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Abstract
Optical frequency combs are optical sources, whose spectra consist of a series of equally
spaced narrowband frequencies. They have made an outstanding leap forward in the
accuracy of optical frequency metrology and became an attractive tool for numerous ap-
plications including optical atomic clocks, fast telecommunications, astronomy, molecular
spectroscopy, and microwave and optical waveform synthesis.
Discovered in 2007, microresonator-based frequency combs (also Kerr combs) have made
a breakthrough in the field by enabling optical comb generation from a continuous-wave
laser via nonlinear parametric frequency conversion effects, enhanced within a high-quality
microresonator. Kerr combs have attracted significant attention due to their ability to
operate in a soliton regime when self-sustaining optical pulses – dissipative Kerr solitons
- are formed in the microresonator relying on a double balance between the dispersion
and nonlinearity of the system, as well as cavity losses and the gain from the driving
laser. Dissipative Kerr solitons allow access to broadband, coherent optical combs with
large repetition rates from microwave to terahertz domains, which can be generated from
chip-scale microresonators. Due to their compactness and unprecedented performance,
such soliton-based Kerr combs represent a promising solution for a variety of real-world
optical comb applications, which has been demonstrated over the last four years.
In this thesis, several aspects of dissipative Kerr soliton dynamics are investigated in
integrated silicon nitride microresonators. The results include the first experimental
study of the Raman-induced self-frequency shift in dissipative Kerr solitons, the discov-
ery and explanation of the soliton switching phenomenon, which enables controllable
successive elimination of soliton pulses from a microresonator, the experimental obser-
vation of breathing soliton states as well as the demonstration of collectively-ordered
soliton ensembles – perfect soliton crystals. The results are universal across other soliton
generating platforms. Apart from elucidating basic dynamical properties of dissipative
Kerr solitons, they contribute to the understanding of soliton behavior in the presence of
high-order nonlinear, dispersion and thermal effects in real systems. Besides the study of
the soliton dynamics, probing and manipulation techniques for dissipative Kerr solitons
are developed. They enable deterministic soliton switching and controllable access to
application-relevant single soliton states. The techniques also allow for non-destructive
monitoring of key soliton parameters, and controllable soliton state translations in the
parameter space of the driven microresonator system. The developed understanding
and control of soliton states are used to demonstrate dissipative Kerr solitons operating
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at 1-µm wavelength and covering the biological imaging window. Furthermore, in col-
laboration with the Karlsruhe Institute of Technology, soliton-based combs generated
in silicon nitride microresonators are employed for massively parallel optical coherent
communications and ultrafast optical ranging, where the record performance of DKS
states in both applications has been demonstrated. Lastly, a rack-mountable standalone
system for the generation of dissipative Kerr solitons, which can be readily used outside of
the laboratory environment, is developed, tested and is employed in the first experiments
on optical circuit switching for data centers and all-optical convolution neural networks.

Keywords: nonlinear photonics, optical frequency combs, optical microresonators, Kerr
combs, dissipative Kerr solitons, soliton crystals, soliton switching, Raman self-frequency
shift, breathing dissipative solitons, optical coherent communication, LiDAR.
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Résumé
Les peignes de fréquence optiques sont des sources optiques, dont le spectre se compose
d’une série de fréquences optique également equi-espacées et de grande finesse spectrale.
Ils ont permis de réaliser une avancée remarquable dans la métrologie optique de haute
précision et sont devenus un outil attrayant pour de nombreuses applications, telles
que les horloges atomiques optiques, les télécommunications rapides, l’astronomie, la
spectroscopie moléculaire, la synthèse de micro-ondes ou de formes d’ondes optiques.
Découverts en 2007, les peignes de fréquence à base de microrésonateurs (également
appelés peignes de Kerr) ont constitué une percée dans ce domaine, en permettant la
génération de peignes optiques à partir d’un laser à onde continue via des effets de
conversion de fréquence paramétrique, qui se trouvent renforcés dans un microrésonateur
à haut facteur de qualité. Les peignes Kerr ont reçu une grande attention, en raison
de leur capacité à fonctionner en régime de solitons, lorsque des impulsions optiques
autonomes – des solitons dissipatifs de Kerr – se forment dans le microrésonateur, du fait
d’un double équilibre entre la dispersion et la non-linéarité du système ainsi qu’entre les
pertes de la cavité et le gain du laser de pompe. Les solitons dissipatifs de Kerr permettent
d’obtenir des peignes optiques cohérents couvrant une large bande spectrale avec des
taux de répétition très élevés, dans les domaines micro-ondes jusqu’aux térahertz, qui
peuvent être générés par des micro-résonateurs intégrés sur puce. Grâce à leur compacité
et à leurs performances sans précédent, ces peignes Kerr à base de solitons représentent
une solution prometteuse pour certaines applications pratiques des peignes optiques, ce
qui a été démontré au cours des quatre dernières années.
Dans cette thèse, plusieurs aspects de la dynamique des solitons dissipatifs de Kerr
sont étudiés dans des microrésonateurs intégrés en nitrure de silicium. Les résultats
comprennent la première étude expérimentale de l’auto-décalage spectral induit par effet
Raman dans les solitons dissipatifs de Kerr, la découverte et l’explication du phénomène
de transition entre états de solitons, qui permet l’élimination successive et contrôlable des
impulsions de solitons d’un microrésonateur, l’observation expérimentale des oscillations
soliton (respiration) ainsi que la démonstration d’ensembles solitoniques ordonnés –
nommés cristaux parfaits de solitons. Ces résultats universels sont observés sur toutes
les autres plates-formes permettant la génération de solitons dissipatifs, et permettent
d’élucider les propriétés dynamiques fondamentales des solitons dissipatifs en cavité. De
plus, ils contribuent à la compréhension du comportement de ces solitons en présence
d’effets non linéaires additionnels tels que la dispersion d’ordre supérieur et les effets
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thermiques présents dans les systèmes réels. Outre l’étude de la dynamique des solitons,
des techniques de sondage et de manipulation des solitons dissipatifs de Kerr sont déve-
loppées. Ils permettent la transition déterministe entre états de solitons et la génération
contrôlée d’un soliton unique dans la cavité, ce qui est importants pour les applications.
Ces techniques permettent également un contrôle non destructif des principaux para-
mètres de solitons et des translations controlées de l’état des solitons dans l’espace des
paramètres du système de microrésonateurs pompé. Cette meilleure compréhension et ce
contrôle des états de solitons sont utilisés pour démontrer les solitons dissipatifs de Kerr
fonctionnant à une longueur d’onde de 1 µm et couvrant la fenêtre d’imagerie biologique.
De plus, en collaboration avec l’Institut de technologie de Karlsruhe (KIT), des peignes
à base de solitons dissipatifs de Kerr générés dans des micro-résonateurs en nitrure
de silicium sont utilisés pour des expériences de communications optiques cohérentes
massivement parallèles et des mesures optiques ultra-rapides, où les performances record
des états DKS ont été démontrées dans les deux applications. Enfin, un système autonome
assemblé en rack permettant la génération de solitons dissipatifs de Kerr, est développé,
testé et utilisé dans les premières expériences de commutation de circuits optiques
pour centres de données et réseaux neuronaux à convolution tout optique, démontrant
les premières utilisations de cette technologie en dehors de l’environnement de laboratoire.

Mots clés : photonique non linéaire, peignes de fréquence optique, microrésonateurs
optiques, peignes de Kerr, solitons dissipatifs de Kerr, cristaux de solitons, transition de
solitons, d’auto-décalage spectral par effet Raman, solitons dissipatifs oscillant, commu-
nication optique cohérente, LiDAR.
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1 Microresonator-based frequency
combs

This chapter covers the fundamentals of microresonator-based optical frequency combs
and dissipative Kerr solitons.

1.1 Optical microresonator platforms

Optical resonators are one of the most ubiquitous basic elements of modern optics. They
are at the core of fundamental studies across different fields in science as well as numerous
industrial and research applications. A conventional optical resonator, or often optical
"cavity" (the term "cavity" came from microwave technologies, where the conventional
resonator is represented by a closed metallic cavity), is formed when the light propagation
is restricted to a closed path. In the simplest case the resonator can be built out of two
mirrors or light guiding material (for example optical fiber) arranged in a loop geometry
(waveguide resonator). The closed path allows storage and accumulation of the light,
which effectively enhances light-matter interaction with the resonator material or other
systems placed inside the cavity. Bulk resonators have a number of limitations in terms
of their size, weight, alignment complexity (for the mirror-based systems) or limited
stability (for fiber-based systems). Most of these limitations can be efficiently addressed
by optical microresonators, which are able to confine light to a very small volume of
micro- or millimeter size.

In the context of microresonator-based optical frequency combs, which will be discussed
in the present work, the term optical microresonator is often referred to a device made
of transparent dielectric material, where the process of the light guiding is based on the
total internal reflection and is guaranteed by the refractive index contrast between the
dielectric material of the resonator medium (higher refractive index) and the surroundings
(lower refractive index). The majority of such dielectric optical microresonators of interest
are organized in a loop geometry, allowing the light to circulate inside and, through the
coherent build-up of the intracavity intensity, facilitate access to optical nonlinear effects
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Chapter 1. Microresonator-based frequency combs

arising from the resonator medium. Dielectric resonators can be formally distinguished
into two main categories: whispering gallery mode (WGM) resonators and travelling
waveguide integrated resonators.

The first category includes dielectric resonators with circular symmetry having spherical,
disk or toroidal shapes. The term "whispering gallery modes" originates from the work
of Lord Rayleigh, who investigated efficient sound propagation due to the refocussing
effect of curved wall surfaces in the Whispering Gallery - circular gallery in the dome
of St. Paul’s Cathedral in London. He also suggested that electromagnetic waves can
experience a similar effect. The WGM resonators can be fabricated from a variety of
crystalline and amorphous materials, including, among others, silicon-based materials
like fused silica [1, 2, 3, 4], silicon oxynitride (also "hydex", or high-index doped silica
glass) [5] or fluoride materials such as MgF2,CaF2,BaF2 and SrF2 [6]. Due to their high
quality factors (Q-factors), which can be achieved with relatively simple and reproducible
fabrication procedures, the WGM resonators were historically first, where the generation
of microresonator-based optical combs was observed [3, 7].

Figure 1.1 – Variety of WGM resonators used in the area of microresonator-based
optical frequency combs (all images are adapted from corresponding cited sources);
(a) microfabricated fused silica (SiO2) microtoroid [7]; (b) laser-machined fused silica
microtoroids [8]; (c) calcium fluoride (CaF2) crystalline resonator [6]; (d) magnesium
fluoride (MgF2) crystalline resonator [9]; (e) silica wedge-shaped microresonator [4];
(f) silica microspheres [1]; (g) silicon oxynitride (SiOxNy) microtoroid resonator [5].

The second category contains resonators based on integrated waveguides. In these devices
the light is confined in the transverse direction due to the propagation in the dielectric
waveguide, which is arranged in the closed loop geometry. In contrast to WGM resonators,
circular symmetry is not required for such resonators, and they can take a number of
different planar forms ranging from simple rings to racetracks or even complex meander-
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1.1. Optical microresonator platforms

like shapes. Such integrated resonators are usually implemented on silicon wafers or
chips using microfabrication techniques. The majority of integrated resonators are also
silicon-based materials. They are widely accessible and have established fabrication
techniques due to the active development of silicon semiconductor technologies over the
past 80 years: silicon oxynitride [10], silicon nitride (Si3N4) [11] and silicon resonators [12].
Few groups have also developed methods to fabricate crystalline integrated resonators of
diamond [13], aluminum nitride (AlN) [14], aluminum gallium arsenide (AlGaAs) [15]
and recently - lithium niobate (LiNbO3) [16, 17] and gallium phosphide (GaP) [18].

Figure 1.2 – Variety of integrated waveguide microresonators used in the area of
microresonator-based optical frequency combs (all images adapted from correspond-
ing cited sources); (a) silicon nitride (Si3N4) microring resonator [11] (b) aluminum
gallium arsenide (AlxGa1−xAs) microring resonator [15]; (c) silicon microresonator [12];
(d) aluminum nitride (AlN) microresonator [14]; (e) diamond microresonators [13];
(f) gallium phosphide (GaP) microring resonator [18]; (g, h) lithium niobate (LiNbO3)
microresonators [16, 17];

Figures 1.1 and 1.2 contain the majority of current microresonator platforms, which
were employed for the generation of optical combs. We also note that while Fabry-Pérot
microresonators were not widely used in the field, they were still used for the generation
of optical frequency combs [19, 20].

Resonator coupling

For the generation of optical frequency combs, one needs to supply the microresonator
with continuous wave laser light. Due to the large contrast in refractive indexes between
air and the dielectric materials of optical microresonators, free space coupling is inefficient
due to poor phase-matching of the propagating modes in both media. Instead, an
evanescent coupling approach is often used [21]. It is based on bringing another light
guiding material with a similar refractive index into close proximity with the resonator.
When the evanescent field of the mode propagating in such a bus waveguide overlaps with
the optical mode in the microresonator, and the phase matching condition is satisfied for
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a given optical frequency, photons of the incident light can be efficiently transferred to
the microresonator.

Different implementations of such evanescent coupling are based on prisms, D-shaped
polished or tapered optical fibers, all of which are often used for the WGM resonators.
Since they are usually not required to be physically connected to the microresonator, such
coupling can often be changed and optimized during system operation. For the integrated
systems, evanescent coupling is usually implemented through an additional bus waveguide
with transverse geometry similar to the one forming the microresonator. While such
integrated waveguide coupling provides less flexibility than others, it is advantageous in
terms of mechanical stability and robustness against environmental changes.

Optical microresonators used in the present work

The present work is mainly focused on the integrated silicon nitride (Si3N4) microres-
onators. Over the past years silicon nitride has become one of the main integrated
platforms for nonlinear [22] and quantum photonics [23, 24]. It has a number of advan-
tages over other platforms, such as (i) CMOS compatibility, which enables the fabrication
of silicon nitride waveguides using instruments, techniques and processes developed and
well established over the past 50 years in the semiconductor industry. Moreover, such
microfabrication can be implemented on wafer-scale, providing mass production and the
possibility of intergation with other on-chip electrical and optical components for building
complex photonic integrated circuits (PIC). (ii) Silicon nitride has a wide transparency
window ranging from visible to mid-infrared with low linear losses. In combination with
negligible two-photon absorption (TPA) for telecom wavelengths due to the high bandgap
energy of around 5 eV, silicon nitride is suitable for telecom application, and can be used
to fabricate resonators with higher quality factors. (iii) Comparably high nonlinearity,
which overcomes silica glass by an order of magnitude at 1.55 µm and, due to the high
confinement of the light in the waveguide and high quality factors, enables the nonlinear
processes in microresonators. (iv) Silicon nitride is robust with respect to external effects,
like extreme temperatures [25] or proton radiation [26], which makes it suitable for space
applications.

The microeresonators used in this work are silicon nitride ring or racetrack waveguide
resonators with silica cladding. They are fabricated on silicon wafers and further separated
in individual chips of 5x5mm, shown in Fig. 1.3(a, b). In the simplest configuration each
microresonator is fabricated with a single bus waveguide for the evanescent coupling.
Figure 1.3(c) shows examples of silicon nitride microresonators with different free spectral
ranges (20 – 1000GHz) used in the present work. Since the bus waveguide is monolithically
integrated on the same substrate as the resonator (see Fig. 1.3(d)), the coupling distance
(gap) is fixed. It is usually designed to have a consistent change within a single chip from
one microresonator to another, to find an optimum one. Typical waveguide height is
about 800 nm, and waveguide width is about 1500 nm. The exact values are varied in
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Figure 1.3 – (a, b) Examples of silicon chips used in the present work with fabricated Si3N4
microresonators. (a) Fiber-packaged chip with old-generation design used at LPQM.
(b)Chip with new-generation design allowing for dense microresonator organization.
(c)Variety of integrated Si3N4 microresonators used in the present work: left - 20 GHz;
right (from top to bottom) - 100 GHz, 200 GHz, 1000 GHz. (d)Geometry of the inverse
tapering structure used to couple light from off the chip into the integated bus waveguide.
The image is taken from [27]. (e) SEM crossection of the coupling region between the
resonator (left) and the bus waveguide (right) with their typical dimensions. The image
is adapted from [28].

order to engineer the waveguide properties such as dispersion or quality factors, as well
as adapt the microresonator operation to the new spectral window.

Apart from the bus-to-resonator coupling, coupling of the light into the chip is also
challenging. Due to significant difference between the sizes of propagating modes in the
integrated waveguide (with characteristic size of ∼ 1 µm) and optical fiber (∼ 9 µm
core diameter), as well as the difference between the refractive indexes of silicon nitride
and silica of the fiber core, direct coupling between the chip and the waveguide is very
inefficient. In order to overcome the challenge, we use inverse taper mode converters
[29], which expands the optical mode size due to adiabatic reduction of the waveguide
dimensions close to the chip facet, such that the majority of the light is concentrated in
the evanescent field propagating into the cladding. The benefits are twofold: first, the
reduction of refractive index contrast for the mode exiting or entering the chip leading
to lower reflection losses; second, the better mode-size matching between the fiber and
waveguide modes. To further increase the efficiency of the light coupling, we use lensed
fibers, which can help to reduce the spot size of the mode and focus the mode on the
taper facet.

Device fabrication Two methods were used to fabricate integrated silicon nitride
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1. Si 3N4 deposi�on 2. Waveguide pa�erning 3. Waveguide etching 4. Cladding & annealing 5. Chip separa�on
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Figure 1.4 – (a) Schematic description of the subtractive process: 1 - deposition of thick
(∼ 800 nm) waveguide Si3N4 layer using multi-step LPCVD process; 2 - patterning of the
waveguide structures in the layer of negative resist using E-beam lithography or DUV
photolithography; 3 - etching of the patterned waveguides; 4 - deposition of silica (TEOS
and LTO) as cladding layer; 5 - chip separation. (b)Top view of the Si3N4 microresonator
and bus waveguides (highlighted in blue) and a crack formed across bus waveguides.
(c) Scanning electron microscope (SEM) image (cross-section) of the void formation in the
silica cladding layer between adjacent waveguides (highlighted in blue) in the subtractive
process. (d) SEM crossection image of the Si3N4 waveguide (highlighted in blue), with
oxide layer formed with multistep LPCVD deposition of the Si3N4. (e) Formation of the
cracks across Si3N4 waveguides (highlighted in blue) due to tensile stress of the Si3N4
films. Images are adapted from [31].

microresonators: the subtractive process [30] and the Photonic Damascene process [28].
Both of them are well established in our group.

Subtractive process - the conventional process for the fabrication of silicon nitride
integrated structures. It is schematically shown in Fig. 1.4(a) and starts with the growing
of the stoichiometric Si3N4 using a low-pressure chemical vapor deposition (LPCVD)
process in two or more steps (multi-step deposition with intermediate cooling to room
temperature [30] is used to reduce the number of cracks in thick silicon nitride films). The
waveguide structures are then patterned using electron-beam (E-beam) lithography or
deep ultraviolet (DUV) photolithography with negative resist, followed by the dry etching
in CHF3-based plasma. The resulting structures are then covered with a silica cladding
layer using the Tetraethylorthosilicate (Si(OC2H5)4, TEOS) and low-temperature oxide
(LTO) CVD processes. Despite being well-developed and widely used, subtractive process
have several issues limiting the performance of the fabricated waveguides and device
yield. They include crack formation due to high tensile stress of the silicon nitride
films after deposition as shown in Fig. 1.4(b, e), limited quality factors of the fabricated
microresonatros due to the surface roughness induced by the etching and lithography
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1.1. Optical microresonator platforms

steps, as well as the formation of voids during cladding deposition between closely-spaced
waveguides forming high aspect ratio gaps, see Fig. 1.4(c). Nevertheless, devices fabricated
with the subtractive process were successfully used for the optical comb generation in
Chapters 2 and 5. Furthermore, recent advances demonstrate that careful optimization of
all process steps can significantly reduce the losses of the integrated waveguides fabricated
with the subtractive process [32].

The Photonic Damascene process was initially developed by Martin Pfeiffer during
his PhD time at LPQM [28, 33], and then further advanced by Arne Kordts, Clemens
Herkommer, Michael Zervas, Junqiu Liu and Rui Ning Wang. The process is based on
the prepatterning of the silica substrate to form smooth trenches for waveguides and a
dense stress-release pattern (Fig. 1.5(a – c)). After filling the trenches with waveguide
material – silicon nitride – excessive material is removed using chemical-mechanical
polishing (CMP). Finally, the waveguides are cladded with LTO and TEOS oxides. The
Photonic Damascene process has been shown to significantly improve the performance
and yield of the integrated microring resonators. It has provided access to previously
unattainable waveguide dimensions and aspect-ratio gaps without void formation, as
well as record-low losses with the introduction of an additional reflow step for smoothing
the wavegude walls [33]. Moreover, the Photonic Damascene also enables custom control
of not only the width of the resulting structures, but their height as well, which can be
useful for the fabrication of tapers [27]. Detailed description of the Photonic Damascene
process can be found in [31, 28, 33].

Waveguide pa�erning

Si3N4 deposi�on

Stress-release pa�erning

Planarisa�on

Preform etching

Cladding and annealing

Preform reflowa

e

b

f

c

g

d
1250°C

Resist
Silicon Si3N4

SiO2

Figure 1.5 – Schematic description of the Photonic Damascene process. (a) Waveguide
patterning in the layer of positive resist using electron-beam lithography or deep-UV
photolithography. (b) Formation of the stress-release pattern using photolithography.
(c) Transferring of waveguide and stress-release patterns in the silica of the substrate;
(d) preform reflow to smooth the surface roughness. (e) LPCVD deposition of thin Si3N4
film. (f) Removal of the excess Si3N4 and planarization of the top surface. (g) Deposition
of the LTO as a cladding layer and further annealing. Images are adapted from [33].
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Chapter 1. Microresonator-based frequency combs

1.2 Resonator fundamentals

1.2.1 Free spectral range, intracavity build-up, quality factor

We start by introducing the basic concepts of optical resonators. For this purpose we use
a model of a typical microring resonator with a single straight bus waveguide. Such a
configuration is also often referred to as an all-pass resonator [34, 35] and schematically
shown in Fig. 1.6. It should be noted, however, that the results of the present section
are not restricted to only microring resonators, but in general are valid for other types of
optical resonators including integrated microresonators of different shapes (racetracks,
spirals, meander structures) as well as WGM resonators.

We assume that the bus waveguide (which can also be replaced with tapered optical
fiber) is placed sufficiently close to the resonator to provide evanescent coupling at optical
frequencies. Let L be a resonator length (circumference) and n - is a refractive index of
the dielectric resonator material, which is considered to be frequency-independent for
all optical frequencies of interest (∼ 200 THz). Resonator loses (due to the scattering
or absorption) are introduced through the real part of the propagation constant and
denoted as α. We treat the coupling region between the resonator and the waveguide as
the four-port device, mark the ports with i = 1...4 as shown in Fig. 1.6, and assume that
it is driven by monochromatic light with angular frequency ω from port 1. For simplicity
we also omit the transverse distribution of the field within the waveguides. In the steady
state of such a system the field at each port is Ei(t) = Eie

−iωt + c.c., with complex field
amplitudes Ei, i = 1...4. Considering positive frequency components and assuming that
we have no reflections from the coupler (no light is propagating in reverse directions in
all ports), we can write a scattering matrix for this coupling region:[

E4
E2

]
=
[
r it

it r

] [
E3
E1

]
, (1.1)

where r and t are field reflection and transmission coefficients, such that r2 + t2 = 1
(coupling is lossless). In the case when light can travel multiple roundtrips before fully
leaving the cavity, all complex field amplitudes except E1(t) are represented by an infinite
sum of the field amplitudes corresponding to different roundtrip numbers. Furthermore,
due to the feedback provided by the resonator, we can connect field amplitudes E3 and
E4 using the phase constant k and earlier-introduced losses α:

E3 = E4e
ikLe−αL/2 ≡ E4ae

iφ , (1.2)

where the first exponent eikL describes the phase φ accumulated by the filed over a single
roundtrip and the second term e−αL/2 ≡ a describes the fraction of the field amplitude,
which is left in the cavity after one roundtrip. In our simple example of plane waves
which do not experience the constraining effect of the waveguides, the phase constant can
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1.2. Resonator fundamentals

E1

r

e-αL/2

r

itit

E3 E4

E2

Figure 1.6 – Schematical model of an all-pass ring resonator with a section of straight
bus waveguide. The field reflection and transmission coefficients are denoted as r and t
correspondingly. E1...E4 mark the fields at different ports of the coupling region.

be written as: k = 2πn/λ, where λ - is the vacuum wavelength of our monochromatic
light: λ = c/ω. Combining both equations (1.1) and (1.2), we can derive the ratios
between intracavity E3 and output field amplitudes E2 to the input field amplitude E1
for the steady state:

E3
E1

= itaeiφ

1− raeiφ ,
E2
E1

= r − aeiφ

1− raeiφ . (1.3)

This allows to derive the intracavity intensity build-up B = |E3/E1|2 and the resonator
transmission measured through the bus waveguide T = |E2/E1|2:

B =
∣∣∣∣E3
E1

∣∣∣∣2 = (1− r2)a2

1 + r2a2 − 2ra cos(φ) , T =
∣∣∣∣E2
E1

∣∣∣∣2 = a2 − 2ra cos(φ) + r2

1 + r2a2 − 2ra cos(φ) . (1.4)

The build-up curve as a function of accumulated phase φ is shown in Fig. 1.7 and
describes the resonance structure, which exists in such an all-pass ring resonator. One
can see that intracavity intensity B is maximized each time when cos(φ) = 1, or when
φ = φm = 2πm,m ∈ N (we note that we use N to highlight positive phase accumulation).
This gives us another understanding of the resonance conditions - the resonance of the
cavity happens each time, when accumulated phase is a multiple of 2π (equivalently, when
the resonator length is a multiple of the light wavelength in the dielectric medium of the
resonator). Using the cavity roundtrip time, which is introduced for our ring resonator as
τrt = Ln/c, we can also rewrite the resonance conditions in terms of angular frequencies:
ωm = φm/τrt, and introduce the frequency spacing between adjacent resonances in terms
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Figure 1.7 – Intracavity intensity build-up (red, dark red) and transmission (blue, dark
blue) through the bus waveguide as a function of accumulated phase φ (top axis) or
angular frequency (bottom axis) for two pairs (r, a). Maximum intracavity build-up
(Bmax) is shown on the left axis (minimum is 0), minimum transmission (Tmin) is shown
on the right axis (maximum is 1)

of regular frequencies [Hz] - the free spectral range (FSR):

FSR = ωm+1 − ωm
2π = c

nL
. (1.5)

We should emphasize here that this formula for the FSR derived for our model assumes
frequency-independent refractive index (does not include chromatic dispersion). While
such simplification does not affect other results in the present subsection and, in principle,
can be used to make estimations in certain cases, a strict expression for the FSR will be
given later in eq. (1.23). In case of φ 6= φm it is convenient to use the value ∆φ = φm−φ,
which we will refer to as phase detuning, or ∆ = (φm − φ)/τrt, which is the conventional
detuning. There are two more resonator parameters which are often used to describe
its ability to store and enhance light intensity. The first one - Finesse (F ) - is formally
introduced as the FSR divided by the full width at half maximum (FWHM) of the
intensity build-up, or equivalently in terms of the accumulated phase φ:

F = 2π
∆φFWHM

= π
√
ra

1− ra , (1.6)

where we used approximation r, a → 1, meaning low resonator losses (weak damping)
through internal channels a or external coupling r, and also assumed that cos(φ) ∼ 1.
Since both parameters are not easy to measure directly for ring resonators, we introduce
two new related paremeters - photon (energy) decay rates: κex [rad/s] and κ0 [rad/s],
where the first one describes the photon escape rate through the coupling region and is
connected with r through the photon (energy) loss per roundtrip: κexτrt ≈ 1− r2, and
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1.2. Resonator fundamentals

the second one κ0 describes the photon escape rate from the cavity through internal
channels (scattering or absorption): κ0τrt ≈ 1 − a2.1 Using these decay rates and the
same approximation of weak damping (κexτ, κ0τ → 0) the finesse is:

F = FSR
κ/2π . (1.7)

We introduce here κ = κex + κ0, which will be further referred to as the total cavity
decay rate, or resonator linewidth, since in experiment this value can be easily identified
from the transmission trace, taking full width at half depth (FWHD) of the measured
resonances (Fig. 1.7). Using equation (1.4) we can show that for the resonance condition,
finesse describes the magnitude of the intracavity intensity build-up Bmax:

Bmax = 4κex
(κex + κ0)2τrt

= {in case κex = κ0} = F

π
. (1.8)

The second important resonator parameter is a quality factor (Q-factor or just Q), which
according to the formal definition is 2π of the energy stored in the resonator divided by
the energy loss per cycle:

Q = 2π energy stored in the cavity
energy loss per cycle = 2π 1

1− e−κT = ω

κ
. (1.9)

Quality factor shows effective interaction time with the resonator. Comparing equations
(1.7) and (1.9), we can see their physical meaning. Quality factor reflects the losses of
the resonator per light cycle, while finesse shows losses per cavity roundtrip time.

1.2.2 Waveguide-resonator coupling

Resonator-waveguide coupling used in the previous subsection to derive the resonance
conditions is often also described using input-output cavity formalism, similar to the one
developed by Haus [37]. For this purpose we first switch from real electric fields E(t) to
energy-normalized fields ã(t) = ãe−iωt + c.c. with the real part of the complex amplitude
Re[ã] =

√
n2|E(t)|2ε0Veff/2~ω, where Veff = LAeff is the effective mode volume of the

resonator mode, and Aeff - is the effective mode area, which is a measure of the mode size
propagating inside the waveguide. For the Aeff calculation we have to assume a certain
field distribution inside the transverse plain of the resonator waveguide: E(x, y), then
effective mode area is formally defined as:

Aeff = (
∫
|E(x, y)|2dS)2∫
|E(x, y)|4dS , (1.10)

1Despite dimensional nonhomogenity of these approximations, they are still correct. This can be
shown explicitly using, for example, an approach shown in [36].
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Chapter 1. Microresonator-based frequency combs

where both integrals are taken over the full transverse plane and are not restricted to
the waveguide areas. Using such normalized field values, intracavity number of photons
is just |ã(t)|2.

Taking again the positive frequencies, cavity input-output formalism around a certain
resonance ωm can be reduced to [37]:

dã(t)
dt

= −
(
κ0
2 + κex

2

)
ã(t)− iωmã(t) +

√
κexsine

−iωpt , (1.11)

where we use the same photon decay rates κex, κ0 as introduced above, ωp is the angular
frequency of the driving laser field, sin is defined such that |sin|2 = input normalized
laser power (number of input photons per unit time). By moving into the rotating
frame oscillating with the angular fequency of the driving laser (making a change
ã(t) = a(t)e−iωpt), and introducing the detuning ∆ = ωm − ωp, we can avoid time
dependence of the pumping term:

da(t)
dt

= −
(
κ0
2 + κex

2

)
a(t)− i∆a(t) +

√
κexsin . (1.12)

We note that the detuning of the driving laser from the resonance is defined to be positive
for a red-detuned laser position (ωp < ωm). Considering the steady state (da(t)/dt = 0)
of eq. (1.12) we can calculate the corresponding complex field amplitude a:

a(t) =
√
κexsin

κ0+κex
2 + i∆

, (1.13)

and for the total intracavity energy |a(t)|2 (or photon number) in a steady state:

|a(t)|2 = |sin|2
4κex

(κ0 + κex)2 + (2∆)2 . (1.14)

We note that the last equation shows the number of the photons inside the cavity as a
function of the laser-cavity detuning ∆ and has a well-known Lorentzian shape. Such
a resonance shape can be also obtained from the transmission eq. (1.4) in the weak
damping regime for (φ− φm)� 2π (∆� FSR/2π), and in case of zero detuning: ∆ = 0
(pump is on resonance) it is as expected reproduces an earlier derived eq. (1.8). For the
transmitted field:

sout = sin −
√
κexa(t) . (1.15)

Thus, the transmitted light intensity is:

|sout|2 = |sin|2
(κ0 − κex)2 + (2∆)2

(κ0 + κex)2 + (2∆)2 , (1.16)
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Figure 1.8 – (a) Normalized transmission as a function of normalized detuning (2∆/κ) for
three different ratios κex/κ0: 0.5, 1 and 3. (b) Minimum of the normalized transmission
as a function of κex/κ0. Three colored dots represent corresponding curves from (a). (c)
Dephasing of the intracavity field a with respect to the pump field sin for three different
κex/κ0 as in (a). Traces coincide. (d) Dephasing of the transmitted field sout with respect
to the pump field sin.

which, as expected from energy conservation, is always smaller than |sin|2. Equation
(1.16) describes well the actual transmission traces observed for microring resonator
in the simplest linear case (absence of splitting, small input powers, absence of other
resonances). Figure 1.8(a) shows the normalized transmission value (sout/sin) as a
function of normalized detuning 2∆/κ. Equations (1.13) and (1.15) can be also used to
describe dephasing between the intracavity field, transmission field and input field as a
function of the detuning, which are also shown in Fig. 1.8(b, c).

There are three different cases, which are typically distinguished depending on the ratio
between internal resonator losses and bus coupling losses:

Undercoupled case, when κex < κ0 - internal loss rate is stronger than external. The
dissipation of the energy from the cavity happens faster through the internal channels
including absorption or scattering, than through the evanescent coupling to the bus
waveguide.

Critical coupling, when κex = κ0 - loss rates are equal. This is the case which is most
preferable for nonlinear optics in microresonators, since in the case of the fixed κ0, which
is the usual case for monolithic microresonators, the system reaches maximum intracavity
power, when κex is adjusted to be equal with κ0.
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Chapter 1. Microresonator-based frequency combs

Overcoupled case, when κex > κ0 - external loss rate is stronger. While the intracavity
power is small, this case can be useful for certain applications of the microresonator-based
combs, since it may allow more power to be extracted from the resonator. This however
comes at the expense of higher driving fields required to generate comb states.

In experiment, the different cases are controlled by changing the coupling gap - the
distance between the resonator and the bus waveguide. For integrated microresonators
this value is usually fixed, and the ratio between κex and κ0 is not easily changeable
(one would need access to κ0 by modifying the internal elastic or non-elastic scattering
processes, or introduce way to tune the gap distance between the microresonator and
the bus waveguide). In contrast, for crystalline microresonators, where the input field is
supplied through the tapered fiber or prism, κex can be accessed directly.

We finally note that the present subsection reviews the ideal case of the bus-to-resonator
coupling assuming that the coupling is lossless in a sense that there is no photon leakage
during the coupling process (each photon coming from the input port is either reflected
from the resonator and contributes to |sout|2, or couples to the cavity mode and appears
inside the resonator). A real system usually has parasitic losses, which can occur due to
the photon scattering to other resonator modes or even to the free-space [38, 39].

1.2.3 Resonator dispersion

In a general case, the dispersion (or chromatic dispersion) of the medium describes the
frequency-dependent phase velocity of light in this medium, which is introduced through
the frequency-dependent refractive index n = n(ω) as vφ = c/n(ω). The fundamental
reason for the presence of dispersion is the resonance absorption by the bound electrons,
which by modifying the absorption coefficient of the medium introduce the phase delay
to the propagating light [40].

Far from these electronic resonances the refractive index n(ω) can be well approximated
by Sellmeier equation:

n2(ω) = 1 +
m∑
j=1

Bjω
2
j

ω2
j − ω2 , (1.17)

where the parameters Bj and ωj correspond to different electronic resonances obtained
experimentally and fitted for bulk materials.

In the field of fiber and waveguide optics the light propagation is often constrained by
the channel (fiber or waveguide) geometry. Thus the light propagates not in the bulk
material, but close to the interface with other media (e.g. core-cladding interface in
fibers and integrated waveguides). In this case the concept of effective refractive index,
neff is used. It takes into account not only the material dispersion (the contribution
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1.2. Resonator fundamentals

from refractive indexes of different bulk materials participating in the light guiding), but
also the geometry of the fiber or waveguide - also called geometrical dispersion. Due to
the complexity of the analytical solution to the Helmholtz equation of light propagation
in waveguides or fibers with complex structure, usually finite-element method (FEM)
simulations are used to compute neff .

In order to describe light propagation in material, the propagation phase constant β is
used. It takes into account the intensity-dependent refractive index, and in the general
case should be distinguished from the wavenumber k = 2πn/λ. Due to the frequency
dependence of the refractive index: β = β(ω). It can also be expanded around frequency
ωm in a Taylor series:

β = n(ω)ω
c

= β0 + β1(ω − ωm) + β2
(ω − ωm)2

2 + ... , (1.18)

where βj = ∂jβ/∂ωj
∣∣
ωm

. Here and further we use n(ω) to denote the effective refractive
index of the waveguide we consider. The first term, β0 is linked to the phase velocity of
the light: vφ = c/n(ωm) = 1/β0. The second one, β1, is related to the group velocity vg
and the group refractive index ng, which describes the speed of the pulse propagation:

β1 = 1
vg

= ng
c

= 1
c

(
n+ ω

dn

dω

)
. (1.19)

The second term, β2, describes the group velocity dispersion (GVD):

β2 = 1
c

(
2ndn
dω

+ ω
d2n

dω2

)
. (1.20)

It is generally responsible for pulse broadening, which can be estimated for pulses of the
width ∆ω propagating along the distance z to be: ∆T ' zβ2∆ω.

Other terms are usually referred to as higher-order dispersion terms. Depending on the
sign of the β2 two cases are distinguished: normal dispersion (β2 > 0), when higher
frequencies travel slower than the lower frequencies, and anomalous dispersion (β2 < 0),
when the higher frequencies travel faster. We note that so far we did not make any
statements about whether light propagates in a straight waveguide, fiber or resonator.
This means that a similar approach can be used for any light guiding system, including
resonators. In particular, the dispersion properties of fiber resonators are often described
using such an approach [41, 42].

In the microresonator-based optical combs community it is common, however, to describe
the resonator’s dispersion in a different way. The frequency of the resonances ωm is
introduced as a Taylor expansion around certain resonance ωm0 with respect to equidistant
frequency grid. This becomes particularly convenient for the simulations of frequency
combs, as they naturally establish equidistant frequency grid of the oscillating modes
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Figure 1.9 – (a) Resonance structure of the microresonator with dispersion limited to
the second order with anomalous GVD (D2 > 0). Resonances are located at frequencies
ωµ. Dashed grey lines spaced by the D1(ω0). (b) Integrated dispersion of the resonance
structure shown in (a) plotted as a function of relative mode number µ.

separated by the comb line spacing. We first introduce the relative mode index µ = m−m0
and consider a set of indexed resonator modes ωµ, µ ∈ Z around resonance mode with
µ = 0 (m = m0). The choice of the mode with µ = 0 will be in the following discussion
associated with the pumped mode. Since we use another indexing µ, which in contrast
to m no longer represents the number of intracavity field oscillations over the roundtrip,
it can be any integer number. The Taylor expansion for the resonator modes around ω0:

ωµ = ω0 + µD1 + D2
2 µ2 + D3

6 µ3 + ... = ω0 +
∞∑
n=1

Dn
µn

n! (1.21)

where each of the expansion terms is defined as: Dn = dnωµ/dµ
n at ω = ω0. In this

expansion, the first dispersion term merely represents the FSR of the cavity around the
frequency ω0: D1(ω0) = FSR(ω0)/2π, and the second-order dispersion term is related to
GVD:

D2 = −β2D
2
1

β1
= −β2D

2
1c

ng
. (1.22)

For this notation, anomalous dispersion corresponds to the case when D2 > 0, and normal
- when D2 < 0. For the resonators, chromatic dispersion with a frequency-dependent
refractive index n = n(ω) results in the frequency dependency of the cavity FSR. In
particular, one can show that introducing the dispersion modifies the FSR formula (1.5)
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1.2. Resonator fundamentals

to be:

FSR = c

Lng
. (1.23)

In the resonator case, when describing the comb formation, it is convenient to use
so-called integrated dispersion, which is introduced as:

Dint(ω0) = ωµ − (ω0 + µD1) =
∞∑
n=2

Dn
µn

n! . (1.24)

Integrated dispersion and its connection to the resonance structure are shown in Fig. 1.9.
Figure 1.9(a) shows a conventional case for microresonator resonance structure (blue)
having anomalous GVD (FSR grows with frequency, D2 > 0). The resonance positions at
ωµ coincide with an equidistant frequency grid ω0 + µD1 (grey dashed lines) at ω = ω0,
but start to acquire walk-off with increasing |µ| due to the frequency-dependent FSR. As
shown in Fig. 1.9(b) the integrated dispersion describes this walk-off of cavity resonance
positions from the equidistant frequency grid established by the D1(ω0) in the case when
the integrated dispersion is limited by the GVD term only (Dn = 0, n ≥ 3). The concept
of integrated dispersion for frequency combs is convenient for several reasons. First, as
will be shown in the following sections, the integrated dispersion naturally appears in the
simulation models of microresonator-based frequency combs and describes the detunings
of the comb lines with respect to the resonances they oscillate in. Second, it allows an
easy way to visualize higher-order dispersion terms (deviation from parabolic curve) as
well as linear phase-matching condition (zero crossings).

Figure 1.10 – (a) Model of the resonator waveguide cross-section with Si3N4 core and
SiO2 cladding used for the dispersion simulations. (b) Transverse mode profiles (|E(x, y)|)
obtained from COMSOL simulations for the waveguide model shown in (a); white arrows
indicate direction and magnitude of electric field; (c) Simulated effective refractive indexes
as a function of optical frequency for 4 transverse modes shown in (b) and fixed waveguide
dimensions of 1.5× 0.8 µm; (d) Simulated effective refractive indexes as a function of
waveguide width for waveguide height of 0.8 µm and frequency 200 THz. Crossing of the
fundamental modes appearing at around 0.8 µm corresponds to the change of the aspect
ratio from > 1 to < 1.
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Chapter 1. Microresonator-based frequency combs

So far we have assumed that the resonator we consider supports only a single transverse
mode (spatial field distribution in the transverse plane of the waveguide - E(x, y)). In
real microresonators, depending on the size and shape of the integrated waveguide (or
the protrusion of the WGM resonator) it can support a variety of transverse modes
distinguished by their polarization and the number of "nodes" in the intensity profile along
x− and y−axes. An example of the modes for the rectangular Si3N4 waveguide with
silica cladding is shown in Fig. 1.10. Depending on the direction of the electric field, they
are distinguished between transverse electric (TE) modes and transverse magnetic (TM)
modes. The modes with simplest profile (no nodes) in both transverse direction are called
fundamental modes, and they also denoted as TE00 or TM00. Their profiles are shown
in Fig. 1.10(b, top). Other modes with the nodes in their spatial intensity distribution
are often referred to as higher-order modes, and in general for rectangular waveguides
they are indexed in accordance to the number of nodes along the transverse directions (x
and y). Figure 1.10(b, bottom) shows the spatial field distribution of the first high-order
modes, that have a single node in x−direction: TE10 and TM10. As can be understood
from the difference in the spatial profiles of transverse modes, they have different effective
refractive indexes (see Fig. 1.10(c)), and consequently different FSR, GVD and higher-
order dispersion terms. We also note that the number of possible transverse mode
families also scales with the wavefuide dimensions, and smaller waveguides can support
only limited amount of higher order modes, or even do not support them at all. This
happens when the mode profile becomes too large to fit in the waveguide, making the
mode leaky and not guided. This in particular can be observed for the simulations of
effective refractive index for different waveguide dimensions as shown in Fig. 1.10(d). For
the waveguide width <0.8 µm higher-order modes disappear because a small waveguide
cannot support the guiding effect for their large transverse field distribution.

In a real microresonator, the resonance structure is often complex, consisting of several
transverse mode families. Apart from having distinct dispersion profiles, the modes can
additionally alter it due to the mutual interaction. This happens when two transverse
modes appear at close frequencies, and the waveguide has any mechanism that provides
scattering of the photons from one mode to another (coupling). In the case when such
coupling is described with a rate γ for two mode families ω1

µ and ω2
µ

ω(±)
µ =

ω1
µ + ω2

µ

2 ±

√√√√γ2 +
(
ω1
µ − ω2

µ

2

)2

. (1.25)

This results in frequency-localized modifications of the integrated dispersion. Such
hyperbolic-shaped disruptions of the dispersion curve, which can be experimentally traced
in the dispersion measurements [43, 44] are called avoided modal crossings (AMXs). AMX
locally modifies dispersion profiles of both interacting modes adding strong localized
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1.2. Resonator fundamentals

normal or anomalous contribution, which in turn can significantly impact the dynamics
of microresonator-based optical frequency combs [45, 46].

1.2.4 Nonlinearity, resonator bistability

Optical nonlinearity describes the situation when the response of the medium - its
polarization (density of the electric dipole moments) - depends nonlinearly on the
optical field of incident light. Physically this can be attributed to anharmonizm in the
oscillations of bound medium electrons, which appears when incident light achieve strong
field amplitudes. In general, the time-dependent polarization should be treated as a
vector for a certain point r of the material at time instant t, which takes into account the
amplitudes and direction of different optical fields in the given point and their "history".
We restrict ourselves to the simple case and for the purposes of this section assume that
all fields are aligned along the same direction transverse to the propagation direction z.
As before the fields can be represented as E(t) = Ee−iωt + c.c. with complex amplitude
E, and the material polarization P (t) depends only on their instantaneous magnitude:

P (t) = ε0(χ(1)E(t) + χ(2)E(t) · E(t) + χ(3)E(t) · E(t) · E(t) + ...) , (1.26)

here ε0 indicates vacuum permittivity, and χk denotes the k-th order of optical suscepti-
bility, which in the general case is k + 1-th order tensor, but here is assumed to be just
a constant. χ(1) is usually called the linear susceptibility and is related to the effective
refractive index as n =

√
1 + χ(1). The two first nonlinear terms of the polarization are

represented by the second-order susceptibility χ(2), and third-order susceptibility χ(3).
Since Si3N4 used in our work is inversion symmetric, the second-order nonlinear suscepti-
bility is zero. Consequently, the effect of second-order nonlinearity is negligible (due to
symmetry breaking at the waveguide boundaries it can still be present, but we neglect it
in the calculations). Thus the smallest nonlinearity that plays a role in the processes in
which we are interested is represented by a third-order or Kerr nonlinearity. The tensor
describing the Kerr nonlinearity χ(3) in general is a complex value, χ(3) = χ

(3)
Re + iχ

(3)
Im,

where the real part describes the parametric conversion processes, which undergo con-
serving the energy of interacting photons and introduces no change to the quantum state
of the medium. In contrast, the imaginary part describes inelastic processes, such as
Raman scattering (on optical phonons), Brillouin [Brillouin - Mandelstam] scattering
(on acoustic phonons) and multi-photon absorption.

We next consider nonlinear polarization responsible for the parametric processes: PNL(t) =
ε0χ

(3)
ReE(t) · E(t) · E(t), and assume that the field is represented by the sum of three

components, propagating in the same z direction with phase constants β1, β2, β3 and
oscillating at different frequencies ω1, ω2, ω3: E(z, t) = E1e

−i(ω1t−β1z) + E2e
−i(ω2t−β2z) +

E3e
−i(ω3t−β3z) + c.c. The nonlinear polarization in this case will have several terms, which

can be attributed to different physical processes, listed below and also schematically

19



Chapter 1. Microresonator-based frequency combs
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Figure 1.11 – Energy-level diagrams for the third-order nonlinear parametric processes.

shown in Fig. 1.11:

Self-phase modulation (SPM) - describes the terms of nonlinear polarizations in
the form of 3ε0χ

(3)
Re |Ej |2Eje−i(ωjt−βjz) for j = 1, 2, 3. The process can be thought of

as the modification of the refractive index due to the light intensity. The resulting
nonlinear polarization term will oscillate at the same frequency as the incident field Ej(t)
similar to the case of linear poliarization, but its amplitude will be proportional to the
3ε0χ

(3)
Re |Ej |2, which can be described through the introduction of the intensity-dependent

nonlinear refractive index. Since the field in a such process is acting on itself (on its phase
propagation constant) through the medium nonlinearity the process is called self-phase
modulation.

