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ABSTRACT We consider the problem of coordination among replicated SDN controllers, where the
challenge is to ensure a consistent view of the network while reacting to network events in a prompt
manner. Existing solutions are either consensus-based, which achieve consistency at the expense of high
latency; or eventual-consistency-based, which have low latency at the expense of severe limitations on the
types of applications and policies implementable by the controller. We propose the Fast and Consistent
Controller-Replication (FCR) scheme. FCR is based on a deterministic agreement mechanism that performs
agreement on the input of controllers, instead of agreement on the output as done in consensus mechanisms.
We formally prove that FCR provides the same guarantees in terms of implementable applications and
network policies, as any deterministic single-image controller. Through simulation and implementation,
we show that these guarantees can be implemented with little latency overhead, compared to eventual-
consistency approaches, and can be achieved significantly faster than consensus-based approaches.

INDEX TERMS Software defined networking, control plane consistency, latency overhead, replicated SDN
controllers.

I. INTRODUCTION
Software Defined Networking (SDN) aims to simplify the
control and management of network infrastructures by rely-
ing on a ‘‘logically-centralized’’ controller with a global view
of the network to manage the network state and to implement
networking policies. In practice, a highly-available logically-
centralized controller is implemented by replicating a
single-image controller to address controller failures. This is
orthogonal to using multiple controllers with sharded state
for scalability, not studied in our work. The challenge with
replication is to ensure control-plane consistency with low
latency — and addressing this challenge is the focus of our
paper.

In literature, two types of approaches are proposed for
control-plane consistency for replicated single-image con-
trollers: (1) high-latency, consensus-based approaches that
guarantee (strong) consistency, e.g., Onix [1], Ravana [2]
and ONOS [3], and (2) low-latency and high-availability
approaches, e.g., SCL [4] that guarantees eventual consis-
tency [5]. Eventual consistency ensures that in the absence of
network events, all controllers will eventually have the correct
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view of the network (topology and desired policy), and that
the forwarding rules installed in the network will eventually
be same as those computed by a single-image controller using
the same view. Replication schemes that guarantee eventual
consistency do not wait for agreement between replicas; they
proceed with update installation as soon as a replica is aware
of an event. FCR obtains the best of both worlds, i.e., it
guarantees consistency (like consensus mechanisms), and has
low latency (like eventually-consistent schemes).

A. THE CONTROL PLANE NEEDS CONSISTENCY
Developing SDN applications is simpler if one can rely
on strong consistency guarantees, e.g., the Google’s glob-
ally deployed software defined WAN B4 [6] uses Paxos for
leader election for every controller functionality. Moreover,
although eventual consistency is sufficient to provide some
safety policies such as way-pointing and node isolation [4],
it cannot guarantee a large number of safety policies that refer
to more than one flow at a time such as edge isolation, node
disjoint isolation, edge disjoint isolation [7], etc. These safety
policies are required by applications that, e.g., need isolated
resources (switches or physical links) in order to exchange
privacy-sensitive data while sharing network infrastructure,
as traffic patterns can reveal information.
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FIGURE 1. Example of edge disjoint isolation violation under an eventual
consistent scheme. Edge disjoint isolation means that the paths of flows
f1, f2 should not share a common link. The example network has
11 switches and 2 controllers.

We illustrate the problem with eventual consistency and
one such safety policy: edge disjoint isolation. Consider the
network state shown in Figure 1(a). Two flows, f1 and f2, start
from switches 1 and 2, and terminate at switches 11 and 10,
respectively. Two controllers, C1 and C2, initially have the
same view of the network. They both implement shortest-
path routing, as well as edge disjoint isolation safety policy,
i.e., the paths of flows f1, f2 should not share a common link.
The initial routing paths of flows f1 and f2 are 1 − 4 − 11
and 2 − 5 − 10, respectively. Let two events occur: links
1 − 4 (event e1) and 5 − 10 (event e2) break almost simul-
taneously (Figure 1(d)). Due to different network delays,
C1 first learns only about e1, and C2 first learns about e2.
They do not ensure agreement, and promptly issue updates
to modify the routing tables of the switches on the old and
new paths. We assume that a switch uses the last installed
update for a flow to serve packets of that flow. Moreover,
in SCL [4], the controller uses the last known state from a
switch to compute updates. As a result, C1 and C2 compute
the new routes as shown in Figures 1(b) and 1(c), respectively.
Each controller considers the edge disjoint isolation to be
satisfied, but, an interleaving of the updates from C1 and C2
can violate the safety policy as shown in Figure 1(d). The
state in Figure 1(d) could be reached if, first, C1 installs its
updates on all involved switches, and second, C2 installs its
updates, but the update from C2 for switch 1 is delayed due
to e.g., network losses. Conversely, if the controllers had a
consistent view of the network, i.e., were in agreement, they
would have computed the paths: f1 via 1−6−7−8−11 and
f2 via 2− 3− 9− 10.
Existing eventually consistent schemes such as SCL [4] do

not support reactive applications, such as NATs and firewalls,
for which the first packet triggers an update installation and
subsequent packets have to be handled by rules that causally
follow from the first rule. Although labels obtained from

vector clocks [8] can provide causal order, they only provide
a partial order between updates from different controller
replicas, as vector clocks might be incomparable. Installing
only causally related updates from different replicas requires
a total order among messages. In state-of-the art solutions
that satisfy all safety policies or support all applications in
an SDN, controller replicas typically obtain a total order by
using high-latency consensus on the real-time path to agree
on the logical clocks.

B. THE CONTROL PLANE NEEDS LOW LATENCY
After decades of optimizing dataplanes, recent research
efforts reveal the growing need for high performance and tight
latency guarantees of control planes [4], [9], [10]. FCR is our
effort to make a step in the same direction.

The number of SDN use cases that require concrete con-
trol plane performance guarantees has been growing recently
in security systems, virtual networks, as well as datacenter
environments [9]. For instance, service chaining SDN appli-
cations [11] require fast reconfiguration to ensure network
correctness. Furthermore, traffic engineering SDN applica-
tions, such as that of Google’s B4 WAN [6], require frequent
reconfiguration to improve network performance. In cases
when controllers reside on a single rack the coordination
delays are negligible even with Paxos, but coordination can
significantly delay response to failures and other events when
controllers are spread across a WAN.

C. CONTRIBUTIONS AND TRADE-OFFS
Main Contribution: We developed the Fast and Consis-
tent Controller-Replication (FCR), a distributed coordina-
tion layer connecting single-image controller replicas and
switches in SDN. FCR guarantees strong consistency, but
presents low-latency; this combination makes it important
and fills the literature gap between low latency eventual con-
sistent schemes and high latency linearizable schemes. FCR,
contrary to the eventual consistent schemes (SCL), supports
reactive applications, e.g., NATs and firewalls.

To develop FCR we leveraged on the following design
principles and mechanisms: (1) the SCL [4] architecture,
which consists of controller proxies and switch proxies,
(2) Quarts [12], a low-latency agreement mechanism used to
achieve agreement among controller replicas, (3) intention-
ality clocks [13] to achieve a total ordering of events. Com-
bining these and constructing an efficient (i.e., low latency,
low bandwidth and highly available) and viable design is non-
trivial.

Quarts [12] was designed for pseudo-synchronous dis-
tributed systems (see §III). Applying Quarts to SDNs, that
are asynchronous, would require Quarts to be implemented
inside the logic of the controller, which is impractical.

Contribution 1: FCR ports Quarts to SDNs with minimal
modifications to SDN controllers and the switches.

Note that, due to the FLP impossibility result [14], no con-
sensus algorithm can guarantee agreement and termination
in an SDN. Thus, Quarts only guarantees agreement at the
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TABLE 1. Comparison of replication schemes.

expense of termination. Some controller replicas can fail
to terminate successfully, and are thereby prevented from
issuing inconsistent updates. However, with Quarts the proba-
bility of unsuccessful termination is low, thus providingmuch
higher availability than conventional consensus mechanisms,
while maintaining low latency. An overview of this mecha-
nism is presented in § III.

