4) enjoys the performance

guarantee in (2.27), that is

T∑
t=1

E[Vte(pt)] ≤ 3 min
p

T∑
t=1

E[Vte(p)] + 50E
[√

nTG2 lnn
]
, (2.85)

55

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

for some G2 ≥
∑T
t=1

∑n
i=1 ‖∇θφi(θt)‖2/(Tn). From the triangle inequality,

‖∇θφi(θt)‖2 ≤ 2‖∇θφi(θ?)‖2 + 2‖∇θφi(θ?)‖2

≤ 2Li‖θt − θ?‖2 + 2‖∇θφi(θ?)‖, (2.86)

where the second inequality follows from the Li-smoothness of φi. In SGD, the effective
variance Vte(p) = ∑n

i=1 ‖∇θφi(θ
t)‖2/n2pi, plugging (2.86) in the effective variance yields

Vte(p) ≤ 2
n2

n∑
i=1

[
‖∇θφi(θ?)‖2

pi
+ Li‖θt − θ?‖2

pi

]
.

As in MABS pti ≥ 0.4/n we have

Vte(p) ≤ 2
n2

n∑
i=1

‖∇θφi(θ?)‖2
pi

+ 5
n
‖θt − θ?‖2

n∑
i=1

Li.

Thus

3 min
p

T∑
t=1

E[Vte(p)] ≤ 6
n2 min

p

[
T∑
t=1

n∑
i=1

‖∇θφi(θ?)‖2
pi

]
+ 5
n

(
n∑
i=1

Li)
T∑
t=1

E
[∥∥∥θt − θ?∥∥∥2

]

= 6T
n2

(
n∑
i=1
‖∇θφi(θ?)‖

)2

+ 5
n

(
n∑
i=1

Li)
T∑
t=1

E
[∥∥∥θt − θ?∥∥∥2

]
.

(2.87)

As conditions of Lemma 2.13 hold, we can use (2.75) in Lemma 2.13 to bound∑T
t=1 E

[∥∥θt − θ?∥∥2
]
,

T∑
t=1

E
[
‖θt − θ?‖2

]
≤

T∑
t=1

µ2t0‖θ0 − θ?‖2 + 20σ2
u

µ2(t0 + t)

≤ µ2t0‖θ0 − θ?‖2 + 20σ2
u

µ2 log(T + t0),

Let

α := µ2t0‖θ0 − θ?‖2 + 20σ2
u

µ2 log(T + t0).

Combining the bound above with (2.87) gives

3 min
p

T∑
t=1

E[Vte(p)] ≤ 6T
n2

(
n∑
i=1
‖∇θφi(θ?)‖

)2

+ 5
n
α

n∑
i=1

Li. (2.88)

56

2.B. PSGD

Similarly the second term in the right hand side of (2.85) can be upper bounded as

E


√√√√lnn

T∑
t=1

n∑
i=1
‖∇θφi(θt)‖2

 ≤
√√√√E

[
lnn

T∑
t=1

n∑
i=1

E‖∇θφi(θt)‖2
]

≤

√√√√2 lnn
(
T

(
n∑
i=1
‖∇θφi(θ?)‖2

)
+ α

n∑
i=1

Li

)
,

(2.89)

where the first inequality follows from the Jensen’s inequality. Plugging (2.89), (2.87)
and (2.85) in (2.84) yields

E
[
‖θt+1 − θ?‖2

]
≤ 24
µ2n2T

(
n∑
i=1
‖∇θφi(θ?)‖

)2

+ 20
µ2nT 2α

n∑
i=1

Li

+ 200t0
µ2T 2

√√√√2 lnn
(
T (

n∑
i=1
‖∇θφi(θ?)‖2) + α

n∑
i=1

Li

)

+ t20
T 2 ‖θ

0 − θ?‖2. (2.90)

Note that the first term in (2.90) scales as O (1/T), the second term scales as O (log T/T 2),
the third term scales as O(1/T 3/2) and the last term scales as O(1/T 2). So asymptotically,
the first term is the most important term in the convergence rate and we conclude the
proof.

�

2.B PSGD

For PSGD, let ∑n
i=1 φi(θt)/n be µ-strongly convex and L-smooth with respect to ψ,

a continuously differentiable function, and let Bψ(w1, w2) be the Bregman divergence
associated with the function ψ (see Appendix 2.C for a summary of these standard
definitions). Consider the cost function

F (θ) = 1
n

n∑
i=1

φi(θt) + λr(θ). (2.91)

PSGD updates θ according to

θt+1 = arg min
θ

[
〈∇θφit(θt),θ〉+ λr(θ) + 1

γt
Bψ(θ,θt)

]
. (2.92)

57

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

Intuitively, this method works by minimizing the first order approximation of the sub
cost-function φit in (2.91) plus the regularizer λr(θ). In the non-uniform version of this
algorithm, ∇θφit(θt) is replaced by ∇θφit (θt)/(nptit), see Zhao and Zhang [2015a]. In PSGD,
we also use the same step size as in SGD in Theorem 2.1.

Theorem 2.14. Assume that ∑n
i=1 φi(θt)/n is µ-strongly convex and L-smooth with

respect to ψ where ψ is a σ-strongly convex function, and that the regularizer r(θ) in
(2.91) is convex. Then, if γt = 2/µ(1+t) in (2.92), the following inequality holds for any
T ≥ (maxi(Gi)2/η2(G2))n lnn in PSGD with MABS:

E
[
Bψ(θ?,θT+1)

]
= O

 1
µ2σT 2

E [T∑
t=1

Vte(p̂)
]

+

√√√√T n∑
i=1

G2
i lnn

 , (2.93)

and

E
[
ε

(2
T (T + 1) · θ

t
)]

= E
[
F

(
2

T (T + 1)

T∑
t=1

t · θt+1
)]
− F (θ?)

= O

 1
µσT 2

E [T∑
t=1

Vte(p̂)
]

+

√√√√T n∑
i=1

G2
i lnn

 (2.94)

for some Gi ≥ supθ1,...,θT ‖∇θφi(θt)‖2, where p̂ = arg minp
∑T
t=1

∑n
i=1 ‖∇θφi(θ

t)‖2/pi, and
where the expectations are over the sequence of the coordinates {wt}t∈[T] that are updated.

If ψ(x) = ‖x‖2, then Bψ(θ1,θ2) = ‖θ1 − θ2‖2 and the convergence rates (2.93) and
(2.94) in this theorem are O(1/T), compared to O(lnT/T) in Zhao and Zhang [2015a].
The proof is an extension of Theorem 1 in Zhao and Zhang [2015a] where we also use the
analysis in Lacoste-Julien et al. [2012]. For completeness, we present the proof below.

Proof Our starting point is the inequality

E[F (θt+1)−F (θ?)] ≤ γt
σ
E
[
Vte(pt)

]
+
(1
γt
− µ

)
E
[
Bψ(θ?,θt)

]
− 1
γt
E
[
Bψ(θ?,θt+1)

]
,

(2.95)

where the expectations are over the randomness of PSGD, (2.95) holds for all pt and it
is established in Lemma 1 of [Zhao and Zhang, 2015a]. Next, inspired by Lacoste-Julien
et al. [2012], let γt = 2/µ(1+t). Plugging this γt in (2.95) yields

t
(
E[F (θt+1)− F (θ?)]

)
≤ 2t
σµ(t+ 1)E

[
Vte(pt)

]
+ µ(t− 1)t

2 E
[
Bψ(θ?,θt)

]
− µt(t+ 1)

2 E
[
Bψ(θ?,θt+1)

]
.

(2.96)

58

2.C. Definitions

By summing (2.96) over t = 1, . . . , T we get

T∑
t=1

t
(
E[F (θt+1)− F (θ?)]

)
≤ 2
σµ

E
[
T∑
t=1

Vte(pt)
]
− µT (T + 1)

2 E
[
Bψ(θ?,θT+1)

]
,

(2.97)

which as t
(
E[F (θt)]− F (θ?)

)
≥ 0 implies

E
[
Bψ(θ?,θT+1)

]
≤ 4
σµ2T (T + 1)E

[
T∑
t=1

Vte(pt)
]
. (2.98)

In addition, as the cost function F is convex, Jensen’s inequality yields

E
[
F

(
1∑T
t=1 t

T∑
t=1

t · θt
)]
− F (θ?) ≤ 1∑T

t=1 t

T∑
t=1

t
(
E[F (θt)]− F (θ?)

)
. (2.99)

Noting that ∑T
t=1 t = T (T+1)/2, plugging (2.99) in (2.97) yields

E
[
F

(
2

T (T + 1)

T∑
t=1

t · θt+1
)]
− F (θ?) ≤ 4

σµT (T + 1)E
[
T∑
t=1

Vte(pt)
]
. (2.100)

Finally, plugging (2.27) in (2.98) and (2.100) concludes the proof.

�

2.C Definitions

Definition (L-smooth). Let L > 0. Function h(·) is L-smooth if for any x and y ∈ Rd

h(y) ≤ h(x) + 〈∇h(x),y − x〉+ L

2 ‖x− y‖
2. (2.101)

Definition (µ-strongly convex). Let µ > 0. Function h(·) is µ-strongly convex if for any
x and y ∈ Rd

h(y) ≥ h(x) + 〈∇h(x),y − x〉+ µ

2 ‖x− y‖
2. (2.102)

Definition (Bregman divergence). Let θ1 and θ2 ∈ Rd. The Bregman divergence
associated with the function ψ is

Bψ(θ1,θ2) = ψ(θ1)− ψ(θ2)− 〈∇ψ(θ2),θ1 − θ2〉. (2.103)

59

Chapter 2. Stochastic Gradient Descent with Bandit Sampling

Definition (µ-strongly convex with respect to ψ). Let µ > 0. Function f(·) is µ-strongly
convex with respect to a differentiable function ψ if for any θ1 and θ2 ∈ Rd

f(θ1) ≥ f(θ2) + 〈∇ψ(θ2),θ1 − θ2〉+ µBψ(θ1,θ2). (2.104)

60

3 Coordinate Descent with Bandit
Sampling

In the previous chapter, we saw how to accelerate the convergence rate of stochastic
gradient descent by developing a bandit algorithm to select datapoints for updating the
model. In this chapter1, we shift our attention from stochastic gradient descent (SGD)
to the coordinate descent (CD) method. The former (SGD) minimizes a cost function
by using the gradient of one of the datapoints sampled at random, whereas the latter
(CD) usually minimizes a cost function by updating a decision variable (corresponding
to one coordinate) at a time. Ideally, we would update the decision variable that yields
the largest decrease in the cost function. However, finding this coordinate would require
checking all of them, which would effectively negate the improvement in computational
tractability that coordinate descent is intended to afford.

To address this, we take a similar approach as in Chapter 2; we study the coordinate-
selection module of CD in the multi-armed bandit setting. More precisely, first, we find a
lower bound on the amount the cost function decreases when a coordinate is updated.
Next, we use a stochastic multi-armed bandit algorithm (see Section 1.2.3 for details
about the stochastic multi-armed bandit setting) to learn which coordinates result in the
largest lower bound by interleaving this learning with conventional CD updates except
that the coordinate is selected proportionately to the expected decrease. We show that
our approach improves the convergence of coordinate descent methods both theoretically
and experimentally.

3.1 Introduction

As we explained in Chapter 2, most supervised learning algorithms minimize an empirical
risk cost function over a dataset. Here, we rewrite the cost function (2.1) in a form that

1This chapter is based on [Salehi et al., 2018].

61

Chapter 3. Coordinate Descent with Bandit Sampling

is more appropriate for coordinate descent methods,

F (θ) = f(Aθ) +
d∑
i=1

gi(θi), (3.1)

where f(·) : Rn −→ R is a smooth convex function, d is the number of decision variables
(coordinates) on which the cost function is minimized, which are gathered in vector
θ ∈ Rd, gi(·) : R −→ R are convex functions for all i ∈ [d], and A ∈ Rn×d is the data
matrix. As a running example, consider Lasso: if y ∈ Rn is the vector of labels,

f(Aθ) = 1
2n‖y −Aθ‖

2,

where ‖ · ‖ stands for the Euclidean norm, and gi(θi) = λ|θi|. Often the particular form
of the cost function in (3.1) is used to represent the dual of empirical risk cost functions.
Note that when the primal of a cost function is minimized, d is the number of features,
whereas when the dual of a cost function is minimized, d is the number of datapoints.
For example, the dual of L2-regularized linear regression in Section 2.1 is

F (θ) = 1
2λd2 ‖Aθ‖

2 + 1
d

d∑
i=1

(
θ2
i

4 − θiyi
)
,

where y ∈ Rd, f(Aθ) = 1/2λd2‖Aθ‖2, and gi(θi) = 1/d (θ2
i/4− θiyi) .

To bypass the computational intractibility of gradient descent, coordinate descent (CD)
selects one coordinate θi to optimize over at each timestep. When CD was first intro-
duced, algorithms did not differentiate between coordinates; each coordinate i ∈ [d] was
selected uniformly at random at each time step (see, e.g., [Shalev-Shwartz and Zhang,
2013a,b]). Recent works (see, e.g., [Glasmachers and Dogan, 2013, Zhao and Zhang,
2015a, Perekrestenko et al., 2017]) have shown that exploiting the structure of the data
and sampling the coordinates from an appropriate non-uniform distribution can result
in better convergence guarantees, both in theory and practice. The challenge is to find
the appropriate non-uniform sampling distribution with a lightweight mechanism that
maintains the computational tractability of CD.

Our Contributions

In this chapter, we propose a novel adaptive non-uniform coordinate selection method that
can be applied to both the primal and dual forms of a cost function. The method exploits
the structure of the data to optimize the model by finding and frequently updating the
most predictive decision variables. In particular, for each i ∈ [d] at time t, a lower bound
rti is derived (which we call the marginal decrease) on the amount by which the cost
function will decrease when only the ith coordinate is updated.

62

3.1. Introduction

Update	coordinate

Coordinate	
Selection

i

Compute

Update	coordinate	
selection	strategy

✓t ✓t+1

r̄

r̄
rt+1
i

✓t
i

C
oo

rd
in

at
e

U
pd

at
e

C
oo

rd
in

at
e

Se
le

ct
io

n
(1)

(2)

Figure 3.1 – Our approach for coordinate descent. The top (green) part handles the
updates to the decision variable θti (using whichever CD update is desired); our theoretical
results hold for updates in the class H in Definition 3.4.1 in the supplementary materials.
The bottom (yellow) part of the approach handles the selection of i ∈ [d] according to a
coordinate selection strategy which is updated via bandit optimization (using whichever
bandit algorithm is desired) from rt+1

i .

The marginal decrease rti quantifies by how much updating the ith coordinate is guaranteed
to improve the model. The coordinate i with the largest rti is then the one that is updated
by the algorithm max_r, described in Section 3.4.2. This approach is particularly beneficial
when the distribution of rtis has a high variance across i; in such cases updating different
coordinates can yield very different decreases in the cost function. For example, if the
distribution of rtis has a high variance across i, max_r is up to d2 times better than
uniform sampling, whereas state-of-the-art methods can be at most d3/2 better than
uniform sampling in such cases (see Theorem 3.6 in Section 3.4.2). More precisely, in
max_r the convergence speed is proportional to the ratio of the duality gap to the
maximum coordinate-wise duality gap. max_r is able to outperform existing adaptive
methods because it explicitly finds the coordinates that yield a large decrease of the cost
function, instead of computing a distribution over coordinates based on an approximation
of the marginal decreases.

However, the computation of the marginal decrease rti for all i ∈ [d] may still be
computationally prohibitive. To bypass this obstacle, we adopt in Section 3.4.3 a principled
approach (B_max_r) for learning the best rtis, instead of explicitly computing all of
them: At each time t, we choose a single coordinate i and update it. Next, we compute
the marginal decrease rti of the selected coordinate i and use it as feedback to adapt
our coordinate selection strategy using a bandit framework. Thus, in effect, we learn
estimates of the rtis and simultaneously optimize the cost function (see Figure 3.1). We
prove that this approach can perform almost as well as max_r, yet decreases the number
of calculations required by a factor of d (see Proposition 3.8).

63

Chapter 3. Coordinate Descent with Bandit Sampling

We test this approach on several standard datasets, using different cost functions (in-
cluding Lasso, logistic and ridge regression) and for both the adaptive setting (the first
approach) and the bandit setting (the second approach). We observe that the bandit
coordinate selection approach accelerates the convergence of a variety of CD methods
(e.g., StingyCD [Johnson and Guestrin, 2017] for Lasso in Figure 3.2, dual CD [Shalev-
Shwartz and Tewari, 2011] for L1-regularized logistic-regression in Figure 3.3, and dual
CD [Nutini et al., 2015] for ridge-regression in Figure 3.3). Furthermore, we observe that
in most of the experiments B_max_r (the second approach) converges as fast as max_r
(the first approach), while it has the same computational complexity as CD with uniform
sampling (see Section 3.5).

3.2 Preliminaries

Consider the following primal-dual optimization pairs

min
θ∈Rd

F (θ) = f(Aθ) +
d∑
i=1

gi(θi),

min
w∈Rn

FD(w) = f?(w) +
d∑
i=1

g?i (−a>i w), (3.2)

where A = [a1, . . . ,ad], ai ∈ Rn, and f? and g?i are the convex conjugates of f and gi,
respectively. The convex conjugate of a function h(·) : Rd −→ R is

h?(θ) = sup
v∈Rd
{θ>v − h(v)}.

The goal is to find θ̄ := arg minθ∈Rd F (θ). We denote by ε(θ) = F (θ) − F (θ̄) the
sub-optimality gap of F (θ).

The optimal primal-dual pair (θ̄, w̄) is reached when the following optimality conditions
are satisfied (see [Bauschke and Combettes, 2011]):

w ∈ ∂f(Aθ), −a>i w ∈ ∂gi(θi) for all i ∈ [d],
Aθ ∈ ∂f?(w), θi ∈ g?i (−a>i w) for all i ∈ [d].

The duality gap G(θ,w) is the difference between the primal and the dual solutions,

G(θ,w) = F (θ)− (−FD(w)),

and it is an upper bound on ε(θ) for all θ ∈ Rd. If the algorithm sets w = ∇f(Aθ), then
the Fenchel-Young property for w = ∇f(Aθ) yields that f(Aθ) + f?(w) = (Aθ)>w,

64

3.3. Related Work

which in turn implies that

G(θ,w) =
d∑
i=1

(
g?i (−a>i w) + gi(θi) + θia>i w

)
.

In rest of the chapter, we further use the shorthand G(θ) for G(θ,w) when w = ∇f(Aθ).
We call Gi(θ) =

(
g?i (−a>i w) + gi(θi) + θia

>
i w

)
the ith coordinate-wise duality gap.

Finally, we denote by κi = ū−θi the ith dual residue where ū = arg minu∈∂g?i (−a>i w) |u−θi|
with w = ∇f(Aθ). Dual residues were introduced in [Csiba et al., 2015] and similar
notions appear in [Perekrestenko et al., 2017, Shalev-Shwartz and Zhang, 2013b].

3.3 Related Work

Non-uniform coordinate selection has been proposed first for constant (non-adaptive)
probability distributions p over [d]. In [Zhao and Zhang, 2015a], pi is proportional to the
Lipschitz constant of g?i . Similar distributions are used in [Allen-Zhu et al., 2016, Zhang
and Gu, 2016] for strongly convex f in (3.1).

Time varying (adaptive) distributions, such as pti = |κti|/(
∑d
j=1 |κtj |) [Csiba et al., 2015],

and pti = Gi(θt)/G(θt) [Perekrestenko et al., 2017, Osokin et al., 2016], have also been
considered. In all these cases, the full information setting is used, which requires the
computation of the distribution pt (Ω(nd) calculations) at each step. To bypass this
problem, heuristics are often used; e.g., pt is calculated once at the beginning of an
epoch of length E and is left unchanged throughout the remainder of that epoch. This
heuristic approach does not work well in a scenario where Gi(θt) varies significantly.
In [Dünner et al., 2017] a similar idea to max_r is used with ri replaced by Gi, but
only in the full information setting. Because of the update rule used in [Dünner et al.,
2017], the convergence rate is O

(
d ·maxGi(θt)/G(θt)

)
times slower than Theorem 3.6

(see also the comparison at the end of Section 3.4.2). The Gauss-Southwell rule (GS) is
another coordinate selection strategy for smooth cost functions [Shi et al., 2016] and
its convergence is studied in [Nutini et al., 2015] and [Stich et al., 2017]. GS selects the
coordinate to update as the one that maximizes |∇iF (θt)| at time t. The algorithm
max_r can be seen as an extension of GS to a broader class of cost functions (see
Lemma 3.9 in Appendix 3.B). Furthermore, when only sub-gradients are defined for gi(·),
GS needs to solve a proximal problem. To address the computational tractability of GS,
in [Stich et al., 2017], lower and upper bounds on the gradients are computed (instead of
computing the gradient itself) and used for selecting the coordinates, but these lower
and upper bounds might be loose and/or difficult to find. For example, without a heavy
pre-processing of the data, ASCD in [Stich et al., 2017] converges with the same rate as
uniform sampling when the data is normalized and f(Aθ) = ‖Aθ − Y ‖2.

65

Chapter 3. Coordinate Descent with Bandit Sampling

In contrast, our principled approach leverages a bandit algorithm to learn a good estimate
of rti ; this allows for theoretical guarantees and outperforms the state-of-the-art methods,
as we will see in Section 3.5. Furthermore, our approach does not require the cost function
to be strongly convex (contrary to e.g., [Csiba et al., 2015, Nutini et al., 2015])

3.4 Technical Contributions

3.4.1 Marginal Decreases

Our coordinate selection approach works for a class H of update rules for the decision
variable θi. The update rule should be able to capture the non-optimality along different
coordinates, i.e., it should attain a larger decrease in the cost function for a non-optimal
decision variable θti compared to updating an already close to the optimal decision variable
θtj . This essentially allows to search for a decision variable θti that is far from optimum.
For example, the update rule in [Shalev-Shwartz and Tewari, 2011] for lasso, the update
rules in [Shalev-Shwartz and Zhang, 2013b] for hinge-loss SVM and ridge regression, the
update rule in [Csiba et al., 2015], in addition to the update rule in (3.3), belong to this
class H.

Definition (H). In (3.1), let f(·) be 1/β-smooth and each gi(·) be µi-strongly convex
with convexity parameter µi ≥ 0 ∀i ∈ [d]. For µi = 0, we assume that gi has a Li-bounded
support. Let ĥ : Rn × [n] −→ Rn be the update rule, i.e., θt+1 = ĥ(θt, i), for the decision
variables θt whose jth entry is

ĥj(θ, i) =
{
θj + sjκj if j = i,

θj if j 6= i,
(3.3)

where

si = min
{

1, Gi(θ) + µi|κi|2/2
|κi|2(µi + ‖ai‖2/β)

}
. (3.4)

We use the update ĥ as a baseline to define H. H is the class of all update rules
h : Rn × [n] −→ Rn such that ∀θ ∈ Rn and i ∈ [d],

F (h(θ, i)) ≤ F
(
ĥ(θ, i)

)
, or (3.5)

F̂P (θ, h(θ, i)) ≤ F̂P
(
θ, ĥ(θ, i)

)
, (3.6)

where

F̂P (θ,θ′) =
d∑
i=1

((
∇f(Aθ)>ai

)
(θ′i − θi) + 1

2β ‖ai‖
2(θ′i − θi)2 + gi(θ′i)− gi(θi)

)
.

(3.7)

66

3.4. Technical Contributions

Intuitively, F̂P (θ,θ′) approximates the difference of the cost function evaluated at θ and
θ′, which follows from the smoothness property of f :

F
(
θ′
)
− F (θ) ≤∇f(Aθ)>

(
d∑
i=1
ai(θ′i − θi)

)
+ 1

2β

∥∥∥∥∥
d∑
i=1
ai(θ′i − θi)

∥∥∥∥∥
2

+
d∑
i=1

gi(θ′i)− gi(θi)

≤
d∑
i=1

((
∇f(Aθ)>ai

)
(θ′i − θi) + 1

2β ‖ai‖
2(θ′i − θi)2 + gi(θ′i)− gi(θi)

)
,

where the first inequality follows from the smoothness property of f and the last inequality
follows from the triangle inequality.

We begin our analysis with a lemma that provides the marginal decrease rti of updating
a coordinate i ∈ [d] according to any update rule in the class H.

Lemma 3.1. In (3.1), let f be 1/β-smooth and each gi be µi-strongly convex with
convexity parameter µi ≥ 0 ∀i ∈ [d]. For µi = 0, we assume that gi has a L-bounded
support. After selecting the coordinate i ∈ [d] and updating θti with an update rule in H,
we have the following guarantee:

F (θt+1) ≤ F (θt)− rti , (3.8)

where

rti =

 Gti −
‖ai‖2|κti|

2

2β if sti = 1,
sti(Gti+µi|κti|2/2)

2 otherwise,
(3.9)

and where sti is given by (3.4).

In the proof of Lemma 3.1, the decrease of the cost function is upper-bounded using the
smoothness property of f(·) and the convexity of gi(·) for any update rule in the class H.
We present the proof below.

Proof of Lemma 3.1. We first prove the claim for the update rule ĥ given by (3.3) in
part (i), and next extend it to any update rule in H in part (ii).

(i) Our starting point is the inequality

F (θt+1) ≤ F (θt)− stiGi(θt)−
(µi (sti − (sti)2)

2 − (sti)2‖ai‖2

2β
)
|κti|2, (3.10)

67

Chapter 3. Coordinate Descent with Bandit Sampling

which holds for sti ∈ [0, 1], for all i ∈ [d] and which follows from Lemma 3.1 of
[Perekrestenko et al., 2017].2 After minimizing the right-hand side of (3.10) with respect
to sti, we attain the desired bound (3.8) for sti as in (3.4).

(ii) We now extend (i) to any update rule in H. If the update rule h(θt, i) satisfies (3.5),
we can easily recover (3.8) because

F
(
h(θt, i)

)
≤ F

(
ĥ(θt, i)

)
≤ F (θt)− rti .

If the update rule satisfies (3.6), we have

F
(
h(θt, i)

)
≤ F

(
θt
)

+ F̂P
(
θt, h(θt, i)

)
(3.11)

≤ F
(
θt
)

+ F̂P
(
θt, ĥ(θt, i)

)
(3.12)

≤ F
(
θt
)
− rti , (3.13)

where (3.11) follows from the 1/β-smoothness of f and (3.7), (3.12) follows from (3.6),
and (3.13) follows from the µi-strong convexity of gi. More precisely, by plugging

gi(θti+stiκti) = gi
(
θti + sti(ut − xti)

)
≤

stigi(ut) + (1− sti)gi(θti)−
µi
2 s

t
i(1− sti)(κti)2 (3.14)

into (3.12), and using the Fenchel-Young property, we recover (3.10). Then, by setting sti
as in (3.4) we recover (3.13).

Remark 3.2. In the well-known SGD, the cost function F (θt) might increase at some
iteration t. In contrast, if we use CD with an update rule in H, it follows from (3.9) and
(3.4) that rti ≥ 0 for all t, and from (3.8) that the cost function F (θt) never increases. This
property provides a strong stability guarantee, and explains (in part) the good performance
observed in the experiments in Section 3.5.

3.4.2 Greedy Algorithms (Full Information Setting)

In first setting, which we call full information setting, we assume that we have computed
rti for all i ∈ [d] and all t (we will relax this assumption in Section 3.4.3). Our first
algorithm max_r makes then a greedy use of Lemma 3.1, by simply choosing at time t
the coordinate i with the largest rti .

Proposition 3.3 (max_r). Under the assumptions of Lemma 3.1, the optimal coordinate
it for minimizing the right-hand side of (3.8) at time t is it = arg maxj∈[d] r

t
j .

2This inequality improves variants in Theorem 2 of [Shalev-Shwartz and Zhang, 2013b], Lemma 2 of
[Zhao and Zhang, 2015a] and Lemma 3 of [Csiba et al., 2015].