Cross-phase modulation (XPM) - describes the terms of nonlinear polarization in
the form of 6ε0χ

(3)
Re |Ek|2Eje−i(ωjt−βjz) for j, k = 1, 2, 3; j 6= k. The process is similar to

SPM, but describes the modification of the refractive index induced on one field Ej(t) by
the intensity of other co-propagating fields Ek(t), j 6= k.

Both SPM and XPM are phase-insensitive processes, meaning that they do not require
phase matching to develop, and their strength depends linearly on the intensity of the
corresponding fields. Thus they can both be described in a form of intensity-dependent
nonlinear refractive index, which will appear as a contribution to a regular effective
refractive index n: n = n0 + n2I, where intensity is introduced as Ij = ε0n0c|Ej |2/2, and
nonlinear refractive index:

n2 = 3
4n2ε0c

χ
(3)
Re , (1.27)

when both processes are involved, the resulting change in the refractive index due to
nonlinear effects experienced by a light field Ej is

δnNL = n2Ij + 2n2(Ik + Il) . (1.28)

Third-harmonic generation (THG) - describes the terms of nonlinear polarization
in the form of ε0χ

(3)
ReE

3
j e
−i(3ωjt−3βjz), j = 1, 2, 3, which is responsible for the generation

of new photons having triple the frequency of the incident field.
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1.2. Resonator fundamentals

Triple-sum generation (TSG) - describes the terms of nonlinear polarization in the
form of ε0χ

(3)
ReEjEiEke

−i((+ωj+ωk)t−(βj+βk+βl)z), which is similar to THG, but appears
when mixing fields have different frequencies.

Four-wave mixing (FWM) - describes the terms of nonlinear polarization in the form
of 6ε0χ

(3)
ReEjE

∗
kEle

−i((ωj−ωk+ωl)t−(βj−βk+βl)z) or 3ε0χ
(3)
ReEjE

∗
kEje

−i((2ωj−ωkt)t−(2βj−βk)z).
In both processes the photons at new frequencies are being generated according to the
energy conservation law. In the first case, which is referred to as non-degenrate FWM,
the newly generated photons will have frequencies ω′ = ωj − ωk + ωl in the degenerate
case or ω′ = 2ωj−ωk in the non-degenerate case. Since FWM is a phase-sensitive process,
the mixing waves need to satisfy the momentum conservation law for the β-vectors –
phase-matching. For the FWM processes we consider, phase matching happens when
β-vector of the resulting field satisfies: β′ ≈ βj − βk + βl (≈ 2βj − βk) for non-degenerate
(degenerate) case. In terms of the photon creation-annihilation picture the four-wave
mixing can be interpreted as the interaction between four photons (here the term FWM
comes), where two photons are annihilated and two photons are created according to the
energy conservation condition: ωj + ωl = ωk + ω′.

We next consider how the nonlinearity can be included in the resonator description. Since
the nonlinearity is associated with the presence of the field and its strength, we now
have to make assumptions about the optical fields in the resonator. We consider linearly
polarized monochromatic light in the fundamental transverse mode propagating along
the resonator. We start to consider only one field. The only third-order nonlinear process
which impacts the field propagation in such case is SPM. Through the intensity-dependent
change in the refractive index SPM introduces additional contribution to the phase of
the propagating light depending on its power P :

φNL = 2π
λ
n2

P

Aeff
= γPL , (1.29)

where we used the nonlinear coefficient γ = ωn2/cAeff [rad/m·W]. The nonlinear phase
shift can be introduced in the derivations of the resonance conditions and intracavity
intensity build-up B, shown earlier in section 1.2.1 for dispersion-free cavity, which leads
to the modification of the formula (1.4):

B =
∣∣∣∣E3
E1

∣∣∣∣2 = (1− r2)a2

1 + r2a2 − 2ra cos(φ0 + φNL) . (1.30)

Thus, for small input powers, when the nonlinear phase shift acquired over one roundtrip
is small the system behaves as in the linear case. When the nonlinear phase shift becomes
comparable with the linear phase shift φ0, the resonance picture becomes "tilted" as
shown in Fig. 1.12. It can be understood that higher intracavity powers accumulate
stronger phase shift due to the nonlinear contribution, which leads to the modification
of the resonance conditions for the nonlinear resonator, and in particular is translated
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Figure 1.12 – Intracavity intensity build-up of the nonlinear dispersion-free resonator. The
nonlinearity, and in particular SPM considered here induce an additional phase shift on
the light field propagating in the cavity proportional to the intracavity power. This leads
to the resonance "tilting" (red) in comparison with initial resonance structure without
nonlinearity (grey). Such resonance tilting also leads to the formation of bistability
regions (highlighted in yellow), where three intracavity field solutions can exist and form
upper and lower stable branches and one unstable solution branch.

in "dragging" the resonance in experiment. One of the important consequences, which
can be straightforwardly noted from the figure is that for a certain range of the phase,
the system has three solutions (areas shaded yellow). This phenomenon is called optical
bistability, because only two of these solutions are stable, which will be noted later.
Optical bistability is common for optical systems with a feedback, and in particular was
observed in driven optical cavities [47]. As will be seen further, the bistabilty plays a
crucial role in the formation of microresonator-based combs and solitons. The equation
(1.30) describing nonlinear cavity resonances, however, is transcendent and can not be
used to study the bistability analytically. In order to simplify it, we again, as in the
section 1.2.1 assume that the resonator we consider operates in the high finesse limit
(r → 1). This means that our field is non-zero only in the vicinity of the resonances,
and the range of the phase detunings of the optical field propagating in the cavity we
consider should be small in comparison with 2π. Another approximation we introduce
is that the nonlinear phase shift is also significantly smaller than 2π. Using intracavity
energy-normalized fields and input field sin, as was introduced for the input-output
coupling formalism of the cavity 1.11, we can write for the field evolution from the
roundtrip p to the roundtrip p+ 1:

a(p+1)(0) = ra(p)(0)eiφ0eiγLP +
√

(1− r2)τrtsin . (1.31)

The last term on r.h.s. represents a continuous coherent pumping of the microresonator,
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1.2. Resonator fundamentals

which spans over the full roundtrip, so the total number of the photons entering the
cavity over one roundtrip is (1 − r2)τrt|sin|2. Considering approximations above and
noting that da/dt = (a(p+1)(0)− a(p)(0))/τrt, the equation (1.31) can be reduced to:

da

dt
= −

(
κ

2 + i∆− ig|a|2
)
a+ f , (1.32)

where we have introduced the Kerr-nonlinear frequency shift per photon - g:

g =
~ω2

pcn2

n2
gVeff

. (1.33)

We also draw the reader’s attention to the similarity of the introduced earlier input-output
cavity formalism and equation (1.32), which augments the former one with an additional
nonlinear term proportional to the number of intracavity photons |a|2.

Bistability. To further explore the bistability, we simplify eq. (1.32) using a normalized
detuning ζ0 = 2∆/κ, a0 = a ·

√
2g/κ and consider a steady state of the resulting equation:

f = [1 + iζ0]a0(t)− i|a0(t)|2a0(t) . (1.34)

After squaring both sides and denoting ρ = |a0|2, we obtain a cubic equation for ρ:

ρ3 − 2ζ0ρ
2 + (ζ2

0 + 1)ρ− |f |2 = 0 , (1.35)

which can have either one or three real roots depending on the parameters ζ0 and
|f |2. Using the Thcrinhaus approach for the reduction to a depressed cubic equation
(without quadratic term) and the Vieta substitution, one can show that for the equation
ax3 + bx2 + cx + d = 0, three real roots are available when p = 3ac−b2

3a2 < 0, otherwise
(p > 0) - only one real root is presented. In our case three real roots are available when
ζ0 >

√
3. Thus there is a critical detuning value

√
3, above which the system equation

has three solutions. Note, however, that the availability of three real roots doesn’t mean
that one can always find them, they only become available within a certain range of
pump terms |f |2, and even if p < 0 the cubic equation can still have either three or
one real root, while for p > 0 three real roots are not possible at all. Denoting the
boundaries for the pump amplitude, where with ζ0 >

√
3 equation (1.35) has three real

roots as f±, one can derive them as a function of ζ0. We find the extrema ρ∓ of the
G(ρ) = ρ3 − 2ζ0ρ

2 + (ζ2
0 + 1)ρ, by taking the derivative ∂G(ρ,ζ0)

∂ρ :

∂G(ρ, ζ0)
∂ρ

= 3ρ2 − 4ζ0ρ+ (1 + ζ2
0 ) , (1.36)
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ρ∓ = 2ζ0
3 ∓

1
3

√
ζ2

0 − 3 . (1.37)

Using eq. (1.37) in G(ρ), one can derive f±:

f± =
2ζ0 ∓

√
ζ2

0 − 3
3

1 +


√
ζ2

0 − 3± ζ0

3

2 . (1.38)

Three available roots ρ1, ρ2, ρ3, which can be found at a fixed input power f in the
bistability region, are well visualized in Fig. 1.12 as a function of ζ0 despite the number of
approximations we introduced. They form three solution branches of the tilted resonance
for detuning values ζ0 within the bistability region. One can show that for three real
roots ρ1 < ρ2 < ρ3, which appear on these branches, ρ1, ρ3 - are always stable and ρ2 is
always unstable [48]. Two stable solutions branches, shown with solid lines in Fig. 1.12
are often referred to as "upper" and "lower" branches.

1.2.5 Thermal effects

Thermal effects play a significant role in the behavior of microresonators. In contrast
to large free-space resonators, microcavities have a small mode volume, which together
with the resonant enhancement of the intracavity field facilitates access to the nonlinear
effects [49]. On the other hand, small mode volume, high intracavity intensities and small
surface area limiting the heat dissipation lead to a high temperature sensitivity to light
dissipation [50]. Furthermore, such temperature sensitivity of the microresonator is also
important in the context of microresonator-based optical frequency combs, where the
microresonators are often driven at relatively high powers and can experience significant
changes in their dynamics due to light absorption in a small volume, followed by the
temperature changes.

There are two main processes, which contribute to the temperature-induced changes
in microresonator properties: material thermal expansion and temperature dependence
of the effective refractive index [51]. The first process impacts the size of the cavity
and is described through the coefficient of linear thermal expansion of the material
αL = 1/L · dL/dT . The second process induces a change in effective refractive index
and is introduced in a similar way through the coefficient of thermally-induced effective
refractive index αn = 1/n · dn/dT . Similar to the effect of SPM, the change in the cavity
length or cavity refractive index leads to the additional thermally-induced phase shift,
acquired by the light travelling inside the microresonator φT , which can be introduced in
the equation (1.30). For the resonance structure such thermally-induced phase shift leads
to the resonant shift appearing in addition to the shift caused by optical nonlinearity
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and can be described as follows:

ω(T ) = ω(T0) ·
(

1− 1
n

dn

dT
(T − T0)− 1

L

dL

dT
(T − T0)− 1

n

n2P

Aeff

)
, (1.39)

where ω(T ) - is the resonance frequency of the microresonator driven with a continuous
monochromatic pump field, and ω(T0) - is the resonance frequency of the resonator
at ambient temperature T0 (e.g. room temperature) without driving. We assumed
that the system in both states is at thermal equilibrium, and P - is the intracavity
circulating power, when the system is driven. First two terms on the r.h.s. responsible
for thermally-induced cavity shift, while the last term describes the contribution of
nonlinearity. The initial position of the cavity resonance ω0 is called the cold cavity
resonance, referring to the fact that the microresonator is not driven. The position of
the thermally and Kerr shifted resonance ω(T (P ), P ) is referred to as the hot cavity
resonance. For the Si3N4 microresonators explored in this work, both thermal coefficients
are positive. This leads to the cumulative shifting of the resonance to smaller frequencies
(both thermal effects and nonlinearity act together). Despite mentioning above that
the thermal effect acts similarly to the nonlinear effects, we should however highlight
several important differences between both processes. First, the effect of SPM acts only
on the pumped resonance, and other cavity resonances experience the effect of optical
nonlinearity through XPM. In contrast, temperature effects act similarly on all cavity
resonances leading to their shifting. Second, the nonlinear and thermal effect have a
significant difference in their charactersitc timescales. The nonlinearity shift is considered
to be instant (or on the order of 10−15s), while the thermal effect acts at the millisecond
scales.

Since the resulting nonlinear shift changes the position of the resonance with intracavity
intensity build-up, when the driving laser scans over such a resonance, the laser detuning
can not be counted anymore from the position of the cold cavity resonance ω(T0) due
the resonance shift. Thus it is convenient to introduce the concept of effective detuning:

∆eff = ω(T )− ωp . (1.40)

The importance of effective detuning becomes particularly clear for microresonator-based
frequency combs and the generation of solitons covered in the following sections. As will
be shown further the soliton dynamics relies significantly on the effective detuning.

Thermal locking, thermal triangle

An important consequence of the thermal- and Kerr-induced resonance shift is the
spontaneous locking of the resonator to the pump. It can be understood in the following
way: assume that the pump is blue detuned with respect to the resonance, and the cavity
experiences an external fluctuation which moves the cavity resonance closer to the pump.
In such case intracavity power will grow due to intensity build-up at smaller detunings,
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Figure 1.13 – Schematics of thermal and Kerr locking, when frequency of the pump laser
is scanned over the resonance in forward direction (increasing wavelength) and backward
direction (decreasing wavelength). In forward direction the pump is initially blue-detuned.
The resonance locks to the pump, when the pump approaches, and is dragged towards
lower frequencies. When the pump overcomes the resonance and appears red-detuned, the
resonance unlocks and returns to its initial cold cavity position completing characteristic
triangle in transmission shown in the bottom of the figure. In contrast, due to the thermal
and Kerr instability in the red-detuned regime, the triangle is significantly compressed,
when the pump is scanned in backward direction. When the pump approaches from
the red-detuned side, the resonance quickly relaxes to the blue-detuned state drawing
characteristic spike in the transmission.

which will cause an additional increase in temperature and Kerr shift of the resonance
in the opposite direction. A similar mechanism will tend to restore the initial effective
detuning when the external fluctuation increases it. This process is called thermal and
Kerr locking of the microresonator to the driving laser. In general it depends on the signs
of the thermal coefficients αL, αn and n2 and will appear when all contributions of the
resonance shifts act in the same direction. In the case where one of the contributions is
having a different sign, the system might reveal an oscillatory behavior instead of locking
[52]. Furthermore, even if all the contributions are acting in the same direction, such
behavior is only valid on one side of the resonance. In our Si3N4 platform it appears only
for the blue-detuned position of the resonance. On the red-detuned side the external
fluctuations will not be damped, but supported and lead to instability. This effect leads
to a peculiar behavior of the cavity resonance when probing it with a laser: when the
pump laser is scanned from the blue-detuned side, the resonance cavity experiences a
thermal and nonlinear shift and moves away from the driving laser. However, when the
position of zero effective detuning is reached, the system quickly relaxes to the cold cavity
position due to being unstable. One of the consequences of such behavior is the so-called
thermal (and Kerr) triangle, which is often observed in microresonators when the laser
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scans over a cavity resonance [50]. In the opposite direction, due to this instability, an
approaching laser will induce a quick resonance jump to the blue-detuned position as
shown in Fig. 1.13.

1.3 Kerr frequency combs

As we described earlier, the nonlinear processes, and in particular FWM can lead to the
generation of new frequencies when pump photons accumulated in the resonator start
the parametric conversion process. This process however, requires the phase-matching
condition to be satisfied, which enables the constructive build up of the newly generated
fields.

In the case of resonators and particularly microresonators, which are mostly interesting
for us, the generated fields with frequencies ω̃µ (which we will further also refer to as
"comb lines", or just "lines") can only build up close to the resonance frequencies ωµ (or in
the following also - "resonator modes"). As in the previous section we use relative mode
number µ for indexing, and note that indexing of both sets of frequencies is mutual -
meaning in our context that a comb line oscillating at ω̃µ′ appears close to the resonator
modes with the same index µ′. The purpose of using two different notations for the
resonances and fields generated in the microcavity is to highlight the fact that despite
low resonance linewidths, the comb lines are not necessary generated exactly on the
resonances (ω̃µ = ωµ) but may have non-zero detuning with respect to the resonances
they appear in. According to energy conservation, the mixing lines with frequencies
µ = j, k, l,m satisfy ω̃j + ω̃k = ω̃l + ω̃m, or j + k = l + m. On the other hand, the
propagation constants of the corresponding fields are described by:

β̃m = ω̃mn(ω̃m)
c

, (1.41)

which, in the case when the frequencies of the mixing fields are close to each other and far
from the electronic resonance of the material such that n(ω̃j) ≈ n(ω̃k) ≈ n(ω̃l) ≈ n(ω̃m),
leads to phase matching for the mixing lines: β̃j + β̃k ≈ β̃l + β̃m. Due to this result, it is
often said that the FWM processes are intrinsically phase-matched in the microresonator
geometry. While being correct with given above approximations, the discrepancy between
the frequencies of the generated comb lines, which are strictly equispaced due to energy
conservation, and the resonator modes, whose spacing varies due to the dispersion, can
result in a large walk-off of ω̃m from ωm leading to the supression of the FWM process
efficiency.

The first parametric oscillations in optical microcavity were demonstrated in silica
microtoroids [3], where the generation of a few signal and idler lines produced by a strong
CW laser coupled to a high-Q microresonator was observed. Being already in some
sense the first frequency comb generated in a microresonator, these observations have
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became a driver for the establishing of the area of microresonator-based optical frequency
combs later [7]. Due to the central role which third-order nonlinearity plays together
with high-quality microresonator in the formation of these combs, several names are used
interchangeably - microresonator-based frequency combs, Kerr frequency combs or just
Kerr combs.

The formation of Kerr frequency combs has complex dynamics and involves different
stages with various time-domain behavior and noise properties, which we briefly review in
the present section. We consider a general nonlinear microresonator, one of whose modes,
denoted by ω0 is driven by monochromatic CW light at the frequency ωp through the
evanescently coupled waveguide, which is a general scheme for the Kerr-comb generation.
A typical approach to the Kerr comb generation consists of fixing the power of the
pump and tuning the pump frequency over the cavity resonance in order to achieve
a strong build-up of the intracavity intensity, enabling the initiation of the nonlinear
mixing processes. We also assume that the tuning of the pump laser is mode-hope-free,
which allows a smooth approach and scan over the resonance, and is slow enough to
let the system behave quasi-statically. In order to satisfy this condition, the system
should be stable when the pump is tuned over the resonance. As we discuss earlier in
section 1.2.5 in Si3N4 microresonators (and in the majority of others, which were used
for the generation of Kerr combs) this can only be achieved when approaching from the
blue-detuned side of the resonance.

When the pump is approaching the resonance, intracavity intensity of the driving field
grows in accordance with a steady-state solution of (1.32) for each given detuning ∆
(we omit the thermal effects for simplicity). Since at low intracavity powers there are
photons of only one frequency (pump frequency) in the resonator, the generation of
new frequencies starts with the degenerate FWM process involving the annihilation of
two pump photons and the creation of two new signal and idler photons of different
frequencies, appearing symmetrically with respect to the pump. Following the numeration
of the modes with relative mode indexes µ, the driving mode corresponds to µ = 0, and
parametrically generated new fields, also called primary sidebands, will appear at ±µsb.
The development of the primary sidebands [53] and their energy exchange with the pump
can be described using three coupled equations for each of the oscillating lines - three
mode model.

1.3.1 Primary sidebands

The three mode model can give several insights into the development of the primary
sidebands, and in general, initiation dynamics of Kerr frequency combs [53, 54]. With a
good level of precision it allows one to predict the threshold intracavity power, at which
the primary sidebands appear (the threshold for the FWM process), as well as their
amplitude and positions ±µsb. We consider three modes, oscillating in the resonator:
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a0(t) - field oscillating at pump frequency, and aµsb(t) - fields of the primary sidebands,
which we for convenience denote as b±. As before |a0(t)|2 and |b±|2 correspond to the
number of photons in each of the modes multiplied by a factor 2g/κ. We start with the
equation on the pump mode a0(t) (1.34), which should be augmented with the XPM
terms and FWM terms taking into account the presence of the sidebands b±:

da0
dt

= −[1 + iζ0]a0 + i(|a0|2a0 + 2|b+|2a0 + 2|b−|2a+ 2b+b−a∗0) . (1.42)

Terms 2|b±|2a0 describe XPM induced by the sidebands, which are included with a factor
of 2 in comparison to SPM, as described earlier in section 1.2.4. The last term describes
FWM. Similar equations can be also derived for the sidebands:

db±
dt

= −[1 + iζ±µ]b± + i(|b±|2b± + 2|a0|2b± + 2|b∓|2b± + a2
0b
∗
∓) . (1.43)

One key difference of these two equations from the equation on the pump mode - is
the presence of ζ±µ - detunings of the sidebands from their resonances. As was noted
earlier in section 1.3, the comb lines generated in the FWM process can have a significant
walk-off (detuning) from the resonance positions due to the cavity dispersion. ζ±µ is
taking into account such contributions together with the detuning of the pump ζ0. The
nonlinear terms are represented by |b±|2b± - SPM, 2|a0|2b± - XPM from the pump and
2|b∓|2b± XPM - from the other sideband, a2b∗∓ - FWM. Taking the complex conjugate
of the equation for b−, and omitting the terms proportional to |b±|2 as being small, we
can arrive to two linearized coupled equations for the sidebands, which can be written in
a matrix form db/dt = M · b:

d

dt

[
b+
b∗−

]
=
[
−[1 + iζµ − 2i|a0|2] ia2

0
−ia2

0 −[1− iζµ + 2i|a0|2]

] [
b+
b∗−

]
.

Since the system is linearized, we can consider linear variations of b in order to check
its stability. If matrix M has positive eigenvalues, the amplitude of the sidebands
will grow with time exponentially. The equation for the eigenvalues gives: λ2 − 2λ +
(1 + (ζµ − 2|a0|2)2) − a4

0 = 0. Two real solutions are available when discriminant
∆λ = 2

√
a4

0 − (ζµ − 2|a0|2)2 > 0. We assume that the dispersion of our cavity can be
well approximated around the pump using only the GVD term, then the detunings
of the corresponding sidebands are: ζ±µ = ζ0 + d2µ

2, where ζ0 = 2(ω0 − ωp)/κ is the
normalized detuning as introduced earlier, and d2 = 2D2/κ - normalized GVD term.
Although we consider the system without thermal effects, the nonlinearity terms, as
shown in section 1.2.5, through the Kerr locking, will lock our pump term (a0) on the
resonance only on the blue-detuned side, i.e. when detuning is negative: ωp > ω0, and
thus ζ0 < 0. This leads to the first important consequence for the stable primary comb
formation - d2 > 0 or anomalous group velocity dispersion. This is a central and basic
requirement for the initiation of the primary sidebands and, as a consequence, Kerr
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frequency combs. Empirically it can be understood such that the nonlinear resonance
shift induced by the pump through the XPM compensates the detuning of the sidebands
induced by the dispersion. We should note, however, that the possibility of the primary
comb formation as well as Kerr frequency combs in the normal dispersion regime has
also been investigated and shown experimentally [48, 55, 56, 57].

We can further calculate and interpret the eigenvalues λ1,2 of M:

λ1,2 = −1±
√
a4

0 − (ζµ − 2|a0|2)2 . (1.44)

These eigenvalues mean that amplitude of the random field fluctuations, which appear in
the corresponding sideband modes will develop as e(−1+

√
a4−(ζµ−2|a|2)2)t = egλt, where we

consider the "+" case as it can correspond to a growing amplitude, and in fact describes
the gain of the FWM nonlinear process. We note that due to the normalization introduced
for our linearized coupled modes (all angular frequency terms, such as total cavity loss
rate κ, nonlinear Kerr shift per photon g or detuning ∆ were normalized using κ/2), the
losses are represented by "-1", and the sidebands will grow when they overcome losses in
the microresonator: Re(gλ) > 0

Now, using the equation (1.44) we can derive the number of intracavity pump photons
|a0,th|2κ/2g needed to initiate the generation of the primary sidebands:

−1 +
√

(a4
0,th)− (ζµ − 2|a0,th|2)2 = 0 , (1.45)

where again considering anomalous GVD with moderate D2, which can reduce the
second term in the radicand to zero for certain µ > 1, we can show that the threshold
conditions for the intracavity pump photon number: |ath|2 = 1. Taking into account the
earlier-introduced normalizations, we can write the intracavity threshold power:

P cavth = κ

2gτrt
~ωp , (1.46)

which can be further used to calculate the minimum normalized driving power |f |2 in
the bus waveguide, required to reach the FWM threshold for the intracavity power and
initiate the generation of the sidebands. For this we recall eq. (1.35), obtained from
the normalized field evolution equation in the nonlinear resonator, and estimate the
minimum |f |2 at which the threshold intracavity power can be achieved: ρ = |ath|2 = 1.
One can show that the minimum |f |2 will appear when the normalized effective detuning
(in our present consideration it includes only the Kerr nonlinear component from SPM
and excludes thermal contribution) is 0: ζ0 − |a0,th|2 = 0, or in other words, when the
Kerr frequency shift equals half the cavity linewidth κ [53, 58]. The resulting condition
for the external driving is |f |2 ≥ 1, and thus writing the threshold value in the real,
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non-normalized units:

P in
th =

κ3n2
gVeff

κexωpcn2
. (1.47)

Position of the primary sidebands. Finally, the position of primary sidebands ±µsb,
with respect to the pump mode, indicating the number of FSRs between the pump
frequency and the frequencies of the sidebands can also be estimated based on eq. (1.35)
with ρ = |a0(t)|2. It can be shown [59], that the positions of the sidebands at the
threshold (when the FWM is just initiated) depends on the driving power and normalized
cavity dispersion d2:

µth =
√

1
d2

(√
f2 − 1 + 1

)
. (1.48)

Thus the minimum position of the first sidebands at the threshold power can be written
in non-normalized units as

µmin =
√

κ

D2
. (1.49)

Besides showing the minimum position of the primary sidebands, this dimensionless
parameter represents one of the key figure-of-merits for the Kerr frequency combs and
appears in several roles characterizing their dynamics and some properties of dissipative
Kerr solitons. In particular, later we will show that this parameter is also related to the
soliton duration and can estimate the maximum number of solitons which can coexist in
the cavity without annihilation.

1.3.2 Modulation instability

The development of the spectral sidebands from the initial CW field due to the third-order
nonlinearity is common for optics, fluid dynamics and other fields. The process is also
called modulation instability (MI), referring to the behavior of the system, where it
does not inhibit random spectral fluctuations (modulations) at certain frequencies as it
would be the case for a stable state, but enhances them, forming the strongly oscillating
sidebands. In Kerr combs the term modulation instability is used for several operation
regimes, when the pump is located on the blue-detuned side of the driven resonance,
and the microresonator operates above the FWM threshold (1.47). Fig. 1.14 shows
these regimes schematically (Fig. 1.14(b)) and in actual experiment with a 100-GHz
Si3N4 microresonator (Fig. 1.14(c)), when the pump frequency is tuned into the cavity
resonance from the blue-detuned side. The first regime is the process of degenerate
FWM described in the previous subsection, which leads to the generation of two primary
sidebands located at ±µsb. Once the primary sidebands have been initiated however,
their mixing with the pump immediately enables the non-degenerated FWM (e.g. for
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Figure 1.14 – Modulation instability (MI) in CW-driven nonlinear microresonator. (a)
Schematic transmission trace of the pump frequency tuning in the cavity resonance.
Numbered circles indicate different stages of the MI: 1- primary combs, 2 - subcomb
formation, 3 - subcomb merging, 4 - fully filled noisy Kerr comb. (b) Schematic rep-
resentation of the MI stages shown indicated in (a). Green and violet schemes show
non-degenerate and degenerate FWM processes. (c) Experimental spectra of different
MI stages of the 100-GHz Si3N4 microresonator.

the modes with relative mode numbers −µsb, 0 → µsb,−2µsb), which in turn leads to
more sidebands following the same spacing (if the primary sidebands are located close
to the resonances with indexes ±µsb, the new sidebands will appear at the resonances
±µsb · j, j ∈ N). When the pump frequency is tuned further into resonance, which
increases intracavity intensity of the pump mode, the sidebands will also obtain higher
intensities leading to the broader spectrum of the generated lines. Thus the pump
photons following complex cascaded nondegenerate FWM processes can mix to produce
photons in spectral positions far from the pump line (see stage 1 in Fig. 1.14(b, c)). The
resulting optical frequency comb spaced by µsb·FSR is called a primary comb, and is
often observed in a variety of nonlinear microresonator platforms with anomalous GVD.

The width of the primary comb is linked to the cavity dispersion. While the parametric
generation of optical lines strictly maintains initial line spacing established by the primary
sidebands, the dispersion induces a larger walk-off of the cavity resonances from the
position of the corresponding sidebands for large j thus reducing their inracavity build-up.
It should also be noted that, by introducing high-order dispersion terms such walk off-can

32



1.3. Kerr frequency combs

be reduced, and even lead to the significant enhancement of the lines far away from the
pump [60, 61, 26].

In the time domain, the formation of primary sidebands corresponds to the breaking
of the continuous-wave intracavity solution, which is "flat" in the cavity (the intensity
is spatially-uniform over the cavity circumference) into the integer number of pulses,
whose number - µsb - corresponds to the relative mode index of the resonances, where
the primary sidebands appear. While just above the threshold, the intracavity waveform
simply looks like a weakly modulated continuous wave field, the fully developed primary
comb will have higher contrast between the field maxima and minima. Such intracavity
formations are called "Turing rolls" (or also Turing patterns) [62], and represent a stable
steady state solution of the system. Due to this reason, the first stage of modulation
instability observed in the CW-driven microresonators is often referred to as stable MI
(SMI).

The comb evolution process, however, does not end in the SMI regime. By further
increasing intracavity power (tuning the pump frequency further into the resonance) the
second stage of the comb formation can be initiated. It starts when primary sidebands
become strong enough to initiate non-degenerate FWM around their positions, leading
to the formation of secondary comb lines, whose spacing in the general case deviates
from the spacing of the primary sidebands [59], but is constant over the comb bandwidth.
Appearing around primary comb lines they form "subcombs", adding more oscillating
lines inside the cavity and more potential channels for the FWM processes (see stage 2
in Fig. 1.14(b, c)). The subcombs can further merge with each other filling all cavity
resonances with oscillating modes (stage 3 in Fig. 1.14(b, c)) and thus forming an
optical comb with the characteristic shape shown in stage 4 of Fig. 1.14(b, c). The
first observation of such an optical frequency comb was made by Del’Haye al [7] in a
monolithic toroidal silica microresonator and can be considered as the first step in the
development of microresonator-based Kerr frequency combs. Later, Kerr combs were
also observed in multiple microresonator platforms, including crystalline microresonators
[63], chip-integrated microrings [11, 10] and silica wedge resonators [64].

One of the main issues of these microresonator-based Kerr frequency combs, is their noise
performance. Despite strict maintenance of the line spacing between generated comb
lines, which follows from the energy conservation, the mismatch between the spacings of
the primary and secondary sets of comb lines often leads to the situation when multiple
lines oscillate in the same resonance. This leads to the mutual incoherence of the resulting
comb lines oscillating at different resonances and their significant broadening in the
frequency domain, which can be directly measured with low-bandwidth photodiodes
[64, 59, 65]. Such fully or partially filled combs are often referred to as "noisy" Kerr
combs, highlighting their noisy and incoherent nature.

In the time domain, the formation and merging of the subcombs leads to the breaking of
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Chapter 1. Microresonator-based frequency combs

the stable Turing rolls in the spatially and temporally chaotic intracavity waveform. Due
to the absence of coherence and chaotic dynamics, the system behavior in a noisy Kerr
comb state is called chaotic modulation instability (CMI).

So far we assumed the case of moderately low anomalous dispersion, which enables the
formation of the primary sidebands at |µsb| > 1, which are called multi-mode spaced
combs (MMS) (or alternatively - Type-II combs) [66, 59]. It was shown, however,
that the cascaded FWM processes can also develop and form an optical comb, when
the dispersion is strong enough to induce |µsb| = 1. Resulting combs, called natively
mode-spaced combs (NMS) (also Type-I combs) [66], usually have a rather small
spectral bandwidth, because the dispersion induces a large walk-off of the resonances
from the oscillating lines even at small µ. The advantage of such combs is in their
noiseless nature since no formation of secondary combs is being initiated, and the system
essentially represents a primary comb having single-FSR spacing.

Despite providing access to ultra-high repetition rates, the development of the Kerr combs
and their applications was largerly hindered by their noise properties (MMS combs)
or their bandiwdth (NMS combs). Most of the applications were based on either the
primary combs and NMS combs [67, 68] or accidentally generated low-noise states of
the MMS combs in a certain sample [69, 70], which can appear as the result of integer
matching between the spacings of primary and secondary comb lines ("δ −∆ matching"
[59]).

1.3.3 Coupled-mode equations for Kerr combs

The analytical description of Kerr frequency combs due to historical reasons was initially
implemented in the frequency domain. Following the first experiments, where the
parametric oscillations were observed [3], few generated comb lines could be easily
described with coupled equations corresponding to the oscillating modes and coupled
through the nonlinear FWM terms [53]. A similar frequency-domain description of
the FWM processes was initially also adopted to describe fully developed Kerr combs,
consisting of a multitude (reaching several hundreds) of coupled modes. The model can
be derived from the nonlinear wave equation in the resonator medium together with the
quantum Langevin equations [71]. In the slowly varying envelope approximation for the
fields Aµ in the resonator modes ωµ one can obtain the following set of coupled mode
equations (CME):

∂Aµ
∂t

= −κ2Aµ + ig
∑

µ′,µ′′,µ′′′

Aµ′Aµ′′A∗µ′′′e−i(ωµ′+ωµ′′−ωµ′′′−ωµ)t

+ δµ0
√
κexsine

−i(ωp−ω0)t, (1.50)

34



1.3. Kerr frequency combs

where the summation is only implemented for the frequencies whose indexes µ′, µ′′, µ′′′:
ωµ′ + ωµ′′ = ωµ′′′ + ωµ. The fields Aµ indicate time-varying complex field amplitude
normalized such that |Aµ|2 represents the number of photons in the corresponding mode
with index µ. The pumped mode, as before, is denoted with index 0, and δµ0 is the
Kroneker delta, restricting the pumping term (last on r.h.s.) only to the pumped mode.
The pump, as before, includes sin =

√
Pin/~ωp, and we also use the earlier-introduced

total cavity decay rate: κ = κex + κ0, and g - Kerr shift per photon defined in eq. (1.33).

One can further remove the time-dependency of the nonlinear terms using the Taylor
expansion for the cavity resonances around ω0 (see eq. (1.21)) limited to the GVD
term: ωµ = ω0 + µD1 + D2

2 µ
2 - and make a transition from terms oscillating at cavity

resonances to the terms oscillating on the equidistant frequency grid aµ: aµ(t) =
Aµ(t) · e−i(ωµ−ωp−µD1)t = Aµ(t) · e−i(ω0−ωp+µ2D2/2)t:

∂aµ
∂t

= −i
(
ω0 − ωp + D2

2 µ2
)
aµ −

κ

2aµ + ig
∑

µ′,µ′′,µ′′′

aµ′aµ′′a∗µ′′′

+ δµ0
√
κexsin . (1.51)

The choice of the equidistant grid as the basis for the model is defined by the strict
equidistance of the generated comb lines, and is chosen such that D1/2π matches the
spacing of the adjacent (generated in adjacent resonances) comb lines.

The model can be further reduced to dimensionless form. If we use: aµ = aµ
√

2g/κ, ζµ =
2(ω0 − ωp + D2

2 µ
2)/κ, τ = κt/2, f =

√
8gκex/κ3sin:

∂aµ
∂t

= − (1 + iζµ) aµ + i
∑
µ′≤µ′′

(2− δµ′,µ′′)aµ′aµ′′a∗µ′+µ′′−µ + δµ0f . (1.52)

It can be also seen that this infinite set of equations can be reduced to the earlier-
introduced equation for single mode (eq. (1.32)) or three-mode model (eqs. (1.42) and
(1.43)) used for the calculations of optical bistability (see eq. 1.2.4) and the parametric
threshold (eq. 1.3.1).

1.3.4 Lugiato-Lefever equation

While the coupled mode equations allow the description of Kerr comb dynamics and
straightforward implementation in the simulations, the analytical description of the system
is rather complicated in particular due to the complex summation of the nonlinear terms.
Another issue with the frequency-domain description is the computational difficulty of
the resulting set of nonlinear coupled equations.

An alternative approach to build the convenient analytical model for the Kerr combs lies
in the temporal domain. Historically, the model was first derived for spatial dissipative
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structures of light generated in a CW-driven, simple four-mirror cavity by L. Lugiato and
R. Lefever [72]. In this work the spatially-localized dissipative structures were formed in
the plane transverse to the light propagation direction as the result of the interaction
between the focusing Kerr nonlinearity and diffraction of the radiation. Later, the model
was also formulated in the temporal domain for the driven nonlinear dispersive cavity
[73], where the dispersion has taken the place of the diffraction, and the possibility of
the temporally-localized structures was shown.

The derivation of the model is based on the Ikeda map [74] - an approach which was
introduced for the description of the instabilities of the light transmitted by the ring
cavity. In this approach, the light field E = E(z, τ) is described from roundtrip (n)
to roundtrip (n+ 1) using cavity boundary conditions, and assuming that during the
roundtrip the field propagation is described by the nonlinear Schrödinger equation (NLSE)
[40]:

En+1(0, τ) = tEin + re−iδ0En(L, τ) ,
∂En(z, τ)

∂z
= −

(
αL
2 − i

β2
2
∂2

∂τ2 + iγ|En(z, τ)|2
)
En(z, τ) , (1.53)

where we used earlier introduced notations of field-transmission and reflection coeficients
t, r, cavity length L nonlinearity coefficient γ, linear cavity losses α and GVD dispersion
β2. The propagation spatial coordinate is denoted as z and time is denoted as τ . δ0
represents the phase cavity detuning for the center frequency of the E spectrum in the
linear case (zero intensity inside the cavity). The field E is normalized to represent
intracavity power [

√
W ], and similarly the input field Ein is normalized to represent

power coupled to the cavity Pin = |Ein|2.

The Ikeda map can be further reduced to a partial derivative equation, which allows
for analytical study of the light evolution in the cavity. If we assume the limiting
case of high-finesse cavities, where the temporal evolution of the intracavity field is
much slower than the roundrip time τr, and if the dispersion and nonlinear length
of the cavity are much longer than the cavity length, one can replace the nonlinear
field propagation in (1.53) with simple integration. Furthermore, introducing the new
independent variable - "slow" or "retarded" time: t = τ − z/vg, where vg - is the
group velocity of light, we can define E(t, τ) as the cavity field envelope at z = 0:
E(t = nτr, τ) = En(z = L, τ), n = 0, 1, 2, ... [73]. The slow time also allows us to
introduce the slow time derivative, which is the change of the intracavity field envelope
over one roundtrip: ∂E(t, τ)/∂t = (En+1(z = 0, τ)− En(z = 0, τ))/τr:

τr
∂E(t, τ)
∂t

=
[
−α− iδ0 + i

β2
2
∂2

∂τ2 + iγL|E(t, τ)|2
]
E(t, τ) + rEin . (1.54)

This partial derivative equation is called Lugiato-Lefever equation (LLE). From the
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mathematical point of view it represents an externally driven damped and detuned NLSE
and successfully describes the dynamics of Kerr combs in various regimes. The LLE has
two time variables - τ - usual time, also called "fast" time in the frame of this equation,
which describes the behavior of the intracavity field within one roundtrip, and t - slow
time, described above. We stop a bit on the physical interpretation of slow and fast times.
While fast time is just regular continuous time, the slow in the form it is introduced is
discrete, and essentially just "counts" the roundtrips. Given that the evolution of the
system over one roundtrip is almost negligible, we can treat this slow time as being
continuous, but having meaning only when it is equal to the integer multiples of the
roundtrip time. Since the intracavity field evolution, which we consider in the LLE
evolves slowly, LLE is often referred to as time-domain mean-field theory of the Kerr
comb evolution [75]. It should be noted that the dispersion in (1.54) is truncated to the
second order, giving us the present temporal form of the LLE to be similar to the earlier
introduced spatial form [72]. Nevertheless, higher-order dispersion terms can be also
included in the model [76], enabling the description of broadband combs with complex
dispersion profiles.

The form of the LLE shown here is based on the work of Haelterman et al. [73] and was
originally used for the modulation instability and pattern formation in fiber cavities [41].
The idea to employ a mean-field equation for the description of Kerr combs appeared
around the same time [77], but already after the CME approach has already been
established [78]. It was also shown that the modal expansion approach used in the
CME and Ikeda map are strongly connected, and both converge to the LLE in the
mean-field approximation limit. While being used in the form shown in eq. (1.54) [76],
many researchers including our group are using the LLE with the CME-like notations,
where the slowly varying intracavity field A(φ, t) =

∑
µ
eiµφ−i(ωµ−ωp−µD1)t is defined using

the co-rotating frame: φ = ϕ−D1t, where ϕ - regular polar angle inside the cavity.

∂A(φ, t)
∂t

=
[
−κ2 − i∆ + i

D2
2

∂2

∂φ2 + ig|A(φ, t)|2
]
A(φ, t) +

√
κexPin
~ω0

. (1.55)

This form of the LLE uses earlier introduced notation for the total cavity decay rate κ,
angular frequency detuning ∆ = ω0−ωp, second-order dispersion expansion termD2, Kerr-
shift per photon g and external driving power Pin. The intracavity solution is thus defined
on the interval φ ∈ [−π, π], and should satisfy periodic boundary conditions imposed
by the cavity: A(φ + π, t) = A(φ − π, t). We should also note some counter-intuitive
difference in the coordinate notation used in both versions of the LLE: (1.54), (1.55). In
the first form, τ is used for the regular (fast) time coordinate, while t is used for the slow
time. In the second form, in contrast, the phase angle φ in the co-rotating frame is used
as the formal equivalent of the fast time, and t again represents the slow time.

For analytical derivation and for simulations, the LLE is often being reduced to its
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dimensionless version [9]:

∂Ψ(θ, t)
∂τ

=
(
−1− iζ0 + i

∂2

∂θ2 + i|Ψ(θ, t)|2
)

Ψ(θ, t) + f, (1.56)

From this dimensionless equation of the LLE, we can observe one important feature -
LLE dynamics essentially depends only on the two parameters: dimensionless pump
power f , and dimensionless detuning ζ0.

We finally note, that despite computational complexity, the Ikeda map introduced in
(1.53) can also be directly used for the simulations of Kerr frequency combs and temporal
structures appearing in the intracavity field, which was demonstrated in microresonators
[79] and fiber cavities [80, 81]. In particular, it can be useful for the calculations beyond
the LLE approximations, for example when calculating multi-stability behavior of the
system, when nonlinearity-induced resonance shift can overcome the FSR.

1.4 Dissipative Kerr solitons

So far we discussed the formation of noisy Kerr combs, which appear when the pump
is located on the blue-detuned side of the driven cavity resonance and the detuning is
small enough to achieve intracavity powers above the FWM threshold. While being very
interesting from the perspective of the microresonator size,and relatively small initiation
power of nonlinear effects, the low coherence of the resulting optical combs and the
chaotic intracavity waveform in these states significantly limit the number of applications
where Kerr combs could be employed.

The idea of phase synchronization of the comb lines (also known as mode-locking), which
could be achieved in microresonator Kerr combs, and associated with the formation of
intracavity pulses was first introduced by Matsko et al. [77, 78] and later refined by
Gorodetsky in an arXiv preprint of the work [9]. On the other hand, earlier theoretical
works on the LLE, its spatial and temporal forms have also reported the possibilities
of the formation of stable spatially localized structures - optical solitons. The term
"soliton" is used here to refer to the spatially inhomogeneous waveform (usually - a pulse
with a characteristic sech2 profile), which maintains its shape and energy during the
propagation in a nonlinear medium with losses and dispersion or diffraction. Solitons
were first introduced for integrable systems [82], and later in the beginning of 1990 they
were also discovered for dissipative systems including optical ones, where they relied on
the double-balance between nonlinearity and dispersion (temporal case) or diffraction
(spatial case), and gain and losses of the system [83]. Optical solitons have attracted
particular attention in the context of fiber optics, where they were suggested in order
to increase the capacity of telecommunication links. While optical cavity solitons did
not have such clear applications, they were also broadly studied from theoretical and
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numerical points of view, which led to the early development of the LLE framework.
Soliton formation was experimentally demonstrated first in the fiber cavities [41], where
additional short seeding pulses were used for soliton initiation.

In microresonators the first indication of the low-noise Kerr comb states were reported
in the Si3N4 platform [59], however no underlying pulse formation was shown. Later,
an unambiguous demonstration of soliton formation in MgF2 crystalline resonators and
the associated low-noise state of the Kerr frequency comb was established by Herr et
al. [9]. Similar to other dissipative solitons [83] the formation of stable solitons in
microresonators is enabled by the double-balance between nonlinearity and dispersion,
as well as between cavity losses and the gain from the parametric FWM processes. The
first two effects maintain the pulse duration unchanged by compensating each other,
and the second two processes maintain the pulse energy (see Fig. 1.15(a)). Since these
solitons could only exist while the system is driven, and the governing nonlinearity is the
Kerr nonlinearity, they were also named Dissipative Kerr solitons (DKS), which we will
broadly use in the present work alongside with "DKS state" . Alternatively, terms such
as "dissipative cavity solitons", or "temporal solitons" as well as just "solitons" are also
often used in the area of Kerr combs.

The formation of DKS states in microresonators have revolutionized the area of Kerr
combs. They have enabled the generation of short optical pulses from monolithic CW-
driven microresonators without the need for complex external means for the pulse
formation, maintenance and synchronization of phases as in mode-locking lasers. Fur-
thermore, with the demonstration of DKS states in chip-integrated platforms [84], they
have gained access to the advances of on-chip photonics, including mass-producibility,
chip-scale footprint as well as the possibility for heterogeneous integration with laser
sources and locking or control electronics and electro-optics. On-chip platfroms also allow
for convenient dispersion engineering of the resonators, which have enabled the generation
of broadband optical combs spanning a full octave and have shifted the operating window
of soliton combs towards visible [85, 86, 87] or mid-IR wavelengths [88, 89].

In recent years, DKS states have been demonstrated in a number of microresonator
platforms, including crystalline MgF2 resonators [9, 90], SiO2 wedge disks [91], Si3N4
[84], Si [88], high-index doped SiO2 [92], AlN [93] and LiNbO3 integrated microrings
[17, 94], and silica microspheres [2].

In the following subsections we focus on the theoretical description of solitons in optical
microcavities, experimental ways to access these states as well as briefly cover their
applications.
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Figure 1.15 – (a) Soliton (red) and CW (blue) solutions defined inside the cavity on the
interval φ ∈ [π, π]. Arrows schematically show various effects acting on the DKS and
maintaining its stable pulse shape during the propagation. (b) Nonlinearity-induced
bistability of the microresonator resonance. (c) Single soliton (top) and multiple-soliton
(bottom) states in the cavity, when they are coupled out of the cavity and their spectra
in the µ-domain. Note that the strong CW contribution from the cavity-reflected pump
was removed in the outcoupled light for illustrative purposes.

1.4.1 Theoretical description of DKS

The first correct expression for the parameters of a dissipative Kerr soliton solution
of the LLE was derived by Gorodetsky in the work [9]. The derivation relied on the
dimensionless form of the LLE (1.56), and followed the derivations of solitons made by
Wabnitz [95] in the limit of low losses (ζ0 � 1), which in turn was also based on earlier
work of Nozaki and Bekki [96]. The full soliton solution of the LLE can be represented
as the sum of two parts - CW background (Ψc) and the soliton itself (Ψs):

Ψ(θ, t) = Ψc(θ, t) + Ψs(θ, t) ' Ψc +
√

2ζ0e
iϕ0sech(

√
2ζ0 · θ) , (1.57)

where the parameter ϕ0 is responsible for the phase detuning of the soliton with respect
to the pump, and is shown to satisfy cosϕ0 '

√
8ζ0/πf . The CW solution part Ψc can

be obtained from the stationary LLE (∂Ψ(θ, t)/∂τ = 0) and approximately derived as
[9]:

Ψc(θ, t) '
f

ζ2
0
− i f

ζ0
. (1.58)

The coexistence of two solutions of the LLE is a direct consequence of the optical
bistability, which we derived earlier in section 1.2.4, and which can be similarly derived
for the LLE (see Fig. 1.15(b)). Two solutions correspond to different branches of the
intracavity field solutions, one of which exists on the upper branch of the strongly Kerr-
shifted resonance associated with the propagation of the high-intensity stable intracavity

40



1.4. Dissipative Kerr solitons

pattern, while another one exists on the lower branch of the weakly Kerr-shifted resonance
associated with the propagation of the background.

