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Abstract

The radiative decas; — ¢y is one of the benchmark channels in the
physics programme of the LHCb experiment. It allows us tt tes Stan-
dard Model through the indirect measurement of the photdarigzation
in b — sv transitions. The estimation of the statistical error of &ye-
violation parameters obtained with Monte Carlo simulai®presented. It
is shown that the expected statistical uncertainty in thengphoton polar-
ization fraction is~ 0.2 with the2 fb—! of integrated luminosity.
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1 Introduction

Measurements of inclusive radiative B meson dedays> X,y [1] provide an
important test for the Standard Model (SM) and set stringpeninds on physics
beyond the SM [2, 3]. In addition to the rather well predictedusive branch-
ing ratio, which has been studied extensively both experiaily and theoreti-
cally [4, 5], there is a unique feature of this process witte SM which drew
only moderate theoretical attention and which has not yen bested: the emitted
photons are left-handed in radiatiize decays and are right-handedBg decays.
In the SM the photon ib — sv is predominantly left-handed, owing to the— A
coupling ofi¥-bosons. This prediction holds in the SM up to correctionsrder
ms/my, [6]. While measurements of the inclusive radiative decag amree with
SM calculations, the helicity of photons has not yet beensuesl.

In several extensions of the SM the photomir- sy acquires an appreciable
right-handed component owing to a chirality flip along a hyef@ymion line in the
electroweak loop process. Two well-known examples of sxténsions are the
left-right-symmetric model [7] and the unconstrained Mual Supersymmetric
Standard Model [8]. In both classes of models it has been dstraied that the
photons emitted il — sy can be largely right-handed, without affecting the SM
prediction for the inclusive radiative decay rate [9]. Adé@pendent measurement
of the photon helicity therefore is extremely interesting.

Several strategies have been proposed to look for signalbysics beyond
the SM through helicity effects in exclusive radiative desa In one method,
the photon helicity is probed through mixing-inducé@-asymmetries [6]. In
two other schemes, angular distributions in the radiateeagls of polarized\,
baryons [10-12] and iB — Knry [13] or B — ¢K~ [14,15] are studied.

The photon helicity effects are also accessible througlstihway of the time-
dependenfP-asymmetry in thé3, system. In general, the time-dependent rate
of B(B) mesons decaying to a photon and ffe-eigenstatef“* is:

P(By(By) — f7y) oce™! (Cosh % — A% sinh %i

+C cos Am,t F Ssin Amqt) . (1)

The crucial difference between tf andB, systems is the fact tha{T', /T,
is not negligible in theB, case and thus provides a possibility to measdfe
Using the notation from Ref. [6, 16] it can be shown that wittie SM:

S ~ sin 2¢sin @, A® & sin 24 cos ¢, C ~ 0.



Heretan ¢ = )%‘ is related to the fraction of “wrongly”-polarized pho-
tons; andp = 2 arg(V,:V,,) + ¢ r + ¢, is the sum oBB; mixing andCP-odd weak
phases. In the SM, it is expected that< 1. The coefficientS is suppressed
in the B, system compared to tH&” system. Howeverkos o ~ 1 and therefore
A? ~ sin 21, a measurement od* determines the “wrongly”-polarized photon
fraction. Thus the study of the time-dependent rateBof+ ¢y andB, — ¢~y
allows to probe the photon helicity and therefore test th& Structure of weak

interactions in FCNC interactions.

2 Input parameters for the simulation

A toy Monte Carlo (MC) study was performed in order to study ¢atistical er-
ror of S, C, A®. The ROOFIT program [17] was used for modeling probability
distribution functions (PDFs) such as the reconstrugigdhass and time distri-
butions. Event distributions are defined in time and mas®dsions. Events are
generated according to the appropriate PDFs and fitted halsame functional
form.

