
Robust Reinforcement Learning via
Adversarial training with Langevin Dynamics

Parameswaran Kamalaruban 1 Yu-Ting Huang 1 Ya-Ping Hsieh 1 Paul Rolland 1 Cheng Shi 1 Volkan Cevher 1

Abstract
We introduce a sampling perspective to tackle
the challenging task of training robust Reinforce-
ment Learning (RL) agents. Leveraging the pow-
erful Stochastic Gradient Langevin Dynamics, we
present a novel, scalable two-player RL algorithm,
which is a sampling variant of the two-player pol-
icy gradient method. Our algorithm consistently
outperforms existing baselines, in terms of gener-
alization across different training and testing con-
ditions, on several MuJoCo environments. Our ex-
periments also show that, even for objective func-
tions that entirely ignore potential environmental
shifts, our sampling approach remains highly ro-
bust in comparison to standard RL algorithms.

1. Introduction
Reinforcement learning (RL) promise automated solutions
to many real-world tasks with beyond-human performance.
Indeed, recent advances in policy gradient methods (Sut-
ton et al., 2000; Silver et al., 2014; Schulman et al., 2015;
2017) and deep reinforcement learning have demonstrated
impressive performance in games (Mnih et al., 2015; Silver
et al., 2017), continuous control (Lillicrap et al., 2015), and
robotics (Levine et al., 2016).

Despite the success of deep RL, the progress is still upset
by the fragility in real-life deployments. In particular, the
majority of these methods fail to perform well when there
is some difference between training and testing scenarios,
thereby posting serious safety and security concerns. To this
end, learning policies that are robust to environmental shifts,
mismatched configurations, and even mismatched control
actions are becoming increasingly more important.

A powerful framework to learning robust policies is to inter-
pret the changing of the environment as an adversarial per-
turbation. This notion naturally lends itself to a two-player
max-min problem involving a pair of agents, a protagonist

1LIONS, EPFL, Switzerland. Correspondence to: P. Ka-
malaruban <kamalaruban.parameswaran@epfl.ch>.

Preprint.

and an adversary, where the protagonist learns to fulfill the
original task goals while being robust to the disruptions
generated by its adversary. Two prominent examples along
this research vein, differing in how they model the adver-
sary, are the Robust Adversarial Reinforcement Learning
(RARL) (Pinto et al., 2017) and Noisy Robust Markov
Decision Process (NR-MDP) (Tessler et al., 2019).

Despite the impressive empirical progress, the training of
the robust RL objectives remains an open and critical chal-
lenge. In particular, (Tessler et al., 2019) prove that it is
in fact strictly suboptimal to directly apply (deterministic)
policy gradient steps to their NR-MDP max-min objectives.
Owing to the lack of a better algorithm, the policy gradient
is nonetheless still employed in their experiments; similar
comments also apply to (Pinto et al., 2017).

The main difficulty originates from the highly non-convex-
concave nature of the robust RL objectives, posing sig-
nificant burdens to all optimization methods. In game-
theoretical terms, these methods search for pure Nash Equi-
libria (pure NE) which might not even exist (Dasgupta &
Maskin, 1986). Worse, even when pure NE are well-defined,
we show that optimization methods can still get stuck at non-
equilibrium stationary points on certain extremely simple
non-convex-concave objectives; cf. Section 4.

In this paper, we contend that, instead of viewing robust
RL as a max-min optimization problem, the sampling per-
spective (Hsieh et al., 2019) from the so-called mixed Nash
Equilibrium (mixed NE) presents a potential solution to the
grand challenge of training robust RL agents. We substanti-
ate our claim by demonstrating the advantages of sampling
algorithms over-optimization methods on three fronts:

1. We show in Section 4 that, even in stylized examples
that trap the common optimization methods, the sam-
pling algorithms can still make progress towards the
optimum in expectation, even tracking the NE points.

2. We conduct extensive experiments to show that sam-
pling algorithms consistently outperform state-of-the-
arts in training robust RL agents. Moreover, our ex-
periments on the MuJoCo dataset reveal that sampling
algorithms are able to handle previous failure cases of
optimization methods, such as the inverted pendulum.

ar
X

iv
:2

00
2.

06
06

3v
1

 [
cs

.L
G

]
 1

4
Fe

b
20

20

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

3. Finally, we provide strong empirical evidence that sam-
pling algorithms are inherently more robust than opti-
mization methods for RL. Specifically, we apply sam-
pling algorithms to train an RL agent with non-robust
objective (i.e., the standard expected cumulative re-
ward maximizing objective in RL), and we compare
against the policy learned by optimizing the robust ob-
jective (i.e., the max-min formulation). Despite the
disadvantage, our results show that the sampling algo-
rithms still achieve comparable or better performance
than optimization methods (see Figures 14 and 15).

2. Background
2.1. Stochastic Gradient Langevin Dynamics (SGLD)

For any probability distribution p (z) ∝ exp (−g (z)), the
Stochastic Gradient Langevin Dynamics (SGLD) (Welling
& Teh, 2011) iterates as

zk+1 ← zk − η
[
∇̂zg (z)

]
z=zk

+
√

2ηεξk, (1)

where η is the step-size, ∇̂zg (z) is an unbiased estimator
of ∇zg (z), ε > 0 is a temperature parameter, and ξk ∼
N (0, I) is a standard normal vector, independently drawn
across different iterations. In some cases, the convergence
rate of SGLD can be improved by scaling the noise using
a positive-definite symmetric matrix C. We thus define a
preconditioned variant of the above update (1) as follows:

zk+1 ← zk−ηC−1
[
∇̂zg (z)

]
z=zk

+
√

2ηεC−
1
2 ξk. (2)

In the experiments, we use a RMSProp-preconditioned ver-
sion of the SGLD (Li et al., 2016).

2.2. Saddle Point Problems and Pure NE

Consider the following Saddle Point Problem (SPP):

max
θ∈Rn

min
ω∈Rm

f(θ, ω). (3)

Solving (3) equals finding a point (θ?, ω?) such that

f(θ, ω?) ≤ f(θ?, ω?) ≤ f(θ?, ω), ∀θ ∈ Rn, ω ∈ Rm.
(4)

In the language of game theory, we say that (θ?, ω?) is a
pure Nash Equilibrium (pure NE). If (4) holds only locally,
we say that (θ?, ω?) is a local pure NE.

A major source of SPPs is the Generative Adversarial Net-
works (GANs) in deep learning (Goodfellow et al., 2014),
which give rise to a variety of algorithms. However, virtually
all search for a (local) pure NE; see Section 4.1.

Algorithm 1 MixedNE-LD

Input: step-size {ηt}Tt=1, thermal noise {εt}Tt=1,
warmup steps {Kt}Tt=1, exponential damping factor β.
Initialize (randomly) ω1, θ1

for t = 1, 2, . . . , T − 1 do
ω̄t, ω

(1)
t ← ωt ; θ̄t, θ

(1)
t ← θt

for k = 1, 2, . . . ,Kt do
ξ, ξ′ ∼ N (0, I)

θ
(k+1)
t ← θ

(k)
t + ηt

̂
∇θh

(
θ

(k)
t , ωt

)
+
√

2ηtεtξ

ω
(k+1)
t ← ω

(k)
t − ηt

̂
∇ωh

(
θt, ω

(k)
t

)
+
√

2ηtεtξ
′

ω̄t ← (1− β) ω̄t + βω
(k+1)
t

θ̄t ← (1− β) θ̄t + βθ
(k+1)
t

end for
ωt+1 ← (1− β)ωt + βω̄t
θt+1 ← (1− β) θt + βθ̄t

end for
Output: ωT , θT .

2.3. Sampling for Mixed NE

In this section, we review some of the key results from
(Hsieh et al., 2019). We denote the set of all probability
measures on Z by P (Z), and the set of all functions on
Z by F (Z). Given a (sufficiently regular) function h :
Θ×Ω→ R, consider the following objective (a two-player
game with mixed strategies):

max
p∈P(Θ)

min
q∈P(Ω)

f (p, q) := E
θ∼p

[
E
ω∼q

[h (θ, ω)]

]
. (5)

A pair (p?, q?) achieving the max-min value in (5) is called
a mixed Nash Equilibrium (mixed NE).

Conceptually, problem (5) can be solved via several infinite-
dimensional algorithms, such as the so-called entropic mir-
ror descent or mirror-prox; see (Hsieh et al., 2019). How-
ever, these algorithms are infinite-dimensional and require
infinite computational power to implement. For practical
interest, by leveraging the SGLD sampling techniques and
using some practical relaxations, Hsieh et al. (2019) features
a simplified variant of these infinite-dimensional algorithms.