68

3.4. Technical Contributions

Remark 3.4. This rule can be seen as an extension of the Gauss-Southwell rule [Nutini
et al., 2015] for the class of cost functions that the gradient does not exist, which
selects the coordinate whose gradient has the largest magnitude (when ∇iF (θ) exits),
i.e., it = arg maxi∈[d] |∇iF (θ)|. Indeed, Lemma 3.9 in Appendix 3.B shows that for the
particular case of L2-regularized cost functions F (θ), the Gauss-Southwell rule and max_r
are equivalent.

If functions gi(·) are strongly convex (i.e., µi > 0), then max_r results in a linear
convergence rate and matches the lower bound in [Arjevani and Shamir, 2016].

Theorem 3.5. Let gi in (3.1) be µi-strongly convex with µi > 0 for all i ∈ [d]. Under
the assumptions of Lemma 3.1, we have the following linear convergence guarantee:

ε(θt) ≤ ε(θ0)
t∏
l=1

1−max
i∈[d]

Gi(θt)µi
G(θt)

(
µi + ‖ai‖2

β

)
 , (3.15)

for all t > 0, where ε(θ0) is the sub-optimality gap at t = 0.

The result is proven by induction. We distinguish the two cases in Lemma 3.1: sti = 1
and sti < 1. For both cases we show that the induction hypothesis holds. The complete
proof is given below.

Proof of Theorem 3.5. According to Proposition 3.3, we know that the selection rule
max_r is optimal for the bound (3.8). Therefore, if we prove the convergence results
using (3.8) for another selection rule, then the same convergence result holds for max_r.
For this proof, we use the following selection rule: At time t, we choose the coordinate i
with the largest Gi(θt)µi/(µi+‖ai‖2/β), which we denote by i?.

First, we show that rti? in (3.9) is lower bounded as follows

rti? ≥ Gi?(θt)
µi?

µi? + ‖ai?‖2

β

. (3.16)

We prove (3.16) for two cases sti? = 1 and sti? < 1 separately, where sti is defined in (3.4)
for i ∈ [d].

(a) If sti? = 1, according to (3.9) we have

rti? = Gi?(θt)−
‖ai?‖2|κti? |2

2β .

Next, we prove (3.16) by showing that rti? −Gi?(θt)
µi?

µi?+‖ai?‖2/β
≥ 0,

69

Chapter 3. Coordinate Descent with Bandit Sampling

rti? −Gi?(θt)
µi?

µi? + ‖ai?‖2

β

= Gi?(θt)
‖ai?‖2

β

µi? + ‖ai?‖2

β

− ‖ai
?‖2|κti? |2

2β

= ‖ai
?‖2

2β ·
2Gi?(θt)− µi|κti? |2 −

‖ai?‖2|κt
i?
|2

β

µi? + ‖ai?‖2

β

≥ 0, (3.17)

where the last inequality follows by setting sti? = 1 in (3.4) which then reads:

Gi?(θt)−
µi? |κti? |2

2 − ‖ai
?‖2|κti? |2

β
≥ 0.

This proves (3.16).

(b) Now, if sti? < 1, according to (3.9) we have

rti? =
(
Gi?(θt) + µi? |κti? |2/2

)2
2(µi? + ‖ai?‖2

β)|κti? |2
. (3.18)

With rti? given by (3.18), (3.16) becomes
(
Gi?(θt) + µi? |κti? |2/2

)2
2(µi? + ‖ai?‖2

β)|κti? |2
≥ Gi?(θt)

µi?

µi? + ‖ai?‖2

β

,

and rearranging the items, it successively becomes(
Gi?(θt) + µi? |κti? |2/2

)2
2|κti? |2

≥ Gi?(θt)µi?(
Gi?(θt) + µi? |κti? |2/2

)2
≥ 2Gi?(θt)|κti? |2µi?

Gi?(θt)2 + (µi? |κti? |2/2)2 −Gi?(θt)|κti? |2µi? ≥ 0(
Gi?(θt)− µi? |κti? |2/2

)2
≥ 0,

which always holds and therefore recovers the claim, i.e., (3.16).

70

3.4. Technical Contributions

Hence in both cases (3.16) holds. Now, plugging (3.16) and G(θt) ≥ ε(θt) in (3.8) yields

ε(θt+1)−ε(θt) = F (θt+1)− F (θt) ≤ −rti?

≤ −G(θt) max
i∈[d]

Gi(θt)µi
G(θt)

(
µi + ‖ai‖2

β

) ≤ −ε(θt) max
i∈[d]

Gi(θt)µi
G(θt)

(
µi + ‖ai‖2

β

) ,
(3.19)

that results in

ε(θt+1) ≤ ε(θt)− ε(θt) max
i∈[d]

Gi(θt)µi
G(θt)

(
µi + ‖ai‖2

β

) , (3.20)

which gives

ε(θt+1) ≤ ε(θt)

1−max
i∈[d]

Gi(θt)µi
G(θt)

(
µi + ‖ai‖2

β

)
 . (3.21)

As (3.21) holds for all t, we conclude the proof.

Now, if functions gi(·) are not necessary strongly convex (i.e., µi = 0), max_r is also
very effective and outperforms the state-of-the-art.

Theorem 3.6. Under the assumptions of Lemma 3.1, let µi ≥ 0 for all i ∈ [d]. Then,

ε(θt) ≤ 8L2η2/β

2d+ t− t0
(3.22)

for all t ≥ t0, where t0 = max{1, 2d log dβε(θ0)/4L2η2}, ε(θ0) is the sub-optimality gap at
t = 0 and η = O(d) is an upper bound on mini∈[d] G(θt) ‖ai‖/Gi(θt) for all iterations l ∈ [t].

The result is proven by induction. We distinguish the two cases in Lemma 3.1: sti = 1
and sti < 1. When sti = 1, we show that ε(θt) decreases by a factor 1 − 1/2d (i.e., a
linear convergence) and when sti < 1, we lower bound rti , next we validate the induction
hypothesis in both cases. The complete proof is given below.

Proof of Theorem 3.6. Similar to the proof of Theorem 3.5, we prove the theorem for
the following selection rule: At time t, the coordinate i with the largest Gi(θt) is chosen.
Since the optimal selection rule for minimizing the bound in Lemma 3.1 is to select the
coordinate i with the largest rti in (3.8), as shown by Proposition 3.3, the convergence
guarantees provided here holds for max_r as well.

The bound (3.22) is proven by using induction.

71

Chapter 3. Coordinate Descent with Bandit Sampling

Suppose that (3.22) holds for some t ≥ t0. We want to verify it for t + 1. Let i? =
argmaxi∈[d]Gi(θt). We study two cases sti? = 1 and sti? < 1 separately, where sti is defined
in (3.4) for i ∈ [d].

(a) If sti? = 1, then first we show that

ε(θt+1) ≤ ε(θt) ·
(

1− 1
2d

)
, (3.23)

second we show that induction hypothesis (3.22) holds. Since sti? = 1, (3.4) yields that

Gi?(θt) ≥
|κti? |2‖ai?‖2

β
+ µi|κti? |

2 ,

that gives

Gi?(θt) ≥
|κti? |2‖ai?‖2

β
,

which, combined with (3.9), implies that

rti? = Gi?(θt)−
|κti? |2‖ai?‖2

2β ≥ Gi?(θt)
2 . (3.24)

Using F (xt+1)− F (xt) = ε(θt+1)− ε(θt) and (3.24), we can rewrite (3.8) as

ε(θt+1)−ε(θt) ≤ −Gi
?(θt)
2 .

As i? is the coordinate with the largest Gi(θt), we have

ε(θt+1)− ε(θt) ≤ −Gi
?(θt)
2 ≤ −G(θt)

2d . (3.25)

According to weak duality, ε(θt) ≤ G(θt). Plugging this in (4.4) yields

ε(θt+1)− ε(θt) ≤ −G(θt)
2d ≤ −ε(θ

t)
2d , (3.26)

and therefore

ε(θt+1) ≤ ε(θt) ·
(

1− 1
2d

)
. (3.27)

72

3.4. Technical Contributions

Now, by plugging (3.22) in (3.27) we prove the inductive step at time l + 1:

ε(θt+1) ≤
8L2η2

β

2d+ t− t0

(
1− 1

2d

)

≤
8L2η2

β

2d+ t+ 1− t0
.

(b) If sti? < 1, the marginal decreases in (3.9) becomes

rti? =

(
Gi?(θt) + µi?

|κt
i?
|2

2

)2

2|κti? |2
(
µi? + ‖ai?‖2

β

) . (3.28)

Next, we show that

rti? ≥
G2
i?(θt)β

2|κti? |2‖ai?‖2
. (3.29)

To prove (3.29), we plug (3.28) in (3.29) and rearrange the terms which gives

‖ai?‖2

β

(
µ2
i?
|κti? |4

4 +Gi?(θt)µi? |κti? |2
)
≥ µi?G2

i?(θt), (3.30)

(3.30) holds because of (3.4). More precisely, if we plug the value of sti? < 1 in (3.4) we
get

Gi?(θt) ≤
|κti? |2‖ai?‖2

β
+ µi|κti? |

2 , (3.31)

which shows the correctness of (3.30), hence (3.29).

According to Lemma 22 of [Shalev-Shwartz and Zhang, 2013b] or Lemma 2.7 of [Perekrestenko
et al., 2017] we know |κti| ≤ 2L. Plugging |κti| ≤ 2L in (3.29) yields

rti? ≥
G2
i?(θt)β

8L2‖ai?‖2
.

Next, using weak duality and the definition of η in Theorem 3.6, we lower bound rti? by

rti? ≥
(

Gi?(θt)
G(θt) ‖ai?‖

)2
G2(θt)β

8L2

≥ ε2(θt)β
8L2η2 . (3.32)

Hence we have

73

Chapter 3. Coordinate Descent with Bandit Sampling

ε(θt+1)− ε(θt) ≤ −rti? ≤ −
ε2(θt)β
8L2η2 ,

and therefore

ε(θt+1) ≤ ε(θt)
(

1− ε(θt)β
8L2η2

)
. (3.33)

Let f(y) = y (1− yβ/8L2η2), as f ′(y) > 0 for y < 4L2η2/β, plugging (3.22) in (3.33) yields

ε(θt)
(

1− ε(θt)β
8L2η2

)
≤

8L2η2

β

2d+ t− t0

1−
8L2η2

β

2d+ t− t0
β

8L2η2

 . (3.34)

Now, we prove the inductive step at time t+ 1 by using (3.34):

ε(θt+1) ≤
8L2η2

β

2d+ t− t0
·

1−
8L2η2

β

2d+ t− t0
β

8L2η2


≤

8L2η2

β

2d+ t+ 1− t0
.

To conclude the proof, we need to show that the induction base case is correct, i.e., we
need to show that

ε(θt0) ≤ 4L2η2

βd
. (3.35)

First, we rewrite (3.9) using rti? ≥ ε2(θt)β/8L2η2 for sti? < 1 and rti? ≥ ε(θt)/2d for sti? = 1 as

ε(θt+1)− ε(θt) ≤ −rti? ≤ −1{sti? = 1}ε(θ
t)

2d − 1{sti? < 1}ε
2(θt)β
8L2η2 . (3.36)

From (3.36), for l < t0 we have

ε(θt+1) ≤ ε(θt)
(

1− 1{sti? = 1} 1
2d − 1{sti? < 1}ε(θ

t)β
8L2η2

)

≤ ε(θt)
(

1−min
{

1
2d,

ε(θt)β
8L2η2

})

≤ ε(θt)
(

1−min
{

1
2d,

ε(θt0)β
8L2η2

})
, (3.37)

where (3.37) holds because for t ≤ t0 we know that ε(θt0) ≤ ε(θt). We use the proof by
contradiction to check the induction base, i.e., we show that assuming ε(θt0) > 4L2η2/βd

74

3.4. Technical Contributions

results in a contradiction. If ε(θt0) > 4L2η2/βd, then

1
2d = min

{
1
2d,

ε(θt0)β
8L2η2

}
. (3.38)

From (3.37) and (3.38) we get

ε(θt0) ≤ ε(θ0)
(

1− 1
2d

)t0
. (3.39)

Using the inequality 1 + y < exp(y) for y < 1 we have

ε(θt0) ≤ ε(θ0) exp(− t02d) = ε(θ0) exp(− log dβε(θ
0)

4L2η2)

= ε(θ0) 4L2η2

βdε(θ0) = 4L2η2

βd
,

which shows that the induction base holds and this concludes the proof.

To make the convergence bounds (3.15) and (3.22) easier to understand, assume that
µi = µ1 and that the data is normalized, so that ‖ai‖ = 1 for all i ∈ [d]. First, by letting
η = O(d) be an upper bound on mini∈[d] G(θt)/Gi(θt) for all iterations l ∈ [t], Theorem 3.5
results in a linear convergence rate, i.e., ε(θt) = O (exp(−c1t/η)) for some constant
c1 > 0 that depends on µ1 and β, whereas Theorem 3.6 provides a sublinear convergence
guarantee, i.e., ε(θt) = O

(
η2/t

)
.

Second, note that in both convergence guarantees, we would like to have a small η. The
ratio η can be as large as d, when the different coordinate-wise gaps Gi(θt) are equal. In
this case, non-uniform sampling does not bring any advantage over uniform sampling,
as expected. In contrast, if for instance c · G(θt) ≤ maxi∈[d]Gi(θt) for some constant
1/d ≤ c ≤ 1, then choosing the coordinate with the largest rti results in a decrease in the
cost function, that is 1 ≤ c · d times larger compared to uniform sampling.

Finally, let us compare the bound of max_r given in Theorem 3.6 with the state-of-the-art
bounds of ada_gap in Theorem 3.7 of [Perekrestenko et al., 2017] and of CD algorithm in
Theorem 2 of [Dünner et al., 2017]. For the sake of simplicity, assume that ‖ai‖ = 1 for all
i ∈ [d]. When c ·G(θt) ≤ maxi∈[d]Gi(θt) and some constant 1/d ≤ c ≤ 1, the convergence
guarantee for ada_gap is E

[
ε(θt)

]
= O

(√
dL2/β(c2+1/d)3/2(2d+t)

)
and the convergence

guarantee of the CD algorithm in [Dünner et al., 2017] is E
[
ε(θt)

]
= O (dL2/βc(2d+t)),

which are much tighter than the convergence guarantee of CD with uniform sampling
E
[
ε(θt)

]
= O (d2L2/β(2d+t)). In contrast, the convergence guarantee of max_r is ε(θt) =

O (L2/βc2(2d+t)), which is
√
d/c times better than ada_gap, cd times better than the CD

algorithm in [Dünner et al., 2017] and c2d2 times better than uniform sampling for the
same constant c ≥ 1/d.

75

Chapter 3. Coordinate Descent with Bandit Sampling

Algorithm 3.1 B_max_r
1: Input: θ0, ε and E
2: Initialize: set r̄0

i = r0
i for all i ∈ [d]

3: for t = 1 to T do
4: if t mod E == 0 then
5: set r̄ti = rti for all i ∈ [d]
6: end if
7: Generate K ∼ Bern(ε)
8: if K == 1 then
9: Select it ∈ [d] uniformly at random

10: else
11: Select it = arg maxi∈[d] r̄

t
i

12: end if
13: Update θtit by an update rule in H
14: Set r̄t+1

it
= rt+1

it
and r̄t+1

i = r̄ti for all i 6= it
15: end for

Remark 3.7. There is no randomness in the selection rule used in max_r (beyond tie
breaking), hence the convergence results given in Theorems 3.5 and 3.6 a.s. hold for all t.

3.4.3 Bandit Algorithms (Partial Information Setting)

State-of-the-art algorithms and max_r require knowing a sub-optimality metric (e.g.,
Gti in [Perekrestenko et al., 2017, Dünner et al., 2017], the norm of gradient ∇iF (θt) in
[Nutini et al., 2015], the marginal decreases rti in this work) for all coordinates i ∈ [d],
which can be computationally expensive if the number of coordinates d is large. To
overcome this problem, we use a novel approach inspired by the bandit framework that
learns the best coordinates over time from the partial information it receives during the
training.

In our second algorithm B_max_r, the marginal decreases rti computed for all i ∈ [d]
at each round t by max_r are replaced by estimates r̄i computed by a multi-armed
bandit algorithm (MAB) as follows. First, time is divided into bins of size E. At the
beginning of a bin te, the marginal decreases rtei of all coordinates i ∈ [d] are computed,
and the estimates are set to these values (r̄ti = rtei for all i ∈ [d]). At each iteration
te ≤ t ≤ te + E within that bin, with probability ε a coordinate it ∈ [d] is selected
uniformly at random, and otherwise (with probability (1− ε)) the coordinate with the
largest r̄ti is selected. Coordinate it is next updated, as well as the estimate of the marginal
decrease r̄t+1

it
= rt+1

it
, whereas the other estimates r̄t+1

j remain unchanged for j 6= it.
The algorithm can be seen as a modified version of ε-greedy that is developed for the
setting where the reward of arms follow a fixed probability distribution, ε-greedy uses the
empirical mean of the observed rewards as an estimate of the rewards (see Section 1.2.3
for more details about ε-greedy). In contrast, in our setting, the rewards do not follow

76

3.4. Technical Contributions

such a fixed probability distribution and the most recently observed reward is the best
estimate of the reward that we could have. In B_max_r, we choose E not too large and
ε large enough such that every arm (coordinate) is sampled often enough to maintain an
accurate estimate of the rewards rti (we use E = O(d) and ε = 1/2 in the experiments of
Section 3.5).

The next proposition shows the effect of the estimation error on the convergence rate.

Proposition 3.8. Consider the same assumptions as Lemma 3.1 and Theorem 3.6. For
simplicity, let ‖ai‖ = ‖a1‖ for all i ∈ [d] and ε(θ0) ≤

√
2αL2‖a1‖2/β (ε/d + 1−ε/c) = O(d).3

Let jt? = arg maxi∈[d] r̄
t
i. If maxi∈[d] r

t
i/r

t
jt?
≤ c(E, ε) for some finite constant c = c(E, ε),

then by using B_max_r (with bin size E and exploration parameter ε) we have

E
[
ε(θt)

]
≤ α

2 + t− t0
, where α = 8L2‖a1‖2

β (ε/d2 + (1−ε)/η2c) , (3.40)

for all t ≥ t0 = max {1, 4ε(θ0)/α log(2ε(θ0)/α)} = O(d) and where η is an upper bound on
mini∈[d] G(θt)/Gi(θt) for iterations l ∈ [t].

What is the effect of c(E, ε)? In Proposition 3.8, c = c(E, ε) upper bounds the estimation
error of the marginal decreases rti . To make the effect of c(E, ε) on the convergence
bound (3.40) easier to understand, let ε = 1/2, then α ∼ 1/(1/d2+1/η2c). We can see from
the convergence bound (3.40) and the value of α that if c is large, the convergence rate
is proportional to d2 similarly to uniform sampling (i.e., ε(θt) ∈ O(d2/t)). Otherwise, if c
is small, the convergence rate is similar to max_r (ε(θt) ∈ O(η2/t), see Theorem 3.6).

How to control c = c(E, ε)? We can control the value of c by varying the bin size E. Doing
so, there is a trade-off between the value of c and the average computational cost of an
iteration. On the one hand, if we set the bin size to E = 1 (i.e., full information setting),
then c = 1 and B_max_r boils down to max_r, while the average computational cost
of an iteration is O(nd). On the other hand, if E > 1 (i.e., partial information setting),
then c ≥ 1, while the average computational complexity of an iteration is O(nd/E). In
our experiments, we find that by setting d/2 ≤ E ≤ d, B_max_r converges faster than
uniform sampling (and other state-of-the-art methods) while the average computational
cost of an iteration is O(n+ log d), similarly to the computational cost of an iteration
of CD with uniform sampling (O(n)), see Figures 3.2 and 3.3. We also find that any
exploration parameter ε ∈ [0.2, 0.7] in B_max_r works reasonably well. The proof of
Proposition 3.8 is similar to the proof of Theorem 3.6 and is given in Appendix 3.B.

3These assumptions are not necessary but they make the analysis simpler. For example, even if ε(θ0)
does not satisfy the required condition, we can scale down F (θ) by m so that F (θ)/m is minimized. The
new sub-optimality gap becomes ε(θ0)/m, and for a sufficiently large m the initial condition is satisfied.

77

Chapter 3. Coordinate Descent with Bandit Sampling

Table 3.1 – The shaded rows correspond to the algorithms introduced in this work. z̄
denotes the number of non-zero entries of the data matrix A. The numbers below the
column dataset/cost are the clock time (in seconds) needed for the algorithms to reach a
sub-optimality gap of ε(θt) = exp (−5).

method computational cost dataset/cost
(per epoch) aloi/Lasso a9a/log reg usps/ridge reg

uniform O(z̄) 27.8 11.8 1
ada_gap O(d · z̄) 52.8 42.4 88
max_r O(d · z̄) 6.2 4.5 9.5

gap_per_epoch O(z̄ + d log d) 75 11.1 300
Approx O(z̄ + d log d) 16.3 2.3 -

NUACDM O(z̄ + d log d) - - 6
B_max_r O(z̄ + d log d) 11 1.9 1

Comparing CD to SGD with multi-armed bandit sampling In Chapter 2, we
developed a multi-armed bandit algorithm for selecting datapoints for stochastic gradient
descent algorithm (SGD). The datapoint-selection algorithm for SGD is inspired by
adversarial multi-armed bandit algorithms, whereas the coordinate-selection algorithm
for CD is inspired by stochastic multi-armed bandit algorithms. In SGD, an update of
the parameters θ changes the rewards for all datapoints, and this change of the rewards
does not follow any simple pattern. As a result, we study the datapoint-selection in an
adversarial setting. Contrary to SGD, in CD update of a coordinate θi does not change
the rewards of other coordinates much. As a result, we study the coordinate-selection in
a stochastic setting. We also notice that for the cost functions that have the form in (3.1)
CD is more effective than SGD, because CD uses a better update rule (3.3) than SGD’s
update rule (2.2). However, we note that SGD is applicable to a broader set of cost
functions (most of the finite-sum cost functions for which gradients could be computed).

3.5 Empirical Evaluation

We compare the algorithms from this work with the state-of-the-art approaches, in two
ways. First, we compare the algorithm (max_r) for full information setting as in Sec-
tion 3.4.2 against other state-of-the-art methods that similarly use O(d · z̄) computations
per epoch of size d, where z̄ denotes the number of non-zero elements of A. Next, we
compare the algorithm for partial information setting as in Section 3.4.3 (B_max_r)
against other methods with appropriate heuristic modifications that also allow them to
use O(z̄) computations per epoch. The datasets we use are found in [Chang and Lin,
2011]; we consider usps, aloi and protein for regression, and w8a and a9a for binary
classification (see Table 3.2 for statistics about these datasets).

78

3.5. Empirical Evaluation

Table 3.2 – Statistics of the datasets. The first three datasets are used for regression and
the last two for binary classification.

#classes #datapoints #features %nonzero
usps 10 7291 256 100%
aloi 1000 108000 128 24%

protein 3 17766 357 29%
w8a 2 49749 300 4%
a9a 2 32561 123 11%

Fu
ll-
In
fo

0 2 4 6 8 10
epochs

−10
−8
−6
−4
−2

0

lo
g

𝜖𝑡

(a) usps

0 2 4 6 8 10
epochs

0
−2
−4
−6
−8

lo
g

𝜖𝑡

(b) aloi

0 2 4 6 8 10
epochs

0
−2
−4
−6
−8

lo
g

𝜖𝑡

uniform
ada_gap
max_r

(c) protein

P
ar
ti
al
-I
nf
o

0 2 4 6 8 10
epochs

−5
−4
−3
−2
−1

0

lo
g

𝜖𝑡

(d) usps

0 2 4 6 8 10
epochs

−5
−4
−3
−2
−1

0

lo
g

𝜖𝑡

(e) aloi

0 2 4 6 8 10
epochs

0
−2
−4
−6
−8

lo
g

𝜖𝑡
uniform
gpe
Approx
B_max_r

(f) protein

Figure 3.2 – CD for regression using Lasso (i.e., a non-smooth cost function). Y-axis
is the log of sub-optimality gap and x-axis is the number of epochs. The algorithms
presented in this work (max_r, B_max_r) outperform the state-of-the-art across the
board.

Various cost functions are considered for the experiments, including a strongly convex
cost function (ridge regression) and non-smooth cost functions (Lasso and L1-regularized
logistic regression). These cost functions are optimized using different algorithms, which
minimize either the primal or the dual cost function. The convergence time is the metric
that we use to evaluate different algorithms.

3.5.1 Experimental Setup

Benchmarks for Adaptive Algorithm (max_r):

79

Chapter 3. Coordinate Descent with Bandit Sampling

• uniform [Shalev-Shwartz and Tewari, 2011]: Sample a coordinate i ∈ [n] uniformly at
random.4

• ada_gap [Perekrestenko et al., 2017]: Sample a coordinate i ∈ [n] with probability
Gi(θt)/G(θt).

Fu
ll-
In
fo

0 2 4 6 8 10
epochs

0

-1

-2

-3

-4

lo
g

𝜖𝑡

(a) w8a, logistic reg.

0 2 4 6 8 10
epochs

−4
−3
−2
−1

0

lo
g

𝜖𝑡

(b) a9a, logistic reg.

0 20 40 60 80 100
epochs

−10
−8
−6
−4
−2

0

lo
g

𝜖𝑡

(c) usps, ridge reg.

0 20 40 60 80 100
epochs

−7
−6
−5
−4
−3
−2
−1

0

lo
g

𝜖𝑡

uniform
ada_gap
max_r

(d) protein, ridge reg.

P
ar
ti
al
-I
nf
o

0 2 4 6 8 10
epochs

0

-1

-2

-3

-4

lo
g

𝜖𝑡

(e) w8a, logistic reg.

0 2 4 6 8 10
epochs

−4
−3
−2
−1

0

lo
g

𝜖𝑡

(f) a9a, logistic reg.

0 20 40 60 80 100
epochs

−6
−5
−4
−3
−2
−1

0

lo
g

𝜖𝑡

(g) usps, ridge reg.

0 20 40 60 80 100
epochs

0
-1
-2
-3
-4
-5

lo
g

𝜖𝑡

uniform
gpe
NUACDM
B_max_r

(h) protein, ridge reg.

Figure 3.3 – CD for binary Classification using L1-regularized logistic regression and CD
for regression using Lasso. The algorithms presented in this work (max_r and B_max_r)
outperform the state-of-the-art across the board.

Benchmarks for Adaptive-Bandit Algorithm (B_max_r):

For comparison, in addition to the uniform sampling, we consider the coordinate selection
method that has the best performance empirically in [Perekrestenko et al., 2017] and two
accelerated CD methods NUACDM in [Allen-Zhu et al., 2016] and Approx in [Fercoq
and Richtárik, 2015].

• gap_per_epoch [Perekrestenko et al., 2017]: This algorithm is a heuristic version of
ada_gap, where the sampling probability pti = Gi(θt)/G(θt) for i ∈ [d] is re-computed
once at the beginning of each bin of length E.

• NUACDM [Allen-Zhu et al., 2016]: Sample a coordinate i ∈ [d] with probability
proportional to the square root of smoothness of the cost function along the ith
coordinate, then use an unbiased estimator for the gradient to update the decision
variables. NUACDM is the state-of-the-art accelerated CD method (see Figures 2 and
3 in [Allen-Zhu et al., 2016]) and was proposed for smooth cost functions.

• Approx [Fercoq and Richtárik, 2015]: Sample a coordinate i ∈ [d] uniformly at
random, then use an unbiased estimator for the gradient to update the decision
variables. Approx is an accelerated CD method and was proposed for cost functions

4If ‖ai‖ = ‖aj‖ ∀i, j ∈ [n], importance sampling method in [Zhao and Zhang, 2015a] is equivalent to
uniform in Lasso and logistic regression.

80

3.5. Empirical Evaluation

that have non-smooth gi(·) in (3.1). We implemented Approx for such cost functions
in Lasso and L1-reguralized logistic regression.