2.1 The external input parameters

The selection study is presented in Ref. [18]. For a nomieal pf LHCb data-
taking € fb~! of integrated luminosity) the signal yield is expected tohé 1k
eventd. The background-to-signal ratio is expected togo& 0.95 @ 90% CL
(< 0.55 @ 90% CL after the trigger). The parameters used in the analysis are:

e B, meson mass.367 GeV/c? and lifetime1.43 ps [19];
¢ decay rate difference between tBpCP-eigenstatedI’, = 0.084 ps~! [19];
¢ B, oscillation frequencyAm, = 17.77 ps~! [20].

These values are used as input parameters for the toy MC. study

2.2 Signal mass distribution

In Figure 1 the reconstructdsl, candidate invariant mass distribution for decay
Bs — ¢y is shown after all selection cuts are applied. Hiemass resolution is
given by a Gaussian distribution with central vafug7 GeV/c* and resolution
91.7 +£ 1.8 MeV /2.

1The HLT efficiency is not considered.
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Figure 1: Signal mass distribution after the selection.cilitse curve represents
the fit with the Gaussian, described in the text.

2.3 Background mass distribution

For background studies 4 x 107 forward bb-inclusive events are used. There
are only five events left in the wide mass window1(GeV/c?) after the se-
lection cuts [18]. In order to analyze the shape of the bamkgd, some cuts
were therefore released (see Table 1). Cuts used to regdiaitkground from
primary vertices were left unchanged. The loosened selethierefore has an
increased level of the combinatorial background from ofBenesons decays.
The obtained mass distribution is parameterized by an exai with parameter
= —0.80 (GeV/c?)~! (see Figure 2).
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Figure 2: bb-inclusive background mass distribution after relaxe@s@n (see
Table 1). The curve represents the fit with the exponentration, described in
the text.



Table 1: Relaxed selection cuts:

Measurable Selection cut value Relaxed cut value
EL > 2.8 GeV > 2.5 GeV
Alog Ly >3 > 0.5
|Mgx — 1020 MeV /| < 10 MeV/c? < 20 MeV/c?
Ox < 10 mrad < 30 mrad
| cos On| <0.8 <1

The analysis was performed in the mass intetv@l- 6.4 GeV/c? (= 170,,)
The background shape was extracted from the fit of the inveneass distribu-
tion. The parameter of the background mass distributipthe signal meam
and resolutiorns,, and the background-to-signal ratg) are left free in the fit.
The dependence of the errors on these parameters as a fuot@ois shown in
Figure 3.

2.4 Acceptance and the proper time resolution for signal evés

The signal efficiency(¢) as a function of proper time was parameterized as:

(at)®

T (af) ?

es(t) o
Parameters andc are found from the fit to be = 0.7440.09 ps~! andc = 1.86+
0.15 (Figure 4). The possibility to extract the acceptance fiamctrom control
channelB® — K*°~, which is expected to have a similar acceptance function, is
under study.

The proper time resolution for the signal was computed frbendifference
between the measured and the generated proper time distmnigult can be de-
scribed as a double Gaussian with the mean value, consisignzero (2 +
2 fs), resolutions 062 and114 fs and equal weights (see Figure 5).

The proper time resolution is dominated by thevertex resolution. The
¢ vertex is reconstructed with two kaon tracks and the erroit®position in-
creases with the decreasing of the artglehered if the angle between thg and
the B flight direction in theB, rest frame. Signal events are binned bydhalue
and fitted with a single Gaussian. It is found that the widtthaf Gaussian varies
from 60 fs to 120 fs while the angleg) changes fornr to 0 (see Figure 7a). In
Figure 6 (blue solid curves) the fit is shown for four rangeshefangled which
are chosen in order to accumulate events with similar réisols. The parameters
of the fit are summarized in the Table 2.
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Figure 3: Errors on the parametersm, o,, and% obtained from the fit: a) pa-
rameter of the background exponentialb) mean of signal Gaussian, fitted
with the f(z) o« a;\/1 + B/S @ as; ¢) width of signal Gaussian,,, fitted with
the f(z) x a11/1 + B/S & ay; d) background to signal ratif.
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Figure 5: The proper time resolution for signal events pagtie selection cuts.