For the robust RL formulation (5), it suffices to use the
simplest algorithm in (Hsieh et al., 2019). The pseudocode
for their resulting algorithm, termed MixedNE-LD (mixed
NE via Langevin dynamics), can be found in Algorithm 1.

3. Two-Player Markov Games
Markov Decision Process: We consider a Markov
Decision Process (MDP) represented by M1 :=
(S,A, T1, γ, P0, R1), where the state and action spaces are

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

denoted by S and A respectively. We focus on continu-
ous control tasks, where the actions are real-valued, i.e.,
A = Rd. T1 : S × S × A → [0, 1] captures the state tran-
sition dynamics, i.e., T1 (s′ | s, a) denotes the probability
of landing in state s′ by taking action a from state s. Here
γ is the discounting factor, P0 : S → [0, 1] is the initial
distribution over S, and R1 : S ×A → R is the reward.

Two-Player Zero-Sum Markov Games: Consider a two-
player zero-sum Markov game (Littman, 1994; Perolat et al.,
2015), where at each step of the game, both players simul-
taneously choose an action. The reward each player gets
after one step depends on the state and the joint action of
both players. Furthermore, the transition kernel of the game
is controlled jointly by both players. In this work, we only
consider simultaneous games, not the turn-based games.

This game can be described by an MDP M2 =
(S,A,A′, T2, γ, R2, P0), where A and A′ are the con-
tinuous set of actions the players can take, T2 : S ×
A × A′ × S → R is the state transition probability, and
R2 : S × A × A′ → R is the reward for both players.
Consider an agent executing a policy µ : S → A, and an
adversary executing a policy ν : S → A′ in the environ-
mentM. At each time step t, both players observe the state
st and take actions at = µ (st) and a′t = ν (st). In the
zero-sum game, the agent gets a reward rt = R2 (st, at, a

′
t)

while the adversary gets a negative reward −rt.

This two-player zero-sum Markov game formulation has
been used to model the following robust RL settings:

• Robust Adversarial Reinforcement Learning
(RARL) (Pinto et al., 2017), where the power of the
adversary is limited by its action space A′.

• Noisy Robust Markov Decision Process (NR-
MDP) (Tessler et al., 2019), where A′ =
A, T2 (st+1 | st, at, a′t) = T1 (st+1 | st, āt), and
R2 (st, at, a

′
t) = R1 (st, āt), with āt = (1 − δ)at +

δa′t, for a chosen δ ∈ (0, 1), which limits the adversary.

In our adversarial game, we consider the following perfor-
mance objective:

J (µ, ν) = E

[∞∑
t=1

γt−1rt

∣∣∣∣ µ, ν,M2

]
,

where
∑∞
t=1 γ

t−1rt be the random cumulative return.
In particular, we consider the parameterized policies
{µθ : θ ∈ Θ}, and {νω : ω ∈ Ω}. By an abuse of notation,
we denote J (θ, ω) = J (µθ, νω). We consider the follow-
ing objective:

max
θ∈Θ

min
ω∈Ω

J (θ, ω) . (6)

Note that J is non-convex-concave in both θ and ω. Instead
of solving (6) directly, we focus on the mixed strategy for-
mulation of (6). In other words, we consider the set of all
probability distributions over Θ and Ω, and we search for
the optimal distribution that solves the following program:

max
p∈P(Θ)

min
q∈P(Ω)

f (p, q) := E
θ∼p

[
E
ω∼q

[J (θ, ω)]

]
. (7)

Then, we can use the techniques from Section 2.3 to solve
the above problem.

4. Simple Non-Convex-Concave SPPs
In Section 3, we have formulated the robust RL problems in
either its pure strategy form (6) and mixed strategy form (7).

The goal of the present section is to demonstrate that solv-
ing (7) as a sampling problem has superior performance
over methods that seek pure NE for non-convex-concave
SPPs. We do so by providing theoretical and empirical justi-
fications on several simple, yet nontrivial, low-dimensional
examples.

Pseudocodes for all algorithms in the section and the omitted
proofs can be found in Appendix A.

4.1. Existing Algorithms

We will consider three algorithmic frameworks:

1. GAD: Finding pure NE via Gradient ascent-descent.

2. EG: Finding pure NE via Extra-gradient methods.

3. MixedNE-LD: Finding mixed NE via Algorithm 1.

Most existing methods to solving SPPs in deep learning can
be classified as (adaptive) variants of these frameworks. For
instance, Adam, being an adaptive version of GAD, is the
predominant algorithm when it comes to learning GANs
(Lucic et al., 2018), which was also employed by (Tessler
et al., 2019) to train robust RL agents. EG was originally
developed by Korpelevich in 1976 to solve variational in-
equalities for convex problems, and was recently shown
to outperform (adaptive) GAD when it comes to training
GANs (Gidel et al., 2018). Finally, the MixedNE-LD frame-
work was recently put forth by Hsieh et al. (2019), whose
defining feature is to sample from the mixed NE.

We now turn to the objectives.

4.2. Degree-2 Polynomials: Stationary Points v.s. NE

Consider the lowest possible dimension for an SPP:
θ, ω ∈ R. We aim to construct nontrivial examples where
there exist stationary points that are not NE. To this end, we

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

GAD
NE

EG
= 0.5

MixedNE-LD
Start

0 20 40 60 80 100
t

0.25

0.20

0.15

0.10

0.05

0.00

f(
,

)

(a) f(θt, ωt), away from NE.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b) (θt, ωt), away from NE.

0 200 400 600 800 1000 1200
t

0.2

0.0

0.2

0.4

0.6

0.8

f(x
,y

)

(c) f(θt, ωt), close to NE.

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d) (θt, ωt), close to NE.

Figure 1. f(θ, ω) = θ2ω2 − θω. The NE is (0, 0) with reward value 0. The dashed curve θω = 0.5 describe all stationary points that are
not NE. (a), (b) shows the objective value and the training dynamics when initializing far away from NE. (c), (d) shows the objective
value and the training dynamics when (θ1, ω1) is initializing close to NE.

0 20 40 60 80 100
t

0.00

0.05

0.10

0.15

0.20

0.25

f(
,

)

(a) f(θt, ωt), away from NE.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b) (θt, ωt), away from NE.

0 200 400 600 800 1000 1200
t

0.6

0.4

0.2

0.0

0.2

f(
,

)

(c) f(θt, ωt), close to NE.

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d) (θt, ωt), close to NE.

Figure 2. f(θ, ω) = θy − θ2ω2. The NE is (0,0) with reward value 0. The dashed curve θω = 0.5 are stationary points that are not NE.
(a), (b) shows the objective value and the training dynamics when initializing far away from NE. (c), (d) shows the objective value and the
training dynamics when initializing close to NE.

0 25 50 75 100 125 150 175 200
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

f(
,

)

(a) f(θt, ωt), away from NE.

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) (θt, ωt), away from NE.

0 25 50 75 100 125 150 175 200
t

0.00

0.01

0.02

0.03

0.04

0.05

0.06

f(
,

)

(c) f(θt, ωt), close to NE.

0.7 0.6 0.5 0.4 0.3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(d) (θt, ωt), close to NE.

Figure 3. f(θ, ω) = θ2ω2. The NE are represented with the line {(θ, 0) | θ arbitrary} with reward value 0. (a), (b) shows the objective
value and the training dynamics when initializing far away from NE. (c), (d) shows the objective value and the training dynamics when
initializing close to NE.

may simply use the degree-2 polynomials:

max
θ∈[−2,2]

min
ω∈[−2,2]

f(θ, ω) = θ2ω2 − θω (8)

and
max

θ∈[−2,2]
min

ω∈[−2,2]
f(θ, ω) = θω − θ2ω2. (9)

The constraint interval [−2, 2] is included only for ease of
presentation; it has no impact on our conclusion. Moreover,
the following facts can be readily verified:

• The pure and mixed NE are the same: (0, 0).

• The curve {(θ, ω) | θω = 0.5} presents stationary
points that are not NE.

4.3. Main Result

We now present the main result in this section.

Theorem 1. Consider the (continuous-time) GAD and EG
dynamics: [

dθ
dt (t)
dω
dt (t)

]
=

[
∇θf(θ, ω)
−∇ωf(θ, ω)

]
(10)

where f(θ, ω) is either (8) or (9). (Note that GAD and
EG are different discretizations of the same continuous-time
process (Diakonikolas & Orecchia, 2019).) Suppose that the
initial point (θ(0), ω(0)) is far away from NE: θ(0) ·ω(0) >
0.5. Then (10) converges to a non-equilibrium stationary

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

point on {θω = 0.5}.