We also implemented Approx for ridge-regression but NUACDM converged faster in our
setting, whereas for the smoothen version of Lasso but Approx converged faster than
NUACDM in our setting. There are other adaptive sampling methods in [Perekrestenko
et al., 2017, Stich et al., 2017, Rakotomamonjy et al., 2017], but the ones compared above
yield the best performance. The origin of the computational cost is two-fold: Sampling
a coordinate i and updating it. The average computational cost of the algorithms for
E = d/2 is depicted in Table 3.1. Next, we explain the setups and update rules used in
the experiments.

Setup and update rule for Lasso: For Lasso

F (θ) = 1/2n‖Y −Aθ‖2 +
n∑
i=1

λ|θi|.

We consider the stingyCD update proposed in [Johnson and Guestrin, 2017]:

θt+1
i = arg min

z

[
f(Aθt + (z − θti)ai)

]
+ gi(θi).

This update rule belongs to the class H. In Lasso, the gis are not strongly convex (µi = 0).
Therefore, for computing the dual residue, the Lipschitzing technique in [Dünner et al.,
2016] is used, i.e., gi(·) is assumed to have bounded support of size B = F (θ0)/λ and
g?i (ui) = Bmax {|ui| − λ, 0}. For both aloi and protein λ = 10−5, and for usps λ = 10−3.
The total number of iterations is T = 10d.

Setup and update rule for logistic regression: For logistic regression

F (θ) = 1/n
n∑
i=1

log
(
1 + exp(−yi · θ>ai)

)
+

n∑
i=1

λ|θi|.

We consider the update rule proposed in [Shalev-Shwartz and Tewari, 2011]:

θt+1
i = s4λ(θti − 4∂f(Aθt)/∂θi),

where sλ(q) = sign(q) max{|q| − λ, 0}. This update rule also belongs to H. For both
datasets w8a and a9a, we again have λ = 10−3 and T = 10d.

Setup and update rule for ridge regression: For ridge regression

F (θ) = 1/n‖Y −Aθ‖2 + λ/2‖θ‖2

and it is strongly convex. We consider the update proposed for the dual of ridge regression
in [Shalev-Shwartz and Zhang, 2013b], hence B_max_r and other adaptive methods

81

Chapter 3. Coordinate Descent with Bandit Sampling

select one of the dual decision variables to update. This update rule also belongs to H.
For both datasets usps and protein, we have λ = 2× 10−5 and T = 100d.

In all experiments, λs are chosen such that the test and train errors are comparable. In
addition, in all experiments, E = d/2 in B_max_r and gap_per_epoch. Recall that
when minimizing the primal, d is the number of features and when minimizing the dual,
d is the number of datapoints. In all three cost functions, recall that d is the number of
features and ai are normalized to the same value ‖ai‖.

3.5.2 Empirical Results

Figure 3.2 shows the result for Lasso. Among the adaptive algorithms, max_r outper-
forms the state-of-the-art (see Figures 3.2a, 3.2b and 3.2c). Among the adaptive-bandit
algorithms, B_max_r outperforms the benchmarks (see Figures 3.2d, 3.2e and 3.2f). We
also see that B_max_r converges slower than max_r for the same number of iterations,
but we note that an iteration of B_max_r is O(d) times cheaper than max_r. For logistic
regression, see Figures 3.3a, 3.3b, 3.3e and 3.3f. Again, those algorithms outperform the
state-of-the-art. We also see that B_max_r converges with the same rate as max_r. We
see that the accelerated CD method Approx converges faster than uniform sampling
and gap_per_epoch, but using B_max_r improves the convergence rate and reaches a
lower sub-optimality gap ε with the same number of iterations. For ridge regression, we
see in Figures 3.3c, 3.3d that max_r converges faster than the state-of-the-art ada-gap.
We also see in Figures 3.3g, 3.3h that B_max_r converges faster than other algorithms.
gap_per_epoch performs poorly because it is unable to adapt to the variability of
the coordinate-wise duality gaps Gi that vary a lot from one iteration to the next. In
contrast, this variation slows down the convergence of B_max_r compared to max_r, but
B_max_r is still able to cope with this change by exploring and updating the estimations
of the marginal decreases. In the experiments we report the sub-optimality gap as a
function of the number of iterations, but the results are also favourable when we report
them as a function of actual time. To clarify, we compare the clock time5 needed by each
algorithm to reach a sub-optimality gap ε(θt) = exp(−5) in Table 3.1.

Next, we study the choice of parameters ε and E in Algorithm 3.1. As explained in
Section 3.4.3 the choice of these two parameters affect c in Proposition 3.8, hence the
convergence rate. To test the effect of ε and E on the convergence rate, we choose
a9a dataset and perform a binary classification on it by using the logistic regression
cost function. Figure 3.4a depicts the number of iterations required to reach the log-
suboptimality gap log ε of −5. In the top-right corner, ε = 1 and B_max_r becomes
CD with uniform sampling (for any value of E). As expected, for any ε, the smaller

5In our numerical experiments, all algorithms are optimized as much as possible by avoiding any
unnecessary computations, by using efficient data structures for sampling, by reusing the computed values
from past iterations and (if possible) by writing the computations in efficient matrix form.

82

3.6. Summary

0.0 0.2 0.4 0.6 0.8 1.0
𝜀

0.2
0.4
0.6
0.8
1.0
1.2

#i
te

ra
tio

ns

×104

𝐸 = 𝑑/4
𝐸 = 𝑑/2
𝐸 = 3𝑑/4
𝐸 = 𝑑

(a) Number of iterations to reach
log ε(θt) = −5.

1 𝑑/5 2𝑑/5 3𝑑/5 4𝑑/5 5𝑑/5
𝐸

0.00

0.15

0.30

0.45

W
al
lt
im
e

(b) Per-epoch clock time for differ-
ent values of E.

Figure 3.4 – Analysis of the running time of B_max_r for different values of ε and E.
A smaller E results in fewer iterations, and results in larger clock time per epoch (an
epoch is d iterations of CD).

E, the smaller the number of iterations to reach the log-suboptimality gap of −5. This
means that c(ε, E) is a decreasing function of E. Also, we see that as ε increases, the
convergence becomes slower. That implies that for this dataset and cost function c(ε, E)
is close to 1 for all ε hence there is no need for exploration and a smaller value for ε can
be chosen. Figure 3.4b depicts the per epoch clock time for ε = 0.5 and different values
of E. Note that the clock time is not a function of ε. As expected, a smaller bin size E
results in a larger clock time, because we need to compute the marginal decreases for all
coordinates more often. After E = 2d/5 we see that clock time does not decrease much,
this can be explained by the fact that for large enough E computing the gradient takes
more clock time than computing the marginal decreases.

3.6 Summary

In this chapter, we propose a new approach to select the coordinates to update in CD
methods. We derive a lower bound on the decrease of the cost function in Lemma 3.1,
i.e., the marginal decrease, when a coordinate is updated, for a large class of update
methods H. We use the marginal decreases to quantify how much updating a coordinate
improves the model. Next, we use a bandit algorithm to learn which coordinates decrease
the cost function significantly throughout the course of the optimization algorithm by
using the marginal decreases as feedback (see Figure 3.1). We show that the approach
converges faster than state-of-the-art approaches both theoretically and empirically. We
emphasize that our coordinate selection approach is quite general and works for a large
class of update rules H, which includes Lasso, SVM, ridge and logistic regression, and a
large class of bandit algorithms that select the coordinate to update.

The bandit algorithm B_max_r uses only the marginal decrease of the selected coordinate
to update the estimations of the marginal decreases. An important open question is to

83

Chapter 3. Coordinate Descent with Bandit Sampling

understand the effect of having additional budget to choose multiple coordinates at each
time t. The challenge lies in designing appropriate algorithms to invest this budget to
update the coordinate selection strategy such that B_max_r performance becomes even
closer to max_r.

84

Appendix

3.A Basic Definitions

For completeness, in this section we recall a variety of standard definitions.

3.A.1 Basic Definitions

Definition (1/β-smooth). A function f(·) : Rn −→ R is 1/β-smooth if for any x ∈ Rn

and y ∈ Rn

f(y) ≤ f(x) +∇f(x)>(y − x) + 1
2β ‖x− y‖

2.

Definition (µ-strongly convex). A function f(·) : Rn −→ R is µ-strongly convex if for
any x ∈ Rn and y ∈ Rn

f(y) ≥ f(x) +∇f(x)>(y − x) + µ

2 ‖x− y‖
2.

Definition (L-bounded support). A function f(·) : Rn −→ R has L-bounded support if
there exists a euclidean ball with radius L such

f(θ) <∞⇒ ‖θ‖ ≤ L.

3.B Proofs

In this section, we present the proofs of the results in Sections 3.4.1, 3.4.2 and 3.4.3.

Lemma 3.9. Under the assumptions of Lemma 3.1, if gi(θi) = λ · (θi)2 in (3.1) and
‖ai‖ = 1 for all i ∈ [d], then the Gauss-Southwell rule and max_r are equivalent.

85

Chapter 3. Coordinate Descent with Bandit Sampling

Proof of Lemma 3.9. We prove the lemma for θ ∈ Rn and drop the dependence on t

throughout the proof. First, we show that Gi ∼ (∇iF (θ))2. The function gi(θi) = λ · (θi)2

is 2λ strongly convex for all i ∈ [d], i.e., µi = µ = 2λ. The dual convex conjugate of the
function gi(θi) = λ · (θi)2 is

g?(z) = z2

4λ.

Then, for w = ∇f(Aθ), Gi(θ) = g?i (−a>i w) + gi(θi) + θia
>
i w becomes

Gi(θ) = (a>i w)2

4λ + λ(θi)2 + θia
>
i w =

(
a>i w + 2λθi

)2

4λ .

As ∇iF (θ) = a>i ∇f(Aθ) + 2λθi = a>i w + 2λθi, we have

Gi(θ) = (∇iF (θ))2

4λ .

Next, note that

κi = ∂g?i (−a>i w)− θi = −a
>
i w

2λ − θi = −∇iF (θ)
2λ .

Next, plugging Gi(θ) = (∇iF (θ))2
/4λ and κi = −∇iF (θ)/2λ in (3.4) yields

si = min
{

1, 3λ
2λ+ 1

β

}
for all i ∈ [d].

Hence, ri in (3.9) becomes

ri =


(∇iF (θ))2

8λ2β (2λβ − 1) if λ ≥ 1
β ,

3
4

(∇iF (θ))2

2λ+ 1
β

otherwise.

As a result, arg maxi∈[d] ri = arg maxi∈[d] (∇iF (θ))2. In Gauss-Southwell rule, we choose
the coordinate whose gradient has the largest magnitude, i.e., arg maxi∈[d] |∇iF (θ)|.
Therefore, the selection rules max_r and Gauss-Southwell rule are equivalent.

Proof of Proposition 3.8. The proof is similar to the proof of Theorem 3.6 and it uses
induction. We highlight the differences here. To make the proof easier, we simplify the
definition of sti in (3.4) and the marginal decrease rti in (3.9) by using the upper bound
|κti| ≤ 2L (recall that L = Li for all i in Proposition 3.8). The upper bound |κti| ≤ 2L
follows from Lemma 22 of [Shalev-Shwartz and Zhang, 2013b]. The starting point of the

86

3.B. Proofs

proof is the following equation

F (θt+1) ≤ F (θt)− stiGi(θt) + 2(sti)2‖a1‖2

β
L2, (3.41)

which is derived by upper bounding (3.10) using |κti| ≤ 2L and setting µi = 0 for all
i ∈ [d], which holds since gi(·) are not strongly convex. Equation (3.41) holds for sti ∈ [0, 1],
and for all i ∈ [d]. After minimizing the right-hand side of (3.41) with respect to sti, we
attain the following new sti and the new marginal decrease rti :

sti = min
{

1, Gti
4L2‖a1‖2/β

}
, (3.42)

and

rti =

 Gti −
2‖a1‖2L2

β if sti = 1,
(Gti)

2

8L2‖a1‖2/β otherwise.
(3.43)

Hereafter, let

α = 8L2‖a1‖2

β (ε/d2 + (1−ε)η2/c)

as defined in Proposition 3.8.

Now, suppose that (3.22) holds for some t ≥ t0. We want to verify it for t+ 1. We start
the analysis by computing the expected marginal decrease for ε in Algorithm 3.1,

E
[
rti |θt

]
≥ ε

d

∑
sti=1

rti +
∑
sti<1

rti

+ (1− ε)r
t
i?

c
, (3.44)

where c is a finite constant in Proposition 3.8 and i? = arg maxi∈[d] r
t
i . The expectation

is with respect to the random choice of the algorithm.

When sti = 1, from (3.42) we have Gti ≥ 4L2‖a1‖2/β and from (3.43) we have rti ≥ 2L2‖a1‖2/β.
Plugging rti ≥ 2L2‖a1‖2/β when sti = 1 in (3.44) yields

E
[
rti |θt

]
≥ ε

d

∑
sti=1

2L2‖a1‖2

β
+
∑
sti<1

G2
i (θt)β

8L2‖a1‖2

+ (1− ε)r
t
i?

c
, (3.45)

87

Chapter 3. Coordinate Descent with Bandit Sampling

(a) If sti? = 1, then the cost function decreases at least by

E
[
rti |θt, si?(θt) = 1

]
≥ 2L2‖a1‖2

β

(
ε

d
+ 1− ε

c

)
. (3.46)

(b) Let sti? < 1, from the definition of sti? we know that Gi(θt) ≤ Gi?(θt) for all i ∈ [d],
hence we deduce that sti < 1 for all i ∈ [d], then (3.45) reads as

E
[
rti |θt, si?(θt) < 1

]
≥ ε

d

(
d∑
i=1

G2
i (θt)β

8L2‖a1‖2

)
+ (1− ε) G

2
i?(θt)β

8L2c‖a1‖2

≥ β

8L2‖a1‖2

ε
(∑d

i=1Gi(θt)
)2

d2 + (1− ε)G
2
i?(θt)
c


≥ β

8L2‖a1‖2

(
ε
G2(θt)
d2 + (1− ε)G

2(θt)
η2c

)
, (3.47)

where (3.47) follows from the assumption G(θt) ≤ ηGi?(θt) in Proposition 3.8. Similar
to the proof of Theorem 3.6, we plug the inequality ε(θt) < G(θt) in (3.47) and get

E
[
rti |θt, si?(θt) < 1

]
≥ βε2(θt)

8L2‖a1‖2
(
ε

d2 + (1− ε)
η2c

)
= ε2(θt)

α
. (3.48)

Next, we use (3.46), (3.48) and use the tower property to check the induction hypothesis

E[ε(θt+1)]− E[ε(θt)] ≤ E
[
1{sti? = 1}E

[
rti |θt, sti? = 1

]
+ 1{sti? <= 1}E

[
rti |θt, sti? < 1

]]
≤ −E

[
1{sti? = 1}2L2‖a1‖2

β

(
ε

d
+ 1− ε

c

)
+ 1{sti? < 1}ε

2(θt)
α

]
.

(3.49)

As we assumed

ε2(θt) ≤ ε2(θ0) ≤ 2αL2‖a1‖2

β

(
ε

d
+ 1− ε

c

)
in Proposition 3.8, we have

min
{

2L2‖a1‖2

β

(
ε

d
+ 1− ε

c

)
,
ε2(θt)
α

}
= ε2(θt)

α
.

Hence, (3.49) becomes

E[ε(θt+1)]− E[ε(θt)] ≤ −E
[
ε2(θt)
α

]
≤ −E[ε(θt)]2

α
, (3.50)

88

3.B. Proofs

where the last inequality is because of the Jensen’s inequality (i.e., E[ε(θt)]2 ≤ E[ε2(θt)]).
By rearranging the terms in (3.50) we get

E[ε(θt+1)] ≤ E
[
ε(θt)

](
1− E

[
ε(θt)

]
α

)
(3.51)

Now, let f(y) = y
(
1− y

α

)
, as f ′(y) > 0 for y < α/2, we can plug (3.40) in (3.51) and

prove the inductive step at time t+ 1;

E[ε(θt+1)] ≤ E
[
ε(θt)

](
1− E

[
ε(θt)

]
α

)

≤ α

2 + t− t0
·
(

1− 1
2 + t− t0

)
≤ α

2 + t+ 1− t0
. (3.52)

Finally, we need to show that the induction basis indeed is correct. By using the inequality
(3.50) for t = 1, . . . , t0 we get

E[ε(θt0)] ≤ ε(θ0)−
t0−1∑
t=0

E[ε(θt)]2
α

, (3.53)

since at each iteration the cost function decreases, we have ε(θt+1) ≤ ε(θt) for all t ≥ 0.
Therefore, if E[ε(θt)] ≤ α/2 for any 0 ≤ t ≤ t0, we can conclude that E[ε(θt0)] ≤ α/2. We
prove the induction hypothesis by showing that E[ε(θt0)] > α/2 results in a contradiction.
With this assumption, (3.53) becomes

E[ε(θt0)] ≤ ε(θ0)− t0
α

4 = ε(θ0)
(

1− t0
α

4ε(θ0)

)
, (3.54)

Next, we use the inequality 1 + y ≤ exp(y) with (3.54)

E[ε(θt0)] ≤ ε(θ0) exp
(
−t0

α

4ε(θ0)

)
. (3.55)

Plugging

t0 = 4ε(θ0)
α

log(2ε(θ0)
α

)

in (3.55) yields

89

Chapter 3. Coordinate Descent with Bandit Sampling

E[ε(θt0)] ≤ α

2 , (3.56)

which proves the induction basis and concludes the proof.

90

4 Controlling Polarization in Per-
sonalization

In Chapters 2 and 3, we have studied how multi-armed bandit can improve machine
learning algorithms by improving two of most widely used optimization algorithms. In
this chapter1, we see how personalized multi-armed bandit algorithms in the online ad
space can affect humans, and how to address that. Personalization is pervasive in the
online ad space as it leads to higher efficiency for the user and higher revenue for the
platform by individualizing the most relevant content for each user. However, recent
studies suggest that such personalization can learn and propagate systemic biases and
polarize opinions; this has led to calls for regulatory mechanisms and algorithms that are
constrained to combat bias and the resulting echo-chamber effect. We propose a versatile
framework that enables for the possibility to reduce polarization in personalized systems
by allowing the user to constrain the distribution from which content is selected. We
then present a scalable bandit algorithm with provable guarantees that satisfies the given
constraints on the types of the content that can be displayed to a user, but – subject to
these constraints – will continue to learn and personalize the content in order to maximize
utility. We illustrate this framework on a curated dataset of online news articles that
are conservative or liberal, show that it can control polarization, and we examine the
trade-off between decreasing polarization and the resulting loss to revenue. We further
exhibit the flexibility and scalability of our approach. We frame the problem in terms of
the more general diverse content selection problem, and we test it empirically on both a
News dataset and the MovieLens dataset.

4.1 Introduction

News and social media feeds, product recommendation, online advertising and other
media that pervades the Internet is increasingly personalized. Content selection algorithms
consider a user’s properties and past behavior in order to produce a personalized list of
content to display [Goldfarb and Tucker, 2011, Liu et al., 2010]. This personalization

1This chapter is based on [Celis et al., 2019].

91

Chapter 4. Controlling Polarization in Personalization

leads to higher utility and efficiency both for the platform, and for the user, who sees
content more directly related to their interests [Fox-Brewster, 2017, Farahat and Bailey,
2012]. However, it is now known that such personalization may result in propagating or
even creating biases that can influence decisions and opinions. In an important study,
Epstein and Robertson [2015] showed that user opinions about political candidates, and
hence elections, can be manipulated by changing the personalized rankings of search
results. Other studies show that allowing for personalization of news and other sources
of information can result in a “filter bubble” [Pariser, 2011] which results in a type of
tunnel vision, effectively isolating people into their own cultural or ideological bubbles;
e.g., enabled by polarized information, many people did not expect a Brexit vote or
Trump election [Baer, 2016]. This phenomenon has been observed on many social media
platforms (see, e.g., [Hong and Kim, 2016, Conover et al., 2011, Weber et al., 2013]), and
studies have shown that over the past eight years polarization has increased constantly
[Garimella and Weber, 2017].

Polarization, and the need to combat it, was raised as a problem in [Robertson et al.,
2018], where it was shown that Google search results differ significantly based on political
preferences in the month following the 2016 elections in the United States. In a different
setting, the ease with which algorithmic bias can be introduced and the need for solutions
was highlighted in [Speicher et al., 2018] where it was shown that it is very easy to target
people on platforms such as Facebook in a discriminatory fashion. Several approaches to
quantify bias and polarization of online media have now been developed [Ribeiro et al.,
2018], and interventions for fighting polarization have been proposed [Bozdag and van den
Hoven, 2015]. One approach to counter such polarization would be to hide certain user
properties so that they cannot be used for personalization. However, this could come at
a loss to the utility for both the user and the platform – the content displayed would
be less relevant and result in decreased attention from the user and less revenue for the
platform (see, e.g., [Sakulkar and Krishnamachari, 2016]).

4.1.1 Groups and Polarization

Often, content is classified into different groups which are defined by one or more multi-
valued sensitive attributes; for instance, news stories can have a political leaning (e.g.,
conservative or liberal), and a topic (e.g., politics, business or entertainment). More
generally, search engines and other platforms and applications maintain topic models over
their content (see e.g., [Alghamdi and Alfalqi, 2015]). At every time-step, the algorithm
must select a piece of content to display to a given user,2 and feedback is obtained in
the form of whether they click on, purchase or hover over the item. The goal of the
content selection algorithm is to select content for each user in order to maximize the

2In order to create a complete feed, content can simply be selected repeatedly in this manner to fill
the screen as the user scrolls down; for ease of exposition, we describe the one-step process of selecting a
single piece of content.

92

4.1. Introduction

(a) (b)

Figure 4.1 – Unfiltered vs. balanced content delivery engines. (a) polarization can
occur on using personalized platforms, e.g., primarily showing ads for high-paying jobs
(in red) to men and ads for low-paying jobs (in blue) to women (see [Datta et al., 2015]).
(b) With constraints on the extent to which the feeds can differ, our model displays a
more balanced feed.

positive feedback (and hence revenue) received; to do so, it must learn about the topics
or groups the user is most interested in. Thus, as this optimal topic is a-priori unknown,
the process is often modeled as a multi-armed bandit problem (see Section 1.2) in which
a user-specific probability distribution (from which one selects content) is maintained
and updated according to feedback given [Pandey and Olston, 2006]. As the content
selection algorithm learns more about a user, the corresponding probability distribution
begins to concentrate the mass on a small subset of topics; this results in polarization
where the feed is primarily composed of a single type of content.

Our Contributions

To counter polarization, we introduce a simple framework which allows us to place
constraints on the probability distribution from which content is sampled. The goal is
to control polarization on the content displayed at all time steps (see Section 4.2.2)
and ensure that the given recommendations do not specialize to a single group. Our
constraints are linear and limit the total expected weight that can be allocated to a given
group through lower and upper bound parameters on each group. These polarization
constraints are taken as input and can be set according to the context or application.
Importantly, though simple, these constraints are versatile enough to control polarization
with respect to a variety of metrics which can measure the extent of polarization, or
lack thereof, in a given algorithm. This is due to the fact that several fairness metrics
depend, e.g., on the ratio or difference between the probability mass on two groups,
hence can be implemented by picking appropriate lower/upper bound parameters for
the constraints in our setting to give an immediate fairness guarantee (such reductions

93

Chapter 4. Controlling Polarization in Personalization

can be formalized following standard techniques, see, e.g., [Celis et al., 2018]). Thus,
by placing such constraints the content shown to different types of users is varied, and
polarization is controlled.

While there are several polynomial time algorithms for similar settings, the challenge
is to come up with a scalable content selection algorithm for the resulting optimization
problem of maximizing revenue (via personalization) subject to satisfying the polarization
constraints. We show how an adaptation of the existing algorithm ε-Greedy (see
Section 1.2.3) for the unconstrained bandit setting, along with the special structure of our
constraints, can lead to a scalable algorithm with provable guarantees for this constrained
optimization problem (see Theorem 4.1). We evaluate this framework and our algorithm
on a curated dataset of online news articles that are conservative or liberal, show that
it can control polarization, and examine the trade-off between decreasing polarization
and the resulting loss to revenue. We further illustrate the flexibility and scalability of
this approach by considering the problem of diverse content selection, and evaluate our
algorithm on the MovieLens dataset for diverse movie recommendation as well as the
YOW dataset for diverse article recommendation. To the best of our knowledge, this
is the first algorithm to control polarization in personalized settings that comes with
provable guarantees, allows for the specification of general constraints, and is viable in
practice.

4.2 Preliminaries

4.2.1 Polarization in Existing Models

Algorithms for the general (unconstrained, and hence potentially biased) problem of
displaying personalized content are often developed in the multi-armed bandit setting
(see e.g., [Li et al., 2010, 2016]). For an overview of the multi-armed bandit setting and
algorithms developed for this setting, see Section 1.2. Below, we explain how the problem
of displaying personalized content can be formulated as a multi-armed bandit problem.

At each time step t = 1, . . . , T , a user views a page (e.g., Facebook, Twitter or Google
News), and one piece of content (or arm) a ∈ [K] must be selected to be displayed.
A random reward rta, which depends on the selected content is then received by the
content selection algorithm. This reward captures resulting clicks, purchases, or time
spent viewing the given content. The rewards rta are assumed to be drawn independently
across a and t from an unknown distribution D. Hence the problem falls under stochastic
multi-armed bandit category (see Section 1.2.3), and regret takes the form

R̄T := max
a∈[K]

Ert∼D

[
T∑
t=1

rta −
T∑
t=1

rtat

]
,

94

4.2. Preliminaries

where at is the chosen arm at time step t. As explained in Section 1.2.1, the regret metric
is used to study the efficacy of a multi-armed bandit algorithm.

The problem with this approach is that, bandit algorithms, by optimizing for that “ideal”
arm a? = arg maxa∈[K] Ert∼D[rta], by definition strive for polarization. To understand
how, let G1, . . . , Gg ⊆ [K] be g groups of arms which correspond to different types
of content across which we do not want to polarize. In the simplest setting, the Gis
form a partition (e.g., conservative and liberal news articles when the arms represent
news stories), but in general the group structure can be arbitrary. A feature of bandit
algorithms is that the probability distribution on the arms, that the algorithm is learning,
converges to the action with the best expected reward; i.e., the entire probability mass
ends up on the single arm a?, and hence in a single group – causing polarization (see
e.g., [Li et al., 2010]).

4.2.2 Constraint setting

We would like an approach that can control polarization with respect to the groups that
the selected arms belong to. Towards this, for each group Gi, let `i be a lower bound
and ui be an upper bound on the amount of weighted probability mass that we allow the
content selection algorithm to place on this group. Formally, we impose the following
constraints:

`i ≤
∑
a∈Gi

wa(Gi) · pta ≤ ui ∀i ∈ [g],∀t ∈ [T], (4.1)

where wa(Gi) ∈ [0, 1] represents the group weight of arm a on group Gi and pta is the
probability of selecting arm a at time t.

The group weight wa(Gi) denotes the similarity between arm a and group Gi. For instance,
following our earlier discussion on news articles, a conservative leaning news article might
have a group weight of 0.9 for the conservative articles group and a group weight of 0.1
for the liberal articles group, whereas a neutral article might have both of these weights
as 0.5. In case of categorical groups (e.g., men vs. women), the group weight can take
a binary value. For more general cases (see, e.g., Section 4.5), this weight can take a
real value between 0 and 1. The values for wa(Gi)s can be set using various methods
depending on the application and can also take into account error bounds for classifiers
that decide whether a given a ∈ Gi or not. For the case of text documents (e.g., news
and scientific articles [Wang and Blei, 2011]), the weights can be set using techniques
like topic modeling, which give us the percentage of a document that corresponds to a
certain topic.

