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Abstract
Coupled dynamical systems are omnipresent in everyday life. In general, interactions between

individual elements composing the system are captured by complex networks. The latter

greatly impact the way coupled systems are functioning and evolving in time. An important

task in such a context, is to identify the most fragile components of a system in a fast and

efficient manner. It is also highly desirable to have bounds on the amplitude and duration

of perturbations that could potentially drive the system through a transition from one equi-

librium to another. A paradigmatic model of coupled dynamical system is that of oscillatory

networks. In these systems, a phenomenon known as synchronization where the individual

elements start to behave coherently may occur if couplings are strong enough. We propose

frameworks to assess vulnerabilities of such synchronous states to external perturbations. We

consider transient excursions for both small-signal response and larger perturbations that can

potentially drive the system out of its initial basin of attraction.

In the first part of this thesis, we investigate the robustness of complex network-coupled

oscillators. We consider transient excursions following external perturbations. For ensemble

averaged perturbations, quite remarkably we find that robustness of a network is given by

a family of network descriptors that we called generalized Kirchhoff indices and which are

defined from extensions of the resistance distance to arbitrary powers of the Laplacian matrix

of the system. These indices allow an efficient and accurate assessment of the overall vulnera-

bility of an oscillatory network and can be used to compare robustness of different networks.

Moreover, a network can be made more robust by minimizing its Kirchhoff indices. Then for

specific local perturbations, we show that local vulnerabilities are captured by generalized

resistance centralities also defined from extensions of the resistance distance. Most fragile

nodes are therefore identified as the least central according to resistance centralities. Based on

the latter, rankings of the nodes from most to least vulnerable can be established. In summary,

we find that both local vulnerabilities and global robustness are accurately evaluated with

resistance centralities and Kirchhoff indices. Moreover, the framework that we define is rather

general and may be useful to analyze other coupled dynamical systems.

In the second part, we focus on the effect of larger perturbations that eventually lead the sys-

tem to an escape from its initial basin of attraction. We consider coupled oscillators subjected

to noise with various amplitudes and correlation in time. To predict desynchronization and

transitions between synchronous states, we propose a simple heuristic criterion based on the

distance between the initial stable fixed point and the closest saddle point. Surprisingly, we

find numerically that our criterion leads to rather accurate estimates for the survival proba-
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bility and first escape time. Our criterion is general and may be applied to other dynamical

systems.

Keywords: coupled dynamical systems, complex networks, centralities, indices, robustness,

vulnerability, key players problem, coupled oscillators, synchronization, transient dynamics,

linear response theory, escape of the basin of attraction.
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Résumé
Les systèmes dynamiques couplés sur des réseaux complexes sont omniprésents dans la vie de

tous les jours. En général, les interactions entre les éléments individuels composant le système

sont modélisées par de réseaux complexes. Ces derniers ont un impact important sur la façon

de fonctionner et l’évolution temporelle des systèmes couplés. Dans ce contexte, une question

importante est comment peut-on identifier la composante la plus fragile d’un système d’une

manière efficace et rapide. Il est aussi souhaitable d’avoir des bornes sur l’amplitude et la

durée de perturbations qui pourraient éventuellement conduire le système à une transition

d’un équilibre à un autre. Un modèle emblématique de système dynamique couplé est celui

des réseaux oscillants. Dans ces systèmes, il existe un phénomène appelé synchronisation

où les éléments individuels commencent à évoluer de manière cohérente si les couplages

sont suffisamment forts. Nous proposons des méthodes pour évaluer les vulnérabilités de

tels états synchrones face à des perturbations externes. Nous considérons le transient induit

par des perturbations faibles mais aussi des perturbations plus importantes qui peuvent

potentiellement amener le système en-dehors de son bassin d’attraction initial.

Dans la première partie de cette thèse, nous investiguons la robustesse d’oscillateurs couplés

sur des réseaux complexes. Nous considérons le transient suivant des perturabtions externes.