On the other hand, even when initialized at a stationary
point such that θ1 · ω1 = 0.5, the MixedNE-LD still de-
creases the distance to NE in expectation:

Eθ3 · ω3 = θ1ω1 − 4η2
(
η
(
θ2

1 + ω2
1

)
+ 14η2

)
< θ1 · ω1

(11)
where η is the step-size, and the expectation is over the
randomness of the algorithm.

In words, depending on the initialization, the (continuous-
time) training dynamics of GAD and EG will either get
trapped by non-equilibrium stationary points, or converge to
NE. In contrast, the MixedNE-LD is always able to escape
non-equilibrium stationary points in expectation.

Figures 1 and 2 demonstrate the empirical behavior of the
three algorithms, which is in perfect accordance with the
theory. When initialized far away from NE, Figure (1a),
(1b), (2a), and (2b) show that GAD and EG get trapped by
local stationary points, while MixedNE-LD is able to escape
after staying a few iterations near the non-equilibrium states.
On the other hand, if initialized sufficiently close to NE,
then EG tends to perform better than GAD, as indicated by
previous work; see Figure (1c), (1d), (2c), (2d).

Finally, one can ask whether the negative results for GAD
and EG are sensitive to the choice of step-size. For instance,
we have implemented the vanilla GAD and EG, while in
practice one always uses adaptive step-size based on approx-
imate second-order information (Duchi et al., 2011; Kingma
& Ba, 2014). However, our next theorem shows that, even
with perfect second-order information, the training dynam-
ics of GAD and EG still are unable to escape stationary
points.

Theorem 2. Consider the Newton’s dynamics for solving
either (8) or (9):

[
dθ
dt (t)
dω
dt (t)

]
=

[
∇2
θf(θ, ω) 0

0 ∇2
ωf(θ, ω)]

]−1 [∇θf(θ, ω)
−∇ωf(θ, ω)

]
.

(12)
Then we have θ(t) · ω(t) = θ(0) · ω(0).

A consequence of of Theorem 2 is that if we initialize at
any point such that θ(0) · ω(0) 6= 0, the training dynam-
ics will remain far away from (0, 0), which is the desired
NE. Indeed, in Section 5, we shall see that MixedNE-LD
outperforms GAD and EG even with adaptivity.

4.4. A Digression: Sampling v.s. Optimization

We would like to demonstrate an additional intriguing be-
havior of the sampling nature of MixedNE-LD, which we
deem as a benefit over deterministic optimization algorithms.

Consider the following SPP:

max
θ∈[−2,2]

min
ω∈[−2,2]

f(θ, ω) = θ2ω2. (13)

This is a simple SPP where the stationary points
{(θ, 0) | θ ∈ [−2, 2]} are all NE. Consequently, both
GAD and EG succeed in finding an NE, regardless of the
initialization; see Figure 3.

The MixedNE-LD, nonetheless, does something slightly
more than finding an NE: The MixedNE-LD explores among
all the NE, inducing a distribution on the set of all equilibria;
see Figure (3b) and (3d). As exploration is a desirable prop-
erty in RL, our experiments illustrate yet another advantage
of pursuing the mixed NE over pure NE.

5. Experiments
In this section, we demonstrate the effectiveness of using the
MixedNE-LD framework to solve the robust RL problem.

5.1. Off-Policy (DDPG) Experiments

Two-Player DDPG: As a case study, we consider NR-
MDP setting with δ = 0.1 (as recommended in Section 6.3
of (Tessler et al., 2019)). We design a two-player variant
of DDPG (Lillicrap et al., 2015) algorithm by adapting the
Algorithm 1. As opposed to standard DDPG, in two-player
DDPG two actor networks output two deterministic policies,
the protagonist and adversary policies, denoted by µθ and
νω. The critic is trained to estimate the Q-function of the
joint-policy. The gradients of the protagonist and adversary
parameters are given in Proposition 5 of (Tessler et al., 2019).
The resulting algorithm is given in Algorithm 3.

We compare the performance of our algorithm against the
baseline algorithm proposed in (Tessler et al., 2019) (see Al-
gorithm 4 with GAD). (Tessler et al., 2019) have suggested a
training ratio of 1 : 1 for actors and critic updates. Note that
the action noise is injected while collecting transitions for
the replay buffer. In (Fujimoto et al., 2018), authors noted
that the action noise drawn from the Ornstein-Uhlenbeck
(Uhlenbeck & Ornstein, 1930) process offered no perfor-
mance benefits. Thus we also consider uncorrelated Gaus-
sian noise. In addition to the baseline from (Tessler et al.,
2019), we have also considered another baseline, namely
Algorithm 4 with Extra-Adam (Gidel et al., 2018).

Setup: We evaluate the performance of Algorithm 3 and
Algorithm 4 (with GAD and Extra-Adam) on standard
continuous control benchmarks available on OpenAI Gym
(Brockman et al., 2016) utilizing the MuJoCo environment
(Todorov et al., 2012). Specifically, we benchmark on
eight tasks: Walker, Hopper, Half-Cheetah, Ant, Swim-
mer, Reacher, Humanoid, and InvertedPendulum. Details of

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

0.5 0.75 1.0 1.5 2.0
Relative mass

300

400

500

600

700

800

900
Re

wa
rd

Walker2d-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

400

200

0

200

400

600

800

1000

Re
wa

rd

HalfCheetah-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

400

500

600

700

800

900

Re
wa

rd

Hopper-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

0

100

200

300

400

500

600

Re
wa

rd

Ant-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

15

20

25

30

35

40

45

50

Re
wa

rd

Swimmer-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

11

10

9

8

7

Re
wa

rd

Reacher-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

100

200

300

400

500

Re
wa

rd

Humanoid-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

500

600

700

800

900

1000

Re
wa

rd

InvertedPendulum-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

Figure 4. Average performance (over 5 seeds) of Algorithm 3, and Algorithm 4 (with GAD and Extra-Adam), under the NR-MDP setting
with δ = 0.1. The evaluation is performed without adversarial perturbations, on a range of mass values not encountered during training.

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

0.5 0.75 1.0 1.5 2.0
Relative mass

300

400

500

600

700

800
Re

wa
rd

Walker2d-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

0

200

400

600

800

Re
wa

rd

HalfCheetah-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

350

400

450

500

550

Re
wa

rd

Hopper-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

400

500

600

700

800

Re
wa

rd

Ant-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

20

25

30

35

40

Re
wa

rd

Swimmer-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

9.5

9.0

8.5

8.0

7.5

Re
wa

rd

Reacher-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

100

150

200

250

300

350

400

450

Re
wa

rd

Humanoid-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

300

400

500

600

700

800

900

1000

Re
wa

rd

InvertedPendulum-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

Figure 5. Average performance (over 5 seeds) of Algorithm 3, and Algorithm 4 (with GAD and Extra-Adam), under the NR-MDP setting
with δ = 0. The evaluation is performed without adversarial perturbations, on a range of mass values not encountered during training.

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

these environments can be found in (Brockman et al., 2016)
and on the GitHub website.

The Algorithm 3 implementation is based on the codebase
from (Tessler et al., 2019). For all the algorithms, we use a
two-layer feedforward neural network structure of (64, 64,
tanh) for both actors (agent and adversary) and critic. The
optimizer we use to update the critic is Adam (Kingma &
Ba, 2015) with a learning rate of 10−3. The target networks
are soft-updated with τ = 0.999.

For the GAD baseline, the actors are trained with RMSProp
optimizer. For our algorithm (MixedNE-LD), the actors
are updated according to Algorithm 1 with warmup steps
Kt = min

{
15, b(1 + 10−5)tc

}
, and thermal noise σt =

σ0 × (1 − 5 × 10−5)t. The hyperparameters that are not
related to exploration (see Table 1) are identical to all the
algorithms that are compared.

And we tuned only the exploration-related hyperparam-
eters (for all the algorithms) by grid search: (a) Al-
gorithm 3 with (σ0, σ) ∈

{
10−2, 10−3, 10−4, 10−5

}
×

{0, 0.01, 0.1, 0.2, 0.3, 0.4} ; (b) Algorithm 4 with
σ ∈ {0, 0.01, 0.1, 0.2, 0.3, 0.4}. For each algorithm-
environment pair, we identified the best performing explo-
ration hyperparameter configuration (see Tables 2 and 3).