In the following we focus on the solitonic part of the solution and establish several
characteristic parameters of the DKS pulses. First, we express the soliton solution in the
physical parameters for the energy-normalized intracavity field:

As(φ, t) =
√

2∆
g

sech
(
φ

φs

)
, (1.59)

where φs =
√
D2/2∆ indicates the soliton duration in the spatial angle domain. It should

also be reminded that the soliton duration and FWHM of the soliton pulse are different by
the factor of 2ln(

√
2 + 1) ≈ 1.76: φFWHM = 1.76φs. The solution is defined in the spatial

angle domain φ on the interval [−π, π] and is shown in Fig. 1.15(a). Since it was defined
on the reference frame rotating with angular velocity D1, the soliton circulates inside the
cavity with the same angular velocity in the laboratory frame (see Fig. 1.15(c)). Each
time when the soliton passes the coupling region it is partially coupled out thus forming
a pulse train with repetition rate of D1/2π. The optical spectrum of the thus generated
pulse train can be expressed in the µ-domain (frequency domain with ω = ωp + µD1)
using Fourier transformation and the output cavity relation:

P (µ) = κexD2~ωp
4g sech2

πµ
2

√
D2
2∆

 . (1.60)

Comparing eq. (1.59) and eq. (1.60) we can note that the DKS peak power ∼ |As(φ, t)|2

grows linearly inside the cavity with detuning, however in the frequency domain the
maximum power-per-comb-line is fixed. The maximum available detuning for the given
pump power can be derived from the condition | cosφ0| < 1, which gives a maximum
available detuning for the soliton state as a function of the normalized pump amplitude:

ζmax = π2f2

8 . (1.61)

Another limiting condition for the soliton state was shown for the stationary damped
driven NLSE to which the LLE can be reduced [9, 97]. The existence of DKS states
is tightly linked with the system’s bistability, which appears at ζ0 >

√
3 and similarly

eq. (1.38) limited by two curves:

f± =
2ζ0 ∓

√
ζ2

0 − 3
3

1 +


√
ζ2

0 − 3± ζ0

3

2 , (1.62)

which can be also recalculated into maximum and minimum detuning values ζ+ and ζ−
for a given power: f+ = f−. The bistability region guarantees the existence of upper
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and lower solution branches, and the coexistence of the CW and solitonic parts in the
LLE solution can be interpreted as evidence of the system bistable behavior. On the
other hand, the region of stable solitons is smaller than the bistability range even in ideal
system due to the presence of various chaotic regions, which will be further discussed in
the Chapters 4 and 5.

The intracavity waveform in the DKS state does not necessary consist of just a single
soliton pulse. It can contain multiple pulses comprising a multiple-soliton state shown
in Fig. 1.15(c). An important consequence of the dissipative nature of DKS pulses is
the uniqueness of the soliton parameters which can satisfy the double balance of the
system with given parameters. This leads to the similarity of all soliton pulses forming
the multiple-soliton state. The intracavity solution for the multiple soliton state can
be described as a sum of independent soliton solutions located at different positions
φj ∈ [−π, π], j = 1, 2, 3, ... within the cavity, which can be approximated as [9]:

Ams(φ, t) =
√

2∆
g
eiφ0

∑
j

sech
(
φ− φj
φs

)
. (1.63)

Due to the mutual coherence of the soliton pulses constructing the multiple-soliton
state, the resulting spectrum can have a complex but regular structure arising from the
intereference of their frequency components (see Fig. 1.15(c)). Since adjacent solitons
can interact with each other when their tails start to overlap, the maximum number of
soliton pulses, which can stably coexist in the cavity, is limited by [9]:

Nmax ≈
√

κ

D2
. (1.64)

1.4.2 Excitation of DKS

The derivations for the DKS presented above were implemented for the stationary case,
when the solution is independent of slow time t in variables (φ, t). We implicitly assumed
that the soliton pulse initially exists in the cavity, without specifying how it was seeded.
Since the formation of the DKS is related to the subcritical bifurcation [48], the pulse in
the soliton existence range (the range of detunings, where the formation of stable DKS is
possible at a given pump power) can not develop from noise fluctuations. Instead, such
fluctuations would quickly relax to the CW solution. The system requires a seed pulse
with energy high enough to be able to self-stabilize into a soliton pulse. Thus, in order to
access the soliton state using a CW pump one needs to develop a tuning procedure which
would first enable the generation of intracavity pulses in order to further use them as
seeds for the soliton formation. Such a tuning procedure was one of the key advances of
the work [9], which particularly enabled consistent and reproducible excitation of DKS.

We recall that the system can spontaneously generate intracavity Turing rolls in the
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regime of stable MI (SMI), which we discussed earlier in section 1.3.2. Turing rolls can
further develop into a chaotic intracavity waveform (CMI) when approaching from the
blue-detuned side to the cavity resonance due to the self- stabilization of the system
when the pump is located on the blue-detuned resonance side. The dynamics of this
behavior is shown in Fig. 1.16(a, b), where the simulations of intracavity waveform and
total intracavity power are shown as a function of detuning. The intracavity waveform is
simulated (thermal effects are not included) during the pump sweep from the blue-detuned
position to the red-detuned one. Figure 1.16(c) shows instant intracavity waveforms
at different stages of its evolution. First, the intracavity waveform is represented by a
flat (CW) solution and grows steadily, as the pump approaches the resonance reducing
the effective detuning and thus increasing the intracavity power due to the intensity
build-up. Once the FWM gain overcomes the cavity losses, the CW solution breaks into
MI, and produces primary sidebands forming the primary comb. In the time domain this
regime corresponds to the formation of stable intracavity pulses - Turing rolls, which
were mentioned earlier. Proceeding further, the system enters CMI, and the intracavity
waveform becomes chaotic. As we can see from figure 1.16(b), the intracavity waveform
in this state represents a set of transient pulses, which actively move inside the cavity
and interact with each other leading to the random collisions and stochastic continuous
generation (and decay) of other unstable intracavity pulses of different amplitude and
duration. This process is associated with strong intensity noise inside the cavity, which
can also be detected in the outcoupled light. When the pump overcomes the resonance,
the system enters the bistability regime, where the solitons can be stabilized. Their
formation is associated with a characteristic "step" (or steps) in the total intracavity power
(see Fig. 1.16(a)) At the time instant when the pump crosses the effective zero-detuning
region, the cavity contains a stochastically obtained set of intracavity pulses, which
depending on their power and mutual positions (whether they are too close to interact
or not) can become soliton seeds. The system, however, does not land in the regime of
stationary solitons immediately, it first passes through instability regions - chaotic ones
followed by the region of soliton breathing (will be further reviewed in Chapters 4 and
5). Those transient pulses that survive all instabilities form stationary DKS pulses (in
the rotating frame) of a resulting multiple-soliton state. The soliton formation is often
associated with a significant drop in the intracavity power, which is caused by two main
reasons. First, among multiple transient cavity pulses only a few of them are able to
form a DKS - the majority of the others do not have enough energy to become a seed
and simply decays. Second, and more important, due to the presence of chaotic regions,
whose impact can be simplified to a stochastic reduction of the intracavity number of
pulses, the number of soliton seeds is additionally reduced. We note that the number
of pulses generated in the cavity depends on multiple parameters, and is often even
different for exactly the same parameters due to the chaotic nature of the process, which
generates soliton seeds, and removes them in the chaotic regions. Furthermore, depending
on system parameters (e.g. such as the dispersion profile), it can spontaneously switch
between soliton states (to the lower number of solitons), or rest in the stabilized soliton
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Figure 1.16 – Simulations of the DKS excitation process using a CW pump linearly
scanned over the cavity resonance from the blue-detuned side to the red-detuned. (a)
Evolution of the total intracavity power. Different regimes of intracavity waveform
dynamics are color-coded. (b) Intracavity waveform evolution. (c) Intracvity waveform
snaphots at various stages of the DKS excitation process.

state while detuning is below the ζmax [98]. Once the system leaves the bistability region
- the intracavity waveform decays back to the CW solution.

Stability chart. As was noted earlier in subsection 1.3.4, the simplest form of the
LLE, where the dispersion is limited to the second order, can be reduced to the partial
derivative equation of only two dimensionless parameters - normalized detuning ζ0 and
normalized pump amplitude f [42, 9]. It is thus possible to map different stable solutions,
which the system can converge to, as a function of these two parameters [42, 48]. Figure
1.17 shows such a stability chart (attractor chart) adapted from [48]. Depending on the
form of the stable solution, which can be obtained at different values of f and ζ0, the
stability chart can be subdivided into several regions. The first is the region of CW
(homogeneous) intracavity solutions, where the cavity contains only photons of the pump
frequency. It is limited by the parabolic boundary, which can be derived from eq. (1.35)
for the boundary condition ρ = |Ψ(φ, t)|2 = 1. The region is colored white in Fig. 1.17
and exists at large detunings from the cavity, or at small input powers, where the total
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Figure 1.17 – Stability chart of the dimensionless LLE with dispersion limited to the
second order. Different stability regimes are color-coded: SMI (light blue), CMI (dark
blue), bistability (red - chaotic regimes and breathers, green - stationary soliton states).
Violet dashed line schematically indicates the conventional procedure of tuning in the
DKS state. The stability chart was adapted from [99, 48]

intracavity power does not reach the threshold enabling FWM processes. Above this
curve the system reveals regions of stable (light blue) and chaotic (dark blue) MI, which
are schematically distinguished on our figure from each other. SMI exist with larger
detunings and smaller pump powers, in comparison to the CMI, which corresponds to
larger values of the intracavity power. Next, and one of the most interesting regions here -
is the bistability region, limited with f+ and f− curves (see (1.38)), where solitons can be
generated. The bistability region, as expected, overlays with the region of CW solutions,
meaning that with a proper excitation pathway, the system can have a stable CW solution
within these boundaries. It should be also noted that with using the conventional term
"bistability", we should be aware that the ability to generate several solitons in the cavity
means taht the bistability region is in fact multifold. It covers a large set of intracavity
solutions with a different number of solitons (and thus intracavity powers) and their
mutual separations. Since here we consider a simple system without thermal effects, all of
these solutions are degenerate in terms of the area they cover in the given map. However,
as will be shown in detail in Chapter 3, this condition is only held in real systems that
are close to ideal, and for the stability chart plotted in terms of the effective detuning.
The internal structure of the bistability region is complex. It includes different chaotic
regimes, soliton breathers with various breathing periods and stationary solitons. We
review these regions in more detail in the following Chapters.

After describing the stability chart, we can now link it to the soliton excitation process,
described earlier in this section and shown in Fig. 1.16. Since the soliton excitation is

45



Chapter 1. Microresonator-based frequency combs

implemented with a fixed pump power, it can be represented in the the stability chart as
a straight horizontal line (dashed violet line in Fig. 1.17), which we can use to link all the
regions appearing to the DKS excitation procedure. The tuning starts at large negative
detunings, when no power is coupled to the system. Then it consequently passes SMI,
CMI and enters the bistability region, where the system lands in the stable stationary
multiple soliton state shown in Fig. 1.16(c).

Finally, we note that similar attractor charts have been plotted by other groups [97]. We
particularly would like to note the work of Leo et al. [42], where the bistability region
was carefully simulated to demonstrate its complex structure with multiple different
subregions apart from stationary soliton states.

DKS generation in experiment

We next describe an excitation of the soliton state in a real device. We start with the
generic experimental setup, which is schematically shown in Fig. 1.18(a).

Figure 1.18 – (a) Basic experimental setup used for the generation of DKS states in
integrated microresonators. AFG - arbitrary function generator, EDFA - Erbium-doped
fiber amplifier, BPF - bandpass filter for the ASE noise of the EDFA, OSA - optical
spectrum analyzer, OSC - oscilloscope, PM - powermeter, PD - photodiode. (b) Optical
spectra of single soliton states generated in various integrated Si3N4 microresonators
with FSR ranging from ∼ 20 GHz to ∼ 200 GHz. The spectra are taken with different
OSA settings and with or without BPF. (c) Experimental traces of the soliton generation
process in 100-GHz Si3N4 microresonator. Red trace shows the tuning voltage of the
pump laser, blue trace shows generated light. Brown dashed light schematically shows
typical trace of the generated light if the pump tuning would not be stopped.

One of the first components needed to excite DKS states is a seed laser (CW pump).
We typically use a linearly-polarized external-cavity diode or fiber laser with convenient
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piezoelectric-based wide tuning range (> 5 GHz) and low linewidth < 100 KHz2. The
laser is tuned with an arbitrary function generator (AFG), which is connected to the
laser piezo controller and enables relatively fast scanning of the laser frequency over the
cavity resonance. The laser light is amplified using an Erbium-doped fiber amplifier
(EDFA) to bring it to the power levels able to overcome the FWM threshold in the
cavity and cover the in-coupling losses in the on-chip bus waveguide. Due to the recent
advances in the Q-factors and chip input-output coupling techniques, the EDFA now can
be eliminated even for the integrated devices [102, 103]. After polarization adjustment
using a fiber polarization controller (FPC) to match one of the microresonator transverse
mode families, amplified laser light is coupled to the chip. For the chip coupling we
usually used ferrule-embodied conical shaped lensed fiber (working distance 12 - 20 µm,
spot diameter 2.5 − 5 µm). Ferrules help to rigidly fix the fibers on the mounts and
prevent their mechanical movements, which are detrimental for a DKS generation at
higher powers. The output light from the chip is collected using a similar lensed fiber.
Two powermeters (PM) with 99-1 fiber splitters are used to control the chip transmission
during the operation of the setup. Due to a high optical power ∼ 1W, which is partially
dissipated in the chip and induces its heating, the thermal expansion of the chip material
(and even the material of the chip holder) can shift the optimal positions of the lensed
fibers towards higher ones. Constantly monitoring power transmission can help to adjust
the lensed fiber position to adapt them to the new thermal states of the setup at high
pump powers. The light after the chip is split between several measurement instruments,
including an optical spectrum analyzer (OSA) and oscilloscope (OSC) to monitor the
transmitted light and generated light (which is obtained by suppressing the strong CW
component using a fiber Bragg grating (FBG)), and the optical spectrum of the DKS
state.

To generate the soliton state, we use a V-shape ramp programmed on the AFG (shown
in red in Fig. 1.18(c)), which allows one to implement the required tuning from the
blue-detuned resonance side to the red-detuned one. It is usually more convenient to use
generated light of the system for the detection of the soliton steps and soliton excitation.
The initial position of the pump, which is located on the red-detuned side, is chosen to
appear on the soliton step when the tuning is stopped, as shown in Fig. 1.18(c). If the
tuning speed and final position of the scan are properly adjusted, a DKS state can be
obtained. Example spectra of single-soliton states generated in devices with different FSR
(∼ 20− 200 GHz) are shown in Fig. 1.18(b). While seeming to be quite straightforward,
in general, the generation of the soliton states is a very non-trivial process. This in
particular can be noted from the almost 5-year gap between the discovery of the Kerr
combs [7] and the first generation of soliton states [9]. The excitation of DKS states often
relies on the observation of soliton steps and the attempt to stabilize the pump frequency

2The seed laser performance, however, is not required to be even on the order of what we use.
Recently the DKS formation has been shown with frequency-fixed lasers [100], or even broad, multimode
Fabry-Perot laser diodes [101], which can still successfully generate soliton states.
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on them. The appearance of the soliton steps, however, largely depends on the tuning
speed and parameters of the system including Q-factors, dispersion profile, thermal effects
and others. We especially note a role of thermal effects in the DKS generation process.
After landing in the soliton regime, due to their delayed nature (since the thermal time
scales are the largest among the cavity decay rate and roundtrip times) the thermal
effects are able to induce additional shift on the cavity resonance and change the effective
soliton detuning moving the system out of the soliton existence range. This can be noted
directly from the experimental trace of the generated light (blue) shown in Fig. 1.18(c).
When the pump tuning is stopped (dashed vertical grey line) the system thermal state
is not at equilibrium yet and the system keeps relaxing to it over several hundreds of
milliseconds (in the figure the system is heating up). One of the main breakthroughs
of the work by Herr et al. [9], was to suggest high-speed tuning procedures (shown in
the figure and further referred to as "forward tuning"), which allowed access to a soliton
state such that the thermal state of the cavity achieved during the tuning procedure
would appropriately match the thermal state of the cavity with several solitons inside.
In such a case the cavity would not suffer from the large temperature variations after
the pump tuning is stopped in the soliton existence range maintaining the DKS state.
Another issue, which is often observed in Si3N4 microresonators is that large thermal
effects cause significant resonance tilting before the pump reaches the bistability region.
Such resonance tilting hides the soliton steps with lower intracavity power and prohibits
access to those DKS states. This can also happen for the high-number and low-number
soliton states such that only the soliton step with the highest soliton number is accessible
and the rest are hidden (more details are shown in Chapter 3). We note that such
behavior is not unique for silicon nitride, and can be also observed in other platforms.

In every case additional techniques are required to consistently generate DKS states.
Over the past years several approaches have been suggested for the soliton formation,
which can overcome the limitations of the standard forward tuning process, which uses
the laser piezo controller to sweep the wavelength and is limited by its speed (usually
∼ 100 Hz and range of ∼ 60 GHz for current laser systems). We first note that all of the
new procedures still include the tuning over the cavity resonance from the blue-detuned
to the red-detuned sides. This is associated with the system stability, and the requirement
to seed the soliton pulses in the cavity. Ideal candidates for such seeding are SMI and
CMI, which appear at the blue-detuned side of the resonance. Different tuning techniques
are mostly focused on overcoming the thermal effects associated with the change in
the intracavity power resulting from the transition between different regimes of Kerr
combs, as well as provide robust and repeatable access to the soliton states with the
required number of solitons and, in particular, a single soliton state. They typically
involve high-speed tuning of the pump frequency or combine tuning of the pump power
and pump frequency. These approaches are used to bring the system enriched with
soliton seeds to the operating region, where DKS can be maintained, while guaranteeing
that the thermal relaxation of the cavity (happens at longer timescale) after establishing
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of the stable optical intracavity waveform (happens on the shorter timescale) would have
minimal impact on the DKS state.

The first alternative to the standard forward tuning was developed by Victor Brasch
[104, 84], and included a complex tuning profile of the pump power, together with a
linear change in the pump frequency using a "fast" electro-optical modulator (EOM)
and a "slow" acousto-optic modulator (AOM). Due to the strong pump power boost
initiated closer to the end of the tuning profile it is called "power-kick" method. It
was developed to reliably tune into soliton states in Si3N4 microresonators, when the
soliton steps are extremely short and can hardly be landed directly due to the system
fluctuations. An exact scheme and procedure are carefully presented in [104]. Despite
being highly efficient, this approach requires the adjustment of several parameters of the
tuning profile, which may be necessary for each new device. Nevertheless it was adopted
and used for other systems, including SiO2 microdisks [91].

Another significant improvement in the approach to tune into the soliton states was
usage of the single-sideband modulator (SSB) [105, 106]. It allowed the tuning speed
of the laser to be decoupled from its internal piezoelectric transducer, and instead uses
the voltage-controlled oscillator (VCO) for this purpose. We also establish the SSB
technique in our group. It relies on the dual Mach-Zehnder interferometer (MZI) system
with an additional bias control of both arms. Both internal MZIs are driven with an RF
signal produced by the VCO shifted by 90◦, and can adjust the power of the pump and
generated modulation sidebands. The biases can be adjusted in a way to suppress all
the lines besides a single sideband. The tuning can be implemented by changing the
VCO frequency, and can reach 5000 THz/s. Such high-speed tuning essentially ignores
the thermal effects, because the thermal effects do not have enough time to develop
during the tuning process. Thus the soliton excitation essentially becomes athermal and
provides access to multiple soliton steps.

One of the recently developed interesting approaches for the initiation of the DKS state is
the replacing of the CW pump with a pulsed source - pulsed pumping. The original work
has relied on an electro-optical (EO) comb consisting of phase and intensity modulators
to form optical pulses, and standard single-mode fiber (SMF) to compress them. One of
the largest benefits of such an approach is a significantly reduced threshold for soliton
generation, because the power inside the cavity is not distributed uniformly, but instead
provides a spatially-localized intracavity seed pulse directly supplying the soliton with
energy. While being very reliable, the procedure however requires careful adjustment of
the driving EO comb repetition rate to match the repetition rate of the soliton comb to
be created. Also, it is limited by the performance and bandwidth of the EO modulators
and RF amplifiers used to create optical pulses from the initial CW light.

Finally, we note other works, where tuning into the soliton state was also implemented
using thermal tuning of the cavity [107, 100]. This approach allows the usage of lasers
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with much better stability, whose tuning is often limited. However, it can also suffer
from a reduced tuning speed as it relies on thermal effects.

1.5 DKS applications

The generation of the DKS states in optical microresonators has paved the way for the
employment of Kerr combs in a large variety of applications including spectroscopy,
optical ranging, optical clocks, telecommunications and others. Apart from chip-scale
footprint and the possibility of mass fabrication on silicon wafers, soliton microcomb
sources offer a series of advantages such as broad spectral coverage, low linewidth and
mutual coherence of the generated comb lines, as well as straightforward access to large
comb spacings from GHz to THz levels. In the time domain the DKS states act as
sources of ultrashort optical pulses with femtosecond duration and high repetition rates
corresponding to the comb line spacing or microresonator FSRs at the wavelength of
interest. Furthermore, DKS states can serve as a convenient testbench to study the
general aspects of temporal soliton dynamics and nonlinear systems in general. Figure
1.19 combines a majority of the applications demonstrated with DKS-based combs, which
are described below in more detail.

Figure 1.19 – Application areas of microresonator-based DKS combs. The scheme was
initially prepared by the author for [108], and adapted for the present work using images
from [109, 110, 90, 111, 112].
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Telecom applications

Optical communications is one of the key application areas of Kerr combs, which have
drawn a lot of attention even before DKS formation was discovered [113, 68]. Due to
the strict spacing of comb lines matching the standard frequency grids of coarse (20 nm,
CWDM) and dense wavelength division multiplexing (25/50/100 GHz, DWDM), chip
integration, high OSNR and the ability to operate in low-noise states with additional
locking, Kerr combs have became an attractive solution for WDM optical coherent
communications [113]. Once stable access to the DKS states has been established, it has
enabled an on-demand generation of broadband combs with hundreds of optical channels
covering several communication bands [9, 84, 114] for massively parallel optical coherent
communication [115]. Furthermore, due to the large existence range of the DKS states
and noise-free coherence transfer between the pump and comb lines, they can serve as
unique sources of multiple low-linewidth optical communication channels able to work
with high-order data modulation formats utilizing a single low-noise CW laser and having
no need for additional locking. Present work will review one of the first experiments with
DKS combs in integrated Si3N4 microresonators that demonstrated the record-high data
rates (see Chapter 7). Other telecom applications of the DKS states include wavelength
multicasting [116], using DKS for optical communications with high-modulation formats
reaching 256-QAM and superchannel engineering [117, 118, 119, 120].

Spectroscopy applications

As a broadband optical source, optical combs can be used to detect molecular absorption
features of materials. The spectroscopic information is encoded in the variation of the
comb spectrum during the propagation through the studied material and can be measured
using an optical spectrum analyzer or spectrometer. DKS states are able to provide very
high frequency resolution of the measured spectra due to the low linewidth of the soliton
comb lines, but the spectral sampling is rather sparse due to large repetition rates defined
by the microresonator sizes. This issue is usually addressed with soliton spectral tuning
using temperature [111, 121, 122]. Two important advantages of DKS-based combs for
spectroscopy applications are the possibility to employ dual-comb techniques for the fast
data acquisition without the need for spectrometers (see below under separate point),
and the possibility to engineer the spectral coverage of the combs from visible to Mid-IR
[85, 86, 87, 88]. We also note that so far all demonstrations of DKS-based spectroscopy
applications were limited to linear absorption spectroscopy, which is result of small soliton
pulse energies [123].

Microwave-to-optical link

Similarly to conventional optical frequency combs based on mode-locked lasers, soliton
Kerr combs are able to establish a phase-coherent link between optical and RF frequencies.
Due to their chip-scale footprints, monolithic nature and reduced power consumption,
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they can provide a compact and power-efficient solution for numerous applications, for
which such a phase-coherent link is critical, including optical clocks [124, 125], optical
frequency synthesis [126] and the generation of low-noise microwave signals [103, 127, 90].
Soliton Kerr combs have been already employed for establishing such a microwave-to-
optical link (counting of the light cycles), using an externally broadened soliton comb
[128, 129] or 2f − 3f [130] of f − 2f [129] self-referenced microcomb sources.

Microwave (RF) photonics

Microwave photonics applications relies on the producing or processing of microwave
signals (<100 GHz) using Kerr frequency combs. Besides their size, power advantages and
silicon-chip integration, Kerr combs also provide direct access to microwave frequencies
through their repetition rates [131]. One of the most interesting microwave applications
enabled by soliton combs is the generation of ultra-low-noise RF signals. Due to optical
phase noise division for the RF beatnotes of the comb sources, microresonator-based
systems working in the soliton regime are able to efficiently transfer the optical stability of
the ultralow-noise lasers to the microwave domain, or directly synthesize RF oscillations
with a high spectral purity. [127, 90, 103]. Other applications of DKS combs for microwave
photonics also include true time delay lines for the RF signals [132], photonic-based RF
filters [133, 134], and RF differentiators [135].

Optical coherence tomography

DKS states generated in microresonators can serve as sources for spectral-domain optical
coherence tomography (OCT) replacing conventional sources such as superluminescence
diodes [110, 136].

Astronomical applications

DKS-based combs can be used for the calibration of astronomical spectrometers in order
to facilitate the detection of tiny Doppler shifts caused by the wobbling of distant stars
caused by the orbiting of their planets. The measurements of such fine spectral changes
has a broad application in searching for exoplanets [137, 109].

Dual-comb applications: spectroscopy, optical ranging, imaging

A large number of frequency comb applications rely not only on a single comb, but on the
operation of two combs with slightly different repetition rates – dual comb. In this case
the spectroscopic, distance or other information encoded on the lines of one comb can
be coherently resolved using the second comb by beating them with each other. Due to
the repetition rate difference, the information encoded on optical carriers is transferred
to the individual RF tones in the baseband and can be directly detected with a single
photodiode enabling fast data acquisition. The dual-comb schemes for spectroscopy,
distance ranging and other applications were actively developed and tested with fiber
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frequency combs [138, 139, 140], but their acquisition speed was limited by small free
spectral ranges< 1 GHz. Besides advantages in size, power and wafer-scale manufacturing,
which DKS states in microresonators can offer, access to the large comb spacings they
provide can significantly boost the data acquisition speed in dual-comb based applications.
The performance of the DKS states has been demonstrated for dual-comb spectroscopy
[141, 100, 142, 143, 144], dual-comb distance measurements (LiDAR - Light detection and
ranging) using time-of-flight and massively-parallel synthetic wavelength interferometry
[145, 146], dual-comb imaging [112].
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2 Raman induced soliton self-
frequency shift of dissipative Kerr
solitons
This chapter reports on the experimental observation and theoretical description of
the Raman-induced self-frequency shift, observed in dissipative Kerr solitons generated
in Si3N4 microresonators. The results are adapted from M. Karpov et al., "Raman
self-frequency shift of dissipative Kerr solitons in an optical microresonator", Physical
review letters, 116(10), p.103902, (2016).

2.1 Introduction

Stimulated Raman scattering (SRS) is a nonlinear optical process, which can be observed
in nonlinear media. It is responsible for the energy transfer between the pump wavelength
and lower (Stokes) or higher (anti-Stokes) frequencies via the photon interaction with
the optical phonons (quanta of lattice vibrations).

The effect of SRS on the optical pulses was broadely investigated in optical fibers, where
it is responsible for various energy transfer processes, leading to the SRS-mediated
interaction of the pulses centered at the same or different wavelengths [147, 148, 149, 150].
In addition, for sufficiently short pulses (with the duration < 1 ps), whose spectral width
becomes comparable with the Raman gain profile, the energy transfer can occur within
the same pulse. These energy transfer processes were particularly well-studied for optical
solitons in silica fibers, where they can stably propagate over long distances and lead
to a number of experimentally observed and theoretically described phenomena such as
generation of Raman pulses and Raman solitons [151], Raman-induced pulse compression
in dispersive media [152] as well as soliton self-frequency shift [153, 154, 155, 156, 157].
The last phenomenon - soliton self-frequency shift - is a particularly interesting one, it
appears as a continuous shift of the pulse spectrum towards longer wavelengths upon
propagation, and originates from the effect of intrapulse Raman scattering (IRS).

In microresonators, the formation of the DKS state also corresponds to the continuous
propagation of the soliton pulses, which in contrast to optical fibers are continuously
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circulating inside the cavity. These pulses are able to carry intense peak power and have
ultrashort duration below 100 fs, which together with the high material nonlinearity and
waveguide-induced mode confinement is expected to lead to an even stronger impact of
nonlinear effects for pulse propagation than for silica fibers. However, early experiments
with DKS in crystalline materials did not show any evidence of the Raman-induced
spectrum changes and presence of IRS [9, 45].

Several simulations studied the impact of Raman effects on DKS states for amorphous
silica- and Si3N4-based microresonators [158, 159, 160]. It was found that in the presence
of Raman effects the system is also able to support stable DKS states, however its optical
spectrum acquires significant spectral shift towards longer wavelengths.

The first experimental observations of intrapulse Raman scattering and its impact on
the dynamics of the DKS states were made in silica-cladded amorphous-material Si3N4
microresonators and are summarized in the following sections of the present Chapter.
In contrast to crystalline materials, where the Raman gain consists of a set of narrow
well-defined peaks, corresponding to different vibrational modes of optical photons, the
Raman gain in amorphous materials is usually broadband. We show how such broadband
Raman gain provided by amorphous materials of the core [161] and the cladding [162]
of the microresonator waveguides changes the optical spectrum of the DKS state and
interplays with high-order dispersion effects.

2.2 Experimental observation of the soliton self-frequency
shift

As already mentioned in the previous section, we study the impact of stimulated Raman
scattering on the DKS states in photonic-chip integrated Si3N4 microring resonators.
The devices were fabricated with the Photonic Damascene process [28] and had a nominal
Si3N4 core height of 0.9 µm and width 1.65 µm in order to guarantee anomalous group
velocity dispersion at 1550 nm for the fundamental modes. The DKS states were excited
in the TE00 fundamental microresonator mode, whose FSR was about 100 GHz, and
resonance linewidth κ/2π (∼ 200 MHz) that corresponds to a loaded Q-factor of ∼ 106.
The measured dispersion at the pump wavelength has GVD term D2/2π = 1− 2 MHz
and negligible third-order dispersion term D3/2π = O(1) kHz, which has resulted in the
absence of dispersive wave formation and overall symmetric envelopes of the generated
DKS states.

In experiments we employ a standard setup for DKS generation in the chip-scale microres-
onators (see Fig. 2.1(a)), where the microresonator is pumped by a tunable external
cavity diode laser (operating at 1550 nm in our experiment) followed by an erbium-doped
fiber amplifier (EDFA). The wavelength of the seed laser can be tuned by an embedded
piezoelectric transducer, driven by an arbitrary function generator (AFG). Single mode
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Figure 2.1 – (a) Scheme of the experimental setup: AFG, arbitrary function generator;
ECDL, external cavity diode laser; EDFA, erbium doped fiber amplifier; FPC, fiber po-
larization controller; OSA, optical spectrum analyzer; OSC, oscilloscope; PD, photodiode;
(b) Illustration of the pump laser tuning in the DKS excitation process (forward tuning,
where approaches the cavity resonance from the blue-detuned side [9]). The gray line
shows the Kerr-nonlinearity-tilted cavity resonance profile with bistability referring to the
CW, the blue line shows the trace of intracavity peak power with an increase of the cavity
resonance–pump detuning δ (δ = (ω0 − ωp)/2π , where ω0 and ωp are the resonance and
pump angular frequencies), the red line shows the single soliton existence range. (c)
Illustration of the Raman-induced spectral red-shift of the soliton comb envelope (solid
red line) compared to the one without Raman contribution (blue dashed line).

lensed fibers are used both at the input and output coupling, which provide an overall
coupling efficiency of ∼ 30 %. The input light polarization is adjusted by a fiber polar-
ization controller (FPC) so we can chose to pump either the fundamental TM00 mode or
the TE00 mode of the resonator waveguide. The output light is connected both to an
optical spectrum analyzer (OSA) for spectrum measurement and a photodetector (PD)
to monitor the power transmission.

We generated single-soliton DKS states using forward tuning technique [9] with additional
switching procedure implemented via the backward tuning, which will be in details
reviewed in the following Chapter 3. The experiment was carried out at several pump
powers from 1 to 3W, at which the stable access to DKS states was achieved. In contrast
to early experiments in crystalline microresonators we observed that the typical sech2-
shaped envelopes of the obtained DKS states acquire significant spectral shift towards
longer wavelengths with respect to the pump frequency. The observation is schematically
sketched in Fig. 2.1(c), where the two cases of the DKS state are shown: DKS state
without spectral shift as was observed in crystalline MgF2 devices (blue), and with
spectral shift as in Si3N4. We also note, that no evidence of the Raman-mediated pump
conversion was observed.

Once the single soliton state is stabilized, we can explore its laser detuning dependence by
tuning the pump either to longer or shorter wavelengths. The DKS state persists during
such variations within a limited range of the pump-cavity detunings – soliton existence
range, which here corresponds to ∼ 2 GHz (10× κ/2π). By choosing the blue end (low
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Figure 2.2 – (a) Spectra of single-soliton state obtained in a 100-GHz Si3N4 microresonator
at different detunings: red comb has δ = δi + 1.0 GHz, the green one corresponds to
δ = δi + 0.5 GHz, and the blue one corresponds δ = δi. Vertical dashed lines indicate
central frequency of the fitted comb envelopes. (b) Experimental measurements and
simulation (the envelope) of a noisy Kerr comb generated in the same device as in (a),
with the detuning value outside of the soliton existence range.

detuning) of the single soliton existence range as the initial detuning (δi), we explored the
tuning behavior of the pump wavelength over entire soliton existence range. As shown
in Fig. 2.2(a) the slowly evolving comb spectrum shows two apparent trends when the
detuning is increased: (1) the spectral red-shift of the soliton is increased, and (2) the
spectrum is broadened, which implies soliton compression to shorter pulse duration and
higher peak power [9]. Both processes are reversible as the detuning decreased and show
no visible hysteresis. For comparison, we also recorded the spectrum of the noisy Kerr
comb, obtained outside of the soliton existence range, when the pump is blue-detuned
and the system is in chaotic MI state. In contrast to the soliton state, the system does
not show any shift of the spectrum, and the envelope is symmetric with respect to the
pump (Fig. 2.2(b)).

In order to quantify the changes of the DKS states, the measured spectra were fit with
hyperbolic secant envelope. The difference between pump and maximum of the fitting
envelope corresponds to the frequency shift of the soliton spectrum with respect to
the pump. The amount of such soliton spectral shift as a function of the detuning is
shown in Fig. 2.3(a) for different pump powers. First, it can be observed that the single
soliton step length is enlarged with an increase in pump power, which is in accordance
with the theoretical prediction [9]. Second, the spectral shift (ranging within 0.5 –
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1.75THz) is significant compared to the resonator FSR (100 GHz), and exibits linear
dependence on the laser detuning. Meanwhile, the soliton pulse duration is also tuned
by the laser detuning, see Fig. 2.3(b). With an increase of the detuning δ the soliton is
compressed from 75 to 47 fs (sub-10 cycle). We note that at every detuning within the
soliton existence range the system is stable. Both the spectral red-shift and the pulse
compression of the DKS pulses are reversible and controllable.

The observed dynamics are in agreement with theoretical predictions by Milián et al. [158],
who studied the impact of Raman effects on the DKS states in optical microresonators,
and their interplay with high-order dispersion effects. It was shown that Raman effects,
and in particular IRS can result in the formation of a new type of stable DKS states -
frequency-locked Raman solitons, which in contrast to regular DKS acquire significant
time-independent spectral shift of their envelope towards longer wavelengths.

The DKS states in our devices also reveal similar red spectral shift of their envelopes,
which can be attributed to the presence of Raman effects associated with the cumulative
nonlinarity of the silica cladding and silicon-nitride core of our waveguides. We can also
exclude the impacts other high-order nonlinear effects, such as the third order dispersion
and self-steepening, which are able to induce spectral shifts on the soliton comb envelope
[163, 159]. The first effect can be excluded because of negligible third-order dispersion
term D3 that is also confirmed by absence of dispersive wave in the measured range of
OSA (800 – 1700 nm). In turn, the self-steepening naturally produces blue-sided spectral
shift and can only counterbalance red-sided shift from intrapulse Raman scattering [159].

We furthermore note, that the observed Raman-induced soliton spectral shift was only
observed in the soliton state, when a stable, self-sustained pulse is formed inside the
cavity. In contrast to the soliton state, the spectrum of the noisy Kerr comb state, when
the system operates in the regime of the modulation instability (MI) and has chaotic
intracavity waveform, was symmetric with respect to the pump. This indicates that the
observed effect is only associated with the pulse formation and thus can be attributed to
the intrapulse Raman scattering, which is a well-known reason for the Raman-induced
soliton self-frequency shift for solitons in optical fibers.

2.2.1 Compensation of the Raman self-frequency shift by the disper-
sive wave recoil

We also investigate how the Raman effect influences the DKS state with the presence of
higher-order dispersion effects. For this we use two other Si3N4 microresonators with
different structural geometries that allow shorter soliton pulses and enable coherent
dispersive wave (DW) generation as demonstrated by Brasch et al. [84]. In these samples,
the Si3N4 core has a nominal thickness of 0.8 µm and the width is designed as large as
1.7 − 2.0 µm (here we utilize width 1.8 µm (Fig. 2.4(a)) and 2 µm (Fig. 2.4(b))). The
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Figure 2.3 – (a) Measured variation of the comb spectral red-shift as a function of the
detuning (x-axis: δ − δi), at three pump powers: 1.9 W (green), 2.3 W (red) and 2.7
W (blue). Grey line indicates the same trend of the spectral shift, obtained from the
simulations with 2.0 W of input power (see section 2.4). Note that the trend from the
simulations is discrete (gray line) as we mark the specific comb line of highest power
(despite the strong pump line). (b) variation of the spectral 3-dB bandwidth and the
(Fourier-limited) pulse duration of single temporal dissipative Kerr soliton with the pump
power of 2.7 W.

DKS states were excited in the fundamental TM00 mode, which has FSR of about 190
GHz, and comparably high third order dispersion term: D3/2π = O(10) kHz, leading
to an estimated zero-dispersion wavelength at ∼ 1700 nm. Single-soliton states were
obtained using power-kicking method [104] and a DW is identified at around 155THz
(1920 nm) in both devices, providing significant increase of the resulting comb span to
∼ 75 THz and its extension into normal-dispersion region. The comparison of the two
spectra in Fig. 2.4 shows the influence of the third-order dispersion on the position of the
DW frequency. The soliton comb in the first sample (width 1.8 µm, Fig. 2.4(a)) has a
3-dB bandwidth of 10.8THz, while in the second sample (width 2.0 µm, Fig. 2.4(b)) the
soliton comb 3-dB bandwidth is 8 THz.

It is generally known that the emission of a DW leads to the soliton spectral recoil
[164, 163], such that the comb profile around the CW pump frequency will be shifted
away from the DW, as illustrated schematically in the insets of Fig. 2.4(a, b). However, in
above-mentioned Si3N4 microresonators the blue-recoil (resulting from the DW being on
the red side) was not clearly observed [84], see Fig. 2.4(a), and even a red-shift (Fig. 2.4(b))
of the comb profile is identified. This can be explained by the mutual compensation of two
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Figure 2.4 – Experimental generation and simulation of single soliton combs with disper-
sive wave in two different Si3N4 microresonator geometries (both having a Si3N4 thickness
of 0.8 µm and FSR of ∼ 190 GHz). (a) The sample with the Si3N4 core width of 1.8 µm
(sample taken from [12]), and measured dispersion terms D2/2π = 2.2 MHz, D3/2π = 18
kHz, D4/2π = −350 Hz. The pumped resonance is at 1560 nm employing 1 W of power.
(b) The sample with Si3N4 core width of 2.0 µm, and measured dispersion terms of
D2/2π = 3.2 MHz, D3/2π = 26 kHz, and D4/2π = −340 Hz. The pumped resonance is
at 1554 nm, the power is 1 W. Dispersion and effective mode area are calculated by finite
element modelling using COMSOL, while D2/2π is also measured [43], showing close
agreement to simulations. Blue dashed (red solid) lines indicate comb envelopes without
(with) the Raman contribution.

different spectral shifts: the Raman induced soliton self-frequency shift and DW-induced
soliton spectral recoil towards higher wavelengths. A similar effect has been observed in
the case of soliton propagation in optical fibers [165].

2.3 Theory of the DKS self-frequency shift

In order to theoretically describe the impact of Raman effects on the DKS states, we
use standard LLE equation in the (t, φ) domain (see eq. (1.55)), and add the delayed
nonlinear response function R(t, φ) in the general form by the analogy with optical
solitons in fibers [40]:

∂A(φ, t)
∂t

=
√
κexPin
~ω0

−
(
κ

2 + i2πδ
)
A− iD2

2
∂2A

∂φ2 + igA
(
R(t, φ)⊗ | A(t, φ) |2

)
, (2.1)
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where, we consider R(t, φ) to have two contributions, which account for instantaneous
electronic response of the material, and delayed Raman response from the optical phonons:

R(t, φ) = (1− fR)δ(t, φ) + fRhR(t, φ), (2.2)

here fR denotes the fractional contribution of the vibrational Raman part in the response,
hR(t, φ) - is an actual Raman response function, rescaled in the (t, φ) domain, and R(t, φ)
satisfies normalization condition

∫
R(t, φ)dφ = 1. Following the slowly-varying envelope

approximation introduced for the LLE, and using linear approximation for the Raman
gain, we can simplify the nonlinear part of eq. (2.1):

∂A(φ, t)
∂t

=
√
κexPin
~ω0

−
(
κ

2 + i2πδ
)
A− iD2

2
∂2A

∂φ2 + ig

(
|A|2A− fRφRA

∂|A|2

∂φ

)
, (2.3)

where we denoted φR =
π∫
−π

hR(t, φ′)φ′dφ′.

2.3.1 Moment analysis for solitons in microresonators

In order to quantitatively estimate the Raman-induced soliton self frequency shift, we
employed the moment analysis method that has been widely used for tracing soliton
pulse dynamics in fiber optics, perturbed by the Raman shock-term [166, 155]. Since we
experimentally observed pure effects of the Raman-induced soliton self-frequency shift
and with the purpose to simplify the analysis, we ignore high order dispersion and the
self-steepening effects and keep the simplified Raman response as derived in eq. (2.3).
The idea of the moment method is to consider the pulse as a particle with the energy E
(in terms of number of photons), position φc and a frequency shift µc (in terms of mode
number). For the temporal DKS such parameters are defined as:

E =
π∫
−π

|A(φ, t)|2dφ , (2.4)

φc = 1
E

π∫
−π

φ|A(φ, t)|2dφ , (2.5)

µc = i

2E

π∫
−π

(
A(φ, t)∗∂A(φ, t)

∂φ
−A(φ, t)∂A(φ, t)∗

∂φ

)
dφ , (2.6)
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Applying derivatives with respect to the slow time (t) on these moment parameters and
using equation (2.3), we obtain the following set of differential equations:

∂E

∂t
=− κE + 2

√
κexsin

π∫
−π

Re[A(φ, t)]dφ , (2.7)

∂φc
∂t

=D2µc , (2.8)

∂µc
∂t

=− gfRφR
E

π∫
−π

(
∂|A(φ, t)|2

∂φ

)2

dφ , (2.9)

where Re[·] denotes the real part.

These dynamics are valid when there is an integrable light pattern in the cavity that
is convergent on the boundary [−π, π]. We note that the first equation (2.7) doesn’t
include the Raman term, because it deals with the number of photons |A|2 that is a
conservable quantity. As expected, the total intracavity energy which builds up over
cavity roundtrips, depends on the loss factor κ and the gain from the external laser
source sin =

√
Pin/~ω0. The second equation (2.8) indicates an additional change in the

group velocity of the intracavity light patterns, which is linked to their spectral shift
µc and cavity dispersion D2. The third equation (2.9), describes the evolution of the
frequency shift and is only determined by the Raman term.

In the stable soliton state, the intracavity waveform consists of two parts: weak CW
background and a sech2-shaped soliton component [9]:

|Ac|2 ≈
κexs

2
in

(2πδ)2 , (2.10)

|As(φ)|2 ≈4πδ
g

sech2
(√

2πδ
D2

φ

)
= N · sech2

(
φ

φ0

)
, (2.11)

where N indicates the number of photons in the soliton pulse and φ0 is the pulse duration.
Therefore the energy Es (expressed in the number of photons) of the soliton component:

Es =
π∫
−π

N · sech2
(
φ

φ0

)
dφ ≈ 2Nφ0 = 4

√
2πδD2
g

, (2.12)

and the dynamics of the soliton frequency shift is calculated with equation (2.9)

∂µc
∂t
≈ − 8

15

(4πδD2
g

)(2πδ
D2

)
gfRφR = −64π2

15
δ2fRφR
D2

. (2.13)

For the final step, we adapt the notion of soliton period z0, which for the fundamental
optical solitons in fibers corresponds to the interaction length over which the system
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Figure 2.5 – Analytically estimated soliton frequency shift in optical microresonators as
a function of pump-cavity detuning.

experience significant impact of the nonlinear effects [40]. We note that single DKS states
also corresponds to the fundamental soliton solution of the LLE system, and its soliton
period (T0) can be estimated as:

T0 = 2π
∣∣∣∣∣ φ2

0
D2

∣∣∣∣∣ = 2π
(1

2g
4πδ
g

)−1
= 1
δ
. (2.14)

Eventually, with such an effective interaction time, we may calculate the frequency shift
of the intracavity soliton:

µc = −32π
15

(2πδ
D2

)
fRφR , (2.15)

and in the scale of actual angular frequency, it reads:

ωc = −32π
15

(2πδ
D2

)
fR

(2πτR
tR

)
D1 . (2.16)

We can see that in the first approximation the soliton self-frequency shift is linearly
proportional to the laser frequency detuning δ. The negative sign implies the carrier
frequency is red-shifted. The rate of the frequency shift is determined by the Raman
shock time (in terms of fRτR, where τR = φR/D1)), but is independent on the pump
power. For the parameters of the experimentally studied samples: D1 = 2π × 100 GHz,
D2 = 2π × 2 MHz, fR = 20%, 2πτR = 20 fs, the frequency shift is estimated in Fig. 2.5,
which matches the order of magnitude of experimental results.

2.4 Simulations of the DKS self-frequency shift

We numerically simulated the formation of the single DKS states with the presence of
the Raman effects in the LLE. As in previous simulation works and our experiments, we
observed the formation of stable DKS states with red-shifted optical spectrum. In the
simulations we assume the same Raman fraction (fR) as for optical fibers - 20%, and
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Figure 2.6 – (a, b) Comparison between experimentally obtained and simulated soliton
spectra in 100-GHz Si3N4 microresonator, shown in linear scale. The envelopes are from
numerical simulations. The comb power (y-axis) is normalized to the CW pump power.
For soliton comb simulations, we useD2/2π = 2 MHz, D3/2π = 4 kHz, κ/2π = 350 MHz,
δi = 2.1 GHz. (c) Single soliton propagation evolution from the soliton breather state to
the stable soliton state; the inset shows change of the detuning (yellow). (d) Evolution
frequency comb spectral envelope; the inset reveals the Raman red-shift.

used unknown value of the Raman shock time to fit our experiments. Fig. 2.6(a, b) show
the comparison between the experimentally obtained optical spectra and the resulting
simulated envelopes of soliton spectra. The extracted Raman shock time (τR) is 20 fs.