The bounds `is and uis provide a handle with which we can ensure that the weighted
probability mass placed on any given group is neither too high nor too low at each

95

Chapter 4. Controlling Polarization in Personalization

Algorithm 4.1 Cons-ε-Greedy
1: Input: Constraint set C, a constrained probability distribution qf ∈
{q : B∞(q, η) ⊂ C}, a positive integer T , a constant L that controls the exploration

2: Initialize: µ̄1 := 0
3: for t = 1, . . . , T do
4: Update εt := min{1, 4/(ηL2t)}
5: Compute pt := arg maxp∈C µ̄>t p
6: Sample a from the probability distribution (1− εt)pt + εtqf
7: Observe reward rt = rta
8: Update empirical mean µ̄t+1
9: end for

time step. Rather than fixing the values of uis and `is, we allow them to be specified as
input. This allows one to control the extent of polarization of content depending on the
application, and hence (indirectly) encode bounds on a wide variety of existing metrics
for different notions of group fairness which, in effect, encode the extent of polarization.
This requires translating the metric parameters into concrete values of `is and uis. For
instance, given β > 0, by setting uis and `is such that ui− `i ≤ β for all i, we can ensure
that the risk difference is bounded by β. An additional feature of our model is that no
matter what the group structures, or the lower and upper bounds are, the constraints
are always linear.

Importantly, note that unlike ignoring user preferences entirely as in [Pariser, 2011],
the constraints still allow for personalization across groups. For instance, if the groups
are conservative-leaning (C) vs liberal-leaning (L) articles, and the users are known
conservatives or liberals, we may require that w(C) · ptC ≤ 0.75 and w(L) · ptL ≤ 0.75
for all t. This ensures that extreme polarization cannot occur – at least 25% of the
content a conservative is presented with will be liberal-leaning. Despite these constraints,
personalization at the group level can still occur, e.g., by letting w(C) · ptC = 0.75
and w(L) · ptL = 0.25 for a conservative-leaning user. Furthermore, this framework
allows for complete personalization within a group; e.g., the conservative-leaning articles
shown to conservatives and liberals may differ. This is crucial as the utility maximizing
conservative-leaning articles for a conservative may differ from the utility maximizing
conservative-leaning articles for a liberal.

In the unconstrained setting, the performance of an algorithms is measured with respect
to the (unknown) optimal solution (see the definition of regret in Section 1.2.1). The
next question we address is how to measure an algorithm’s performance against the best
constrained solution. We say that a probability distribution p on [K] is constrained if
it satisfies the upper and lower bound constraints in (4.1). Let C be the set of all such
probability distributions. Note that given the linear nature of the constraints, the set C
is a polytope (an intersection of a set of half spaces), and hence we can formulate the
problem of finding v? as a linear programming problem.

96

4.3. Related Work

Algorithm Per iteration Running time Regret Bound

Conf-Ball2 [Dani et al., 2008] NP-Hard problem O
(
K2

γ log3 T
)

OFUL [Abbasi-Yadkori et al., 2011] NP-Hard problem Õ
(

1
γ

(
K2 + log2 T

))
Conf-Ball1 [Dani et al., 2008] O (Kω) + 2K LP-s O

(
K3

γ log3 T
)

Cons-ε-Greedy (Algorithm 4.1) O (1) + 1 LP O
(
K
γ2 log T

)
Cons-L1-OFUL (Algorithm 4.2) O (Kω) + 2K LP-s Õ

(
K
γ

(
K2 + log2 T

))
Table 4.1 – The complexity and problem-dependent regret bounds for various algorithms
when the decision set is a polytope.

An algorithm is said to be constrained if it only selects pt ∈ C. The constrained regret for
such an algorithm can be defined as

CRegretT := Ert∼D,ã∼v?
[
T∑
t=1

rtã −
T∑
t=1

rtat

]
,

where v? ∈ C represents a point in the constraint set C with the highest expected reward:
v? := arg maxp∈C Er∼D,ã∼p [rã] .

4.3 Related Work

Approaches to Curtail Polarization. There is a large body of work studying the
effects of polarization, and ways in which we can combat it. A significant portion
of this literature considers interventions to inform or educate users on the effects of
personalization and is orthogonal to our work. Pariser, who coined the term “filter bubble”,
proposes that we simply remove personalization entirely [Pariser, 2011]. However, this
would come at a complete loss to the utility and efficiency that personalization can bring
to both the user and the platform. In contrast, our approach does allow for personalization
– up to a point. It ensures that the content is not polarized beyond the given constraints,
but within that personalizes in order to maintain high utility. Another approach would be
to manipulate the user ratings (e.g., by adding noise or a regularizer to the recommender
algorithm) in order to have only approximate preferences; this has been shown to help
reduce polarization [Adomavicius et al., 2014, Adomavicius and Kwon, 2012, Wasilewski
and Hurley, 2016]. We compare against such an approach in our empirical results (Cons-
Ran), and observe that our algorithm significantly outperforms this method. The key
difference is that such an approach adds noise to attain de-polarization, while our approach
de-polarizes in an informed manner that personalizes content as much as possible subject
to the polarization constraints.

Algorithms for Constrained Bandit Optimization. Constrained bandit optimiza-
tion is a broad field that has arisen in the consideration of a variety of problems unrelated

97

Chapter 4. Controlling Polarization in Personalization

to polarization. For example, knapsack-like constraints on bandit optimization is studied
in [Agrawal and Devanur, 2016]; however, this work only considers constraints that are
placed on the final probability vector pT , whereas in our setting it is important to satisfy
fairness constraints at every time step {pt}Tt=1. A different line of work [Joseph et al.,
2016] considers online individual fairness constraints which require that the probability
of selecting all arms be approximately equal until enough information is gathered to
confidently know which arm is the best. In a similar vein, another work [Ding et al.,
2013] considered budgets on the number of times that any given arm can be selected.
Both of these results can be loosely interpreted as working with the special case of our
model in which each arm belongs to its own group; their results cannot be applied to our
more general setting or be used to curtail polarization.

4.4 Technical Contributions

For each arm a ∈ [K], let its mean reward be µa and µ = [µ1, . . . , µK] be the vector
of all arms mean rewards. In this case, the unknown parameters are the expectations
of each arm µa for a ∈ [K]. We assume that the reward for the t-th time step is
sampled from a Bernoulli distribution with probability of success µa. For a probability
distribution q ∈ C and a small enough constant η > 0, we define B∞(q, η) to be the
set of all probability distributions that lie inside C, such that a probability distribution
qf ∈ B∞(q, η) has at least η probability mass on each arm. More formally, B∞(q, η) ∈ C
is an `∞-ball of radius η centered at q. Let V (C) denote the set of vertices of C and
v? := arg maxv∈V (C)

∑
a∈[K] µava.

Theorem 4.1. Let η > 0 be a small enough constant. Given the description of C,
any probability distribution qf ∈ {q : B∞(q, η) ⊂ C} that lies in the constrained region,
and the sequence of rewards, the Cons-ε-Greedy algorithm (Algorithm 4.1), run for T
iterations, has the following constrained regret bound:

E [CRegretT] = O

(lnT
ηγ2

)
, (4.2)

where εt = min{1, 4/(ηd2t)} and d = min {γ, 1/2}. The algorithm works for any lower bound
L on γ, with a L instead of γ in the regret bound (4.2). Here γ is the difference between
the maximum and the second maximum expected rewards over the vertices of the polytope
C. More formally, γ := ∑

a∈[K] µav
?
a −maxv∈V (C)\v?

∑
a∈[K] µava.

Before we present the formal details, we first highlight some key aspects of the algorithm,
theorem and proofs.

For general convex sets, γ can be 0 and the regret bound can at best only be O
(√

T
)

[Dani et al., 2008]. As our constraints result in a constraint set C which is a polytope,

98

4.4. Technical Contributions

unless there are degeneracies, γ is non-zero. In general, γ may be hard to estimate
theoretically. However, for the settings in which we conduct our experiments, we observe
that the value of γ is reasonably large.

When the probability space is unconstrained, we can use any algorithm developed for the
stochastic multi-armed bandit setting (see Section 1.2.3). In this case, it suffices to solve
arg maxa∈[K] µ̄a, where µ̄a is an estimate for the mean reward of the a-th arm. When
the probability distribution is constrained to lie in a polytope C, instead of a maximum
over the arm mean estimates, we need to solve arg maxp∈C µ̄>p. This necessitates the
use of a linear program for any algorithm operating in this fashion. At every iteration,
Cons-ε-Greedy solves one LP. We can speed up the LP computation considerably in
practice by using the interior points method and warm starting the LP solver from the
optimal p found in the previous iteration (see Section 4.5.1).

4.4.1 Overview of Algorithm 4.1: Constrained-ε-Greedy

The algorithm, with probability 1− εt chooses the distribution

pt = arg max
p∈C

µ̄>p,

and with probability εt it samples from a feasible constrained distribution qf ∈ C in
B∞(q, η), i.e., there is at least η probability mass on each arm. The reward at each time
step t is generated as rt ∼ Bernoulli (µa), where a ∼ (1 − εt)pt + εtqf is the arm the
algorithm chooses at the tth time step. The algorithm observes this reward and updates
its estimate to µ̄t+1 for the next time-step appropriately. Cons-ε-Greedy is a variant of
the classic ε-Greedy approach [Auer et al., 2002a] (see also Section 1.2.3). Recall that in
our setting, an arm is an article (corner of the K-dimensional simplex) and not a vertex
of the polytope C. The polytope C sits inside this simplex and may have exponentially
many vertices. This is not that case in the setting of [Dani et al., 2008, Abbasi-Yadkori
et al., 2011] – there may not be any ambient simplex in which their polytope sits, and
even if there is, they do not use this additional information about which vertex of the
simplex was chosen at each time t. Thus, while they are forced to maintain confidence
intervals of rewards for all the points in C, this specialty in our model allows us to get
away by maintaining confidence intervals only for the K arms (vertices of the simplex)
and then use these intervals to obtain a confidence interval for any point in C. Similar
to ε-Greedy, if we choose each arm enough number of times, we can build a good
confidence interval around the mean of the reward for each arm. The difference is that
instead of converging to the optimal arm, our constraints maintain the point inside C
and the point converges to a vertex of C. To ensure that we choose each arm with high
probability, we fix a constrained point qf ∈ B∞(q, η) of C and sample from the point

99

Chapter 4. Controlling Polarization in Personalization

Dataset #Arms (K) #Instances #Iterations (T) #Groups (g)

PoliticalNews 1356 (avg.) 30 (# days) 10, 000 2
MovieLens 25 943 (# users) 1000 19

YOW 81 21 (# users) 10, 000 7

Table 4.2 – Overview of datasets used in the empirical results in Section 4.5.1.

(1 − εt)pt + εtqf . Then, as in ε-Greedy, we proceed by bounding the regret showing
that if the confidence-interval is tight enough, the optimal of LP with true mean µ and
LP with the empirical mean µ̄ does not change.

Proof of Theorem 4.1. Let v? = [v?1, · · · , v?K] ∈ C be the optimal probability distribution.
Conditioned on the history at time t, the expected regret of Cons-ε-Greedy at iteration t
can be bounded as follows

R(t) = µ>v? −
(

(1− εt)µ>v̄t + εt

K∑
a=1

qa,fµa

)
≤ (1− εt)µ>

(
v? − v̄t

)
+ εtµ

>v?

≤ (1− εt)µ>v?1
{
v̄t 6= v?

}
+ εtµ

>v?,

where v̄t = arg maxp∈C µ̄>p.

Let n = 4/(ηd2). For t ≤ n, since εt = min{1, 4/(ηL2t)} we have εt = 1. The expected regret
of the Cons-ε-Greedy is

E [CRegretT] ≤ µ>v?
T∑

t=n+1
P
(
v̄t 6= v?

)
+ µ>v?

T∑
t=1

εt. (4.3)

Let ∆µ = µ̄−µ. Without loss of generality, let µ>vi > µ>vj for any vi,vj ∈ V (C) with
i < j. Hence, v1 = v?. Let ∆i = µ> (v1 − vi). As a result ∆1 = 0 and ∆2 = γ. The event
v̄t 6= v? happens when µ̄>t vi > µ̄>t v1 for some i > 1, that is,

(µ+ ∆µt)> (vi − v1) = −∆i + ∆µ>t (vi − v1) ≥ 0.

100

4.4. Technical Contributions

As a result, we have

P
(
v̄t 6= v?

)
= P

 ⋃
vi∈V (C)\v1

∆µ>t (vi − v1) ≥ ∆i


≤ P

 ⋃
vi∈V (C)\v1

‖∆µt‖∞‖vi − v1‖1 ≥ ∆i

 (4.4)

≤ P

 ⋃
vi∈V (C)\v1

‖∆µt‖∞ ≥
∆i

2


= P

(
‖∆µt‖∞ ≥

γ

2

)
= P

 ⋃
j∈[K]

|∆µt,j | ≥
γ

2


≤
∑
j∈[K]

P
(
|∆µt,j | ≥

γ

2

)
. (4.5)

In (4.4) we use Holder’s inequality. Let Et = η
∑t
τ=1 εt/2 and let Nt,j be the number of

times that we have chosen arm j up to time t. Next, we bound P
{
|∆µt,j | ≥ γ

2
}
.

P
(
|∆µt,j | ≥

γ

2

)
= P

(
|∆µt,j | ≥

γ

2 |Nt,j ≥ Et
)
P (Nt,j ≥ Et)

+ P
(
|∆µt,j | ≥

γ

2 |Nt,j < Et

)
P (Nt,j < Et)

≤ P
(
|∆µt,j | ≥

γ

2 |Nt,j ≥ Et
)

+ P (Nt,j < Et) . (4.6)

As qf ∈ {q : B∞(q, η) ⊂ C}, we have qa,f > η, i.e., the probability of selecting an arm
a is at least εtqa,f . Next, we bound each term of (4.6). First, using Chernoff-Hoeffding
bound we have

P
(
|∆µt,j | ≥

γ

2 |Nt,j ≥ Et
)
≤ 2 exp

(
−Etγ

2

2

)
. (4.7)

Using the Bernstein inequality [Sridharan, 2002], we have

P (Nt,j < Et) ≤ exp
(
−Et5

)
. (4.8)

101

Chapter 4. Controlling Polarization in Personalization

For t ≤ n, εt = 1 and Et = ηt/2. For t > n we have

Et = η · n
2 +

t∑
i=n+1

2
d2i
≥ 2
d2 + 2

d2 ln
(
t

n

)

= 2
d2 ln

(
et

n

)
. (4.9)

By plugging (4.7), (4.8) and (4.9) in (4.6) and noting that γ < 1/2 we get

P
(
|∆µt,j | ≥

γ

2
)
≤
(
n

et

) γ2

d2
+
(
n

et

) 4
10d2
≤
(
n

et

)
+
(
n

et

) 4
10d2
≤ 2

(
n

et

)
. (4.10)

Plugging (4.10) in (4.3) yields

E [CRegretT] ≤ µ>v?
(

(1 + 2n
e

) lnT + n

)
. (4.11)

By substituting n = 4/(ηd2) in the regret above and noting that γ ≤ 2d we conclude the
proof

E [CRegretT] ≤ µ>v?
((

1 + 4
ηd2

)
lnT + 4

ηd2

)
= O

(lnT
ηγ2

)
.

4.4.2 Alternate Approaches and Special Cases

In this section, we briefly outline an alternate approach for solving this problem that
results in a different regret / runtime guarantee (see Table 4.1). We further show that,
for certain special cases of the group structure, e.g., if the groups perfectly partition the
arms, one can design even faster solutions to the LP.

Algorithm 4.2: Cons-L1-OFUL

Any algorithm for solving the linear bandit problem with an infinite, continuous set
of arms can be adapted to solve the constrained multi-armed bandit problem. The
constrained multi-armed bandit problem can be thought of as a special case of this type
of linear bandit problem, where the continuous space of arms is simply the probability
simplex over our discrete arms. Thus, each arm increases the dimensionality of the linear
bandit problem by one, and the continuous arm selected at time t corresponds to the
probability distribution we select at time t. The difference between these settings is that
while one gets rewards for points in the simplex in the case of linear bandit problems, we
get rewards for the arms themselves (i.e. the vertices of the simplex) in the constrained

102

4.4. Technical Contributions

multi-armed bandit problems. 3 Using these algorithms as a black-box can be inefficient,
and does not allow us to come up with practical algorithms for real-world applications.

However, in some cases, we can adapt algorithms for linear bandits to our constrained
setting in a way that makes the computations efficient. Consider the OFUL algorithm that
appeared in [Abbasi-Yadkori et al., 2011]; we will adapt this algorithm to our constrained
setting, and we call the adapted algorithm Cons-L1-OFUL. Cons-L1-OFUL is an
example of algorithms for linear bandits being used to solve the constrained multi-armed
bandit problem. The key difference between Cons-L1-OFUL and OFUL is that instead
of using a scaled L2-ball in each iteration, we use a a scaled L1-ball, which makes
Cons-L1-OFUL efficient; without this adaptation the equivalent step in our setting
required solving an NP-hard and nonconvex optimization problem.4 Cons-L1-OFUL
incurs Õ

(
K
γ

(
K2 + log2 T

))
regret (see Theorem 4.3). This gives a worse dependence on

K but a better dependence on γ as compared with to Cons-ε-Greedy (see Table 4.1),
and hence could be beneficial in some settings. However, the runtime is considerably
slower than Cons-ε-Greedy. Instead of maintaining a least-squares estimate of the
optimal reward vector, Cons-ε-Greedy maintains an empirical mean estimate of it
denoted by µ̄t, which is computationally cheaper per iteration. It also solves only one
linear program instead of 2K linear programs at every iteration. Both of these factors
together cause a significant decrease in running time compared to Cons-L1-OFUL.
Thus, while Cons-L1-OFUL theoretically achieves lower regret than Cons-ε-Greedy
in terms of γ, it is not as computationally efficient, and performs worse in practice.

More Efficient LP Solvers for Special Group Structures

For the special case where group weights are binary, i.e.,

wa(Gi) ∈ {0, 1} ∀a ∈ [K], i ∈ [g],

and the constraint set have some special structure, we can solve the LP efficiently:

Single Partition. If the groups in the constraint set form a partition, one can solve the
linear program in O(K) time via a simple greedy algorithm. Since each part is separate,
we can simply put the minimum probability mass as required by the constraints on
the best arm of each group, and then put the maximum possible probability mass on
arms in descending order of arm utility. This gives a probability vector that satisfies the
constraints and is optimal with respect to the reward.

Laminar Constraints. Let the groups G1, . . . , Gg ⊆ [K] be such that: Gi ∩ Gj 6= ∅
implies Gi ⊆ Gj or Gj ⊆ Gi. The groups form a tree-like data structure, where the

3This is also what allows us to get fast and efficient algorithms like Cons-ε-Greedy for the constrained
multi-armed bandit setting.

4This is similar in spirit to how Conf-Ball2 can be adapted to Conf-Ball1 in [Dani et al., 2008].

103

Chapter 4. Controlling Polarization in Personalization

children are the largest groups that are subset of the parents. In this case, the LP can
be solved efficiently by a greedy algorithm, and we can solve the LP step in O(gk) time
exactly. For the sake of brevity and clarity, we defer the full explanation to the appendix.

4.5 Empirical Evaluation

In this section we compare the performance of Cons-ε-Greedy to the unconstrained
algorithm, the hypothetical optimal constrained algorithm (which we could implement
if we knew the rewards of the arms a-priori), a smoothed version of the unconstrained
algorithm that satisfies the constraints, and a naive baseline that satisfies the constraints
but does not aim to optimize the reward.5 We briefly outline the experiments and results
here, with details in the following subsections.

We conduct counterfactual experiments on three datasets (see Table 4.2). We consider a
curated PoliticalNews where the constraints aim to reduce the political polarization of
the presented search results. As mentioned above, we can similarly apply these techniques
to the diversification of content in areas beyond political polarization. Towards this, we
simulate our algorithm on another dataset of news articles Zhang [2005] and strive to
diversify across topics (e.g., business, entertainment, and world news), and the MovieLens
dataset Harper and Konstan [2015] where we strive to diversify recommendations across
genres. In all cases, we find that Cons-ε-Greedy consistently outperforms the smoothed
version of the unconstrained algorithm as well as the naive baseline, accumulating much
higher reward, while closely approximating the hypothetical optimal. This benefit of
Cons-ε-Greedy is most evident when the constraints are the tightest; e.g., Cons-ε-
Greedy accumulates twice as much reward as the smoothed version of the unconstrained
algorithm on the YOW dataset (see Figure 4.2).

We then compare the polarization and diversification for the constrained and uncon-
strained algorithms. We aim to reduce polarization by recommending news articles with
both, liberal and conservative biases. Similarly, we aim to increase diversity by recom-
mending articles and movies not just from the best group in terms of rewards, but from
other groups as well. We observe that algorithms in the unconstrained setting quickly
converge to the best group in terms of rewards, whereas algorithms in the constrained
setting always display a certain minimum percentage of content not from the best group,
hence improving diversification and avoiding polarization.

5In our simulations, the regret for Cons-L1-OFUL was similar or slightly worse than Cons-ε-Greedy.
As Cons-ε-Greedy is also much more efficient we use it as the main comparator, and leave open the
question as to if or when Cons-L1-OFUL performs better as suggested by the theoretical results.

104

4.5. Empirical Evaluation

4.5.1 Experimental Setup

Algorithm and Benchmarks.

In each counterfactual simulation we report the normalized cumulative reward for each
of the following algorithms and benchmarks:
Unconstrained-Optimal is the hypothetical optimal algorithm when there is no con-
straint and the expected rewards of all arms a ∈ [K] are known. It simply chooses the
best arm a? at each step t.
Unconstrained-ε-Greedy is the unconstrained ε-Greedy algorithm, where C is the
set of all probability distributions over [K].
Cons-Optimal is the hypothetical optimal probability distribution, subject to the po-
larization constraints, that we could have used if we had known the reward vector µ? for
the arms a-priori.
Constrained-ε-Greedy is our implementation of Algorithm 4.1 with the given polar-
ization constraints as input.6
Cons-Ran is a smoothed version of Unconstrained-ε-Greedy that satisfies the
constraints. At each time step, given the probability distribution pt specified by the
unconstrained ε-Greedy algorithm, Cons-Ran takes the largest θ ∈ [0, 1] such that
selecting an arm with probability θ ·pt does not violate the constraints. With the remain-
ing probability (1− θ) it follows the same procedure as in Cons-Naive to select an arm
at random subject to the constraints.
Cons-Naive. As a baseline, we consider a simple algorithm that satisfies the constraints
as follows: for each group i and arm a, with probability `i

wa(Gi) it selects an arm at random
from Gi, then, with any remaining probability, it selects an arm uniformly at random
from the entire collection [K] while respecting the upper bound constraints ui.

Note that if we know the true rewards of the arms, this optimal distribution is easy
to compute via a simple greedy algorithm; it simply places the most probability mass
that satisfies the constraints on the best arm, the most probability mass remaining on
the second-best arm subject to the constraints, and so on and so forth until the entire
probability mass is exhausted. This strategy can be found by solving one LP.

Implementation Details.

Instead of solving an LP from scratch at each iteration (in step 4 of Algorithm 4.1), we
warm start the LP by using the solution of the LP from the previous iteration as the
starting point for our solver. We modified an implementation of an LP solver Yan which
uses the interior points method. “Warm-starting” the LP solver in this way speeds up
the LP computation considerably in practice and allows efficient implementation of the
algorithm even when there are many groups that do not form a partition and hence many

6We set εt = min(1, 10/t). Tuning εt could give even better results.

105

Chapter 4. Controlling Polarization in Personalization

��� ��� ��� ��� ��� ���
u

������������������
R
ew

ar
d

(a) PoliticalNews dataset.

��� ��� ��� ��� ���
u

������������������

R
ew

ar
d

(b) MovieLens dataset.

��� ��� ��� ��� ��� ���
u

������������������������

R
ew

ar
d

(c) YOW dataset.

Figure 4.2 – Effect of Polarization Constraints (u) on Reward. The normalized
cumulative reward attained as a function of the strength of the upper-bound constraints
is reported for the three datasets in figures (a), (b) and (c). In all cases, our algorithm
Cons-ε-Greedy does not allow polarization, and performs near-optimally with respect
to the reward. The lower the value of u, the stronger are the constraints.

nontrivial constraints. For certain special cases, provably fast algorithms for solving the
LP also exist (see Section 4.4.2), however we did not employ these techniques in the
simulations.

Note that Cons-ε-Greedy, Cons-Ran and Unconstrained-ε-Greedy implementa-
tions all use Algorithm 4.1 as a subroutine; however Cons-ε-Greedy and Cons-Ran
take the constraints as input, with Cons-Ran satisfying the polarization constraints
via smoothing the probability distribution, and Unconstrained-ε-Greedy need not
satisfy the constraints at all.

Description of Datasets and Group Weights.

PoliticalNews. We curate this dataset by using a large scale web-crawler Web to collect
online news articles over a span of 30 days (23rd July – 21st August, 2018), along with
the number of Facebook likes that each article received as of 22nd August, 2018. We
look at the political leaning of each article’s publisher as determined by AllSides All,
which provides labels left, left-leaning, neutral, right-leaning or right for a wide set of
publishers. We discard any articles that remain unlabelled or have fewer than 10 likes.
This results in a dataset consisting of an average of 1356 articles each day, of which 15%
are right, 7% are right-leaning, 31% are neutral, 34% are left-leaning and 13% are left.
On average, the most-liked right article has 42, 293 likes, the most-liked right-leaning
article has 144, 624 likes, the most-liked neutral article has 48, 647 likes, the most-liked
left-leaning article has 117, 267 likes and the most-liked left article has 107, 497 likes. For
each day, we encode each article as an arm with Bernoulli reward with mean proportional
to the number of likes on Facebook (normalized to lie in the range [0, 1]).

106

4.5. Empirical Evaluation

��� ��� ��� ��� ���
iterations ੎������������������

W
ei
gh

te
d
Pr
ob

ab
ili
ty

M
as
s

(a) PoliticalNews.

��� ��� ��� ��� ���
iterations ੎���������������������

W
ei
gh

te
d
Pr
ob

ab
ili
ty

M
as
s

(b) MovieLens.

��� ��� ��� ��� ���
iterations ੎������������������

W
ei
gh

te
d
Pr
ob

ab
ili
ty

M
as
s

(c) YOW.

Figure 4.3 – Visualizing Polarization and Diversification. The weighted proba-
bility mass on the best group is reported against the number of iterations. While the
unconstrained algorithm converges quickly to placing all of its probability mass on the
optimal group, the constrained algorithm – by definition – maintains some weight on
the non-optimal groups. This is what ensures diversification across content and avoids
polarization.

We place a group weight of 0, 0.25, 0.5, 0.75 and 1 on right, right-leaning, neutral,
left-leaning and left articles respectively for the liberal group (w(L)). Similarly, we place
a group weight of 1, 0.75, 0.5, 0.25 and 0 on right, right-leaning, neutral, left-leaning and
left articles respectively for the conservative group (w(C)).

MovieLens. We consider the MovieLens dataset Harper and Konstan [2015], which
consists of 100, 000 ratings from 943 users across 1, 682 movies; each user rated at least
20 movies on a scale of 1− 5. Each movie is also affiliated with one or more of 19 genres
(e.g., sci-fi, romance, thriller). As some genres have significant overlap (e.g., thriller and
horror), while others have different meanings at their intersections (e.g., romance vs
rom-com vs comedy), we first cluster the movies into different meta-categories based on
their genres using a black-box k-means clustering algorithm with K = 25 Pedregosa et al.
[2011].7 We use the cluster centres as representative arms, and associate all movies in
that cluster to that arm. For a given user, the reward associated with an arm is given by
a Gaussian where the mean is the average rating the user gave to movies associated with
the arm, and standard deviation σ = 0.1.

For a genre i (i ∈ [19]) and movie category a, the group weight wa(Gi) is set to be the
ith coordinate of the cluster centre of movie category a found by the k-means clustering.

YOW. We consider the YOW dataset Zhang [2005] which contains data from a collection
of 24 paid users who read 5921 unique articles over a 4 week time period. The dataset
contains the time at which each user read an article, a [0-5] rating for each article read
by each user, and (optional) user-generated categories of articles viewed. We use this
data to construct reward distributions for each user on a set of arms that one can expect
to see from the real world.