Pour des perturbations moyennées sur des ensembles, nous trouvons de manière remarquable

que la robustesse d’un réseau est décrite par une famille d’indices de réseaux que nous

appelons indices de Kirchhoff généralisés et qui sont obtenus à partir d’extensions de la distance

résistive aux puissances de la matrice Laplacienne du système. Ces indices permettent une

évaluation efficace et précise de la vulnérabilité globale d’un réseau d’oscillateurs et peuvent

être utilisés pour comparer la robustesse de différents réseaux. De plus, un réseau peut

être rendu plus robuste en minimisant ses indices de Kirchhoff généralisés. Ensuite pour des

perturbations spécifiques locales, nous montrons que les vulnérabilités locales sont expliquées

par des centralités résistives généralisées aussi définies à partir d’extensions de la distance

résistive. Les noeuds les plus fragiles sont par conséquent identifiés comme les moins centraux

par rapport aux centralités résistives. En utilisant ces dernières, des classements des noeuds

du plus au moins vulnérables peuvent être établis. En résumé, nous trouvons qu’à la fois les

vulnérabilités locales et la robustesse globale sont précisément évaluées à l’aide des centralités

résistives et des indices de Kirchhoff. Les méthodes que nous proposons sont générales et

peuvent donc être utiles pour l’analyse d’autres systèmes dynamiques couplés.

Dans la deuxième partie, nous nous concentrons sur l’effet de perturbations plus impor-

tantes qui mènent finalement le système à une sortie de son bassin d’attraction initial. Nous
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considérons des oscillateurs couplés soumis à du bruit avec différents amplitude et temps

de correlation. Pour prédire la désynchronisation et les transitions entre états synchrones,

nous proposons un critère heuristique simple basé sur la distance entre le point fixe stable

initial et le point de selle le plus proche. Étonnamment, nous trouvons numériquement que

notre critère permet des évaluations précises de la probabilité de survie ainsi que du temps de

première sortie. Notre critère est formulé de manière générale et peut donc être appliqué à

d’autres systèmes dynamiques.

Mots clés : systèmes dynamiques couplés, réseaux complexes, centralités, indices, robustesse,

vulnérabilité, problème des key players, oscillateurs couplés, synchronisation, dynamique du

transient, théorie de la réponse linéaire, sortie du bassin d’attraction.
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General Introduction

Coupled dynamical systems are widely used to model natural and man-made sytems. Such

realizations range from the prey-predator interaction of different species evolving in the

same environment [58, 65], fireflies flashing together in unison [43] or individuals exchanging

opinion on social networks [32], to quantum phase dynamics of superconducting islands

connected by Josephson junctions [127, 64], interacting molecules leading to preferential

proteins folding [15] and voltage phase dynamics of electrical power grids [13]. All theses

systems are made of individual elements with their own internal dynamics. The coupling

between individual units is described by a network that may be regular or complex in structure,

temporal or static during the interactions. Even for individual dynamics that are rather simple

taken independently, various rich collective behaviors emerge from the coupling network’s

geometry and topology.

In this context, there is an ubiquitous phenomenon where every elements start to behave

coherently known as synchronization [77]. Such collective motion occurs for example in elec-

trical grids when all synchronous machines rotate at the same frequency [76] or in Josephson

junctions arrays where quantum phases of each superconducting island synchronize with

some permanent Josephson currents circulating between them [127]. Stability as well as

transient dynamics of synchrony within noisy environment, faults or perturbations in the

internal parameters greatly depend on the interaction network, namely how strong and how

structured is the coupling. This is still true in opinion formation on social networks [97] or

vehicular platoons [96, 54] moving along together for which similar collective behavior known

as consensus may occur.