Naively applying Quarts to SDNs requires that controller
replicas probe all switches for each triggered computation;
this has a high bandwidth-overhead.

Contribution 2: FCR satisfies the probing requirements of
Quarts while maintaining low bandwidth-overhead by using
cached version of switches’ state (see § III and § VII).

To achieve the total order of messages without using
consensus, FCR uses intentionality clocks [13] that were
designed for real-time cyber-physical systems. Intentionality
clocks are logical clocks similar to Lamport clocks [15]
and vector clocks [8], and are applied to distributed systems
with a centralized (possibly replicated) controller and reactive
distributed agents. An SDN system does not conform to this
model.

Contribution 3: FCR adapts intentionality clocks to
SDNs, by appropriately modifying the conditions under
which their values are incremented (discussed in § III).
We formally prove that FCR can be used to implement all

the safety policies like the underlying single-image controller.
Finally, we prove that FCR adds bounded latency-overhead
for agreement.

Table 1 qualitatively highlights the advantages and
trade-offs of FCR and where it belongs in the design space
compared to the state-of-the-art solutions. FCR outperforms
Consensus in latency and availability at the cost of bandwidth
overhead and a strong consistency instead of linearizability
guarantee - which is though a strong-enough guarantee for
the SDN applications. Furthermore, FCR provides strong
instead of eventual consistency guarantee compared to SCL,
at the cost of slightly higher latency and lower availability.
We evaluate FCR in § VI through a discrete-event simulation
to study availability, response and convergence time, and
consistency. We compare the performance of FCR to that of
SCL [4] and consensus-based schemes [2], [3] in datacenter
and ISP topologies. We find that, with FCR, the median
convergence time after an event is 0.5× that of Ravana [2] and
consensus [3]. The latency improvement is more profound
at the 99th percentile of convergence time, with FCR being
170× faster than consensus and Ravana. When compared to
the eventually-consistent SCL, the median latency of FCR is
twice that of SCL while the tail latency is comparable.

However, unlike SCL, FCR can also implement (1) NATs and
firewalls, and (2) safety policies that refer to more than one
flow (see §VI).

We show the applicability of our solution through a proof-
of-concept implementation (§VII), built by extending SCL’s
source code [16].We compare our implementation against the
original SCL one and show that our solution has comparable
response and convergence time.

II. SYSTEM MODEL
We consider multiple replicas of a single-image controller
(e.g., POX [17], Ryu [18]) that communicate and install
updates on switches.

The network can drop, delay and reorder packets. Links
in the network can fail at any time. One-way propagation
delay between any two end-points is bounded by δn - every-
thing beyond is considered to be a delay fault or a loss.
We assume that each controller is susceptible to crash and
delay faults [19] - it can stop functioning or be intermit-
tently slow in issuing updates. Thus, we have a crash-recover
fault-model [20]. The controllers are assumed to be non-
susceptible to arbitrary Byzantine faults [21].

We require the following from the single-image controller:
Controller applications are deterministic. If given the

same network state, each replica will compute the same set
of updates. This requirement is present in all the previous
works [2], [4], [12].
Controllers trigger computation upon receiving an event.

The controllers recompute the state using messages from the
switches as well as a cached version of switches’ state.

We relax some constraints of SCL. In addition to proactive
controller applications that compute updates based on the
network state, we enable reactive controller applications that
respond to individual packet-ins, e.g., NAT and firewall.

As normally done in SDN deployments, we assume that
switches communicate only with controllers and not with
each other. Idempotent behavior is required when a switch
installs updates, i.e., installing the same update twice has
the same result as installing it once. FCR ensures control-
plane consistency by performing agreement. However, for
dataplane consistency, we rely on existing mechanisms for
consistent-update installation, included in the design for com-
pleteness, but we claim no novelty for it. Specifically, we inte-
grate the labeling-based mechanism proposed in [22].

III. BACKGROUND AND CHALLENGES
In this section, we describe Quarts and intentionality clocks,
the two building blocks of our design, borrowed from the
literature on real-time cyber-physical systems [12], [13].
We discuss the requirements on distributed systems for apply-
ing thesemechanisms and howFCR realizes them in an SDN.

Quarts [12] is an agreement protocol for replicated
controllers in pseudo-synchronous cyber-physical systems.
These systems comprise of a central controller that receives
inputs from distributed agents, in well-defined rounds, such
that all agents are required to send inputs at roughly the
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same time. These inputs are of the form (r, i,m), where r is
a label of the round number common to all messages within
the round, i is a unique identifier of the agent, and m is the
value. The total number of agents and their IDs are known
a priori. If two controller replicas receivemessages (r, i1,m1)
and (r, i2,m2) that have the same round label r , and the
same ID i1 = i2, they must have also the same value, i.e.,
m1 = m2. Consequently, each controller replica has a vector v
of uniquely identified messages. Also, each controller replica
has state that is labeled with a round label r , and is used along
with these messages to perform computation.

Quarts works in two phases, collection and voting. In the
collection phase, each controller replica (1) queries its peers
for the missing message values from switches in the current
round and (2) responds to received queries if it knows the
correspondingmessage value. In this way, each replica tries to
maximize the size of its vector v. After collection, each replica
sends a digest to all other replicas in order to communicate
the available inputs for the round. The digest comprises a
state label and a vector of zeros and ones, where ones are
corresponding to the IDs present in v, at that replica. Finally,
each replica performs deterministic voting on the received
digests from all replicas. Voting is based on plurality [23]:
a digest appearing more often than others is chosen. Ties
break with a predefined static priority on digests.

The collection and voting phases last for a bounded time,
2δn and 3δn, respectively. After a bounded-delay of 5δn,
at each replica, Quarts outputs the following: (1) A vector v′

of uniquely identified messages chosen after agreement,
and (2) a boolean flag success. For all replicas on which
success is set to True for a given label r , the vectors v′ are
exactly the same. Each index in v′ is either empty (holds
no message), or holds the same message across all repli-
cas with a True flag. Thus, all successful replicas have the
same set of chosen messages, thereby ensuring control-plane
consistency.

Quarts was previously deployed in systems where the
distributed agents send events to the controller, either peri-
odically or when polled, with the events labeled with a
round number. This behavior does not naturally correspond
to that of switches, which are subject to asynchronous events.
In order to apply Quarts in such as setting, we require that
switches label events with an intentionality clock (see below)
derived from the latest messages received from the controller.
These labels are used by the controller to cluster events from
different switches that happen roughly at the same time into
one control round. This contrasts to the previous application
of Quarts in the sense that within a typical control round, only
a subset of the switches send events.

As only the switches with an event communicate with
the SDN controller, the controller does not have the most
recent state from other switches. As described in § II, the
SDN controller uses the last known state. Obtaining recent
state from switches after each event has high bandwidth over-
head. Instead, FCR uses a cached version of the state from all
switches, called a Baseline Network Snapshot (BNS), that is

updated consistently across all controller replicas using off-
the-shelf consensus - but on the non-real-time path. However,
due to arbitrary delays in computation, two controller replicas
might use two different BNSs in computation. Preventing
this behavior without any additional latency overhead is non-
trivial. To address this issue, FCR adds the BNS as the state
input to Quarts, as described in § IV-C.

Reactive controller applications such as NAT require a total
order among updates sent to the switches. This also requires
labeling of events and updates in the SDN. We adapt the
intentionality clock from [13]; this is a scalar logical clock,
like Lamport clock, designed for systems with centralized
controller and reactive agents. Unlike Lamport clocks, where
each agent increments its logical clock by one on receiving
a message, intentionality clocks are only incremented by one
when the controller performs a computation.