Each algorithm is trained on 0.5M samples (i.e., 0.5M time
steps in the environment). We run our experiments, for each
environment, with 5 different seeds. The exploration noise
is turned off for evaluation.

Evaluation: We evaluate the robustness of all the algo-
rithms under different testing conditions, and in the presence
of adversarial disturbances in the testing environment. We
train the algorithms with the standard mass variables in Ope-
nAI Gym. At test time, we evaluate the learned policies
by changing the mass values (without adversarial perturba-
tions) and estimating the cumulative rewards. As shown in
Figure 4, our Algorithm 3 outperforms the baselines Algo-
rithm 4 (with GAD and Extra-Adam) in terms of robustness.
Note that we obtain superior performance on the inverted
pendulum, which is a failure case for (Tessler et al., 2019).
We also evaluate the robustness of the learned policies under
both test condition changes, and adversarial disturbances
(see Figures 6 and 7 in Appendix B).

One-Player DDPG: We evaluate the robustness of one-
player variants of Algorithm 3, and Algorithm 4 (with GAD
and Extra-Adam), i.e., we consider the NR-MDP setting
with δ = 0. In this case, we set Kt = 1 for Algorithm 3
(this choice of Kt makes the computational complexity
of both algorithms equal). The results are presented in
Figures 5, 8, and 9 (cf. Appendix B).

Here, we remark that Algorithm 3 with δ = 0, and Kt = 1

is simply the standard DDPG with actor being updated by
preconditioned version of SGLD. Thus we achieve robust-
ness under different testing conditions with just a simple
change in the DDPG algorithm and without additional com-
putational cost.

5.2. On-Policy (VPG) Experiments

In addition to the off-policy experiments, we test the ef-
fectiveness of the MixedNE-LD strategy with the vanilla
policy gradient (VPG) method on a toy MDP problem. In
particular, we design a two-player variant of VPG (Sutton
et al., 2000) algorithm (cf. Algorithm 5) by adapting the
Algorithm 1.

Setup: We compare the performance of Algorithm 5 and
Algorithm 6 (with GAD and Extra-Adam) on a parametrized
class of MDPs {Mρ = (S,A, Tρ, γ, P0, R) : ρ ∈ [0, 0.4]}.
Here S = [−10, 10], A = [−1, 1], and R(s) =
sin(
√

1.7s) + cos(
√

0.3s) + 3. The transition dynamics
Tρ is defined as follows: given the current state and action
(st, at), the next state is st+1 = st + at with probability
1− ρ, and st+1 = st + a′ (where a′ ∼ unif([−1, 1])) with
probability ρ. We also ensure that st+1 ∈ [−10, 10].

For all the algorithms, we use a two-layer feedforward neu-
ral network structure of (16, 16, relu) for both actors (agent
and adversary). The relevant hyperparameters are given in
Tables 4, 5, and 6. Each algorithm is trained for 5000 steps.
We run our experiments with 5 different seeds.

Evaluation: We train the algorithms with a nominal en-
vironment parameter ρ = 0.2, and evaluate the learned
policies on a range of ρ ∈ [0, 0.4] values. As shown in
Figure 10 (cf. Appendix C), our Algorithm 5 outperforms
the baselines Algorithm 6 (with GAD and Extra-Adam)
in terms of robustness (in both two-player and one-player
settings).

5.3. Robustness of One-Player MixedNE-LD

Consider the standard (non-robust) RL objective of maxi-
mizing J (θ) = E

[∑∞
t=1 γ

t−1rt | µθ,M1

]
. We can trans-

late this non-convex problem into an infinite dimensional
convex-problem by considering a distribution over deter-
ministic policies as follows (Liu et al., 2017):

max
p∈P(Θ)

E
θ∼p

[J (θ)] + λH (p) ,

where H (p) = E
θ∼p

[− log p (θ)] is the entropy of the dis-

tribution p. The robust behavior of this objective (in the
context of loss surface) is discussed in (Chaudhari et al.,
2019). The optimal solution to the above problem takes the
form: p∗λ (θ) ∝ exp

(
1
λJ (θ)

)
. For a given λ, SGLD can be

used to draw samples from p∗λ (θ).

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

Then, the resulting algorithm is equivalent to Algorithm 3
with δ = 0. Note that in our one-player DDPG experiments,
we obtained significant improvement over both robust and
non-robust baselines (see Figure 14) even with single inner
loop iteration (Kt = 1). Since the Algorithm 3 is compu-
tationally demanding even though it uses a mean approxi-
mation in its inner loop, this new approximation by setting
δ = 0 and Kt = 1 is preferred in practice.

6. Conclusion
In this work, we study the robust reinforcement learning
problem. By adapting the approximate infinite-dimensional
entropic mirror descent from (Hsieh et al., 2019), we design
a robust variant of DDPG algorithm, under the NR-MDP
setting. To the best of our knowledge, this is the first work to
apply SGLD for the robust RL problem. In our experiments,
we evaluate the robustness of our algorithm on several con-
tinuous control tasks, and found that our algorithm clearly
outperforms the robust and non-robust baselines while tack-
ling the failure case (i.e., inverted pendulum) for the earlier
literature. Intriguingly, even the simple version of the al-
gorithm with a single Langevin step results in competitive
results with a desirable computational complexity.

Acknowledgements
This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement n 725594
- time-data), the Swiss National Science Foundation (SNSF)
under grant number 407540 167319, and the Army Re-
search Office under grant number W911NF-19-1-0404.

References
Abernethy, J., Lai, K. A., and Wibisono, A. Last-iterate con-

vergence rates for min-max optimization. arXiv preprint
arXiv:1906.02027, 2019.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Bubeck, S., Cohen, M. B., Lee, Y. T., Lee, J. R., and Madry,
A. K-server via multiscale entropic regularization. In
Proceedings of the 50th annual ACM SIGACT symposium
on theory of computing, pp. 3–16, 2018.

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Bal-
dassi, C., Borgs, C., Chayes, J., Sagun, L., and Zecchina,
R. Entropy-sgd: Biasing gradient descent into wide val-
leys. Journal of Statistical Mechanics: Theory and Ex-
periment, 2019(12):124018, 2019.

Dasgupta, P. and Maskin, E. The existence of equilibrium
in discontinuous economic games, i: Theory. The Review
of economic studies, 53(1):1–26, 1986.

Daskalakis, C. and Panageas, I. Last-iterate convergence:
Zero-sum games and constrained min-max optimization.
Innovations in Theoretical Computer Science, 2019.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,
M., Radford, A., Schulman, J., Sidor, S., Wu, Y., and
Zhokhov, P. Openai baselines. https://github.
com/openai/baselines, 2017.

Diakonikolas, J. and Orecchia, L. The approximate duality
gap technique: A unified theory of first-order methods.
SIAM Journal on Optimization, 29(1):660–689, 2019.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradi-
ent methods for online learning and stochastic optimiza-
tion. Journal of machine learning research, 12(Jul):2121–
2159, 2011.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing func-
tion approximation error in actor-critic methods. arXiv
preprint arXiv:1802.09477, 2018.

Gidel, G., Berard, H., Vignoud, G., Vincent, P., and
Lacoste-Julien, S. A variational inequality perspec-
tive on generative adversarial networks. arXiv preprint
arXiv:1802.10551, 2018.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672–2680, 2014.

https://github.com/openai/baselines
https://github.com/openai/baselines

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

Hsieh, Y.-P., Liu, C., and Cevher, V. Finding mixed nash
equilibria of generative adversarial networks. In Interna-
tional Conference on Machine Learning, pp. 2810–2819,
2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Ba, J. A method for stochastic optimiza-
tion. In International Conference on Learning Represen-
tations (ICLR), volume 5, 2015.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-
end training of deep visuomotor policies. The Journal of
Machine Learning Research, 17(1):1334–1373, 2016.

Li, C., Chen, C., Carlson, D. E., and Carin, L. Precondi-
tioned stochastic gradient langevin dynamics for deep
neural networks. In AAAI, volume 2, pp. 4, 2016.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Littman, M. L. Markov games as a framework for multi-
agent reinforcement learning. In Machine Learning Pro-
ceedings. Elsevier, 1994.

Liu, Y., Ramachandran, P., Liu, Q., and Peng, J. Stein varia-
tional policy gradient. In Proceedings of the 33rd Confer-
ence on Uncertainty in Artificial Intelligence, 2017.

