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) I. INTRODUCTION

In recent years, extensive research is conducted on the
coordination and cooperation strategies of multirotor Micro
Aerial Vehicles (MAVs) to perform high-level missions such
as scientific exploration, search and rescue, intelligence gath-
ering etc. [1], [2]. The main motivator for this interest is
the fact that the deployment of multiple vehicles reduces
the risk of mission failures and provides higher performance
and flexibility through parallelism [3]. Among the main sub-
problems of cooperative control, formation control is usually
an essential component and Model Predictive Control (MPC)
is a promising tool to carry out this task deliberately. Since
MPC is architecturally flexible and handles the performance
and constraints systematically in parallel, it is drawing more
attention nowadays [4]. Among MPC methods, especially
Nonlinear Model Predictive Control (NMPC) is particularly
suitable to control the robots whose fast dynamics are needed
to be predicted by nonlinear models and constraints as
in multirotor MAVs. Additionally, for large scale systems,
Decentralized NMPC (D-NMPC) strategies are advantageous
since they address the computational complexity by divid-
ing the overall optimization problem into decoupled sub-
problems and by reducing communication requirements [4].
Furthermore, in order to deploy highly autonomous multi-
rotor MAVs in non-trivial environments, several researchers
focus on elaborating local and relative sensing in formation
control and try to solve its limitations [5].

The intersection of multi-rotor MAVs, formation control
and decentralized - distributed MPC is studied by several
researchers in the literature [2], [6], [7], [8]. However, they
either focus on the communication and global sensing or
utilize linear MPC as methodology. Relative sensing in
formation control of multi-rotor MAVs has also an important
place in the literature [5], [9]. However, their work do not
employ MPC framework. Although the paper [10] apply real-
time receding-horizon optimization of trajectories that guar-
antee the rendezvous for only mobile robots, they presented a
novel approach including relative sensing in local coordinate
frames of the robots. For interested readers, other important
references consist of [11], [12], [13], [14], [15].

In the view of presented literature, to the best of our
knowledge, there is a literature gap for the 3D formation
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Fig. 1. Formation control problem with one leader and two followers, the
inter-vehicle positions, angles and trajectory followed are also shown.
control problem of multi-rotor MAVs considering the inter-
section of relative sensing, formulation in local coordinate
frames, D-NMPC structure without any explicit communi-
cation under sensor uncertainty. As a result, this paper aims
this gap and provides the following contributions. First, it
proposes a Decentralized NMPC framework using only sens-
ing, particularly relative sensing, and estimation, diminishing
the problems related to communication possessed by the
other decentralized and distributed approaches. Second, It
formulates the problem in individual local coordinate frames
of the robots, similar to approach explained in [16] but in
a decentralized setting. Third, it introduces a Pose-Graph
Moving Horizon Estimator (PG-MHE) in order to obtain
filtered and unknown states required by D-NMPC as the
initial conditions of future predictions.

II. PROBLEM DEFINITION

In this work, the leader-follower type of formation strategy
is selected due to its implementation simplicity and high
performance. There is only one leader in the team equipped
with global sensors or a localization unit similar to one in
[17] that obtains global information for position and velocity
tracking. This is a logical assumption because indoor global
localization sensors are expensive and require high onboard
computation capacity. In this respect, the leader can be seen
as a decoupled agent from the formation subsystem and the
trajectory tracking activity can be seen as a disturbance to
formation control. The follower agents endowed exclusively
with an on-board, limited FOV, 3D, relative localization
system for measuring inter-vehicle positions and orientations
of neighbour vehicles in terms of relative range, bearing and
angle information for formation maintenance. A concrete
implementation of a similar sensor can be found in [18].
Furthermore, all agents are equipped with an optic flow-
sonar sensor couple to obtain linear velocities and an IMU
to acquire linear accelerations, rotational velocities and ab-
solute roll and pitch information. Magnetometer cannot be
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Fig. 2. Decentralized PG-MHE and MPC structure in formation control.

accurately used in the problem because it is assumed that the
vehicles operate inside of a building. This implies that the
absolute yaw information can not be obtained. It is assumed
that obstacles do not exist along the path. This assumption is
made in order to simplify the problem. The overall aim of the
group is tracking a trajectory while maintaining a prescribed
formation. Each vehicle has its own onboard computer for
NMPC computations. Since the approach proposed requires
no communication, the issues like packet losses and delays
are not considered. However, noise in all onboard sensors
mentioned above exist. This scenario is depicted in Fig. 1.