7We determine K = 25 using the graph of silhouette values Rousseeuw [1987] vs. K.

107

Chapter 4. Controlling Polarization in Personalization

We create a simple ontology to categorize the 10010 user-generated labels into a total
of g = 7 groups of content: Science, Entertainment, Business, World, Politics, Sports,
and USA. On average there are K = 81 unique articles in a day. We take this to be the
number of arms in this experiment. Similar to the MovieLens experiments, we cluster
the articles into 81 arms based on the news categories they belong to, using k-means
clustering (K = 81). We use the cluster centres as representative arms, and associate all
articles in that cluster to that arm. For a given user, the reward associated with that
arm is given by a Gaussian where the mean is the average rating the user gave to articles
associated with the arm, and standard deviation σ = 0.1.

For a news category i (i ∈ [7]) and article a, the group weight wa(Gi) is set to be the ith
coordinate of the cluster centre found by k-means clustering.

4.5.2 Empirical Results on Effect of Reducing Polarization on the Re-
ward

We vary the tightness of upper bound constraints on the probability mass of displaying
arms of a given group, and report the normalized cumulative reward.

PoliticalNews.

For this dataset, there are only two groups: either left or right. However, a news article
may have weight on both groups, and it is these weights that determine how right- or
left-leaning an article is, and hence how much they contribute towards polarization in
a given direction. We simulated each of the 30 days separately, resulting in n = 30
datapoints. We report the normalized cumulative reward after T = 10, 000 iterations,
averaged over experiments from all 30 days. As there are only two groups, setting a lower
bound constraint `1 = ζ is equivalent to setting an upper bound constraint u2 = 1− ζ.
Hence, it suffices to see the effect as we vary the upper bounds. We vary u1 = u2 = u

from 0.5 to 1; i.e., from a fully constrained one in which each group has exactly 50%
weighted probability of being selected to a completely unconstrained setting. We observe
in Figure 4.2a that, even for very large values of u (i.e., when the constraints are loose),
the Cons-ε-Greedy algorithm significantly outperforms Cons-Ran with respect to
regret, and is only worse than the unconstrained (and hence polarized) algorithm by an
additive factor of approximately 1−u

5 (i.e., less than 10%).

MovieLens.

For this dataset, a group corresponds to a genre. Note that a movie can belong to multiple
genres with varying weights which may not add up to one. We report the normalized
cumulative reward averaged across all 943 users after T = 1000 iterations. Error bars

108

4.6. Summary

depict the standard error of the mean. We observe in Figure 4.2b that Cons-ε-Greedy
significantly outperforms the Cons-Naive and Cons-Ran algorithms across constraints.
Additionally, as there are fewer arms in the MovieLens dataset as compared to the
PoliticalNews dataset, the learning cost is lower and hence the Cons-ε-Greedy performs
essentially as well as the (unattainable) Cons-Optimal algorithm.

YOW

For this dataset, a group corresponds to an article category. Note that an article can
belong to multiple categories (e.g., science and business) simultaneously, with varying
weights across each category. We report the normalized cumulative reward averaged across
all 21 users after T = 10, 000 iterations. Error bars depict the standard error of the mean.
As before, we observe in Figure 4.2c that Cons-ε-Greedy significantly outperforms the
Cons-Naive and Cons-Ran algorithms across constraints, and performs almost as well
as the (unattainable) Cons-Optimal algorithm.

4.5.3 Empirical Results on Polarization Over Time

In order to see how polarization can be avoided and diversification can be enforced using
our framework, for each dataset we plot the normalized cumulative weighted probability
mass on the best group for each datapoint against the number of iterations, with the
u = 0.75. Initially, the unconstrained and constrained algorithms have the same weighted
probability mass for the best group, because the algorithms are simply exploring the arms.
However, the difference between the algorithms becomes very apparent once the algorithm
begin to learn. Due to a larger number of arms in the PoliticalNews dataset, this process
takes longer as compared to the other two datasets. Unconstrained-ε-Greedy quickly
polarizes almost-entirely to display content only from the best group. This depicts the
necessity for such constraints. However, Cons-ε-Greedy maintains at least 1 − u of
its weighted probability mass on content not belonging to the best group, increasing
diversification and avoiding polarization.

4.6 Summary

In this chapter, we initiate a formal study of combating polarization in personalization
algorithms that learn user behavior. We present a general framework that allows one
to prevent polarization by ensuring that a balanced set of items are displayed to each
user. We show how one can modify a simple bandit algorithm in order to perform well
with respect to regret subject to satisfying the polarization constraints, improving the
regret bound over the state-of-the-art. Empirically, we observe that the Cons-ε-Greedy
algorithm performs well; it not only converges quickly to the theoretical optimum, but
this optimum, even for the tightest constraints on the arm values selected (u = 0.2

109

Chapter 4. Controlling Polarization in Personalization

for MovieLens, u = 0.5 for PoliticalNews), is within a factor of 2 of the unconstrained
rewards. Furthermore, Cons-ε-Greedy is fast and we expect it to scale well in web-level
applications.

With regard to future work, a limitation of our algorithms is the fact that they assume
we are given the group labels and weights for each piece of content. These labels would
either need to be inferred from the data, which could bring with it additional bias
associated with this learning algorithm, or would need to be self-reported, which can
lead to adversarial manipulation. Additionally, it would be important to extend this
work to a dynamic setting in which the type of content changes over time, e.g., using
restless bandit techniques. From an experimental standpoint, testing this algorithm in
the field, in particular to measure user satisfaction given diversified news feeds, would be
of significant interest. Such an experiment would give deeper insight into the benefits and
tradeoffs between personalization and the diversification of content, which could then be
leveraged to determine which kind of constraints can prevent polarization not just of the
items in the feed, but of the beliefs and opinions of those viewing them.

110

Appendix

4.A Constrained-L1-OFUL.

As explained in Remark 4.4.2, at any given time t, Cons-L1-OFUL maintains a reg-
ularized least-squares estimate for the mean reward vector µ, which is denoted by µ̂t.
At each time step t, the algorithm first constructs a suitable confidence set B1

t around
µ̂t. Roughly, the definition of this set ensures that the confidence ball is “flatter” in
the directions already explored by the algorithm so it has more likelihood of picking
a probability vector from unexplored directions. The algorithm chooses a probability
distribution pt by solving a linear program on each of the 2k vertices of this confidence
set, and plays an arm at ∼ pt. Recall that for each arm a ∈ [K], the mean reward is
µa ∈ [0, 1]. The reward for each time step is generated as rt ∼ Bernoulli(µat), where
at ∼ pt is the arm the algorithm chooses at the tth time instant. The algorithm observes
this reward and updates its estimate to µ̂t+1 for the next time-step appropriately.

Cons-L1-OFUL (Algorithm 4.2) is an adaptation of the OFUL algorithm that appeared
in [Abbasi-Yadkori et al., 2011]. The key difference is that instead of using a scaled L2-ball
in each iteration, we use a a scaled L1-ball (Step 4 in Algorithm 4.2). As we explain below,
this makes Step 5 of our algorithm efficient as opposed to that of Abbasi-Yadkori et al.
[2011] where the equivalent step required solving a NP-hard and nonconvex optimization
problem. This idea is similar to how Conf-Ball2 was adapted to Conf-Ball1 in [Dani
et al., 2008]. In particular, our algorithm improves, by a multiplicative factor of O (log T),
the regret bound of

(
O
(
K3

γ log3 T
))

of Conf-Ball1 in [Dani et al., 2008], see Table
4.1.

Next, we prove the regret guarantee of Cons-L1-OFUL.

Theorem 4.2. Given the description of C and the sequence of rewards drawn from a
O(1)-subgaussian distribution with the expectation vector µ. Assume that ‖µ‖2 ≤ σ for

111

Chapter 4. Controlling Polarization in Personalization

some σ ≥ 1. Then, with probability at least 1− δ, the regret of Cons-L1-OFUL after
time T is:

CRegretT ≤
8kσ2

γ

(
log T + (K − 1) log 64σ2

γ2 +

2(K − 1) log
(
K log

(
1 + T/K

)
+ 2 log (1/δ)

)
+ 2 log (1/δ)

)2
.

Notations for the proof. For a positive definite matrix A ∈ RK×K , the weighted
1-norm and 2-norm of a vector x ∈ RK is defined by

‖x‖1,A :=
K∑
i=1
|A1/2x|i and ‖x‖2,A :=

√
x>Ax.

With some absuse of notations, let p? := arg maxp∈C µ>p. Let the instantaneous regret
Rt at time t of Cons-L1-OFUL be defined as the difference between the expected values
of the reward received for p? and the chosen probability pt:

Rt = µ>(p? − pt).

The cumulative regret until time T , CRegretT , is defined as ∑T
t=1Rt. Recall that rt is

the reward that the algorithm receives at the t-th time instance. Note that the expected
value of reward rt is µ>pt. Let

ηt := rt − µ>pt.

The fact that rt is O(1)-subgaussian implies that ηt is also O(1)-subgaussian. Finally,
recall that we denote our estimate of µ at the t-th iteration by µ̂t.

We assume that we have an upper bound σ for the value of ‖µ‖2, i.e. ‖µ‖2 ≤ σ for some
σ ≥ 1.
Theorem 4.3 requires ηt to R-sub-Gaussian for a fixed R ≥ 0. Formally, this means:

∀λ ∈ R, E
[
eληt | p1, · · · ,pt, η1, · · · , ηt−1

]
≤ exp

(
λ2R2

2

)
.

We can prove that ηt is 1-sub-Gaussian if rt is sampled from a Bernoulli distribution
with probability of success µat (for at ∼ pt) by showing that ηt is a zero-mean noise that
lies in [−1, 1]. Since every bounded zero-mean noise lying in an interval of length at most
2R is R-sub-Gaussian, this would prove that ηt is 1-sub-Gaussian. Note that:

E[ηt|p1, · · · ,pt, η1, · · · , ηt−1]
= Eat∼ptE[ηt | at,p1, · · · ,pt, η1, · · · , ηt−1]
= 0,

112

4.A. Constrained-L1-OFUL.

Algorithm 4.2 Cons-L1-OFUL
Require: Constraint set C, maximum failure probabilty δ, an L2-norm bound on µ:
‖µ‖2 ≤ σ and a positive integer T

1: Initialize V1 := I, µ̂1 := 0, and b1 := 0
2: for t = 1, . . . , T do

3: Compute βt(δ) :=
(√

2 log
(

det(Vt)
δ

)
+ σ

)2

4: Denote B1
t :=

{
µ : ‖µ− µ̂t‖1,Vt ≤

√
Kβt(δ)

}
5: Compute pt := arg maxp∈C maxµ∈B1

t
µ>p

6: Sample a from the probability distribution pt
7: Observe reward rt = rta
8: Update Vt+1 := Vt + ptpt>
9: Update bt+1 := bt + rtp

t

10: Update µ̂t+1 := V −1
t+1bt+1

11: end for

where the first equality follows from the law of iterated expectations and the second
equality follows from simple arithmetic.

Further, if rt = 1, ηt = 1 − µ>pt. Since 0 ≤ µa ≤ 1 for all a ∈ [K], the value of ηt is
upper bounded by 1. Similarly, if rt = 0, ηt = −µ>pt. Since 0 ≤ µa ≤ 1 for all a ∈ [K],
the value of ηt is lower bounded by -1. Thus, ηt satisfies the R-sub-Gaussian condition
required by Theorem 4.3 (Theorem 2 in [Abbasi-Yadkori et al., 2011]), with the value of
R = 1. The same arguments hold for any zero-mean bounded noise.

Technical lemmas. Towards the proof of Theorem 4.2, we need some results from
Dani et al. [2008] and Abbasi-Yadkori et al. [2011] that we restate in our setting. The
first is a theorem from Abbasi-Yadkori et al. [2011] which helps us to prove that µ lies in
the confidence set B1

t at each time-step with high probability.

Theorem 4.3 (Theorem 2 in [Abbasi-Yadkori et al., 2011]). Assume that the rewards
are drawn from an O(1)-subgaussian distribution with the expectation vector µ. Then,
for any 0 < δ < 1, with probability at least 1− δ, for all t ≥ 0, µ lies in the set

B2
t :=

{
µ ∈ RK : ‖µ− µ̂t‖2,Vt ≤

√
βt(δ)

}
where βt is defined in Step 5 of the Cons-L1-OFUL algorithm.

As a simple consequence of this theorem we prove that µ lies inside B1
t with high

probability.

113

Chapter 4. Controlling Polarization in Personalization

Lemma 4.4. µ lies in the confidence set B1
t with a probability at least 1− δ for all t ∈ T .

Proof.

‖µ− µ̂t‖1,Vt ≤
√
K‖µ− µ̂t‖2,Vt ≤

√
Kβt(δ),

Here, the first inequality follows from Cauchy-Schwarz and the second inequality holds
with probability at least 1− δ for all t due to Theorem 4.3.

The following four lemmas would be required in the proof of our theorem.

Lemma 4.5 (Lemma 7 in [Dani et al., 2008]). For all µ ∈ B1
t (as defined in Step 6 of

Cons-L1-OFUL) and all p ∈ C, we have:

|(µ− µ̂t)>p| ≤
√
Kβt(δ)p>V −1

t p

where Vt is defined in Step 10 of the Cons-L1-OFUL algorithm.

Lemma 4.6 (Lemma 8 in [Dani et al., 2008]). If µ ∈ B1
t , then

Rt ≤ 2 min
(√

Kβt(δ)pt>V −1
t pt, 1

)
.

Lemma 4.7 (Lemma 11 in [Abbasi-Yadkori et al., 2011]). Let
{
pt
}T
t=1 be a sequence in

RK , V = IK be the K ×K identity matrix, and define Vt := V +∑t
τ=1 p

τpτ>. Then,
we have that:

log det(Vt) ≤
T∑
t=1
‖pt‖2

V −1
t−1
≤ 2 log det(Vt).

Finally, we state another result from the proof of Theorem 5 in [Abbasi-Yadkori et al.,
2011].

Lemma 4.8. For any T , we have the following upper bound on the value of βT (δ)
γ log det(Vt):

βT (δ)
γ

log det(Vt) ≤
σ2

γ

(
log T + (K − 1) log 64σ2

γ2

+ 2(K − 1) log(K log (1 + T/K) + 2 log(1/δ)) + 2 log(1/δ)
)2

where σ, δ are as in Theorem 4.2.

114

4.B. Laminar Constraints

G2G1

G3 G4 G5

[k]

Figure 4.4 – Laminar Group structure.

4.B Laminar Constraints

In this section, we consider a laminar type of constraints. Let the Groups G1, . . . , Gg ⊆ [K]
be such that: Gi ∩ Gj 6= ∅ implies Gi ⊆ Gj or Gj ⊆ Gi. We assume that the group
weights are binary, i.e. an item either belongs to a group or doesn’t.

In this case, the LP can be solved efficiently by a greedy algorithm. The groups form
a tree-like data structure, where the children are the largest groups that are subset of
the parents. For example in Figure 4.4, the groups G1 and G2 are subsets of the arms
[K] and G1 ∩G2 = ∅. Similarly, the groups G3 and G4 are subsets of the group G1 and
G3 ∩G4 = ∅. G5 is a subset of G2.

If the lower bound `i for a group Gi is smaller than the sum of the lower bounds for the
children groups, then we increase it to the sum of of the lower bounds for the children
groups. For example in Figure 4.4, if `1 < `3 + `4, then we increase it to `3 + `4. This is
because satisfying the lower bound of G3 and G4 automatically satisfies the probability
of G1. Similarly, if the upper bound ui for a group Gi is larger than the sum of the lower
bounds for the children groups, then we decrease it to the sum of of the upper bounds
for the children groups. For example in Figure 4.4, if u1 > u3 + u4, then we decrease it to
u3 + u4. This is again because the total probability that an arm in group Gi is selected
cannot be larger than the upper bounds of its children. This change of the upper and
lower bounds does not change the optimum of the LP problem.

In the greedy algorithm, first we satisfy the lower bounds, then we allocate the remaining
probability such that the upper bounds are not violated.

In satisfying the lower bounds, we take a bottom-up approach. We start from the leaves
and satisfy the lower bound by giving the item to the arm a with the largest reward in
the group, i.e., arg maxa∈Gi µa.
In our example, we set the probability of arg maxa∈G3 µa to `3, the probability of

115

Chapter 4. Controlling Polarization in Personalization

arg maxa∈G4 µa to `4 and the probability of arg maxa∈G5 µa to `5. Next, we proceed with
satisfying the lower bound for the parents. In our example, we add the probability of
`1 − (`3 + `4) to arg maxa∈G1 µa, and the probability of `2 − `5 to arg maxa∈G2 µa. We
continue the process until no group remains infeasible. Finally, we assign the remaining
probability to the arm with the largest reward. In our example, we add the probability
of 1− (`1 + `2) to arg maxa∈[K] µa.

The remaining probability is first allocated to arg maxa∈[K] µa until we reach the proba-
blility for one of the upper bound constraints. Then, we eliminate the arms inside that
group, and we allocate some probability to the arm with the maximum reward until
another upper bound constraint is reached. We continue this process until either our
distribution over arms is a probability distribution or we cannot allocate more probability
to any arm without violating a constraint.

Let the probability that an arm from the group Gi is selected be ∑a∈Gi va = qi and the
children of group Gi be Gi1, Gi2, . . . , Gim. We denote the optimal allocation (subject to
the constraints) at node Gi be OPT (Gi, qi, `, u). Then, we have

OPT (Gi, qi, `, u) = (4.12)
m∑
j=1

OPT (Gij , `ij , `, 1) +OPT (Gi, qi −
m∑
j=1

`ij , 0, u).

In satisfying the lower bounds (i.e., first term in (4.12)) if we do not change the probability
of selecting an arm inside a group Gi, i.e.,

∑
a∈Gi va, then it does not effect the parent

groups, hence we can locally optimize the problem beginning from the smaller groups.

We can show by contradiction that the procedure for allocating the remaining probability
(i.e., second term in (4.12)) is optimal. This is because, if the probability of arg maxa∈[K] va
can be increased without violating an upper bound or we can increase it by reducing
another arm’s probability of winning, then the current probability allocation is not
optimal.

The running time of the algorithm is linear in the number of the arms k and height of the
tree. Given that height of the tree is less than g, the total running time becomes O(gk).

4.B.1 Budget Type Constraints

Remark 4.9. The constraints on the probabilities pta can be easily translated to long
term budget type constraints

`i ≤
∑
a∈Gi

wa(Gi) ·
nTa
T
≤ ui ∀i ∈ [g], (4.13)

116

4.B. Laminar Constraints

where nTa is the number of times that content a is selected. Because a simple application
of Hoeffding’s inequality yields that

P
[∣∣∣nTa
T
− pTa

∣∣∣ ≥ ε] = O(−ε2T 2). (4.14)

Hence, if we satisfy the constraint (4.1) with a ε margin, then with high probability
1−O(ε2T 2), the budget constraint (4.13) is also satisfied. Yet, the question remains: is it
better to satisfy a probability constraint as in Inequality (4.1) in each round t or a global
budget constrain as in Inequality (4.13)? Indeed, the following simple lemma shows that,
in expectation, satisfying a probability constraint yields at least as much utility as if we
satisfy a global budget constraint.

Lemma 4.10. The maximum utility gained by solving the following problem

max
p∈C

Er∼D,ã∼p

[
T∑
t=1

rtã

]
,

S.t: `i ≤
∑
a∈Gi

wa(Gi) · pta ≤ ui ∀i ∈ [g], ∀t ∈ [T],

is at least as large as the utility gained by solving the following problem

max
p∈C

Er∼D,ã∼p

[
T∑
t=1

rtã

]
,

S.t: `i ≤
∑
a∈Gi

wa(Gi) ·
nTa
T
≤ ui ∀i ∈ [g].

The proof is simple and removed for brevity.

117

5 Learn from Thy Neighbor

In previous chapters, we have studied how machine learning algorithms can benefit
from multi-armed bandit algorithms, and how multi-armed bandit algorithms can affect
humans. In this chapter1, we study how human interactions can be studied in the MAB
framework. An individual’s decisions are often guided by those of his or her peers, i.e.,
neighbors in a social network. Presumably, being privy to the experiences of others aids
in learning and decision making, but how much advantage does an individual gain by
observing her neighbors? Such problems make appearances in sociology and economics
and, in this chapter, we present a novel model to capture such decision-making processes
and appeal to the classic multi-armed bandit framework to analyze it. Each individual,
in addition to her own actions, can observe the actions and rewards obtained by her
neighbors, and can use all of this information in order to minimize her own regret. We
provide algorithms for this setting, both for stochastic and adversarial bandits, and
show that their regret smoothly interpolates between the regret in the classical bandit
setting and that of the full-information setting as a function of the neighbors’ exploration.
In the stochastic setting the additional information must simply be incorporated into
the usual estimation of the rewards, while in the adversarial setting this is attained
by constructing a new unbiased estimator for the rewards and appropriately bounding
the amount of additional information provided by the neighbors. Further, we show
via empirical simulations that our algorithms, often significantly, outperform existing
algorithms that one could apply to this setting.

5.1 Introduction

Individuals often have access to information, via their social or economic network, that
they can use to make improved decisions. This phenomenon has been observed widely in
the social and natural sciences. For instance, a recent work [Yoo, 2012] studies farmers
who, every year, have to decide which kind of seed to plant (not just what kind of crop,

1This chapter is based on [Celis and Salehi, 2017].

119

Chapter 5. Learn from Thy Neighbor

but which variety of seed) in order to attain the most profit (i.e., revenue - cost). In
their study, Yoo [2012] finds that farmers’ decisions are based on (i) their own experience
in previous years of how different varieties performed, and (ii) the experiences of peers
attained either directly (explicitly via conversations with social contacts) or indirectly
(implicitly by observing the farming practices of peers). Moreover, the information farmers
used is primarily from peers in their physical neighborhood – not only because these are
where their contacts are most likely to be, but also because the profit is correlated due
to similar soil and weather conditions. These connections between peers then form a
network of farmers across the country, where locally, each farmer is trying to learn the
best seed for their farm using her own information and that of her neighbors. As another
example, consider WI-FI networks in which nodes want to send their data across the
best frequency band. Nodes could obtain the current quality of the band their peers are
using indirectly through capacity estimation or directly by message passing, and use this
information to determine which band to use. Similar social learning phenomena appear
in many other areas in various disguises – e.g., in the acquisition of consumer products
by individuals, the adoption of new technologies, the prevalence and spread of corruption,
and in the behavior of animals such as squirrels; see [Lazarsfeld et al., 1948, Katz and
Lazersfeld, 1955, Zhang et al., 2007, Sanditov, 2006, Accinelli and Sánchez-Carrera, 2012].

Consider the following formulation geared towards capturing the type of settings men-
tioned above (see also Figure 5.1): at each time step each individual selects one of K
possible actions, observes the value or reward of selecting that action, and observes the
actions, values and/or decision process of their neighbors in the network. This selection
and observation is repeated again and again, and each individual has the end goal of
identifying the action a? ∈ K that brings them the best value over all time steps; i.e., min-
imizing the regret. This formulation seems to suggest that the problem is suited for study
using the multi-armed bandit optimization framework (detailed in Seciton 1.2), except
that now there is additional information available to an individual via her neighbors.

Towards this, one approach could be to consider the framework of bandits with side
observations for which, in the adversarial setting, variants of the multiplicative-weight
update algorithm have been developed with success. Informally, side observations just
mean that at each time step, in addition to observing the reward of a selected action
at, one may observe (but not receive) rewards from a set of other actions S(t). A recent
body of work has explored how to minimize regret for various different models of S(t). In
the free observation model, the individual is allowed to select S(t) up to some cardinality
(e.g., Amin et al. [2015]). However, if one tried to apply such algorithms to the social
settings considered above, it would require an individual to decide which actions her
neighbors should take, and hence is not feasible as a solution in this setting. In another
line of work (e.g., Alon et al. [2015]) an action-network model has been studied: Here,
the actions form a network and the individual observes the rewards of the neighbors
of the action she selects (as opposed to the rewards of the actions that her neighbors
select). The action-network is often taken to be exogenous and can be changing over

120

5.1. Introduction

Figure 5.1 – A social network in which all individuals play against the same bandit, i.e., if two
individuals select the same arm at the same time step, they observe the same loss (up to noise).
At each time t, each individual selects an arm (shown), and then observes its loss along with
the actions/losses of her neighbors. E.g., the yellow circled individual would observe the loss of
actions 1, 4 and 6 in this time step.

time. Thus, one can apply the algorithms developed in the action-network setting to the
social setting above by defining S(t) to be the set of actions selected by the individual’s
neighbors; however, this may not always be optimal for the social setting as neighbors
can provide even more information (see Section 5.5.2).

The above approaches have been developed in independent contexts and hence geared
towards different settings. Towards obtaining optimal results in the social setting described
above, the challenge is to adequately model the information from neighbors that can aid
in learning, in leverage it appropriately, and in quantify the advantage it provides.

Our Contributions

In this work, we show how one can incorporate additional social information in order
to obtain optimal results. More specifically, in the stochastic setting, we show that
incorporating side information in a simple way gives rise to a near-optimal algorithm. Our

121

Chapter 5. Learn from Thy Neighbor

UCBN algorithm extends the classic UCB algorithm by incorporating all observed samples
indiscriminately. We show that this suffices to improve performance, often dramatically,
both asymptotically and in silico. We show that the regret of our algorithm interpolates
between O(1) and the O(K lnT) regret for the classic bandit setting depending on the
amount of exploration conducted by the neighbors (see Theorem 5.1), and these bounds
are asymptotically optimal (see Theorem 5.13). The theoretical results are presented in
Section 5.4 and Appendix 5.B, and the empirical results are presented in Section 5.6.3.
In the adversarial setting, we present a modified multiplicative-weight update algorithm
that uses a new unbiased estimator to incorporate this side information appropriately
into the estimation of the reward of each action. We show that the regret of our algorithm
provably interpolates between the O(

√
KT lnK) regret for the classical bandit setting

and the O(
√
T lnK) regret for the full-information setting (where all the K rewards are

observed at each time step) depending on the amount of exploration conducted by the
neighbors (see Theorem 5.2). The proofs requires us to overcome some additional hurdles
in order to bound the amount of information gleaned from the neighbors and attain
optimal bounds on the regret. The theoretical results are presented in Section 5.5 and
Appendix 5.A, and the empirical results are presented in Section 5.6.1.

5.2 Preliminaries

The Model. Firstly, we assume all individuals play against the same multi-armed
bandit: in the stochastic setting, the reward distribution D is the same for arm i and
for all individuals (although the realizations at any given time may differ), and in the
adversarial setting the reward vector rt selected by the adversary at time t is the same for
all individuals. Clearly, there must be some similarity in the rewards between neighbors for
social learning to occur. Our results also extend to the setting in which the distributions
or rewards are correlated, e.g., via 0-mean noise (i.e., each individual i receives the reward
as above + individual noise); for ease of presentation we omit this extension, the proofs
follow analogously. Secondly, we assume that each individual can observe the following
for all neighbors i:

(1) the actions ati,
(2) the rewards rt

ati
, and

(3) (for the adversarial setting only) the probability distribution each neighbor
used to select an arm at the previous time step.

Assumptions (1) and (2) are natural and directly inspired by applications such as those
mentioned in the introduction; individuals either directly or indirectly observe their
neighbors’ actions and rewards. (3) additionally assumes a limited knowledge of how
neighbors made their decisions on a step-by-step basis, without having to assume we
know their overall algorithm or restricting their behavior in any way. All individuals are

122

5.3. Related Work

free to select their probability distributions arbitrarily (and depend arbitrarily on each
other), and each one can draw her decision independently of the rest. While it would
be nice to drop Assumption (3) entirely, this would prevent us from attaining optimal
regret bounds.2

Importantly, an individual

(4) does not know about the actions and rewards of individuals beyond her
neighbors,

(5) does not know any global properties of the network,
(6) does not know which algorithm other individuals (including neighbors) are

using, and
(7) cannot dictate or coerce other individuals to act a certain way.