Furthermore, to demonstrate the evolution of the soliton pulse and its independence
on roundtrips (propagation distance), we also simulate the intracavity pulse dynamics
from the breather state to the stable soliton state, accompanied with the Raman effect.
Fig. 2.6(c) shows the evolution of both the pulse and spectral profiles. The detuning
(2πδ) is fixed at the initial stage of the simulation and there is no spectral shift being
acquired over the round-trip propagation. Then when the detuning is linearly increased
from 4κ to 9κ, the spectral red shift is also linearly increased and the soliton continuously
evolves to the stable state. Finally, if the detuning is fixed again (in the stable soliton
state), previously acquired spectral shift remains unchanged.

We also simulate the formation of the single DKS states under the combined effect of
the IRS and third order dispersion, as observed in the second part of our work (section
2.2.1), which was implemented by including both the Raman shock term and the full
dispersion landscape Dint, while keeping the same value of the Raman shock time of
20 fs and Raman fraction of 20%. As shown in Fig. 2.4, the simulations are in good
agreement and in particular, reproduce the experimentally observed cancellation and
overcompensation of the soliton spectral recoil by the Raman induced red-shift.
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We note that the Raman shock-time we extracted Si3N4 and verified in simulations of
different devices (τR = 20 fs) is actually much smaller than that in silica, the latter being
τR ≈ 89 fs [167]. A long shock-time enables the observation of soliton self-frequency
shift in silica-based fibers with short lengths (O(10) cm) and intense pump powers
(O(1) kW) [168], while in Si3N4-waveguide-based supercontinuum generation experiments,
the Raman redshift has not been observed [169, 170, 171]. Observation of the Raman
effect in Si3N4 microresonators can be attributed to two factors. First, it is the cavity
buildup (finesse F = D1/κ ≈ O(100− 1000) in the present work), which effectively
increases light-material interaction length (to O(1) m) and promotes the pulse peak
power (e.g., in Fig. 2.1 (b), the intracavity soliton peak power reaches 2 kW under a CW
pump of 2W), which can excite weak Raman effects of Si3N4. Second, the silica cladding
can also provide a contribution to the Raman response in our microresonators. However,
we should note that due to the significantly reduced overlap with the transverse mode of
the propagating soliton, the actual Raman fraction can be much smaller than estimated
in our simulations 20%.

2.5 Conclusion

We experimentally demonstrate the impact of the Raman effects and their interplay
with third-order dispersion for the DKS states in optical microresonators. In a standard
CW-driven microresonator (without Raman, e.g. a crystalline resonator), the temporal
dissipative Kerr soliton relies on the energy balance between the drive and the cavity
loss, and the phase balance between dispersive and nonlinear effects. In the presence
of material Raman effects, solitons still exist and reveal distinct behavior, compared
to the solitons in fiber optics where IRS continuously transfers the pulse energy from
the short to long wavelength side. In microresonators this leads to a new type of the
dissipative Kerr solitons - FLR solitons [158], where the energy balance is among drive,
loss, the IRS-induced intrapulse energy transfer and the possible Cherenkov radiation
[84] (energy shedding off from the soliton). The soliton pulse profile is consequently
distorted and reveals a fixed amount of spectral red-shift from the pump wavelength,
while in optical fibers, the IRS will induce a continuous red-shift on a local pulse that
grows with propagation distance.

Finally, we add few words on the comparison of the observed soliton self-frequency
shift in microresonator platforms to the well-known Raman-induced soliton redshift in
optical fibers. Despite the similarity in the physics of the effect that originates from IRS,
the microresonator platform (and associated temporal dissipative soliton class) causes
considerable differences in soliton dynamics compared to the case of soliton propagation
in a fiber.

First, the soliton state in microresonators is fundamentally different to that in optical
fibers. Intracavity solitons in microresonators are generated from a CW laser pump
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via parametric four wave mixing processes of the Kerr nonlinearity, upon tuning the
pump frequency into a bistability region of the cavity resonance [9]. Solitons generated
in this way belong to the class of temporal dissipative Kerr solitons, which are physically
eigenstates of the microresonator system and mathematically the eigensolution of LLE.
The pump frequency detuning δ is a key parameter to such solitons as it determines the
soliton formation (via a soliton existence range) and defines the pulse peak intensity as well
as the duration [9]. Moreover, such an eigenstate of solitons could also withstand impacts
from system higher-order effects (the self-steepening effect, higher-order dispersion effects
and the Raman effects), leading to a consistent pulse train forming the fully coherent
optical frequency comb. In contrast to microresonators, solitons in fibers are excited by
launching external pulses (i.e., pulsed laser sources), while higher-order effects in the
fiber would distort the soliton pulse profile. Therefore, solitons would evolve during the
propagation along the fiber, resulting from the competition of higher-order effects, rather
than showing a stable eigenstate.

Second, the role of the Raman effect in the soliton state in microresonators reflects
distinct physics. Since the soliton state represents an eigenstate that could also withstand
the presence of the Raman effect, it implies that the Raman effect directly plays a role in
the double balance of dissipative Kerr solitons. In details, the Raman shock-term would
continuously redshift the soliton spectrum representing an intrapulse energy transfer.
This effect, together with the double balance on both the soliton energy and the pulse
chirping, reveals a novel type of eigenstate of the microresonator system. In optical fibers,
however, it is commonly known that the Raman shock-term would continuously redshift
the soliton spectrum during the propagation. The Raman effect in this way is understood
as an external perturbation to the soliton state rather than an intrinsic feature.

Finally, it should be highlighted, that as in fibers, the impact of Raman effects on the
DKS dynamics in microresonators is not just limited to the soliton self-frequency shift,
which was studied in the present and other works [172, 158]. Raman effects can induce
the formation of Stokes solitons [173], and are found to impose fundamental limitations
on the soliton duration and bandwidth [174]. Furthermore, the Raman processes can also
interplay or compete with the FWM processes of the Kerr comb formation in crystalline
or polycrystalline microresonators [175, 94, 176, 177]

67





3 Universal dynamics and determin-
istic switching of DKS states in
optical microresonators

This chapter reports on the observation and theoretical description of soliton switching -
a universal phenomenon of DKS states dynamics, which enables deterministic reduction
in their number of pulses. The chapter also introduces a novel non-destructive soliton
probing scheme, enabling controllable switching and monitoring of the DKS parameters
using weak phase modulation of the pump at RF frequencies. The results and partially
adapted from H. Guo*, M. Karpov*, et al., "Universal dynamics and deterministic
switching of dissipative Kerr solitons in optical microresonators", Nature Physics, 13(1),
p.94, (2017).

The swithing process to access multiple and single soliton states as well as soliton probing
scheme are also patented: M. Karpov, V. Brasch, T.J. Kippenberg, "Single and multiple
soliton generation device and method", US Patent №: US 10,270,529 B2

3.1 Introduction

One of the key challenges associated with DKS states in optical microresonators - is the
absence of deterministic and reliable approach to their generation, which would work
for different devices and even platforms with minimum adjustments. Another challenge,
which is related to the previous one - is the access to the single-soliton state, when only
one intracavity pulse is present in the cavity. The access to a single soliton states is
important, because they provide optical combs with single-FSR spacing, have smooth
and predictable spectral envelope with low line-to-line power variation. So far all DKS
applications have been mostly focused on single soliton states due to the simplicity and
reproducibility of their envelope as well as other advantages they offer in comparison to
other states.

*These authors contributed equally to the work.
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Chapter 3. Universal dynamics and deterministic switching of DKS states
in optical microresonators

The first and most widely used technique for the DKS generation is the forward tuning
[9]. In this approach the pump laser is scanned over the cavity resonance from the
blue-detuned position to the red-detuned one, where is then stopped in the soliton
existence range (see more details in section 1.4.2 of Chapter 1). Forward tuning works
well for the resonators with moderate thermal effects (for example, MgF2 crystalline
WGM microresonators). It can provide reliable access to the single-soliton step and
stabilize the system in the corresponding DKS state. In contrast, in the majority of
on-chip devices such as Si3N4, Si or AlN integrated microresonators, where an impact
of the thermal effects is stronger, the same approach enables the access to the steps
which correspond to only high soliton numbers (N). Low-number soliton steps appears
to be hidden and inaccessible. Such issue of forward tuning can be partially solved
using fast-tuning schemes, which can help to overcome thermal effects. They include
single-sideband modulation for fast frequency sweeps or direct current tuning of the diode
lasers [178, 106], but require additional equipment and have limited tuning bandwidth
not suitable for the DKS generation in all platforms. Another approach, which was
developed by Brasch et al. [104], - power kicking - is able to provide reliable access to
single soliton states in Si3N4 [84] and silica microresonators [91], but is rather complex
and requires tedious adaptation of tuning parameters for each new device.

Furthermore, even though the states with various soliton numbers could be generated in
optical microresonators, the transitions between them take place stochastically (via e.g.
pairwise interactions of solitons), when the pump is tuned, and could not be predicted.
Due to these effects deterministic generation of the single-soliton state is often represents
an outstanding challenge. A further challenge, which is also associated with the DKS
dynamics is the state monitoring and stabilization. The soliton regime in microresonators
is fragile (though self-sustainable) and is not persistent against significant thermal drifts
and other external perturbations, which define DKS rather limited passive lifetime of
several hours in a stable laboratory environment [84, 9].

In the following sections we report the discovery of a soliton switching phenomenon that
allows the number of DKS in microresonators to be deterministically reduced one-by-one
to reliably reach the single-soliton state. Apart from this, we present a non-destructive
soliton probing scheme, which allows monitoring of the DKS parameters and enable
feedback-stabilized control of the soliton state. The results were obtained and inspected
in two microresonator platforms: Si3N4 on-chip microring resonators [22, 179, 84] and
MgF2 crystalline WGM resonators [180, 181, 182, 9]. We however mainly focus on the
results obtained in the integrated Si3N4 microresonators as the primary platform, where
the effect was first found and studied.
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3.2 Backward tuning and switching

The Si3N4 devices with 100 GHz FSR used in experiments have similar design and
parameters as described in section 2.2 of previous Chapter 2. Following the standard
pump tuning procedure we try to excite DKS states by tuning the pump frequency
over the cavity resonance from the blue-detuned side to the red-detuned. When the
pump enters effectively red-detuned regime we observe the formation of multiple soliton
states, which represent themselves with a step-like fall of power of the generated comb
light at the end of thermal triangle (see schematics in Fig. 3.1(a)). In the studied Si3N4
microresonators the fall typically consist of only one step that corresponds to multiple
soliton states with stochastically generated number of intracavity pulses. Such singleness
of the step implies that the transition to multiple soliton states with lower number of
solitons, which is often observed in the MgF2 resonators [9], can be hardly achieved using
forward tuning approach.

We next investigate the statistics of the observed soliton steps and record multiple
experimental attempts using forward tuning. Figure 3.1(b) shows 200 overlaid traces of
the generated comb light obtained in one of the devices. As can be seen from the figure,
only multiple-soliton states are stochastically accessed having N = 6 (predominantly),
7, 8 or 9 solitons. The step distribution is discrete with respect to the generated light
power and has equal spacing between adjacent steps (in terms of the power), indicating
the formation of different number of solitons N . The intensity of the plot shows the
probability to land on the corresponding soliton step. We repeat the same experiments at
different pump powers ranging from 2 to 4 W in order to track the evolution of the steps
distribution and occurrences of different multiple soliton states (see Fig. 3.1(d)). It was
observed that several common features can be indentified irrespective of the employed
pump power and the laser tuning speed: (1) the distributions mostly consist of the traces
with one step corresponding to high-N multiple-soliton state; (2) the accessible step
length decreases with decreasing N ; furthermore, Fig. 3.1(c) shows the occurrences of
different number of steps for various pump powers within the measured range of 2− 4 W,
where we observed (3) a significant reduction of the probability to generate a soliton
state as the pump power increases, because the total number of traces showing soliton
formation (dark blue, green, and yellow histogram bars) decreases as the pump power
approaches 4 W.

All of these observations imply that the single soliton state is not readily accessible with
the forward tuning technique in our Si3N4 microresonators. Such behavior can be mainly
attributed to the presence of strong thermal effects in the system. For DKS states with
higher intracavity power (higher N) the thermal effects induce stronger thermal shift
of the soliton existence range towards longer wavelengths (see section 1.2.5). When,
during the pump frequency tuning, the system falls on the soliton steps from the MI, this
results in the masking effect imposed by the DKS states with high N on the states with
smaller soliton number. Such behavior particularly explains the singleness of the DKS
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Figure 3.1 – (a) Scheme of the laser tuning method for the soliton generation in optical
microresonators. The pump laser is tuned over the resonance from short to long wave-
lengths (forward tuning). Hatched region indicates the pump detuning range of multiple
solitons (MS); (b) Histogram plot of 200 overlaid experimental traces of the output comb
light in the pump forward tuning over the resonance with the same pump power and
tuning speed, which reveals the formation of a predominant multiple soliton state with
N = 6; The noise pattern in the forward detuning was not captured by the measurements
due to the averaging by slow photodetector. (c) Histogram of soliton steps occurrences
in the forward pump tuning at different pump powers. The red color corresponds to
the absence of soliton states, the green color corresponds to the appearance of 1 soliton
step, yellow - 2 steps, dark blue - more than 2 steps. For each pump power 200 traces
were recorded. (d) Histogram plots of 200 overlaid experimental traces (each) of the
output comb light in the pump forward tuning over the resonance of 100 GHz Si3N4
microresonator at two pump powers of 2 and 4 W with the same tuning speed.

step observed in most of the experiments, as well as decrease of available step length for
smaller N . Furthermore, it should be also noted that the blue-detuned MI state of the
cavity has even higher intracavity power than all other DKS states. The thermal shift it
experiences can be even stronger, despite of the unstable intracavity waveform. Thus
MI state can in turn impose similar masking effect on all DKS states. It is observed for
increased pump power of the system in our experiments and can be also noted in other
microresonator platforms, when the pump tuning speed is comparably low.

Remarkably, we discovered that an additional laser tuning towards shorter wavelengths
(backward tuning) applied to any multiple-soliton state generated in the experiments
described above provides a way to reliably access the single soliton state. The result of
this backward tuning sequence, shown schematically in Fig. 3.2(a), allows for successive
extinction of intracavity solitons (soliton switching) down to the single soliton state
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(N→N−1→ . . .→1). Figure 3.2(b) shows one experimental trace of the generated light
from a Si3N4 microresonator, where switching from seven solitons to the single soliton
is observed. Strikingly, the power trace of the generated comb light reveals a regular
staircase pattern with equal the stairs having equal lengths and heights. The exact soliton
number in each step can be precisely inferred from the step height. The pattern is almost
identical over multiple experimental runs (using the same tuning speed and pump power)
regardless of the initial soliton number N . Each transition between multiple-soliton states
occurs with the extinction of one soliton at a time, which is confirmed by the relative
positions of the intracavity solitons that are retrieved from the optical spectra (see insets
in Fig. 3.2(c-e)).

In the experiments, the backward tuning process must be adiabatic to induce the
successive reduction of the soliton number: the thermal equilibrium is required at each
multiple-soliton state. This prerequisite is satisfied by choosing a tuning speed much
slower than the thermal relaxation rate that depends on the effective mode volume and
the thermal diffusivity of a microresonator [183]. For Si3N4 microresonator used in these
experiments the backward tuning speed is chosen to be ∼ 40 MHz/s, while the forward
tuning speed is ∼ 100 GHz/s. In this way all soliton states (≤ N) are deterministically
accessible. In contrast to the robust backward tuning that enables successive extinction
of intracavity solitons, the forward tuning in Si3N4 microresonators typically leads to
collective extinction of solitons.

We also studied the backward tuning in MgF2 crystalline microresonators, where the
deterministic soliton switching to the single soliton state is equally observed. In contrast
to the Si3N4 platform, the single soliton state can directly be accessed via the forward
tuning in MgF2 microresonators [9]. Yet, this requires suitable adjustments on the
coupling, the pump power and the tuning speed. By contrast, it was observed that the
backward tuning, is significantly more robust and facilitates the generation of single
soliton states in crystalline resonators.

The soliton switching observed in both Si3N4 and crystalline MgF2 resonator, reveals
that the backward tuning represents a universal approach to the generation of a single
soliton state in microresonators, provided that the thermal locking can be achieved1.

3.3 Nondestructive soliton probing

One of the key parameters of DKS states is the effective frequency detuning between the
driving laser and cavity resonance that determines both the amplitude and the duration
of soliton pulses [97, 9]. We recall that the effective frequency detuning is introduced
with respect to the actual position of the cavity resonance (see section 1.2.5, Chapter 1).

1As for all modern platforms, where the generation of DKS states has been demonstrated, it is assumed
that we are working with focusing nonlinearity, and positive thermal effects.
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Figure 3.2 – (a) Scheme of the laser backward tuning. To initiate the sequence, the
forward tuning is first applied, and the pump is stopped in a multiple soliton state (which
can be stable by suitable choice of the laser tuning speed). In the second stage, the
pump is tuned back to short wavelengths, which leads to successive soliton switching,
N→N−1→ . . .→1. The MS area indicates the detuning range of multiple soliton states,
which is much larger compared to the forward tuning method. There also exists the
range of the single soliton state (SS); (b) Experimental trace in the forward tuning
(yellow curve) followed by one trace in the backward tuning (white curve) with successive
transitions of multiple-soliton states from N = 7 to N = 0 (no solitons); (c-e) frequency
comb spectra in soliton states with N = 1, 2, 3, measured during the backward tuning in
a 100 GHz Si3N4 microresonator. The relative positions of the solitons result from the
forward excitation path and are mostly random. They are retrieved via inverse Fourier
transform of the optical spectrum.

When microresonator operates in the DKS state, the resonance position can be thermally
shifted with respect to the position of the cold-cavity resonance, which is induced by the
field presence inside the cavity.

For the further exploration of switching phenomenon we developed a non-destructive
soliton probing scheme that allows the tracking of the effective detuning and the de-
termination of the soliton number N . It is based on measuring the conversion (i.e.
transfer function) of a phase-modulated pump to amplitude modulation on the comb
power, using a network analyzer (see Fig. 3.3(a)). Starting from the standard setup for
soliton generation in the integrated microresonators, we introduce an additional phase
modulation on the pump laser using an electro-optical modulator (EOM, bandwidth
10 GHz). We employed a vector network analyzer (VNA) to drive the EOM with a
swept frequency from 5 kHz to 4.5 GHz. A portion of the transmitted light is used
to measure the system transfer function by recording the cavity-induced quadrature
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Figure 3.3 – (a) Setup scheme used for soliton generation, non-destructive soliton probing
and deterministic soliton switching. An external cavity diode laser (CW pump) is used as
a pump source. AFG, arbitrary function generator; EDFA, erbium doped amplifier; FPC,
fiber polarization controller; WM, wavelength meter; VNA, vector network analyzer;
OSA, optical spectrum analyzer; OSC, oscilloscope; PD, photodiode; EOM, electro-
optical phase modulator; PM, phase modulator; FBG, fiber Bragg grating. (b) (Left,
top) Diagram of the double-resonance cavity transfer function in the soliton state. The
green line indicates the power trace of the soliton component which is evolved from the
high-intensity branch of the bistability (blue line). The pump is tuned in the bistability
range (in the effectively-red-detuned regime). Therefore, both the soliton branch and
the low-intensity continuous (CW) branch (red line) are supported in the system, each
corresponds to a resonance, i.e. the S -resonance and the C -resonance. (Left, down)
Double-resonance cavity transfer function measured with VNA. The high-frequency peak
indicates the C resonance and the low-frequency is the S -resonance. (Middle) Four
stages of the microresonator frequency comb formation and corresponding cavity transfer
function measured with VNA when the pump laser is forward tuned over the resonance:
(I) No comb, the pump is blue-detuned; (II) Chaotic MI comb state; (III) Soliton state;
(IV) No comb, the pump is red-detuned. (right) Frequency comb spectra corresponding
to the chaotic MI operation regime and the single soliton state.

rotation from the phase to the amplitude quadrature with a photodiode, and subsequent
demodulation via a RF-homodyne detection inside the VNA. The phase modulation
imprints two out-of-phase sidebands symmetrically around the pump (we use a small
modulation index of 0.01, so that only first-order sidebands are considered). Passing
through the cavity, the sidebands pick up a different relative phase, which leads to an
amplitude modulation of the measured signal.

This probing method enables the identification of the different stages of Kerr comb
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formation including the presence of DKS state as schematically shown in Fig. 3.3(b).
First, when the pump is in the blue-detuned regime and is reasonably far from the
resonance, such that almost no power is coupled in the cavity, the system transfer
function exhibits a Lorentzian-like resonance profile that originates from the cavity
resonance. The frequency position of the resonance response in the VNA trace can
be directly interpreted as effective detuning of the system. Second, when the pump
frequency is tuned (forward) into the resonance to launch chaotic MI regime, the transfer
function shows an asymmetric profile with fixed peak position, indicating the thermal
and Kerr locking of the cavity resonance to the pump frequency. Third, when the pump
laser is tuned into the soliton existence range (i.e. in the effective red-detuned regime),
the transfer function (VNA response) shows unexpectedly a double-resonance feature.
Finally, when the pump frequency is tuned out of the soliton existence range, where no
comb is observed, the transfer function shows again a single, Lorentzian-like resonance
similar to the first stage.

The most intriguing part of the response function is the presence of the second resonance,
which appears in the DKS states. We applied the modulation probing scheme to both
Si3N4 and MgF2 microresonators and observed that such behavior is qualitatively similar
among different platforms when a soliton state is obtained. It turned out to be strongly
dependent on two characteristic parameters of the DKS state - effective detuning and
the number of soliton pulses inside the cavity. Fig. 3.4 shows such dependencies in
our 100-GHz Si3N4 microresonator. For the clarity, we denote the resonances of the
VNA response as follows: the low-frequency one - S -resonance, the high-frequency one -
C -resonance, where the choice of the letters will be explained later in the present chapter.
First, we observed that with the fixed detuning the amplitude of the S -resonance scales
with the number of pulses in the DKS state, while C -resonance stays intact (Fig. 3.4
(a)). When the system is loosing DKS state, the second resonance (S ) could not be
identified. Even more significant difference between DKS and CW states can be identified
by measuring the phase of the transfer function. For the case of the DKS state it
reveals two π jumps, while in the absence of soliton, the response has only single π jump,
highlighting that both features in the transfer function are actual resonance frequencies
of the system in the DKS state.

The double-resonance feature is attributed the fundamental cavity bistability, which
appears in the presence of the Kerr nonlinearity. In the DKS state, the intracavity field
consists of a weak CW background and intense soliton pulses. The CW component
represents the “lower branch” of the intracavity field solution, which is effectively red-
detuned with respect to the cavity resonance. It contributes to the formation of the
C -resonance, which as in the case with a transfer function of a non-DKS states represent
a single Lorentian-like response located at the frequency corresponding to the effective
detuning. This can be particularly observed in Fig. 3.4(a, b), where black curves
represent a CW-state, when the pump is red-detuned, and have single resonance in
the transfer function confirmed by a single π jump of the phase response. When the
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Figure 3.4 – (a, b) Experimentally obtained transfer functions ((a) - amplitude response,
(b) - phase response of the system)) of the DKS states with different number of solitons
inside the cavity. The soliton number is maximum for red-colored trace, and equals 1
for the blue-colored trace. Black trace shows the response function of the system in the
absense of DKS. 2-resonance profile, as well as phase jump of ∼ 2π can be observed for
all DKS states, while in the absence of DKS system shows only single ∼ π phase jump.
Low-frequency data are noisy due to the weak signal. (c, d) Experimentally obtained
transfer functions ((c) - amplitude response, (d) - phase response of the system)) of
the 3-soliton DKS state with different pump-cavity detunings. The effective detuning is
maximum for the blue-colored trace, and is minimum for the green-colored trace. The
few points for the minimum-detuning data in (d) obtained 2π jump due to the errors in
data processing.

soliton pulses with their high peak intensity are present in the cavity, they are able
to induce an additional shift of the cavity resonance, due to the intensity-dependent
Kerr phase shift. This process in return allows the pump laser to be coupled into the
resonance, such that the soliton experiences gain. Therefore, the soliton presence in the
DKS state contributes to the appearance of the second resonance, which is blue-detuned
with respect to the cavity, as shown in Fig. 3.3(b). Thus there exist two resonance states,
each having a different detuning to the pump frequency, and thereby each inducing a
different quadrature rotations on the incoming probing sidebands. The net result appears
as a double-resonance feature – the soliton-induced “S -resonance” and “C -resonance”
related to the CW.

As can be seen, the measured transfer function can provide rich information about the
soliton states. First, it provides unique signature, which can help to identify the presence
of a DKS states with any repetition rates (including (10s, 100s and 1000s of GHz) using
low-frequency RF equipment. Second, the C -resonance peak (frequency) indicates the
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effective detuning between the pump and the cavity resonance. Third, the amplitude
of the S -resonance is related to the number (N) of solitons, as the response signal is
enhanced by higher comb power generated with a larger number of solitons.

The direct probing of the effective detuning, which can be implemented with the developed
technique, allows to monitor and control the DKS state. Since, the thermal drifts of
the cavity resonance originating from various external sources may cause variations
of the effective detuning, the transfer function measurements can help to restore it
(e.g. by tuning the pump frequency) in order to maintain the state within the soliton
existence range. In practice, feedback-locking of the effective is also possible and allows
for long-term operation of soliton state in a microresonator [184, 185].

Transfer function measurements of this type were also applied in mode locked laser
systems but the soliton feature was not captured[186, 187, 188]. We also note, that the
cavity transfer function between a weak pump modulation and the modulation on the
comb power in the soliton state was earlier numerically investigated in [189]. While two
peaks of the transfer function were also numerically observed in this work, they were
attributed conceptually to Feshbach and relaxation oscillations in the presence of third
order dispersion. The present work reveals clearly the different underlying physical origin
of the two resonance, which do not result from higher order dispersion.

Analytical description of the VNA measurements
We briefly stop at the theoretical description of both resonances in the VNA response.
As highlighted above, the C -resonance represents the response of the CW intracavity
field to the input pump phase modulation. When this intracavity field is small enough,
which is the case for large detunings (> κ) on the blue- or red-detuned sides of the
cavity, including the DKS state, one can use linear cavity formalism (1.12) to describe
it’s position. We consider the pump phase modulation in the form:

sin(Ω, t) = sin(1− i ·me−iΩt − i ·meiΩt) , (3.1)

where Ω - is the modulation frequency, and 2m is the modulation amplitude. Denoting
D = −(i∆+κ/2) and using (3.1) in (1.12) together with (1.15), we can obtain transmitted
signal:

sout(Ω, t) = sin(A+Be−iΩt + CeiΩt) , (3.2)

A = 1 + κex
D

, (3.3)

B = −i ·m
(

κex
D + iΩ + 1

)
, (3.4)

C = −i ·m
(

κex
D − iΩ + 1

)
. (3.5)

Here coefficients A,B and C can be interpreted as field-transmission coefficients at the
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pump frequency and at the frequencies of two sidebands appearing from the phase mod-
ulation. The resulting photocurrent I(Ω, t) ∝ |sout(Ω, t)|2 recorded with the photodiode
and detected with the VNA can be estimated as:

I(Ω, t) ∝ s2
in|A∗B +AC∗| · cos(arg(A∗B +AC∗)) , (3.6)

which demonstrates the single-resonance response located at ∆ and π jump in the phase
at the same frequency.

The position of soliton-attributed S -resonance as well as more accurate description
of the C -resonance in the DKS state, however, should be implemented with the LLE
equation, which it is convenient to use its dimensionless form (1.56). The approximate
expressions for the positions of both peaks were derived analytically by M.L. Gorodetsky
in the Supplementary information of [114].

Using the flat solution Ψc in the dimensionless LLE with pump phase modulation it
was shown that the background modulation oscillates at dimensionless frequency ΩC

(normalized to κ/2):

ΩC = (ζ0 − |Ψc|2)(ζ0 − 3|Ψc|2) + 1 . (3.7)

Since the background is small, and ζ0 � 1, ΩC ' ζ0, and thus the position of the
C -resonance coincides with the detuning δ of the system.

In order to derive another response feature - S -resonance, one can consider the pump
phase modulation as an additional perturbation to LLE, and using Lagrangian density
approach derive the modulation of the soliton parameters (in two- or three-parameter
ansatz) as the function of Ω. Thus, the soliton response is derived to be located close to
(case of two-parameter ansatz):

Ω2
S = πfsin(φ0)

√
2ζ0 , (3.8)

where φ0 =
√

8ζ0/πf . ΩS is much weakly depends on detuning than ΩC and is closer to
zero, which is observed in experiment. It is interesting to note that for both resonances
the width of the response corresponds to the cold-cavity resonance linewidth - κ.

3.4 Deterministic switching

We next investigate the transitions of soliton states obtained using the backward tuning
scheme by applying the non-destructive soliton probing technique described in the
previous section in Si3N4 microresonators. We first employ forward tuning of the driving
laser in order to generate a multiple-soliton state with N = 6, and subsequently perform
a slow backward tuning. As before, the power trace of the generated light in the
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Figure 3.5 – (a) The power trace of the generated light obtained from 100-GHz Si3N4
microresonator with the backward pump tuning from multiple-soliton with N = 6
(effectively red detuned) to the effectively blue detuned regime; (b) Set of 500 concatenated
VNA traces that were taken during the backward tuning shown in (a). The orange arrow
indicates the transition from a single soliton state to no-soliton state, while the pump
is still red detuned with respect to the cavity resonance. The yellow arrow indicates
the transition from the red detuned operating regime to the blue detuned regime; (c)
Evolution of the transfer function during the backward tuning process in the effectively-
red-detuned regime, with no soliton presented (N = 0); (d) Evolution of the transfer
function in the multiple-soliton state with N = 6; (e) The power trace of the generated
light obtained from 14 GHz MgF2 crystalline resonator with the backward pump tuning
from multiple-soliton state with N = 6 (effectively-red-detuned) to the effectively blue
detuned regime; (f) Set of ∼ 1700 concatenated VNA traces that were taken during the
backward tuning shown in (e); (g) Evolution of the transfer function during backward
tuning in the state with no soliton presented; (h) Evolution of modulation response in
the multiple-soliton state with N = 6.

microresonator shows the staircase pattern in the backward tuning, which corresponds
to successive soliton switching from N = 6 to the single soliton state (Fig. 3.5(a)). The
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traces of system transfer function measured with the VNA are simultaneously recorded
and continuously stacked in order to monitor its evolution during the backward tuning
process (see Fig. 3.5(b)).

The experiments reveal a strong correlation between the evolution of the transfer function
and the soliton switching. Within each soliton step, the C -resonance shifts towards the
S -resonance, which is interpreted as the decrease of the effective detuning when the laser
is tuned backward. When the two resonances overlap, the amplitude of S -resonance is
significantly enhanced, leading to a high-intensity single-peak profile (Fig. 3.5(d)). After
the peak merging, the soliton switching occurs, which results in a drop in the comb
power as one soliton is lost (N→N−1). After the switching, the C -resonance abruptly
separates from the S -resonance moving to higher frequencies. Simultaneously, while
still being Kerr locked, the S -resonance intensity is reduced to a lower level than in the
previous state, since the number of solitons is reduced by one. In the absence of solitons
(N = 0), the S -resonance is absent in the transfer function, but the C -resonance is still
present (Fig. 3.5(c)).

The same measurement was carried out in MgF2 resonators, see Fig. 3.5(e-h). While
similar switching dynamics are observed, there are several details which differ between
Si3N4 and MgF2 platforms. First, the optical Q-factor of MgF2 crystalline resonators
(∼ 109) is three order of magnitude higher than for Si3N4 microrings (∼ 106). The C - and
S -resonances in the transfer function of crystalline resonator are therefore better resolved
as a result of the narrower resonance linewidth. The soliton existence range in Si3N4
microresonators is typically O(1 GHz), while in MgF2 resonators it is O(1 MHz). Second,
after each soliton switching the MgF2 resonator shows slower recoil of the C -resonance
than the Si3N4 microresonator. This is attributed to the distinct thermal relaxation of
the two platforms. The MgF2 resonator has larger effective mode volume and physical
size than the chip-scale Si3N4 microring resonators such that the thermal relaxation
time is longer. This explains why in the evolution of the transfer function of the MgF2
resonator (Fig. 3.5(f)), the recoil of the C -resonance leaves curved trajectory while it is
very abrupt in the Si3N4 microresonator (Fig. 3.5(b)).

The soliton probing scheme using the phase modulation, combined with the backward
tuning, allows an understanding of the soliton switching dynamics in microresonators. The
successive soliton switching in backward tuning is attributed to the thermal nonlinearity
of optical microresonators and can be interpreted as follows. Due to material absorption,
the intracavity energy thermally shifts the cavity resonance via thermal expansion and
thermal change of the refractive index. The thermally-shifted pumped cavity resonance
is therefore ω̃0 = ω0−∆T, where ω0 is the angular frequency of the cold-cavity resonance
and ∆T is the thermally-induced resonance shift which, in the soliton state with thermal
equilibrium, is approximately proportional to the energy of the intracavity field:

∆T(N) ∝ EC +N · ES , (3.9)
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Figure 3.6 – Simplified schematics of the pump and resonance shifts in the backward tuning
procedure involving single switching event. From top - to middle: (i) backward tuning -
pump wavelength is reduced, which causes the reduction of the effective detuning from
2πδeff to 2πδeff′ . Absolute detuning 2πδ from the cold cavity resonance is also decreasing
to 2πδ′. Blue resonance indicates the position of the cavity resonance, thermally shifted
by the presence of two solitons in the cavity. Red-colored Kerr-shifted soliton resonance
follows the pump. Middle - bottom: (ii) switching - the pump frequency is fixed, the
system looses one soliton and relaxes to a new thermally stable state, where the cavity
resonance is now shifted by the presence of only a single pulse inside the cavity. This also
increases effective detuning from 2πδeff′ to 2πδeff′′ , but conserves the absolute detuning
of the pump: 2πδ′ = 2πδ′′.

where EC is the energy of the cw component, ES is the energy of one soliton pulse
and N is the number of solitons. Thus, the effective detuning can be expressed as
2πδeff = 2πδ −∆T, where δ indicates the absolute detuning 2πδ = ω0 − ωp. While in
a simple LLE system without thermal effects, the soliton existence range is the same
for different soliton numbers (i.e. degenerate with respect to N), in the presence of
thermal nonlinearity the DKS states with larger soliton numbers acquire additional shift
proportional to N . When in the backward tuning process the system approaches lower
boundary of the soliton existence range, which is approximately defined by the position
of the S -resonance, it maintains the same number of solitons, and therefore the thermal
contribution from the soliton number is constant (here we consider that the thermal
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effects caused by the change in the soliton power within the soliton existence range are
negligible). After the C -resonance overcomes the S -resonance, the soliton switching
occurs: one DKS pulse is lost and the thermally-induced resonance shift ∆T is reduced,
which in turn increases the effective detuning of the pump, and the C - and S -resonances
are separated again (see Fig. 3.5(b)). It is important to note, that each time a soliton is
lost, the thermal shift ∆T is reduced and thus the effective detuning is increased leaving
the system in the soliton existence range, which enables the stabilization of the new state.
Therefore, this reopens the possibility of tuning the laser further backward (reducing δ),
and deterministically reaching the single soliton state.

The process is schematically shown in Fig. 3.6, where two stages of the described process
are shown schematically: (i) backward tuning stage in the 2-soliton DKS state, where
the pump wavelengths is reduced until the detuning from cold-cavity resonance reaches
2πδ′, at which the switching occurs; (ii) the switching process, where the pump is fixed,
the system losses one pulse and relaxes to the new thermal state, where ∆T is reduced
by half.

3.5 Mapping of the soliton multistability in optical mi-
croresonators

The pump backward tuning enables deterministic and successive soliton switching, opening
access to soliton states N,N − 1, ..., 1. It is therefore possible to experimentally explore
the soliton existence range in terms of the absolute and the effective detuning in each
state (thus forming multi-stability diagram of the microresonator system [190, 97, 9]). In
order to express the boundaries of the soliton existence range in terms of the effective
detuning, we use δs as low-detuning boundary and δmax as high-detuning boundary:
δs < δeff < δmax. The lower boundary δs is identified in the backward tuning through the
soliton switching: it corresponds to the RF frequency in the VNA response trace, where
the C -resonance and the fixed S -resonance overlap. In the studied Si3N4 microresonator
with the chosen fixed pumping conditions this quantity is measured to be δs ∼ 0.78 GHz.
The upper detuning boundary δmax of the soliton existence range can be explored for
each soliton state when the pump laser is tuned forward until the soliton state decays.
Based on the theory (see eq. (1.61)) and LLE simulations this detuning is expected to
be identical for all states with different soliton numbers at the same pump power [9], as
the boundary of the energy balance of individual DKS. In experiment, the maximum
effective detuning δmax for all soliton states obtained at the same power is found to be
∼ 2.0 GHz. We note that unfortunately there is no clear feature in the measured transfer
function, which would enable the prediction of the maximum boundary. Figure 3.7
displays a one-trace mapping of six steps of soliton states in Si3N4 microresonator as
a function of the absolute pump frequency (wavelength) (i.e. the absolute detuning
δ). For each soliton step, we first tune the pump forward approaching the maximum
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detuning (δ→ δmax), and subsequently tune backward towards the soliton switching
point (δ→δs) where the soliton state is switched from N to N − 1. Since the thermally
induced cavity resonance shift is included in the absolute frequency detuning, we observe
that the soliton existence range in units of absolute laser detuning is increasingly offset
for a larger number of soliton. This creates a staircase pattern of the generated light
and enables successive soliton switching. However, if the generated light trace is plotted
with respect to the effective laser detuning (δeff) as done in Fig. 3.7(b), all the soliton
steps are stacked vertically within the range δs < δeff < δmax, which corresponds to the
expected theoretical degeneracy when the thermal effect is neglected [9].

In order to verify that deterministic soliton switching is enabled by the thermal nonlin-
earity of the microresonator, we performed numerical simulations based on coupled-mode
equations with the additional thermal relaxation equation (see Fig. 3.7(c, d)). We use
dimensionless coupled nonlinear mode equations (1.51), which were modified to take into
account the thermal effects. For this purpose an additional equation for the normalized
variation of temperature Θ = 1

n
dn
dT

2ω0
κ δT was solved simultaneously with conventional sys-

tem. Throughout the simulations we neglected the frequency dependence of nonlinearity,
losses and mode-overlap, interactions with other mode families, and any particularities
of the resonator geometry. Thus, the modified set of coupled mode equations reads:

∂aµ
∂τ

= −(1 + iζµ(τ)− iΘ)aµ + i
∑
µ′≤µ′′

(2− δµ′µ′′)aµ′aµ′′a∗µ′+µ′′−µ + δ0µf ,

∂Θ
∂τ

= 2
κτT

(
n2T
n2

∑
|aµ|2 −Θ

)
. (3.10)

Here τT is the thermal relaxation time, nT is the coefficient of thermal nonlinearity.
For numerical analysis we consider the following parameters corresponding to Si3N4
microresonator: λ = 1.553× 10−6 m, n0 = 2.4, n2 = 2.4× 10−19 m2/W, V0 = 10−15 m3,
κ/2π = 3×108 Hz, D2/2π = 2.5×106 Hz, D3 = 0, η = 0.36, P = 2 W. These parameters
correspond to dimensionless force term f = 5.8. The ratio nT /n2 = 10 was chosen to
resemble experimental data, τT was chosen reasonably short to perform the simulation
during a reasonable time.

By including the thermal effects into numerical simulations, we are able to reproduce the
staircase feature, corresponding to the successive reduction of the soliton number in the
backward pump tuning (see red curve in Fig. 3.7(c, d)). Analytical power traces of soliton
steps (black dashed lines) indicate soliton existence ranges for multiple-soliton states
with different N . They reveal a displacement of the soliton existence range between
different soliton states (qualitatively similar to the measurement in Fig. 3.7(a)) as a
consequence of the thermal nonlinearity. When thermal effects in the simulations are
‘switched off’, soliton steps are well aligned and the soliton existence range is again
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Figure 3.7 – (a) Experimental measurements of the generated comb light with respect to
the absolute detuning. The blue curve shows the trace in the forward tuning. The red
curve indicates the entire soliton existence range. Zero absolute detuning corresponds to
∼ 1553.4nm. (b) Experimental trace from (a) plotted in terms of the effective detuning
measured from the modulation response with the VNA. Hypothetica trace of forward
tuning is shown in blue dashed line, because the effective detuning in this process can not
be reliably measured with the VNA. (c, d) Numerical simulations and analytical solutions
of the backward tuning in Si3N4 with (c) and without (d) thermal effects. Normalized
detuning used in the simulation: ζ0 = 2(ω0− ωp)/κ, where ω0 is the resonance frequency,
ωp is the pump frequency and κ is the resonance linewidth. Blue lines indicate initial
excitation of a multiple-soliton state in the forward tuning. Red lines indicate the
backward tuning. Light blue lines indicate the stable branch of the nonlinear induced
tilted resonance (in the CW mode). Dashed green lines indicate the unstable branch.
The yellow area allows for the formation of breathing soliton states. The green area
indicates the formation of stable solitons. Solitons cannot exist in red area. The dashed
lines show analytical description of soliton steps, with analytical solution of soliton states
in the system.

degenerate with respect to the soliton number (N), see Fig. 3.7(d). No soliton switching
is therefore observed in the backward tuning. These measurements and simulations
clearly demonstrate the enabling role of the thermal effect in the deterministic switching
process of the DKS states.
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Numerical simulation also revealed the soliton breather states that are considered as
an intermediate state between the chaotic MI regime and the stable soliton state. In
the breather state, the soliton pulse peak power and the pulse duration, as well as the
average intracavity energy, will experience periodical oscillations. This induces thermal
perturbations to the cavity resonance and initiates the soliton switching. The breather
states were indeed experimentally observed and identified, and will be presented in the
next Chapter.

3.6 Conclusion

We demonstrate a novel platform-independent phenomenon of the DKS dynamics -
switching, which enables a successive reduction of the soliton number in microresonators.
We show that the process is enabled by thermal nonlinearity of the microresonator,
which lifts the detuning degeneracy of the soliton states with different N and allows for
deterministic and controllable access to any soliton state including application-relevant
single soliton states via simple backward tuning approach. We also introduced non-
destructive soliton probing scheme, which uses VNA to measure cavity transfer function
of the microresonator system, between phase modulation on the pump and amplitude
modulation on the system’s transmitted power. We observed a unique double-resonance
feature in the transfer function when the microresonator is in the state of DKS, which
is induced by the nonlinear cavity bistability. This feature reveals the effective laser-
resonance detuning, can be used to estimate the number of solitons and provides insights
into the dynamics of the soliton switching.

The backward tuning procedure, which enabled deterministic access to single soliton
states in a variety of Si3N4 microresonators used in our group, has played a pivotal role for
the first demonstrated applications of DKS states in optical coherent communications and
ultrafast distance ranging (see Chapter 7), optical coherence tomography [110] and works
of other groups [116, 191, 192, 81]. It also enabled the demonstration of octave-spanning
soliton states [87], the generation of DKS at 1 µm wavelength (Chapter 6) as well as
played a major role in the exploration of soliton breathing states, which were performed
in Si3N4 microresonators (see Chapter 4 and work by Guo et al. [193]).
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4 Soliton breathers in optical mi-
croresonators

This chapter reports on the experimental observation of dissipative Kerr soliton breathers
in optical microresonators. The results are partially adapted from E. Lucas*, M. Karpov*
et al., "Breathing dissipative solitons in optical microresonators", Nature Communications,
8(1), p. 736, (2017).

4.1 Introduction

The CW-driven Kerr-nonlinear resonator system is able to support a rich variety of stable
non-homogeneous intracavity field patterns, as reported both in numerical simulations
[97, 194, 48, 98] and in experiments [57, 9, 91, 84], including bright dissipative Kerr
solitons [9, 91, 84], dark pulses [57], platicons [195], Turing patterns [196] or soliton
crystals [197].

While all of these states were initially reported to be stationary with respect to the
rotating frame of reference (i.e. time-independent on the slow time axis, apart from
the linear drift which may be caused by spectral recoil due to Raman, dispersive waves
or AMX), some of them can exhibit a rich panel of nonstationary dynamics. In this
Chapter we focus on one of the intrinsic dynamical phenomena of dissipative Kerr solitons,
which leads to their non stationary behavior, – the formation of breathing soliton states
(breathers). For the driven nonlinear resonator system the breathers represent stable
soliton states, which intracavity pulses undergo periodic oscillations in their amplitude
and duration as schematically shown in Fig. 4.1 [198, 42, 191, 199]. The period of
such oscillations – breathing period (or breathing frequency in the frequency domain) –
represents the time of a single cycle, after which the system returns to its initial state.

The formation of soliton breathers was widely studied in the context of the NLSE
for conservative nonlinear systems, where space- and time-periodic soliton solutions –

*These authors contributed equally to the work
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Chapter 4. Soliton breathers in optical microresonators
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Figure 4.1 – (a) Simulated intracavity waveform evolution in the DKS breathing state;
All parameters of the system are fixed, but the soliton experiences regular oscillations in
its amplitude and duration during with a period of ∼ 100 roundtrips. (b) Snapshots of
the intracavity waveform showing the periodic out-of-phase evolution of the amplitude
and duration within one period of the breathing DKS state in (a).

Kuznetsov-Ma [200, 201] and Akhmediev breathers [202] were discovered. Their dynamics
was shown to be linked to two fundamental phenomena of nonlinear systems - modula-
tion instability[203] and the Fermi-Pasta-Ulam (FPU) recurrence [204] – a paradoxical
evolution of nonlinearly coupled oscillators that periodically return to the initial state
[205]. Soliton breathers with periodic oscillations in their duration and amplitude were
observed in a number of real-world system including optical fibers [206] and water waves
[207, 208]. The studies of these phenomena are strongly motivated in the context of the
physics of extreme waves (rogue waves) [209, 210] as well as the general understanding
of driven nonlinear systems and their nonstationary dynamics.

The formation of cavity breathers in the temporal LLE model used for dissipative
Kerr solitons was first predicted in the work by Matsko et al. [198], where the basic
stability properties and oscillatory behavior were shown in simulations. Later Leo et
al. experimentally demonstrated the first breathers in optical fiber resonators [42] and
studied breathing regions in the stability chart of the LLE. In contrast, the experimental
observation of breathers in optical microresonators has posed a significant challenge.
First, due to the non-trivial soliton generation process [9, 84] associated with the thermal

We note that the formation of breathers in damped driven NLSE equation without cavity-induced
boundary conditions was also investigated earlier by Baraschenkov and Smirnov [97]
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4.2. Experimental observation of breathers

nonlinearity that may impact the effective laser detuning [50, 114], and second, due
to high repetition rates (> 10 GHz) of the resulting soliton states which make direct
time-resolved observations difficult.

Two groups before our work have reported the observation of soliton breathers in mi-
croresonators [191, 211]. They demonstrate an appearance of stable oscillations in the
outcoupled soliton pulse trains as well as a periodic energy exchange between the central
modes and the spectral wings of the DKS states. An attempt to characterize breather
dynamics was also made, in which the oscillation frequency (breathing frequency) was
shown to depend on the pump detuning, however the direct relation was not unambigu-
ously determined [211]. Apart from this ambiguity a number of other open questions
still remains unexplored. They include reliable access to the DKS breathers, detailed
characterization of breathing dynamics and its regimes, as well as direct observation of
the pulse evolution. Understanding the breathing regime in microresonators is not only
of fundamental interest, but a necessity for applications. The accurate knowledge of the
conditions for the existence of breathers allows the prevention of extreme events [212],
ensuring the stable operation of DKS-based microresonator devices and avoiding excess
noise induced by breathing [184].

In the following sections we demonstrate a deterministic route to access, indentify and
characterize DKS breathers in two microresonator platforms - crystaline WGM MgF2
resonator and Si3N4 integrated microrings. We also map the breathing regime in the
stability chart of the LLE, and demonstrate a detailed study of the DKS breathing
dynamics including the link between the breathing frequency and effective detuning.
Finally we also demonstrate the direct time-resolved observation of the DKS breathers
and their complex dynamics.