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bous-
quet, O. Are gans created equal? a large-scale study. In
Advances in neural information processing systems, pp.
700–709, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529, 2015.

Perolat, J., Scherrer, B., Piot, B., and Pietquin, O. Approx-
imate dynamic programming for two-player zero-sum
Markov games. In International Conference on Machine
Learning, 2015.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. Ro-
bust adversarial reinforcement learning. In International
Conference on Machine Learning, 2017.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
Conference on Machine Learning, pp. 1889–1897, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.
In ICML, 2014.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,
Y. Policy gradient methods for reinforcement learning
with function approximation. In Advances in neural in-
formation processing systems, pp. 1057–1063, 2000.

Tessler, C., Efroni, Y., and Mannor, S. Action robust rein-
forcement learning and applications in continuous control.
arXiv preprint arXiv:1901.09184, 2019.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Con-
ference on, pp. 5026–5033. IEEE, 2012.

Uhlenbeck, G. E. and Ornstein, L. S. On the theory of the
brownian motion. Physical review, 36(5):823, 1930.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient langevin dynamics. In Proceedings of the 28th
International Conference on Machine Learning (ICML-
11), pp. 681–688, 2011.

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

Algorithm 2 Algorithms in Section 4 (MixedNE-LD / GAD / EG)

Input: step-size {ηt}Tt=1, thermal-noise {εt}Tt=1, warmup steps {Kt}Tt=1, exponential damping factor β.
for t = 1, 2, . . . , T − 1 do

MixedNE-LD:
ω̄t, ω

(1)
t ← ωt ; θ̄t, θ

(1)
t ← θt

for k = 1, 2, . . . ,Kt do
ξ, ξ′ ∼ N (0, I)

θ
(k+1)
t ← ΠΘ

(
θ

(k)
t + ηt∇θf(θ

(k)
t , ωt) + εt

√
2ηtξ

′
)

ω
(k+1)
t ← ΠΩ

(
ω

(k)
t − ηt∇ωf(θt, ω

(k)
t) + εt

√
2ηtξ

)
ω̄t ← (1− β) ω̄t + βω

(k+1)
t

θ̄t ← (1− β) θ̄t + βθ
(k+1)
t

end for
θt+1 ← (1− β) θt + βθ̄t
ωt+1 ← (1− β)ωt + βω̄t

GAD (Gradient Ascent Descent):

θt+1 ← ΠΘ (θt + ηt∇θf(θt, ωt))

ωt+1 ← ΠΩ (ωt − ηt∇ωf(θt+1, ωt))

EG (Extra-Gradient):

θt+ 1
2
← ΠΘ (θt + ηt∇θf(θt, ωt)))

ωt+ 1
2
← ΠΩ (ωt − ηt∇ωf(θt, ωt))

θt+1 ← ΠΘ

(
θt + ηt∇θf(θt+ 1

2
, ωt+ 1

2
)
)

ωt+1 ← ΠΩ

(
ωt − ηt∇θf(θt+ 1

2
, ωt+ 1

2
)
)

end for
Output: ωT , θT .

A. Algorithms and Omitted Proofs for Section 4
A.1. Algorithms and Hyperparameters

The pseudocode of the algorithms can be found in Algorithm 2 (the symbol Π denotes the projection). The hyperparameter
setting for experiments in Section 4 is:

• Algorithm 2 with GDA, and ηt = 0.1

• Algorithm 2 with EG, and ηt = 0.1

• Algorithm 2 with MixedNE-LD, ηt = 0.1, εt = 0.01, Kt = 50, and β = 0.5.

We also note that we focus on the “last iterate” convergence for EG (Abernethy et al., 2019; Daskalakis & Panageas, 2019),
instead of the usual ergodic average in convex optimization literature. This is because, in practice, people almost exclusively
use the last iterate.

A.2. Proof of Theorem 1

We will focus on the case f(θ, ω) = θ2ω2 − θω. Without loss of generality, we may also assume that ω(0) > θ(0) > 0; the
proof of the other cases follows the same argument.

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

Let (θ(t), ω(t)) follow the dynamics (10) with θ(0) · ω(0) > 0.5. Assume, for the moment, that both θ and ω are without
constraint. Then we have

1

2

d

dt

(
θ(t)2 + ω(t)2

)
= θ

dθ

dt
+ ω

dω

dt

= 2θ2ω2 − θω + (−2θ2ω2 + θω)

= 0

implying that θ2(t) + ω2(t) = θ2(0) + ω2(0) for all t. Therefore (r cos (t+ φ1) , r sin (t+ φ2)), where
(r cosφ1, r sinφ2) = (θ(0), ω(0)), is a solution for dynamics for small enough t.

On the other hand, we have

d

dt
(θ(t)ω(t)) =

dθ

dt
(t) · ω(t) + θ(t) · dω

dt
(t)

= 2θ(t)ω3(t)− ω2(t) +
(
−2θ3(t)ω(t) + θ2(t)

)
=
(
θ2(t)− ω2(t)

)
(1− 2θ(t)ω(t))

=
(
θ2(t)− ω2(t)

) (
1− 2r2 cos (t+ φ1) sin (t+ φ2)

)
.

When t = 0, we have 1− 2r2 cos (t+ φ1) sin (t+ φ2) = 1− 2θ(0)ω(0) < 0. When t = π
t , we have

2r2 cos (t+ φ1) sin (t+ φ2) = 2r2

(√
2

2
cosφ1 −

√
2

2
sinφ1

)(√
2

2
cosφ2 +

√
2

2
sinφ2

)
=
(
θ(0)−

√
r2 − θ(0)2

)(√
r2 − ω(0)2 + ω(0)

)
= (θ2(0)− ω2(0)) < 0

whence 1− 2r2 cos (t+ φ1) sin (t+ φ2) > 0. The intermediate value theorem then implies that there exists a t̃ such that
1 − 2θ(t̃)ω(t̃) = 0. But since {(θ, ω) | 2θω = 1} are the stationary points of the dynamics (10), we conclude that
d
dt (θ(t)ω(t)) = 0 whenever t ≥ t̃; that is, (θ(t), ω(t)) gets trapped at the stationary point (θ(t̃), ω(t̃)). The concludes the
first part the theorem when there is no boundary.

If the boundary is present, the dynamics (10) should be modified to the projected dynamics (Bubeck et al., 2018) and the
proof remains the same, except that when (θ(t), ω(t)) hits the boundary, the curve needs to traverse along the boundary to
decrease the norm.

We now turn to the statement for MixedNE-LD. Let (θ1, ω1) be initialized at any stationary point: θ1ω1 = 0.5. Consider the
two-step evolution of MixedNE-LD:

θ2 = θ1 +
√

2ηξ,

ω2 = ω1 +
√

2ηξ′,

θ3 = θ2 + η
(
2θ2ω

2
2 − ω2

)
+
√

2ηξ′′,

ω3 = ω2 − η
(
2θ2

2ω2 − θ2

)
+
√

2ηξ′′′

where ξ, ξ′, ξ′′, and ξ′′′ are independent standard Gaussian. Since we initialize at a stationary point θ1ω1 = 0.5, we have

2θ2ω2 − 1 = 2θ1ω1 +
√

2ηω1ξ +
√

2ηθ1ξ
′ + 2ηξξ′ − 1

=
√

2ηω1ξ +
√

2ηθ1ξ
′ + 2ηξξ′. (14)

Using the towering property of the expectation, (14), and the fact that ξ, ξ′, ξ′′, and ξ′′′ are independent standard Gaussian,
we compute

Eθ3ω3 = E [E [θ3ω3 | θ2, ω2]]

= E
[
E
[(
θ2 + η

(
2θ2ω

2
2 − ω2

)
+
√

2ηξ′′
)(

ω2 − η
(
2θ2

2ω2 − θ2

)
+
√

2ηξ′′′
)
| θ2, ω2

]]

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

= E
[
E
[(
θ2 + η

(
2θ2ω

2
2 − ω2

)) (
ω2 − η

(
2θ2

2ω2 − θ2

))
| θ2, ω2

]]
= E [(θ2 + ηω2 (2θ2ω2 − 1)) (ω2 − ηθ2 (2θ2ω2 − 1))]

= E
[
θ2ω2 − ηθ2

2 (2θ2ω2 − 1) + ηω2
2 (2θ2ω2 − 1)− η2θ2ω2 (2θ2ω2 − 1)

2
]

= E
[
θ1ω1 − η

(
θ2

1 + 2ηξ2 + 2
√

2ηθ1ξ − ω2
1 − 2ηξ′2 − 2

√
2ηω1ξ

′
)(√

2ηω1ξ +
√

2ηθ1ξ
′ + 2ηξξ′

)
− 4η2

(√
2ηω1ξ +

√
2ηθ1ξ

′ + 2ηξξ′
)(

2ηω2
1ξ

2 + 2ηθ2
1ξ
′2 + 4η2ξ2ξ′2 + 2ηξξ′ + 4

√
2η

3
2 θ1ξξ

′2 + 4
√

2η
3
2ω2ξ

2ξ′
)]

= θ1ω1 − 0− 4η2
(
ηω2

2 + ηθ2
1 + 2η2 + 4η2 + 4η2 + 4η2

)
= θ1ω1 − 4η2

(
η
(
θ2

1 + ω2
1

)
+ 14η2

)
which is (11).