Removing any of Assumptions (4)-(7) would be unnatural for the social learning setting
described above: If (4) does not hold, we would simply consider such an individual a
neighbor, removing (5) is unnatural as the network can be very large and we cannot
expect to have knowledge of distant individuals, removing (6) seems impractical as it
would mean that individuals have a detailed knowledge of how neighbors select actions,
and allowing individuals to be coerced as in (7) would be in conflict with the idea
that every individual seeks to improve her own performance. Hence, given (1)-(7), any
improvement in the individual’s regret arises solely from passive observation of local
information.

5.3 Related Work

Distributed learning in a network is a broad topic and has been studied under various
names in several disciplines. However, to the best of our knowledge, our model for
learning from neighbors, along with its assumptions and non-assumptions (1)-(7) which
are motivated by relevant settings in sociology and economics, is novel. Here we briefly
survey the closest relatives to our work.

In the study of non-strategic learning on networks, individuals are connected via a
network, and each individual has a finite set of actions with probabilistic rewards whose
distributions depend on the state of the world (see [Goyal, 2005]). Indeed, this setting is
similar to our model in the stochastic setting. However, work in this area has focused on
studying variants of a greedy algorithm, and answering the question of whether learning
(i.e., discovery of the state of the world, and hence convergence to the best action) occurs
asymptotically (see, e.g., [Bala and Goyal, 1998, Ellison and Fudenberg, 1993, Bala and

2Alternatively, under different assumptions (e.g., if we assume the neighbors are using an algorithm
such as EXP3) we can estimate these distributions which would suffice.

123

Chapter 5. Learn from Thy Neighbor

Algorithm 5.1 UCBN
1: Input: α
2: Initialize: empirical means µ̄(1) := 0 and counts n(1) := 0
3: for t = 1, . . . , T do
4: Choose i = arg maxj∈[K] µ̄i(t) +

√
α ln t
2ni(t)

5: Observe all rewards (itself and neighbors)
6: Update empirical means µ̄ and counts n
7: end for

Goyal, 2001, Gale and Kariv, 2003, Golub and Jackson, 2010]). Instead, we are concerned
with regret, which could be loosely interpreted as the rate of convergence.

Recall that in models of bandits with side observations, in addition to observing rtat , one
may observe (but not receive) additional rewards rtS(t)). The set of arms S(t) depends on
the particular model of side observations. In the free observations model, the individual
can select B additional arms to observe at each time step; i.e., |S(t)| = B and the
individual selects S(t) for all t. Such models have been studied both for stochastic [Yu
and Mannor, 2009] and adversarial [Avner et al., 2012, Amin et al., 2015] bandits. Without
Assumption (7), we could apply such algorithms directly because an individual could
dictate which actions her neighbors should take. In the social setting we cannot hope to
control our neighbor’s decisions in this manner. Still, we show that the performance of
our algorithm is equivalent empirically to such algorithms (see Section 5.6). In the arm-
network (or action-network) setting, the individual observes the rewards of the neighbors
of the arm she selects. Such stochastic [Caron et al., 2012, Buccapatnam et al., 2014]
and adversarial [Mannor and Shamir, 2011, Alon et al., 2013, Kocák et al., 2014, Alon
et al., 2015] bandit settings have been studied. While one could apply these algorithms
to the social setting, some social information, in particular from Assumption (3), is left
on the table. Leveraging this allows us to provably outperform such approaches (see
Section 5.5.2), and empirically the difference can be dramatic (see Figure 5.3).

Other work has considered bounding the cumulative regret of all individuals, rather
than individuals minimizing their own regret. Towards this, centralized algorithms for
various versions of stochastic bandits have been studied, in particular for the complete
graph [Buccapatnam et al., 2013, Szorenyi et al., 2013, Cesa-Bianchi et al., 2013].
Although the centralized setting is not the object of our study, as a corollary, we obtain
a centralized algorithm for adversarial bandits that is optimal on the complete network
(see Section 5.5.3).

124

5.4. Technical Contributions for the Stochastic Setting

5.4 Technical Contributions for the Stochastic Setting

The algorithm for stochastic setting is based on UCB, see Section 1.2.3 for a review of
the UCB algorithm and its performance guarantees. We make a simple extension to UCB
for an agent on a network: the agent simply incorporates all samples and all rewards into
nj and µ̄j regardless of whether it came from her action or was observed from one of her
neighbors. We denote this algorithm by UCBN, and we note that it can be implemented
by an individual irrespective of the graph structure and the algorithm(s) her neighbors
may employ. The regret of UCBN algorithm is upper bounded as follows.

Theorem 5.1. Consider an agent with neighbors who play arbitrarily. Let mt
i be the

number of times arm i has been selected by one of her neighbors by time t. Then, the
regret of UCBN is

R̄TUCBN ≤
∑

i,∆i>0

(
max

{
max
t=1,..,T

{2α ln t
∆i

−mt
i∆i

}
, 0
}

+ α

α− 2

)
, (5.1)

where ∆i is the difference between the expected reward of the best arm µi? and the expected
reward of a sub-optimal arm µi, and α > 2 is a constant that depends on the variance of
the rewards for which (1.5) holds.

This result is asymptotically optimal (see Theorem 5.13). The regret differs from the regret
of the classic UCB regret (1.5) (in Section 1.2.3) by the −mT

j ∆j term, and, depending
on the behavior of the neighbors, can potentially take the agent from logarithmic to a
constant regret.

Clearly, the performance of an agent must depend on the behavior of her neighbors. In
the worst case, if there are clumsy agents who always select the same arm, then our
regret is not improved much. However, as long as the agent has at least one neighbor who
explores an arm uniformly at random with probability εt ∈ Ω(K ln t

t) at time t (e.g., this
occurs if a neighbor uses an adaptive greedy algorithm), then the regret is O(1)! Hence,
this allows us to interpret neighbor behavior to our regret seamlessly. As an instructive
example, consider the setting where all agents use UCBN in a complete graph. The
regret in this setting is O

(
K lnT
b

)
, where b is the number of nodes. In other words, the

regret of an agent using UCBN is a factor O(1/b) less than that of an agent using UCB –
indeed we cannot hope to do better, even in a completely centralized setting. The proof
parallels the proofs for the original UCB results (see, e.g., [Bubeck and Cesa-Bianchi,
20120] for a template), and can be found along with further discussion in Appendix 5.B.
While the story for the stochastic setting turns out to be simple and easy to manage, the
adversarial setting, as we see below, turns out to be more challenging.

125

Chapter 5. Learn from Thy Neighbor

5.5 Technical Contributions for the Adversarial Setting

In the adversarial setting, to ease the presentation of the algorithm and results, we use
the loss lti = 1− rti ∈ [0, 1] instead of rewards.

We call our algorithm in the adversarial setting EXPN. Recall that ptj is the probability
that an individual selects arm j at time t. Let qi,tj be the probability that her neighbor i
selects arm j at time t. We denote the number of an individual’s neighbors by b. Note
that the number of nodes in a network, denoted by N , may be much larger, but the
remaining network does not play a role in the algorithm or main results.

Theorem 5.2. Given an individual with b neighbors who are playing arbitrarily, the
regret when using EXPN (Algorithm 5.2) is

R̄TEXPN ≤ E

2

√√√√(T +
T∑
t=1

γt

)
lnK

 , (5.2)

where γt = ∑K
j=1

ptj

ptj+
∑b

`=1 q
`,t
j

.

For ease of presentation, momentarily assume that for all arms j ∈ [K], neighbors i ∈ [b],
and times t ∈ [T] we have that qi,tj ≥ εi

K for some εi ∈ (0, 1].3 We can then reinterpret the
regret of EXPN in (5.2) R̄TEXPN as a function of the bandit regret (R̄TEXP3) as follows:

R̄TEXPN =


R̄TEXP3 = O

(√
TK logK

)
if ∑b

i=1 εi = O(1),
R̄TEXP3/

√
εi = O

(√
T
√
K logK

)
if ∑b

i=1 εi = Θ(
√
K),

R̄TEXP3/
√
εi = O

(√
T logK

)
if ∑b

i=1 εi = Θ(K).

(5.3)

In particular, note that when∑b
i=1 εi = O(1), none of the individual’s neighbors maintain

a probability distribution that is bounded away from 0 for all arms. In other words, the
neighbors are not exploring effectively. In this case, the regret is R̄TEXPN ∈ O(

√
TK lnK),

the same as in the classic bandit setting. On the other hand, for example, when∑b
i=1 εi =

Θ(K), then the regret is R̄TEXPN ∈ O(
√
T lnK), the same as in the full-information setting.

Hence, this algorithm smoothly interpolates between bandit regret and full information
regret as a function of the neighbors’ exploration.

At first, the proof of Theorem 5.2 parallels standard approaches to analyze the multiplicative-
weight update method; the crucial difference is a new unbiased estimator that is used
in order to incorporate the neighbors’ information (see Section 5.5.1). This leads to the

3This assumption is not required for the proof of Theorem 5.2, and it is only used for the ease of
interpretation in (5.3). Note that if a neighbor is running any variant of the multiplicative weight update
method, this condition is satisfied. Removing this assumption requires the number of non-zero εj to be
tracked for each j, and these numbers would appear in the regret bound.

126

5.5. Technical Contributions for the Adversarial Setting

following bound on the regret:

R̄TEXPN ≤
lnK
δ

+ δT
K∑
j=1

ptj
p′j(t)

.

The technical obstacle then becomes attaining tight bounds on the ∑K
j=1

ptj
p′j(t)

term (see
Lemma 5.3).

5.5.1 The EXPN Algorithm

EXPN is a multiplicative weight-update algorithm (see Section 1.2.2 for details about the
multiplicative weight-update algorithms), key to our EXPN algorithm is the following
new unbiased estimator for the losses:

l̂tj =


ltj

p′j(t)
if some individuals select action j at time t

0 otherwise,
(5.4)

where p′j(t) is the probability that at least one individual selects action j, i.e.,

p′j(t)
def= 1− (1− ptj)(1− q

1,t
j) · · · (1− qb,tj). (5.5)

The algorithm then updates the weights according to

wj(t+ 1) = w0
je
−δ
∑t

s=1 l̂
s
j ,

where w0
j = 1, and updates the probability distributions according to ptj = wtj/W t where

W t = ∑
j wtj . Note that this algorithm can be implemented irrespective of the network

structure and depends only on the information obtained locally from neighbors as defined
in our model. In essence, the key to our algorithm is two fold:

1. Design a new unbiased estimator l̂tj that incorporates the side observations obtained
from neighbors: Unlike for stochastic bandits, naïve estimators do not suffice, and
a new approach is required.4

2. Decouple the exploration and exploitation parameters: When an individual’s neigh-
bors explore a lot, she could benefit by free-riding off of the exploration of her
neighbors; this is accomplished by decreasing her exploration parameter. However,
if we take δ fixed as in EXP3, this dampens our updates. Hence we need δ to
depend on the strategy of the neighbors.

4We must ensure that in bounding E[(l̂tj)2], we get some improvement over the usual bandit setting; it
is easy to verify that such bounds do not hold for naïve estimators such as the average of the neighbors’
estimators.

127

Chapter 5. Learn from Thy Neighbor

Algorithm 5.2 EXPN
1: Initialize: L̂1

j = 0 and p1
j = 1

K . for all j ∈ [K]
2: for t = 1 : T do
3: Compute γt = ∑K

j=1
pt−1
j

pt−1
j +

∑b

`=1 q
`,t−1
j

4: Update δt =
√

lnK∑t

τ=1(1+γτ)

5: Sample j ∼ pt
6: Compute the unbiased estimator l̂t (5.4) for the losses
7: L̂t+1

j = L̂tj + l̂tj . for all j ∈ [K]
8: wt+1

j = exp(−δtL̂t+1
j) . for all j ∈ [K]

9: W t+1 = ∑n
j=1 wt+1

j

10: pt+1
j ← wt+1

j

W t+1 , . for all j ∈ [K]
11: end for

Proof of Theorem 5.2. The first part of the proof (up to (5.12)) parallels the traditional
analysis of multiplicative weight update algorithms; for completeness we present the steps
without going into the details (see [Bubeck and Cesa-Bianchi, 20120] for an exposition).
The expected loss l̄t at iteration t is equal to ∑K

j=1 p
t
jl
t
j . We can write the expected loss

as

l̄t = Ej∼pt
[
Eat∼p′(t)[l̂tj]

]
,

where Eat∼p′(t)[l̂tj] = ltj and Ej∼pt [ltj] = l̄t. We first rewrite the expected loss l̄t as follows:

Ej∼pt
[
Eat∼p′(t)[l̂tj]

]
= 1
δt

lnE
[

exp
(
− δt

(
l̂tj −E[l̂tj]

))]
− 1
δt

lnE
[

exp
(
− δt l̂tj

)]
, (5.6)

where the expectation is over the randomness of the estimator (at ∼ p′(t)) and choice of
the arm (j ∼ pt): Ej∼pt [Eat∼p′(t)[·]]. We will now consider the right-hand side of (5.6)
and upper bound the two terms separately.

1
δt

lnE
[

exp
(
− δt

(
l̂tj − E[l̂tj]

))]
= 1
δt

lnE
[

exp(−δt l̂tj)
]

+ E[l̂tj]

≤ 1
δt
E
[

exp(−δt l̂tj)− 1 + δt l̂tj

]
≤ δt

2 E[(l̂tj)2], (5.7)

where we use the inequalities ln x ≤ x− 1 and exp(−x)− 1 + x ≤ x2/2 for x ≥ 0. Now,
we bound the second term in (5.6). By invoking Jensen’s inequality we get

− 1
δt

lnEat∼p′(t)
[
Ej∼pt [exp(−δt l̂tj)]

]
≤ − 1

δt
Eat∼p′(t)

[
lnEj∼pt [exp(−δt l̂tj)]

]
. (5.8)

128

5.5. Technical Contributions for the Adversarial Setting

Let L̂ti = ∑t
τ=1 l̂

t
i and let ψt(δ) = 1

δ ln
[

1
K

∑K
i=1 exp(−δL̂ti)

]
, (5.8) becomes

− 1
δt
Eat∼p′(t)

[
lnEj∼pt [exp(−δt l̂tj)]

]
= − 1

δt
Eat∼p′(t)

[
ln
(∑K

i=1 exp(−δtL̂ti)∑K
i=1 exp(−δtL̂t−1

i)

)]
= Eat∼p′(t)

[
ψt−1(δt)− ψt(δt)

]
. (5.9)

By summing up the terms in (5.7) and (5.9) over all t and plugging them in (5.6) we
obtain

T∑
t=1

l̄t ≤
T∑
t=1

δt

2 E[(l̂tj)2] + Eat∼p′(t)

[
T∑
t=1

ψt−1(δt)− ψt(δt)
]
. (5.10)

The function ψt(δ) is an increasing function in δ, thus ψt(δt+1) − ψt(δt) < 0, because
δt+1 < δt. Therefore,

T∑
t=1

[
ψt−1(δt)− ψt(δt)

]
= ψ0(δ1)− ψT (δT) +

T−1∑
t=1

[
ψt(δt+1)− ψt(δt)

]
≤ ψ0(δ1)− ψT (δT). (5.11)

According to the definition of ψt(δ), we have ψ0(δ1) = 0 and we can simply bound
−ψT (δT) as

−ψT (δT) ≤ lnK
δT

+ L̂Ti ,

which holds for all i ∈ [K]. Combining the inequality above with (5.10), results in

T∑
t=1

l̄t ≤
T∑
t=1

δt

2 E[(l̂tj)2] + lnK
δT

+
T∑
t=1

Eat∼p′(t)[l̂ti]. (5.12)

We note that given pt and p′(t) at time t, the following expectations hold

Eat∼p′(t)
[
l̂tj

]
= ltj , (5.13a)

Ej∼pt
[
Eat∼p′(t)

[
(l̂tj)2

]]
=

K∑
j=1

ptj
p′j(t)

(ltj)2 ≤
K∑
j=1

ptj
p′j(t)

, (5.13b)

where in the last inequality above we use 0 ≤ ltj ≤ 1. Computing the expectations in
(5.12) yields

T∑
t=1

l̄t ≤
T∑
t=1

δt

2

K∑
j=1

ptj
p′j(t)

+ lnK
δT

+
T∑
t=1

lti. (5.14)

129

Chapter 5. Learn from Thy Neighbor

Figure 5.2 – The arm-network has an edge from arm u to arm v if, having selected arm u, we
observe the reward of arm v. Arms selected by neighbors in the social networks form a clique,
and the remaining arms have self loops and edges to all selected arms.

Since (5.14) holds for all i, we can upper bound regret as

R̄EXPN ≤
lnK
δT

+
T∑
t=1

δt

2

K∑
j=1

ptj
p′j(t)

. (5.15)

Now, attaining a good bound on the regret boils down to attaining a good bound on∑K
j=1

ptj
p′j(t)

. Towards this, we need a technical lemma that, in effect, allows to bound the
amount of information received from neighbors.

Lemma 5.3.
∑K
j=1

pj
1−(1−pj)(1−q1

j)···(1−qbj)
≤
∑K
j=1

pj
pj+q1

j+q2
j+···+qbj

+ 1.

The proof is presented in Appendix 5.A. Using this lemma and combining all of the
above, we get

R̄EXPN ≤
lnK
δT

+ 1
2

T∑
t=1

δt(1 + γt). (5.16)

Recall that δt =
√

lnK∑t

τ=1(1+γτ)
, then use Lemma 3.5 of [Auer et al., 2002c] (for complete-

ness, the lemma is presented in Appendix 5.A) to conclude the proof.

5.5.2 Comparison to Alternate Approaches

Instead of developing a new algorithm, we could have attempted to leverage an existing
one. The most natural one to try is from the arm-network setting which is as follows:
there is a single individual and the bandit’s arms form an arm-network which can change
over time. An edge from arm u to arm v means that by choosing arm u we observe
the reward of arm v. Thus we could, in retrospect at each time step, recreate an arm-

130

5.5. Technical Contributions for the Adversarial Setting

network (see Figure 5.2) and apply an arm-network algorithm. We consider EXP3G
[Alon et al., 2015], which is the state-of-the-art solution for such problems, and performed
best amongst arm-network algorithms in our empirical simulations. However, we prove
that our algorithm is at least as good.

Proposition 5.4. R̄TEXPN = O(R̄TEXP3G).

Proof of Proposition 5.4. First, let us introduce some notations regarding the arm-
network setting. The players choose arms according to their algorithm, and after selecting
and revealing the rewards. Each player i individually can construct an arm-network. We
denote the arms selected by neighbors of player i by A[N(i)], thus in arm-network there
is an edge from all arms (vertices) to A[N(i)]. In addition, if we denote the cardinality of
set A[N(i)] by Ci, then the maximum independence number ν of the underlying graph
is K + 1− Ci.

We show that our algorithm’s regret is at most that of EXP3G, the state-of-the-art
algorithm for the arm-network setting. From Theorem 5.2, we know that the regret of
our algorithm is Õ

(√
T +∑T

t=1 γ
t

)
and from Alon et al. [2015] the regret of EXP3G is

Õ

(√∑T
t=1 ν

t

)
, where νt is the maximum independence number at time t.

Let us focus on one of the nodes. Let A be the arms chosen by its neighbors, let C be its
cardinality, and let 1{j ∈ A} be an indicator random variable that is 1 if and only if j
is in A. Lastly, let 1{j = at`} be an indicator random variable that is 1 if and only if a
player ` (one of the neighbors) chooses arm j at round t. First, we lower bound ν using
the indicator random variable defined above, then we show that in expectation this term
is greater than γt.

Lemma 5.5. The independence number νt is lower bounded as follows

νt ≥
K∑
j=1

ptj

ptj +∑b
`=1 1{j = at`}

. (5.17)

Proof. First, we show the following

νt ≥
K∑
j=1

ptj
ptj + 1{j ∈ A}

. (5.18)

Decomposing the sum we have

K∑
j=1

ptj
ptj + 1{j ∈ A}

=
∑
j∈A

ptj
ptj + 1 +

∑
j /∈A

ptj
ptj
, (5.19)

131

Chapter 5. Learn from Thy Neighbor

and plugging the cardinality of A we get

K∑
j=1

ptj
ptj + 1{j ∈ A}

=
∑
j∈A

ptj
ptj + 1 +K − C, (5.20)

we know νt = 1 +K − C (this comes from the fact that arms in A are connected to all
arms, see Figure 5.2), knowing that ∑j∈A

ptj
ptj+1 is less than 1 completes the first part of

lemma.

Second, we have 1{j ∈ A} ≤∑b
`=1 1{j = at`}, which yields the lemma.

In Lemma 5.5, the term 1{j = at`} can be seen as an unbiased estimator for q`,tj (we
denote it by q̂`,tj). As a final step, we show the following lemma.

Lemma 5.6. For a multinomial distribution q and its unbiased estimator q̂`,tj = 1{j =
at`}, we have√√√√ T∑

t=1
(1 + γt) ≤ Eq̂


√√√√2

T∑
t=1

νt

 . (5.21)

Because νt ≥ 1, we know ∑T
t=1 ν

t ≥ T , and we can conclude that
√
T +∑T

t=1 γ
t ≤

Eq̂
[√

2∑T
t=1 ν

t

]
.

From Lemma 5.5, we have

Eq̂


√√√√ T∑
t=1

νt

 ≥ Eq̂

√√√√ T∑
t=1

K∑
j=1

ptj

ptj +∑b
`=1 q̂

`,t
j

 . (5.22)

In the next step, we want to show

Eq̂

√√√√ T∑
t=1

K∑
j=1

ptj

ptj +∑b
`=1 q̂

`,t
j

 ≥
√√√√ T∑
t=1

γt.

Let φ(q̂) = φ(q̂1(1), q̂2(1), · · · , q̂b(1), q̂1(2), · · · , q̂b(T)) =
√∑T

t=1
∑K
j=1

ptj

ptj+
∑b

`=1 q̂
`,t
j

. This

function is convex (it is convex along every arbitrary line with positive entries, so it is
convex), we can use Jensen’s inequality to swap the order of expectation and φ to get
the following

132

5.5. Technical Contributions for the Adversarial Setting

Eq̂ [φ(q̂)] ≥ φ (Eq[q̂]) = φ(q) =

√√√√ T∑
t=1

γt. (5.23)

The first inequality is Jensen’s inequality and the last equality comes from definition of
γt. Combining Inequality (5.23) with (5.22) concludes the proof.

Moreover, as we will see in Section 5.6, the regret of EXPN is often drastically better
empirically. Because EXP3G and other similar algorithms were developed for different
settings in which it is not possible to make use of the probability distributions afforded
to us by Assumption (3).

Proposition 5.7. Let nt be the size of the set of arms selected (arbitrarily) by all of the
individual’s neighbors at time t. Then, the regret RA for any algorithm A in our setting
without Assumption (3) is R̄TA = Ω

(√
T +∑T

t=1(K − nt)
)
.

The proof follows from Theorem 5 of [Alon et al., 2014]. Our EXPN algorithm is often
able to beat this bound by leveraging Assumption (3). For example, this proposition
implies that if we have a complete network on b vertices where logK � b � K, then
R̄TEXP3G = Ω

(√
(K − b)T

)
= Ω

(√
KT

)
while in our case R̄TEXPN = O

(√
K
b T

)
(see

Corollary 5.9).

5.5.3 A Centralized Solution for the Network

Our model and algorithm are formulated for an individual because this allows us to
draw the most general conclusions – bounding the individual’s regret as a function of
the neighbors’ behavior. However, a surprising feature is that it can also be made into
a centralized solution. In the general case, this requires assuming there is an external
coordinator that can select a maximum-degree individual to lead and direct the rest on
how to act as follows: Let v? be the maximum degree node selected. The coordinator
directs v? to use the EXPN algorithm. The remaining nodes u are each assigned a
neighbor vu that lies on the shortest path between them and v?, and are directed to copy
the probability distribution that vu used in the previous time step.

Theorem 5.8. Using the above centralized algorithm, the regret of all individuals is at
most

R̄T = O

(
κ+

√(
1 + K

1 + bmax

)
T lnK

)
, (5.24)

where bmax is the degree of v? and κ is the diameter of the network.

133

Chapter 5. Learn from Thy Neighbor

The proof follows, with minor modifications, from the proof of Theorem 5.2; the main
difference regards accounting for the delay (of at most κ time steps) for the farthest node
from v? to update their probability distribution. By replacing γt with K

1+bmax , this gives
us the resulting regret bound. In the simple case of a complete network on N nodes, no
coordinator is required, and we obtain the following corollary.

Corollary 5.9. On a complete network with b nodes, if all nodes use the EXPN algorithm,
then they attain R̄T = O

(√(
1 + K

b

)
T lnK

)
, which is optimal (up to log factors) for

any centralized solution.

This again follows from the proof of Theorem 5.2 using the fact that the number of
neighbors is b− 1 on a complete network, and that a centralized solution has average
regret Ω(

√(
1 + K

b

)
T) as shown in [Amin et al., 2015].

5.6 Empirical Evaluation

5.6.1 Adversarial Setting: Experimental setup

Benchmarks. We compare our algorithm against the bandit algorithms developed
for various settings with side-information, namely EXP3G [Alon et al., 2015], EXP.IX
[Kocák et al., 2014] and BEXP [Amin et al., 2015]. The first two are designed for the
arm-network setting as described in Section 5.5.2, while the latter is designed for the
free-exploration setting described in Section 5.3. Recall that in free-exploration there are
no neighbors; rather there is a budget B, and at each time step the individual can choose
up to B arms to select. In order to attain a fair comparison, we assume we have budget
B = b+ 1 for BEXP, where b is the number of neighbors.

Experimental Setup. We consider a bandit with Bernoulli rewards that has a single
good arm with mean 0.7, while the remaining arms have mean 0.5. This is similar to
the worst-case (minimax) bandit; the difficulty arises from the fact that it is hard, in an
information-theoretic sense, to distinguish the single good arm from the rest with few
samples. Indeed the performance for our algorithm in comparison to our benchmarks is
only improved for all other settings we attempted.

5.6.2 Adversarial Setting: Empirical Results

Performance in Networks. In addition to exploring the effect of the various algo-
rithms on a single individual, we are able to consider various network topologies and
consider the regret as a whole. Towards this goal, in the first set of simulations, all
nodes in the specified networks use the same algorithm. We first compare the regret of

134

5.6. Empirical Evaluation

0.0 0.2 0.4 0.6 0.8 1.0
𝑡 ×106

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

re
gr
et

×104

EXP3G
EXP3-IX
EXP3
BEXP
EXPN

(a) Complete network with 5 nodes and K = 50.

0.0 0.2 0.4 0.6 0.8 1.0
𝑡 ×106

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

re
gr
et

×104

EXP3G
EXP3-IX
EXP3
BEXP
EXPN

(b) 5-regular network with 50 nodes and K = 50.

0.0 0.2 0.4 0.6 0.8 1.0
𝑡 ×106

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

re
gr
et

×103

EXP3
star-out
star-average
cycle
5-regular
complete
star-internal

(c) Various network topologies with 10 nodes and
K = 50.

0.0 0.2 0.4 0.6 0.8 1.0
𝑡 ×106

0.0

0.2

0.4

0.6

0.8

1.0

re
gr
et

EXP3G
EXP3-IX
EXP3
BEXP
EXPN

(d) Regret ratio in random 5-regular network with
K = 50.

2 25 50 75 100
𝐾

0.0

0.2

0.4

0.6

0.8

1.0

re
gr
et
ra
tio

EXP3G
EXP3-IX
EXP3
BEXP
EXPN

(e) Regret ratio in complete network with N = 5.

1 25 50 75 100
𝑏

0

0.2

0.4

0.6

0.8

1

re
gr
et
ra
tio

EXP3G
EXP3-IX
EXP3
BEXP
EXPN

(f) Regret ratio in complete network with K = 50.