Robustness of synchronous states can be investigated from various perspectives. One could

evaluate the size of their basin of attraction [128, 35] to estimate the range of initial condi-

tions that lead to synchronous states, or assess first escape time and transitions between

synchronous states due to noisy environment [38, 107, 108, 60, 122, 62]. From another point

of view, one could consider transient dynamics induced by perturbations in the internal

parameters of individual elements close to an initial stationary state [7, 54, 102, 93, 110] or

changes in the structure of the coupling network [27, 30, 113, 29, 37]. All the above stability

features are greatly impacted not only by the internal parameters of each individual elements

but also by the way the latter interact with each other. For example, the same perturbation

applied on two individual elements having very different connectivities or centralities will
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Figure 1 – Illustration of a complex network. The blue node is the most connected while the
red one can potentially separate the network into two pieces if removed.

most probably lead to severally distinct responses of the overall coupled system.

In general, analyses shedding light on the interplay between coupled dynamics and network

structure are highly desirable. Most of time it is a hard problem that leads to highly non

trivial dependencies on the coupling network. Over the last decades, complex networks

have witnessed an increasing interest. They have been investigated as dynamical systems

on their own for example with preferential attachment algorithms [25] or as static objects.

In that latter case, a question that has attracted much attention is that of the key players

problem [5, 19, 112, 88]. These key players may be elements of the network which, once

removed, lead to the biggest changes in the network according to some specific features. For

example, in the network shown in Fig. 1, if one is interested in separating the network into two

independent pieces, then the red node should be removed and is thus the key player. But if one

wants to remove the most connected element, then the blue one is the key player. To identify

such nodes, graph theoretic centralities have been defined mostly based solely on the network

structure or considering random processes [16]. However, coupled dynamical systems are not

random processes but deterministic systems satisfying physical conservation laws. For such

systems, key players may be elements that, once removed, impact the stability at most, or once

perturbed, drive the system through the largest transient excursion from its stationary state.

That latter case is illustrated in Fig. 2, where Kuramoto oscillators [see Eq. (1.18)] coupled

on the complex network shown in inset are taken at a stationary state. Then one applies the

same perturbation on two different oscillators (red nodes). Even if both oscillators have the

same number of neighbors, i.e. same degree, the responses of the system are quite different.

In bottom panel, oscillators’ angles spread more and need more time to return to the initial

stationary state after the perturbation compared to top panel. It is an appealing avenue to

try to predict such distinct responses using formerly defined centralities. But how to choose

the correct one? Obviously one could try to relate numerically graph theoretic metrics to

dynamical responses. However following this procedure and assuming it succeeds, one does

not have any insights about the intrinsic connections between the considered metric and the

dynamical system. One may therefore miss some dependencies especially on the dynamical

parameters of the system [19, 16, 63].
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Figure 2 – Comparison between oscillators’ response following a perturbation in the natural
frequency of oscillators highlighted in red (with corresponding trajectories in red) that starts
at 0 and ends at dashed lines. Both nodes in red have the same degree, however the responses
are very different.

Indeed, the two very different behaviors shown in Fig. 2 may be non trivial functions of the local

connectivities of the perturbed elements, of the global structure of the coupling network and

of the spatial distributions of the dynamical parameters of the oscillators. Some effects of the

dynamical parameters are illustrated in Fig. 3 where the time-evolution of the winding number

q is recorded for oscillators subjected to noise and coupled on a cyclic network. Different

values of q correspond to different synchronous state. One clearly sees that first escape time

and the frequency of transitions between fixed points are functions of the correlation time of

the noise and the dynamical parameters of the oscillators, namely in this case their inertia

(see caption of Fig. 3).

It is thus often a complicated task to connect analytically dynamics of coupled systems to intu-

itive features of the coupling network. Related questions about the interplay between complex

networks and coupled dynamical systems have attracted an increasing interest over the last
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Figure 3 – Time-evolution of the winding number q of coupled oscillators on a cyclic network
subject to noise in their internal parameters, namely their natural frequencies. Different
values of q indicate different stable fixed points. Solid red lines correspond to inertialess
oscillators while dashed blue lines correspond to oscillators with inertia. From panel (a) to (b),
the correlation time τ0 of the noise is increased.

decades that paved the way to some well-known results. Among them for example the relation

between epidemic threshold and degree distribution [95], diffusion on complex networks and

communicability [44] and synchronizability of oscillators and small-worldness [10].