In systems with reactive distributed agents, the central con-
troller drives the clock ahead. However, in SDNs, the switches
not only react to updates from controllers, but also to network
events, whereby they send the events to the controllers. If the
switch does not increment its logical clock and sends the
new event with the old clock value, it might violate the
requirement of Quarts that for the same r , messages must
have the same value. We modified intentionality clocks by
allowing for switches to increment (by one) their logical clock
as soon as they experience an event instead of increment-
ing the intentionality clock when the controller computes
(see §IV-B). As FCR uses scalar logical clocks, any two labels
are comparable. Messages with the same label and same
ID are considered to be equivalent, i.e., it is the samemessage,
as discussed in §V. Thus, a total order among all messages is
achieved.

IV. FCR DESIGN
FCR acts as a coordination layer for single-image controllers
(e.g., POX, Ryu). FCR consists of two components: the
Quarts Switch Proxy (QSP) and the Quarts Controller Proxy
(QCP). There is one QCP on each controller and one QSP on
each switch. In Figure 1, there are 11 QSPs and 2 QCPs.

The number of QCPs (n_qcp) and QSPs (n_qsp) are
assumed to be constant and known to all the QCPs. Addi-
tionally, in order to distinguish between messages from dif-
ferent controllers and switches, each QSP and QCP is given
a unique ID. Addition and removal of both switches and
controllers, and planned policy changes are all assumed to be
infrequent; they are handled by a policy coordinator, using a
non time-critical mechanism such as two-phase commit [24]
between the policy coordinator and the controller replicas.

A QSP receives OpenFlow [25] events from its switch and
relays the state of the switch to the QCPs in the form of Status
messages (Status). The events can be either network events,
that depend on the topology of the network (e.g. a change
of a port status), or packet-ins. In the example in Figure 1,
the QSPs on switches 1 and 4 send a Status message to the
QCPs after event e1, and those on switches 5 and 10 do so
after e2. Due to network losses, only the QCP of C1 receives
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a message from the QSPs of switches 1 and 4 for the event e1,
while the QCP of C2 receives a message from the QSPs of 5,
10 for the event e2.
The operation of QCP is summarized as follows:
• On non-real-time path, periodically probe the QSPs.
Maintain a consistent BNS on QCPs using consensus.

• On real-time path, performQuarts before computing and
issuing updates to QSPs.

• If some switch-states are missing while computing the
updates, use their state in the BNS decided by Quarts.

Each QCP stores a BNS with a corresponding label. The
BNS is regularly updated using an out-of-band mechanism
that employs consensus and BNSs with the same label are the
same. When a QCP receives a Status message from a switch,
it initiates Quarts. Specifically, it enters the collection phase
of Quarts and attempts to collect all the Status message for
this round as discussed in §III. The collection phase is fol-
lowed by the voting phase. There are two possible outcomes
of the voting phase.

Success: In the example in Figure 1, assume that after the
collection phase, the QCPs of C1 and C2 have the Status
messages from all QSPs that received an event, i.e., 1, 4, 5, 10.
Also, assume that both store the BNSwith label 4. Then, their
digests have value 4 for the BNS label, 1 for switches 1, 4, 5,
10 and zero for the rest of the switches, i.e., they are written
as 4.10011000010. The QCPs at C1 and C2 exchange digests
and choose their common digest. They both have success
set to True because (i) they have all the required Status
messages in the digest to perform a successful computation
and (i) they store BNSs with the same label. For all switches
with zero value in the digest, their state is assigned according
to the (common) BNS. Thus, they relay the Statusmessages to
C1, C2 as OpenFlow messages that are then used to compute
and issue updates. In this way, the edge-isolation propertywill
be ensured (e.g., they decide f1 via 1− 6− 7− 8− 11 and f2
via 2− 3− 9− 10).

Failure: In the case of two controllers, if after collection
C1 and C2 have different partial digests, no Status messages
will be relayed to controllers and no updates will be issued.
Note that for more than two controllers, the QCPs, the partial
digests of which win the plurality vote, may still compute
and install updates. If a QSP does not receive an update in
response to its events, either due to network losses or due to
the controllers not computing because of failed agreement,
the QSP will trigger a new round of agreement by sending a
new Status message after a timeout of Tret .

Algorithms 1 and 2 describe the design of QCP and QSP,
respectively. The contents of FCR messages are presented
in §IV-A. To ensure total order among these messages, they
are labeled using intentionality clocks, described in §IV-B.

A. FCR MESSAGES & FUNCTIONS
FCR uses four types of messages for communication between
a QSP and a QCP, namely Probe, Status, Sync_Status and
Update. Each message except Probe has a label l. The other
fields in the individual messages are described below.

• Probe is used by a QCP to query a QSP for the current
state of its switch. This is used for periodically updating the
BNS that is used in computations for switches with a zero-
entry in the chosen Quarts digest, i.e., without recent events.
• Status<l, i,m>message is sent by a QSP to advertise the

state of its switch after an event. i is the ID of the QSP and
m is the message body. A controller receives a Status and uses
it to recreate the state of the network, and computes updates.
This approach is similar to SCL’s [4]. Although SCL allows
only for network events that signal topology changes, FCR
also allows for packet-ins (PACKET_IN in OpenFlow [25])
that require a per-packet update from the controllers.

A Statusmessage contains an FCR header, the QSP logical
clock, the status of all the switch ports (up or down) and
the list of events since the last received update, including
packet-ins.We do not require sending the entire content of the
flow tables as it can be recomputed by the controllers. When
another event happens before the current update is installed,
all subsequent packet-ins are appended to the previous Status
message (Algorithm 2 lines 9, 11) to create a new Status
message. Also, old network events are potentially overwritten
by new ones. After an update installation the packet events
will not be included in the next Status message.
• Sync_Status<l, i,m> is used by a QSP to advertise the

state of the corresponding switch, as a response to a probe
from a QCP. It bears the same description with the Status
message.
•Update<l, ack,m> is a routing update to be installed on

the switch, sent by a QCP to a QSP. ack indicates to the switch
if its Status message was used in computation of this update,
in which case, ack = True, else it is False. m is the body
of the message that contains the actual routing updates.

In addition to these messages, the QCPs also exchange
other messages for agreement, as described in §IV-C.

The main actions of a QCP are (i) sending probe mes-
sages at boot time and after a timeout of Tprobe to all QSPs
(Algorithm 1 line 8), (ii) initiating Quarts for achieving agree-
ment on the input among QCPs upon the reception of a Status
message from a QSP (Algorithm 1 line 17), (iii) sending the
agreed input (output of Quarts) to the controller that then
computes the updates (Algorithm 1 line 37), and (iv) sending
the Update messages, with the controller’s updates, to the
concerned QSPs (Algorithm 1 line 46).
The main actions of a QSP are (i) sending a Statusmessage

toQCPswhen receiving an event from its switch (Algorithm 2
line 6), (ii) sending a Sync_Status message as response
to a Probe received from a QCP (Algorithm 2 line 16),
(iii) sending Statusmessages to QCPs if there exist events for
which it has not received an update before a timeout of Tret
(Algorithm 2 line 19), and (iv) receiving theUpdatemessages
and sending only the valid ones to the switch (Algorithm 2
line 23).

B. ORDERING FCR MESSAGES
Ensuring control-plane consistency requires that all the QCPs
have the same message ordering. QSPs export their state
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using Status and Sync_Status messages. The state changes
when (1) an event occurs at a QSP, or (2) a QSP installs an
update, whereby it acknowledges pending events.

FCR implements modified intentionality clocks [13] to
capture the notion of a snapshot in an SDN. Each QSP and
QCP maintain a local logical-clock, C . Each outgoing mes-
sage is tagged with a label. The label is obtained as the value
of the local logical-clock right before sending the message.
The logical clock is strictly monotonically increasing by the
following rules: (1) each QSP increments its logical clock
by one, when it receives an event from the switch or when
it experiences a timeout (Algorithm 2 lines 7 and 20).
(2) On receiving amessage, the logical-clock at each recipient
is updated to the maximum of the local logical-clock and
the received label. This is important for synchronizing labels
among switches and controllers.