The proper time resolution can also be described with thélgoGaussian
model with fixed widths §; = 52 fs, 0o = 114 fs) and varying component
fractions (red dashed curves in Figure 6). Thg. dependence on the angles
shown in Figure 7b. As expected, the fraction of core compbdecreases with
decreasing.

Table 2. Parameters of the signal proper time resolutiominbt from the
fits shown in Figure 6: the columns mggnand o give the mean and width
from the single Gaussian fit; the columns mgaand f,.,.. give the mean and
core component fraction from a fit with a double Gaussian rhedsn fixed
widths (0, = 52 fs, 00, = 114 fs).

Plot cos 0 meang, fs o, fs meang, fs feore

a [—1,-0.5) 10+3 59 +3 10+3 0.78 + 0.06
b [—0.5,—0.15) —8+4 66 +4 —6+4 0.66 + 0.06
c [—0.15,0.3) —5+4 88 +4 —44+4 0.37 £ 0.05
d [0.3,1] —18£8 96 + 7 —13£8 0.27 £+ 0.09

A model where the proper time resolution varies with the apgmanglea
between the two kaons from tlledecay was also considered. No advantage has
been found and this approach is technically more difficutt l@ss intuitive.

In order to account for the proper time resolution, whichiegawith the decay
angled the measured per-event proper time errors were considerad. pull
distributions for the four ranges of the anglare shown in Figure 8. Their widths
obtained from Gaussian fits, are represented in Table 3. ePtope errors are
found to be underestimated with an average scale factor+ 0.03 (Figure 9).

The distribution of proper time errors obtained from thetiiine fit to full MC
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Figure 6: Proper time distribution fitted with single Gaass(blue solid curves)
and double Gaussian with = 52 fs, 0o = 114 fs (red dot-dashed curves) for
the four ranges of decay angle Parameters obtained in each fit are described in
Table 2.
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Figure 8: Proper time pull distributions for the four rangdsiecay anglé be-
tweeng and B in B, rest system. Fit results are summarized in Table 3.

o
c

200

150

100

]
o

) _
QT T T T T T T

trec—tpc
ot

Figure 9: Proper time pull distribution for all signal event,,;; = 1.35 £0.03



Table 3: Proper time pull distribution widths for four rasgef angled plotted on
Figure 8

Plot cos 0 mean,,; Opull
a [1,-0.5) 0.22 % 0.08 1.43 + 0.07
b [-0.5,-0.15) —0.15 4 0.07 1.34 + 0.05
c [-0.15,0.3) ~0.04 + 0.06 1.33 + 0.04
d [0.3,1] ~0.08 4 0.10 1.28 + 0.07

simulated signal events is shown in Figure 10a. The nonapetréic probability
density function taken from this distribution is used to gette per-event proper
time errors for signal and background in toy MC studies. lguFés 10(b-d) the
distribution of errors for three ranges of proper time am@ted. The errors in-
crease slightly with the larger proper time values. Thigdfis neglected in the
present study.

2.5 Distribution of background as a function of reconstruced
proper time

The background proper time PDF will be determined from datafthe sidebands
and extrapolated to the signal region. Events obtainedtiwviliull MC simulation
after relaxed selection (see Table 1) have been paranedeasz

(at)®

T(at)c(cle_:l + 026_%),

€b(t) X
where the parameters values are as followsind ¢ are fixed t00.74 ps~* and
1.86, 71 = 0.45 ps, 72 = 8.7 ps, ¢ = 10 andey, = 0.26 (see Figure 11a).