Figure 5.3 – Performance of our algorithm (EXPN) for the adversarial setting against
benchmarks. Our algorithm significantly outperforms EXP3, indicating that the presence
of neighbors indeed improves learning. It also significantly outperforms arm-network
algorithms (EXP3G and EXP.IX) that could be applied in our setting. Surprisingly, its
performance is as good as BEXP, which would require a single node to dictate the choices
of her neighbors; hence, our distributed algorithm is performing as well as a centralized
one. Figures (a)-(c) depict the regret. Figures (d)-(f) depict the regret ratio, i.e., the ratio
between an algorithm’s regret with b neighbors over its regret with 0 neighbor (where b
depends on the network structure addressed in the corresponding subfigure).

135

Chapter 5. Learn from Thy Neighbor

EXPN against the benchmarks in a complete network on 5 nodes (Figure 5.3a); even
on such a small network the difference in regret is dramatic.5 EXPN significantly out-
perform arm-network algorithms (EXP3G and EXP.IX), which empirically are initially
worse than even EXP3. Asymptotically EXP3G eventually outperforms EXP3, although
EXP.IX does not. Surprisingly, our algorithm performs as well as BEXP, which would be
equivalent to identifying a single node as the leader and having them dictate the action
of all other nodes. Hence, our distributed algorithm is as good as a centralized one. For
comparison, we also consider a random 5-regular graph on 50 nodes (Figure 5.3b), and
observe that the performance of all algorithms is roughly equivalent to the complete
network on 5 nodes; i.e., the primary determining factor in the regret appears to be the
number of neighbors rather than the topology of the network.

We also consider the regret of EXPN on various network topologies on 10 vertices: the
complete network, a random 5-regular network, a cycle, and a star network (Figure 5.3c).
When the number of neighbors differs in a topology, the regret of the nodes may differ; the
star is the extreme example and we depict the minimum (for the center node), maximum
(for one of the leaves) and average regret. As expected, the more neighbors one has, the
better the regret is, with the internal node of star outperforming all. We also observe
that there is an advantage to having neighbors that are not well-connected; despite a
node in the complete network having the same degree as the center node of the star,
the former has more regret. Because the nodes that are not well-connected receive less
information, they must explore more – this is advantageous for their neighbors.

Performance of Individuals. Moving back to analyzing the performance for an
individual, consider a setting where her neighbors all use the EXP3 algorithm. We
measure the regret ratio, i.e., the ratio between the regret of bandit algorithm B when
the node has b neighbors divided by the regret of B when the node has 0 neighbor. This
allows us to better visualize the improvement in regret that each algorithm obtains as
a function of the number of neighbors. We vary time T (Figure 5.3d), the number of
arms K (Figure 5.3e and the number of neighbors b (Figure 5.3f). We observe that, in
all cases, our EXPN algorithm always matches or outperforms the benchmarks. The fact
that the performance of our EXPN is comparable to that of BEXP is surprising, as we
could not hope to do any better.

5.6.3 Stochastic Setting: Empirical Results

The setup for the empirical results in this section parallels that of Section 5.6.1. Recall
that we make no assumption in our algorithm about our neighbors or how they play. We
simply observe their actions and rewards. We let α = 2.5 in the UCBN algorithm; the

5Indeed, on larger networks the differences are only more pronounced – we present the results on a
small network in order to be able to visualize them adequately.

136

5.6. Empirical Evaluation

0.0 0.2 0.4 0.6 0.8 1.0
𝑡 ×106

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

re
gr
et

×103

UCB
UCBN

(a) Complete network with 5 nodes and K = 5.

0.0 0.2 0.4 0.6 0.8 1.0
𝑡 ×106

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

re
gr
et

×103

UCB
UCBN

(b) 5-regular network with 10 nodes and K = 5.

0.0 0.2 0.4 0.6 0.8 1.0
𝑡 ×106

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

re
gr
et

×103

UCB
star-out
star-average
cycle
5-regular
complete
star-internal

(c) Various topologies with 10 nodes and K = 50.

0.0 0.2 0.4 0.6 0.8 1.0
𝑡 ×106

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

re
gr
et

×103

GOB.LIN
UCB
UCBN

(d) Complete network with K = 5.

2 20 40 60 80 100
𝐾

0.0

0.2

0.4

0.6

0.8

1.0

re
gr
et
ra
tio

UCB
UCBN

(e) Regret ratio in complete network with 5 nodes.

1 25 50 75 100
𝑏

0.0

0.2

0.4

0.6

0.8

1.0

re
gr
et
ra
tio

UCB
UCBN

(f) Regret ratio in complete network with K = 50.

Figure 5.4 – Performance of our algorithm (UCBN) for the stochastic setting against
benchmarks. Our algorithm significantly outperforms UCB, indicating that the presence
of neighbors indeed improves learning. It also significantly outperforms GOB.LIN that
could be applied in our setting (Figure 5.4d). Figures (a)-(d) depict the regret. Figures
(e)-(f) depict the regret ratio, i.e., the ratio between an algorithm’s regret with b neighbors
over its regret with 0 neighbor (where b depends on the network structure addressed in
the corresponding subfigure).

137

Chapter 5. Learn from Thy Neighbor

performance could be improved by optimizing α. We first observe that more neighbors
leads to less regret (Figure 5.4f).

We then consider the regret of UCBN on various network topologies on 10 vertices: the
complete network, a random 5-regular network, and a star network (Figure 5.4c). Similar
to the previous experiments, for networks in which all vertices have the same number of
neighbors (all but the star network), all agents attain the same regret and hence we report
the average regret. However, this is not the case if the number of neighbors differs; the
star is the extreme example and we depict the minimum (for the center node), maximum
(for one of the leaves) and average regret. As expected, the more neighbors one has, the
better the regret is, with the complete network and center of star outperforming all. We
also observe that there is an advantage to having neighbors that are not well-connected;
despite a node in the complete network having the same degree as the center node of
the star, the former has slightly more regret. The reason is that a neighbor with lower
degree attains less information from neighbors and explore the suboptimal arms more
which itself is in the favor of its neighbors (here the center of star).

We then consider the regret ratio, i.e., the ratio between the regret of bandit algorithm B
when the agent has b neighbors divided by the regret of B when the agent has 0 neighbor.
This allows us to better visualize the improvement in regret that each algorithm obtains
as a function of the number of neighbors. We vary the number of arms K (Figure 5.4e)
and the number of neighbors b (Figure 5.4f). We observe that, in all cases, our algorithm
UCBN attains the theoretical regret ratio, i.e, in the complete graph when all agents use
UCBN the regret ratio Bb → 1/b as T →∞.

Finally, we compare our algorithm to the one proposed in [Cesa-Bianchi et al., 2013]
(GOB.LIN); see Figure 5.4d. Although this algorithm is centralized and developed for a
different setting (namely, for linear contextual bandits), it can be adapted to our setting
by assuming that individuals are cooperative instead of selfish. Despite the centralized
nature of GOB.LIN, our algorithm outperforms its regret.

5.7 Summary

In this chapter, we consider a model for social learning that puts the problem in the
bandit framework. This model allows the problem to be analyzed both in the stochastic
and adversarial bandit settings, and we provide algorithms for both cases. The regret
of our algorithms interpolates between the regret of the traditional bandit setting (e.g.,
when an individual has no neighbors) and the regret of the full information setting
(e.g., when the number of neighbors goes to infinity). We show, both theoretically and
empirically, that we outperform state-of-the-art bandit algorithms that one could also
apply to this setting, and illustrate how our approach could also lead to centralized
algorithms of interest.

138

5.7. Summary

With respect to improvements to the social learning model, relaxing Assumption (3)
would be ideal. As we have shown (see Proposition 5.7), removing it entirely results in
strictly weaker regret bounds. Would an alternate relaxed assumption suffice? Lastly, it
remains to formally study the effect of arbitrary network topologies on the regret, both
for the individual (based on their position in the network) and on average.

139

Appendix

Appendix

5.A Adversarial Bandits

Lemma 5.10. For pi ∈ [0, 1] we want to show that Πb
i=1(1− pi) ≤ 1

1+
∑b

i=1 p
i
.

Proof. The following formula holds for all positive pi,

Πb
i=1(1 + pi) ≥ 1 +

b∑
i=1

pi, (5.25)

which implies

1
Πb
i=1(1 + pi)

≤ 1
1 +∑b

i=1 p
i
. (5.26)

As we have

Πb
i=1(1− pi) ·Πb

i=1(1 + pi)
= Πb

i=1(1− (pi)2) ≤ 1,
(5.27)

We can conclude

Πb
i=1(1− pi) ≤ 1

Πb
i=1(1 + pi)

. (5.28)

141

Chapter 5. Learn from Thy Neighbor

From (5.26) and (5.28) we get

Πb
i=1(1− pi) ≤ 1

Πb
i=1(1 + pi)

≤ 1
1 +∑b

i=1 p
i
.

(5.29)

Proof of Lemma 5.3. From Lemma 5.10 we have

(1− pj)(1− q1
j) · · · (1− qbj) ≤

1
1 + pj + q1

j + q2
j + · · ·+ qbj

, (5.30)

substituting this bound in the statement of lemma yields

K∑
j=1

pj

1− (1− pj)(1− q1
j) · · · (1− qbj)

≤
K∑
j=1

pj

1− 1
1+pj+q1

j+q2
j+···+qbj

≤
K∑
j=1

pj

pj + q1
j + q2

j + · · ·+ qbj
+ 1.

(5.31)

Lemma 5.11 (Lemma 3.5 in [Auer et al., 2002c]). Let c1, c2, . . . , cT and b be non-negative
real numbers. Then

T∑
t=1

ct√
b+∑t

i=1 ci
≤ 2


√√√√b+

T∑
t=1

ct −
√
b

 , (5.32)

where 0/
√

0 = 0

5.B Stochastic Bandits

In this section, we first formally state and prove the results for the stochastic setting. In
what follows let µi = Er∼D[ri] and let µi? = µ? be the highest expected reward where i?
is the arm with highest expected reward. Also, let µ̄ be the empirical mean of observed
rewards. Let us first recall our result:

Theorem 5.1. Let mt
i be the number times arm i has been selected by one of her neighbors

by time t. Then, the regret of UCBN for any α > 2 is

R̄TUCBN ≤
∑

i,∆i>0

(
max

{
max
t=1,..,T

{2α ln t
∆i

−mt
i∆i

}
, 0
}

+ α

α− 2

)
, (5.33)

142

5.B. Stochastic Bandits

where ∆i is the difference between µi? and µi.

Corollary 5.12. On a complete graph with b nodes, if all agents use UCBN then under
the same conditions as in Theorem 5.1, the regret of an agent is

R̄TUCBN ≤
∑

i,∆i>0

(2α lnT
b∆i

+ α

α− 2

)
∈ O

(
K lnT
b

)
. (5.34)

The following lower bound yields same behavior for getting free observation from neigh-
bors.

Theorem 5.13. Let mt
i be the number of times a strategy selects an arm i in T rounds.

Consider a strategy that satisfies E[mt
i] = o(T a), any arm i with ∆i > 0, and any a > 0.

Let mt
i be the number of times arm i selected (arbitrarily) by all of the agent’s neighbors

up to time t, then, for any set of Bernoulli reward distributions the following inequality
holds

lim
T−→+∞

inf R

lnT ≥
∑

i,∆i>0

1
2∆i
− lim
T−→+∞

inf
∑
i,∆i>0m

T
i ∆i

lnT . (5.35)

Our proofs parallel, with additional bookkeeping, the proofs for the original UCB results
(see, e.g., [Bubeck and Cesa-Bianchi, 20120] for a template). Note that the results for
stochastic bandits hold when the reward distributions satisfy the following standard
conditions.

Definition (Conditions on D). Every reward distribution D satisfies Hoefding’s lemma,
i.e., there exists a convex function ψ on the reals such that, for all λ ≥ 0, we have
ln
[
E
[
eλ|r−E[r]|

]]
≤ ψ(λ) where r ∼ D.

For example, when r ∈ [0, 1], one can take ψ(λ) = λ2

8 ; indeed the results in the main
body of the work take this ψ. The results can be easily generalized for other ψ in the
usual manner.

We first state a lemma and its proof from [Bubeck and Cesa-Bianchi, 20120] that will be
of assistance in the proof of Theorem 5.1. Recall that at is the arm the agent selects at
time t.

143

Chapter 5. Learn from Thy Neighbor

Lemma 5.14. If the selected arm at = i, at least one of the three following inequalities
is true:

µ̄i?,nt−1
i?

+
√
α ln t
2nt−1

i?
≤ µ?, (5.36a)

µ̄i,nt−1
i

> µi +
√
α ln t
2nt−1

i

, (5.36b)

nt−1
i <

2α ln t
42
i

, (5.36c)

where i? is the arm with the highest expected reward.

Proof. The contrapositive is proved. Assume that at = i and that none of the inequalities
(5.36a), (5.36b) or (5.36c) are true.

µ̄i?,nt−1
i?

+
√
α ln t
2nt−1

i?
> µ?, (5.37a)

µ̄i,nt−1
i

< µi +
√
α ln t
2nt−1

i

, (5.37b)

nt−1
i >

2α ln t
42
i

. (5.37c)

By plugging µ? = µi +4i in (5.37a) we obtain

µ̄i?,nt−1
i?

+
√
α ln t
2nt−1

i?
> µi +4i. (5.38)

From (5.37c) we have

µi +4i > µi +
√

2α ln t
nt−1
i

(5.39)

and plugging (5.39) in (5.38) yields

µ̄i?,nt−1
i?

+
√
α ln t
2nt−1

i?
> µ̄i,nt−1

i
+
√
α ln t
2nt−1

i

. (5.40)

This implies at 6= i, which negates the assumption at = i.

Proof of Theorem 5.1 . With some abuse of notations, let n1,t
i be number of times the

agent selects the arm i. Let

nti = n1,t
i +mt

i, (5.41)

144

5.B. Stochastic Bandits

where mt
i is the number of times her neighbors select arm i. Using Lemma 5.14, we will

first find an upper bound for mt
i for a suboptimal arm i.

Lemma 5.14 states that at least one of the three inequalities (5.36a), (5.36b) and (5.36c)
must be true. If (5.36c) holds, then from (5.41) we obtain

n1,t
i ≤

2α
42
i

ln t−mt
i. (5.42)

Let U be the maximum of right hand side of (5.42) for t = 1, .., T :

U = max
{

max
t=1,..,T

{
2α
42
i

ln t−mt
i

}
4i, 0

}
, (5.43)

as a result if the (5.36c) holds for some instance τ , then n1,τ
i is bounded by U , i.e.,

n1,τ
i ≤ U. (5.44)

For bounding the regret we find an upper bound on the number of times we select a
suboptimal arm i:

E[mt
i] = E

[
T∑
t=1

1at=i

]
= E

[
U∑
t=1

1at=i

]
+ E

 T∑
t=U+1

1at=i

 .
Since E

[∑U
t=1 1at=i

]
≤ U , we can deduce

E[n1,t
i] ≤ U + E

 T∑
t=U+1

1at=i

 ,
as we saw in (5.14), 1{at=i} = 1 requires that at least one of the three (5.36a), (5.36b)
and (5.36c) is true. Assume the last time that (5.36c) is true is at time τ , hence

n1,τ
i ≤

2α
42
i

ln τ −mτ
i ,

and since τ is the last time that (5.36c) holds, we can upper bound E[mt
i] by

E[n1,τ
i] ≤ 2α

42
i

ln τ −mτ
i + E

[
T∑

t=τ+1
1{(5.36a) or (5.36b) is true and (5.36c) is false}

]
. (5.45)

145

Chapter 5. Learn from Thy Neighbor

According to the definition of U in (5.43) and (5.45) we have

E[n1,τ
i] ≤ U + E

 T∑
t=U+1

1{(5.36a) or (5.36b) is true and (5.36c) is false}


≤ U +

T∑
t=U+1

P [(5.36a) is true] + P [(5.36b) is true] .

It suffices to bound the probability (5.36a) and (5.36b):

P [(5.36a) is true] =
∑
nti

P
[
(5.36a) is true|nti

]
· P
[
nti

]
. (5.46)

Let us recall (1.5) from Section 1.2.3 that

µi ≤ Ui(t) = µ̄ti +
√
α ln(t)

2nti

holds with probability at least 1− t−α. Thus

P
[
(5.36a) is true|nti

]
≤ 1
tα
. (5.47)

Plugging (5.47) in (5.46) yields that

P [(5.36a) is true] ≤ 1
tα

∑
nti

P
[
nti

]
= 1
tα
. (5.48)

Then we take integral of 1
tα for t from 1 to T , which is smaller than α

2(α−2) . The same
upper bound holds for (5.36b).

Thus, the regret is

R̄TUCBN ≤
∑

i,4i>0

(
max

{
max
t=1,..,T

{
2α
42
i

ln t−mt
i

}
4i, 0

}
+ α

α− 2

)

as desired.

5.B.1 UCBN on Complete Graphs

In this section, we analyze the regret in a complete graph when all agents use UCBN.
The following curious lemma will assist in the proof.

146

5.B. Stochastic Bandits

Lemma 5.15. Given a complete graph of agents, if all agents use UCBN with a deter-
ministic common tie breaking scheme, then in every time step all agents select the same
action.

Proof. Since the graph is complete, all agents see the rewards of other agents at every
time step; hence the sample means r̄i(t) and number of samples nti at time t are the
same for all agents. Furthermore, every agent selects an arm that maximizes µ̄ti +

√
α ln(t)

2nti
.

Therefore, the arm selected at time t will be same for all agents.

Proof of Corollary 5.12. Let

U =
[

2α lnT
b · 42

i

]
.

We bound the number of times action i other than the best arm is selected. Following
the proof of Theorem 5.1,

E[mt
i] ≤ U +

T∑
t=U+1

P[(5.36a) is true] + P[(5.36b) is true].

The upper bound of the probabilities (5.36a) and (5.36b) are same as before. Hence, the
regret bound is

R̄TUCBN ≤
∑

i,4i>0

(2α
b · 4i

lnT + α

α− 2

)
.

5.B.2 Lower Bound

The lower bound for UCB (see [Lai and Robbins, 1985]) is

lim
T−→+∞

inf R

lnT ≥
∑

i,4i>0

4i

KL(µi, µ?)
.

Our proof follows the same template.

Proof of Theorem 5.13. As in [Lai and Robbins, 1985], we assume the rewards are drawn
from a Bernoulli distribution. From their proof it follows that the expected number of
times that a suboptimal arm must be selected in order to distinguish between best arm
and other arms is at least

E[n1,T
i] +mT

i ≥ (1 + o(1))1− ε
1 + ε

lnT
KL(µi, µ?)

.

147

Chapter 5. Learn from Thy Neighbor

where the second term is the information coming from the neighbors (that is, the number
of times neighbors selected arm i up to time t), µ? is the mean of the best arm, and
KL(p, q) is the Kullback-Leibler divergence between a Bernoulli variable with parameter
p and a Bernoulli variable with parameter q, defined to be

KL(p, q) def= p ln
(
p

q

)
+ (1− p) ln

(1− p
1− q

)
.

As the number of rounds increases, ε can be taken to be smaller. As T goes to infinity, ε
can be taken zero; as a result we can write the following lower bound for the regret

lim
T−→+∞

inf
R+∑

i,∆i>0m
T
i ∆i

lnT ≥
∑

i,4i>0

4i

KL(µi, µ?)
.

148

6 Conclusion

Many modern technologies make a sequence of choices in the presence of uncertainty.
Multi-armed bandits (MAB) is one of the simplest, yet one of the most powerful settings
for optimizing a sequence of choices within an exploration-exploitation framework.

In this dissertation, we studied several important problems from three different per-
spectives: (1) how MAB framework can improve two important stochastic optimization
algorithms in machine learning, (2) how MAB algorithms can negatively affect humans
when deployed in recommendation systems, and (3) how human interactions can be
studied in an MAB setting.

In Chapters 2 and 3, we focused on reducing the training time of machine-learning
algorithms by improving two of the most well-known optimization algorithms: stochastic-
gradient descent (SGD) and stochastic-coordinate descent (CD). Optimization algorithms
are at the core of machine-learning problems, and improving them is therefore of great
interest.

In Chapter 2, we studied accelerating SGD by selecting datapoints from a non-uniform
distribution. SGD optimizes a cost function by drawing one of the datapoints uniformly
at random and by using the gradient computed only at this datapoint. The main issue
of SGD is its high variance. This variance can be reduced by using a non-uniform
distribution, where the non-uniform distribution should weigh more the datapoints that
are wrongly classified. The challenge lies in finding the appropriate non-uniform sampling
distribution with a lightweight mechanism that preserves the computational tractability
of SGD. We used MAB framework to design scalable algorithms and we prove that our
algorithm asymptotically approximates the minimal variance within a constant factor.
We showed that using this datapoint-selection technique results in a significant reduction
of the convergence time and the variance of several stochastic optimization algorithms
such as SGD and SAGA.

149

Chapter 6. Conclusion

In Chapter 3, we shifted our attention from accelerating SGD to accelerating CD by
selecting coordinates from a non-uniform distribution. CD optimizes a cost function
by selecting one of the coordinates uniformly at random and updating this coordinate.
Updating the model based on different coordinates yields various improvements. In
Chapter 3, we designed an MAB algorithm that selects the coordinate that most improves
the model. We showed that this approach significantly reduces the training time.

In Chapter 4, we initiated a formal study of combating polarization in personalization
algorithms that learn user behavior. We alleviated polarization by introducing a set of
constraints, which ensure that a diverse set of items are displayed to a user. We showed
how an existing bandit algorithm can be modified to satisfy these constraints and to
rapidly reach the theoretical optimum. For laminar constraints, our experiments on large
datasets show that the modified algorithm rapidly converges to the theoretical optimum,
and that this optimum solution of constrained setting is close to the optimum solution of
an unconstrained setting.

In Chapter 5, we cast a model for social learning as a problem in the bandit framework.
Our proposed model enables the problem to be analyzed both in the stochastic and
adversarial bandit settings, and we provided algorithms for both cases. Depending on
the information provided by neighbors, the regret of our algorithms interpolates between
the regret of the classic bandit setting (e.g., when an individual has no neighbors) and
the regret of the full information setting (e.g., when the number of neighbors goes to
infinity). We showed, both theoretically and empirically, that the proposed algorithms
outperform state-of-the-art bandit algorithms that could also be applied to this setting.

Future Research Directions

The approach that we adopted in most of this thesis consists of breaking down the
challenges into simple decision-making problems, which we then studied in an MAB
framework. However, there are interesting open directions for future work, we discuss
here some that we believe are among the most important.

First, we would like to use the underlying structure of the decision-making problems to
design better MAB algorithms. For example, in Chapters 2 and 3, we cast the datapoint-
selection and coordinate-selection part of SGD and CD as an adversarial and stochastic
bandit problem, respectively. This means that no additional assumption is used in the
developed algorithms. However, optimization problems have additional structures such
as smoothness or strong convexity. Exploiting these additional structures can improve
the MAB algorithms for datapoint-selection and coordinate-selection. It could also be of
interest to extend the work to other stochastic optimization methods, both by providing
theoretical guarantees and by observing their performance in practice.

150

With regard to combating polarization in Chapter 4, our algorithms require the groups’
labels in advance. These labels would either need to be inferred from the data, which
could bring with it additional bias associated with this learning algorithm, or would need
to be self-reported, which can lead to adversarial manipulation. Additionally, designing
the right constraints that can better prevent polarization, not just of the items in the
feed but of the beliefs and opinions of those viewing them, is an important direction for
future work.

With respect to improvements to the social-learning model in Chapter 5, relaxing the
assumption on the algorithms of neighbors would be ideal. We show that removing
this assumption would result in strictly weaker regret bounds. Therefore, additional
assumptions on the behavior of neighbors are still needed. Lastly, the regret of each
individual player is analyzed locally; further analysis is needed to take the topology of
the social network into account.

151

Bibliography

Allsides media bias ratings. https://www.allsides.com/media-bias/
media-bias-ratings. [Cited on page 106]

Webhose news api. https://webhose.io/data-feeds/news-api/. [Cited on page 106]

Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic
bandits. In Advances In Neural Information Processing Systems, 2011. [Cited on pages
97, 99, 103, 111, 113, and 114]

E. Accinelli and J. Sánchez-Carrera. Corruption driven by imitative behavior. Econ.
Letters, 117:84–87, 2012. [Cited on pages 14 and 120]

G. Adomavicius and Y. Kwon. Improving aggregate recommendation diversity using
ranking-based techniques. IEEE Transactions on Knowledge and Data Engineering, 24
(5):896–911, 2012. [Cited on page 97]

G. Adomavicius, J. Bockstedt, C. Shawn, and J. Zhang. De-biasing user preference
ratings in recommender systems. In Joint Workshop on Interfaces and Human Decision
Making for Recommender Systems, Co-located with ACM Conference on Recommender
Systems, 2014. [Cited on page 97]

S. Agrawal and N. Devanur. Linear contextual bandits with knapsacks. In Advances In
Neural Information Processing Systems, pages 3450–3458, 2016. [Cited on page 98]

R. Alghamdi and K. Alfalqi. A survey of topic modeling in text mining. Int. J. Adv.
Comput. Sci. Appl.(IJACSA), 6(1), 2015. [Cited on page 92]

Z. Allen-Zhu and Y. Yuan. Improved svrg for non-strongly-convex or sum-of-non-convex
objectives. In Proceedings of International Conference on Machine Learning, pages
1080–1089, 2016. [Cited on pages 23 and 44]

153

https://www.allsides.com/media-bias/media-bias-ratings
https://www.allsides.com/media-bias/media-bias-ratings
https://webhose.io/data-feeds/news-api/

Bibliography

Z. Allen-Zhu, Z. Qu, P. Richtárik, and Y. Yuan. Even faster accelerated coordinate
descent using non-uniform sampling. In International Conference on Machine Learning,
pages 1110–1119, 2016. [Cited on pages 65 and 80]

N. Alon, N. Cesa-Bianchi, C. Gentile, and Y. Mansour. From bandits to experts: A tale
of domination and independence. In Proceedings of the 26th Conference on Advances
in Neural Information Processing Systems (NIPS), 2013. [Cited on pages 7 and 124]

N. Alon, N. Cesa-Bianchi, C. Gentile, S. Mannor, and Y. Mansour. Nonstochastic
multi-armed bandits with graph-structured feedback. Arxiv, 2014. [Cited on page 133]

N. Alon, N. Cesa-Bianchi, O. Dekel, and T. Koren. Online learning with feedback graphs:
Beyond bandits. In Conference on Learning Theory (COLT), 2015. [Cited on pages 120,
124, 131, and 134]

K. Amin, S. Kale, G. Tesauro, and D. Turaga. Budgeted prediction with expert advice.
In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015. [Cited on pages 120,
124, and 134]

Y. Arjevani and O. Shamir. Dimension-free iteration complexity of finite sum optimization
problems. In Advances in Neural Information Processing Systems, pages 3540–3548,
2016. [Cited on page 69]

S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of Computing, 8:121–164, 2012. [Cited on page 7]

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 2002a. [Cited on pages 10, 11, 12, and 99]

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. The nonstochastic multiarmed
bandit problem. SIAM journal on computing, 32(1):48–77, 2002b. [Cited on pages 7, 8,
20, 24, 29, and 32]

P. Auer, N. Cesa-Bianchi, and C. Gentile. Adaptive and self-confident on-line learning
algorithms. Journal of Computer and System Sciences, 64(1):48–75, 2002c. [Cited on
pages 130 and 142]

O. Avner, S. Mannor, and O. Shamir. Decoupling exploration and exploitation in multi-
armed bandits. In International Conference on Machine Learning, 2012. [Cited on pages
34, 35, and 124]

D. Baer. The ‘Filter Bubble’ Explains Why Trump Won and You Didn’t See It Coming,
November 2016. NY Mag. [Cited on page 92]

V. Bala and S. Goyal. Learning from neighbours. Review of Econ. Studies, 65:595–621,
1998. [Cited on page 123]

154

Bibliography

V. Bala and S. Goyal. Conformism and diversity under social learning. Econ. Theory,
17:101–120, 2001. [Cited on page 123]