Note that in the original intentionality clocks, the log-
ical clock is incremented by the controller replicas only,
i.e., QCPs, because the distributed agents (equivalent to
QSPs) are assumed to be reactive. In the case of FCR, if event
e2 occurs after e1 on the same switch, then the corresponding
Status messages will have different labels and the label of
e2 must be higher. This property is called local causality. If a
controller computes two updates for two different switches in
response to the same snapshot, then they will have the same
label because they belong to the same snapshot. Furthermore,
if two controllers compute updates for the same switch in
response to the same snapshot, then the updates will have
the same label. Thus, the labels of outgoing messages from a
QSP (Status) follow the same causal order as the events on its
switch. This also enables FCR to support reactive controller
applications such as NAT and firewall. The labels ensure that
message ordering at the controllers is same as the causal order
at each switch. To ensure that the total order is maintained
across QSP reboots, QSPs augment the label with an epoch
that is incremented at each QSP reboot. The epoch is stored
in a persistent storage.

Algorithm 2 illustrates that QSPs always update the current
state of the switch, exported in Status messages, together
with the logical-clock (lines 11 and 20). This ensures that all
outgoing messages from a QSP with the same label have the
same body - a key requirement of Quarts (see §III).

C. AGREEMENT AT QCP
On the real-time path, QCPs use Quarts [12] for agree-
ment that is initiated with the received Status message
(Algorithm 1, line 22), the value of the local logical-clock
and the local label of the BNS. Quarts is round based, where
a round is indicated by a label (e.g., C in Algorithm 1).
Quarts terminates after a maximum delay of 5δn, and returns
success, an updated S_Crt and the chosen BNS label C∗bns
at each QCP. To this end, it uses a deterministic vot-
ing function based on plurality voting (§ III, [23]). If, at
a QCP, two digests are tied with the same number of votes,
then the digest with the highest (predefined) priority is
chosen. If success = True, the chosen set of values

(updated S_Crt and BNS label C∗bns) is forwarded to the
respective controllers for computation (Algorithm 1 line 44).
Note that a possible outcome of Quarts (in Algorithm 1
line 22) is success= False. In this case, the QCPwill not
forward the Status messages to the controller (Algorithm 1
line 23) and it will prepare for the next round. Conversely,
if success is True on two QCPs in the same round, then
Quarts [12] guarantees that their S_Crt andC∗bns are identical.
Recall that the controllers recompute the network state

from the received inputs. Thus, if S_Crt does not have
the Status message from a switch, the state of this switch
is assumed to be as in the chosen BNS, i.e., BNS with
labelC∗bns (Algorithm 1, lines 40-44). A switch with an empty
value in the BNS is treated as a network partition. More-
over, since the controllers are deterministic (see §II), when
two controllers compute updates with the same set of Status
messages, the resulting Update messages will be identical.

Note that we use Quarts as described in [12], without any
modifications to the collection and voting phase. In [12],
theQCPs perform agreement only once, as it was designed for
real-time systems, where performing agreement on messages
after their real-time deadline expired is superfluous. This
however, is not true in SDNs. If a QCP does not reach agree-
ment after a first attempt, more attempts for agreement can
be performed. Since exchanging Statusmessages between the
QCPs increases the chance of them having the whole set of
messages, more collection rounds result in a higher chance of
success in the subsequent voting.

In Algorithm 1, for ease of presentation, the QCP does not
process Status messages if the controller is busy computing.
However, this can be optimized for even lower latency, by per-
forming agreement among QCPs for a higher label while the
controller computes updates for an older label.

In order to maintain the most recent baseline snapshot of
the network (BNS), FCR uses a routine consisting of (1) a
probing mechanism and (2) a conventional consensus algo-
rithm such as Paxos [26] to consistently install the new BNS
(Algorithm 1, lines 9-15). This routine is triggered when
a QCP starts, in order to bootstrap the initial BNS, and
triggered every Tprobe to update the BNS. As the consensus
algorithm is not a contribution of this paper, we use the func-
tion update_baseline_snapshot as an off-the-shelf
utility. This function includes the conventional consensus
algorithm and resets the probe_timer to Tprobe on each
QCP, on termination of the consensus protocol. In this way, all
probes are pseudo-periodic (QCPs that were not involved in
a consensus trigger re-synchronization) with a period Tprobe.
Note that this mechanism is not latency-critical. Therefore,

the latency due to the consensus algorithm does not impact
the response or convergence time of FCR. The price to pay
for using an out-of-band mechanism is that for a QSP that
did not have a Status message in SCrt, QCPs might not use
the most recent state. However, due to the high success rate
of Quarts, it is likely that all QCPs have the most recent state
for that QSP by having processed its previous state change in
a previous iteration of Quarts.
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Algorithm 1 QCP Design
1 C ← 0; // Logical clock used to label events
2 Cbns,C∗bns ← 0; // Logical clocks of BNSs
3 S_Crt← [ ]; // Vector of current status messages
4 BNS← [ ]; // Vectors for baseline snapshot
5 Set probe_timer to Tprobe; // Timer to send a Probe message
6 ACK← [ ]; // ACKs to be sent to the switches
7 controller_free← True; compute← False; qcp_free← True;
8 on boot or probe_timer fires
9 Send Probe to all QSPs;
10 repeat
11 on reception of Sync_Status<l, i, m>
12 BNS[i]← (l, m); Cbns ← max(Cbns, l);
13 end;
14 until timer 2δn expires;
15 BNS← update_baseline_snapshot(BNS, Cbns);
16 end;
17 on reception of Status<l, i, m> and qcp_free = True
18 if C < l then
19 C ← l; // New status; update clock
20 S_Crt← [ ]; S_Crt[i]← m;
21 qcp_free← False;
22 success, S_Crt,C∗bns ← Quarts(S_Crt,C,Cbns);
23 if success then
24 for 1 ≤ i ≤ n_qsp do
25 if S_Crt[i] =⊥ then
26 ACK[i]← False;
27 else
28 ACK[i]← True;
29 end
30 end
31 compute← True;
32 else
33 qcp_free = True;
34 end
35 end
36 end;
37 on controller_free = True and compute = True
38 controller_free← False;
39 compute← False;
40 for 1 ≤ i ≤ n_qsp do
41 if S_Crt[i] =⊥ and BNS[i].l = C∗bns then
42 S_Crt[i]← BNS[i].m;
43 end
44 Send S_Crt to the controller;
45 end;
46 on reception of computed updates from the controller
47 for each update m for QSP i do
48 Send Update< C, ACK [i], m> to QSP i;
49 end
50 qcp_free← True; controller_free← True;
51 end;

D. DATAPLANE CONSISTENCY
The agreement mechanism described earlier guarantees
control-plane consistency. However, to enforce the safety
policies, the updates also need to be installed consistently
on all the switches, i.e., dataplane consistency is needed. For
consistent update-installation, we rely on prior work [22]: a
packet is tagged with a label by the first switch in its data
path and all subsequent switches serve it with a rule with the
same label. When installing the updates, QSPs use the label
in the Update messages sent by the QCP to tag the rules as
belonging to a particular snapshot of the network.