Since the origin of background is found to be different in tiwe sidebands
regions [18], it is natural that the proper time distributis correlated with the
mass. The fraction of the fast exponential component istgréathe high-mass
region (see Figures 11b,12). One of the ways to introdueecttrirelation is to
takec; andc, coefficients as linear functions of mass, in order to obtamaoth
transition between the sidebands:

¢ =ap+a1Am, co = [y + fiAm,

whereAm = m — 5.4 GeV/c%. When dealing with the actual data it is possible
to choose a more complicated functional form which deseribe background
proper time distribution in both sidebands and in the sigegion.
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Figure 10: Proper time errors: a) all signal events pasdiegstlection cuts;
b) for events with proper timé < ¢ < 1.5 ps; c) for events with proper time
1.5 < t < 2.8 ps; d) for events with proper time> 2.8 ps.
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Figure 11: a) Proper time distribution db-inclusive events after the relaxed
selection (see Table 1); b) proper time vs. invariant masgibution for bb-
inclusive events after the relaxed selection cuts.
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Figure 12: Proper time distribution db-inclusive events after the relaxed selec-
tion (see Table 1): a) for left-sideband region with invatimass 4.4-5.1 GeX?;
b) for right-sideband region with invariant mass 5.7-6.4/G&.

The probability density function used for the time and massifution of the
background is:

(at)*

T(alt)c <(OZO + OélAm) 6_% + (ﬂo + ﬁlAm) 6_%) ) (3)

ep(m,t) oc e” ™
The simultaneous fit of background sidebands is performeid the number of
background events corresponding to the segoialues where thé is fixed to
11k. The coefficienty, = 1 is fixed. The results are summarized in Table 4. This
study shows that all generated background parameters beuéktracted from
the data with adequate precision. The values @ndr, are found with accuracy
3 — 5% so they are fixed in the global fit. The other parameters aneiixed or
left free in order to see whether their accuracy influencesdbult.

3 Construction of the likelihood function

In order to distinguish signal and background events, dohmass and time dis-
tributions are exploited. The following notations are aauced to simplify ex-
pressions:

AT
I.(r) = cosh — A®sinh 27,

I (1) = Ccos Amgm — Ssin Amgt

AT

11



Table 4: The errors on the background shape parametersedtaom fitting the
sidebands with various/S ratios. The values of input parameters are specified
in the column “Input value”. The parametes = 1 is fixed.

B/S
| Input value 027 | 055 | 0.95 | 15 | 2
oy 0.041 0.22 0.20 0.17 0.15 0.13
o 0.025 0.0017| 0.0014| 0.0009| 0.0007| 0.0006
51 -0.007 0.005 0.004 0.004 0.003 0.003
W -0.27 0.27 0.23 0.20 0.16 0.14
1/m 2.23 0.06 0.04 0.03 0.025 0.022
1/m 0.118 0.008 0.005 0.005 0.004 0.003

Then probability density functions for each tagging catggois:

{6—1“7 ( )

F k(1 —2w)I_ (T }®Gt—7)()g5(m)
L+

k(1 =2w)I_(7)]} @ G(t' — 1)e(t")dt
+ (1= fo)ep(m, t), (4)

wherex can possess three values= —1 corresponding td,, ~ = 1 to B, and
x = 0 to untagged events. Hepg = S+B is the signal fractionw = 0.30 is a
wrong tagging fraction foB, and B, mesons [21]G(t — 7) is the proper time
resolution functiong,(m) is the normalized mass PDF for signal antin, t) is
the equivalent for the background as discussed in the prswections.

The PDFs were used to construct the likelihood function:

Pe(t,m) =

NBb NBD Nuntagged

HP— m17t270t2 HPI m17t270t2 H PO(mivti7Uti)7 (5)

i=1 =1

wherem;,, t;, o, are the measured mass, proper time and proper time error for
each event, correspondingly. Here the information of thegrated decay rate is
not used. Due to the faB oscillations this information has no significant impact
on the likelihood function. The number of events in eachgatg is expected to
be: NBS = NBS = %gtagNtotals andNuntagged = (]- - 6tag)]vtotal- HerEEmg is
the combined tagging efficiency f@, and B, mesons which is expected to be
€iag = 0.610 £ 0.002 [21]. As a simplification this MC study has been made
assuming a single tagging category. Considering multguyging categories has
the potential to improve the results handC parameters which depend on the
tagging. In Ref. [21] an improvement correspondin@4&: further statistics was
seen by changing from a single to multiple tagging categorie

12



The values ofl’, AT, Am, and their experimental errors will be taken from
other LHCb measurements [22, 23].

