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Abstract— We present an end-to-end trainable Neural Net-
work architecture for stereo imaging that jointly locates and
estimates human body poses in 3D. Our method defines a 2D
pose for each human in a stereo pair of images and uses
a correlation layer with a composite field to associate each
left-right pair of joints. In absence of a stereo pose dataset,
we show that we can train our method with synthetic data
only and test it on real-world images (i.e., our training stage
is domain invariant). Our method is particularly suitable for
autonomous vehicles. We achieve state-of-the-art results for
the 3D localization task on the challenging real-world KITTI
dataset while running four times faster.

I. INTRODUCTION

The perception stack of autonomous vehicles commonly
relies on expensive 3D sensors (e.g., LIDAR) [1], [2]. Stereo
vision, a cost-effective alternative, is still below the detection
accuracy of LiDAR-based solutions. State-of-the-art stereo-
based methods only focus on the car category [3], [4],
due to the large number of available instances needed for
data-hungry deep-learning networks. In this work, we are
interested in perceiving humans - a fundamental and critical
category for any autonomous vehicle operating alongside
pedestrians (from social robots [5] to self-driving cars [6]).
Note that our definition of human generalizes to pedestrians
and any other category involving humans in the publicly
available KITTI dataset [7], such as person sitting.

We frame the problem as follows: given a pair of images
from stereo imaging, estimate human body poses and locate
them in 3D (see Figure 1). Calculating the pixel disparity
between humans in a pair of stereo images requires accurate
correspondence between pixels or stable keypoints [8]. We
propose to use the 17 semantically defined keypoints corre-
sponding to body parts [9]. We address the challenges related
to keypoints’ stability across image pairs, limited resolution
for far-away humans, and occluded body joints in crowds.

Inspired by the recent success of pose estimation [9],
[10] and end-to-end object tracking [11], [12] methods,
we propose to jointly solve pose estimation and stereo
matching with a single feed-forward regression network. To
address challenges related to keypoints’ stability and limited
resolution, we develop our end-to-end method, referred to
as Part Spatial Field, which combines composite fields [9]
and correlation layers [12]. Furthermore, we address the
challenge of occluded joints with an uncertainty-based score
and a stereo joint voting procedure. Our method reasons in
3D, creating location proposals in the form of 3D human
poses.

Fig. 1. We present a method for stereo imaging that jointly estimates human
body poses (second row) and locate them in 3D (last row). For clarity, only
one image is shown (in the first row) from the stereo pair.

Finally, in the absence of a stereo pose dataset, we propose
to synthesize one by generating the horizontal shifts of
COCO [13] images - a dataset made of randomly collected
images annotated with body parts keypoints. Domain in-
variance between this synthetic stereo and the real stereo
is provided by working at the feature level that is used for
single-image keypoint estimation.

We summarize our main contributions as follows:

o A new Part Spatial Field that forms an association field
from correlation features, which makes stereo matching
trivial.

o An uncertainty based decoding procedure that detects
occluded joints and matches stereo poses.

o A domain invariant strategy to train our network.

The rest of the paper is structured as follows: after
briefly presenting previous works, we present our method in
Section III and IV. Then, we run experiments on the KITTI
dataset [7] outperforming the accuracy of previous works
while running four times faster.

II. RELATED WORK

A. Stereo 3D Object Detection

Researchers in deep learning have paid less attention
to stereo-based 3D object detection compared to LiDAR-



based methods [14], [15] on the popular KITTI dataset
[7]. 3DOP [16] focuses on generating 3D proposals by
encoding an object size prior, a ground-plane prior, and depth
information (e.g., free space, point cloud density) into an
energy function. 3D proposals are then used to regress the
object pose and 2D boxes using the R-CNN approach. Li et
al. [17] leverage geometrical constraints for localization by
extending the Structure from Motion (SFM) approach to the
dynamic object case and used the ego-camera pose to fuse
both spatial and temporal information. The very recent Stereo
R-CNN [3] takes advantage of dense object constraints in raw
stereo images and detects matching objects on stereo images
at the same time. Wang et al. [18] exploit a dense disparity
map to create point clouds, while TLNet [4] leverages 3D
anchors to explicitly construct object-level correspondences
between the regions of interest in stereo images. Yet, all these
methods primarily focus on detecting vehicles.