III. METHODOLOGY

The decentralized control/estimation architecture is shown
in Fig. 2. As can be seen from the figure, while each follower
vehicle has one PG-MHE and one NMPC for formation
control, the leader has one NMPC for trajectory tracking
and it is decoupled from the formation subsystem. While the
dashed-red lines show the sensed local variables, solid-red
lines indicate sensed relative variables. In this decentralized
structure, each follower utilizes only locally estimated/sensed
variables. No communication is present in the architecture. In
this figure, u, x, y represent the input, state and output (raw
sensor information), respectively. Furthermore, sensing-wise,
the graph is undirected in formation subsystem, directed
between leader and followers and complete as whole [19].

A. Pose-Graph Moving Horizon Estimator

We combine multiple measurements of the relative pose
of the neighbours, with own motion sensing (from, e.g.,
optical flow sensor and IMU), in order to both filter out
noise in relative pose measurements of each neighbour and
to estimate its velocity with respect to an inertial frame. As
in SLAM literature [20], we model this estimation problem
using a factor graph of poses — a Pose Graph (PG) —
where the nodes are the variables to be estimated and
the edges are factors, representing statistical dependencies
among variables. The filter input is the sensor readings from
the previous time steps, up to a temporal horizon, i.e., a
Moving Horizon Estimator (MHE).

B. Decentralized Nonlinear Model Predictive Control

In each instance, NMPC constructs and solves an OCP
by taking dynamics, constraints and controlled variables into
account. A typical example is shown in (1) for a generic case
[21].
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Fig. 3. The mean and standard deviations of error norms of relative
positions and yaw angles between robots: L: Leader, F1: Follower-1, F2:
Follower-2

minimize
z(0),..., x(N)

N-1
> en(x(k), u(k), r(k)) + en (®(N), u(N), (N))
u(0),...u(N—1) k=0

subject to z(k+1) = fi(x(k),u(k)), k=0,.,N-1
gk (x(k),u(k)) =0, k=0,.,N—-1
hi(x(k),u(k)) <0, k=0,.,N—-1

gn(@(N)) =0

@
where N is the selected horizon length, x(0),...,x(NNV),
©(0),...,u(N) and 7(0),...,7(N) represent the evolution
of the state, input and reference respectively, ci’s are the
stage cost functions, ¢y is the terminal cost function, fz’s
are used to express nonlinear dynamic equality constraints,
gr’s and hg’s denote other, possibly nonlinear, equality
and inequality constraints respectively and gy stands for
the terminal constraints. In this problem, the cost functions
include the relative position and yaw errors between vehicles,
non-gravitational inertial force and body fixed moments. The
nonlinear dynamic equality constraints consist of the vehi-
cle’s own full dynamics and the neighbor vehicles’ dynamics
with constant linear and angular velocity assumption. Finally,
other constraints are the upper and lower bounds of inputs
and states, i.e. safety limits and physical limitations etc.

IV. SIMULATION AND RESULTS

The mathematical modeling, controller implementation,
solver generation and simulation have been performed in
MATLAB 2017a with Intel Core i7-7700HQ processor by
using ACADO solver with modified RTI scheme [22], [23].
One leader and two followers are included. This scenario is
designed in a way to include various test cases such as the
formation control in linear motion, formation regeneration,
formation control in spiral motion etc.

The error norms of the relative position vectors and yaw
angles between the agents are shown in Fig. 3 for 10 runs.
As can be seen, although the relative quantities between
followers are quite low, 0.11 m and 0.03 rad in average
(steady-state), there are larger errors, 0.3 m and 0.05 rad
between leader and followers. This is because the followers
behave very similarly and there are estimation errors of the
leader due to constant velocity assumption. Note that these
are the initial results and the important aspect here is to
achieve convergence in all scenarios even if the assumptions
(constant future velocities) do not hold for some trajectories.
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