4.2 Experimental observation of breathers

4.2.1 Access and identification of soliton breathing states

We start with the discussion on how to access the DKS breathers in the CW-driven
resonator. The theoretical investigation of the breathing states in fiber cavities and the
stability chart of the CW-driven Kerr cavity system, explored in [42], infer that the
formation of breathers can be observed at the low-detuning side of the stable soliton
region. It turns out that the earlier discovered backward tuning approach shown in
Chapter 3 can provide reliable access to this parameter space of the system. We also note
that a similar approach was explored for the study of various spatiotemporal instabilities
in fiber cavities [213].

Following the backward tuning procedure, a stationary multiple soliton state is first
excited by sweeping the CW driving laser “forward“ (toward longer wavelengths) over the
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Figure 4.2 – (a) Simulation of the intracavity power, illustrating the backward tuning
method used to trigger breathing. The generation of a stable multiple soliton state is
achieved by forward tuning the pump laser (red curve). The backward tuning is applied
next (blue curve) in order to reach the low-detuning boundary of the soliton existence
range where the breathing regime (increased noise) and switching effect (step features)
occur, allowing transition to the single-soliton state. The blue shading corresponds
to the region where modulation instability occurs, the green marks stationary solitons
existence and the red area indicates breathing. The inset details the single soliton
breathing and switching during the backward tuning. (b) Experimental trace of the
generated light power during the backward tuning process in the 100-GHz Si3N4 microring
resonator. The tuning is implemented from the right to the left, noise-like spikes before
every switching event (step down) are attriburted to the breathing behavior of the
corresponding multiple-soliton state.

pumped resonance and stopping on the effectively red-detuned side, where solitons are
sustained [9]. Second, the driving laser is tuned “backward” (toward shorter wavelength),
thus reducing the effective detuning. Due to the microresonator thermal nonlinearity
that lifts the fundamental degeneracy of multiple soliton states and enables switching to
the DKS states with lower numbers of intracavity pulses, we can deterministically access
the low-detuning boundary of the soliton existence ranges of soliton states with various
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4.2. Experimental observation of breathers

numbers of intracavity pulses [114], and particularly focus on the single-soliton states.

Figure 4.2(a) shows a simulation (thermal effects are included) of this excitation scheme
in the Si3N4 microresonator. Forward and backward tuning stages are indicated with
red and blue colors correspondingly. The system experiences a series of consecutive
switchings, as reflected by the stair-like trace of the intracavity power. It was observed
that the breathing regime is characterized by periodic oscillations in the intracavity
power and occurs in the vicinity of the switching points in each step (see inset in the
Fig. 4.2(a)).

We implement the same tuning procedure in experiment and apply backward tuning to
a 100-GHz Si3N4 microresonator from an initially excited multiple-soliton state. The
backward tuning trace of the generated light was recorded with a fast photodiode, and
we indeed detected the characteristic breathing features, which reveal themselves as
noise-like spikes right before the switching events at the low-detuning boundary of the
DKS states with various soliton number N (see Fig. 4.2(b)).

We focus on single DKS states (N = 1) and closely investigate these breathing features
in two microresonator platforms - Si3N4 and MgF2 using the above-described procedure
and generic setup for the DKS excitation shown in Fig. 4.3(a) (see Chapter 1). In both
platfroms, a single DKS state was first obtained using backward tuning and stabilized
in the soliton existence range far from its boundaries. Then the pump frequency was
slowly tuned backward with constant speed to reduce the pump-cavity effective detuning
and move the system through the breathing regime until it experiences switching to a
homogeneous state. Figures 4.3(c, d) show the results for this process in both platforms.
One can observe that the onset of breathing regime coincides with an increase in the
intensity noise of the generated light, which progressively increases as the system is tuned
further in the breathing region. A detailed measurement with an increased sampling
rate in the MgF2 microresonator shown in the inset of Fig. 4.3(d) reveals that in this
region the generated light power experiences regular oscillations as predicted for soliton
breathers. Despite these intrinsic power oscillations, the DKS breathing state is stable.
As for the stationary DKS, the stability of the breathers is defined by the stability of
the driving laser, chip input-output coupling and environment. Given that the effective
detuning of the system does not experience dramatic fluctuations due to these external
reasons, the pump tuning process can be stopped anywhere in the breathing region
and the system will maintain its breathing state with no additional stabilization. The
breathing is thus highly controllable and even reversible - one can repeatedly initiate
and suppress the soliton breathing by changing the effective detuning of the DKS state.
Such state stability is important, as it simplifies the study of the breathing dynamics
which will be implemented in the following sections.

The oscillatory nature of the system in the breathing state can also be characterized
by measuring the radio frequency (RF) spectrum of the out-coupled pulse train. Since
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Figure 4.3 – (a) A similar experimental setup is used for both platforms: A tunable
continuous wave laser is used as a pump source. EDFA, erbium-doped fiber amplifier;
EOM, electro-optical phase modulator; OSA, optical spectrum analyzer; PD, photodiode;
OSC, oscilloscope; ESA, electronic spectrum analyzer; VNA, vector network analyzer.
(b) Experimental optical spectra of a stationary (blue) and breathing soliton states (red),
in the 14 GHz FSR MgF2 crystalline resonator. The effective detuning δ is varied by
0.5 MHz between the two states. The simulated optical spectrum averaged over one
breathing period (black line) was offset by 3 dB for better visibility. The arrows mark
the positions of weak sidebands visible in both the simulated and measured spectra.
(c) Generated-light power evolution for a single soliton state in the 100 GHz Si3N4
microresonator as the pump is tuned backward, showing the transition from stationary
state (green shading) to breathing (red shading) and final decay. The inset shows an
SEM image of the microresonator used (the scale bar corresponds to 100 µm). (d) In
the MgF2 crystalline resonator (see inset, the scale bar corresponds to 2 mm), the comb
light evolution features a similar behavior as in (d), when tuning backward. The inset
shows the oscillations of the generated comb power, resolved with a fast photodiode and
high sampling rate. (e, f) RF spectra of the generated light for a breathing (point (i) in
(c, d), red trace) and stationary (point (ii) in (c, d), blue trace) soliton state respectively
in the Si3N4 and MgF2 resonators. In (f), the 0.4 GHz span is centred at 0.8 GHz, close
to the fundamental breathing frequency. The resolution bandwidth (RBW) is indicated.
(g, h) Repetition rate beatnote for a breathing (i, red) and stationary (ii, blue) soliton
state in the Si3N4 and MgF2 resonators.
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4.2. Experimental observation of breathers

the total power oscillations are stable and close to sinusoidal for moderate breathing
amplitudes, the corresponding RF tones can be detected. In order to demonstrate this
we recorded RF spectra of the DKS breathing state for stationary and breathing DKS in
both platforms. Figures 4.3(e, g) show the low frequency RF spectra at points marked
in Fig. 4.3(c, d). The stationary soliton state (blue traces) corresponds to a low-noise
state of the system in both plots, while the breathing state (red traces) reveals sharp
peaks indicating the fundamental breathing frequency. For our systems, the breathing
frequencies were in the range of 0.5–1 GHz for Si3N4 microresonators (FSR ∼ 100 GHz)
and 1–4 MHz for MgF2 platform (FSR ∼ 14 GHz). The breather regime can also be
evidenced when measuring the repetition rate beatnote. The oscillating pulse dynamics
gives rise to additional sidebands around the repetition rate, spaced by the breathing
frequency (see Fig. 4.3(f, h) which also compare stationary and breathing states).

Another characteristic signature of the breathing state is observed in the optical spectrum.
Figure 4.3(b) shows the measured spectra of both stationary and breathing single soliton
based frequency combs, in a MgF2 resonator. In the stationary state, the spectrum has a
squared hyperbolic secant envelope corresponding to the stationary soliton solution, while
in the breathing state, the spectrum features a triangular envelope (on a logarithmic scale),
resulting from the averaging of the oscillating comb bandwidth, by the optical spectrum
analyzer. The simulated spectrum (averaged over one breathing period) reproduces well
the triangular feature. The weak sidebands on the optical spectrum are also captured
on both measured spectrum and averaged simulated spectrum (marked by arrows in
Fig.4.3(b)).

We experimentally verified the presence of all above-described features for the breathing
states in Si3N4 and MgF2 resonators, where breathing single solitons were generated
using the backward tuning method. Despite significant differences in the resonators
properties (Q factor, FSR, dispersion profile and nonlinearity), both systems behave
qualitatively similarly when approaching and entering the breathing regime.

4.2.2 Breathing dynamics

Having established a deterministic access to breathing DKS and their characteristic
features, we next characterize the breathing dynamics. For this purpose we use a VNA
response measurements described in Chapter 3, which is able to determine the effective
laser detuning of the driven nonlinear system [114, 189]. We remind the reader that in the
stationary soliton state, the VNA response of the system to the weak phase modulation
exhibits two characteristic resonances which reflect the bistable nature of the intracavity
field. The first one (C -resonance) corresponds to the background Kerr-shifted cavity
resonance and indicates the effective pump laser detuning δ with good approximation.
The second one (S -resonance) corresponds to a resonant response of the soliton to the
pump modulation. It emerges at lower frequency, and is weakly dependent on the pump
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Chapter 4. Soliton breathers in optical microresonators

Figure 4.4 – (a) Generated light power evolution of a single-soliton state in a 100-GHz
Si3N4 microresonator as the pump is tuned backward from the stable DKS state to
MI through the breathing DKS and homogeneous state. (b) Map of concatenated RF
spectrum traces of the soliton pulse train power during the tuning process shown in (a).
(c) Map of concatenated VNA traces showing the evolution of the system response (log
scale) from stationary soliton on the right of the time axis to the MI state on the left.
As the laser is tuned towards shorter wavelength, the effective detuning (C -resonance) is
reduced. The breathing starts typically when the separation of the C - and S -resonances
is on the order of the resonator linewidth. (d) Generated light power evolution of a single-
soliton state in the MgF2 microresonator as the pump is tuned backward from a stable
DKS state to the homogeneous state thorugh the breathing and switching event. (i)-(iv)
mark different points of the trace, where the system dynamics was closely investigated
using a fast photodiode in terms of the repetiton rate beatnote and time-domain envelope
of the total power. (e) RF spectra of the repetition rate beatnote in the various breathing
stages (i)-(iv) highlighted in (d) (resolution bandwidth 2 kHz). (f) Recording of generated
light power oscillations at the points (i)-(iv) highlighted in (d).

laser detuning.

In order to study the breathing dynamics we again used the same backward tuning of
the pump frequency in order to sweep through the breathing region and simultaneously
record the evolution of the DKS parameters. Figures 4.4(a - c) show the described DKS
tuning from a stationary single soliton state to an MI state via the breathing region and
homogeneous state in a 100 GHz Si3N4 microresonator with the pump power of about
1.6 W (operating power of EDFA). During the scan, the system’s transfer function is
monitored simultaneously with the low-frequency part (0.5 - 1 GHz) of the total output
power RF spectrum. As the laser detuning is reduced, the C -resonance progressively
shifts to lower frequencies (see Fig. 4.4(c)). The transition from a stationary to breathing
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4.2. Experimental observation of breathers

soliton occurs when the C - and S -resonance separation is on the order of the linewidth
(κ/2π), for a detuning δ ∼ 900 MHz. In the breathing region the DKS state starts to
develop periodic oscillations at the breathing frequency, which are detected in the RF
spectrum of the total power. Due to limited oscilloscope resolution and weak generated
light power, these oscillations can be clearly recognized in the generated light signal
only when the breathing acquires a significant amplitude. By comparing Fig. 4.4(a) and
(c) we can see that a strong and narrow tone appears in the RF spectrum, indicating
the breathing frequency, and shifts progressively closer to smaller frequencies when the
detuning is reduced. At the same time, the amplitude of the breathing grows significantly
when approaching the switching point, but maintains the average generated light power.

In the breathing state, the VNA response measurement features a strong peak at the
breathing frequency, but the precise dynamics of different resonances can hardly be
understood from given Si3N4 samples due to their relatively low Q-factors leading to
broad response resonances, which interleave and mask each other. Instead, we investigated
the breathing dynamics in the MgF2 platform, where the high Q-factors allow the precise
dynamics of the transfer function to be tracked up to the switching together with the
breathing frequency tone [185]. The second advantage of this platform is the low breathing
frequencies, which lie within MHz range, allowing for an easy detection and time-domain
characerization of the oscillating soliton pulse trains.

First, we studied the time-domain breathing dynamics of the outcoupled DKS pulse train
in different parts of the breathing region and the breathing imprinted on the repetition
rate beatnote 4.4(d-f). The comb power was measured in two ways. First, the global
evolution is monitored continuously on a DC coupled photodiode with a slow sampling of
∼ 100 kSa/s (Fig. 4.4(d)). Since the breathing oscillations are faster than this sampling
rate, they appear as increased amplitude noise in this measurement. Second, the fast
dynamics resolving the intracavity soliton is also recorded on a real-time oscilloscope
with 120 GSa/s, but in short sequences spread over the scan. The breathing pattern in
each sequence is then recovered by detecting the envelope of the resolved “pulse train”,
down sampled and shown in Fig. 4.4(f). The breathing starts with a weak oscillation
of the soliton pulse train power (stage i, δ ∼ 4 MHz). This corresponds to a single pair
of weak sidebands on the comb beatnote. For smaller detuning, the breathing becomes
stronger, so that the first sidebands (fundamental breathing frequency) increase, and
breathing harmonics emerge (stage ii) as the breathing pattern is not sinusoidal. At
δ ∼ 3.3 MHz (stage iii) the system exhibits a period doubling, which corresponds to the
appearance of sub-sidebands located at half the initial breathing frequency. At last, the
breathing turns into strong and irregular oscillations (stage iv, δ ∼ 2.9 MHz), exhibiting
sporadic transitions to period tripling. This coincides with a large increase in the noise
pedestal around the beatnote, although the fundamental breathing frequency remains
distinguishable. Finally, the soliton decays quickly thereafter. Such transitions to higher
periodicity, the appearance of temporal chaos and the collapse match the predicted
evolution from numerical studies of the LLE [42, 194].
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Figure 4.5 – (a) Map of concatenated VNA traces showing the evolution of the system
response (log scale) in the MgF2 microresonator from stationary soliton on the right
of the time axis to the homogeneous state on the left (the time origin t = 0 s, is set
at the soliton decay). As the laser is tuned towards shorter wavelength, the effective
detuning (C -resonance) is reduced. Inset demonstrates a comparison between the VNA
response in the stable state (red) and in the breathing state (blue). The VNA response
in the breathing state serves to clearly distinguish the effective detuning (corresponding
resonance is marked with letter C ), breathing frequency - B1 and its harmonic - B2.
(b) Map of concatenated RF beatnote spectra during the system evolution described
in (a). The modulation response measured on the VNA is also visible in the noise of
the RF beatnote spectrum (the dotted lines correspond to the C - and S - frequencies
determined on the VNA). The breathing is indicated by the formation of sidebands
around the repetition rate beatnote. As the detuning is reduced, the breathing frequency
decreases until the soliton is lost. (c) Top: experimental determination of the breathing
frequency evolution with the detuning for different pump powers, retrieved by the VNA
response measurement. Bottom: simulated evolution of the breathing frequency using
the LLE

Another feature which can be directly studied in the MgF2 platform is the link between the
effective detuning of the DKS state and the breathing frequency. Comparing the position
of the C -resonance in the VNA response to the breathing tone shown in Fig. 4.4(b, c) one
can indeed observe the relation in their frequency and behavior in Si3N4 microresonators.
Similar measurements implemented in the MgF2 platform are shown in Fig. 4.5(a, b).
Using the set of VNA measurements implemented during the slow backward tuning
through the breathing region we can identify the relation between the breathing frequency
and effective detuning of the soliton breathing state measured as the position of the
C -resonance. The relation was found to be linear with the proportionality parameter close
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to 1.2, and was similar for different pump powers of the system as shown in Fig. 4.5(c).
We also performed LLE-based numerical simulations and obtained an almost identical
result matching both qualitatively and quantitatively. We furthermore note that this
surprising linear dependency between the breathing frequency and effective detuning of
the system is also suggested by the approximate analytical breather expression derived
in the next section.

4.2.3 Approximate breather ansatz

In order to analytically inspect the relation of the breathing regime parameters to the
pump power and the effective detuning, an approximate breather solution for the dimen-
sionaless LLE (see eq. (1.56)) was developed within the present work by M.L. Gorodetsky.
We recall that an approximate stationary solution of the LLE for positive dimensionless de-
tuning ζ0 may be found as a sum of the soliton and a background: Ψ(θ) ≈ ΨC +ΨS(θ)eiφ0 ,
where Ψ(θ) is the intracavity waveform, θ = φ

√
1

2d2
is the dimensionless longitudinal

coordinate, φ is the co-rotating angular coordinate of the resonator and d2 = D2/κ is
the dimensionless dispersion. ΨC ≈ −if/ζ0 represents the constant background solution
of (1.56), while ΨS = B sech(Bθ) is the exact stationary conservative soliton solution of
(1.56) without loss or drive, with B =

√
2ζ0. The phase φ0 may be found by perturbation

methods from cosφ0 = 2B/πf [214].

The exact Kuznetsov-Ma breather solution [200, 201] of eq. (1.56) without loss and pump
can be employed to derive an approximate ansatz for dissipative breathing solitons in
the driven cavity:

ΨS(θ, τ) =
(
K1 cos Ωτ + iK2 sin Ωτ

coshBθ −K3 cos Ωτ − ε
)
eiK4τ , (4.1)

Ω = B

2
√
B2 + 4ε2 ,

K1 = B2
√
B2 + 4ε2

, K2 = B ,

K3 = 2ε√
B2 + 4ε2

, K4 = ε2 − ζ0 .

If the time-dependent part of the background ε is small, then leaving only terms up to
the first order on ε→ 0 we arrive at:

ΨS(θ, τ) = Bsech(Bθ) + 2ε cos(ζ0t)sech2(Bθ)− εe−iζ0t . (4.2)

We notice, that for ε = 0 this breather converges to a simple stationary soliton, and
for small ε the oscillation frequency of both the background and soliton itself simply
coincides with the dimensionless laser detuning ζ0.

Thus, the analytical breather ansatz confirms the direct relation of the breathing frequency
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Chapter 4. Soliton breathers in optical microresonators

to the detuning observed in experiment and further allows us to conclude the presence of
true dissipative breathers in our system.

4.3 Breathing region

So far we have investigated the formation of breathing states at a fixed pump power, and
observed their formation when approaching the lower-detuning boundary of the soliton
existence range as suggested by the simulations [42]. However, it should be noted, that
the breathing region of the DKS states also scales with power and, in general, should
occupy the whole low-detuning boundary of the stable DKS region in the two-parameter
space (pump power Pin and effective detuning δ) of the CW-pumped microresonator
system [48, 41, 215].

It is thus interesting to experimentally map the breathing regime and compare it with
the simulations of the stability chart of our systems. For this purpose we use the Si3N4
microresonator platform and generate a single soliton state using the backward tuning
method at different pump powers. After this, we gradually tune these states across the
breathing region until their decay, while probing the system with the VNA technique.
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Figure 4.6 – Stability chart of the CW-pumped Si3N4 microresonator in pump power
over effective detuning coordinates. White filled circles indicate experimentally accessed
DKS states. The colour-coded vertical lines indicate the measured relative standard
deviation of the generated light power. The coloured background regions and boundaries
are interpolated from simulation results and correspond to: CW-state (white) – the
soliton decays to the homogeneous background, chaotic modulation instability (blue),
stationary DKS state (green) and breathing DKS state (red).
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This allows tracking the evolution of the effective detuning for the precise mapping of
experimentally obtained DKS states on the stability chart. The white circles in Fig. 4.6
mark the operation points (Pin, δ) accessed experimentally. The color-coded vertical
line around each circle indicates the relative standard deviation of the output power
measured at the corresponding point, which directly relates to the breathing amplitude.
The results reveal a pump power dependency of the breathing region, whose location
shifts towards higher effective detunings and range reduces with increasing pump power.

We compare experimental mapping of the breathing region to LLE-based simulations
of the stability chart of our 100-GHz Si3N4 microresonator. The simulations of the
soliton comb dynamics was performed on 512 modes. Using the hard excitation scheme,
stationary DKS were seeded at fixed input powers and large detunings. Then the laser
detuning was reduced step by step to map over the stability chart. In each step, the
intracavity field pattern is characterized after ∼ 5000 roundtrips to exclude early-stage
transient formations. Depending on the dynamics of the intracavity field, different regions
of the stability chart were classified in the following color-coded regimes on the Fig. 4.6:
CW state (white color), where the soliton decays to the homogeneous background;
chaotic modulation instability (blue); stationary soliton state (green) and breathing
soliton state (red). The experimentally accessed stationary and breathing states are well
within the corresponding regions predicted by the simulations. The mismatch between
experimental results and simulations for the low-detuning boundary can be attributed to
the discrepancy between the measured and real detuning values that may differ at the
low-detuning boundary due to the higher background [114]. Also, highly unstable and
short-living breathers just before the switching point make the detuning hard to resolve.
Finally, high-order dispersion and nonlinear effects (e.g. Raman scattering, avoided mode
crossings and third order dispersion) were not-included for simplicity in the simulations,
but are present in the real microresonator system.

4.4 Real-time observation of breathers

The results of the previous sections allow us deterministic access to the breathing states
and suggest several ways to identify their presence. However, all of these ways of the
breathing detection do not allow us to trace individual pulses and track their dynamics,
which would unambiguously confirm the periodic soliton evolution during the propagation
inside the cavity.

Due to high repetition rates of the outcoupled pulse trains in the DKS state, the direct
measurement of the soliton pulses, which is widely used in experiments in fiber cavities
[42, 41], is limited by the photodiode bandwidth and the resolution capabilities of
oscilloscopes. Even a single DKS generated in a 100-GHz Si3N4 microresonators can
hardly be directly detected with the means available in the laboratory. On the other
hand, the dynamics of the DKS states with 14 GHz soliton generated in the MgF2
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Figure 4.7 – (a) Experimental setup. Erbium doped fiber amplifier (EDFA) ; Photodiode
(PD). (b) Photodiode response. The red dots mark the original sampling over a single
roundtrip period (RT). With 9 points per period, the pulse amplitude cannot be accurately
resolved. This problem is solved by aggregating 100 roundtrips to increase the effective
sampling rate and retrieve the impulse response to a single soliton. (c) Single soliton
pulse train, containing 3.5× 105 roundtrips. The inset shown a short section of the trace,
where individual pulses can be coarsely located. (d) Dividing the trace into groups of 100
aggregated roundtrips, and stacking reveals the spatiotemporal evolution of the soliton.
The soliton position and amplitude is fixed as the soliton is stable. In this map, the
colourmap is set to remove the ripples of the photodiode response. (e) Single breathing
soliton pulse train. (f) Applying the same procedure as in (d) reveals the oscillating pulse
amplitude while its position remains stable. (g) Spatiotemporal evolution of a breathing
two-soliton state undergoing a transition to a breathing single-soliton state (switching).
The panels h-j show the evolution of the amplitude of each soliton. (h) Traces showing
a π/2 phase difference between the breathing oscillations of the solitons. (i) Unstable
breathing, after which the quadrature relation is restored. (j) Collapse of one soliton,
while the other survives and remains in the breathing region.
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resonator can still be sparsely sampled with available equipment.

For the direct real-time detection of the soliton dynamics, the portion of the generated
light of the outcoupled pulse train is amplified and detected on a fast photodiode (70 GHz
bandwidth) connected to a real-time oscilloscope with a 45 GHz analogue bandwidth
(sampling rate 120 GSa/s) as shown in Fig. 4.7(a). This configuration allows for the
measurement of ∼ 9 samples per roundtrip and enables a coarse localization of the
soliton pulse within one roundtrip (see Fig. 4.7 (b, c)). Since we observe that the soliton
breathing dynamics evolve over a large number of roundtrips (> 1000), we aggregate
together the samples contained in segments of 100 roundtrips, to achieve an effectively
larger sampling rate. Such averaging over the slow time axis produces smoother traces,
revealing the impulse response of the acquisition system (matching with the photodiode
response), where the instantaneous soliton peak amplitude can be reliably retrieved
(Fig. 4.7(b)). Longer traces (Fig. 4.7(c, e) that measure the evolution over a large number
of roundtrips are divided in 100-roundtrips segments, which are aggregated and stacked.
This facilitates the visualisation of a spatiotemporal evolution of the cavity content over
a large number of roundtrips.

We first benchmarked our measurement procedure in the single soliton state. As expected,
at a pump power of 230 mW and for the effective laser detuning ∼ 10 MHz the soliton is
stationary with a constant amplitude (see Fig. 4.7(d)). For a smaller detuning ∼ 3.5 MHz,
the soliton is breathing and the time trace reveals the oscillatory envelope of the soliton
amplitude (Fig. 4.7(e). In the spatiotemporal frame, this leaves a dotted pattern at the
breathing period (see Fig. 4.7(f)), where the blue shading indicates the soliton amplitude.
The breathing frequency is ∼ 3.4 MHz corresponding to 4145 roundtrips.

The fast recording on the real-time oscilloscope also enables us to delineate the breathing
dynamics of individual pulses in a multiple soliton state. Figure 4.7(g) shows the evolution
of a breathing two-soliton state during a backward tuning around δ ∼ 2.1 MHz. The
state experiences a switching [114] where one soliton decays and the other survives.
Furthermore, in this small detuning condition, the breathing is typically irregular and
might be locally identified as period doubling or tripling, as reflected on the traces
(Fig. 4.7(g–j). The measurement reveals that the two solitons breathe overall at the same
frequency but are not in phase. In the present case, there seems to exist a preferred
phase relation of ∼ π/2. Even if the breathing is irregular and the phase relation can
be locally altered as shown in Fig. 4.7(i), the relative phases seem to quickly recover
this relation. Such behavior has been predicted by Turaev et al. [216], showing that the
longer interaction length of breathing solitons can lead them to form bound states with
a specific inter-distance and breathing phase relation. A quadrature breathing should
correspond to a comparatively large soliton separation, which matches the case above as
the pulses are separated by more than the photodiode response time. However, we could
not derive a clear correlation between the soliton separation and the relative breathing
phase.
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4.5 Conclusion

We have experimentally demonstrated the formation of breathing dissipative solitons
in two distinct microresonator platforms. The large difference in the characteristics of
the MgF2 crystalline resonator and photonic chip Si3N4 microresonator validates the
universal nature of our observations. We implemented a laser tuning method which enables
reliable access to soliton breathing. Typical signatures of breathing solitons, including a
periodically varying soliton peak intensity and a triangular spectral envelope are observed.
Moreover, we presented the first direct time-resolved observation of dissipative Kerr
solitons in microresonators, revealing the breathing dynamics of individual solitons in
both single and multiple breathing soliton states. Such measurements unambiguously
reveal the transition to higher breathing periodicity and a more chaotic type of behavior.
By monitoring the laser detuning of the driven nonlinear system, we present direct
measurements of the breathing frequency dependence on the laser detuning. These studies
evidenced a linear relation, which agrees remarkably well with numerical simulations and
provides further insights into this breathing property.

These findings not only carry importance from an application perspective, but also
contribute more broadly to the fundamental understanding of dissipative soliton physics.

In the context of low-noise operation of soliton-based Kerr frequency combs, breathing
degrades the soliton stability and should generally be avoided. We should note, however,
that the soliton breathing inspected in the present Chapter is not the only source of the
instabilities of the DKS states. As we showed recently, intracavity solitons can also form
inter-mode breathing states, which can be induced by the presence of AMX and can
appear within the stable DKS regime [193].
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5 Soliton crystals in optical mi-
croresonators

This chapter reports on the experimental observation of perfect soliton crystal states
in optical microresonators and study of their formation and switching dynamics. The
results are partially adapted from M. Karpov et al., "Dynamics of soliton crystals in
optical microresonators", Nature Physics, 15, pp.1071–1077, (2019).
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Chapter 5. Soliton crystals in optical microresonators

5.1 Introduction

So far we mostly focused on the investigation the single-soliton states, and impacts on
their dynamics induced by microresonator material (e.g. Raman effect - see Chapter 2),
or internal reasons (e.g. breathing - see Chapter 4 ). There is, however, another level of
the system dynamics, which concerns not the self-organization of light and the dynamics
of individual solitons, but collective self-organization phenomena of the DKS.

As was shown in Chapter 1, the microresonator system is able to support several coexisting
intracavity pulses, which results in the formation of multiple-soliton states. These states
can be obtained quite regularly from devices with significant thermal effects (e.g. Si3N4
microresonators [84, 114, 107]), which is associated with thermally-induced lifting of the
soliton existence range degeneracy for DKS states containing different number (N) of
soliton pulses. Optical spectra of these states represent complex, highly structured but
regular patterns resulting from the interference of N single-soliton pulse envelopes with
different phase positions φ1...φN ∈ [−π, π] (see eq. 1.63). The complexity of the patterns
grows with the number of intracavity pulses, which also reduces or completely vanishes
the pattern regularity for high-soliton-number states.

Another feature, which is usually observed in experiments, is that for a given generated
multiple-soliton state, the separation distance between soliton pulses remains fixed. It is
particularly interesting, because such behavior is not directly captured by the simple LLE
model with the dispersion limited to the second order. The DKS pulses obtained in such
"pure" system can coexist with arbitrary separation distances, and only start to mutually
interact when their tails start to overlap, which happens at very short distances on the
order of several soliton pulse durations [217]. Moreover, the translation invariance of such
LLE system also implies that DKS pulses should move under any external, even noise-like
perturbation, as there is no restoration force, holding them at certain separation distance.
In contrast, in experiment, the soliton separation distance remains fixed even for the
low-number soliton states, when the pulses are separated by multiple soliton separation
distances or even located on the opposite sides of the cavity. These observations let us
assume that there are mechanisms which establish the long-range interaction between
DKS pulses inside the cavity, which can be also referred to as the formation of long-range
bound states.

The formation of soliton bound states in the NLSE with dissipation was extensively
studied in early 1990 by Boris Malomed for spatial solitons [218, 219, 220]. He found
that perturbation on the soliton spectrum can lead to the formation of the soliton bound
states with discrete set of separation distances. These ideas were recently extended to
temporal cavity solitons in the work by Wang et al. [217], where the formation of bound
states in fiber cavities was shown to be also linked to various phenomena responsible
for perturbations of soliton spectra: dispersive wave emission [221, 84] presence of Kelly
sidebands [222] and fiber birefringence.
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Figure 5.1 – (a) Frequency-domain picture of the soliton crystal state with a single defect
(single vacancy) formed in the cavity. (b) Time-domain picture of the intracavity power
showing the underlying optical pulse lattice consisting of multiple DKS pulses with one
defect - missing pulse.

In microresonators, there are also processes resulting in the deviations of the stable
DKS states from the typical sech2-shape soliton envelope. Two central and most widely
observed ones are (i) the formation of soliton dispersive wave (DW) due to high-order
dispersion terms and (ii) the presence of avoided modal crossings (AMX). The first one
- DW - typically consists of the modes, which satisfy phase-matching conditions with
respect to a DKS. Resulting spectrum acquires sharp but usually rather broad peak,
which is in time-domain results in oscilating and decaying soliton tail, whose decay rate is
much shorter than the cavity roundtrip time (here we point out, however, that in certain
cases, when the phase-matching is induced by mode interactions as, for example, in the
work by Yi et al. [46], the DW can also be spectrally narrow). While the formation of
DW-induced long-range temporal ordering was predicted in simulations [223], so far no
experiments were aimed to investigate this phenomenon or provide clear experimental
results demonstrating such effect. On the other hand, the second reason for the spectral
perturbations of the soliton spectra is the presence of avoided modal crossing. AMX
results in rather localized spectral variations, leading to the strong enhancements of
few comb lines, and long oscillating time-domain tails of the soliton pulses. Recently, it
was shown that the presence of AMX in microresonators can lead to the formation of
temporally ordered DKSs, which have become especially evident in high-number-soliton
states [197]. Such temporarily-ordered soliton ensembles filling almost whole cavity and
maintaining strict spacing were called soliton crystals by the analogy with atomic lattices
of crystalline solids. In contrast to high-number multiple soliton states, which have very
irregular and structured spectra, the spectra of soliton crystal have one distinctive feature
- a set of strongly enhanced comb lines (we will refer to them as supermodes) spaced
apart by multiple free spectral ranges (see Fig. 5.1(a)). The appearance of supermodes is
caused by high temporal regularity and stability of the underlying soliton pulse train
resulting from 1D soliton lattices formed in the cavity. The ordering of soliton pulses
can be broken by the presence of shifted or missing DKS pulses, which are called defects,
as in the regular bulk crystals (see Fig. 5.1(b)). While the spacing and the strength of
the supermodes is mostly defined by the (inverse) spacing between the adjacent pulses
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Chapter 5. Soliton crystals in optical microresonators

and their number in the ordered soliton lattice, the pattern of remaining comb lines is
linked to the presence of defects in the soliton crystal lattice structure.

5.2 Perfect soliton crystals

Experimentally, the formation of soliton crystals was first demonstrated in silica microres-
onators [197]. The study also linked the presence of AMX to the DKS crystallization
process (establishing of the long-range temporal order) and investigated the taxonomy
of defects in soliton crystals. Recently two other works have demonstrated the soliton
crystal formation in high-doped glass microresonators and attempted to study their
stability chart and impact of Raman effects [224, 92]. Despite these works have high-
lighted some aspects of soliton crystal behavior, there are still a lot of open fundamental
questions concerning their dynamics, operation stability at various system parameters
and accessibility of the defect-free states. It is also unknown whether soliton crystals
reproduce the typical behavior of multiple and single soliton states - if they feature
similar switching mechanisms or have enough robustness to form nonstationary states
such as soliton crystal breathers.

In the following sections we investigate different aspects of the soliton crystal dynamics
and focus on the simplest and most ideal representatives of this class of soliton states
termed perfect soliton crystals (PSC), which is schematically illustrated in Fig.5.2.

Frequency Frequency

Perfect soliton crystal
      X · FSR

~X2 

 X op�cal pulses

Figure 5.2 – Sketch of the perfect soliton crystal consisting of X pulses (X = 15) formed
in the CW-driven nonlinear optical microcavity. Strong CW pump in the bus waveguide
is not shown for clarity.

A PSC is a set of dissipative Kerr solitons distributed evenly on the resonator circumfer-
ence, whose number (X) equals to the maximum number of solitons that such resonator
can accommodate under given pumping conditions. Time-domain intracavity waveform
of a PSC represents complete and defect-free circular optical soliton lattice with fixed
and time-independent pulse separation of 2π/X. In frequency domain the resulting inter-

We purposely introduced new variable for the number of solitons in the PSC state to distinguish
it from N denoting a number of pulses in an arbitrary DKS state. For ideal system X = Nmax (see eq.
(1.64))
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ference pattern of X regularly-spaced DKS pulses leaves only supermodes and suppresses
all other lines (see Fig. 5.2).

In contrast to soliton crystal states with defects, the behavior of PSC is unperturbed by
missing or shifted pulses, what guarantees an access to the "pure" dynamics of soliton
crystals. Apart from simplicity, PSC states bear several important features relevant
for both fundamental research and applications. First, due to the high regularity of
the intracavity pulses, the PSC states can be used as high-purity, ultra-high-repetition
rate soliton combs, reaching a mode spacing of several THz. This is challenging to
directly achieve in small microresonators (with the radia < 20 µm) due to the increase of
bending losses in microresonator waveguides and limitations on the dispersion control.
The second advantage of PSC states is that the comb energy is distributed in a few lines
(supermodes), separated by X·FSR, which gives them an X2 enhancement in comparison
to the single-soliton state, which can be excited under the same pump conditions in the
given system (see Fig.5.3(a)). Such significant enhancement can be especially useful for
self-referencing of soliton microcombs, as well as locking to an optical reference located
in the weak wings of single-soliton states. Third, we also believe that such states can
provide a convenient microwave-to-THz link, enabling the stabilization of THz signals
with standard RF equipment, because a PSC state establishes natural coherent link
between the native FSR of the system and the mode spacing of the supermodes.

In experiments we use Si3N4 microring resonators with various FSRs of 20, 100, 200 and
1000 GHz. The majority of results were obtained in 100-GHz devices with Q-factors
∼ 106 (linewidth κ/2π = 150 − 200 MHz), which were fabricated using the Photonic
Damascene process [28]. In order to achieve single mode operation and suppress the
effect of avoided mode crossings, a “filtering section” was added to the microresonator
[45, 225]. Similarly, the photonic Damascene process was employed for the fabrication of
the 200-GHz, and 1-THz devices used for the verification of our results. Finally, 20-GHz
device was fabricated in the subtractive process [226, 84] and was used to demonstrate
the platfrom-independence of the results.

Fig.5.3(a) shows real PSC state with X = 15, experimentally obtained in a ∼ 100-GHz
microresonator (blue). The spectrum consist of only supermodes spaced by ∼ 1.5 THz,
while all residual lines are not detectable with given OSA sensitivity and resolution
bandwidth (RBW). The observed difference between the supermodes and measured
noise floor was at least 60 dB. We also could not detect the native-FSR beatnote of
∼ 100 GHz electronically (see Fig.5.3(c)), which confirms extreme regularity of the DKS
pulse arrangement inside the cavity and absence of any defects. Since the spectrum of
the PSC state is very similar to the primary comb state, we use VNA-based response
measurements [114](see also section 3.3 of Chapter 3) to unambiguously identify the
soliton formation. The inset of Fig.5.3(a) demonstrates response measurement of the
corresponding state (blue), which shows a clear double-resonance feature indicating the
coexistence of DKS pulse with CW background, thus confirming the formation of the
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Figure 5.3 – (a) Optical spectra of the soliton crystal state (blue) and single soliton
state (red) stabilized in ∼ 100 GHz Si3N4 microresonator under the same conditions
of pump power and effective detuning; inset shows the system response measurement
using a VNA-based scheme [114] in both states. C and S letters indicate the positions of
C - and S -resonances correspondingly. (b) Measured integrated dispersion of the Si3N4
microresonator used in experiments (circles) and fitting curves for the fundamental TE
(dashed red) and TM (dashed blue) mode families [43]. The calculated group velocity
dispersion term (D2/2π) for the TE mode used for DKS formation is ∼ 1.2 MHz; (c)
Repetition rate beatnote measurements in the single soliton state and the PSC state
shown in (a). Native repetition rate of ∼ 100 GHz was not detected in the PSC state.

DKS state. For comparison, we also generated a single soliton state using the same
device under the same pump power and effective detuning conditions (shown in red in
Fig.5.3(a)). The same value of detuning for given single soliton state can be confirmed
from the position of the of the C -resonance in VNA measurement trace, shown in the
inset. Also, in accordance with the understanding that the amplitude of the S -resonance
scales with the number of intracavity pulses [114] (see also section 3.3 of Chapter 3), we
can observe a significant difference of this feature in the VNA response between PSC
state and the single soliton state. The power difference between PSC supermodes and
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corresponding comb lines of the single soliton state is about 24 dB, which matches very
well the expected difference of X2 = 225 ∼ 23.5 dB. We also note that overall spectrum
profile of the PSC state reproduces the single soliton shape and particularly maintains
the Raman-induced soliton self frequency shift. This can be easily explained noting that
all DKS pulses of the PSC state have the same pulse energy, pulse profile and experience
the same effect of intrapulse Raman scattering.

5.3 Generation of perfect soliton crystals

5.3.1 Experimental generation of PSC

We next focus on the generation of soliton crystals. It has been experimentally demon-
strated that soliton crystals can appear as a result of microresonator mode interactions
[197], which through the AMX induce a modulation on the intracavity CW background,
leading to the ordering of the DKS pulses [217]. It should be pointed out, however, that
to the best of our knowledge all current microresonators inevitably contain AMX-s, which
even in a quasi-single-mode case can appear from the interaction between fundamental
modes [225, 227]. The latter means that, in principle, every microresonator system should
have an ability to generate a crystal state, because a necessary requirement for the DKS
crystallization is satisfied. Since the soliton crystals were rarely reported and so far not
carefully investigated, it is reasonable to assume that there exists another important
ingredient, enabling the formation of soliton crystals in certain cases or precluding it in
the majority of others. In the following we show that such a second ingredient is the
pump power of the DKS generation procedure, which predetermines the formation of
soliton crystal states, and in particular PSC.

First, in experiments we observed that the generation of soliton crystal states is typically
achieved at relatively low pump powers, while the same standard procedures of soliton
excitation (forward tuning [9]) at high pump powers can only lead to the formation of
multiple soliton states with structured spectrum and irregular arrangement of soliton
pulses. This observation was made in microresonators having various designs and FSRs
with only a difference in the actual threshold value (Psc) distinguishing "low" and "high"
pump powers.

To clearly demonstrate the existence of such a threshold, we use four different fixed pump
powers (P1...P4: 0.15W, 0.20W, 0.25W, 0.80W) and carried out 100 pump frequency
sweeps over the cavity resonance in one of our 100-GHz devices. At each pump power
the success rate of the generation of PSC states was counted through the statistics of
the recorded soliton steps: after defining the height of the soliton step corresponding to
a PSC state, we couted the number of soliton steps with this height out of all tuning
attempts. Figure 5.4(a, b) shows the histogram of such success rates for measured pump
powers revealing the existence of a clear threshold for deterministic PSC formation at
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Figure 5.4 – (a) Experimental pump sweeps over the cavity resonance at two pump
powers P1 = 0.15W and P2 = 0.20W below the threshold power Psc; statistical overview
of the generated states out of 100 scans for each power - at both powers the system
always demonstrate the step of the same height, corresponding to a PSC state with
X = 15; (b) Experimental pump sweeps over the cavity resonance at two pump powers
P3 = 0.25W and P4 = 0.80W above the threshold power Psc; statistical overview of the
generated states out of 100 scans for each power - no deterministic PSC step formation
is observed, steps are formed stochastically; (c) five arbitrarily chosen scan traces at P2
showing PSC step reproducibility; (d) five arbitrarily chosen scan traces at P4 showing
stochastic distribution of the generated steps; (e,f) Experimentally generated PSC (e)
and multiple-soliton state (f), obtained at the powers P2 and P4 correspondingly.

around 0.25W. Strikingly, for both experimental power values below the threshold -
P1 = 0.15W and P2 = 0.20W, the system has long soliton step, which is reproduced
in every scan with 100 % success rate (see Fig.5.4(c)). On this step the system always
stabilizes in the same PSC shown in Fig.5.4(e), i.e. making the process deterministic.
Due to the matching of the intracavity power levels in the MI state and the PSC state,
the final state almost independent of the tuning speed, because the thermal effect does
not shift the system operating point out of the soliton existence range. The system can
be even tuned manually in the PSC state similarly to the soliton crystal states with
defects observed earlier [197].

In contrast, reproducing an experiment at higher pump power P3 = 0.25W, which

110



5.3. Generation of perfect soliton crystals

is already above the threshold, we can observe that soliton steps are starting to be
stochastically distributed, thus reducing the success rate of the PSC generation. At a
high pump power well above the threshold (P4 = 0.8W) the system is purely stochastic
in terms of the number of generated soliton pulses (see Fig.5.4(d)), which is always well
below the maximum soliton number in the PSC state (X = 15).

5.3.2 Simulations of the PSC generation

To reproduce the observed behavior in simulations and understand the underlying physics,
we use Lugiato-Lefever equation (LLE) (1.55) with the parameters corresponding to our
experimental Si3N4 device: FSR = 95.4 GHz, D2/2π = 1.3 MHz, κ/2π = 200 MHz,
η = 1/2, ω0/2π = 193.46 THz. The simulations were performed with 512 modes.

In order to enable the formation of soliton crystals the LLE was perturbed in order
to imitate simple avoided modal crossing (AMX). For this purpose we introduced an
additional detuning change for a mode with a relative mode index ξ, such that the
detuning value for such a comb line is δωξ = ωp − ωξ = ωp − (ω0 +D1ξ + ∆AMX), where
∆ accounts for the mode shifting due to the impact of the spectrally localized AMX.
The parameters of the perturbation introduced for the soliton crystals are: ξ = 15,
∆AMX/2π = 130 MHz. The position of the modal crossing ξ = 15 was chosen to enable
the formation of a perfect soliton crystal consisting of 15 DKS pulses. The "strength" of
the modal crossing ∆AMX/2π was set to satisfy two conditions: (i) it should be large
enough to enable the crystallization of the intracavity field in a PSC state with given
parameters of the microresonator system; (ii) The perturbation it introduces to the
system is small and does not affect the formation of multiple-soliton states (e.g. by
shortening the DKS steps [98] or initiating significant inter-mode breathing [193]).

Using the perturbed LLE we implement multiple forward tuning scans at various pump
powers imitating soliton generation attempts. As in experiments, we also observed the
existence of a threshold pump power (∼ 0.25W, very close to the experimental value),
which separates two different generation scenarios. In the first one, below the threshold,
almost every simulation ends in the same PSC state, as shown in Fig.5.5(a). The
process does not depend on the initial conditions and reveals determinism and extreme
robustness of the generation procedure available for the PSC states below the threshold
power Psc. In contrast, the simulation result becomes stochastic for pump powers above
the threshold. Depending on the initial conditions and scan parameters the system forms
soliton crystals with defect(s) or – only in rare cases – the PSC. At high enough powers
no soliton crystal formation is observed. Resulting intracavity waveform represents a
typical multiple-soliton state, consisting of several sparsely-spaced DKS pulses, as shown
in Fig.5.5(b). Even though the pulses can still maintain long-range temporal order (being
bound to the modulated background), characteristic signatures of soliton crystal states
(e.g. enhanced lines with extreme conversion efficiency) are degraded.
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Chapter 5. Soliton crystals in optical microresonators

Figure 5.5 – (a,b) Simulations of the intracavity waveform evolution during two tuning
attempts for the generation of DKS states below (a) and above (b) the threshold power:
1 — pump power Pin < Psc, below the threshold, the detuning is stopped in the stable
soliton regime - PSC state is generated; 2 — Pin > Psc, above the threshold, the detuning
is stopped in the stable soliton regime - multiple-soliton state is generated.

5.3.3 PSC stability chart

We found that in order to explain the behavior of PSC, and in particular - the presence
of the threshold power, observed in experiments and simulations, one needs to employ
the stability chart of our LLE system [42].The stability chart can be directly simulated
using the perturbed LLE described above. We remind that the LLE can be reduced
to the dimensionless form with only two control parameters: normalized detuning ζ0
and normalized pump amplitude f (see Chapter 1). For this reason obtained stability
diagram and the following discussion can be directly generalized to any Kerr nonlinear
microresonator system using dimensionless parameters (f, ζ0). We also note that attempts
to simulate the stability chart for soliton crystals have been made recently [228, 224],
but the investigation of its complex structure and the presence of chaotic regimes was
incomplete.

We initialize the system with a perfect soliton crystal solution at various values of
pump-cavity detuning (ωp − ω0) and pump power (Pin), and propagated it for about
5000 roundtrips to let the system stabilize. Obtained stable states were classified in
several regions: stable PSC state, breathing PSC state, spatiotemporal chaos, transient
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5.3. Generation of perfect soliton crystals

Figure 5.6 – (a) Simulated stability chart of the Lugiato-Lefever equation augmented with
one AMX crossing located at ξ = 15; Colored areas indicate different stability regions
of PSC states: green - stable PSC, red - breathing PSC, blue - modulation instability,
grey - spatiotemporal chaos (STC), yellow - transient chaos (TC), white - CW solutions.
Numbered circles indicate six simulations made in different stability regimes. Evolution
of the intracavity waveforms in these simulations is plotted in (b). (b) Simulations of
the intracavity intensity evolution at fixed pump-cavity detuning and pump power in
six different stability regions marked in (a). All simulations are initialized with a PSC
solution and propagated for ∼ 25000 roundtrips (from top to bottom of each graph).

chaos, modulation instability (MI) and homogeneous (CW) solutions, which were marked
with corresponding colors on the stability chart (see Fig.5.6(a)). In order to demonstrate
the behavior of the system in region, we explicitly plot the evolution of the intracavity
intensity during ∼ 25000 roundtrips, which was seeded with a perfect soliton crystal at
six different fixed detunings and the same pump power Pin = 1W (see Fig.5.6(b)).