B. Bottom-up 2D Pose Detection

Methods to detect human 2D poses are categorized as ei-
ther top-down or bottom-up. The latter detects each joint of a
person first and then connect them to construct the full pose.
The pioneering work by Pishchulin with Deepcut [19] and
Insafutdinov with Deepercut [20] solves the part association
with an integer linear program but requires high computation
complexity. Follow-up methods successfully reduce infer-
ence time by using greedy decoders in combination with ad-
ditional tools as in Part Affinity Fields [21], PersonLab [10],
and PifPaf [9]. Other intermediate representations are built
on top of 2D pose estimates in the image plane, including 3D
pose estimates [22], human pose estimation in videos [23],
and dense pose estimation [24]. All of them would profit
from improved 2D pose estimates. Our network architecture
is built on top of PifPaf [9], which is particularly suitable
for low-resolution images.

C. Monocular-based 3D Object Detection

Chen et al. [25] use monocular images to extract ground-
plane assumption, shape prior, contextual feature, instance
segmentation, and predict 3D objects. However, they do not
explicitly evaluate their methods for the “human” category.
They also assume a fixed ground plane orthogonal to the
camera and the proposals. To regress 3D pose parameters
from 2D detection, Deep 3D Box [26] and Xu et al. [27] pro-
pose an end-to-end multilevel fusion approach to detect 3D
objects by concatenating the RGB image and the monocular-
generated depth map. the MonoPSR [28] method predicts a
point cloud to learn shape information. Finally, the recent
MonoLoco [29] method learns from the data the relationship
between human body poses and their distance to the camera
(depth). Since the method outperforms the stereo 3DOP [16]
in some conditions, we also compare our method to the state-
of-the-art monocular method in Section V.

III. METHOD

The goal of our method is to jointly estimate and match
human poses in a pair of stereo images. Then, we use the

pixel disparity to estimate the depth and localize humans in
3D. We address challenges related to faraway and partially
occluded humans. We propose a bottom-up method that
increases the association resolution from person scale to
joint scale and jointly exploits textural and pose similarity.
Figure 2 presents our overall model. It includes a shared
ResNet [30] base network and PifPaf [9] head networks
to predict the 2D poses and a new third head network for
predicting association between stereo joints. We name our
method Part Spatial Field (PSF) and can train the whole
network end-to-end.

A. Correlation Calculation

Our goal is to detect and match across pair of stereo
images multiple people at the same time. We compute
correlation values for all positions in a feature map and make
our model operate on the whole feature maps for matching
regression. However, calculating all possible circular shifts
will lead to a huge output dimensionality. Yet, the stereo
images do not require a large disparity. Hence, we restrict the
correlation calculation to small translations. Our correlation
module is inspired by Flownet [31], where a correlation layer
is aimed to help a convolutional network in matching feature
points between stereo images. The correlation layer operates
pixel-level feature comparison of two feature maps z;, x,:

Teorr (i3 4:1:0) = (@1(iy ), 2 (i + p,j + @), (D)
where —K < p < K and K < g < K are offsets to compare
features in the square neighborhood around the locations ¢,
7 in the feature map, defined by the maximum displace-
ment K. The correlation layer output becomes .o €
RH>XWix(2K+1)x(2K+1) In other words, Equation 1 can
be seen as a correlation between two feature maps within
a local square window defined by K. We compute this local
correlation for left regression and right regression.

B. Part Spatial Field

Our Part Spatial Field (PSF) module will output one
intensity map s. to model the confidence of association and
two regression maps (Sui(r), Syi(r)) to convert the similarity
into a pixel-level distance. As shown in Figure 3, at every
output location, two vectors will point to its left and right
stereo joints, respectively.

Stereo Pose Matching algorithms need to consider the
diversity of scales that a human pose can have in an image.
While a localization error for the joint of a close proximity
person can be minor, that same absolute error might be a
major mistake for faraway smaller persons. At the same
time, measuring the uncertainty of the spatial precision of
an association could be helpful when computing a score for
each connection. As a result, we use a Laplace loss [32] to
train the regressive model:

L = |z — ul1/b+ log(2b), 2)

where u is the ground truth location of the joints, and b the
predicted spread which attenuates the radius of the L; loss.
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Fig. 2.

The architecture of our proposed stereo association method. The Backbone processes images into features. The correlation block and PifPaf [9]

head networks receives down-sampled features and outputs Part Spatial Fields (PSF) and 2D regression fields, respectively. The Decoder converts the fields

into final stereo pose pairs through greedy decoding.

It represents how hard (or uncertain) the task is. Finally, PSF
can be represented as:

s = {SzcjaS;ljaS;ljas;)ljaszzga‘s;ﬂaszg}v (3)
where (831, Sy) and (g, Syr) are absolute locations (sum
of pixel location and regression distance) of an association
vector’s two endpoints. (S, Spr, Spr) Tepresent the confi-
dences for the association and left and right spatial precision,
respectively. The output is then decoded to associate each
joint in the left image with the one in the right image.