A.3. Proof of Theorem 2

Spelling out the Newton dynamics (12), we get

dθ

dt
(t) =

1

2ω2(t)

(
2θ(t)ω2(t)− ω(t)

)
= θ(t)− 1

2ω(t)

and similarly dω
dt (t) = −ω(t) + 1

2θ(t) . As a result, we have

d

dt
(θ(t)ω(t)) =

dθ

dt
(t) · ω(t) + θ(t) · dω

dt
(t)

= θ(t)ω(t)− 1

2
− θ(t)ω(t) +

1

2
= 0

which concludes the proof.

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

B. Off-Policy (DDPG) Experiments: Algorithms, Hyperparameters, and Results
• Algorithms:

1. MixedNE-LD: Algorithm 3
2. Baselines: Algorithm 4 (with GAD and Extra-Adam)

• Hyperparameters:

1. Common hyperparameters for Algorithm 3 and Algorithm 4: Table 1
2. Exploration-related hyperparameters for Algorithm 3 and Algorithm 4 (the best performing values for every

environment are presented): Tables 2 and 3

• Results:

1. Heat maps for NR-MDP setting with δ = 0.1 (Figures 6 and 7)
2. Heat maps for NR-MDP setting with δ = 0 (Figures 8 and 9)

C. On-Policy (VPG) Experiments: Algorithms, and Hyperparameters, and Results
• Algorithms:

1. MixedNE-LD: Algorithm 5
2. Baselines: Algorithm 6 (with GAD and Extra-Adam)

• Hyperparameters:

1. Common hyperparameters for Algorithm 5 and Algorithm 6: Table 4
2. Additional hyperparameters for Algorithm 5 and Algorithm 6 (the best performing values are presented): Ta-

bles 5 and 6

• Results:

1. NR-MDP setting with δ = 0.1 (Figure 10a)
2. NR-MDP setting with δ = 0 (Figure 10b)

D. Ablation Study
• Ablation on (β,Kt): see Figures 11, 12, and 13.

• Ablation on δ: see Figures 14 and 15. If the δ value is way larger (overly conservative) than the requirement (range of
environmental changes), it could negatively impact the generalization ability. Choosing the appropriate value of delta is
problem dependent.

E. Code
The code repository (for all the experiments): https://github.com/DaDaCheng/LIONS-RL/tree/master/
Robust-Reinforcement-Learning-via-Adversarial-training-with-Langevin-Dynamics.

https://github.com/DaDaCheng/LIONS-RL/tree/master/Robust-Reinforcement-Learning-via-Adversarial-training-with-Langevin-Dynamics
https://github.com/DaDaCheng/LIONS-RL/tree/master/Robust-Reinforcement-Learning-via-Adversarial-training-with-Langevin-Dynamics

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

Table 1. Common hyperparameters for Algorithm 3 and Algorithm 4, where most of the values are chosen from (Dhariwal et al., 2017).

Hyperparameter Value

critic optimizer Adam
critic learning rate 10−3

target update rate τ 0.999
mini-batch size N 128
discount factor γ 0.99
damping factor β 0.9
replay buffer size 106

action noise parameter σ {0, 0.01, 0.1, 0.2, 0.3, 0.4}
RMSProp parameter α 0.999
RMSProp parameter ε 10−8

RMSProp parameter η 10−4

thermal noise σt (Algorithm 3) σ0 × (1− 5× 10−5)t, where σ0 ∈
{

10−2, 10−3, 10−4, 10−5
}

warmup steps Kt (Algorithm 3) min
{

15, b(1 + 10−5)tc
}

Table 2. Exploration-related hyperparameters for Algorithm 3 and Algorithm 4 chosen via grid search (for NR-MDP setting with δ = 0.1).

Algorithm 3: (σ0, σ) Algorithm 4 (with GAD): σ Algorithm 4 (with Extra-Adam): σ

Walker-v2 (10−2, 0.01) 0 0.3
HalfCheetah-v2 (10−2, 0) 0.2 0.01
Hopper-v2 (10−3, 0.2) 0.2 0.3
Ant-v2 (10−4, 0.2) 0.4 0.01
Swimmer-v2 (10−5, 0.4) 0.4 0.4
Reacher-v2 (10−3, 0.2) 0.4 0.2
Humanoid-v2 (10−4, 0.01) 0 0.01
InvertedPendulum-v2 (10−3, 0.01) 0.1 0.01

Table 3. Exploration-related hyperparameters for Algorithm 3 and Algorithm 4 chosen via grid search (for NR-MDP setting with δ = 0).

Algorithm 3: (σ0, σ) Algorithm 4 (with GAD): σ Algorithm 4 (with Extra-Adam): σ

Walker-v2 (10−2, 0.1) 0.01 0.2
HalfCheetah-v2 (10−2, 0.01) 0.4 0.01
Hopper-v2 (10−5, 0.3) 0.4 0.1
Ant-v2 (10−2, 0.4) 0.4 0.01
Swimmer-v2 (10−2, 0.2) 0.3 0.3
Reacher-v2 (10−3, 0.2) 0.3 0.2
Humanoid-v2 (10−2, 0.1) 0 0.01
InvertedPendulum-v2 (10−3, 0) 0.01 0.01

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

Algorithm 3 DDPG with MixedNE-LD (pre-conditioner = RMSProp)

Hyperparameters: see Table 1
Initialize (randomly) policy parameters ω1, θ1, and Q-function parameter φ.
Initialize the target network parameters ωtarg ← ω1, θtarg ← θ1, and φtarg ← φ.
Initialize replay buffer D.
Initialize m← 0 ; m′ ← 0.
t← 1.
repeat

Observe state s, and select actions a = µθt(s) + ξ ; a′ = νωt(s) + ξ′, where ξ, ξ′ ∼ N (0, σI)
Execute the action ā = (1− δ)a+ δa′ in the environment.
Observe reward r, next state s′, and done signal d to indicate whether s′ is terminal.
Store (s, ā, r, s′, d) in replay buffer D.
If s′ is terminal, reset the environment state.
if it’s time to update then

for however many updates do
ω̄t, ω

(1)
t ← ωt ; θ̄t, θ

(1)
t ← θt

for k = 1, 2, . . . ,Kt do
Sample a random minibatch of N transitions B = {(s, ā, r, s′, d)} from D.
Compute targets y (r, s′, d) = r + γ (1− d)Qφtarg

(
s′, (1− δ)µθtarg (s′) + δνωtarg

(s′)
)
.

Update critic by one step of (preconditioned) gradient descent using∇φL (φ), where

L (φ) =
1

N

∑
(s,ā,r,s′,d)∈B

(y (r, s′, d)−Qφ (s, ā))
2
.

Compute the (agent and adversary) policy gradient estimates:

̂∇θJ (θ, ωt) =
1− δ
N

∑
s∈D
∇θµθ (s)∇āQφ (s, ā) |ā=(1−δ)µθ(s)+δνωt (s)

̂∇ωJ (θt, ω) =
δ

N

∑
s∈D
∇ωνω (s)∇āQφ (s, ā) |ā=(1−δ)µθt (s)+δνω(s).

g ←
[

̂∇θJ (θ, ωt)
]
θ=θ

(k)
t

; m← αm+ (1− α) g � g ; C ← diag
(√
m+ ε

)
θ

(k+1)
t ← θ

(k)
t + ηC−1g +

√
2ησtC

− 1
2 ξ, where ξ ∼ N (0, I)

g′ ←
[

̂∇ωJ (θt, ω)
]
ω=ω

(k)
t

; m′ ← αm′ + (1− α) g′ � g′ ; D ← diag
(√
m′ + ε

)
ω

(k+1)
t ← ω

(k)
t − ηD−1g′ +

√
2ησtD

− 1
2 ξ′, where ξ′ ∼ N (0, I)

ω̄t ← (1− β) ω̄t + βω
(k+1)
t ; θ̄t ← (1− β) θ̄t + βθ

(k+1)
t

Update the target networks:

φtarg ← τφtarg + (1− τ)φ

θtarg ← τθtarg + (1− τ)θ
(k+1)
t

ωtarg ← τωtarg + (1− τ)ω
(k+1)
t

end for
ωt+1 ← (1− β)ωt + βω̄t ; θt+1 ← (1− β) θt + βθ̄t
t← t+ 1.

end for
end if

until convergence
Output: ωT , θT .