4 The statistical uncertainty in C' P-asymmetry

A fast MC simulation was performed to estimate the stats#cror of the mea-
surement of theS, C, A%, using as input, the signal yield, background to signal
ratio, proper time acceptance functions and resolutiooms fthe full simulation
described in Section 2. This was done in the following steps :

e describe the signal and background distribution variabidsa probability
density function (PDF): signal mass shape as it is desciib&ection 2.2,
signal acceptance eqn. (2), the signal proper time resolutefined with
measured proper time errors from Figure 10a which was stgléue factor
1.35 according to the pull distribution of Figure 9, backgrd time and
mass distribution eqgn. (3);

e generate Monte Carlo events with 11k signal events corretipg to2 /v
integrated luminosity and with the background to signalbrét55 in the
narrow mass window 5.2-5.6 Ge)/according to those PDFs;

e perform simultaneous fit with both tagged and untagged sweith the
likelihood function (5): while tagged events define theandC, untagged
events give the information aboudt™ only;

o fix the values ofA m,, I', A" and also the signal acceptance, tagging effi-
ciencies, background “lifetimes?, 7, in the fit and allow to vary the rest
of the parameters;

e repeat the above steps (each called an ‘experimént1)?) times.

For each experiment the fitted values®fC and.4* were extracted. The statis-
tical uncertainties on the paramet&fsC and.A® were obtained from the distri-
butions of their corresponding fitted values (see Figurel,8a The distributions
were fitted with Gaussian functions. No significant biasdh véspect to the input
values were found. The resolutions of the Gaussian fits tdigtebutions of fitted
values were used as a measure of the statistical unceriaitity parameters:

o(A®) = 0.217 4+ 0.002
o(S) = 0.1144+0.001
o(C) = 0.11540.001

13
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Figure 13: The distribution of fitted values 8f C and.A> (pictures a,b,c) from
toy Monte Carlo simulations. The correlation between$he® and.A* in these
experiments (pictures d,e,f).



The correlation matrix is estimated to be (see Figure 18d,e,
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Figure 14: The pull distributions of fitted values®f C and.4* from toy Monte
Carlo simulations.

5 Stability test

The behavior of the statistical errors was explored by vayyne values of exter-
nal parameters one at a time.

5.1

The statistical uncertainty in thé P-violation parameters is studied as the func-
tion of the background to signal ratio. The dependence aofigeity is shown

Influence of the background to signal ratio

15



in Figure 15. Red points indicate the statistical uncetiénwvhich correspond to
the upper limit ab0% CL on background to signal ratio [18]. The obtained points
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Figure 15: The estimated uncertainties in paramgt@) and 4> (b) as functions
of the background to signal ratio in the 5.2-5.6 Ge\fftass window

are fitted with thef(B/S) x a1+/1+ B/S & ay, which describes the expected
dependence on background level quite well.

5.2 Background shape

The background shape cannot be determined precisely frenavhilable MC
sample. Therefore the basic model was varied in order torstedel whether
it is important for the final result. The relative fraction sffort- and long-lived
components was first varied (see Figure 16a). The blue saticeaepresents the
main model used in the simulation. In the case when the vel&taction of short-
lived component was doubled (green dashed curve) the eotaimcertainties are:

o(A%) = 0.208 £ 0.008
o(S) = 0.110 % 0.002.

If this fraction is decreased twofold, the statistical esrare:

o(A*) = 0.205 £ 0.009
o(S) = 0.111 4 0.003.

The absolute fraction of short-lived component was thereased twofold which
also increases the total amount of background by 35% (seed-igb red dashed
curve) and the uncertainties are:

o(A%) 0.220 £ 0.009
o(S) = 0.116 4 0.003.