H. Bauschke and P. Combettes. Convex analysis and monotone operator theory in Hilbert
spaces, volume 408. Springer, 2011. [Cited on page 64]

S. Boldrini, L. De Nardis, G. Caso, M. Le, J. Fiorina, and M.-G. Di Benedetto. mumab:
A multi-armed bandit model for wireless network selection. Algorithms, 11(2):13, 2018.
[Cited on page 2]

Z. Borsos, A. Krause, and K. Levy. Online variance reduction for stochastic optimization.
In International Conference on Learning Theory, 2018. [Cited on page 24]

L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings
of COMPSTAT, pages 177–186. Springer, 2010. [Cited on page 18]

D. Bouneffouf and I. Rish. A survey on practical applications of multi-armed and
contextual bandits. arXiv preprint arXiv:1904.10040, 2019. [Cited on page 2]

E. Bozdag and J. van den Hoven. Breaking the filter bubble: democracy and design.
Ethics and Information Technology, 17(4):249–265, Dec 2015. [Cited on page 92]

S. Bubeck. Bandits games and clustering foundations. PhD thesis, Universite Lille, 2010.
[Cited on page 10]

S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122,
20120. [Cited on pages 6, 11, 24, 28, 125, 128, and 143]

S. Buccapatnam, A. Eryilmaz, and N. B. Shroff. Multi-armed bandits in the presence of
side observations in networks. In Proceedings of the 2014 SIGMETRICS conference,
2013. [Cited on page 124]

S. Buccapatnam, A. Eryilmaz, and N. B. Shroff. Stochastic bandits with side observations
on networks. In Proceedings of the 52nd IEEE Conference on Decision and Control,
2014. [Cited on page 124]

S. Caron, B. Kveton, M. Lelarge, and S. Bhagat. Leveraging side observations in stochastic
bandits. In Proceedings of Uncertainty in Artificial Intelligence (UAI), 2012. [Cited on
page 124]

L. E. Celis and F. Salehi. Lean from thy neighbor: Stochastic & adversarial bandits in a
network. arXiv preprint arXiv:1704.04470, 2017. [Cited on page 119]

L. E. Celis, L. Huang, V. Keswani, and N. K. Vishnoi. Classification with Fairness
Constraints: A Meta-Algorithm with Provable Guarantees. ArXiv e-prints, June 2018.
[Cited on page 94]

155

Bibliography

L. E. Celis, S. Kapoor, F. Salehi, and N. Vishnoi. Controlling polarization in person-
alization: An algorithmic framework. In Proceedings of the Conference on Fairness,
Accountability, and Transparency, pages 160–169. ACM, 2019. [Cited on page 91]

N. Cesa-Bianchi, C. Gentile, and G. Zappella. A gang of bandits. In Proceedings of the
26th Conference on Advances in Neural Information Processing Systems (NIPS), 2013.
[Cited on pages 124 and 138]

C. Chang and C. Lin. Libsvm: a library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2(3):27, 2011. [Cited on pages 47 and 78]

M. Conover, J. Ratkiewicz, M. R. Francisco, B. Gonçalves, F. Menczer, and A. Flammini.
Political polarization on twitter. ICWSM, 133:89–96, 2011. [Cited on pages 14 and 92]

P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n
recommendation tasks. In Proceedings of the fourth ACM conference on Recommender
systems, pages 39–46. ACM, 2010. [Cited on page 1]

D. Csiba and P. Richtárik. Importance sampling for minibatches. arXiv:1602.02283,
2016. [Cited on page 22]

D. Csiba, Z. Qu, and P. Richtárik. Stochastic dual coordinate ascent with adaptive
probabilities. In International Conference on Machine Learning, 2015. [Cited on pages
39, 65, 66, and 68]

V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic Linear Optimization under Bandit
Feedback. In Proceedings of the Annual Conference on Learning Theory (COLT), 2008.
[Cited on pages 97, 98, 99, 103, 111, 113, and 114]

A. Datta, M. C. Tschantz, and A. Datta. Automated experiments on ad privacy settings.
Proceedings on Privacy Enhancing Technologies, 2015(1):92–112, 2015. [Cited on page 93]

A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Proceedings of Advances
in Neural Information Processing Systems, pages 1646–1654, 2014. [Cited on pages 19, 23,
41, and 44]

W. Ding, T. Qin, X.-D. Zhang, and T.-Y. Liu. Multi-armed bandit with budget constraint
and variable costs. In AAAI, 2013. [Cited on page 98]

C. Dünner, S. Forte, M. Takáč, and M. Jaggi. Primal-dual rates and certificates. In
International Conference on Machine Learning, 2016. [Cited on page 81]

C. Dünner, T. Parnell, and M. Jaggi. Efficient use of limited-memory accelerators
for linear learning on heterogeneous systems. In Advances in Neural Information
Processing Systems, pages 4261–4270, 2017. [Cited on pages 65, 75, and 76]

156

Bibliography

A. Durand, C. Achilleos, D. Iacovides, K. Strati, G. D. Mitsis, and J. Pineau. Contextual
bandits for adapting treatment in a mouse model of de novo carcinogenesis. In Machine
Learning for Healthcare Conference, pages 67–82, 2018. [Cited on page 2]

G. Ellison and D. Fudenberg. Rules of thumb for social learning. J. of Political Economy,
101, 1993. [Cited on page 123]

R. Epstein and R. E. Robertson. The search engine manipulation effect (SEME) and its
possible impact on the outcomes of elections. Proceedings of the National Academy of
Sciences, 112(33):E4512–E4521, 2015. [Cited on pages 4 and 92]

A. Farahat and M. C. Bailey. How effective is targeted advertising? In Proceedings of
the 21st international conference on World Wide Web. ACM, 2012. [Cited on page 92]

O. Fercoq and P. Richtárik. Accelerated, parallel, and proximal coordinate descent.
SIAM Journal on Optimization, 2015. [Cited on page 80]

A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in
the bandit setting: gradient descent without a gradient. In Proceedings of the 16th
ACM/SIAM symposium on Discrete algorithms (SODA), 2005. [Cited on pages 7 and 8]

T. Fox-Brewster. Creepy Or Cool? Twitter Is Tracking Where You’ve Been, What You
Like And Is Telling Advertisers, May 2017. Forbes Magazine. [Cited on page 92]

M. J. Frank, B. B. Doll, J. Oas-Terpstra, and F. Moreno. Prefrontal and striatal
dopaminergic genes predict individual differences in exploration and exploitation.
Nature neuroscience, 12(8):1062, 2009. [Cited on page 1]

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of computer and system sciences, 55(1):119–139,
1997a. [Cited on page 20]

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of computer and system sciences, 55(1):119–139,
1997b. [Cited on page 7]

Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, 29(1-2):79–103, 1999. [Cited on page 8]

D. Gale and S. Kariv. Bayesian learning in social networks. Games and Econ. Behavior,
45, 2003. [Cited on page 124]

V. R. K. Garimella and I. Weber. A long-term analysis of polarization on twitter. In
ICWSM, 2017. [Cited on pages 14 and 92]

A. Garivier and O. Cappé. The kl-ucb algorithm for bounded stochastic bandits and
beyond. In Proceedings of the Conference on Learning Theory (COLT), 2011. [Cited on
page 10]

157

Bibliography

T. Glasmachers and U. Dogan. Accelerated coordinate descent with adaptive coordinate
frequencies. In Asian Conference on Machine Learning, pages 72–86, 2013. [Cited on
page 62]

A. Goldfarb and C. Tucker. Online display advertising: Targeting and obtrusiveness.
Marketing Science, 2011. [Cited on page 91]

B. Golub and M. O. Jackson. Naive learning in social networks and the wisdom of crowds.
American Econ. Jourmal: MicroEcon., 2, 2010. [Cited on page 124]

S. Goyal. Learning in networks. In G. Demange and M. Wooders, editors, Group forma-
tion in Econ.: networks, clubs, and coalitions, chapter 4, pages 122–167. Cambridge
University Press, 2005. [Cited on page 123]

F. M. Harper and J. A. Konstan. The movielens datasets: History and context. ACM Trans.
Interact. Intell. Syst., 5(4):19:1–19:19, Dec. 2015. ISSN 2160-6455. doi: 10.1145/2827872.
URL http://doi.acm.org/10.1145/2827872. [Cited on pages 104 and 107]

E. Hazan et al. Introduction to online convex optimization. Foundations and Trends® in
Optimization, 2(3-4):157–325, 2016. [Cited on pages 7, 8, and 9]

T. Hofmann, A. Lucchi, S. Lacoste-Julien, and B. McWilliams. Variance reduced stochas-
tic gradient descent with neighbors. In Advances in Neural Information Processing
Systems, pages 2305–2313, 2015. [Cited on page 47]

S. Hong and S. H. Kim. Political polarization on twitter: Implications for the use of social
media in digital governments. Government Information Quarterly, 33(4):777–782, 2016.
[Cited on pages 14 and 92]

X. Huo and F. Fu. Risk-aware multi-armed bandit problem with application to portfolio
selection. Royal Society open science, 4(11):171377, 2017. [Cited on page 2]

T. Johnson and C. Guestrin. Stingycd: Safely avoiding wasteful updates in coordinate
descent. In International Conference on Machine Learning, pages 1752–1760, 2017.
[Cited on pages 64 and 81]

M. Joseph, M. Kearns, J. H. Morgenstern, and A. Roth. Fairness in learning: Classic
and contextual bandits. In Advances in Neural Information Processing Systems, pages
325–333, 2016. [Cited on page 98]

E. Katz and P. Lazersfeld. Personal Influence. The Free Press, 1955. [Cited on page 120]

T. Kern and A. György. Svrg++ with non-uniform sampling. 2016. [Cited on pages 22
and 44]

T. Kocák, G. Neu, M. Valko, and R. Munos. Efficient learning by implicit exploration
in bandit problems with side observations. In Proceedings of the 27th Conference on
Advances in Neural Information Processing Systems (NIPS), 2014. [Cited on pages 124
and 134]

158

http://doi.acm.org/10.1145/2827872

Bibliography

J. Konečnỳ and P. Richtárik. Semi-stochastic gradient descent methods. Frontiers in
Applied Mathematics and Statistics, 3:9, 2017. [Cited on page 19]

V. Kuleshov and D. Precup. Algorithms for multi-armed bandit problems. arXiv preprint
arXiv:1402.6028, 2014. [Cited on page 12]

S. Lacoste-Julien, M. Schmidt, and F. Bach. A simpler approach to obtaining an o (1/t)
convergence rate for the projected stochastic subgradient method. arXiv:1212.2002,
2012. [Cited on pages 22, 49, 51, 55, and 58]

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics, 6, 1985. [Cited on page 147]

P. Lazarsfeld, B. Berelson, and H. Gaudet. The People’s Choice. Columbia University
Press, 1948. [Cited on page 120]

L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international
conference on World wide web, pages 661–670. ACM, 2010. [Cited on pages 4, 14, 94,
and 95]

S. Li, A. Karatzoglou, and C. Gentile. Collaborative filtering bandits. In Proceedings
of the 39th International ACM SIGIR conference on Research and Development in
Information Retrieval, pages 539–548. ACM, 2016. [Cited on page 94]

J. Liu, P. Dolan, and E. R. Pedersen. Personalized news recommendation based on
click behavior. In Proceedings of the 15th international conference on Intelligent user
interfaces. ACM, 2010. [Cited on page 91]

O. A. Maillard, R. Munos, and G. Stoltz. A finite-time analysis of multiarmed bandits
problems with kullback-leibler divergences. In Proceedings of the Conference on
Learning Theory (COLT), 2011. [Cited on page 10]

S. Mannor and O. Shamir. From bandits to experts: On the value of side-observations.
In Proceedings of Advances in Neural Information Processing Systems (NIPS), pages
684–692, 2011. [Cited on page 124]

K. Misra, E. M. Schwartz, and J. Abernethy. Dynamic online pricing with incomplete
information using multiarmed bandit experiments. Marketing Science, 2019. [Cited on
page 2]

H. Namkoong, A. Sinha, S. Yadlowsky, and J. Duchi. Adaptive sampling probabilities
for non-smooth optimization. In International Conference on Machine Learning, 2017.
[Cited on page 24]

D. Needell, R. Ward, and N. Srebro. Stochastic gradient descent, weighted sampling, and
the randomized kaczmarz algorithm. In Proceedings of Advances in Neural Information
Processing Systems, pages 1017–1025, 2014. [Cited on pages 18, 20, 22, 27, 39, and 54]

159

Bibliography

J. Nutini, M. Schmidt, I. Laradji, M. Friedlander, and H. Koepke. Coordinate descent
converges faster with the gauss-southwell rule than random selection. In International
Conference on Machine Learning, pages 1632–1641, 2015. [Cited on pages 64, 65, 66, 69,
and 76]

A. Osokin, J. Alayrac, I. Lukasewitz, P. Dokania, and S. Lacoste-Julien. Minding the
gaps for block frank-wolfe optimization of structured svms. In International Conference
on Machine Learning, 2016. [Cited on page 65]

S. Pandey and C. Olston. Handling advertisements of unknown quality in search
advertising. In Advances in Neural Information Processing Systems, 2006. [Cited on
page 93]

G. Papa, P. Bianchi, and S. Clémençon. Adaptive sampling for incremental optimization
using stochastic gradient descent. In International Conference on Algorithmic Learning
Theory, pages 317–331. Springer, 2015. [Cited on pages 23 and 48]

E. Pariser. The filter bubble: What the Internet is hiding from you. Penguin UK, 2011.
[Cited on pages v, viii, 4, 92, 96, and 97]

É. Payzan-LeNestour and P. Bossaerts. Do not bet on the unknown versus try to find out
more: estimation uncertainty and “unexpected uncertainty” both modulate exploration.
Frontiers in neuroscience, 6:150, 2012. [Cited on page 1]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011. [Cited on page 107]

D. Perekrestenko, V. Cevher, and M. Jaggi. Faster coordinate descent via adaptive
importance sampling. In International Conference on Artificial Intelligence and
Statistics, 2017. [Cited on pages 62, 65, 68, 73, 75, 76, 80, and 81]

A. Rakotomamonjy, S. Koço, and L. Ralaivola. Greedy methods, randomization ap-
proaches, and multiarm bandit algorithms for efficient sparsity-constrained optimization.
IEEE transactions on neural networks and learning systems, 28(11):2789–2802, 2017.
[Cited on page 81]

F. N. Ribeiro, L. Henrique, F. Benevenuto, A. Chakraborty, J. Kulshrestha, M. Babaei,
and K. P. Gummadi. Media bias monitor: Quantifying biases of social media news
outlets at scale. In Proceedings of the 12th International AAAI Conference on Web
and Social Media (ICWSM), June 2018. [Cited on page 92]

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathe-
matical Statistics, pages 400–407, 1951. [Cited on page 39]

160

Bibliography

R. E. Robertson, D. Lazer, and C. Wilson. Auditing the personalization and composition
of politically-related search engine results pages. In Proceedings of the 2018 World
Wide Web Conference, 2018. [Cited on page 92]

P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics, 1987. [Cited on
page 107]

P. Sakulkar and B. Krishnamachari. Stochastic contextual bandits with known reward
functions. arXiv preprint arXiv:1605.00176, 2016. [Cited on page 92]

F. Salehi, L. E. Celis, and P. Thiran. Stochastic optimization with bandit sampling.
arXiv:1708.02544, 2017a. [Cited on page 17]

F. Salehi, P. Thiran, and L. E. Celis. Stochastic dual coordinate descent with bandit
sampling. arXiv:1712.03010, 2017b. [Cited on pages 34 and 53]

F. Salehi, P. Thiran, and E. Celis. Coordinate descent with bandit sampling. In Advances
in Neural Information Processing Systems 32, pages 9247–9257, 2018. [Cited on page 61]

B. Sanditov. Essays on Social Learning and Imitation. PhD thesis, Universitaire Pers
Maastricht, 2006. [Cited on pages 4, 14, and 120]

M. Schmidt, R. Babanezhad, M. Ahmed, A. Defazio, A. Clifton, and A. Sarkar. Non-
uniform stochastic average gradient method for training conditional random fields. In
Proceedings of Artificial Intelligence and Statistics, pages 819–828, 2015a. [Cited on
pages 22 and 39]

M. Schmidt, R. Babanezhad, M. Ahmed, A. Defazio, A. Clifton, and A. Sarkar. Non-
uniform stochastic average gradient method for training conditional random fields. In
artificial intelligence and statistics, pages 819–828, 2015b. [Cited on page 23]

S. Shalev-Shwartz and A. Tewari. Stochastic methods for l1-regularized loss minimization.
Journal of Machine Learning Research, 12(Jun):1865–1892, 2011. [Cited on pages 64, 66,
80, and 81]

S. Shalev-Shwartz and T. Zhang. Accelerated mini-batch stochastic dual coordinate
ascent. In Advances in Neural Information Processing Systems, pages 378–385, 2013a.
[Cited on page 62]

S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regu-
larized loss minimization. Journal of Machine Learning Research, 14(Feb):567–599,
2013b. [Cited on pages 62, 65, 66, 68, 73, 81, and 86]

W. Shen, J. Wang, Y.-G. Jiang, and H. Zha. Portfolio choices with orthogonal bandit
learning. In Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015. [Cited on page 2]

161

Bibliography

Z. Shen, H. Qian, T. Zhou, and T. Mu. Adaptive variance reducing for stochastic gradient
descent. In IJCAI, pages 1990–1996, 2016. [Cited on page 23]

H. Shi, S. Tu, Y. Xu, and W. Yin. A primer on coordinate descent algorithms. arXiv
preprint arXiv:1610.00040, 2016. [Cited on page 65]

T. Speicher, M. Ali, G. Venkatadri, F. N. Ribeiro, G. Arvanitakis, F. Benevenuto, K. P.
Gummadi, P. Loiseau, and A. Mislove. Potential for discrimination in online targeted
advertising. In Proceedings of the 1st Conference on Fairness, Accountability and
Transparency. PMLR, 2018. [Cited on page 92]

K. Sridharan. A gentle introduction to concentration inequalities. 2002. [Cited on page 101]

S. Stich, A. Raj, and M. Jaggi. Approximate steepest coordinate descent. In International
Conference on Machine Learning, 2017. [Cited on pages 65 and 81]

R. S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning, volume 135.
MIT press Cambridge, 1998. [Cited on page 11]

B. Szorenyi, R. Busa-Fekete, I. Hegedüs, R. Ormándi, M. Jelasity, and B. Kégl. Gossip-
based distributed stochastic bandit algorithms. In 30th International Conference on
Machine Learning (ICML 2013), volume 28, pages 19–27. Acm Press, 2013. [Cited on
page 124]

C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles.
In Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 448–456. ACM, 2011. [Cited on page 95]

J. Wasilewski and N. Hurley. Incorporating diversity in a learning to rank recommender
system. In FLAIRS Conference, pages 572–578, 2016. [Cited on page 97]

I. Weber, V. R. K. Garimella, and A. Batayneh. Secular vs. islamist polarization in
egypt on twitter. In Proceedings of the 2013 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining. ACM, 2013. [Cited on pages 14 and 92]

L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014. [Cited on pages 18, 19,
23, 44, and 47]

Y. Yan. Mehrotra’s Predictor-Corrector Interior Point Method. https://github.com/
YimingYAN/mpc. [Cited on page 105]

D. Yoo. Individual and social learning in bio-technology adoption: The case of gm corn
in the u.s. In Agricultural & Applied Econ. Association’s Annual Meeting (AAEA),
2012. [Cited on pages 4, 14, 119, and 120]

162

https://github.com/YimingYAN/mpc
https://github.com/YimingYAN/mpc

Bibliography

J. Y. Yu and S. Mannor. Piecewise-stationary bandit problems with side observations.
In Proceedings of the 26th International Conference on Machine Learning (ICML),
2009. [Cited on page 124]

A. Zhang and Q. Gu. Accelerated stochastic block coordinate descent with optimal
sampling. In International Conference on Knowledge Discovery and Data Mining,
pages 2035–2044. ACM, 2016. [Cited on page 65]

C. Zhang, H. Kjellstrom, and S. Mandt. Stochastic learning on imbalanced data: Deter-
minantal point processes for mini-batch diversification. arXiv:1705.00607, 2017. [Cited
on page 22]

J. Zhang, M. S. Ackerman, and L. Adamic. Expertise networks in online communities:
Structures and algorithms. In Proceedings of the World Wide Web Conference (WWW),
2007. [Cited on pages 4, 14, and 120]

Y. Zhang. Bayesian graphical models for adaptive filtering. In PhD Thesis, 2005. [Cited
on pages 104 and 107]

P. Zhao and T. Zhang. Accelerating minibatch stochastic gradient descent using stratified
sampling. arXiv:1405.3080, 2014. [Cited on page 22]

P. Zhao and T. Zhang. Stochastic optimization with importance sampling for regularized
loss minimization. In International Conference on Machine Learning, 2015a. [Cited on
pages 18, 19, 22, 42, 45, 58, 62, 65, 68, and 80]

P. Zhao and T. Zhang. Stochastic optimization with importance sampling for regularized
loss minimization. In Proceedings of International Conference on Machine Learning,
pages 1–9, 2015b. [Cited on pages 20 and 22]

163

Farnood SALEHI
Avenue du-tir Fédéral 22 farnoodsalehi.me

 github.com/F-Salehi
1024 Ecublens salehifarnood@gmail.com

Switzerland +41 (0)78 720 65 62

EDUCATION

2014 – 2019 Swiss Federal Institute of Technology Lausanne (EPFL)
Ph.D. in Computer Science (Machine Learning)

Lausanne, Switzerland

 • Developed methods to improve speed and accuracy of machine learning algorithms. Research topics
include: Optimization, Bayesian Methods, Deep Learning, Online Learning, Knowledge Base Graphs,
Probabilistic Models, Time Series.

2010 – 2014 Sharif University of Technology
B.Sc. in Communication Systems

Tehran, Iran

 • Bachelor project focuses on making network communications robust to attacks using consensus algorithm

• GPA 18.93/20, Rank 4/190.  

PROFESSIONAL EXPERIENCE

SKILLS

Data science Machine Learning, Deep Learning, Optimization, Probabilistic Modelling, Computer Vision.

Programming Python, PyTorch, Pandas , Keras, Spark, Git, Matlab, Bash, SQL, NoSQL, LaTeX.

FELLOWSHIPS, AWARDS & PRIZES

2019 Best paper award at ACM FAT* conference [3]

2014 EDIC 1-year Fellowship (50,000 CHF), EPFL

2010 Silver medal in Iranian national Physics Olympiad

2010 Ranked 30 among 200,000 participants in the nationwide engineering university exam in Iran

LANGUAGES

English (Fluent), German (A2-B1), Turkish (Conversational), Persian (Native)

SUPERVISED STUDENT PROJECTS

 • Nicolas Brandt-Dit-Grieurin, “Grouped SAGA for large models”, 2019.
• Ritabrata Ray, “Optimal Regularizer for the Matrix Factorization”, 2019.
• Gümüs Orcun, “Network alignment using graph embedding”, 2017.
• Delisle Maxime, “Find the best regularizer for Lasso”, 2016.

Summer 2018 Disney Research
Research Intern

Los Angeles, CA, USA

 • Developed a novel scalable hyper-parameter learning algorithm for knowledge graphs.
• The proposed method improves state-of-the-art results by 2% (UAI 2019, [2]).

Summer 2013 The Hong Kong University of Technology
Research Intern

Hong Kong

 • Simulated the performance of wireless networks for different loads of mobile users.

EXPERTISE: Machine Learning • Probabilistic Modeling • Data Mining • Optimization • Bayesian Inference

165

PUBLICATIONS & PREPRINTS

[1] Learning Hawkes Processes from a Handful of Events,
Farnood Salehi*, William Trouleau*, Matthias Grossglauser and Patrick Thiran,
Conference on Neural Information Processing Systems (NeurIPS), 2019.

[2] Augmenting and Tuning Knowledge Graph Embeddings,  
Robert Bamler*, Farnood Salehi* and Stephan Mandt,
Conference on Uncertainty in Artificial Intelligence (UAI), 2019.

[3] Controlling Polarization in Personalization: An Algorithmic Framework (best paper award),  
Elisa Celis, Sayash Kapoor, Farnood Salehi and Nisheeth Vishnoi,  
ACM Conference on Fairness, Accountability, and Transparency (FAT*), 2019.  

[4] Making Variance Reduction more Effective for Deep Networks,  
Nicolas Brandt-Dit-Grieurin, Farnood Salehi and Patrick Thiran,  
NeurIPS Workshop on Beyond First Order Methods in Machine Learning, 2019.  

[5] Coordinate Descent with Bandit Sampling,
Farnood Salehi, Patrick Thiran and Elisa Celis,
Conference on Neural Information Processing Systems (NeurIPS), 2018.

[6] Dictionary Learning Based on Sparse Distribution Tomography,
Pedram Pad*, Farnood Salehi*, Elisa Celis, Patrick Thiran and Michael Unser,
International Conference on Machine Learning (ICML), 2017.

[7] Auctions for Online Advertising with Constraints, 
Elisa Celis, Farnood Salehi and Salman Salamatian, 
Manufacturing & Service Operations Management Society Conference (MSOM), 2017.

[8] Stochastic Optimization with Bandit Sampling,
Farnood Salehi, Patrick Thiran and Elisa Celis,  
arXiv:1708.02544 (currently under review at JMLR).

[9] Learn from the Neighbor: Stochastic and Adversarial Bandits in a Network,
Farnood Salehi and Elisa Celis
Presented at the International Symposium on Mathematical Programming (ISMP), 2015, arXiv:1704.04470.

     

   

    

166

	Acknowledgments
	Abstract / Résumé
	Mathematical Notation
	Introduction
	Motivation
	Multi-armed Bandits
	Framework
	Adversarial Multi-armed Bandit
	Stochastic Multi-armed Bandit

	Outline and Contributions

	Stochastic Gradient Descent with Bandit Sampling
	Introduction
	Preliminaries
	Related Work
	Technical Contributions
	Multi-armed Bandit Sampling

	Combining MABS with Stochastic Optimization Algorithms
	SGD
	First-order Algorithms

	Empirical Evaluation
	Experimental Setup
	Empirical Results for Different Smoothness Ratios
	Empirical Results on Real-World Data
	Stability
	Training Time

	Summary

	Appendix
	Proofs
	Omitted Proofs
	MABS with IS
	Omitted Proofs of Section 2.5

	PSGD
	Definitions

	Coordinate Descent with Bandit Sampling
	Introduction
	Preliminaries
	Related Work
	Technical Contributions
	Marginal Decreases
	Greedy Algorithms (Full Information Setting)
	Bandit Algorithms (Partial Information Setting)

	Empirical Evaluation
	Experimental Setup
	Empirical Results

	Summary

	Appendix
	Basic Definitions
	Basic Definitions

	Proofs

	Controlling Polarization in Personalization
	Introduction
	Groups and Polarization

	Preliminaries
	Polarization in Existing Models
	Constraint setting

	Related Work
	Technical Contributions
	Overview of Algorithm 4.1: Constrained--Greedy
	Alternate Approaches and Special Cases

	Empirical Evaluation
	Experimental Setup
	Empirical Results on Effect of Reducing Polarization on the Reward
	Empirical Results on Polarization Over Time

	Summary

	Appendix
	Constrained-L1-OFUL.
	Laminar Constraints
	Budget Type Constraints

	Learn from Thy Neighbor
	Introduction
	Preliminaries
	Related Work
	Technical Contributions for the Stochastic Setting
	Technical Contributions for the Adversarial Setting
	The EXPN Algorithm
	Comparison to Alternate Approaches
	A Centralized Solution for the Network

	Empirical Evaluation
	Adversarial Setting: Experimental setup
	Adversarial Setting: Empirical Results
	Stochastic Setting: Empirical Results

	Summary

	Appendix
	Adversarial Bandits
	Stochastic Bandits
	UCBN on Complete Graphs
	Lower Bound

	Conclusion
	Bibliography
	Curriculum Vitae