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

Algorithm 4 DDPG with GAD (pre-conditioner = RMSProp) / Extra-Adam

Hyperparameters: see Table 1
Initialize (randomly) policy parameters ω1, θ1, and Q-function parameter φ.
Initialize the target network parameters ωtarg ← ω1, θtarg ← θ1, and φtarg ← φ.
Initialize replay buffer D.
Initialize m← 0 ; m′ ← 0.
t← 1.
repeat

Observe state s, and select actions a = µθt(s) + ξ ; a′ = νωt(s) + ξ′, where ξ, ξ′ ∼ N (0, σI)
Execute the action ā = (1− δ)a+ δa′ in the environment.
Observe reward r, next state s′, and done signal d to indicate whether s′ is terminal.
Store (s, ā, r, s′, d) in replay buffer D.
If s′ is terminal, reset the environment state.
if it’s time to update then

for however many updates do
Sample a random minibatch of N transitions B = {(s, ā, r, s′, d)} from D.
Compute targets y (r, s′, d) = r + γ (1− d)Qφtarg

(
s′, (1− δ)µθtarg (s′) + δνωtarg

(s′)
)
.

Update critic by one step of (preconditioned) gradient descent using∇φL (φ), where

L (φ) =
1

N

∑
(s,ā,r,s′,d)∈B

(y (r, s′, d)−Qφ (s, ā))
2
.

Compute the (agent and adversary) policy gradient estimates:

̂∇θJ (θ, ωt) =
1− δ
N

∑
s∈D
∇θµθ (s)∇āQφ (s, ā) |ā=(1−δ)µθ(s)+δνωt (s)

̂∇ωJ (θt, ω) =
δ

N

∑
s∈D
∇ωνω (s)∇āQφ (s, ā) |ā=(1−δ)µθt (s)+δνω(s).

GAD (pre-conditioner = RMSProp):
g ←

[
̂∇θJ (θ, ωt)

]
θ=θt

; m← αm+ (1− α) g � g ; C ← diag
(√
m+ ε

)
θt+1 ← θt + ηC−1g

g′ ←
[

̂∇ωJ (θt, ω)
]
ω=ωt

; m′ ← αm′ + (1− α) g′ � g′ ; D ← diag
(√
m′ + ε

)
ωt+1 ← ωt − ηD−1g′

Extra-Adam: use Algorithm 4 from (Gidel et al., 2018).
Update the target networks:

φtarg ← τφtarg + (1− τ)φ

θtarg ← τθtarg + (1− τ)θt+1

ωtarg ← τωtarg + (1− τ)ωt+1

t← t+ 1.
end for

end if
until convergence
Output: ωT , θT .

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

GAD/Walker2d-v2

200

300

400

500

600

700

800

900

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

Extra-Adam/Walker2d-v2

200

300

400

500

600

700

800

900

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

MixedNE-LD/Walker2d-v2

200

300

400

500

600

700

800

900

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

GAD/HalfCheetah-v2

0

200

400

600

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s
Extra-Adam/HalfCheetah-v2

0

200

400

600

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

MixedNE-LD/HalfCheetah-v2

0

200

400

600

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

GAD/Hopper-v2

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

Extra-Adam/Hopper-v2

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

MixedNE-LD/Hopper-v2

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

GAD/Ant-v2

100

0

100

200

300

400

500

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

Extra-Adam/Ant-v2

100

0

100

200

300

400

500

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

MixedNE-LD/Ant-v2

100

0

100

200

300

400

500

Figure 6. Average performance (over 5 seeds) of Algorithm 3, and Algorithm 4 (with GAD and Extra-Adam), under the NR-MDP setting
with δ = 0.1. The evaluation is performed on a range of noise probability and mass values not encountered during training. Environments:
Walker, HalfCheetah, Hopper, and Ant.

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

GAD/Swimmer-v2

20

22

24

26

28

30

32

34

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

Extra-Adam/Swimmer-v2

20

22

24

26

28

30

32

34

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

MixedNE-LD/Swimmer-v2

20

22

24

26

28

30

32

34

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

GAD/Reacher-v2

27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0
7.5

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

Extra-Adam/Reacher-v2

27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0
7.5

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

MixedNE-LD/Reacher-v2

27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0
7.5

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

GAD/Humanoid-v2

300
325
350
375
400
425
450
475
500

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

Extra-Adam/Humanoid-v2

300
325
350
375
400
425
450
475
500

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

MixedNE-LD/Humanoid-v2

300
325
350
375
400
425
450
475
500

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

GAD/InvertedPendulum-v2

200

400

600

800

1000

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

Extra-Adam/InvertedPendulum-v2

200

400

600

800

1000

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

MixedNE-LD/InvertedPendulum-v2

200

400

600

800

1000

Figure 7. Average performance (over 5 seeds) of Algorithm 3, and Algorithm 4 (with GAD and Extra-Adam), under the NR-MDP setting
with δ = 0.1. The evaluation is performed on a range of noise probability and mass values not encountered during training. Environments:
Swimmer, Reacher, Humanoid, and InvertedPendulum.

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

GAD/Walker2d-v2

200

300

400

500

600

700

800

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

Extra-Adam/Walker2d-v2

200

300

400

500

600

700

800

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

MixedNE-LD/Walker2d-v2

200

300

400

500

600

700

800

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

GAD/HalfCheetah-v2

0
100
200
300
400
500
600
700
800

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s
Extra-Adam/HalfCheetah-v2

0
100
200
300
400
500
600
700
800

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

MixedNE-LD/HalfCheetah-v2

0
100
200
300
400
500
600
700
800

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

GAD/Hopper-v2

200
250
300
350
400
450
500
550

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

Extra-Adam/Hopper-v2

200
250
300
350
400
450
500
550

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

MixedNE-LD/Hopper-v2

200
250
300
350
400
450
500
550

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

GAD/Ant-v2

100
200
300
400
500
600
700
800

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

Extra-Adam/Ant-v2

100
200
300
400
500
600
700
800

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

MixedNE-LD/Ant-v2

100
200
300
400
500
600
700
800

Figure 8. Average performance (over 5 seeds) of Algorithm 3, and Algorithm 4 (with GAD and Extra-Adam), under the NR-MDP setting
with δ = 0. The evaluation is performed on a range of noise probability and mass values not encountered during training. Environments:
Walker, HalfCheetah, Hopper, and Ant.

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

GAD/Swimmer-v2

22

24

26

28

30

32

34

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

Extra-Adam/Swimmer-v2

22

24

26

28

30

32

34

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

MixedNE-LD/Swimmer-v2

22

24

26

28

30

32

34

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

GAD/Reacher-v2

27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0
7.5

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

Extra-Adam/Reacher-v2

27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0
7.5

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

MixedNE-LD/Reacher-v2

27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0
7.5

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

GAD/Humanoid-v2

250

300

350

400

450

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

Extra-Adam/Humanoid-v2

250

300

350

400

450

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

MixedNE-LD/Humanoid-v2

250

300

350

400

450

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

GAD/InvertedPendulum-v2

200

400

600

800

1000

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

Extra-Adam/InvertedPendulum-v2

200

400

600

800

1000

0 0.1 0.2 0.3 0.4 0.5

Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

MixedNE-LD/InvertedPendulum-v2

200

400

600

800

1000

Figure 9. Average performance (over 5 seeds) of Algorithm 3, and Algorithm 4 (with GAD and Extra-Adam), under the NR-MDP setting
with δ = 0. The evaluation is performed on a range of noise probability and mass values not encountered during training. Environments:
Swimmer, Reacher, Humanoid, and InvertedPendulum.

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

Table 4. Common hyperparameters for Algorithm 5 and Algorithm 6.