We briefly discuss all dynamical regions and the system behavior in each of them, and
particularly stop at two chaotic regimes at the end (note that the regions are discusses
not in the order they are numbered in Fig. 5.6):
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Chapter 5. Soliton crystals in optical microresonators

Stable PSC states - in this regime the system remains in the initial PSC state
maintaining all DKS pulses and their arrangement. We note that the state propagates
stationary (individual pulses do not change their shape), but acquires linear drift with
respect to the rotating reference frame. The drift is caused by the change in the group
velocity of DKS pulses, induced by the spectral recoil from AMX.

Breathing PSC states - in this regime the system maintains the number of pulses from
initial PSC state, but starts breathing. Similarly to the single-soliton breathers (Chapter
4) DKS pulses of the PSC state reveal synchronous periodic oscillations in their duration
and amplitude. For simplicity, we do not distinguish in this region multiple-period
oscillations [42, 185].

CW states - in this regime the system quickly (at the photon escape rate of κ) decays
to the homogeneous (CW) solution. No spatially localized solutions are observed here.

Modulation instability - in this regime the system appears in stable or chaotic MI
state.

While four above-listed regions are well-known in the CW-driven Kerr nonlinear microres-
onators and were extensively studied in theoretical and experimental works, we would like
to focus on two additional regimes, which can be identified within the bistability region.
They so far did not get as much attention as others, but represent key dynamical regimes
for our study - spatiotemporal chaos (STC) and transient chaos (TC) [42, 213]. First
we note that both of them lie within the bistability boundaries of the system, meaning
that in both regions the system has stable homogeneous solution (lower-branch solution),
similar to the CW states described above.

Spatiotemporal chaos - in this region each of the DKS pulses forming the initial
PSC state starts to seed spatiotemporal instabilities [213], which quickly merge together
leading to the chaotic spatial and temporal oscillations of the whole intracavity waveform.
As can be observed in plot 2 of Fig. 5.6(b), such chaotic behavior can persist (for more
than 20000 roundtrips in a given simulation) with no sign of degradation or evident
changes in its dynamics. The intracavity chaotic dynamics can be also represented as a
set of chaotically moving transient pulses, which actively interact, collide, decay and give
birth to new solitary pulses.

Transient chaos - before discussing this region, we recall that the transient chaos
phenomenon, observed in nonlinear dynamical systems describes the system behavior,
which, when the system is seeded by the random solution, demonstrates chaotic behavior
for a long period of time (much longer than characteristic timescale of the system), and
then abruptly switches to a different, often nonchaotic behavior [229]. The transient
chaos for the PSC solutions, which is observed in our LLE system, reveals itself in the
following dynamics: the initial PSC state experiences long-timescale chaotic decay to
a new state. For our system the characteristic timescales are: the roundtrip time, the
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5.3. Generation of perfect soliton crystals

photon escape rate and the breathing period, and all of them are much smaller than
characteristic time of such decay. Depending on the system parameters, the final state
can be a steady-state homogeneous solution, or time-varying multiple-soliton state with,
however, time-independent number of pulses. An example of the intracavity intensity
evolution in this region is shown in plot 3 of Fig. 5.6(b). The system is initiated with
a PSC, and in this particular example for about two thousand of roundtrips maintains
its spatial order, while having temporally chaotic behavior. After this, the intracavity
waveform start to spontaneously lose DKS pulses. They can decay spontaneously without
interaction with other pulses or due to the collisions with adjacent pulses. The process
continues until the last pulse decays (around 18000 roundtrips for our simulation) and
the intracavity waveform ultimately becomes only the CW solution. Depending on the
seed the general pattern of the spontaneous decay from an initial PSC state to a final
state may change significantly, but it always has two important distinctive features in
the TC region that we demonstrated in our simulations: (i) the decay of the intracavity
field mostly happens pulse-wise, which is in contrast to decay of the state outside of the
bistability region (see e.g. plot 6 in Fig. 5.6(b); (ii) the final state of the system has a
stable attractor, which might be a CW or non-stationary multiple-soliton state.

We would like to point out some subtle differences between the stability chart we obtained
for soliton crystal state (Fig.5.6(a)) and the stability chart, obtained for single-soliton
states in earlier work for similar driven Kerr-nonlinear system [42]. Apart from general
similarity, one can note that the region of transient chaos that was found in the simulations
by Leo et al. starts at around f = 5, while in our simulations its bottom extends down to
f ∼ 4 if we recalculate our simulations to dimensionless units. The difference here is in the
following, for f > 5, the system in both cases (single soliton state and PSC state) reveals
transient chaotic behavior and always decays to a homogeneous solution (CW solution).
While for 4 < f < 5 the evolution of the system initiated with a single soliton state and
PSC state will differ. In the first case the intracavity waveform maintains its spatially
inhomogeneous structure (DKS pulse) with periodic or possibly chaotic oscillations. In
the second case, a PSC state is not maintained and relaxes to a multiple-soliton state
with lower number of DKS. In the latter case the system also undergoes transient chaotic
processes, where the final state is not a homogeneous solution but lower-number-soliton
state. Since our map is plotted with respect to a PSC state it is natural to classify this
scenario as transient chaos.

5.3.4 Chaotic regions and the PSC generation process

Having established the different dynamical regimes of our system, we can now consider
the typical generation process of forward tuning, which we used in our simulations and
experiments. Since the forward tuning operates at the fixed pump power, and the only
variable parameter is detuning, the tuning process can be represented in the stability
chart as moving of the operation point of the system along the horizontal line, as shown
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Figure 5.7 – (a) Simulated stability chart of the Lugiato-Lefever equation augmented
with one AMX crossing located at ξ = 15 (same as in Fig.5.6); Colored areas indicate
different stability regions of PSC states: green - stable PSC, red - breathing PSC, blue -
modulation instability, grey - spatiotemporal chaos (STC), yellow - transient chaos (TC),
white - CW solutions. Numbered dashed lines indicate two tuning procedures generating
DKS states at fixed pump power which avoid (1), or go through the STC and TC regions
(2). They correspond to the simulations shown earlier in Fig. 5.6. Red dashed line marks
generation threshold for PSC states.

in Fig. 5.8.

By comparing experimental results shown in Fig. 5.4, simulations of forward scans and
the stability diagram, we found that two chaotic regions - STC and TC play a major
role in the formation of soliton crystal states. Excursion of the operation point of the
system through any of these regions reduces the probability of generating PSC or soliton
crystals with a low number of defects. First, in the region of STC, which has its lower
boundary at P ∼ 0.25W (f ∼ 3), the intracavity waveform experiences fluctuations in
the instant number of pulses due to its complex chaotic behavior. Such fluctuations
do not guarantee that the number of seed pulses, at the moment when the DKS state
is stabilized, will match the number of potential "sites" introduced by the background
modulation. This stochasticity results in fundamental indeterminism in the final DKS
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state, which can be either a PSC or soliton crystal with defects.

The second region – TC, demonstrates even more dramatic impact. It is located above
f ∼ 4 for PSC states, and immediately follows the region of STC for a forward tuning
procedure. Due to the transient chaos, the number of intracavity pulses, which can
become seeds for the DKS pulses when the system enters the soliton existence range,
decreases as long as system stays in the TC region. This results from the gradual decay
of the intracavity waveform towards flat or low-soliton-number state.

The effects of both regions explain our experimental observations and presence of threshold
power. As can be seen from the simulated stability chart demonstrated in Fig.5.8,
depending on the pump power, the system operation point can pass by single chaotic
regime (STC), both of them (TC and STC) or none. First, since the generation procedure
of the DKS state for any power below f ∼ 3 (Psc ∼ 0.25W) avoids both the STC and
TC, and the MI region directly connects to the stable (or breather) soliton regime -
the system in such process deterministically lands in a PSC state. It is enabled by
MI, which provides enough number of seed intracavity pulses to fill all potential sites
of the PSC state, when the system enters soliton existence range. On the other hand,
when generating a soliton state in forward tuning with the pump power above the
threshold f > 3, the final number of pulses becomes stochastic, and in accordance with
experiments the probability of getting PSC decreases. This explains why the probability
to generate a PSC state in experiment rapidly decreases above the threshold power, and
the distribution of steps becomes partially stochastic (the same tuning procedure leads
to the generation of the PSC states only in certain cases). In this regime, the system
however is still able to generate soliton crystals with defects, because the presence of
the AMX guarantees the temporal ordering of the pulses even if the number of pulses
less than the potential number of sites. At high pump powers f > 4, when the system
experiences the cumulative effect of both STC and TC regions, the formation of the PSC
as well as soliton crystals with low number of defects is prohibited due to the impact of
TC, which "clears" the cavity and limits the maximum soliton number of the generated
DKS states. Although the formation of regularly spaced soliton molecules (bound states
of several adjacent solitons [48]) and single solitons is still possible, typical features of
soliton crystal states are degraded. The system lands in multiple-soliton states.

These results and understanding establish a critical role of the pump power in the
generation process of soliton crystals, and in particular PSC states. First, it directly
provides a simple approach for deterministic access to a PSC state in any microresonator
system: one needs to use low pump powers, which can help to avoid STC and TC regions
in the given system (f < 3). To verify this approach we were able to deterministically
generate PSC states in microresonators with vastly different FSRs (20-1000 GHz) and
fabricated with different fabrication processes (see Fig.5.7). The resulting PSC states
have X ranging from 3 (1000-GHz FSR) up to 87 (20-GHz FSR). The latter one in
particular corresponds to the perfect soliton crystal state consisting of 87 DKS pulses,
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Figure 5.8 – Left: Optical microscope images of Si3N4 microresonators with different
free spectral ranges of 20 GHz, 200 GHz and 1000 GHz used for the generation of PSC
states; Right: perfect soliton crystal states generated in each device (right).

which results in the interferometric power enhancement of each of its supermodes by
almost 40 dB (872 = 7569 times). Second, understanding of the power-dependency of
the soliton generation process and its link to the stability chart can help to explain other
observations in microcomb systems, as well as different routes observed for the generation
of the DKS states.

5.4 PSC switching

5.4.1 Translation of PSC states

After deriving the conditions for the faultless and deterministic generation of PSC states
we focus on their dynamical properties. We start by introducing a method to operate
with soliton states in the two-dimensional parameter space of the system (pump power,
effective detuning) in order to access different dynamical regimes of soliton crystals. While
pump power measurement of the given DKS state is straightforward, a measurement of
the effective detuning can be challenging. We use VNA soliton probing scheme described
in Chapter 3. An effective detuning of the given soliton state can be identified from the
position of the C -peak in the VNA repsonse of the system to a weak phase modulation
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[114]. Being able thus to determine and monitor the operational point of the generated
DKS, we can precisely locate it in the stability chart. Moreover, by introducing changes
in the pump power or the frequency of the pump laser - we can translate DKS state in its
parameter space. Such power- and detuning-translations were explored in various works
[191, 107, 230], but due to the absence of the soliton probing scheme and impact of the
thermal effects, prohibiting the measurements of the effective detuning, the mapping to
the stability chart was hardly possible.

In the work we use the proposed method of well-controlled soliton state translations to
explore different dynamical regimes of soliton crystals. For this we first experimentally
verify that PSC states are robust with respect to power- and detuning-translations, and
are maintained by the system until pump power and effective detuning stay within the
soliton existence area. Figure 5.10 demonstrates, that PSC states are indeed able to
sustain significant translations in power and detuning. We show two translations (one -
in pump power, and one in effective detuning) of the same PSC state generated in the
100-GHz Si3N4 microresonator. From the optical spectra we can see that the structure
of the PSC state is maintained in both translations. Despite some slight changes in
the powers of individual comb lines due to the increased pump power or change in the
effective detuning (which is natural for DKS states, when the detuning or pump power
are changed [231]), the system has maintained the number of pulses and exceptional
level of their temporal ordering. We also note here that thanks to the soliton probing
scheme, which provides direct measurements and control over the effective detuning, we
can efficiently isolate the power translations from the detuning translations, which are
coupled due to thermal effects.

The robustness of the PSC state with respect to such translations gives us a powerful
opportunity to explore different dynamical regimes of soliton crystals by implementing
arbitrary complex routes of PSC state transfer in power, detuning, or both.

5.4.2 PSC switching in experiments

We use PSC state translations to investigate the switching process of soliton crystal
states. Indeed, the switching of soliton crystal states has never been reported, though as
we have shown earlier in Chapter 3 DKS states can experience switching events, which
reduce the number of intracavity solitons one-by-one [114].

Since the generation process of the PSC states strongly depends on the pump power
it is reasonable to assume that other aspects of their dynamics including switching are
also power-dependent. Due to the impact of chaotic regions, which remove potential
soliton seeds from the cavity above the threshold power Psc, PSC states at higher pump
powers are inaccessible with simple forward tuning. In order to bypass this limitation the
following procedure is suggested. We first deterministically generate the PSC state below

119



Chapter 5. Soliton crystals in optical microresonators

-60

-40

-20

0

Po
w

er
 (d

Bm
)

-60

-40

-20

0

Po
w

er
 (d

Bm
)

PSC state (A)

a

b

PSC state (B)

pump A pump BPSC pump transla�on

PSC detuning transla�on

0 0.5 1 1.5 2

Frequency (GHz)

-90

-70

-50

Po
w

er
 (d

Bm
)

detuning C

1400 1450 1500 1550 1600 1650 1700 1750
Wavelength (nm)

PSC state (C)
PSC state (D)

0 0.5 1 1.5 2
Frequency (GHz)

-90

-70

-50

Po
w

er
 (d

Bm
)

detuning D

Figure 5.9 – (a) Power translation of the PSC states from the pump power A (blue) to
pump power B (red), separated by ∼ 4 dB. Inset shows the VNA probing of the effective
detuning in both states [114] to demonstrate that the detuning was maintained. (b)
Detuning translation of the PSC state from the detuning value C (red) to the detuning
value D (blue), separated by ∼ 0.3 GHz. Inset demonstrates the VNA measurement of
the effective detuning in both states.

the threshold power ensuring that it is stable in the soliton existence range, and then
employ power- and detuning-translations of the operating point towards higher pump
powers. Such approach of two-stage routing enables access to the PSC states operating
at any pump power, which is not possible with simple one-stage forward tuning.

Following this excitation scheme for the investigation of power-dependency of the switching
process we constructed complex translation routes consisting of three consecutive stages
(see the route demonstrated with blue dashed line in Fig.5.10(a)): (1) Deterministic
PSC generation with forward tuning at the power below Psc, (2) PSC state translation
to a new power P ′, (3) backward tuning of the PSC state to induce soliton switching.
Implementing such routes for various progressively increasing P ′ values in our 100-GHz
Si3N4 microresonator, we observed that the switching of PSC states suddenly becomes
available above pump power Psw ∼ 0.6 W (fsw ∼ 4). Below Psw the system does not
show any switching behavior. The PSC state directly seeds (switches to) MI. An example
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of such behavior is shown in the bottom graph of Fig.5.10(c). We also note that similar
effect was also observed for individual DKS in fiber cavities [213]. Above the Psw the
system becomes switchable, and we are able to reduce the number of intracavity pulses
before the DKS state will seed MI. It is worth mentioning that just above the switching
threshold the system allows only for 1-2 switchings before it seeds MI, while as the pump
power grows - more and more switchings become available, until the system is able to
reach single soliton state and then be switched to a CW state by removing the last DKS
pulse before seeding MI (above ∼ 1 W (f = 5)). In most cases at intermediate power,
the direct MI seeding can still be observed, but happens after several switchings. The
experiments are summarized in Fig.5.10(b), where the number of available switching
events is plotted as a function of pump power.
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Figure 5.10 – (a) Simulated stability chart of the Lugiato-Lefever equation (same as in
Fig.5.6); dark blue dashed line traces complex experimental routes for the controlled PSC
state evolution: (1) generation (below TC region), (1 – 2) power and detuning translation
to higher pump power P ′, (2 – 3) backward tuning (into TC region) to induce switching.
Grey dashed line indicates the route, when the backward tuning is implemented at too
low power and system does not enter the TC region, such that no switching is induced.
(b) Experimental results showing the number of switchings available to PSC state at
different pump powers. The states are unswitchable (grey attempts) below a threshold
power of Psw = 0.6 W, and are switchable above (green attempts). Horizontal axis shows
the number of available switchings, CMI -chaotic modulation instability, SS - switching
to single soliton state. We note that the experimentally measured transition between
switchable and non-switchable states (marked with purple dashed line) matches well
the bottom of the TC region obtained in simulations shown in (a). (c) Evolution of
the generated light power (red) and total intensity noise (blue) measured during the
backward tuning procedure from a PSC state for two pump powers: below Psw(a) and just
above it (b). Soliton states are shaded green, modulation instability region is unshaded.
Transition to MI can also be traced by the significantly increased total intensity noise.
The switching in (b) can be also identified by a characteristic spike attributed to the
onset of breathing just before the switching.
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In order to verify this behavior in simulations, we used the same LLE as in the previous
section, and implemented backward tuning procedures of PSC states at various pump
powers. Similarly to the experiments, we observed that the PSC state demonstrates
switching behavior above the pump power of 0.55W, which is very close to the exper-
imentally obtained Psw. Comparing this threshold to the stability diagram, we found
that, strikingly, it matches very well the lower boundary of the TC region for the PSC
states (see dashed purple line Fig.5.10(a, b)). Below the TC region, all simulated PSC
states are non-switchable. They directly seed MI in the backward tuning, as shown in
Fig.5.11(a). In contrast, when translation route of the state passes the region of TC, one,
several or all DKS pulses can decay (see Fig.5.11(b)). In particular, when the power is
just above switching threshold Psw, the DKS state can be switched only once - from a
perfect soliton crystal state to a soliton crystal state with a defect (see bottom plot of
Fig.5.11(c)). Further attempts of backward tuning at the same pump power will just
transfer the system into a MI state without access to other DKS states with lower soliton
numbers. On the other hand, at higher pump powers more switchings become available,
and the system can reach multiple-soliton states with smaller N . Eventually, above f ∼ 5
the system can be switched up to a single soliton state (N = 1) and even further - to the
homogeneous solution before it enters MI state.

This behavior is in line with our early observations of the PSC state dynamics in the
transient chaos regions demonstrated above, where the system spontaneously loses pulses
until reaching new stable state, which can be a multiple-soliton state (for 4 < f < 5) or
a CW state (for f > 5). Interestingly, the second threshold (f ∼ 5) also matches very
well with early study of the stability chart by Leo et al [42], which was implemented for
the single soliton state.

The experiments above let us not only demonstrate that PSC states can reproduce typical
dynamics of the DKS states and are switchable using backward tuning, but also explain
the switching by the presence of the transient chaos region in the LLE system.

5.4.3 Link to DKS switching

Since the presence of transient chaos regime in the LLE system is independent of the
number of pulses, and our switching experiments shown in Fig.5.11 demonstrate not
only the switching of the PSC states but also include multiple-soliton switching, we can
directly establish a fundamental link between the switching ability of the DKS states and
the transient chaos regime of driven nonlinear microresonators. This link demonstrates
that the region of TC has a significant impact not only on the process of the soliton
generation, but constitutes a fundamental feature of the driven-dissipative nonlinear
cavity enabling switching of the DKS states.

Such understanding of the role of transient chaos in the switching process completes the

122



5.4. PSC switching

Figure 5.11 – (a, b) Simulations of the intracavity waveform evolution during backward
tuning of the PSC at non-switchable pump power (a) and at switchable pump power (b).
In the first case the system directly seeds MI, while in the second case the system first
decays to a flat solution (CW) via multiple-soliton states (MS).

picture of this phenomenon in DKS states, presented in Chapter 3: when stable DKS
state (it can be PSC, multiple-soliton state or even single soliton state) is translated in
the TC region using backward tuning, the system starts to spontaneously lose pulses.
When the first pulse or a couple of pulses is lost the thermal effects of cavity cooling shift
the system back to the soliton existence range.

While this general picture is valid for any DKS state, certain difference can be observed
for the DKS states with different number of the DKS pulses. One of them, which is
often observed experimentally, is that the switching power threshold is different for
high-number soliton states and single soliton states. Such behavior is particularly evident
in experiments shown in Fig. 5.10(b), where the number of available switchings increases
with the pump power: while reaching the soliton crystal state with defects is possible via
switching at the pump powers of about 0.6 W, the switching of the single soliton states
is only possible above 1 W.

We link this behavior to the inverse scaling of the lowest power boundary of the TC
region with the number of intracavity pulses (N). Indeed, the TC region for the single
soliton states starts for (f > 5) [42], while in our study for the PSC states the TC starts
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already above (f > 4). This can be explained as follows: soliton pulses forming a DKS
state can develop strong chaotic oscillations, when the system is tuned in the strong
breathing regime. When DKS state consist of high number of pulses or is even found in
the PSC state (N = X), the tightly-packed solitons can get easily kicked off their sites
or strongly interact with the adjacent neighbors through their tails. While the system is
formally still remains in the stable solitonic regimes, such interactions between tightly
packed DKS pulses can lead to their collisons and decays, which technically represent
and should be classified as transient chaos. Thus, certain regions of the stability chart
can be regions of strong or even chaotic-like breathing for low-number soliton states with
sparse positions of the DKS, while represent a transient chaos for high-number of tightly
packed DKS pulses and PSC states.

This understanding can explain power-dependency of the switching process and in
particular different numbers N , at which the system starts to seed MI in the experiment
shown in Fig. 5.10(b). When we fix the pump power (P ′ ∝ f ′) for the switching
experiment starting with the PSC state, the bottom of the TC region was in its lowest
position at around (f ∼ 4). During the switching process for each new state, it was on
average growing towards f ∼ 5 (limit value found for a single soliton state). However,
if the pump power f ′ is lower than 5 in dimensionless units, the bottom of the TC
region after one of the switching events will become higher than f ′ making the system
unswitchable. Thus, after the backward tuning it will enter the spatiotemporal chaos
regime and seed MI.

On the other hand, if dimensionless pump power amplitude f is larger than 5, the system
can be switched towards a single soliton states and further down to CW state before
reaching MI. Such behavior is shown in Fig.5.12, where our device was switched from a
PSC state with 15 DKS pulses to a single soliton state, and then seeded MI.

Understanding the impact of chaotic regions on the dynamics of the DKS states and in
particular PSC states provides a broad opportunities for the study of the DKS states and
their applications. Taking into account the two important thresholds for the generation
of PSC states (fsc ∼ 3) and their switching (fsw ∼ 4), one can in principle construct
deterministic routes to access any soliton state available in the system.

We strongly believe that such a clear understanding of the effect of TC on these and
other processes will help to uncover and explain many other phenomena of the DKS
states in optical microcavities including connection to recent theories and explanation of
previous observations [114, 107, 197, 224, 232, 233].
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Figure 5.12 – (a) Experimental trace of generated light during the continuous switching of
a PSC state to a single-soliton trace. Insets show the optical spectra of the corresponding
states. Longer steps observed for N = 4, 9 and 13 appear after switching events where
two DKS pulses were switched at once.

5.5 Dynamics of soliton crystal states

Due to the presence of multiple temporarily ordered pulses forming the PSC states, their
dynamics is more complex than that of the single soliton states, as it can include the
relative motion of pulses, their switching or complex breathing patterns. In this section
we focus on several examples of peculiar dynamical phenomena, which can be found
in PSC states and studied using our methods developed above. We highlight three of
them, which were observed using different routes of the PSC state translations (shown in
Fig.5.13(a) and Fig.5.15(a)): reversible melting and recrystallization of the PSC state,
switching between PSC states and the formation of PSC breathers.

Soliton crystal melting and recrystallization. First, we demonstrate that a PSC
state can be consistently restored after its excursion to the MI region. This corresponds
to a complete destruction of the regular soliton arrangement - “soliton crystal melting",
and its reassembling, when the system is brought back to the region of stable DKS
- “soliton recrystallization" (see A–B–A route, marked with green in Fig.5.13(a)). In
experiment, an initial PSC state at the pump power below switching and generation
thresholds (A) was tuned backward until it seeds MI (A – B), and then - forward (B – A)
to the initial position. We trace the system evolution during this procedure by measuring
the optical spectrum (see Fig.5.13(b)). For the major part of the stable DKS region, the
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Figure 5.13 – (a) Simulated stability chart of the Lugiato-Lefever equation (similar to
Fig.5.6(a)). Experimental evolution route for the reversible soliton crystal melting and
recrystallization of the PSC state is shown in green dashed lines. (b) Experimental
observation of PSC melting and recrystallization. The route is shown as A – B – A in
(a), and passes below STC and TC regions. The detuning was reduced linearly until the
system has reached modulation instability (MI), and then increased to the starting value,
as shown at the top plot. Middle map shows the evolution of the optical spectrum of a
PSC state during excursion to the MI regime (crystal melting) and then back to the PSC
(recrystallization after melting). The bottom plot shows three spectra at different stages,
from left to right: initial PSC state, disordered soliton crystal state, and modulation
instability at the corresponding stages of the tuning route.

system maintains a typical PSC spectrum consisting of only supermodes. Approaching
the MI region, the state starts to develop additional lines apart from the supermodes
indicating the appearance of variations in the relative positions of DKS pulses, while
maintaining the overall long-range ordering. It should be noted that the system does
not experience switching in this process, but demonstrates true disorder maintaining
initial number of the solitons. The effect is similar to the introduction of disorder in the
atomic lattice of crystalline solids. Once the system reaches MI - the spectrum suddenly
changes to the typical spectrum of a noisy comb and the system acquires strong intensity
noise. In this state stable DKS pulses cannot exist in the system, and the intracavity
waveform is chaotic, meaning that there is no order in the time domain. Reverting the
tuning direction and bringing the system back to the initial state (B – A), we observe
that the system can be restored back to the initial PSC state, where the DKS pulses
are again crystallized in the form of an equidistant lattice. Such restoration is 100%
reproducible until the tuning procedure avoids the bistable chaotic regimes.

In order to verify such melting and recrystallization behavior of the PSC state, we
reproduced the experiment in simulations (Fig.5.14). We chose the pump power of 0.20
W (below the region of spatiotemporal chaos) and launched the initial PSC state (see
left part of Fig. 5.14), then the detuning was changed linearly from 440 MHz to 240
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MHz (as shown in top plot of the figure) and back in order to bring the system in the
MI state and then back to the regime of stable DKS. Recording the temporal evolution
of the intracavity power, we can see that the initially seeded PSC state sustains the
detuning change, while the system stays within stable DKS region. Sudden change
in the behavior happens when the system enters the MI region – the PSC state loses
the long-range temporal ordering, and the system behavior changes to chaotic [213], in
which the transient optical pulses experience multiple interactions, decays and stochastic
short-timescale drifts. Once the system is brought back to the stable DKS regime, the
transient pulses suddenly reorganize themselves back into the PSC state similar to the
initial one.

We note that the conversion of certain SC states to MI and back has been also recently
accessed in a non-deterministic fashion, with non-deterministic restoration of the initial
soliton crystal [224], and was linked to the chaotic behavior in the MI state.

Figure 5.14 – (a) Simulations of the temporal evolution of the intracavity power in a
100-GHz Si3N4 microresonator from its initial state (left) to its final state (right). The
detuning (shown in the top figure) is linearly changed to move the system to the region
of MI and back.

Switching between PSCs. Second, we demonstrate that under certain pumping
conditions, the system can be switched from one PSC state to another PSC state with
a distinct number of intracavity pulses (see A - E - F route in Fig.5.15(a)). In our
experiments it was enabled by a proper choice of the pump power (above Psw) at which
the system was switched, and led to the switching from a PSC with X = 15 to the
one with X = 13 (see Fig.5.15(c)). We attribute this dynamic to the change in the
modulation of the CW background, which could be caused by the cavity cooling after
switching. Since the positions and strength of the modal crossings are sensitive to the
temperature of the system [57, 56], the removal of the DKS pulses can change it and
induce a new binding potential with a different number of sites. We can foresee that by
properly choosing the route of the soliton crystal switching with additional temperature
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control over the AMX position, one can implement the switching between several PSC
states with reducing number X, down to X = 2.
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Figure 5.15 – (a) Simulated stability chart of the Lugiato-Lefever equation (similar to
Fig.5.6(a)). Two experimental translation routes of the initial PSC state (A) are marked
with red and violet colors. (b) Left: Optical spectra of the stable (blue) and breathing
(red) PSC states. Both states maintain strict regularity of the DKS pulses. Right:
Evolution of the total intensity noise spectrum as the PSC is tuned into the breathing
region. The appearance and reduction of the sharp tone, corresponding to the breathing
frequency can be observed. The spectra with larger detuning have darker color, the
traces are shifted vertically by 5 dB each for better visualization of the evolution. (c)
Switching between perfect soliton crystal states. The route is shown as A – E – F in
(a). Optical spectra of the initial perfect soliton crystal state with X = 15 and final
perfect soliton crystal state with X = 13, obtained "on the fly" by power translation and
switching from the initial.

PSC breathing. Third, we experimentally demonstrate the formation of the perfect
soliton crystal breathers, which correspond to simultaneous oscillations in the amplitude
and duration of all DKS pulses forming the PSC state. For this we brought the PSC
state to the breathing region (see the route A - C - D, marked red in Fig.5.15(a)), where
the characteristic indicators of the breathing DKS states have been observed, including
the triangle-shaped optical spectrum, and the appearance of the narrow breathing tone,
whose frequency was close to the estimated effective detuning and was decreasing as the
detuning decreased (see Fig.5.15(b)) [185]. We note that despite breathing state the
temporal pulse regularity is still maintained.
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5.6 Conclusion

We have demonstrated platform-independent on-demand generation of perfect soliton
crystals, which essentially represent defect-free soliton lattices. In comparison to the
other soliton crystal states (with defects), they show maximized conversion efficiency
into the supermodes spaced by X·FSR, whose power moreover scales as X2. First, both
in experiments and LLE-based simulations, we discovered that the generation of PSC
states is highly sensitive to the pump power, which results from the complex structure of
the system stability diagram including the regions of STC (perturbing the PSC state
and inducing soliton interactions) and TC (stochastically clearing the intracavity DKS
pulses). Second, we have demonstrated that the region of TC has significant impact not
only on the process of the soliton generation, but constitutes a fundamental feature of
the driven-dissipative nonlinear cavity enabling switching of the DKS states. Finally,
we demonstrated the rich dynamics of the PSC states, including their ability to sustain
translation to the MI state and form the same PSC state afterwards, switching between
soliton crystals and formation of the PSC breathing states.

We also would like to emphasize that the above-listed results showing the impact of
chaotic regions on the formation and switching processes of solitons states as well as the
translation methods we developed to study the complex dynamics of the system can be
extended for any DKS states, including less temporally organized multiple-soliton states
or single DKS.
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6 Photonic-based dissipative Kerr
solitons covering the biological
imaging window
This chapter reports on the first experimental observation of dissipative Kerr solitons at 1
µm wavelength in photonic-chip integrated microresonators. The results are adapted from
M. Karpov et al., "Photonic chip-based soliton frequency combs covering the biological
imaging window", Nature communications, 9(1), p.1146, (2018).

6.1 Introduction

Since the first observation of dissipative Kerr solitons in microresonators all major studies
of their properties and dynamics were primarily focused on devices operating around 1550
nm. There are several reasons for the choice of the driving wavelength in this spectral
window. First, it is broad availability of tunable low-noise lasers, and efficient Erbium-
doped amplifiers operating in the C- and L- optical communication bands (1530-1565 nm
and 1565-1625 nm correspondingly), whose advances are driven by active development of
the optical communication technologies. Second reason is an availability of passive fiber
optical components and detection means, which are also essential for every experiment
on DKS states. Third reason is favorable dispersion properties for the major platforms
used for the first experiments of the DKS states [9, 84, 91].

However, with the active development soliton microcombs area and onset of the era of DKS
applications it has became clear that the variety of promising applications available require
DKS platforms to operate at other wavelengths besides optical communication bands.
Two natural possible extensions of the operating ranges - towards longer wavelength,
mid-IR (MIR), and towards shorter wavelengths, down to visible and UV.

The long-wavelength extension of the DKS states towards Mid-IR is primarily driven by
spectroscopy applications including molecular fingerprinting, detection of hazardous or
toxic chemicals and biological sensing [234]. The first attempt to extend DKS towards
longer wavelengths employed silicon microresonators and was demonstrated in the work
of Yu et al. [88], reaching combs spanning 2.4-4.3 µm. Recently the dual-comb mid-IR
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spectroscopy was also shown using the same silicon platform [142]. We note, however,
that these demonstrations relied on the low-noise comb states, with no clear evidence of
soliton pulse formation. Apart from this we also point out the work by Gong et al. [89],
where single DKS states were obtained in z-cut lithium niobate microresonators at 2 µm.

The short-wavelength extension of the DKS operating wavelength has also a solid
motivation behind. A large class of new applications of biomedical nature can be accessed
with DKS-based comb sources if they can operate in the short-wavelength part of the
near-infrared (NIR) domain ranging from 0.7 to 1.4 µm wavelength. This spectral region is
used for biological and medical imaging due to the highest penetration depth in biological
tissues limited by the water and blood absorption outside of this spectral window [235].
Optical spectroscopy, Raman spectro-imaging and optical coherence tomography (OCT)
techniques operating in this wavelength range serve as a non-invasive tool for the structural
and chemical analysis of the various biological samples, including retinal and choroidal
structures or tumor formations [236, 237, 238]. These biomedical imaging techniques
could benefit from employing optical frequency combs as sources due to their coherence
and high power per comb line [239], as well as from using dual-comb approaches allowing
to interrogate the broad spectral bands with a single photodetector [138]. A specific
example of dual-comb-based spectroscopy in the NIR is coherent anti-Stokes Raman
spectroscopy (CARS) [140], which can utilise high repetition rates of the DKS combs for
vastly increased acquisition rate, enabling real-time CARS imaging. Furthermore, the
luminescence-free anti-Stokes response can benefit from the larger Raman cross section
and the reduced focal spot size at a shorter wavelength, facilitating phase-matching.
Such dual-DKS-comb CARS might be able to provide ultrafast multispectral in-vivo
imaging for chemical, biological and medical purposes. Equally important, a range of
other applications requiring a stabilised operation can be also accessed and improved by
near-infrared DKS-based combs. The NIR domain hosts optical frequency standards in
alkali vapours (e.g. 87Rb, 133Cs), necessary to realise chip-scale optical atomic clocks with
enhanced precision [240], or employed in DKS-comb-based calibration for astronomical
spectrometers [241].

Despite this large number of promising applications of near-infrared DKS-based combs,
these sources have not been demonstrated until recently [242, 86] . Although attempts
to generate Kerr combs in the NIR and visible domain have been made before [243,
244, 245, 246, 247], they resulted in relatively narrow and incoherent combs, and soliton
formation has not been achieved.

The generation of NIR or visible soliton combs is compounded by the increased normal
group velocity dispersion (GVD) of the materials due to electronic bandgap in the UV,
increased scattering losses and sensitivity to the resonator waveguide dimensions which
require high precision of dispersion engineering and fabrication processes. Moreover,

We note that the first well-defined DKS state operating at the wavelength shorter than in conventional
band (around 1550 nm) was shown at 1300 nm by Pfeiffer et al.[87]
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as shown recently, competition between Raman and Kerr effects in the NIR or visible
domains can inhibit soliton formation [175].

In the following sections we describe the first experimental realization of DKS states in
biological imaging window using photonic-chip integrated microresonators.

6.2 Microresonator design and characterization

We employ the Si3N4 microresonator platform, which is a well-developed and extensively
used basis for on-chip nonlinear and quantum photonics due to a number of advantages
such as CMOS-compatibility, high effective nonlinearity, negligible two-photon absorption,
and wide transparency window spanning from visible to mid-infrared [11, 23, 22]. Recent
advances in the fabrication processes have enabled the fabrication of low-loss Si3N4
waveguides with void-free coupling gaps, which guarantee high-Q resonators with well-
controllable properties [30, 28, 248, 87, 225]. An important advantage of this is the
ability to engineer the dispersion properties of the microresonators by compensating
the material dispersion with the waveguide dispersion contribution [84, 249, 87]. For
DKS generation it is generally required to achieve anomalous group velocity dispersion:
D2 > 0 (see Chapter 1), which can be especially challenging at short wavelengths.

In this work we used Si3N4 microrings with FSR of ∼1 THz (radius ∼23 µm, see Fig.
6.1(b)), which were fabricated using the photonic Damascene process [28]. The resonator
waveguide width was varied from 1.3 to 1.5 µm, and the height was targeted at 0.74
µm (with process-related variations on the order of 20 nm). The choice of waveguide
dimensions was based on the FEM simulations of the dispersion profile (see Fig. 6.1(c)),
which were implemented in order to ensure in order to ensure anomalous GVD of the
fundamental TM mode around the pumping wavelength of 1060 nm. Despite better chip
coupling efficiency the fundamental TE mode has normal GVD at this wavelength in all
fabricated geometries.

The bus waveguide was designed to have a pulley-style coupling section with altering width
from 0.3 µm at the in-coupling part (see Fig. 6.1(b) - C) to 0.65 µm at the out-coupling
part (see Fig. 6.1(b) - A,B). The coupling section design aims to guarantee broadband
and high ideality coupling, reaching ∼0.85 at 1 µm according to our simulations [39],
which can be further optimized to reduce parasitic losses. The waveguides have inverse
tapered mode converters (reducing the waveguide width down to ∼150 nm) at the input
and output ends, providing < 3 dB coupling loss per facet at 1 µm.

A typical transmission trace of the fabricated devices is shown in Fig. 6.1(d). Due
to comparably large width of the microring waveguide the resonator is significantly
overmoded - multiple resonances from higher order modes can be observed apart from the
fundamental ones. Two fundamental modes – TE00, TM00 – can be easily identified due
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Figure 6.1 – (a) Set-up schematic used for dissipative Kerr soliton generation and
characterization: A tunable external-cavity diode laser with a centre wavelength of 1050
nm is used as a seed, YDFA – ytterbium-doped fiber amplifier, FPC – fiber polarization
controller, VNA – vector network analyser, EOM – electro-optical phase modulator, PD
– photodiode, OSC – oscilloscope, ESA – electrical spectrum analyser, OSA – optical
spectrum analyser. (b) Left: Optical microscope image of the 1-THz microring resonator
(highlighted in red) with a pulley-style bus waveguide (blue). Right: Scanning electron
microscope images of the resonator and bus waveguide cross sections obtained via focused
ion beam at different positions (A-C) marked on the left image. (c) Simulated integrated
dispersion profiles (Dint/2π) for TM00 mode of resonator waveguides having different
heights of 0.70, 0.74 and 0.78 µm, widths of 1.2, 1.3 and 1.4 µm, and fixed sidewall angle
of 77°. (d) Transmission trace of the 1-THz microresonator shown in Fig.1 (b). The two
fundamental mode families (TE00 and TM00) can be distinguished based on their free
spectral ranges (0.992 THz for TM00 and 1.001 THz for TE00), and are marked with red
and blue shapes correspondingly. Other resonances correspond to higher order modes
with comparably lower Q-factors. (e) Linewidth measurements of the fundamental mode
families. The frequency axis was calibrated using a fiber-loop cavity. Typical loaded
linewidth of the modes is ∼ 400 MHz for TE00 and ∼ 500 MHz for TM00.

to their FSRs (0.992 THz for TM00 and 1.001 THz for TE00) provided by the non-unity
aspect-ratio. Different coupling of the TE and TM fundamental modes over the measured
range in Fig. 6.1(d) is attributed to the polarization plane rotation in the optical fiber
before coupling to the on-chip bus waveguide [250]. Once the polarization is properly
adjusted at a certain wavelength for the resonance of a particular mode family, one can
measure its Q-factor. Both fundamental modes have comparable loaded linewidths of
370 - 550 MHz, corresponding to the Q-factors of 0.55− 0.75× 106 (see Fig. 6.1(e)).
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6.3 DKS states at 1 µm

The experimental set-up for the DKS generation is shown in Fig. 6.1(a). The light from
a tunable 1060-nm CW diode laser (Toptica CTL 1050) is amplified with an ytterbium-
doped fiber amplifier and coupled to the chip through a lensed fiber. The output signal
was collected with another lensed fiber, and its spectral and noise characteristics were
analyzed. We also employ a soliton probing technique described in Chapter 3, which uses
a phase-modulated pump and a vector network analyser to retrieve a system response
allowing us to unambiguously identify DKS formation and track the detuning of the
pump from a cavity resonance [114].

In order to access the soliton state, which by the analogy with DKS operating at 1550
nm are supported in the effectively red-detuned regime (ωp − ω0 = 2πδ > 0, where
ωp and ω0 are the angular frequencies of the pump laser and pumped resonance), we
use the pump forward tuning technique [9]. Such simple approach is sufficient for our
samples, rather than complex techniques such as power kicking [84] or fast frequency
modulation [106]. This can be explained with relatively small pump powers used for the
soliton generation. They allowed to avoid the region of transient chaos [42] causing the
elimination of intracavity pulses during the transition to a stable soliton state. In this
case thermal effects associated with the change of intracavity power do not significantly
affect the pump-cavity detuning, and the system stays within the soliton existence range
after DKS are formed [228].

We use an on-chip pump power of ∼ 1 W to tune into resonances of the fundamental
TM mode family, which according to our simulations should provide anomalous GVD at
around 1060 nm. Low tuning speeds on the order of a few GHz/second (i.e. using the
laser cavity piezo) were chosen and enabled simultaneous monitoring of the cavity state
by measuring the system response signal as well as an optical spectrum of the output
light in order to track the excitation of DKS states.

When tuning the pump over the cavity resonance, the cavity reveals modulation instability
and noisy Kerr comb formation while the pump laser is on the blue side (see Fig. 6.2(a,
top)). Apart from the characteristic spectral shape of the noisy Kerr comb, strong
intensity noise is also observed (Fig. 6.2(b)) reproducing the typical behavior of the
driven microresonator system at 1550 nm. Upon further pump tuning we observe the
transition to soliton regime. It is accompanied by a sudden change of the optical spectrum
to the secant hyperbolic-like shape, and an appearance of the double-peak structure
in the system response representing the coexistence of the soliton (S -resonance) and
the CW-background (C -resonance) components inside the cavity (see Chapter 3 for
more details). To explore the soliton existence range of the generated DKS state, the
response measurements were also carried out while tuning the pump laser towards longer
wavelength corresponding to the increase of the effective detuning (Fig. 6.2(d)). The shift
of the C -resonance position (which indicates effective detuning) to higher frequencies is
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Figure 6.2 – (a) Optical spectra of the modulation-instability comb state (A) and two
soliton states (B, C) obtained in a 1-THz Si3N4 microresonator (pump is located at
around 1065 nm). The transition from two-soliton state (B) to single soliton state (C) was
obtained by a backward tuning technique of the pump laser. Insets show the estimated
positions of the DKS in corresponding states. The single soliton state was fitted with a
sech2 envelope (dashed dark blue), with estimated duration of 26 fs. The green arrow
shows the Raman-induced red spectral shift of the soliton spectrum with respect to
the pump line. (b) Intensity noise of MI comb state (black), soliton states (red) shown
in (a) and the noise floor of the photodiode (PD) used for measurements (yellow). (c)
Heterodyne beatnote of the soliton comb line around 1050 nm with a second CW laser.
(d) System response evolution in the two-soliton state shown in (a), when increasing
the pump-cavity detuning (δ). The positions of characteristic C - and S -resonance are
indicated with C and S letters correspondingly. (e) System response evolution when
the DKS state is switched from two-soliton to single soliton state. The amplitude of the
S -resonance has decreased, because the number of intracavity solitons reduced.

clearly seen and essentially reproduces the dynamics of similar response signals measured
for DKS at 1550 nm [114]. Finally, the transition to the soliton regime has also been
verified by the drastic reduction of the intensity noise of the output light (see Fig. 6.2(b)),
and a narrow heterodyne beatnote of the selected comb line at around 1050 nm with
another low-linewidth CW diode laser (Fig. 6.2(c)).

We also demonstrate that the obtained soliton states can experience switching by applying
the backward tuning technique, which relies on the thermal nonlinearity of microres-
onators, and due to the presence of transient chaos region (see Chapter 5) allows the
number of DKS circulating inside the cavity to be changed in a robust and controllable
manner [114]. Figure 6.2(a) shows the switching from a two-soliton to a single-soliton
state. The switching has been confirmed with the response measurements as shown in
figure 6.2(e). A decrease in the amplitude of the soliton-number-related S -resonance
of the response indicates the reduction of the intracavity number of pulses, while the
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cavity-related C -resonance is almost unchanged.

By fitting the spectrum of the final single soliton state with a sech2 envelope we can
estimate the soliton duration (Fourier-transform-limited) from its 3-dB bandwidth - it
corresponds to 26 fs. We also note the presence of significant soliton red spectral shift
(∼ 4.1 THz in the present case) with respect to the pump line, which is mainly attributed
to the Raman effect and observed for all DKS states generated above [158, 231].

6.4 Octave-spanning soliton states driven at 1 µm

Reaching the octave-spanning operation of DKS is an important step in the development
of Kerr frequency combs, as it enables the common f − 2f scheme for offset frequency
detection and self-referencing required by multiple applications in optical frequency
metrology and low-noise microwave synthesis [251]. Octave-spanning DKS states have
been only recently demonstrated experimentally [249, 87]. In the present section we
demonstrate that DKS-based combs operating at 1 µm can be engineered to have octave-
spanning bandwidths despite operating close to the normal GVD region in the Si3N4
platform.

6.4.1 Dispersion engineering of silicon nitride microresonators at 1 µm

The access to the broadband and octave-spanning optical combs is possible via the
formation of soliton dispersive waves, enabling the extension of the soliton comb spectrum
in the normal GVD region [84]. In order to control the spectral positions of dispersive
waves, one need to be able to engineer the dispersion of the microresonator waveguide,
which in the simplest case is achieved by the variation of the dimensions of the waveguide
crossection.

In order to experimentally demonstrate the ability to engineer the dispersion of silicon
nitride microresonators at around 1-µm wavelength, one need to show a consistent trend
in the measured dispersion matching to the simulations prediction, when the geometry of
the devices is changed. However, due to large free spectral range of our devices (∼ 1 THz)
and small dispersion terms (e.g. D2/2π ∼ 20− 30 MHz), one has to measure resonance
frequencies within a broad range of several hundreds of nanometers in order to estimate
the dispersion with an acceptable level of precision [43, 44].

Instead of doing this challenging measurements, one can also measure the spectral
locations of the phase-matching-induced enhancements of comb lines in the noisy comb
states, which correspond to Dint/2π = 0 and provide a rough estimation for the position
of soliton dispersive wave for a given geometry [164, 84, 252]. The positions of such
phase-matched regions strongly depend on dispersion parameters and are easily tracked
in experiment using optical spectrum analyzer, allowing for convenient comparison to
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Figure 6.3 – (a) FEM-based simulations of integrated dispersion (Dint/2π) in 1-THz
silicon nitride microring resonator with waveguide height of 0.74 µm, various waveguide
widths of 1.30, 1.35, 1.40 µm, and sidewall angle of 77◦. Red circles mark spectral position
of the phase-matching points (Dint/2π = 0); (b)-(d) Experimental optical spectra of
the fabricated 1-THz Si3N4 microresonators with the height of 0.74 µm and waveguide
widths of 1.30, 1.35 and 1.40 µm (by design). The positions of the short-wavelength
phase-matching regions are indicated with red arrows.

simulations. It is important, however, to highlight here that the generation of solitons is
not needed for these measurements, and may even give improper results, because the
exact spectral position of the dispersive in a soliton state is slightly shifted from the
phase-matched region where Dint/2π = 0 [252].

We measure optical spectra of noisy Kerr comb states (i.e. operating in regime of chaotic
modulation instability) in fabricated devices with a different geometry (height of 0.74
µm and widths of 1.30, 1.35, 1.40 µm) and traced the positions of the short-wavelength
phase-matching region (see Figure 6.3(b-d)). The positions are marked with red arrows,
and demonstrate an increasing trend from 343 THz to 360 THz as the waveguide widths
decreases.
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6.4. Octave-spanning soliton states driven at 1 µm

We have also simulated the dispersion profile for the same set of the resonator waveguide
geometries with height of 0.74 µm, widths of 1.30, 1.35 and 1.40 µm and sidewall angle
of 77◦. The positions of phase-matching points (marked with circles in Fig.1(a)) show
similar trend as in fabricated samples, and coincide well with the experimentally obtained
phase-matching regions.