Additionally, Algorithm 2 line 26, illustrates that an
Update is only forwarded to a switch if it was computed with
the most recent state of the switch. Although we have not

Algorithm 2 QSP Design
1 C← reads epoch from persistent storage;
2 S ←⊥; // Current status
3 acked← True; // Was the last event acked?
4 Set event_timer to Tret ; // Timer to send a Status message
5 packet_events← [ ]; // Unacknowledged packet events
6 on event e received from the switch
7 C ← C + 1;
8 if e is a packet event then
9 Add e to packet_events;
10 end
11 S ← Current status ∪ packet_events;
12 acked ← False;
13 Send Status< C, id, S>to all QCPs;
14 Set event_timer to Tret ; // Send Status if fires before Update
15 end;
16 on receive Probe
17 Send Sync_Status< C , id, S>to the QCP;
18 end;
19 on event_timer fires and acked = False
20 C ← C + 1; S ← Current status ∪ packet_events;
21 Send Status< C, id, S>to all QCPs; Set event_timer;
22 end;
23 on receive Update<l, ack, m>
24 if C ≤ l then
25 C ← l;
26 if ack then
27 Send m to the switch;
28 packet_events← [ ];
29 acked← True; Cancel event_timer;
30 end
31 end
32 end;

found any safety policies that could be violated by not per-
forming this check before installing the update, it is certainly
a good practice for liveness. For instance, a QSP could be
instructed to forward packets on a port that is down. Without
the check, the QSP the would install such an update and
acknowledge the pending event (acked = true), thereby
violating connectivity (a liveness policy).

V. FORMAL GUARANTEES
We provide guarantees for FCR for control-plane consistency
and safety policies. The proofs are in Appendix A.

A. CONTROL-PLANE GUARANTEES
Consistency is said to hold for label r if and only if the updates
with label r sent by QCPs to QSPs have the same value for
the same QSP.
Theorem 1 (FCR Consistency): The design of QCP pre-

sented in Algorithm 1 guarantees consistency in the presence
of any number of delay- or crash-faulty replicas.

In addition to providing control-plane consistency, it is
desirable to have a low-latency overhead due to an agreement
mechanism among QCPs. The latency overhead of a QCP is
defined as the time spent by the QCP in Algorithm 1, line 22.
Theorem 2 (Bounded Latency-Overhead): The latency

overhead of a non-faulty QCP is less than or equal to 5δn.

B. SAFETY POLICY GUARANTEES
Safety policies must never be violated by a controller.
We define a safety policy s as enforceable if there exists a
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single-image controller C that never violates s. Then, s is
said to be enforceable by C or C enforces s. Let Sc be the
set of the enforceable safety policies by the single-image
controller, C . Similarly, we define the set of enforceable
policies by a logically centralized controller obtained by
replicating C with FCR as SFCR. From prior literature on
distributed systems [7], we know that when the control plane
is sharded across different controllers, it is impossible to
enforce safety policies in Sc. However, we do not consider
sharding in this paper, thereby the impossibility result does
not apply. We prove the following in Appendix A-C and
compare the safety guarantees with SCL in A-D.
Theorem 3 (FCR Safety): For any single-image con-

troller C, each s ∈ Sc is enforceable by a logically-
centralized controller obtained by replicas of C using FCR,
i.e., SFCR = Sc, under the model described in Section II.

Next, we prove that FCR ensures that events are not lost.
This is an important liveness property showing that consistent
updates will be eventually computed. For each unacknowl-
edged event at a switch, computation of updates will be re-
triggered by Status messages from its QSP, until an update
is received. We remind that as FCR requires agreement on
Status messages before deciding on updates for switches,
when agreement is not successful, no updates are sent to the
switches. A network event that overwrites another network
event is denoted as converse event, e.g., a port up event
overwrites a previous port down event.
Theorem 4 (No Lost Events): Each event is eventually

acknowledged unless a converse event happens.
Moreover, in order to correctly implement reactive con-

troller applications such asNAT and firewall, it is important to
ensure that all packets in the flow (after the first) are handled
by updates that causally follow after the first update. This
requires that any two updates received at a switch (possibly
from different controllers) are comparable, i.e., there must
exist a total order among updates. The labeling mechanism
and control-plane consistency in FCR guarantees that two
updates u1 and u2 with labels l1 and l2, respectively, received
at a switch, are identical if l1 = l2. Alternatively, if l1 < l2,
then u1 is time-wise before u2, proving total order. Conse-
quently, we conclude that FCR can be used to implement
reactive controller applications.

VI. PERFORMANCE EVALUATION
We use a discrete-event simulation to compare safety
and performance properties of FCR with other replication
schemes [2], [3], [26], [27]. The dataplane is modeled by
a graph of switches and the flows, and the control plane
is modeled as n_qcp (= g) independent controllers with
their computation time drawn according to the combined
delay- and crash-fault model of [12], [19]. This fault model
is an adaption of the Gilbert-Elliot model [28], where the
controller is either in the state of normal operation N or in
the crashed state C . When in state N , a controller can either
finish its computation within a deadline τ or be delayed
with probability θd by exponentially distributed delay time.

When in state C , the controller is crashed and does not issue
updates. The controller enters this state with probability θc
and returns to state N after a mean-time-to-repair (MTTR)
of 30 s. We take τ = 10 ms as the mean update computation
time of a non-faulty controller. In FCR, if a switch does not
receive updates for an event in less than Tret = 1 s since the
last Status message was sent, its QSP sends the event in a
new Status to all QCPs to re-initiate the computation of the
updates.

We use an out-of-band communication network between
the dataplane and control plane that is modeled as prob-
abilistic synchronous [29]. The out-of-band network will
drop or delay messages, with a probability p. Messages
that are delivered have a maximum delay of δn. For the
comparative evaluations, we study the following replication
schemes:

Ravana [2]: Ravana guarantees consistency and uses
primary-standby replication [27]. Before responding to an
event, the primary replica synchronizes with the standby
replicas using view-stamped replication [30]. The latency
overhead in Ravana is caused by the state-synchronization
mechanism. We implement the ‘‘totally ordered events’’ fla-
vor of Ravana from [2] to compare with FCR that also pro-
vides total ordering among events.

Passive: We implement the ‘‘weakest’’ flavor of
Ravana [2], which provides lower latency, at the cost of
eventual consistency. The state synchronization between
the primary and standbys is performed using an unreliable
mechanism, where the standbys might be out-of-sync for
some time. Also, when the primary is detected as faulty
by one or more backups, a new primary is elected using a
leader election mechanism that employs consensus, which
adds latency.

SCL [4]: SCL is an active replication scheme that pro-
vides eventual consistency and does not perform agreement.
As a result, the response time of SCL is the lowest among
all the replication schemes. State conflicts among the con-
troller replicas are resolved via a periodic-gossip mechanism,
and safety policies might be violated during the period of
conflict.

Consensus [3]: We simulate ONOS [3] and use Fast
Paxos [26] that is optimized for lower latency. ONOS guar-
antees consistency, but suffers from higher response time due
to consensus latency.

The first set of experiments evaluates safety (§ VI-A).
FCR is proven to satisfy safety at all times (§ V); the same is
true for Ravana and Consensus. However, eventual consistent
schemes (SCL, Passive) do not guarantee safety. For a safety
policy, namely edge disjoint isolation, we study the probabil-
ity of its violation under eventual consistency, on the topology
shown in Figure 1(a). The second set of experiments evaluates
liveness and latency metrics (§ VI-B) on two datacenter fat-
tree topologies [31] with 8 and 16 port switches referred to as
ft8 and ft16, respectively, as well as an ISP topology.Wemea-
sure the response time of the control plane, the convergence
time of the dataplane and unavailability.
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FIGURE 2. Unsafety in SCL and Passive schemes. Unsafety of FCR is 0.

A. SAFETY POLICY RESULTS
We quantify unsafety with SCL and Passive for the edge
disjoint isolation policy for flows f1 and f2 in Figure 1. In each
experiment, we create 2 simultaneous link events: breaking of
link 4−11 and link 5−10.When the updates from controllers
are installed, we check if the paths violate edge disjoint isola-
tion. Unsafety is defined as the fraction of iterations in which
the policy is violated. We use θd = 1E − 3, θc = 1E − 4,
δn = 1 ms; and vary g as 2 or 3, and p as 1%, 5% or 10%.
Figure 2 shows the unsafety of SCL and Passive as a func-

tion of network loss rate p for different number of replicas
g. We see that, for both schemes, unsafety increases with p.
For SCL, unsafety with two replicas is 6E−7 at p = 1% and
4E−4 at p = 10%, whereas for Passive it is 3E−7 at p = 1%
and 4E−4 at p = 10%. The unsafety of Passive is lower than
that of SCL because it does unreliable state synchronization
instead of no-agreement in SCL. Even-though the number
of violations for SCL and Passive is low, the probability of
disagreement increases sharply with more replicas (Figure 2)
and network size. Note that this topology is a minimal exam-
ple to illustrate violations - their number would be higher in
real-world topologies like [6]. The unsafety of FCR is proven
to be zero for all values of p and g, according to Theorem 3.
Finding 1: The eventual-consistent schemes, SCL and

Passive, have a positive probability of safety violation, thus
being inappropriate for safety critical applications. This
probability increases significantly with the increase of net-
work losses and with the number of replicas that aim at higher
availability.