Research Objectives

As presented in the introduction, coupled dynamical systems on complex network impact

various fields of research. For most of them, a rather simple and central question is how robust

are such systems to external perturbations. In particular, this is a relevant question for complex

oscillatory networks. These coupled systems are characterized by synchronous states where

every elements evolve coherently at the same frequency. Many results on coupled oscillators

focused on the synchronizability of different network topologies and the range of initial condi-

tions or internal parameters allowing such synchronization. Properties of synchrony can be

investigated from various angles. For example, synchronization can be optimal from its linear

stability [99], the range of oscillators parameters that allows synchronization [10, 26, 132],

the size of the basin of attraction around stable fixed points [128, 35], desynchronization

and transitions between synchronous states that may occur due to noise [38, 60, 107] or how

disturbances spread accross the network [69, 129]. Here we propose to investigate robustness

from the reaction of the system to external perturbations. As illustrated in Fig. 2, the response

of coupled oscillators obviously depends on which element is attacked. However the different

behaviors observed in Fig. 2 seem non trivially intricate with the network structure as simple

local properties like the degree fails to predict such distinct responses. Moreover, inhomo-

geneities in the internal parameters of individual elements may also play a role and affect

the system’s response. In this context, a central task is to determine the implications of each

system’s component in the final response. In particular, two questions of prime importance

arise: (i) how to identify the most vulnerable components of a coupled system and (ii) how the

overall stability of the system relates to the structure of the coupling network. Answers to these
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questions may have many potential applications. For example, in an electrical power network,

which edge should be added to improve the global robustness of the synchronous states or in

a social network which agent has the greatest influence on the general opinion. The resulting

network description should provide an efficient and intuitive framework to understand how

an initial input perturbation is related to an output response.

Main Contributions

We first considered small-signal response of complex network-coupled oscillators. More

precisely, we investigated transient regimes following perturbations that leave the dynamics

close to the initial stable fixed point. Quite surprisingly, we found that the global robustness

is captured by a family of new network indices which we called generalized Kirchhoff indices

Kfp . They provide an accurate and efficient assessment of the robustness of synchronous

networks against ensemble averaged perturbations. Moreover they are easily obtained from

the eigenvalues of the Laplacian of the coupling network weighted by angles differences at the

initial fixed point. Interestingly generalized Kirchhoff indices can be interpreted as the sum of

all generalized resistance distancesΩ(p)
i j in the network as,

Kfp = ∑
i< j
Ω

(p)
i j . (1)

Resistance distancesΩ(p)
i j are complex network distances. In particular for p = 1, one recovers

the resistance distance originally defined in Ref. [71]. ThenΩ(1)
i j has an intuitive meaning. It

corresponds to the effective resistance between node i and j in a new network where one puts

a resistor on each edge with resistance given by the inverse of the edge weight in the original

network. Therefore resistance distance account for all existing path between two nodes.

Interestingly, we found that, to improve the global robustness of coupled oscillators, one

should minimize resistance distances, and thus minimize generalized Kirchhoff indices Eq. (1).

The latter are non trivial functions of the coupling network and allow an accurate evaluation

of network robustness as shown in Fig. 4 where Kf1 and Kf2 are calculated for cyclic networks

with nearest and q th- neighbors coupling. For example, even if networks with q = 17 and

q = 18 may look similar, their Kirchhoff indices and thus their robustness are quite different.