16



When the short-lived component is decreased twofold (sp&€&il6b green dashed
curve) the result is:

o(A%) = 0.203+0.008
o(S) = 0.108£0.003

With reasonable variations of the background shape, thiststal uncertainty
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200
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Figure 16: Proper time distribution modellgf-inclusive events: blue solid curve
corresponds to the main model obtained from full Monte Cartaulation; a)
red dashed upper curve represents the case when relatitieriraf short-living
to long-living component is doubled, green dashed loweveshows the distri-
bution when this fraction is decreased twofold; b) red ddskmer curve corre-
sponds to case when absolute fraction of short-living edotbled, green dashed
lower curve represents the model when this fraction is lesgéwofold.

in CP-observables stays at the same level. In case the backgdisinidbution
differs somehow from the expected, the result should nosmsignificantly.

5.3 The proper time resolution

The uncertainty inS, C and A* was additionally studied as a function of the
proper time resolution. Here the resolution was taken asuheof two Gaussians
with widths 52 fs and114 fs. When the proportion between narrow and wide
resolution components is changed, the statistical uriogrtan the S term was
found to vary from 0.30 to 0.08 (see Figure 17a), whereasxpeated uncertainty
in A2 was not affected and stays equakid).21.

The statistical uncertainty i® depends on thé\I', /T’y in B, system (see
Figure 17b). The obtained points are fitted with the

f(AT/T,) o< ai (AL, /T5) ™ @ ay

17
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Figure 17: a) The statistical uncertainty in parameétes a function of the fraction
feore Of NArrow @ = 52 fs, wideo, = 114 fs) time resolution component; b) the
statistical uncertainty id® as a function of the\I', /T',.

which is consistent with the observed behavior. A valg,/T'; = 0.12 was
taken for this study. This is marked with square red poinhafigure.

6 Conclusions

The fast MC simulation was performed to estimate the stedilserror of the
measurement of thé, C and A® parameters using as input the signal yield,
background-to-signal ratio, proper time acceptance fanstand resolutions from
the B, — ¢y sample. We have estimated the uncertaintied™ S andC to be
0.22, 0.11 and0.12, correspondingly, with the signal yield 11&[", /Ty = 0.12
and using a conservative estimate for background-to-kigtia B/S = 0.55 in
the 5.2-5.6 Ge\ mass window.

It has been demonstrated that the uncertaintie® i and.A* have a moder-
ate dependence on the overall background level. Howevdrablkeground com-
position does not affect the expected uncertainties sggmfly. The proper time
resolution affects drastically the uncertaintiessiandC, while the uncertainty in
A? has only a moderate dependence on the proper time resolitierstatistical
error onA» is roughly inversely proportional taT', /', assuming that\T', /T,
is well measured elsewhere.
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Appendix

The theoretical decay widths fd&, — ¢y and B, — ¢~ can be conventionally
parameterized as follows:

ATt ATt
[, g, (7) = |A]Pe " (cosh — = A% sinh 5 + C cos Amgt — S sin Amyt)

ATt ATt
g, oy (T) = |A|2e " (cosh — A? sinh — C cos Amgt + S sin Amyt)

Observed rate foB, — ¢ :

R(t) = 5mg(/[(1 — W),y (T) +wl'p, 4, (T)]e(T)G (T — t)dT + %B(t)) =

oIt oIt
= Etag(/ | Al2e " (cosh - - A2 sinh 7+

+(1 — 2w)C cos Amt — (1 — 2w)S sin Amgt)e(7)G (T — t)dT + %B(t))
ForB, — ¢ :

R(t) = 5tag(/[wFBS_>¢7(T) + (1 =w)l'g, gy, (7)]e(T)G(T = t)dT + - B(t)) =
= Etag(/ | A|2e " (cosh % — A® sinh %—

—(1 = 2w)C cos Amgt + (1 — 2w)S sin Amyt))e(T)G(T — t)dT + %B(t))
Untagged rate:

Runtaggea(t) = (1 = €tag)( / [PBoy (T) + T,y (T)le(M)G(T = )dr + B(1)) =

=(1- 5mg)(/ |A|?e ™" (cosh % — A% sinh %)5(7’)(?(7’ —t)dT + B(t))
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