B. LIVENESS POLICY AND LATENCY RESULTS
We study the price to pay, in terms of liveness and latency
properties, for guarantying safety with FCR. To quantify the
latency properties, we measure the response time, i.e., the
time between the occurrence of an event at a switch and the
installation of the new update on that switch. During this
interval, a new event might occur on this or another switch,
i.e., the network snapshot is modified. This will trigger a
computation of new updates. Therefore, installation of an
update at a switch, as well as partial installation of updates,
i.e., at a subset of the switches involved after a network
event, do not necessarily imply that the required liveness
(shortest path) policy is satisfied. We say that the dataplane
has converged if both safety and liveness policies are satis-
fied after an event. Thus, convergence time is time between

occurrence of an event and the convergence of the dataplane.
We measure unavailability as the fraction of time during
which the shortest path liveness policy is violated for at least
one flow.

In this section, we use two sets of parameters: normal
and aggressive. Parameters λf and λr represent mean-
time-to-failure (MTTF) and mean-time-to-repair (MTTR),
respectively. In the normal setup, we use p = 1E − 3,
θc = 1E − 4, θd = 1E − 3, λf = 24 hrs, λr = 12 hrs.
With these values of λf and λr , in ft16 with 3072 links, there
is an event every 15 s. In the aggressive setup, we use
p = 1E − 2, θc = 1E − 3, θd = 1E − 2, λf = 12 hrs,
λr = 6 hrs. We vary the number of controller replicas g and
network latency δn.

We use ft16 with the normal parameter set, g = 2 and
round-trip time of 1 ms, i.e., δn = 0.5 ms as a basic scenario
to highlight the main findings. We do sensitivity studies by
varying δn, g, different topologies and fault profiles. Figure 3
shows the empirical cumulative distribution function (ECDF)
of response times and convergence times, along with results
on unavailability for different schemes. Scenario 1 in Table 2
illustrates that the median response time with FCR is 0.6×
that of Ravana and 0.4× that of Consensus.
Finding 2: The median response and convergence time

with FCR is lower than that of consistency-guaranteeing
schemes and higher than that of eventually-consistent
schemes.

To visualize the tail improvement, we show
in Figure 4, on the log scale, the complementary CDF
(CCDF) of response and convergence times. From Scenario 1
in Table 2, we see that the median and the tail response
times of FCR are 2.34× and 1.16× that of SCL, respectively.
In contrast, the tail response time of Ravana, Passive and
Consensus is 1.56×, 2.09×, 1.98× that of FCR, respectively.
Their tail convergence time is two orders of magnitude
(∼ 170×) larger than that of FCR. This makes FCR clearly a
better choice for networks that require safety, but, also aim at
low tail-latency, e.g., in datacenters [32].
Finding 3: The tail response and convergence time with

FCR is comparable to that of eventually-consistent schemes
and drastically lower than consistency-guaranteeing schemes.

The improvement in response time due to FCR is attributed
to the unbounded latency overhead of some form of consen-
sus mechanism used in Passive, Ravana and Consensus. Also,
the underlying agreement algorithm of FCR, has a higher
probability of reaching an agreement than Consensus. Due
to its lower response and convergence time, FCR has an
availability three orders of magnitude higher than Passive,
Ravana, andConsensus, as shown in Figure 3(c). The unavail-
ability of FCR (1.97E − 06) is comparable (2.5×) to that
of SCL (6.9E − 06); this highlights the efficacy of FCR in
maximizing liveness while providing safety guarantees. The
drastically high (> 10×) availability of FCR and SCL when
compared to other protocols is also the reason for the low
tail-latencies measured at 99th percentile. Note that the tail
measured at 99.99th percentile and the maximum response
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FIGURE 3. Representative scenario (Basic): ft16 with g = 2, δn = 0.5 ms and parameter setup normal.

TABLE 2. Median and tail (at 99th percentile) response and convergence times for different scenarios. The column Setup shows the difference in each
scenario from basic setup seen in Figure 3.

FIGURE 4. CCDF of response and convergence times for the basic
scenario.

time and convergence time for SCL and FCR also show a
similar trend. Findings 1 and 2 are true also for other scenarios
(see Table 2). Next, we study the variation in the latency
improvement of FCR with different parameters.
Finding 4: The latency improvement of FCR increases sig-

nificantly with more replicas, decreases with larger network
latency, and is not affected by network size.

From Scenarios 1 and 2 in Table 2, we see that the response
and convergence times of most schemes reduce with more
replicas. Adding replicas makes the controller more ‘‘avail-
able’’, in the sense that the controller becomes more reac-
tive [33]. As FCR can reach an agreement with fewer avail-
able replicas, its probability of agreement increases faster
than in Consensus and Ravana, by adding more replicas.
Hence, with g = 3, the latency improvement increases on
average by 2.3× for tail response time and by 245× (170×
for g = 2) for tail convergence time. A similar trend is
seen in Scenarios 4 and 5. Note that for SCL an increase of
the number of replicas may reduce latency and convergence
time, but it renders safety violation more likely (Figure 2).
Thus, with SCL, for a given probability of safety violation,
the latency and convergence time cannot be decreased by
increasing the number of replicas. On the contrary, with our
proposed FCR, increasing the number of replicas can ensure
significantly low values of latency and convergence time
without any impact on the guaranteed zero unsafety.

In Scenarios 3 and 4, we vary the one-way network latency
δn to 0.1 ms and 1 ms, respectively, from 0.5 ms in the basic
scenario. As FCR performs agreement, its latency is limited
by the latency of the out-of-band control network. Thus,
we find that the average convergence time of FCR increases
as δn increases. However, the increase is much lower than that
of Ravana and Consensus because, on average, the agreement
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FIGURE 5. CCDF of convergence time for AS 1221 with parameter set
normal, g = 2 and δn = 10 ms.

mechanism of FCR exchanges less traffic than Consensus and
Ravana. As a result, for δn = 0.1 ms, we see that the tail-
latency improvement with FCR, with respect to Consensus
and Ravana, is 1.9× for response time and 202× for conver-
gence time, on average. For δn = 1 ms, these drop to 1.73×
and 131×, respectively.

We also find that at lower δn, FCR closely follows SCL,
whereas their difference is larger at high values of δn. This
is because SCL uses less the out-of-band network while
responding to events as it does not perform agreement. Hence,
SCL’s response time is very close to δn. As seen earlier,
the performance of FCR can be further improved to be closer
to SCL with more controller replicas. When more replicas
cannot be used, a marginally higher convergence time is
a small price to pay for guaranteed control-plane consis-
tency, i.e., safety. Alternatively, for SDN controllers that do
not require control-plane consistency and do not implement
applications based on packet events (e.g., NATs and fire-
walls), SCL could be used instead of FCR, for lower latency.

As FCR performs agreement on n_qsp number of Status
messages, its performance depends on network size. We see
from Scenarios 1 and 6 that, as the network size increases,
FCR’s convergence time increases. The same is observed in
Consensus, albeit for a different reason: more events might
occur while controllers are agreeing, thus increasing the con-
vergence time. The latency improvement of FCRwith respect
to Consensus is similar for both network sizes.