6.4.2 Experimental generation of octave-spanning DKS states
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Figure 6.4 – (a) Spectrum of a noisy Kerr comb state, obtained with ∼800 mW on-chip
power (pump is located at around 1051.5 nm), from the microresonator with optimized
dispersion for octave-spanning operation. Green and purple dashed vertical lines indicate
the spectral locations of Cs and Rb optical atomic transitions. (b) Spectrum of the
octave-spanning soliton state obtained in the same microresonator. The spectrum is
fitted with sech2 envelope (dashed dark blue), from which a soliton duration of ∼ 18 fs is
inferred. The set of enhanced lines below 190 THz corresponds to the second diffraction
order of the optical spectrum analyser diffraction grating and are thus artefacts. (c)
Intensity noise of the octave-spanning MI comb state (blue) and soliton state (red) shown
in (a). Yellow trace shows the noise floor of the photodetector used for the measurements.
(d) Heterodyne beatnote of the soliton comb line (marked with a star in panel (b)) with
a second CW laser.

For the generation of the octave-spanning DKS states we used the same set of microres-
onators with FSR of 1 THz as described in section 6.2. Based on the results of the
previous subsection, we choose the devices having a waveguide geometry of 1.30×0.74 µm,
which was designed to have low anomalous GVD and satisfy phase-matching conditions
at around 800 nm for dispersive wave formation[84]. This spectral region is particularly
interesting due to the presence of optical frequency standards based on the two-photon Rb
transitions [253] which can be used for comb referencing. We applied the aforementioned
low-speed tuning technique with an estimated on-chip power of ∼800 mW to achieve the
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formation of the noisy comb (see Fig. 6.4(a)) followed by the soliton state (Fig. 6.4(b)).

The resulting spectrum of the soliton state spans over more than an octave from 776 to
1630 nm ( > 200 THz). As expected from the simulations, it is significantly extended
towards shorter wavelengths due to the emission of the dispersive wave via soliton-
induced Cherenkov radiation at 800 nm. The 3-dB bandwidth of the spectrum fitted
with a sech2 envelope is estimated as 18 THz, which corresponds to a pulse duration of
∼18 fs. A peculiar shape of the DKS state is attributed to the formation of a soliton
crystal state, which here is estimated to be formed by ordered co-propagating DKS
ensemble of 6 soliton pulses [197, 228]. As discussed in Chapter 5 such soliton crystals are
typically formed in the presence of strong local spectrum deviations caused by inter-mode
interactions among transverse mode families (avoided mode crossings), and in contrast
to single-soliton states are featuring high conversion efficiency (owing to the high number
of intracavity pulses), which in the present case approached 50%. Similarly to the DKS
states demonstrated in the previous section 6.3, the presented state is also characterized
by a low-noise performance with a strongly suppressed intensity noise in comparison to
the noisy modulation-instability (MI) comb (see Fig. 6.4(c)), and a narrow heterodyne
beatnote of the generated comb line with another CW laser (Fig. 6.4(d)).

6.5 DKS states in hybridized modes

The behavior of Kerr combs and, in particular, DKS states are in a large extent defined by
the dispersion properties of the cavity. One of the key requirements for DKS formation is
the anomalous GVD of the microresonator, which can be achieved by overcompensating
the normal material dispersion with the waveguide dispersion contribution (see Chapter 1).
At short wavelengths, however, increased normal material GVD can represent a significant
issue (e.g. for Si3N4 in the visible domain) as it can hardly be compensated for the
fundamental guided modes thus hindering bright DKS formation. Apart from the global
dispersion landscape comprised of the material- and waveguide-related components, the
dispersion properties also include spectrally localised dispersion modifications - avoided
mode crossings. AMX are typically result from the formation of guided hybridized
modes, which can appear due to the interaction of different transverse mode families
[254]. Although being spectrally localised, such AMX-s can lead to complex and diverse
effects on the dynamics of DKS states, such as dispersive wave formation, soliton recoil,
temporal soliton ordering, appearance of quiet operation points and inter-mode soliton
breathing [9, 193, 46, 197, 228].

All of these effects were normally investigated in the regime, when the position of modal
crossing is quite far from the pumped microresonator mode, however the hybridized
modes forming the AMX can be also directly used for the soliton generation. Thi can
happen when one of the two hybridizing modes acquire significant spectrally localized
boost in the anomalous GVD (while another one acquires significant normal GVD).
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Figure 6.5 – (a) Scheme of the avoided mode crossing formation. Solid and dashed lines
show the simulated integrated dispersion for the fundamental and high-order modes of
1-THz Si3N4 microresonator with dimensions of 1.45× 0.74 µm. Red and blue circles
schematically indicate the dispersion profile of the hybridised modes forming AMX. (b)
Measurements [43] of the mode structure of a 1-THz Si3N4 microresonator with the
dimensions of 1.45× 0.74 µm simulated in (a). Mode families are distinguished based
on their FSRs. General dispersion trends cannot be faithfully identified due to the
bandwidth limitations of our measurement setup, however a strong local anomalous
group velocity dispersion for three consecutive resonances (i), (ii), (iii) of the TE00 mode
family above 1064 nm can be observed. Dashed lines fit the integrated dispersion of
different modes within the measurements range. (c) Optical spectrum of a noisy comb
state, obtained in resonance (ii) from (b). (d) Intensity noise measurements of the noisy
modulation-instability comb (MI comb, black) and the dissipative Kerr soliton (soliton,
red) states, obtained by pumping the resonance (i) from (b). (e) Optical spectra of
the DKS states obtained by pumping resonances (i), (ii), (iii) from (b). Grey circles
indicate the positions of primary comb lines. (f) Response measurements of DKS states
represented in (e). The positions of characteristic C - and S -resonance are indicated
with C and S letters, correspondingly.
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The principle is schematically explained in Figure 6.5(a), where the simulated integrated
dispersion is plotted (solid lines) for several modes of the 1-THz resonator (0.74×1.45µm,
sidewall angle 77°). We consider the TE fundamental mode family, which according to
our simulations has normal GVD (D2/2π = −32 MHz), and note that it has multiple
modal crossings with other mode families. The frequency degeneracy of different mode
families that appears at such modal crossings can lead to mode interaction mediated
by scattering processes in the microresonator and induce the formation of AMX. The
dispersion profile of one of these AMX is schematically shown in figure 6.5(a) (circles)
to highlight its strong deviation from the simulation results obtained in the absence
of scattering. Figure 6.5(b) shows the measured [43, 44] mode structure of one of the
fabricated samples with the same geometry (0.74× 1.45µm), where the formation of the
described AMX is experimentally observed to be close to the simulated spectral position
of 1080 nm (see Fig. 6.5(b)). Mode-interaction-induced strong resonance shifts cause a
dramatic change on the local GVD of the TE mode family turning it from normal with
D2/2π = −32 MHz (simulated) to highly anomalous, with D2/2π reaching +510 MHz
(measured). We therefore evidence an AMX-induced change in the local group velocity
dispersion.

We also make a side remark here to highlight that the mode interactions that happens in
our microresonator and lead to dispersion alterations differ from the mode interactions
often observed in integrated waveguides due to the phase-matching between different
transverse mode families (matching of effective refractive indices) [255]. In our case, the
mode interaction process, which induces dispersion deviation used for DKS is caused by
Rayleigh scattering from surface and volume inhomogeneities as well as the bus-resonator
coupler. In order to demonstrate this fact we simulated effective refractive indices for
fundamental and two high-order modes in our waveguide (see figure 6.6). One can see
that the fundamental mode families (TE00, TM00) do not cross over the full simulated
frequency range, and thus main process enabling the mode interaction here (if the modes
are frequency-degenerate) is scattering. We note that this mode hybridization process is
different from the phase-matching-based mode hybridization used in the work by Lee et
al. [86], which is inherent to the geometry.

Driving the modes with strong anomalous GVD of ∼ 510 MHz as we observed in our
device (when

√
κ/D2 < 1) should result in the formation of a natively mode-spaced comb

[66, 59], whose primary lines appear 1 FSR away from the pump due to the closely-located
MI gain peaks. Previous works have reported that such combs can appear directly in a
mode-locked regime [55] which, however, is in contrast with our observations.

In experiments we again used the same pump tuning technique as in previous sections,
applied to hybridized modes forming AMX. Using the system response and intensity noise
measurements we observe the standard soft-excitation-route of a Kerr comb formation,
which includes the appearance of primary comb lines, development of the chaotic modu-
lation instability (MI, Fig. 6.5(c)) and the transition to a soliton regime (Fig. 6.5(e)),
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which was verified by the appearance of a characteristic dual-peak system response and
low intensity noise (Fig. 6.5(e,f)). Similar behavior was observed over three consecutive
resonances (cases I, II, III in Fig. 6.5(e)), where the corresponding soliton states were
generated. An interesting observation can be made regarding the spectral bandwidth
of the obtained soliton states. As a result of the localised character of the anomalous
GVD of hybridized modes, the actual value of the dispersion terms (and particularly D2

2π
term) varies from one resonance to another, leading to the different effective detunings
for generated comb lines and altering the resulting spectral width. We also note here,
that due to the contribution of higher-order dispersion terms around AMX, the obtained
DKS spectra cannot be faithfully fitted with a sech2 envelope.

We finally closely investigated one of the dissipative Kerr soliton (DKS) states, obtained
in hybridized modes. We have generated the state pumping the resonance at 1067 nm
(resonance (ii) in the Fig. 6.5(b)). In order to unambiguously demonstrate the formation
of DKS, we implemented slow backward pump tuning with a speed < 0.5 GHz/s. At the
same time we monitored the state using soliton probing technique [114], as well as the
measured optical spectrum of the state and its intensity noise. Figure 6.7(a) shows the
evolution of the system response from the initial state (on the right) to the final state (on
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Figure 6.7 – (a) Evolution of the response measurements of the state obtained by pumping
the hybridized mode at 1067 nm (resonance (ii) in Fig. 6.5(b)). The state evolves from
the right to the left, following the backward tuning sweep of the pump laser (from longer
to the shorter wavelengths). Initial positions of C− and S−resonances are indicated
with C and S . (b) - (d) Optical spectra obtained at different stages (1-3) of the backward
tuning shown in (a). (e) - (h) Intensity noise of the total comb power obtained at different
stages (1-3) of the backward tuning shown in (a).

the left). Response measurement of the initial state reveals an existence of two response
peaks, which we attribute to the cavity (C -) and soliton (S -) contributions. While
tuning the state backward [114], we can see how the response evolves: the two peaks
are getting closer to each other indicating the reduction of the pump detuning. The
spectrum of the state maintains a smooth envelope with moderate line-to-line variation
except a small modal crossing at around 1050 nm. The low intensity noise also stays
almost unchanged reaching the photodiode noise floor. After C - and S -resonances are
merged, the system suddenly returns to the noisy comb state, which is indicated by
broadband intensity noise (Fig.2(e)) and a structured optical spectrum (Fig.2(b)). These
measurements are qualitatively similar to the evolution of response measurements of the
bright soliton states in Si3N4 and MgF2 platforms at 1550 nm, when the system switches
from the DKS to a comb state [114] (see also Chapter 3).
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6.6. Conclusion

The demonstrated soliton states generated in hybridised modes by exploiting their strong
anomalous GVD can represent an alternative way to deterministically generate soliton-
based optical combs in arbitrary wavelength regions. This approach can be especially
useful for presented here Si3N4 platform to generate soliton states operating at 780 nm
or even further into the visible domain, where the normal GVD cannot be efficiently
compensated by standard means, but can be locally altered using e.g. predesigned or
thermally-controlled AMX-s [56].

6.6 Conclusion

We have demonstrated the first photonic-chip-integrated soliton-based optical frequency
comb sources driven with 1 µm pump source. The spectra of achieved DKS states
are able to span over an octave, and cover the common optical frequency standards in
alkali vapors, as well as the significant part of the near-infrared window for biological
tissues. Moreover, we have shown that DKS states can be generated in hybridized
modes of the microresonators around avoided mode crossings by directly exploiting their
localized anomalous GVD, what represents an alternative approach for the generation
of DKS combs in the regions with strong normal GVD (e.g. at shorter wavelength in
SiN, and in other materials). From the broader perspective, our work gives a strong
evidence of the technological readiness of Si3N4 platform for the soliton-based operation
in the near-infrared regime around 1 µm (including comparably good quality factors and
the means of dispersion engineering), which makes it a highly promising candidate for
multiple biological and other applications in this wavelength domain, including OCT and
dual-comb CARS.

Finally, we also would like to draw the readers attention to few other recent works, where
the formation of the DKS states was demonstrated at 780 nm [86, 256, 17].
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7 Applications of dissipative Kerr
solitons

This chapter covers two main applications of dissipative Kerr solitons - for massively
parallel optical coherent communication, and ultrafast distance measurements. The results
demonstrate the potential of Kerr soliton combs, both as multi-wavelength optical sources
and local oscillators for massively parallel WDM transmission as well as efficient LiDAR
engines using the dual-comb synthetic-wavelength interferometry approach. The results
are adapted from P. Marin-Palomo*, J.N. Kemal*, M. Karpov* et al., "Microresonator-
based solitons for massively parallel coherent optical communications", Nature, 546 (7657),
p. 274, (2017) and P. Trocha*, M. Karpov* et al., "Ultrafast optical ranging using
microresonator soliton frequency combs", Science, 359 (6378), pp. 887-891, (2018).

7.1 Dissipative Kerr solitons for massively parallel coher-
ent communication

Todays pace of the development of new technologies, increasing number of internet users,
and their usage of multiple video and audio streaming services as well as the game
industry have lead to an enormous amount of data which is being continuously generated,
stored and transmitted all over the world. This nearly exponential growth in data traffic
has obtained an additional boost with the recent advent of cloud storage and cloud
computing technologies, as well as the onset of the internet-of-things (IoT) era, which is
expected to provide the next generation with an additional 90 zettabytes of data from
IoT devices by 2025 (current sum of the all the world’s data to be around 33 zettabytes
for 2018 [257]). All of the above set an increasing demand for high-speed high capacity
systems and channels for data transmission.

Since the early 1980-s optical fiber communication has become a standard for long-
distance (long-haul) data transmission due to the high frequencies of optical carriers
(∼ 100 THz) and consequently - higher available bandwidth, as well as low losses of

*These authors contributed equally to the work
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optical fibers. This has allowed data transmission over tens and even hundreds of
kilometers. The new era in fiber optics communication has begun with the advent of
wavelength-division multiplexing (WDM), which has enabled a significant increase in
line rates of communication systems. The concept of WDM consist in multiplexing
the number of optical data carriers transmitted through the same fiber using different
wavelengths for encoding independent data streams. WDM optical links have become
increasingly important and now represent a standard for long-haul and metropolitan
networks, where the majority of today’s traffic is being circulated.

Recently, it has been suggested that frequency combs could revolutionize high-speed
optical communications, offering tens or even hundreds of well-defined narrow-band
optical carriers for massively parallel WDM [258, 259, 260]. Unlike carriers derived from
a bank of individual laser modules, the tones of a comb are intrinsically equidistant in
frequency, thereby eliminating the need for individual wavelength control and for inter-
channel guard bands [258, 260]. In addition, when derived from the same comb source,
stochastic frequency variations of optical carriers are strongly correlated, permitting
efficient compensation of impairments caused by nonlinearities of the transmission fiber
[261]. For application in optical communications, frequency comb sources must be
compact. In recent years, various chip-scale comb sources have been demonstrated
[262, 263] that enable transmission of WDM data streams with line rates of up to 12
Tbit/s. However, transmission at higher line rates requires more carriers and lower
noise levels, and still relies on spectral broadening of narrow-band seed combs using
dedicated optical fibers [258, 259, 260] or nanophotonic waveguides [264]. In addition,
generating uniform combs with a broadband spectral envelope often requires delicate
dispersion management schemes, usually in combination with intermediate amplifiers
[259]. Such schemes are difficult to miniaturize and are not readily amenable to chip-scale
integration. Moreover, with a few exceptions at comparatively low data rates [265], all
advanced comb-based transmission experiments exploit the scalability advantages only
at the transmitter, not at the receiver, where individual continuous-wave lasers are still
used as optical local oscillators for coherent detection.

Kerr combs, generated in integrated photonic microresonators are able to provide broad-
band optical combs that can overcome the scalability limitations of massively parallel
optical transmission at both the transmitter and the receiver. Microresonator-based
Kerr comb sources [7, 266] have advantages such as a small footprint (the physical area
covered by the comb source), a large number of narrow-linewidth optical carriers, and line
spacings of tens of gigahertz, which can be designed to fit established WDM frequency
grids. However, although these advantages have been recognized, previous transmission
experiments [69] were limited to aggregate line rates of 1.44 Tbit/s owing to strong
irregularities of the optical spectrum associated with the specific Kerr comb states. These
limitations can be overcome by using DKS combs, which we demonstrate in the present
chapter.
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7.2 Microresonator device and experimental setup

The experiment relies on integrated Si3N4 microresonators for the generation of DKS
frequency combs (Fig. 7.1). We use devices similar to the ones described in the Chapter 2.
The microresonators are fabricated using the photonic Damascene process [28], the
microresonator waveguides have a height of 800 nm and a width of about 1500 nm
allowing for anomalous GVD. The resonators have an FSR of ∼100 GHz and intrinsic
quality (Q) factors exceeding 106.

A setup for the DKS comb generation is shown in Fig. 7.1(a). It includes an ECD laser
as a seed (TLB-6700 New Focus and/or TSL-220 Santec), amplified with an EDFA. A
high-power bandpass filter is used to suppress amplified spontaneous emission (ASE)
before coupling to the chip via lensed fibers. The outcoupled light is fed through a notch
filter located at the pump wavelength to suppress the strong pump before employing the
comb for transmission experiments. In order to access DKS states a standard forward
tuning procedure was used [9], which consists of tuning the pump frequency through
the resonance from a blue-detuned wavelength to a predefined red-detuned wavelength
and results in the generation of a multiple-soliton state. Since for our experiments,
the formation of the single soliton states was essential, because it provides a smooth
envelope with no significant power variation over the operational bandwidth (C and L
telecommunication bands), we also used the backward tuning approach (see Chapter 3)
in order to deterministically switch the initial multiple soliton state to a single-soliton
(see Fig. 7.1(b)). The resulting power spectrum of the single DKS state is shown in
Fig. 7.1(c) and exhibits a 3-dB spectral bandwidth of approximately 6 THz. The soliton
comb states are remarkably stable for many hours in a laboratory environment, which is
key to the transmission experiments presented in the following sections.

7.3 Optical coherent communcation experiments with DKS

We focus on three experiments, which exploit the extraordinarily smooth, broadband
spectral envelope and the inherently low phase noise of DKS combs for massively parallel
coherent communications.

In the first experiment, we transmit data on 94 carriers that span the entire telecommu-
nication C and L bands with a line spacing of about 100 GHz. Using 16-state quadrature
amplitude modulation (16QAM) to encode data on each of the lines, we achieve an
aggregate line rate of 30.1 Tbit/s. In the second experiment, we double the number of
carriers by interleaving two DKS combs generated in two separate Si3N4 microresonators.
This gives a total of 179 carriers and an aggregate line rate of 55.0 Tbit/s. We use
these carriers for a data transmission experiment over a distance of 75 km - the highest
data with a chip-scale frequency comb source in comparison to previous demonstrations.
In the third experiment, we demonstrate coherent detection using a DKS comb as a

149



Chapter 7. Applications of dissipative Kerr solitons

multi-wavelength local oscillator. We use two DKS combs with 93 carriers to transmit
and receive an aggregated line rate of 37.2 Tbit/s. In this experiment, the local-oscillator
comb is coarsely synchronized to the transmitter comb, and digital signal processing is
used to account for remaining frequency differences.

Figure 7.1 – (a) Setup for the soliton comb generation used in experiments: 100-GHz
Si3N4 microresonator is pumped by a tunable CW laser (CW pump) amplified by an
erbium-doped fiber amplifier (EDFA). Lensed fibers are used to couple light to the chip.
A fiber polarization controller (FPC) is used to match the input light polarization to
one of the microresonator mode families. After the microresonator, a notch filter (NF)
suppresses the remaining pump light. The insets show false-color scanning electron
microscopy images of a Si3N4 microresonator. Right inset: Top view. Left insets: cross-
sections of the resonator waveguide (0.8× 1.65 µm2) at the coupling point (top) and at
the tapered section (bottom, 0.8× 0.6 µm2). The tapered section is used for suppressing
higher order modes families [225] while preserving high Q-factors (Q ∼ 106). (b) The
evolution of the generated comb power versus pump laser wavelength in the single-soliton
generation process consisting of two steps: (I) forward tuning for the generation of
multiple-soliton state (II) backward tuning to access the single soliton state. The insets
on the right schematically show the corresponding intracavity waveforms in different
states (MI, multiple and single soliton state). (c) Measured spectrum of a single-soliton
frequency comb after suppression of residual pump light. The frequency comb features
a smooth spectral envelope with a 3-dB bandwidth of 6 THz comprising hundreds of
optical carriers extending beyond the telecommunication C and L bands (blue and red,
respectively).
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7.3.1 Optical transmission using single DKS

The general concept of massively parallel data transmission using a frequency comb as
a multi-wavelength light source is depicted in Fig. 7.2(a) and demonstrated in the first
transmission experiment. To generate a single-soliton comb we use the setup similar to
the one described in Fig. 7.1(a) and marked in the current figure as FCG (frequency
comb generator). The comb is amplified in the first amplification stage to a level of
approximately 5 dBm/carrier, and then is sent to a demultiplexer (DEMUX). In our
experiment, the demultiplexer is implemented by two programmable filters (Finisar
WaveShaper) along with C- and L-band filters, which act as deinterleavers to separate
the comb first into the C- and L-bands, and then each of the resulting parts into two
sets of even and odd carriers. In this stage, the waveshapers are also used to equalize the
powers in respective bands compensating the sech2-profile. Each of the programmable
filters separates its own part of the DKS comb (C or L) in even and odd lines, and each
of them is again amplified in the second amplification stage, which comprises 4 EDFAs
(2 for odd and even carriers of the C band, and 2 for the L-band). After this the odd
and even carriers from the C and L bands are recombined using a C/L multiplexer,
and are fed to two IQ modulators (IQ-mod on the Fig. 7.1(a)). To emulate massively
parallel WDM transmission in our laboratory, we rely on a simplified scheme that uses
two independent data streams on neighboring channels, which explains the DKS comb
separation in the even and odd sets. We use pseudorandom bit sequences (PRBS) with
lengths of 211 − 1 using quadrature phase-shift keying(QPSK) or 16QAM at a symbol
rate of 40 gigabauds (GBd) along with band-limited Nyquist pulses. Nyquist pulse
shaping leads to approximately 40 GHz wide rectangular power spectra for each of the
carriers (Fig. 7.2(b)). We note that in our emulation experiment the same data stream is
encoded on all carriers of even or odd sets. After data encoding, the independent data
streams are combined using an optical multiplexer (MUX), which in our experiments
was represented by a regular fiber coupler followed by an emulation of the polarization-
division multiplexing using the split-and-combine method, whereby the data stream
of one polarization is delayed by approximately 240 bits with respect to the other to
generate uncorrelated data [267]. Finally, the resulting DKS comb with encoded data
was amplified in the third amplification stage using the C+L-band amplifier and sent
through the 75 km of optical fiber.

At the receiver side, each channel is individually characterized using a continuous-wave
laser as the local oscillator along with an optical modulation analyzer, which extracts
signal quality parameters such as the error-vector magnitude (EVM) and the bit error
ratio (BER). The BERs of the first transmission experiment are depicted in Fig. 7.2(e)
using red triangles, with different BER thresholds indicated as horizontal dashed lines.
For a given forward error correction (FEC) scheme, these thresholds define the maximum
BER of the raw data channel that can still be corrected to a BER of less than 10−15,
which is considered error-free [268]. Among the 101 carriers derived from the comb in
the C and L bands, 94 channels were used for data transmission, resulting in a total line
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Figure 7.2 – (a) Principle of data transmission using a single DKS comb generator
(FCG) as optical source at the transmitter. DEMUX, demultiplexer; IQ-mod, in-
phase/quadrature (IQ) modulators; MUX, multiplexer; EDFA, erbium-doped fiber am-
plifier; Coh. Rx, digital coherent receivers; CW, individual CW lasers as local oscillators
or seeds for FCG. (b) Principle of data transmission using interleaved DKS combs. (c)
Section of the optical spectrum of the WDM data stream for single DKS. (d) Section of
the optical spectrum of the WDM data stream for interleaved DKS. (e) Measured bit error
ratios (BER) of the transmitted channels for the single-comb and the interleaved-comb
experiment, along with the BER thresholds [268] for error-free propagation when applying
forward error correction schemes with 7 % overhead (4.5×10−3), dashed orange line) and
20 % overhead (1.5× 10−2, dashed blue line). For the interleaved-comb experiment, the
outer 14 lines at the low-frequency edge of the L-band were modulated with quadrature
phase-shift keying (QPSK) signals rather than 16QAM due to the low OSNR of these
carriers. (f) Measured BER vs. OSNR of three different channels derived from a DKS
frequency comb (blue) and a high-quality ECDL (red), all with 16QAM signalling at 40
GBd. A total of 106 bits were compared. (g) Constellation diagrams obtained for an
ECDL and DKS comb tone at 193.56 THz.
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rate of 30.1 Tbit/s. In our experiment, the transmission capacity is restricted by the
fact that the line spacing of about 100 GHz substantially exceeds the signal bandwidth
of about 40 GHz, leading to unused frequency bands between neighbouring channels
(Fig. 7.2(b)) and hence to a rather low spectral efficiency of 2.8 bit/s/Hz.

These restrictions can be overcome by using interleaved frequency combs, see Fig. 7.2(c).
The scheme relies on a pair of DKS combs with practically identical line spacing (95.80
GHz and 95.82 GHz), but shifted with respect to each other by half the line spacing using
thermal tuning. The overall experimental scheme is not changed apart from doubling the
equipment of the FCG part of the setup and the additional fiber coupler which merges
interleaved DKS combs from two setups and then sends them to the same transmission
experiment setup. At the receiver, this scheme still relies on individual CW lasers as
LO for coherent detection. The interleaved comb features a line spacing of ∼ 50 GHz,
which allows for dense packing of 40 GBd data channels in the spectrum, see Fig. 7.2(d).
The BER results of the second transmission experiment with interleaved DKS combs
are depicted in Fig. 7.2(e) using blue diamonds. We find a total of 204 tones in the
C and L band, out of which 179 carriers could be used for data transmission. The
remaining channels were not usable due to remaining ASE noise from the pump light
from FCGs (region around 192.7 THz), and limited perfromance of the C/L multiplexer
at the low-frequency end of the C-band (region around 191.4 THz). The transmission
performance is slightly worse than in the single comb experiment since twice the number
of carriers had to be amplified by the same EDFA, which were operated at their saturation
output power such that the power per data channel reduced accordingly. Nevertheless,
data was successfully transmitted over 75 km of standard single mode fiber at a symbol
rate of 40 GBd using a combination of 16QAM and QPSK. The total line rate amounts to
55.0 Tbit/s, and the net data rate is 50.2 Tbit/s. This is the highest data rate achieved
with a chip-scale frequency comb source, and compares very well to the highest capacity
of 102.3 Tbit/s ever transmitted through a single-mode fiber core [269] using more than
200 discrete DFB lasers as optical sources at the transmitter. In addition, we achieve an
unprecedented spectral efficiency of 5.2 bit/s/Hz, owing to the densely packed spectrum,
Fig. 7.2(d). In the experiments, limited saturation output power of the employed EDFA
is the main constraint of signal quality and BER. The presented data rates are hence not
limited by the DKS comb source, but by the components of the current transmission
setup, leaving room for further improvement. We also note that field-deployed WDM
systems rely on statistically independent data channels rather than on transmitting
identical data streams on the even and odd channels. As a consequence, real-world
signals will suffer much less from coherent addition of nonlinear interference noise than
the signals used in our experiments [270]. With respect to nonlinear impairments, our
experiments therefore represent a worst-case scenario.

To exemplify the potential of DKS combs for data transmission, we compare the trans-
mission performance of a single-comb line to that of a reference carrier derived from a
high-quality benchtop-type external-cavity diode laser (ECDL) with an optical linewidth
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of approximately 10 kHz, an optical output power of 15 dBm and an optical carrier-
to-noise ratio in excess of 60 dB. As a metric for the comparison, we use the optical
signal-to-noise ratio penalty at a BER of 4.5× 10−3, which corresponds to the threshold
for FEC with 7% overhead [268]. The results for 40-GBd 16QAM transmission are
shown in Fig. 7.2(f) for three different comb lines and for ECDL reference transmission
experiments at the corresponding comb line frequencies. The optical signal-to-noise
ratios are defined for a reference bandwidth of 0.1 nm. As shown, no additional penalty
is observed for the frequency comb when compared with the high-quality ECDL: for
both sources we observe an optical signal-to-noise ratio penalty of 2.6 dB with respect
to the theoretically required value (black line in Fig. 7.2(f)) for a BER of 4.5 × 10−3.
The comb lines do not show any additional penalty in comparison with the ECDL tones.
Similar results were obtained at other symbol rates such as 28 GBd, 32 GBd, or 42.8
GBd. DKS-based light sources can therefore markedly improve the scalability of WDM
systems without impairing the signal quality under realistic transmission conditions. The
error floor in Fig. 7.2(f) is attributed to transmitter nonlinearities and electronic receiver
noise in our setup. In Fig. 7.2(g) we show the measured constellation diagrams for the
ECDL and the comb line at 193.56 THz, both taken at the same optical signal-to-noise
ratio of 35 dB.

7.3.2 Optical coherent communication using two DKS

To demonstrate the potential of DKS frequency combs as multi-wavelength LO at the
receiver, we perform a third experiment shown schematically in Fig. 7.3(a). At the
transmitter, a first DKS comb generator with an FSR of 95.80 GHz serves as an optical
source. At the receiver, a second DKS comb source having approximately the same
FSR of 95.70 GHz is used to generate the corresponding LO tones, each featuring an
optical linewidth below 100 kHz. As in the previous experiments, WDM transmission is
emulated by encoding independent data streams on adjacent channels. Note that the C/L
multiplexer of the deinterleaver stage has been replaced by a directional coupler to avoid
the power attenuation of the carriers at the low-frequency edge of the C-band (which was
observed around 191.4 THz). The WS are also used to compensate the power differences
of the carriers and the spectral variations of the EDFA gain profile, thereby producing an
overall flat spectrum at the input of the IQ modulators. The modulators are again driven
by 16QAM drive signals generated by a high-speed arbitrary waveform generator using
PRBS of length 211−1. We use a symbol rate of 50 GBd. The larger analog bandwidth of
the used arbitrary waveform generator (32 GHz) allowed us to use higher symbol rates as
compared to the experiments in the previous section. Polarization-division multiplexing
(PDM) is again emulated by split-and-combine method: by temporally delaying one
of the polarizations using a delay line and combining on orthogonal polarizations in a
polarization beam combiner. The WDM data stream is amplified and transmitted over
75 km of standard single-mode fiber as in early experiments.
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Figure 7.3 – (a) Massively parallel WDM data transmission scheme using DKS frequency
combs as both multi-wavelength source at the transmitter and multi-wavelength local
oscillator (LO) at the receiver. FCG Signal/LO, frequency comb generator at the
transmitter/receiver; DEMUX, demultiplexer; IQ-mod, in-phase/quadrature modulators;
MUX, multiplexer; EDFA, erbium-doped fiber amplifier (EDFA); Coh. Rx, digital
coherent receivers; In contrast to Fig. 7.2 (a), a single optical source provides all of the
LO tones that are required for coherent detection. An extra demultiplexer is used to
route each LO tone to the respective coherent receiver. (b) Section of the spectrum
of the transmitted channels. (c) Corresponding section of the spectrum of the LO
frequency comb. Note that the comparatively large width of the depicted spectral lines is
caused by the resolution bandwidth of the spectrometer (0.1 nm) and does not reflect the
sub-100-kHz optical linewidth of the local-oscillator tones. (d) Measured BERs for each
data channel. Blue squares show the results obtained when using a DKS comb as the
multi-wavelength local oscillator and red triangles correspond to a reference measurement
using a high-quality ECDL. Dashed lines mark the BER thresholds the same as in
Fig. 7.2 (e). Black circles show the channels with BERs above the threshold for 7% FEC
and specify the reasons for low signal quality: a low optical carrier-to-noise ratio of
the carriers from the LO comb (‘LO’) and the signal comb (‘Signal’), and bandwidth
limitations of the C-band EDFA (‘EDFA’).

Figures 7.3(b, c) show a section of the transmitted data spectrum along with the
corresponding section of the LO comb. When using the carriers from the LO DKS comb
for coherent intradyne detection, such difference in line spacing translates into a non-zero
intermediate frequency (IF). The IF can be brought down to values below 100 MHz near
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the center of the frequency combs at around 191.5 THz but it reaches relatively high
frequencies of approximately 4 GHz when coherently demodulating the signals at the low
frequency edge of the L band and at the high frequency edge of the C band. The high IF,
however, does not prohibit data transmission as it can be removed using digital signal
processing after detection of the transmitted signal with our coherent receiver. However,
for high IF, the received signal is slightly affected by the limited electrical bandwidth
(BW = 33 GHz) of the analog-to-digital convertor (ADC) of our coherent receiver. This
leads to a reduction of the electrical power, and thus of the electrical signal-to-noise ratio,
of our baseband signal. The high IF, nevertheless, can be avoided by carefully matching
the line spacing of the two Kerr soliton frequency comb sources during fabrication.

At the receiver, each transmitted channel is selected individually by an optically tunable
BPF, followed by an EDFA and a second BPF to suppress ASE noise. The selected
channel is then sent to a dual-polarization coherent receiver which consists of an optical
modulation analyzer together with two real-time oscilloscopes (Keysight DSO-X 93204A,
80 GSa/s), and in contrast to the data transmission experiment described in previous
section, uses a spectral line from the Kerr soliton comb at the receiver side as a local
oscillator (LO). As a reference, the same experiment was repeated using a high-quality
ECDL with a 10 kHz linewidth as an LO for channel-by-channel demodulation. Overall,
an aggregate data rate of 34.6 Tbit/s is obtained. The resulting BER values of all 99
channels for both methods are shown in Fig. 7.3(d). Some of the channels showed signal
impairments due to limitations of the available equipment. However, we cannot observe
any considerable penalty that could be systematically attributed to using the DKS comb
as an LO.

While frequency combs offer fundamental technical advantages compared to discrete
lasers, they can also serve to reduce the power consumption of the transmission system. In
this context, the power conversion efficiency of the DKS comb generator is an important
metric, defined as the ratio between the power of the pump and that of the generated
comb lines. The power conversion efficiency of our current comb sources is limited to
rather small values between 0.1 % and 0.6 % due to the fundamental principle that bright
soliton generation only occurs with the pump laser being far detuned from the optical
resonance. Still, the overall power consumption can already now compete with massively
parallel arrays of commercially available integrated tunable laser assemblies (ITLA).

7.4 Dissipative Kerr solitons for ultrafast optical ranging

We next focus on the second demonstrtaed application of dissipative Kerr solitons –
ultrafast distance measurements. Laser-based light detection and ranging (LiDAR) is
widely used in science and industry, offering unique advantages such as high precision,
long range, and fast acquisition [271, 272]. Over the last decades, LiDAR systems have
found their way into a wide variety of applications, comprising, e.g., industrial process
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monitoring [273], autonomous driving [274], satellite formation flying [275], or drone
navigation [276].

When it comes to fast and accurate ranging over extended distances, optical frequency
combs [277] have been demonstrated to exhibit unique advantages, exploiting time-of-
flight (TOF) schemes [278], where the distance is calculated from the time which takes the
optical pulse to fly to the target and back to the receiver after reflection; interferometric
approaches [279], where the distance is inferred from interferometric measurements of
the phase shift of the reflected light; or combinations thereof [280].

In early experiments by Minoshima et al. [278], mode-locked fiber lasers were used for
TOF ranging, thereby primarily exploiting the stability of the repetition rate. Regarding
interferometric schemes, optical frequency combs were exploited to stabilize the frequency
interval between continuous-wave (CW) lasers used in synthetic-wavelength interferometry
[279, 281]. Dual-comb schemes, which rely on multi-heterodyne detection by coherent
superposition of a pair of slightly detuned frequency combs, allow one to combine TOF
measurements with optical interferometry, thereby simultaneously exploiting the radio
frequency coherence of the pulse train and the optical coherence of the individual comb
tones [280]. More recently, comb-based schemes have been demonstrated as a viable path
to high-speed sampling with acquisition times down to 500 ns [139].

However, besides accuracy and acquisition speed, footprint has become an important met-
ric for LiDAR systems, driven by emerging high-volume applications such as autonomous
drone or vehicle navigation, which crucially rely on compact and lightweight solutions,
and by recent advances in photonic integration showing that large-scale nanophotonic
phased arrays [279, 282, 283, 284] open a promising path towards ultra-compact systems
for rapid high-resolution beam steering. To harness the full potential of these approaches,
the optical phased arrays need to be complemented by chip-scale LiDAR engines that
combine high precision with ultrafast acquisition and that are amenable to efficient
mass production. Existing dual-comb LiDAR concepts cannot fulfill these requirements
since they either rely on cavity-stabilized mode-locked fiber lasers [280] or on spectral
broadening of initially narrowband seed combs [139], which typically requires delicate
fiber-based dispersion management schemes, usually in combination with intermediate
amplifiers. These approaches are not suited for chip-scale photonic integration.

In the following sections we demonstrate that integrated DKS comb sources provide a route
to chip-scale LiDAR systems that combine sub-wavelength accuracy and unprecedented
acquisition speed with the ability to exploit advanced photonic integration concepts for
cost-efficient mass manufacturing.
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7.5 Synthetic-wavelength interferometry

We start by describing the principle we used for ultrafast distance measurements. It
combines synthetic-wavelength interferometry with massively parallel comb-based multi-
heterodyne detection and is illustrated in Fig. 7.4.

Figure 7.4 – Principal scheme of dual-comb synthetic-wavelength interferometry: The
signal comb (orange) and the LO comb (blue) consist of discrete tones at frequencies
ωS,µ and ωLO,µ. The superposition of these comb lines on the measurement and reference
PD leads to a multitude of beat notes in the RF spectrum of the photocurrent (green) at
frequencies ∆ωµ = |ωLO,µ − ωS,µ|, which can be separated by a Fourier transformation.
The phases of these beat notes reveal the phase shifts Ψmeas,µ and Ψref,µ that the optical
waves have accumulated. The distance is finally obtained by estimating the slope of the
phase differences ∆Φµ according to eq. (7.2) as a function of mode index µ.

We give a brief outline of the technique using a simplified approach, which however does
not hinder the physical principle of the implemented distance measurements. We consider
two optical combs - signal comb (S) and local oscillator comb (LO), consisting of discrete
monochromatic optical tones ωS,µ = ωS,0 + µ · ωS,r and ωLO,µ = ωLO,0 + µ · ωLO,r, where
ωS,µ and ωLO,µ are the repetition rates. Without loss of generality we assume that the
indexing of both combs is done through the integer µ = 0,±1,±2, ... such that comb
lines with the same µ from S and LO combs have minimum frequency spacing. This will
guarantee that comb lines with the same µ give a detectable RF tone smaller than the
repetition rates of the combs.

The first part of the signal comb lines ωS,µ accumulate phase shifts Ψmeas,µ when
propagating back and forth over the measurement distance d to the target. The other
part of the signal comb is directly guided to the reference detector (Reference PD),
thereby accumulating phase shifts of Ψref,µ,

Ψmeas,µ = −ωS,µ
c

(Lmeas + 2d) ,

Ψref,µ = −ωS,µ
c
Lref . (7.1)
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In this relation, Lmeas and Lref refer to the optical path lengths that the two parts of the
signal comb propagate on the chips from the common comb generator to the respective
photodetector, and d is the single-pass free-space distance towards the target. The two
parts of the signal comb are superimposed with portions of the LO comb on the respective
photodetector, thus leading to a multitude of sinusoidal signals in the corresponding
baseband photocurrents. In essence, the phases of these sinusoidals reveal the differences
∆Ψµ(d) = Ψref,µ−Ψmeas,µ of the phases Ψmeas,µ and Ψref,µ that the respective signal comb
tones have accumulated along the measurement and the reference path. To eliminate
the internal optical path lengths Lmeas and Lref , a calibration measurement at a known
distance d0 is performed. The target distance (d− d0) can then be extracted by estimating
the slope of the phase differences ∆Φµ = ∆Ψµ(d)−∆Ψµ(d0) as a function of frequency
index µ,

∆Φµ = ∆Φ0 + µ
ωS,r
c
× 2 (d− d0) ,

∆Φ0 = ωS,0
c
× 2 (d− d0) . (7.2)

In this relation, ∆Φ0 denotes a phase offset that is independent of µ. The slope of
∆Φµ with respect to µ is extracted from the measured phases by means of a linear fit.
Note that this technique allows one to directly check the validity of a certain distance
measurement by using the fit error as a quality criterion – unreliable raw data leads to
large fit errors, based on which erroneous points can be discarded.

The unique advantages of DKS combs for high-speed high-precision sampling can be
understood by analyzing the fundamental limitations of measurement accuracy and
acquisition speed. Note that, for high-speed sampling, it is important to keep the number
N of baseband beat notes as small as possible: For N beat notes that are equally
distributed over a given acquisition bandwidth fADC of the ADC, the frequency spacing
∆fr = ∆ωr/2π of the beat notes is at most fADC/N . To spectrally resolve these beat notes
by a Fourier transformation, a minimum observation time of Tmin = 1/∆fr ≥ N/fADC is
required. This leads to a maximum distance acquisition rate of T−1

min = ∆fr ≤ fADC/N .

On the other hand, the number N of optical tones used for distance measurement will
also influence the accuracy with which we can estimate the slope of the phase differences
∆Φµ vs. µ from the noisy measurement data. Using basic relations of linear regression
analysis, the standard deviation of the measured distance can be estimated from the
overall optical bandwidth ΩS = NωS,r of the comb, the standard deviation σφ of the
individual phase measurements, and the number N of optical tones:

σd =
√

3
N

c

ΩS
σφ. (7.3)

For a fixed number N of optical lines, the only option that remains for improving the
measurement accuracy is to increase the overall optical bandwidth ΩS = NωS,r of the
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comb, which requires a comb source that provides a large free spectral range. DKS combs
stand out due to a unique combination of large overall optical bandwidth and large
FSR. They hence feature comparatively few optical lines and are thus perfectly suited
for simultaneously achieving high sampling and high measurement accuracy. This is
demonstrated in the following section by using a simplified model system that combines
a pair of DKS comb sources with fiber-optic components and a high-speed oscilloscope
for data acquisition and offline processing.

7.6 Experiment - reproducibility and benchmarking

We demonstrate the viability of the described dual-comb synthetic-wavelength interfer-
ometry scheme for realization of a chip-scale LiDAR engine, which critically relies on
integrated DKS comb generators as core components. Note that all other integrated
components of the LiDAR engine can utilize the standard device portfolio of photonic
integration and have been established in prior work [285, 286, 287].

The experimental setup for our proof-of-concept demonstration is depicted in Fig. 7.5(a).
For DKS comb generation, we use a pair of CW-pumped Si3N4-microring resonators on
separate chips similar to the ones described in Section 7.2. For multi-heterodyne detection,
the two resonators have slightly different free spectral ranges of ωS,r/2π = 95.646GHz and
ωLO,r/2π = 95.549GHz respectively. To demonstrate that our concept does not require
phase locking of the DKS combs, we used a pair of independent free-running pump lasers,
even though a single pump laser could have been used as well [288, 289]. The pump light
is amplified with EDFA and then coupled to the microresonator chips. The generation of
DKS states is implemented via the same two-step pump tuning scheme as described in
section 7.2. Thus, a single soliton-based frequency comb with spectrally smooth sech2-
shape envelope is deterministically achieved. After the chip, a fiber Bragg grating (not
shown in the figure) is used to suppress remaining pump light. The resulting combs are
amplified in C+L band EDFA to improve phase extraction of the individual beat notes.
The spectra of the amplified combs with filtered out pumps are shown in Fig. 7.5(c) for the
signal (red) and the LO (blue) comb. Both combs cover a range of approximately 11THz,
limited by the gain bandwidth of the respective EDFA. This gives about 115 of usable
comb lines for each combs, which is sufficient for our experiments. Both spectra feature
a slight dip near 191THz, which is caused by internal multiplexing and demultiplexing
filters of the EDFA. The increase of the noise background around 192.50THz (193.46THz)
in the signal (LO) comb is caused by residual amplified spontaneous emission (ASE)
originating from the pump EDFA.

For distance measurement, the signal comb (red) is split by a fiber-based 50:50 coupler,
and one part is routed to the target and back to a balanced measurement PD (meas. PD),
while the other part is directly sent to the balanced reference detector (ref. PD), see
Fig. 7.5(a). Measurement and reference PD feature bandwidths of 43GHz. Note that in
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Figure 7.5 – (a) Experimental setup. DKS combs are generated by a pair of Si3N4
microresonators, driven by two CW lasers and erbium-doped fiber amplifiers (EDFA).
The combs are detuned in line spacing by |ωLO,r − ωS,r| /2π ≈ 98MHz as well as in center
frequency by ∆ω0/2π = |ωLO,0 − ωS,0| /2π ≈ 18GHz. CIRC, optical circulator; COL,
collimator; SCOPE, real-time sampling oscilloscope. As a target, we use a silver mirror
that can be positioned with an accuracy of better than 50 nm using a feedback-stabilized
stage. (b) Numerically calculated Fourier transform of a recorded time-domain signal.
The baseband spectrum consists of discrete spectra centered around 18GHz with spacings
of ≈ 98MHz. (c) Optical spectra of the signal and the LO comb after amplification.
(d) Allan deviation of measured distances as a function of averaging time. The highest
acquisition speed is limited by the spacing of the baseband beat notes in the photocurrent
and amounts to approximately 98MHz (acquisition time of 10.3 ns). At this speed, an
Allan deviation of 284 nm is achieved, that decreases to a record-low value of 12 nm at
an averaging time of 14 µs. The increase towards longer averaging times is attributed to
drifts in the fiber-optic setup. (e) Top: Scan of measured position vs. set position in
steps of 50 µm over the full ambiguity distance (marked by dashed lines). The points
outside the ambiguity interval are manually unwrapped. Bottom: Residual deviations
("residuals") between measured and set positions. The residuals are of the same order
of magnitude as the 50 nm positioning accuracy of the positioning stage. Error bars
indicate the standard deviation obtained for each position of the mirror. Importantly,
the residuals do not show any cyclic error.

contrast to Fig. 7.4, we use a circulator (CIRC) in conjunction with a directional coupler
for splitting forward and backward-propagating light in the measurement path. Similarly,
the LO comb is split in two portions, which are routed to the measurement PD and the
reference PD for multiheterodyne detection. The resulting baseband beat signals are
recorded by a 32GHz real-time sampling oscilloscope. Data processing and evaluation is
performed offline. Figure 7.5(b) shows a numerically calculated Fourier transform of a
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recorded time-domain signal that reveals a multitude of discrete beat notes between the
signal and LO comb lines. The spacing of the beat notes is given by the difference of the
line spacing of the LO and the signal comb and amounts to ∆fr = ∆ωr/2π = 97.7MHz,
thereby dictating a minimum possible acquisition time of Tmin = 1/∆fr = 10.3 ns and a
maximum possible distance acquisition rate of 97.7MHz.

For a thorough stability and precision analysis of our dual-comb scheme, we evaluate the
Allan deviation [290] over a 10.3ms long measurement that is composed of a series of 106

individual data points taken from a static mirror at an acquisition time of 10.3 ns per
point. The results are plotted in Fig. 7.5(d). At an averaging time of 10.3 ns, an Allan
deviation of 284 nm is obtained, that decreases to 12 nm for an averaging time of 14 µs.
The initial linear decrease of the Allan deviation implies dominating high-frequency noise,
which is attributed to an amplified spontaneous emission (ASE) background originating
from the deployed EDFA. This ASE noise impacts the phase estimation of the individual
beat notes and therefore the extracted distance. For longer averaging times, the Allan
deviation increases, which we attribute to thermal drift of the fibers and to mechanical
vibrations.