C. Uncertainty-based Pose Matching

Given the 2D pose outputs, the task is to pair the same
persons stereo poses. In addition to the confidence map
produced by PSF, the spreads b will give the uncertainty
of an association. If two vectors’ edge locate faraway from
the joint, the association score should be low. At the same
time, based on the uncertainty of the spatial precision b, a
short connection may still be suppressed. As a result, the
connection score is designed by the following formula:

C(?v (xlvyl)z ($ra yr)) = S X
V(@ = sm)? + w(y — sy)?
b 4)

T zr2+ T 7‘2
oop [V s>bw<y P\

exp

where the connection vectors § associate two joints to-
gether, (x;,y;) and (x,,y,) correspond to joints location on
left and right stereo images. Again, (s, Sy1) and (Sgr, Syr)
are absolute locations (sum of pixel location and regres-
sion distance) of an association vector’s two endpoints.
The weight w emphasizes that the paired joints should
have a small difference in y coordinate. b; and b, are the
two predicted spread, which indicates the uncertainty of
the connection. With the help of the connection score, a
stereo matching algorithm is designed to associate stereo
poses with high location similarity. The initialization of
connection vectors is done by filtering the confidence maps

with a manual threshold. To further reduce the computation
complexity, we only take keypoints located to the right of the
left keypoint. Finally, Non Maximum Suppression (NMS)
is used to remove duplicates. The algorithm encourages
keypoint pairs to have high location similarity on all joints,
and the pose similarity is thus taken into consideration. The
algorithm is summarized as follows.

Algorithm 1: Uncertainty based Stereo Pose Matching

Result: Stereo Pose Pairs
1 Input: connection vectors $ and predicted 2D pose
sets P, and P, ;

2 while P! = null do

3 | P/ < Prpop() ;

4 < P}, P! >+ argmax;(
S50 ma(e(Sim, (w5 915, (25,9 ) ),
where n € N, N is a circle centered at (5, yi;)
with radius k. 7 € P, ;

5 end

6 Non Maximum Suppression(NMS)

D. Human Distance Estimation

Given the depth of each joint, the task is to calculate
the distance of the person to the camera (also referred
as the depth). Since some joint locations are not accurate
due to occlusion or detection error, we include a z-score
thresholding procedure to remove outliers and consider the
median depth of the remaining joints as our final output. At
last, we obtain the distance by calculating the L2 norm of
pose center (camera coordinate) and depth.

To determine the z-score threshold z, we evaluate the
model on the KITTI training dataset without any z-score
threshold. The fraction of distance errors that are less than
2 meters determines our z-score threshold z.

E. Stereo Joint Voting

For the pose estimation phase, the confidence of a joint
is given by PifPaf [9]. However, in stereo settings, occluded
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The Part Spatial Field (PSF) output maps for the “right wrist”. The intensity map gives the route of the joint movement. The left and right

regression maps measure the down-scaled distance from each pixel location to left and right stereo joints. From the regression map, we generate dense

association vectors to associate stereo joints.

Fig. 4. The figure illustrates voting’s ability to detect occluded joints. To
simulate the occlusion situation, we use a black mask to mask left shoulder,
left elbow and left hip. The Red, Green, Blue are the voting result for the
right stereo image, which indicates the ability of the model to associate each
joint. Left: Right stereo image. Right: Masked left image with PSF voting.

joints are common and not well detected by 2D pose esti-
mation algorithms [23], [33], [34]. Hence, we combine the
PifPaf confidence with a confidence specifically designed
for occluded joints. We create two high-resolution part
confidence maps f;(z,y), fr(x,y) with a convolution of a
Laplacian kernel N with width sZJl(T over the regressed
targets from the Part Spatial Field weighted by its confidence
Set

Pa) =27 N (29l stioysitn) - )
ij
The spatial spread b of a joint is learned as part of the field.
An example of PSF ability to reason with occluded joints
is given in Figure 4, where we simulate an occlusion with
a black mask in the image. The PSF confidence can help
to detect those partly occluded joints if the joint exists on
either side image. To obtain the final confidence, we sum the
predicted confidence map of PifPaf with the PSF one.

fconf(x7y) :wfpif($7y>+(1 —U))fpsf(l’,y), (6)

where w weights PSF voting results with PifPaf confidence
map. We chose w as 0.9. This new confidence map will then
be decoded by PifPaf decoder. Similarly, PSF confidence can
also be combined with confidence maps from different 2D
pose estimation methods.