In summary, robustness of different networks can be compared through their set of Kirchoff

indices. Then we found that local vulnerabilities are directly connected to combinations of

Kfp ’s and new centralities that we called generalized resistance centralities, Cp (i ). The latter

are straightforwardly defined as closeness centralities from resistance distances as,

Cp (i ) =
[

n−1
∑

j
Ω

(p)
i j

]−1

. (2)

Quite remarkably, most fragile nodes within a network are identified as least central ones

according to resistance centralities. As an example, Fig. 5 shows resistance centralities C1(i )
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Figure 4 – Kf1 (green) and Kf2 (violet) for a cyclic graph with n = 50 with nearest and q th-
neighbor coupling, ai ,i±1 = ai ,i±q = a0. The inset sketches the model for q = 17, 18 and
illustrates one path involving q th-range interactions starting from node in red.

and C2(i ) for the network shown in insets of Fig. 2.

Figure 5 – Resistance centralities C1(i ) and C2(i ) defined in Eq. (2) . Nodes pointed with arrows
correspond to the perturbed nodes in Fig. 2.

One clearly sees that the node that induced that largest transient (bottom panel of Fig. 2)

has lowest centralities C1(i ) and C2(i ) compared to the other one (top panel of Fig. 2). These

centralities can also be used to build rankings of the nodes from most to least vulnerable, which

are particularly useful to analyze local vulnerabilities in large scale networks. Moreover, for

both global robustness and local vulnerabilities, we clarified the role of dynamical parameters,

showing that inertia only has a limited effect on system’s excursion from synchronous state.

Second we went beyond weak perturbations and investigated desynchronization and transi-

tions between synchronous states induced by larger perturbations as illustrated in Fig. 3. More

precisely, we considered coupled oscillators within noisy internal parameters. Rather sur-
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prisingly, based on a heuristic argument comparing standard deviations of oscillators’ angles

and the distance between the initial stable fixed point and the closest saddle point, we found

estimates of the survival probability and first escape time that satisfactorily fits numerical

simulations. Moreover we found that, increasing oscillators’ inertia tend to facilitate escape

from the initial basin of attraction.

In both cases of weak and large perturbation, the frameworks that we defined are rather

general and thus may be used to analyze other types of coupled dynamical systems.

My research on vulnerabilities of coupled dynamical systems led to publications in peer-

reviewed journals and preprints listed below.

• M. Tyloo, T. Coletta, P. Jacquod, Robustness of Synchrony in Complex Networks and

Generalized Kirchhoff Indices, Physical Review Letters 120(8):084101 (2018). Chapter 2

in the present thesis.

• M. Tyloo, P. Jacquod, Global Robustness vs. Local Vulnerabilities in Complex Syn-

chronous Networks, Physical Review E 100(3):032303 (2019). Chapter 3

• M. Tyloo, L. Pagnier, P. Jacquod, The Key Player Problem in Complex Oscillator Networks

and Electric Power Grids: Resistance Centralities Identify Local Vulnerabilities, Science

Advances 5(11):eaaw8359 (2019). Chapter 4

• M. Tyloo, R. Delabays, P. Jacquod, Noise-Induced Desynchronization and Stochastic

Escape from Equilibrium in Complex Networks, Physical Review E 99(6):062213 (2019).

Chapter 5

• F. Baumann, I. M. Sokolov, M. Tyloo, The Role of Active Leaders in Opinion Formation

on Social Networks, arXiv:1910.01897 (2019) submitted.

• R. Delabays, M. Tyloo, P. Jacquod, Rate of change of frequency under line contingencies

in high voltage electric power networks with uncertainties, Chaos 29:103130 (2019).
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The forthcoming chapters are made from selected publications closely related to the question

of global robustness and local vulnerabilities in complex network-coupled systems.

In preliminary chapter 1 we give some technical details about notions then used in the

other chapters. Chapter 2 considers first-order oscillators and establish the relation between

global robustness and Kirchhoff indices. Chapter 3 investigates more deeply the trade-off

between local vulnerabilities and global robustness for second-order oscillators and the role of

dynamical parameters. Chapter 4 focuses on local vulnerabilities of second-order oscillators

and establish nodal rankings. Chapter 5 considers transitions between synchronous states
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induced by a noisy environment and gives an estimate of the survival probability as well as

first escape time. Finally chapter 6 gives a general conclusion and possible extensions of the

presented results.
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1 Preliminaries

In this preliminary chapter, we detail the mathematical tools used in the following chapters.