Besides the Allan deviation of a distance measurement to a static target, we estimated
the accuracy of our technique for measuring variable distances to a target that is moved
over a full ambiguity distance, see Fig 7.5(d). In this experiment, the target mirror is
stepped in increments of 50 µm using a high-precision translation stage with an accuracy
of better than 50 nm. To eliminate the impact of fiber drift, the distance measurement is
continuously switched between the movable target mirror and a static calibration mirror
in quick succession, taking between 6 500 and 9 500 measurements on each mirror. To
minimize the impact of high-frequency noise, an averaging time of 100 µs is chosen. In the
upper part of Fig. 7.5(e), the measured distance is plotted as a function of the distance
set by the translation state. Measured distances exceeding the ambiguity interval of
1.51mm are unwrapped manually. The bottom part of Fig. 7.5(e) shows the deviations
of the measured from the set positions along with the respective standard deviations
indicated as error bars. Importantly, no cyclic error is observed throughout the ambiguity
interval. We determine the accuracy of our measurement to 188 nm, defined as the
standard deviation of the residuals. These residuals are of the same order of magnitude
as the 50 nm positioning accuracy of the positioning stage specified by the manufacturer
[291]. In this measurement, the refractive index of air is considered according to Ciddors
formula for ambient lab conditions [292].

To validate the reproducibility of our system and to benchmark the results with respect
to existing techniques, we measure the profile of a quickly rotating disk having grooves on
its surface, see Fig. 7.6(a). In this experiment, the measurement beam is focused to the
surface near the edge of the disk, which rotates at a frequency of about 600Hz, resulting
in an edge velocity of 160m/s. The distance acquisition rate amounts to 97.1MHz,
limited by the spectral spacing of ∆ωr/2π of the beat notes in the baseband photocurrent,
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Figure 7.6 – (a) Setup for reproducibility and benchmarking experiments. The mea-
surement beam is focused on the surface of a spinning disk (600 Hz) having grooves of
different depths on its surface. (b) Measured surface profile of the disk as a function
of position (bottom) and time (top) for two independent measurements at the same
position. Inset 1: Reproducibility demonstration by detailed comparison of the two
independent measurements plotted in (b). The results exhibit good agreement regarding
both macroscopic features such as the groove depth and width as well as microscopic
features such as surface texture and a decrease of depth towards the edge of the groove.
Inset 2: Benchmarking of the high-speed dual-DKS-comb measurement to the results
obtained from an industrial optical coordinate-measuring machine (CMM). (c) Setup
for ultrafast ranging experiment. The measurement beam is focused into free space.
An air-gun bullet is then fired through the focal spot of the beam and the profile is
recorded. The bullet travels at a speed of ∼150m/s (Mach 0.47). (d) Measured profile
of the projectile obtained from in-flight dual-DKS-comb measurement (red), along with
a swept-source OCT profile scan that was recorded on the static projectile after recovery
from the backstop. For better comparison, the two profiles were rotated and an actual
speed of the bullet of 149m/s was estimated for best agreement of the two profiles. Both
curves show good agreement, demonstrating the ability of the dual-DKS-comb technique
to obtain reliable results even for ultrafast sampling on rapidly moving targets with
naturally scattering surfaces. (e) Image of the projectile after being fired. Deformations
during the shot have lead to a strong corrugation of the bullet towards its back.

but not by the acquisition speed of our oscilloscopes. The resulting profiles are shown
in Fig. 7.6(b) for two measurements, which were taken independently from one another.
Measurement points close to the edges of the grooves may suffer from strong scattering
and low power levels, which lead to unreliable distance information. Using the fit error of
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the linear phase characteristic according to eq. (7.2) as a quality criterion, our technique
allows bad measurement points to be identified and automatically discarded from the data.
The raw data of both measurements was further subject to vibrations of the disk arising
from the driving engine. These vibrations have been removed by fitting a polynomial
to the top surface of the disk and by using it for correction of the overall measurement
data. In a first experiment, we analyze the reproducibility of the technique by a detailed
comparison of the results obtained from the two measurements, see Fig. 7.6(b), Inset 1.
The measured profiles exhibit good agreement regarding both macroscopic features such
as the groove depth and width as well as microscopic features such as surface texture
and a decrease of depth towards the edge of the groove. Deviations are attributed to
the fact that the two measurements have been taken independently and might hence
not have sampled the exact same line across the groove. In addition, we benchmark our
technique by comparing the obtained profile of a single groove with a profile obtained
from an industrial optical coordinate-measuring machine (CMM, Werth VideoCheck HA),
Fig. 7.6(b), Inset 2. Both profiles are in good agreement, with some minor deviations
that we attribute to slightly different measurement positions within the analyzed groove.

7.7 Experiment - profiling of a flying bullet

In a final experiment, we demonstrate ultrafast ranging by measuring the profile of
a flying air-gun bullet that is shot through the focus of the measurement beam, see
Fig. 7.6(c). The projectile moves at a speed of 150m/s, i.e. Mach 0.47, which, together
with the acquisition rate of 97.7 MHz, results in a lateral distance of 1.5 µm between
neighbouring sampling points on the surface of the bullet. The measured profile is
depicted in red in Fig. 7.6(d) along with a reference measurement of the profile obtained
from the static bullet using a swept-source OCT system (dark blue). Both curves clearly
coincide and reproduce the shape of the fired projectile that can be seen in Fig. 7.6(e).
Missing data points in the dual-DKS-comb measurement at the tip of the projectile
are caused by low power levels of the back-coupled signal, which is inevitable for such
steep surfaces in combination with the limited numerical aperture of the lens used for
focusing the beam. These measurement points have been discarded from the data based
on a large fit error of the linear phase characteristic according to eq. (7.2). An image
of the projectile after recovery from the backstop exhibits a strong corrugation of the
bullet towards its back, Fig. 7.6(e). This leads to deviations of the measured profiles
in Fig. 7.6(d) towards the right-hand side, since the strongly corrugated surface of the
projectile in this area has very likely been sampled at two different positions. These
experiments clearly demonstrate the viability of the dual-DKS-comb approach and its
extraordinary performance advantages for ultrafast high-precision sampling. Thanks
to the high sampling rate, the technique would allow to track continuous movements
of objects at any practical speed, with an ambiguity limit 144 000m/s. The ambiguity
distance of the dual-DKS-comb approach can be greatly increased by combination with
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a comparatively simple low-accuracy time-of-flight system.

7.8 Vision of the chip-scale DKS-based LiDAR system

Our experiments demonstrate the viability of chip-scale DKS comb generators to act as
optical sources for high-performance ranging systems and are a key step toward fully
integrated chip-scale LiDAR engines, as illustrated as an artist’s view in Fig. 7.7. In
this vision, the LiDAR system is realized as a photonic multichip assembly, in which
all photonic integrated circuits are connected by photonic wire bonds (Fig. 7.7, Inset
2) [293]. The comb generators are pumped by integrated CW lasers, and a dedicated
optical chip is used to transmit and receive the optical signals [262]. The receiver is

Figure 7.7 – (a) Artist’s view of a dual-comb chip-scale LiDAR engine. The system
consists of a dual frequency comb source (A), a photonic integrated circuit (PIC) for
transmission and detection of the LiDAR signal (B), as well as data acquisition and
signal processing electronics (C). For comb generation, light of two continuous-wave (CW)
pump lasers is coupled to the silicon nitride (Si3N4) microresonators of the dual-comb
source (inset (1)), where dissipative Kerr solitons (DKS) with broadband smooth spectra
are generated via four-wave mixing processes [84]. All photonic integrated circuits are
connected by photonic wire bonds (inset (2)) [293]. One of the two DKS combs is used
for measuring the distance to the target ("signal comb", orange), whereas the other comb
acts as a local oscillator ("LO comb", blue) for multi-heterodyne detection on balanced
photodetectors (PD). On the LiDAR PIC, the signal comb is split in two parts. One part
is collimated by a chip-attached micro-lens (inset (3)), sent to the measurement target,
and the scattered light is coupled back into the on-chip waveguide and superimposed
with a first portion of the LO comb in the measurement photodetector (Measurement
PD). The other part of the signal comb is directly guided to the reference photodetector
(Reference PD) along with the other portion of the LO comb. Distance information
is extracted from the electrical beat notes in the photocurrents by a combination of
analog-to-digital converters (ADC) and a field-programmable gate array (FPGA).
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equipped with a chip- attached microlens that collimates the emitted light toward the
target (Fig. 7.7, Inset 3) [294]. The electrical signals generated by the photodetectors are
sampled by analog-to-digital converters (ADC) and further evaluated by digital signal
processing in powerful field-programmable gate arrays (FPGA) or application-specific
integrated circuits. Free-running pump lasers greatly simplify the implementation in
comparison with configurations where two comb generators are simultaneously pumped
by a single light source. Although most of the technological building blocks for realizing
this vision have already been demonstrated, one of the remaining key challenges is to
reduce the power levels required for DKS generation to typical output power levels of
state-of-the-art diode lasers. This requires Si3N4 microresonators with higher quality
factors that can be achieved by optimizing the waveguide geometry and the fabrication
processes. We expect that such optimization will allow increasing the Q-factor by about
one order of magnitude, thus reducing the pump power requirements by two orders of
magnitude [102, 32, 295]. Alternatively, other integration platforms, such as SiO2 or
AlGaAs, can be used, permitting comb generation with only a few milliwatts of pump
power [15, 296]. These power levels are realistically achievable with integrated pump
laser diodes. Based on these findings, we believe that DKS-based dual-comb LiDAR
could have a transformative impact on all major application fields that require compact
LiDAR systems and high- precision ranging, in particular when combined with large-scale
nanophotonic phased arrays [283, 284]. Acquisition rates of hundreds of megahertz could
enable ultrafast three-dimensional imaging with megapixel resolution and update rates
of hundreds of frames per second.

7.9 Conclusion

In summary, we have demonstrated the potential of chip-scale DKS frequency combs
for two applications - massively parallel WDM at data rates of tens of terabit/s and
high-precision optical ranging.

In the first application, two DKS combs acting as multi-wavelength source at the
transmitter and as LO at the receiver are used, and we show in both cases that that there
is no systematic penalty compared to using a high quality ECDL. While our experiments
achieve the highest data rate with chip-scale frequency comb sources in comparison to
all previous demonstrations, there is still room for increasing the transmission capacity
by optimizing the transmission system or by using the adjacent S- and U-bands for
telecommunications in the near infrared. For long transmission distances, comb-based
transmission schemes might allow for compensation of nonlinear impairments and hence
lead to an improved signal quality compared to conventional WDM schemes [261]. The
results prove the tremendous potential of DKS comb generators for high-speed data
transmission, both in petabit/s intra-datacenter networks [297] and in inter-datacenter
connections.

166



7.9. Conclusion

In the second application, we have shown that DKS combs offer a unique combination
of large optical bandwidth and large free spectral range, thereby enabling the fastest
ranging experiment to date. We achieve distance acquisition rates of 97.7 MHz while
maintaining sub-µm precision on a macroscopic scale, thereby outperforming the fastest
previous demonstrations by more than an order of magnitude. We investigate the
reproducibility of our system, benchmark it with respect to an industrial coordinate
measuring machine, and finally demonstrate its performance by sampling the naturally
scattering surface of air-gun bullets on the fly. Our results may impact both scientific and
industrial applications that require fast and precise contact-less distance measurements.
The scheme is fully amenable to photonic integration, thereby offering a promising
route towards cost-efficient mass-production of compact LiDAR engines with ultra-high
sampling rates.

Finally, we would like to draw the readers attention to another work, where dual-soliton-
combs generated in counter-propagating modes of a single silica microdisc was used to
demonstrate fast TOF-based distance measurements [145].
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8 Standalone microcomb source

This chapter reports on the process of building the standalone transportable version of
the setup for the DKS generation.

8.1 Introduction

Rapid development of the DKS-based optical comb sources, which has started with
the seminal paper by Herr et al. [9] and sparked an in-depth exploration of their
physics, has quickly led to the employment of such soliton-based microcombs in a
variety of applications, some of which were presented previously in Chapter 7. Although
the advantages of soliton microcombs are quite evident: chip-scale footprint and low
complexity of the microresonators, wafer-scale mass-fabrication, access to large repetition
rates in the microwave and terahertz domains, as well as convenient ability to engineer
the operation window and spectral envolope of the resulting optical frequency combs,
they still remain an in-lab technology, and their potential for real world applications has
hardly been realized and demonstrated.

One of the key limiting factors of soliton microcombs is that their operation does not solely
rely on the properties of the microresonators used for the generation of DKS. While the
microresonator parameters, such as Q-factor, dispersion profile, bus-waveguide coupling
and others indeed play a major role in defining the resulting spectrum, access to soliton
states and their dynamics, the microresonator itself is a passive device, which unavoidably
needs a driving laser for continuous operation. The requirements on the driving laser can
be quite challenging, as it should be able to provide enough tuning capabilities to launch
soliton states, work without mode hopping, and, depending on the application, have a
high level of coherence. Furthermore, launching DKS states can be rather challenging and
require complex tuning mechanisms, as well as additional components and stabilization
electronics such as single (dual)-sideband modulator or a Pound-Drever-Hall (PDH)
scheme. This is especially the case in a microresonator having a complex dispersion

169



Chapter 8. Standalone microcomb source

profile and strong thermal effects, and when the DKS comb bandwidth becomes as wide
as an octave. Depending on the Q-factors and chip input-output coupling efficiency the
power of the pump laser should be also high enough to ensure access to the single-soliton
states (see Chapters 2 and 5) and provide a high power-per-line. Finally, the microcomb
operation also often needs the usage of stabilization techniques, requiring additional
components in order to maintain the DKS state or lock it to atomic resonances.

All of the above establish strict requirements on the supply equipment and infrastructure
needed to launch a soliton state and maintain its operation. As an example, a typical
laboratory setup used for the generation of the DKS-combs in Si3N4 microresonators is
shown in Fig. 8.1. It comprises a number of bulky devices including a low-noise tunable
ECDL, high-power EDFA, oscilloscope, vector network analyzer, optical spectrum analyz-
ers, coupling stage and several optical breadboards with passive optics and photodiodes.
As a result, all microcomb applications so far were mostly limited to the laboratory
environment with constant monitoring of the system operation, short operation time
scales, and the usage of unique, costly and large-scale equipment which invalidated the
size, weight and power (SWaP) advantages of the soliton microcomb technology. Another
drawback of the present microcombs is that they require a good understanding of DKS
physics, significant hands-on experience with the given system as well as with the process
of soliton excitation in order to excite the DKS state and maintain it in the operation
regime.

Therefore, for further maturing soliton microcombs and making them readily available for
industrial and academic users there is a clear need for the compact standalone microcomb
system, which would include a minimum set of components required for the soliton
generation in a microresonator device, and which would clearly demonstrate SWaP
advantage of the technology while satisfying the needs of various applications in terms of
performance, stability and ease of usage.

Few steps towards such systems have already been made recently with chip-scale laser
sources [298, 299, 126]. However, the system operation either was not stable or required
additional equipment and a lot of fine-tuning and adjustments for the microcomb
operation. Apart from these attempts, to the best of the author’s knowledge, no fully
standalone microcomb system has been developed so far. On the one hand, such a system
can be quite simple and highly application- and microresonator-oriented, because most of
the applications do not require large tunability of the optical combs and system variability.
This allows the usage of cost-effective OEM components and a significant reduction in
the system footprint with respect to the laboratory-based version, shown in Fig. 8.1.
On the other hand, in order to maintain the SWaP advantages of the microcombs, the
development of such a system still requires a solution of challenging engineering tasks
and intelligent software, which would be able to initiate, stabilize and control the system
with minimum intervention from the user.

170



8.2. Breadboard-based prototype

Figure 8.1 – Laboratory setup for the generation of soliton microcombs in Si3N4 microres-
onators.

In the following sections we cover two iterations of building such a standalone, fully
operational microcomb system. In the first iteration a breadboard-based prototype was
built, tested and employed in collaboration with Microsoft Research (UK) in a new
microcomb application for data centers - ultrafast optical circuit switching. The aim
of the first iteration was to validate the developed system scheme as well as to test the
system transportation and operation in a close-to-the field environment. The second
iteration, currently in progress, focuses on a rack-mountable unit of the microcomb
system, which can be used for the real field deployment, testing of the custom solutions
for components and further system optimization. Apart from advancing microcomb
technology and opening doors for a variety of real applications, our work is aimed at
creating a solid basis for its further industrial development.

8.2 Breadboard-based prototype

Since the breadboard-based prototype (further – prototype) has became the first iteration
of the standalone microcomb developments process, it was constructed from commercial
off-the-shelf components and standard available optical breadboards. This would allow
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us to test various available subsystems and choose optimal cost-performance solutions,
simplify mounting and space organization as well as maintain system flexibility at the
early development stages.

The engineering of such a prototype system consists of multiple aspects, which include the
development of the system layout, search and testing of the hardware parts, development
of control software, and the microresonator testing and fiber packaging of the chips. Each
of these sides of the project are full of challenging tasks, and it should be emphasized
that the development of the prototype system was overall a team effort. Many people at
LPQM were involved and significantly contributed to the system at its various stages,
including Alexandre Goy, Michael Geiselmann, Arslan Raja, Xin Fu and Jordan Wachs.

8.2.1 Hardware

The work on the hardware part of the system was primarily aimed at designing a compact
system architecture with a minimum set of components, which would enable robust and
repeatable launching of DKS states in the chip-integrated devices and guarantee stable
operation of the soliton state afterwards. On the other hand, in the first iteration we also
wanted to maintain the prototype variability (to be able to replace different components
with minimum effort), which would facilitate the process of system integration during the
development stage. In addition, this also allowed us to test and compare the performance
of different components (e.g. passive fiber optical components, or seed lasers and EDFAs
from different vendors), when the system integration is completed. Finally, the prototype
board was supposed to be used with different microresonator devices, which, depending
on their FSR and other parameters, may require different components.

The hardware part of the prototype consists of two optical breadboards stacked vertically.
The two-layered approach is chosen for compactness of the system and convenient access

FPC

PDPD

FBG CIRC

chip
Koheras

Basic OEM BKtel EDFA

DAC

Bo�om layer Upper layer
Output

U
SB

 c
on

ne
ct

or
s

AC

OSC

BPF
99-1 99-1

90-1090-10

PM PM12V / 5A 

Figure 8.2 – Layouts of the breadboard-based microcomb prototype. The system is
organized in two layers and consists of: DAC - Data acquisition board, BPF - bandpass
filter, FPC - fiber polarization controller, PM - powermeter, PD - photodiode, FBG -
fiber Bragg grating, OSC - oscilloscope.
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to the equipment requiring the most adjustments during the system testing and operation.
The layouts of both boards are schematically shown in Fig. 8.2.

The bottom layer of the breadboard prototype - "backend" - contains all electro-optical
components and data acquisition card, which do not require mechanical adjustments and
can be fully controlled through the software. The backend is organized on the 30× 45 cm
optical breadboard and includes the seed laser (Koheras Basik C15 - OEM fiber laser,
operating at 1550 nm), compact Erbium-doped fiber amplifier (BkTel, OEM EDFA with
maximum output power > 2 W) and multifunction I/O device (NI USB 6003, 100 kS/s),
used as the data acquisition and driving function generator for the pump laser. The
fiber laser was chosen for the prototype due to its compactness, thermal stability and
low linewidth, as well as convenient slow (thermal) and fast (piezo) ways of wavelength
tuning. They can be successfully used to realize three main procedures required during
the excitation of the DKS states - searching for the operational resonance, launching
of the initial soliton state and switching to the single soliton state. Despite a rather
high output power of the pump laser (> 10 mW), the prototype still relies on the EDFA
to amplify the CW seed to the level of 1-2 W, which is aimed at compensating the
loses in the passive optical components before the chip and the limited fiber-to-chip
couplings efficiency. Apart from these three key components, the system also contains a
corresponding power- and interface adapter for the laser, which is intended for convenient
communication with the device. We note that the prototype system does not contain any
mounted power supplies for active components on the board, which was mainly defined
by the speed and convenience of the development process and was changed in the second
iteration of the system designed. In the described prototype, an off-board standalone
power supply was used for the EDFA and a vendor-supplied power adapter for the laser.
The data acquisition board was powered through the USB cable.

Bottom layer Upper layer

EDFA

Pump laser

FPC

Si3N4 chip

DAC

BPF

FBG

PDPD

Figure 8.3 – Photos of the prototype system’s backend and frontend layers. Components
are marked in accordance with Fig. 8.2.

The upper layer of the board - "frontend" - was designed to contain passive fiber optical
components, packaged Si3N4 chip and photodiodes for characterization purposes and
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monitoring of the soliton excitation process. Similarly to the backend board it is also
organized on the 30× 45 cm optical breadboard, and consists of individual off-the-shelf
components including a bandpass filter (BPF) for ASE noise supression of the EDFA, fiber
polarization controller (FPC), two 99-1 splitters for transmission monitoring purposes,
fiber-packaged Si3N4 microresonator, two 90-10 fiber splitters for characterization and
soliton launching, and a circulator and fiber Bragg grating (FBG), for filtering the unused
pump light after the chip and preventing its reflection back into the chip. Finally, two
photodiodes (Thorlabs DET08CFC/M) are also mounted on the frontend to detect the
transmitted and generated lights.

At an early testing stage of the prototype system it relied on the external ocilloscope
(OSC) for detecting the transmitted and generated light powers, as shown in Fig. 8.2.
However, at later stages the data acquisition was restricted to only generated light, which
was implemented through the DAC. We also note that no splicing was performed for
the fiber optical components of the setup to reserve the possibility of using different
components during the testing phase.

In the current layout of the setup, the light from the CW seed laser is first amplified by
the EDFA on the bottom layer. It is then transferred to the frontend layer, where the BPF
is used to filter EDFA-induced ASE noise. The polarization is adjusted with the FPC to
match the corresponding fundamental waveguide mode (TE or TM). The chip transmission
is measured using two off-board powermeters, which allow tracking the transmission
fluctuations or long-term drifts. They are used to monitor possible fiber-chip coupling
degradation or for preliminary polarization adjustment to match the required modes.
The latter is allowed by the transmission selectivity of the corresponding transverse mode
families due to the non-unity aspect ratio of the designed on-chip waveguides. After the
chip, 10% of the output signal is directly used for the measurements of the transmitted
light using the first PD. The rest is directed to the circulator and FBG to filter the strong
pump from the comb spectrum and dump it in the beam trap. After the FBG another
10% of the light is used to characterize the generated light, and the rest is available to
the user for particular application of the prototype. The final comb power is about 60%
of the comb power exiting the chip due to several control taps and fiber connectors.

Figure 8.3 shows the actual view of both prototype layers, where different components
are marked. The overall size of the setup after stacking both layers together with cables
and fiber organization was 23× 55× 35 cm excluding off-board components.

8.2.2 Control software

The control of the prototype system was realized in MATLAB. It includes control of the
seed laser, EDFA and data acquisition card (DAC), which were implemented through
the corresponding serial or USB interfaces.
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EDFA control Seed laser control DAC and soliton excitation

Figure 8.4 – MATLAB-based GUI of the control software developed for the breadboard
prototype of the standalone soliton microcomb system. Colored frames indicate control
elements of three main active subsystems - seed laser, EDFA and DAC.

The control software is designed to provide access to the key functionality of the corre-
sponding active elements of the prototype enabling the soliton generation. For the pump
laser it corresponds to the turning on and off emission, reading internal parameters of
the laser, slow temperature tuning of the central wavelength as well as access to the
controller of the internal piezo element for fast wavelength tuning. For the EDFA the
required control is limited to control of the emission, output power level and reading
the internal parameters of the device. The DAC has more versatile functionality. It
reads the signal of external photodiode(s) used for the detection of the generated light
(transmitted signal and generated light) and provides a driving voltage to the seed laser
control input for fast frequency sweeps. Two control sequences of the seed laser tuning
were implemented in accordance with the typically required tuning signals used for the
soliton launching in laboratory setup. First is the continuous laser scanning (triangular
continuous sweep) used for locating the resonance, polarization adjustment and soliton
step search. Second - is the single V-shape driving signal (burst) which corresponds to
the standard forward tuning technique [9] and allows for DKS state seeding if the initial
conditions (burst amplitude and tuning speed) are properly adjusted.

For convenience all controls are organized in a single-window graphical user interface
(GUI). The controls are grouped together based on the devices they are used for and
augmented with a plot displaying the recorded data traces, which is updated online as
the DAC collects new data. The GUI snapshot is shown in Fig. 8.4, where different
control components are marked.
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8.2.3 Microresonator chip packaging

As for the laboratory setup the core element of the prototype is a fiber-packaged Si3N4
chip with an integrated microring resonator and bus waveguide. The chips are designed
for edge-coupling, where the input and output of the integrated optical waveguide are
located at the edge facet of the chip. The usual approach of the pump coupling established
in LPQM uses the lensed fibers with a short working distance of about 10–20 µm and
spot diameter of 3–4 µm. Together with inverse tapering of the integrated waveguide [29],
which serves to expand the mode size close to the edge of the chip, one could achieve quite
a high coupling efficiency of < 1.5 dB/facet. However, that solution is quite bulky, as it
requires precise positioners for lensed fiber alignment. There are also other disadvantages
with such contactless fiber coupling. First, there is the significant power-dependency of
the coupling due to the thermal expansion of the chip and its holder operating under
high pump powers. Second, there is the mechanical oscillations of the fiber tips which
can pick up surrounding acoustic noises.

Figure 8.5 – Photographs of the fiber-packaged Si3N4 chip (middle), and fiber-chip
connection points after curing of the glue (left and right). One can observe that the size
of the glue drops can be kept well below 1 mm, which potentially can allow packaging of
a single chip with multiple fibers. Courtesy to Arslan S. Raja for images of the fiber-chip
coupling

In order to avoid these described issues, the lensed fiber approach was changed to fiber
butt-coupling, when the fiber tip is brought in direct contact with the chip and fixed
with UV glue after optimizing the power transmission. Since the core size of a standard
single mode fiber (SMF28) is significantly larger than the mode size at the chip facet, an
additional short piece of ultrahigh-numerical-aperture fiber (UHNA) having a smaller
fiber core diameter was spliced with the SMF28 to facilitate mode matching at the
fiber-chip interface. This allows the fiber to be fixed rigidly against the chip while
maintaining a high level of transmission. Besides fiber butt coupling, we also used a bulk
aluminum substrate to mount the chip, which enables easy handling of the packaged
chip, adds robustness to the package during its mounting in the prototype system and
enables fiber gluing to the substrate close to the fiber-chip interfaces in order to reinforce
the weakest part of the full assembly. Also, the metal post is designed for mounting of a
temperature-sensitive element close to the chip for the thermal stabilization.
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8.2. Breadboard-based prototype

Figure 8.5 shows the full packaged chip assembly (center), and two glued fiber-chip
interfaces at both sides of the chip (left, right). Due to the small size of the glue drop
needed to fix the fiber-chip interface, which takes about 10% of the full chip facet length
(5 mm for the current design), mounting of several fibers is possible on both sides of the
chip.

After curing of the glue, which can take up to 24 hours, the measured transmission is
stable on the order of 10 - 15% for different chips (see Fig. 8.6). Since the beginning of
2018 several chips were packaged and stored in an unprotected environment under room
temperature. Regular testings have confirmed the absence of evidence for degradation of
the fiber-to-chip coupling efficiency, despite mechanical impacts, transportation between
laboratories and occasional short-term operation under high powers of about 2 W.

24h curing of the UV glue Stable transmission

Figure 8.6 – 46-hours long transmission measurements of the fiber-packaged microres-
onator chip under the load of about 1 W of optical power starting from the fiber gluing
moment. The transmission is increased up to more than 12% during first ∼ 24 hours,
which is the typical passive curing time of cationic UV adhesives. Afterwards the
transmission stabilizes.

8.2.4 Prototype system testing

For the in-house prototype testing we used several fiber-packaged 100-GHz Si3N4 chips.
The primary goal was to validate the possibilty of launching a single soliton state with
the developed prototype architecture and software as well as to test the system stability
and performance.

To launch the DKS state, the frequency of the seed laser is thermally tuned to the closest
resonance of the TE or TM fundamental modes. First, a multiple-soliton state is excited
using the burst function for tuning the seed laser. Second, it is followed by a backward
tuning [114] for the switching to a single soliton state.
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Chapter 8. Standalone microcomb source

We applied this procedure to three packaged devices - DKS002, DKS004 and DKS005,
which were fabricated in different runs and fiber-packaged to the microresonators with
different resonator-waveguide gaps. Single soliton states were achieved in all devices
(see Fig. 8.7) with input powers of 1-2 W. The resulting comb spectra have maximum
power-per-line reaching -17 dBm, estimated OSNR of > 45 dB (0.1 nm bandwidth)
and were covering several telecommunication bands, including the C- and L-bands with
power-per-line > -40 dBm. We also tested comb postamplification implemented with a
C-band compact OEM EDFA (Neptecos) having low input powers. The results are also
shown in Fig. 8.7. Due to the impact of the ASE, we observed a significant reduction in
the OSNR (to below 35 dB), but the maximum power-per comb line in the C-band was
brought to almost milliwatt-level per line.

Furthermore, the stability of the system was verified on the 1 hour scale with the free
running system and with no thermal stabilization of the chip.

DKS002a

b

DKS004 DKS005

-80

-60

-40

-20

0

Po
w

er
 (d

Bm
)

-80

-60

-40

-20

Po
w

er
 (d

Bm
)

1400 1450 1500 1550 1600 1650 1700
Wavelength (nm)

1400 1450 1500 1550 1600 1650 1700
Wavelength (nm)

No EDFA
BPF #1
1x FBG

EDFA #2
BPF #2
1x FBG

EDFA #2
BPF #2
1x FBG + 1x OADM

1450 15001475 1525 1575 16251550 1600 1650
Wavelength (nm)

1450 1500 1550 1600 1650 1700
Wavelength (nm)

C-band L-band
100 GHz

S-band

Figure 8.7 – (a) optical spectra of three fiber-packaged Si3N4 microresonators - DKS002,
DKS004 and DKS005 (red), and their amplified spectra (blue). DKS002 was one of
the first packaged devices, and was not tested with additional postamplification. Also,
devices are tested with different filters (BPF - bandpass filte, FBG - fiber Bragg grating
and OADM - optical add-drop multiplexer) to suppress ASE noise from the seed laser
EDFA, and supress the pump after the packaged microresonator. (b) Zoom in of the
single soliton spectrum, generated in DKS004 using the breadboard prototype. Colored
regions mark three optical telecommunication bands (C-, L- and S-band) covered by the
soliton spectrum.
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8.3 Prototype application in optical circuit switching ex-
periment

The prototype of the standalone microcomb generator developed in the first iteration was
employed for a new application of soliton microcombs in data centers - optical circuit
switching for data center networks (DCNs).

DCN play a key role in a data center by connecting together its resources and form-
ing a backbone of large-scale enterprise applications. Multiple services from leading
technological companies such as Google, Facebook or Microsoft rely on massive data
centers with hundreds of thousands of servers whose interconnects are critical for service
performance. The ability to rapidly switch the network topology and link capacities
between server racks is central to adapt to dynamically changing traffic patterns. Current
architecture of the traditional DCNs involves a multi-stage system of electrical or hybrid
(electrical/optical) switches [300]. These switches are space consuming, lack flexibility,
have a limited number of ports and poor intra-server connectivity. Due to multiple
conversions of the signal between the optical and electrical domain during the routing of
data packets, such an approach can be rather inefficient.

One possible solution to overcome this problem is to implement optical circuit switch-
ing (OCS) [301, 302]. Different solutions ranging from 3D-MEMs [303] and electro-
absorption modulators (EAMs) [304, 305] to arrayed waveguide grating routers (AWGRs)
[306] for optical switching in DCNs have been proposed. Today, optical circuit switching
is already commercially employed in data centers for top-of-rack (ToR) communication,
based on 3D MEMS, which offer a cost effective solution, as the technology is transparent
to data speed, protocol independent and offers high bandwith (up to 100 Gbit/s and
beyond). However currently employed 3D MEMS switches have several challenges. First
and foremost 3D MEMS switching times are slow, e.g. currently available commer-
cial system CALIENT S320-OCS has a switching time of 50 ms, which is significantly
larger than the nanosecond-low latency limit required to handle burst mode data center
applications. The full potential of optical circuit switching can only be unfolded with
nanosecond switching times. A promising data-center architecture that can overcome this,
is based on a passive edge (e.g. using a passive multiplexer based on arrayed waveguide
gratings (AWG)), and a fast tunable laser. As it is physically impossible to achieve ns
switching times with a laser across all telecommunication bands, one can use the same
concepts as in WDM: An array of diode lasers emits radiation, and is followed by a bank
of electro-absorption modulators (EAMs) [304, 305]. The output of the EAMS is next
coupled to an arrayed waveguide grating routers (AWGRs) [306] and transmitted to the
passive edge, which routes to the selected ToR. Although these approaches are highly
promising, the use of individual laser modules hampers the scalability of channel counts,
increasing size, weight and power consumption.

https://www.calient.net/products/s-series-photonic-switch/
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Chapter 8. Standalone microcomb source

Chip-scale soliton microcombs as the compact multiwavelength sources represent here an
ideal solution to replace laser arrays, because they can provide hundreds of equidistantly
spaced carriers covering several telecommunication bands, which are also suitable for both
coarse WDM (CWDM, channels are 20 nm apart) and dense WDM (DWDM, channels
are 25/50/100 GHz apart) transmissions. Among other advantages of the microcombs is
their low power consumption in comparison to the laser diodes, CMOS compatibility
as well as no need for the guard bands or individual channel control due to the strict
spacing of the comb lines.

8.3.1 First experimental results

a b

Figure 8.8 – Photographs of the prototype breadboard during shipment (a) and after
installation at System and Networking group Microsoft Research (Cambridge, UK)

The optical switching experiment was implemented in collaboration with Microsoft
Research Lab (Cambridge, UK) which used our prototype system as the multiwavelength
source. The prototype was shipped to Microsoft Research and installed in the laboratory
environment with an additional enclosure for laser safety (see Fig. 8.8).

The single-soliton comb state was used in two early-stage experiments for optical switching.
Both experiments were implemented with discrete components, when the switching setup
consist only of bulk discrete devices such as the arrayed waveguide grating (AWG) and
the semiconductor optical amplifiers (SOA) used for ultrafast switching and others. The
first experiment was aimed at estimating the switching performance provided by the
soliton comb generated in the prototype board. The scheme of the first experiment is
shown in Fig. 8.9(a). Here, the soliton comb was first amplified using a C-band EDFA
(Neptecos), tested in section 8.2.4, in order to precompensate the insertion losses in
following passive components (see spectrum in Fig. 8.9(b)). After amplification, the
comb lines are demultiplexed using athermal AWG (DEMUX) and then after adjustment
of input polarization are sent to an SOA (SOA-1).

For the testing of the switching, the SOA was continuosly turned off and on using
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Figure 8.9 – (a) Setup scheme for the single-channel switching experiment with the soliton
microcomb breadboard prototype as a source. NF - notch filter, EDFA erbium-doped
fiber amplifier, DEMUX - demultiplexer (here an AWG was used as demultiplexer), FPC -
fiber polarization controller, SOA-1 - semiconductor optical amplifier, ISO - fiber isolator,
PD - photodiode, OSC - oscilloscope, OSA - optical spectrum analyzer. (b) Optical
spectrum of the amplified single-soliton state generated in the prototype breadboard
in the packaged device DKS005 (100 GHz). Shaded part of the spectrum indicates the
spectral coverage of the used AWG. (c) Switching signal of a single channel (channel 42,
marked in b with red color), both estimated rise and fall times are on the order of half a
nanosecond. (d) Switching rise and fall times for multiple channels available with AWG

an external clock, and the transmission signal was recorded on a 160 GS/s real-time
oscilloscope. The resulting switching signal for one of the AWG channels (CH42) is
shown in Fig. 8.9(c), and demonstrates that both rise and fall times (10% - 90% of
the signal) are below 0.5 ns. Similar measurements were implemented for almost all
available channels of the AWG (see Fig. 8.9), except the ones with significantly reduced
OSNR around the pump due to leakage of the unfiltered ASE noise. Channels with a
higher power-per-comb line, where 120 mA of SOA current was used for switching the
channel on and off demonstrate similar performance to CH42 with mean sub-ns switching
time. However as we move to the side of the comb spectrum, where the optical power
is decreased, and where we have to utilize higher SOA current (150 mA), the mean
switching time increases.

In the second experiment multichannel switching was tested. In this experiment, four
AWG channels were used at once with respective SOAs (SOA-1... SOA-4). The signal
after SOAs was combined in a single fiber and recorded with the fast real-time oscilloscope
as in the previous experiment. By consequently turning on different SOAs (a single SOA
at a time), the switching between 4 channels was demonstrated in two scenarios - when
the channels were either separated by multiple comb lines (see Fig. 8.10(b)) or when
they are close to each other (Fig. 8.10(c)).
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Chapter 8. Standalone microcomb source

Further experiments are now in progress, they will include testing of the switching with
actual data transmission using NRZ or PAM4 data modulation techniques using similar
discrete components. In future, the switching device is supposed to be integrated with an
AWG in a single chip-scale system and tested with the next iterations of the standalone
microcomb system.
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Figure 8.10 – Setup scheme for the multi-channel switching experiment with the soliton
microcomb breadboard prototype as a source. Setup elements are marked with the same
abbreviations as in Fig. 8.9(a); (b) Multi-channel switching of the channels separated by
several nanometers. Top: transmission signal of four AWG channels, which consecutively
turned on and off. At each time slot of ∼ 90 ns only one of the SOAs is on, and the
other are off. Bottom: optical spectrum of 4 used channels, separated by ∼ 6.4 nm. (c)
The same as (b), but the switching channels are located close to each other.

8.4 Rack-mountable microcomb source

After the construction and successful laboratory-based testing (at EPFL and Microsoft
Reasearch Lab) of the prototype breadboard described in the previous section, we
focused on the second iteration of the standalone microcomb system. In this iteration we
aimed at building a more compact version of the prototype board, which would fit in a
rack-mountable 19" chassis, and paid particular attention to overall system integration,
optimization of interior design and customization of certain components.

The final goal of this iteration is to built a complete fully functional system enclosed in
a single chassis with minimum external connections and off-board components, where
furthermore the amount of necessary user interventions to the hardware would be reduced
to a minimum during the system operation.
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8.4.1 Hardware

In the second iteration of the standalone soliton microcomb system development several
advancements were made with respect to the system architecture and the components
used.
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Figure 8.11 – Wiring diagram of the rack-mountable soliton microcomb system. Electro-
optical components are shown with white boxes, passive fiber optical components are
shown with blue boxes, orange lines indicate optical fibers, electrical connections are
shown in green (digital) and black (analog). AC - AC power plug, PM1 and PM2
- powermeters, OADM - optical add-drop multiplexer, BPF - bandpass filter, TR -
thermistor, TEC - termoelectric cooler (Peltier element).

An electro-optical scheme of the standalone microcomb source is shown in Fig. 8.11.
It has been changed to increase the compactness, simplicity and level of the system
integration in comparison to the first breadboard prototype.

First, we introduced the system enclosure. We use a 19" rack chassis of 3RU height (1RU -
1 rack unit, equals 4.445 cm) with an integrated optical breadboard, which is supposed to
facilitate the mounting of the system components inside. Second, we used a more compact
version of the seed laser (NKT Koheras Mikro - OEM fiber laser, operating at 1550 nm)
and a more compact EDFA (Neptecos, < 2 W) with an additional PCB test/breakout
board. Due to the absence of an internal piezo voltage amplifier in the present version of
the seed laser, a separate piezo voltage amplifier (PI E-836) was installed in the chassis.
For the laser control and data acquisition, we used the same model of the multifunction
I/O device (NI USB 6003), which has good enough performance for our purpose. Third,
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chip temperature stabilization subsystem, composing of thermoelectric cooler (TEC),
thermistor and TEC current driver with PID control, was added to the system. It
allows for the stabilization of the chip temperature against environmental temperature
fluctuations or compensation of optical-power- induced chip heating with a precision
better than 0.01 K. The temperature control of the chip also enables the temperature
tuning of the microcavity, which can be used for fine tuning of the FSR or tuning of the
absolute resonance positions (e.g. to match the ITU frequency grid). Fourth, an internal
switching power supply with multiple outputs of 12 and 24 V was installed in the system
to provide power to all active components, distributed from a single standard 220 V
power plug. Finally, a compact USB hub is used to route controls of all the components
inside the system through the single USB cord connected to an external PC.

1

a b

2
3 4 5

8

6

7

Figure 8.12 – Photographs of the rack-mountable soliton microcomb system. (a) Inside
view. Numbered frames indicate system components: 1 - EDFA with additional PCB
board, 2 - Piezo voltage amplifier, 3 - NKT Basik MIkro fiber laser, 4 - Thorlabs thermal
control board (TEC driver and PID control), 5 - multifunction I/O device NI USB6003, 6 -
packaged chip with TEC and thermistor (not visible, because is covered with foam-rubber
protection cap), 7 - Thorlabs amplified Photodiode for the generated light measurements.
8 - Power supply unit. (b) Exterior view of the 19"-rack mountable system chassis with
output fiber (yellow).

The passive fiber optical part of the system also experienced a few changes in comparison
to the prototype. First, after the prototype testing we restrict data acquisition to
the generated light, which provides enough information for launching the soliton state
and system control. This allowed us to reduce the number of fiber 90:10 splitters and
photodiodes to 1 after the packaged chip. We also replaced the bulk tunable FBG with
a wavelength-fixed optical add-drop multiplexer (OADM) specified for a given channel of
the ITU grid (CH34 for our case of 1550-nm centered seed laser). While reducing the
flexibility of the setup it helps to save space in the chassis. The actual layout of the
components inside the chassis is shown in Fig. 8.12, where the photographs of top- and
front-view of the system are shown. The resulting system has a size of 450× 450× 132
mm, weighs about 15 kg and has < 100 W of power consumption.
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8.4.2 Software

The control software for the rack-mountable unit was developed based on the software
developed in the first iteration. Taking into account experience obtained during the
prototype system testing and operation, we have reduced the laser functionality available
to potential users and introduced other changes in the GUI concerning the layout of
the control elements and representation of the collected transmission traces and tuning
voltages. Figure 8.10 shows a GUI snapshot of the main window of the rack mountable
unit.

Figure 8.13 – GUI snapshot of the control software developed for the rack-mountable
soliton microcomb unit. Control elements of different subsystems (seed laser, EDFA,
data acquisition and tuning voltage control) are grouped together.

A new control software is currently being developed using Python 3 in order to avoid the
license-demanding MATLAB, and lower the system requirements for the laptop (or PC)
used with the setup.

8.4.3 Testing

The standalone microcomb system developed in the second iteration has been tested in
the laboratory environment with an early fiber-packaged 100-GHz device (DKS002). The
soliton generation was demonstrated together with the ability to switch to a single soliton
state (see Fig. 8.14) in an enclosed system with only remote access to the system functions.
The single-soliton state was shown to maintain long-term operation on an hour-timescale.
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Additionally as in the section 8.2.4 we tested an additional compact external EDFA
(Boxoptronics, -45 dBm input power)) for the soliton comb postamplification, shown in
Fig. 8.14.

After the in-house testing, the system has been successfully shipped and installed at
University of Münster in the Laboratory of Responsive Nanosystems (Prof. Wolfram
Pernice), where it is planned to be used in experiments on all-optical convolution neural
networks with phase-change materials [307, 308].
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Figure 8.14 – Single soliton state (red) and its amplified spectrum (blue), generated in
the DKS002 fiber-packaged device using the rack-mountable soliton microcomb system.
An external compact EDFA was used for the amplification. The pump is supressed with
an additional OADM before amplification.

8.5 Conclusion

We have implemented two stages of the development process aimed to build a compact
standalone soliton microcomb system. In the first stage a fully operational prototype
of the system was engineered, tested and is now being used for the optical switching
experiments in data center networks. In the second stage we developed and tested an
enclosed rack-mountable unit with an optimized system architecture.

Following efforts will be aimed at reducing the size of the system by customizing electronics
and mechanical components. We also plan to develop an efficient and compact chip-
packaging solution with integrated thermal stabilization, introduce system stabilization
and fully automate the excitation of the DKS states.
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9 Conclusion and Outlook

This Thesis covers a study of the dynamics and applications of Dissipative Kerr solitons in
optical microresonators. Chapters 2 - 5 explore several dynamical phenomena arising from
nonlinear, thermal and dispersion effects, as well as from intrinsic dynamical complexity of
a driven nonlinear microresonator system. The chapters report the appearance of Raman-
induced soliton self-frequency shift and its interplay with dispersive wave formation,
the phenomenon of soliton switching, which can be induced deterministically using the
developed backward tuning procedure together with the VNA-based soliton probing
scheme, the formation of soliton breathers and perfect soliton crystals states as well as the
exploration of their non-trivial dynamics and stability regimes. Relying on the developed
understanding of the system behavior, Chapter 6 demonstrates the formation of dissipative
Kerr soliton states covering the biological imaging window. In Chapter 7, single DKS
states enabled by the backward tuning procedure in 100GHz Si3N4 microresonators are
used for two key applications of soliton microcombs – massively parallel coherent optical
coherent communication achieving more than 50 Tbit/s data rates, and ultrafast distance
measurements with sub-micron precision. Lastly, the first steps towards a standalone
soliton microcomb system are reported in Chapter 8, which have already resulted in
the employment of the developed prototypes in two new applications – optical circuit
switching and all-optical convolution networks.

During the course of this Thesis the field of microresonator-based optical combs has
significantly matured. Apart from the rich physics, which has been actively explored in
the field over the past years, especially with respect to DKS formation, a multitude of
new microresonator platforms and soliton generation techniques have emerged. Soliton
microcombs have been employed for a growing number of frequency comb applications to
show that they can outperform other modern solutions. Despite such active development,
there are still a lot of challenges and perspectives, which can be addressed. We highlight
a few among them, which are particularly relevant and interesting in the context of this
Thesis:
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Soliton control and manipulation: while some basic aspects of DKS control and
monitoring, including deterministic switching of soliton states and seeding of the perfect
soliton crystals, have been demonstrated in this Thesis, the access to direct manipulation
of individual DKS pulses (which has been developed for fiber cavities), as well as seeding
of predefined soliton formations are still not experimentally achieved. Together with
soliton imaging schemes [309, 185, 100], such DKS control would open broad possibilities
for the in-depth study of DKS interactions, such as the formation of bound states or
complex soliton ensembles. The last ones could be particularly interesting for on-chip
all-optical buffers [41], access to the DKS states with controllable FSR (by launching and
stabilizing of soliton sets with equidistant temporal separations) or even pump-probe
optical spectroscopy techniques.

Complex microresonator systems: the majority of the works on Kerr combs and DKS
states so far have been mostly focused on systems consisting of a single microresonator.
This driven dissipative Kerr-nonlinear system augmented with thermal and other effects
(e.g. complex dispersion, second-order nonlinearity, Raman effects or generation of free
carriers) already provide a rather complex basis leading to peculiar Kerr-comb dynamics
and a rich panel of mode-locked states. However, such single-cavity operation can impose
certain limitations on the system performance in terms of the dispersion control, efficiency
of the soliton states and others. Instead, by exploring multi-resonator assemblies one
may achieve the complex dispersion profiles [310, 311] enabling the formation of DKS
states in the visible, boost the conversion efficiency [312], or explore the formation of
novel mode-locked states existing over multiple resonators. Furthermore, with the active
interest in periodically-driven linear microresonator networks in the rapidly emerging
field of topological photonics [313], such multi-cavity systems may be of interest from the
perspective of topologically-protected edge state formation in strongly driven nonlinear
networks.

Microcomb miniaturization and photonic integration: despite recent advances
in the understanding of soliton dynamics and a variety of demonstrated applications
using DKS states, Kerr comb sources still have to rely on bulky active components, such
as laser diodes and amplifiers. Thus, while having the number of advantages over other
modern optical comb solutions, soliton microcombs cannot fully realize their potential
and remain a laboratory technology. Alongside with the results of this Thesis, a few
other steps towards the industrialization of the technology [178, 298, 314, 126] have
been already made. However, major engineering challenges still need to be solved in
order for this technology to compete with other existing solutions for industrial and
research applications. An important direction here is the full photonic system integration,
where nonlinear microresonators can be integrated with active optical components and
electronics on a single multi-chip assembly to create a versatile DKS comb engine.
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