IV. IMPLEMENTATION DETAILS
A. Data Generation

We simulate stereo images based on the COCO keypoint
datasets [13] with the following procedure:

o We translate the image in the x-direction exploiting the
depth-disparity relationship of KITTI dataset:

Depth = 0.54 x 721/ Disparity @)

According to statistical analysis of KITTI object
dataset [7], the depth of 93% of instances ranges from
4 meters to 40 meters, so we set the maximum depth as
40 meters and minimum depth as 4 meters. According
to the equation above, in our training schedule, the
translation ranges from 10 to 100 pixels.

e We randomly scale down and up the images in x
direction with ratio from 0.99 to 1.01 to simulate the
slight scale changing between stereo image pairs.

e We randomly modify contrast and light augmentation
to simulate different light conditions of stereo cameras.

Then, the model is trained on the synthetic stereo data
and tested on KITTI [7] datasets. The results are shown
in Table I. Compared to other models, our method has not
been trained on KITTI and can directly generalize to other
datasets.

B. Network and Training

Our model structure is shown in Figure 2. We use a
ResNet [30] with stride 16 as a base network to extract
features. A convolutional network compresses the features
and distributes them to the correlation block. Inside the
block, the two correlated features are concatenated with input
dense features to output fields. At last, the pixel shuffle [35]
is used to up-sample the feature maps. To train the correlation
layer, we first load the pretrained pifpaf network and freeze
the base network. The network is trained using SGD with a
momentum of 0.95. The learning rate starts with 10~° and
then is divided by 10 every 10 epochs. A large batch of
16 images is used to include diverse-translated image pairs.
After 20 epoch training, we unfreeze the ResNet and set a



small mini-batches of 4 image pairs with a small learning
rate 107° to fine-tune the model.

V. EXPERIMENT

We use the synthetic stereo data to train our model,
details shown in section IV-A. The model is evaluated on
KITTI dataset [7] to illustrate the human 3D localization
performances. We consider both pedestrian and person sit-
ting categories of KITTI dataset and we refer to them as
pedestrians for simplicity.

A. Evaluation

In the absence of a stereo keypoint dataset, we only
consider the 3D localization error for the whole person rather
than each joint.

1) Localization Error: We evaluate human 3D localiza-
tion using the Average Localization Accuracy (ALA). ALA
demonstrates the models ability to accurately localize a 3D
object. A prediction will be considered as correct if the
error between the predicted distance and the ground truth
is smaller than a certain threshold. We also analyzed the
average localization error (ALE) in different conditions. The
average location error demonstrates how accurate our model
estimates depth. Following KITTI guidelines, we split the
detection into three difficulty regimes based on bounding box
height, levels of occlusion and truncation: easy, medium and
hard.

2) Evaluation Protocol: For evaluation, we follow the
train/val split of Chen et al. [20] and evaluate on the
3769 validation images. We train and evaluate our main
model on two different datasets to analyze the generalization
capabilities of our network.

B. Results

1) Quantitative results: The localization error for pedes-
trians is shown in Table I. We outperform all the monocular
approaches on most metrics. We also obtain better results
than the stereo approach 3DOP [16], which has been trained
and evaluated on KITTI and makes use of stereo images and
point cloud during training. On the other hand, our method
has been only trained on the augmented COCO dataset [13],
making it less likely to overfit on KITTI dataset. We also
calculated ALE for pedestrians commonly detected by all
methods to make fair comparison. Stereo methods have a
lower detection performance for error less than 2 meters
because stereo methods require the person to appear on both
stereo images. If a person is heavily occluded by an object
from either camera view, miss-detections will have a high
possibility to happen.

2) Distance and performance relationship: In Figure 5
we show how the performances drop with the increasing
distance. Our method is much more stable than other meth-
ods: at 35 meters distance, 95% of our PSF outputs have
less than 4 meters error, compared with 6 meters error
of Monoloco [29] and 8 meters error of 3DOP [16]. Our
PSF’s mean distance error is more stable compared to other
methods. As a result, PSF can maintain the depth error under
a safe region and guarantee more accurate detections.
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Fig. 5. Relationship between distance and distance error (as box plot).

We compare our PSF method against Mono3D [25], MonoLoco [29], and
3DOP [16]. PSF has the most stable and accurate performance.