In the first section we discuss definition and some properties of complex networks. In the

second section we give a brief overview of coupled oscillators and related models. Finally in

the third section we give details about linear response theory and its range of validity.

A survey about complex networks

A complex network is a mathematical object, also called graph, that describes how some

individual units are connected together. More precisely it is made of a set of vertices1 V =
{1, ...,n} which is a collection of indices, and a set of edges E⊂V×V. The number of nodes is

n = |V| and the number of edges l = |E|. Each edge e(i , j ) ∈E is defined by a source node i

and a target node j that are connected by e as well as a weight w(e). There are at least two

standard way to encode how the nodes are connected together by the edges and thus describe

complex networks. The first one is via the adjacency matrix A ∈Rn×n defined as,

ai j =
{

w(e) , if e(i , j ) ∈E,

0 , otherwise.
(1.1)

For undirected networks, the matrix elements of A satisfy ai j = a j i . In the following, we

consider undirected networks and give details about directed networks in footnotes. The

second way to describe a network is via the incidence matrix B ∈Rn×l defined as,

bi e =
{ p

w(e) , if node i is one end of edge e,

0 , otherwise.
(1.2)

1Also referred to as nodes.
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Chapter 1. Preliminaries

From the adjacency matrix, one obtains the degree diagonal matrix K as,2

ki j =
{ ∑n

k=1 ai k , if i = j ,

0 , otherwise.
(1.3)

Each element ki i is then the weighted number of edges that are connected to node i . Note

that the distribution of ki i can be useful to characterize the homogeneity/regularity of a

network. Finally, using A and K , one defines the Laplacian matrix as L= K − A, which reads

elementwise,

Li j =
{

−ai j , if i 6= j ,∑n
k=1 ai k , if i = j .

(1.4)

Note that for undirected networks with positive edge weights, the Laplacian is also expressible

as L= B ′B ′T where B ′ is the oriented3 version of the incidence matrix Eq. (1.2). Many impor-

tant properties of complex networks can be deduced from the above defined matrices. Some

of them are briefly discussed below. The Laplacian is the matrix defining the coupling of many

coupled dynamical systems in which we are interested. We thus give an extended description

of its properties.

Laplacian

Following its definition Eq. (1.4), the Laplacian satifies
∑

j Li j = 0 ∀i and is thus a matrix of

rank n−1. Moreover as L= B ′B ′T , the eigenvalues of the Laplacian are real4 and satisfy 0 =λ1 ≤
λ2 ≤ ... ≤λn . If the network is connected, by the vanishing row/column sum property of the

Laplacian, the eigenvector associated to λ1 = 0 is given by u1 = (1,1, ...,1)/
p

n.5 Disconnected

networks can be identified by counting the number of vanishing eigenvalues. For example, if a

network is made of two distinct disconnected subspaces of nodes V1,V2 ⊂V, one can always

separate the components of the eigenvectors accordingly and define u1, u2 such that,

uα,i =
{

1/
p

nα , if i ∈Vα,

0 , otherwise,
(1.5)

with nα = |Vα| and α= 1,2. Then both u1 and u2 have associated eigenvalues that are van-

ishing, respectively λ1 = 0 and λ2 = 0. The same argument holds true for more than two

disconnected subspaces of nodes. Therefore, the number of independent connected compo-

nents of a network is given by the degeneracy of the vanishing eigenvalue.

In case of a connected network, by orthogonality, eigenvectors with non-vanishing eigenvalues

2For a directed network, one has for each node i n− and out− degrees defined as kout (i ) = ∑n
j=1 ai j and

ki n (i ) =∑n
j=1 a j i .

3To get the oriented version we simply add a minus sign to one of the two non-vanishing matrix elements in
each column of incidence matrix Eq. (1.2).