The performance of FCR is bottlenecked by the per-
formance of Quarts [12]. Thus, the convergence time of
FCR depends on the success of Quarts, which depends on
the fault parameters θc and θd , and the network loss rate p.
Scenario 8, with the aggressive setup, shows the impact
of these parameters. We see that the performance of all
schemes is affected by the increased fault-rate; and the low-
latency schemes, FCR and SCL, are affected the most. This
can be remedied by appropriately dimensioning the degree of
replication when the controller is expected to be faulty. The
performance of Quarts for a wider range of fault profiles is
studied in [12].

1) ISP TOPOLOGY
In order to study the performance of FCR in a non-datacenter
topology, we simulated the AS 1221 ISP topology, mapped
in the Rocket-Fuel Project [34], with 4367 switches with
δn = 10 ms in Scenario 7. Figure 5 shows that although the

tail convergence time of FCR is increased when compared
to SCL due to large one-way latency, the large improve-
ment over Consensus, Ravana and Passive is still preserved.
Moreover, as ISP networks have multiple, redundant paths
of different costs, there is a higher chance of eventually
consistent schemes violating safety policies, such as edge
disjoint isolation, than in datacenter networks.

2) BANDWIDTH OVERHEAD AND SCALABILITY
FCR has the same bandwidth overhead as SCL [4] as it
uses the same probing strategy. For example, on the largest
topology we tested, AS 1221, 98% of the time (measured
on 500 ms intervals) bandwidth overhead is under 1 Mbps.
This is smaller than 0.0001% of link capacity if we assume
10 Gbps links.

3) NETWORK PARTITIONS
In the presence of network partitions, FCR might sacrifice
availability in some cases, but it never sacrifices consistency.
Two cases of network partitions are possible: (1) One or more
switches are isolated from all the controllers and cannot
send or receive packets. The controllers will proceed nor-
mally without events from the isolated switches. Availabil-
ity for the still-reachable switches will not be hindered.
(2) A network partition occurs between controllers. In this
case, the updatesmay still be installed on the switches, if there
exists a partition with enough QCPs for the plurality-based
voting of Quarts to succeed.

4) AVAILABILITY VS. BANDWIDTH
The reduced availability (especially in case (2)) is a result of
our design choice – we choose to keep the bandwidth over-
head low at the cost of availability. For networks where the
bandwidth budget allows it, one could increase availability in
general by adding a probing phase after each event (instead
of probing periodically).

Every QCP with a Status or Sync_Status from all QSPs
with the right label proceeds with computing and installing
updates after the probing phase – without communicating
with other QCPs first. The corresponding controller computes
with the ground truth for its current label, thus providing
availability. The same does not apply to QCPs with a partial
digest. See Appendix B for more details.

VII. SYSTEM IMPLEMENTATION
We evaluate our proof-of-concept implementation of FCR
against the original SCL implementation used in [4].
We run the two systems in the same environment in
Mininet 2.2.1 [35]: 20 switches and 16 hosts are connected
via 48 1 Gbps links (with the default Mininet behavior)
forming a 4-port fattree. Both schemes support in-band and
out-of-band communication. We evaluated the out-of-band
setup commonly used in datacenters [36]. We use a single
machine with two Intel Xeon E5-2680 (Haswell) proces-
sors with a total of 24 cores and 48 hyper-threads running
at 2.5 GHz, and 256 GB of main memory. We run Ubuntu
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LTS 16.04.2 distribution with the Linux kernel version 4.4.0.
FCR is implemented using POX controllers [17] with
shortest-path application in order to make a fair compari-
son with SCL implementation. The controllers are paired
with their corresponding QCPs via OpenFlow 1.0 [37].
We implemented Quarts in C++ based on algorithm from
Saab et al. [12] and exported it as a Python module in order
to connect it with POX. Our implementation of Quarts is easy
to plug-in via intuitive API calls. The only parameters we
had to set was the network delay upper bound δn, which we
empirically measured and set to 10 ms, and the addresses of
all the controllers.

We use unmodified Open vSwitch [38] (version 2.5.2) that
communicates with the QSP layer, also via OpenFlow 1.0.
Status messages are constructed from the switch state since
sending the full content of flow tables is not necessary
in FCR. For reactive applications such as NAT, not evaluated
in this work, reading the list of pending packet-ins would
be required as well. Note that a QCP needs to differentiate
updates received from controllers as a result of two successive
computations, in order to label them correctly (Algorithm 1).
To this end, it uses the flag controller_free to check if
the single-image controller finished computing, before send-
ing new Status messages, thereby ensuring that the received
updates correspond to the last Statusmessages. The QCP sets
the flag to True upon receiving a special OpenFlow mes-
sage, handle_QUEUE_GET_CONFIG_REQUEST, with
which the controller signals it finished
computing.

We analyze the response and convergence times (defined
in §VI) of both FCR and SCL across 200 random single-
link failures. The time between consecutive events is one
minute. This scenario corresponds to the evaluation of SCL
in [4]. In Figure 6 we show the results with two and three
single-image controller replicas. We find that FCR and SCL
are comparable in both response and convergence times,
since the voting in FCR is likely to succeed due to good
network conditions. Notice that while the response time of
FCR is slightly higher than SCL due to the Quarts delay,
the convergence time of FCR is slightly better than SCL due
to control-plane consistency in FCR ensuring that different
controllers do not install conflicting updates. As a result,
the dataplane converges faster with FCR. Authors in [4] show
that for the same 4-port fattree topology ONOS is expected
to be 1.24× and 1.63× slower than SCL in tail response
and convergence time, respectively. In our setting similar
results are expected for ONOS vs. FCR. Note that the latency
improvement observed in §VI is much smaller because the
high latency with consensus (ONOS) is observed in cases
of network partitions, not studied in the implementation
evaluation.

VIII. RELATED WORK
Numerous related works evaluate the trade-off between the
consistent global network view and latency of SDN con-
troller applications [39], [40]. Approaches that focus on

FIGURE 6. Median and tail (at 99th percentile) of 4-port fattree
with 2 and 3 replicas.

ensuring control plane consistency impose high delays in
responding to network events. Hyperflow [41] passively
synchronizes network-wide views of OpenFlow controllers.
ONOS [3] uses Paxos - known for its high latency and com-
plicated implementation [4], [33]. Approaches that instead
use Raft (e.g. ONIX) [1], [42] have similar latency issues.
Ravana comes in multiple flavors that offer different lev-
els of consistency guarantees. The strongest one offers,
exactly-once event processing and exactly-once execution
of commands [2], but at a high latency price. Alternatively,
approaches like SCL chose the opposite trade-off in favor
of low latency, as we saw in §I. The trade-offs in SCL [4],
Ravana [2] and Consensus [3] have been extensively studied
in §VI.

In passive replication schemes such as Ravana, view-
stamped replication [30] and primary-backup replica-
tion [27], the primary replica is a single-point of failure.
Hence, when it fails, the switches timeout and resend the
request event. This adds to the tail-latency. Moreover, such
schemes perform a fail-over to the backup by detecting
the primary as faulty. As perfect failure-detection is proven
to be impossible in asynchronous systems [43], passive-
replication schemes either have to expend large delays in
ensuring smooth failover or are susceptible to inconsistencies
due to multiple simultaneous primary replicas. Additionally,
when the primary replica is delayed intermittently, the delay
faults go undetected and availability is lowered as seen
in [19].

The need for fast control planes has been recognized by
a number of researchers. Molero et al. [10] implement the
entire control plane using programmable ASICs. Chen and
Benson [9] tackle the problem by better scheduling of TCAM
resources in SDN switches. Either approach could be used in
combination with FCR for ultra low latency.