3) Qualitative results for 3D pose estimation: Another
advantage of our method is the 3D pose reconstruction of a
person using stereo keypoint pairs. In the absence of a stereo
3D pose dataset, we qualitatively evaluate the results using
KITTT dataset. The results are shown in Figure 6, which
illustrates how a stereo 2D pose pair can reconstruct the
3D pose of a pedestrian. KITTI dataset is very challenging
as distances of pedestrians are normally above 10 meters.
Therefore, we expect a better performance when testing on
stereo 3D pose data.

4) Benefits of the correlation: To illustrate the improve-
ment of the correlation layer, we perform an ablation study
using the ALA and ALE metrics. Detailed results can be
found in Table II. The correlation layer slightly helps the
detection ability but significantly improves the detection
quality. The ALE error is reduced by ~ 5% in all categories,
and the variance in the hard category is reduced by half,
allowing for more stable results.

5) Benefits of Stereo Voting: Following the correlation
ablation study, we perform stereo voting test with the same
metrics. Detailed results can be found in Table II. The voting
procedure slightly helps the detection ability and quality. It
is reasonable because the voting procedure helps to detect
some occluded joints, which do not significantly affect the
estimation of the overall 3D localization task.

6) Run time: We present the computational cost of our
method in Table III. Most of the computational complexity
of our method comes from the pose detector ;... For
Mono3D [25] and 3DOP [16] we report published statistics
on a Titan X GPU which are 1.8 s and 2.0 s, respectively.
Our method takes 0.57 s on average, being 4 times faster than



TABLE I
PEDESTRIAN AL AND ALE COMPARISON

. ALE(m) ALA(%)
KITTI 3D Object Type Easy Moderate hard <05m <1.0m <2.0m
Mono3D [25] Mono | 2.11(2.42) 2.93(3.27) 3.59(4.31) 12.8 22.5 37.8
MonoDepth [36] Mono | 1.40(1.69) 2.19(2.98) 2.31(3.77) 19.1 33.0 47.5
MonoLoco [29] Mono | 0.85(0.88) 0.97(1.23) 1.14(1.49) 27.6 47.8 66.2
3DOP [16] Stereo | 0.54(0.72) 0.85(1.13) 1.56(1.65) 415 54.5 63.0
Our PSF Stereo | 0.50(0.59) 0.59(0.72) 0.73(0.65) 47.6 56.9 63.2

We calculated ALE for pedestrians commonly detected by all methods to make a fair comparison. Values in parentheses are ALE for all ground truth.
Our method outperforms all state-of-the-art methods in most situations. Especially for the very hard part, our method can well address the occlusion
problem. The ALA < 2m result is limited by Stereo 2D pose detection. Stereo requires detection on both stereo images, a heavy occlusion on either side

or edge object missing will limit the performance.

TABLE II
ABLATION STUDY

ALE(m) Number ALA(%)
Easy Moderate Hard <0.5m | <1.0m | <2.0m
Our method without correlation | 0.79[2.93] | 0.77(3.5] | 0.89[3.7] fg";ggrg;;tche 5 SN e gi;
Our method without voting 0.62[2.10] | 0.73[2.4] 0.68[1.9] %g;‘ggi: zitche ) ;‘Zé ggg gig
Our method with corr voting 0.59[1.90] | 0.72[2.30] | 0.65[0.90] %g‘;gﬁrgrgtche ) ;Zg ggg gg%

Distances larger than 45m are filtered by setting maximum depth as 45 meters. Values in brackets represent the error variance.
In the notation, “corr” indicates the correlation layer, and “voting” stands for stereo joint voting.
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Fig. 6. Qualitative results for 3D pose estimation by stereo image pairs.
The method can infer 3D poses of humans in the wild even in the presence
of occluded joints and challenging lighting conditions.

Mono3D and 3DOP and slightly slower than the monocular
MonoLoco [29].

VI. CONCLUSIONS AND FUTURE WORK

We present a feed-forward Neural Network architecture for
stereo imaging that jointly locates and estimates human body
poses in 3D. By only training on a synthetically modified
COCO dataset [13], our model successfully learned com-
posite fields from correlation features. Our uncertainty-based
decoding method refines the poses and achieves accurate
stereo matching. Without 3D supervision, we outperform all

TABLE IIT
RUN TIME
Type tpOse tpsf bmodel ttotal
MonoLoco [29] | Mono 162 - 10 172
Mono3D [25] Mono - - 1800 1800
3DOP [16] Stereo | - - 2000 2000
Our method Stereo | 470 85 15 570

tpose represents 2D pose decoding time, ¢, s represents PSF decoding
time, t.,0de; Tepresents network inference time.

existing image-based methods in the human 3D localization
task. As future work, our method could be used for human
pose tracking in videos by relaxing the limitation on the
decoding procedure.
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