Hyperparameter Value

discount factor γ 0.99
trajectory length H 500
number of trajectories per step |Dk| 1
RMSProp parameter α 0.99
RMSProp parameter ε 10−8

learning rate η
{

10−3, 10−4, 10−5
}

damping factor β 0.9

Table 5. Additional hyperparameters for Algorithm 5 and Algorithm 6 chosen via grid search (for NR-MDP setting with δ = 0.1)

Algorithm 5: (σ0, η,Nk) Algorithm 6 (with GAD): η Algorithm 6 (with Extra-Adam): η

ρ = 0.2 (10−5, 10−3, 1) 10−4 10−4

Table 6. Additional hyperparameters for Algorithm 5 and Algorithm 6 chosen via grid search (for NR-MDP setting with δ = 0)

Algorithm 5: (σ0, η,Nk) Algorithm 6 (with GAD): η Algorithm 6 (with Extra-Adam): η

ρ = 0.2 (10−4, 10−4, 10) 10−4 10−3

Algorithm 5 VPG with MixedNE-LD (pre-conditioner = RMSProp)

Hyperparameters: see Table 4
Initialize (randomly) policy parameters θ0, w0

for k = 0, 1, 2, . . . do
θ̄k, θ

(0)
k ← θk ; w̄k, w

(0)
k ← wk

for n = 0, 1, . . . , Nk do
Collect set of trajectories D(n)

k = {(. . . , s(τ)
t , ā

(τ)
t , r

(τ)
t , . . .)}τ by running π

θ
(n)
k

, and π′
w

(n)
k

in M, i.e., at ∼
π
θ
(n)
k

(st), a′t ∼ π′w(n)
k

(st), āt = (1− δ)at + δa′t, and st+1 ∼ Tρ(· | st, āt).

Estimate the policy gradient (where Gt =
∑T
s=0 γ

srt+s)

g =
1− δ∣∣∣D(n)
k

∣∣∣
∑

τ∈D(n)
k

∑
t

γtG
(τ)
t

[
∇θ log πθ(a

(τ)
t | s(τ)

t)
]
θ=θ

(n)
k

g′ =
δ∣∣∣D(n)
k

∣∣∣
∑

τ∈D(n)
k

∑
t

γtG
(τ)
t

[
∇w log πw(a′t

(τ) | s(τ)
t)
]
w=w

(n)
k

m← αm+ (1− α) g � g ; C ← diag
(√
m+ ε

)
θ

(n+1)
k ← θ

(n)
k + ηC−1g +

√
2ησkC

− 1
2 ξ, where ξ ∼ N (0, I)

θ̄k ← (1− β) θ̄k + βθ
(n+1)
k

m′ ← αm′ + (1− α) g′ � g′ ; D ← diag
(√
m′ + ε

)
w

(n+1)
k ← w

(n)
k − ηD−1g +

√
2ησkD

− 1
2 ξ′, where ξ′ ∼ N (0, I)

w̄k ← (1− β) w̄k + βw
(n+1)
k

end for
θk+1 ← (1− β) θk + βθ̄k
wk+1 ← (1− β)wk + βw̄k

end for

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

Algorithm 6 VPG with GAD (pre-conditioner = RMSProp) / Extra-Adam

Hyperparameters: see Table 4
Initialize (randomly) policy parameters θ0, w0

for k = 0, 1, 2, . . . do
Collect set of trajectories Dk = {(. . . , s(τ)

t , ā
(τ)
t , r

(τ)
t , . . .)}τ by running πθk , and π′wk in M, i.e., at ∼ πθk(st),

a′t ∼ π′wk(st), āt = (1− δ)at + δa′t, and st+1 ∼ Tρ(· | st, āt).
Estimate the policy gradient (where Gt =

∑T
s=0 γ

srt+s)

g =
1− δ
|Dk|

∑
τ∈Dk

∑
t

γtG
(τ)
t

[
∇θ log πθ(a

(τ)
t | s(τ)

t)
]
θ=θk

g′ =
δ

|Dk|
∑
τ∈Dk

∑
t

γtG
(τ)
t

[
∇w log π′w(a′t

(τ) | s(τ)
t)
]
w=wk

GAD (pre-conditioner = RMSProp):
m← αm+ (1− α) g � g ; C ← diag

(√
m+ ε

)
θk+1 ← θk + ηC−1g
m′ ← αm′ + (1− α) g′ � g′ ; D ← diag

(√
m′ + ε

)
wk+1 ← wk − ηD−1g′

Extra-Adam: use Algorithm 4 from (Gidel et al., 2018).
end for

0.0 0.1 0.2 0.3 0.4
Environment parameter

600

650

700

750

800

Re
wa

rd

GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

(a) δ = 0.1

0.0 0.1 0.2 0.3 0.4
Environment parameter

600

650

700

750

800

850

900

Re
wa

rd

GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

(b) δ = 0

Figure 10. Average performance (over 5 seeds) of Algorithm 5, and Algorithm 6 (with GAD and Extra-Adam), under the NR-MDP setting
with δ = 0.1 and 0 (training on nominal environment ρ0 = 0.2). The evaluation is performed without adversarial perturbations, on a
range of environment parameters not encountered during training.

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

= 0.5, Kt=1

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

= 0.5, Kt=2

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

= 0.5, Kt=5

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

= 0.9, Kt=1

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

= 0.9, Kt=2

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

= 0.9, Kt=5

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

= 1.0, Kt=1

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

= 1.0, Kt=2

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e

M
as

s

= 1.0, Kt=5

0

200

400

600

800

Figure 11. Ablation study: Average performance (over 5 seeds) of MixedNE-LD (with different β,Kt) under the NR-MDP setting with
δ = 0.1 (training on Half-cheetah with relative mass 1). The evaluation is performed on a range of noise probability and mass values not
encountered during training.

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

0.5 0.75 1.0 1.5 2.0
Relative mass

400

200

0

200

400

600

800

1000

Re
wa

rd

HalfCheetah-v2
= 0.5, Kt=1
= 0.5, Kt=2
= 0.5, Kt=5
= 0.9, Kt=1
= 0.9, Kt=2
= 0.9, Kt=5
= 1.0, Kt=1
= 1.0, Kt=2
= 1.0, Kt=5

Figure 12. Ablation study: Average performance (over 5 seeds) of MixedNE-LD (with different β,Kt) under the NR-MDP setting with
δ = 0.1 (training on Half-cheetah with relative mass 1). The evaluation is performed without adversarial perturbations, on a range of
mass values not encountered during training.

0.0 0.1 0.2 0.3 0.4
Environment parameter

575

600

625

650

675

700

725

750

775

Re
wa

rd

= 0.5, Kt=1
= 0.5, Kt=2
= 0.5, Kt=5
= 0.9, Kt=1
= 0.9, Kt=2
= 0.9, Kt=5
= 1.0, Kt=1
= 1.0, Kt=2
= 1.0, Kt=5

Figure 13. Ablation study: Average performance (over 5 seeds) of MixedNE-LD (with different β,Kt) under the NR-MDP setting
with δ = 0 (training on nominal environment ρ0 = 0.2). The evaluation is performed without adversarial perturbations, on a range of
environment parameters not encountered during training.

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

0.5 0.75 1.0 1.5 2.0
Relative mass

300

400

500

600

700

800

900

Re
wa

rd

Walker2d-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

400

200

0

200

400

600

800

1000

Re
wa

rd

HalfCheetah-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

300

400

500

600

700

800

900

Re
wa

rd

Hopper-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

0

200

400

600

800

Re
wa

rd

Ant-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

15

20

25

30

35

40

45

50

Re
wa

rd

Swimmer-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

11

10

9

8

7

Re
wa

rd

Reacher-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

100

200

300

400

500

Re
wa

rd

Humanoid-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

0.5 0.75 1.0 1.5 2.0
Relative mass

300

400

500

600

700

800

900

1000

Re
wa

rd

InvertedPendulum-v2
GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

Figure 14. Ablation study: Average performance (over 5 seeds) of Algorithm 3, and Algorithm 4 (with GAD and Extra-Adam), under the
NR-MDP setting with δ = 0.1 (solid lines) and δ = 0 (dashed lines). The evaluation is performed without adversarial perturbations, on a
range of mass values not encountered during training.

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

0.0 0.1 0.2 0.3 0.4
Environment parameter

600

650

700

750

800

850

900

Re
wa

rd

GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

Figure 15. Ablation study: Average performance (over 5 seeds) of different algorithms under the NR-MDP setting with δ = 0.1 (solid
lines) and δ = 0 (dashed lines). The evaluation (after training on the nominal environment ρ0 = 0.2) is performed without adversarial
perturbations, on a range of environment parameters not encountered during training.