An orthogonal problem to control-plane consistency is the
consistency of updates under their asynchronous installation
on the switches [22], [44]–[47]. For that purpose FCR uses
packet labeling [22], [47] (detailed in §IV-D).
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IX. CONCLUSION
We presented FCR, a coordination layer for replicated single-
image controllers that guarantees control-plane consistency
with low-latency. Through simulation, we find that FCR can
provide up to 170× improvement in tail latency compared
to other consistency-guaranteeing mechanisms. We formally
prove that FCR enforces all safety policies that are enforce-
able by the underlying single-image controller. FCR uses
Quarts for agreement among replicated-controllers, which
supports both stateless and stateful controllers. In this work,
FCR is applied to stateless controller applications, and state-
ful applications are left for future work.

APPENDIXES
APPENDIX A
PROOFS OF THEOREMS OF SECTION V
A. PROOF OF THEOREM V.1

Proof: From Lemma A.5 in [48], Quarts ensures
that if two QCPs, Qi and Qj, return success = True
for label C (Algorithm 1 line 22), then they have the
same SCrt and same C∗bns. Moreover, as the function
update_baseline_snapshot uses consensus, we have
a consistent BNS at all QCPs for the same BNS label. There-
fore, for QSPs with a zero in the chosen digest, every QCP
will chose the same state. Furthermore, as controllers are
deterministic, agreement on the inputs used for updates’ com-
putation is sufficient to guarantee that the resulting updates
received by Qi and Qj from the respective controllers are
identical. Lastly, the value of the label does not change while
the controller is computing, i.e., while qcp_free =False
(Algorithm 1 lines 17, 21 and 50). Hence, the outgoing
updates have the same label.

�

B. PROOF OF THEOREM V.2
Proof: The duration of Quarts at a QCP is at most 5δn

(From Theorem V.2 in [12]).
�

C. PROOF OF THEOREM V.3
Proof: As s is enforceable by C , the set of updates for

label r , U0
r , computed by C , does not violate s. Let U i

r be the
set of updates computed by the ith replica of C , Ci. Control-
plane consistency (Theorem 1) implies that U i

r = U0
r for

any Ci. Furthermore, as updates are assumed to be idempo-
tent, an installation of U i

r for each Ci has the same result as
an installation of U0

r . �

D. SAFETY GUARANTEES OF FCR VS. SCL
Following the discussion in Section V for the safety guar-
antees, let us denote the set of enforceable policies when
replicating C with SCL as Sscl . From SCL [4], we have that
Sscl includes a policy s if and only if it can be expressed
entirely as a condition on exactly one path, i.e., the path
violates or obeys the policy regardless of other existing paths
in the network. For example, way-pointing states that the

packets of a flow should follow a path that includes a given
set of switches in the network. On the contrary, the definition
of safety policies in Sc can concern multiple flows, hence
multiple paths. For example, edge disjoint isolation for flows
f1 and f2 states that their paths p1 and p2 should not share a
link. Therefore, Sscl ⊂ Sc. Since, SFCR = Sc, FCR enforces
more safety policies than those enforced by SCL.

From the example of edge disjoint isolation in Figure 1,
we notice that safety policies in Sc require control-plane con-
sistency. Specifically, the controllers C1, C2 that are replicas
of C , compute two different sets of paths for flows f1, f2,
each set satisfying the safety policy. However, the true paths
followed come from different controllers, and this interleaved
set of paths does not satisfy the safety policy. As a result,
in the absence of control-plane consistency, there needs to be
a mechanism so that all switches serve all flows by using the
updates from the same ‘‘chosen’’ controller; this is in fact a
consensus problem and is faced with the same drawbacks of
doing consensus in control-plane.

E. PROOF OF THEOREM V.4
This result derives from the fact that the QSP (i) sets the
acked field to False when an event occurs (Algorithm 2
line 12), (ii) tracks if the last event emerged at the switch has
been acknowledged (variable acked at line 19 of Algorithm 2)
and (iii) installs updates only if they have been computed
accounting for the current state of the switch (checked at the
receive Update function of Algorithm 2, line 26). The proof
is as follows.

Proof: Let event e1 occur at switch 1 at a time when the
logical clock of its QSP is C = l1.

Then, at Algorithm 2 line 12, the flag acked is set to
False.

Let l2 ≥ l1 be the value of the logical-clock at the QSP of
switch 1, at the first time when the acked flag is set to True
at Algorithm 2 line 29.

Thus, the switch 1 received an update with label l2 and with
the field ack set to True.
Hence, there exists a QCP which succeeded in Quarts for

label l2 such that S_Crt[1] 6=⊥ for label l2.
Therefore, switch 1 sent a Status message, Sl2 , with

label l2.
However, for all labels within {l1 + 1, . . . , l2 − 1}, e1 is

still unacknowledged, since acked = False. Thus, either a
converse event occurred or still Sl2 3 e1.
The last statement completes the proof. �

APPENDIX B
FCR WALK-THROUGH
In this section, for the ease of understanding of the readers,
we discuss how FCR operates using the topology of Figure 1
under the typical scenario and a list of atypical scenarios:

1) Typical success scenario.
2) Multiple switch events.
3) QSP’s logical clock is lower than the received update

label.
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The network in Figure 1 consists of two controllers, C1
and C2, their corresponding QCPs, QCP1 and QCP2, and
11 switches, switch 1 to switch 11, as well as their corre-
sponding QSPs, QSP1 to QSP11.

Scenario 1: An event happens on switch 1 and the internal
logical clock of QSP1 increments to l. QSP1 sends a Sta-
tus message with label l to both QCPs. Assume that both
QCP1 and QCP2 have internal logical clocks smaller than l;
therefore they begin Quarts with the received Statusmessage.
In Quarts collection phase, each QCP queries its peers for the
Status from all other QSPs. As no other event had occurred,
the collection results in a digest [1 0 0 0 0 0 0 0 0 0 0]
and the same digest is chosen in the voting phase. Both
QCPs immediately proceed with computing and installing the
updates with the label l.
Scenario 2: Like in Scenario 1 an event happens on

switch 1 and the internal logical clock of QSP1 increments
to l.QSP1 sends a Statusmessage with label l to all the QCPs.
While the QCPs are doing collection for event from QSP1,
they receive events from other switches in the form of Status
messages. Now, one of the following scenarios can occur.
• First: QCP1 and QCP2 have the same digest after collec-

tion. In this case, the voting on both QCPs succeeds, and they
proceed with computation and installation of updates on all
QSPs like in Scenario 1.
• Second: QCP1 and QCP2 have the different digests after

collection andQCP1 has full digest [1 1 1 1 1 1 1 1 1 1 1]. Note
that this scenario is unlikely as it requires events happening
on all the switches within a short time period. In this case,
QCP1 will succeed in the voting phase due to the absolute
priority of full digest in Quarts’ priority voter. Alternatively,
QCP2 will fail in the voting phase. Therefore, QCP1 will
proceed to computation and installation of updates, whereas
QCP2 is prevented from computation. However, QCP2 may
compute updates in the next successful round after l when
it retrieves either the full-digest or the same digest like the
majority. In this simple example there are only two controllers
- therefore the majority is both of them.
• Third: QCP1 and QCP2 have different digests after col-

lection and neither has a full digest. In this case, the voting
phase will fail on both the QCPs and they are both prevented
from computing updates. The event with label l remains
unacknowledged. No new events happen in the meantime and
the event timer fires on the QSPs. The internal logical clocks
are incremented to l + 1 and new Status messages with the
label l + 1 are sent to all the QCPs starting a new round of
Quarts.

Scenario 3: One more time, an event happens on switch 1
and the internal logical clock of QSP1 increments to l.
An event that happened on switch 1 triggered updates with
the logical clock l. QSP3, did not receive its updates and its
internal logical clock stayed behind at the value l−1 while all
other QSPs moved on to value l. The next event is triggered
on the switch 7 and labeled with l + 1. Even though QSP3
effectively ‘‘skipped’’ a round, when it receives an update
with label l + 1 in the next round it will update its internal

logical clock to l + 1. A subsequent Status message from
QSP3 after an event will have a label l + 2. Updates will be
recomputed in the controllers and the operation of the system
will continue normally.
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