4In case of a directed network, the eigenvalues might have an imaginary part.
5We also refer to this eigenvector as the constant vector.
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1.1. A survey about complex networks

satisfy the relation,
∑n

i=1 uα,i = 0 ∀α≥ 2. The main outcome of these relations is that if L is

applied to a vector x ∈Rn , the component along the constant vector i.e. (u1 ·x)u1 has no effect

as Lu1 = 0. Physically then, if the coupling of a dynamical system is given by a product of L

times a vector x ∈Rn of nodal degrees of freedom, it implies that its entire dynamics as well as

its steady states are invariant to constant shifts of x as,

Lx = L (x+ c u1) , c ∈R . (1.6)

Therefore one may only consider components orthogonal to u1, namely xi → xi −n−1 ∑n
j=1 x j .

The eigenvector u2 associated to the second smallest eigenvalueλ2 is called the Fiedler mode of

the network [46]. The sign of its components gives a partition of the nodes into two connected

subgroups which minimizes the sum of weights of required edges to remove to separate

the network into two distinct pieces [114]. Because of the vanishing eigenvalue λ1 = 0, the

Laplacian matrix is not invertible. Nevertheless, one can still define its pseudo inverse denoted

L† which reads,

L†
i j =

∑
α≥2

uα,i uα, j

λα
= [

(L+nuT
1 u1)−1]

i j −
[
uT

1 u1
]

i j , (1.7)

where in the sum, the index corresponding to the vanishing eigenvalue has been omitted.

From a more intuitive perspective, the Laplacian of the network is often encountered in

coupled dynamical systems because it relates to differences between degrees of freedom

or properties of connected nodes. More precisely, if x ∈ Rn is a vector of nodal degrees of

freedom/properties one has,

n∑
j=1

Li j x j =−
n∑

j=1
ai j (xi −x j ) , i = 1, ...,n . (1.8)

Therefore, the i th component of Eq. (1.8) is simply the sum of the differences between xi

and its connected components x j weighted by adjacency matrix elements ai j . Such coupled

systems have gauge invariance with respect to constant shifts of x along u1 . Dynamics based

on the minimization/maximization of these differences is at the core of many models in

fields as various as coupled oscillators [67, 89, 77], consensus algorithms [66, 90], opinion

dynamics [98, 97, 12], diffusion [95, 89] or epidemic spreading [50] on complex networks.

Centralities and indices

Many metrics have been defined over the years to compare the properties of different networks

or within one network properties of different nodes [45]. Here we give a quick review of some

of them that are used in the following chapters. We first review local descriptors usually called

centralities focusing on nodal properties and then move to global network descriptors often

called network indices. A good overview of these notions is given in Ref. [16].
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One possibility to define a centrality is by using a distance metric. In that case, there are two

common ways to define a centrality. The first one is the closeness centrality that reads for node

i ,

C c (i ,d) =
[

n−1
n∑

j=1
d(i , j )

]−1

, (1.9)

where d(i ,k) is some distance metric going from node i to k. In words, it is simply the inverse

of the average distance between i and the other nodes of the network. Now if C (i ,d) is large

(small), it means that node i is central (peripheral) in the network according to the distance

d . The only failing of closeness centrality is that if a node j is not reachable from node i

then d(i , j ) =∞ and thus C c diverges. To take into account such problems one may replace

arithmetic average by harmonic mean. This defines the harmonic centrality that reads,

C h(i ,d) = n−1
∑
j 6=i

d−1(i , j ) . (1.10)

Centralities may also be defined without distances. For example, one can characterize nodes

according to their degree Eq. (1.3) or their local clustering coefficient (see 1.1.2). Another

possibility is to consider the spectral characteristics of the nodes by looking at the eigenvectors

and eigenvalues of the adjacency or Laplacian matrices. Finally, based on any centrality, one

can establish a ranking of the nodes. Obviously, all these locally defined centralities can be

averaged over all nodes such that they may then be used as global indices describing the

network as a whole.

The next paragraphs briefly discuss these known centralities, indices or ranking that appear in

the following chapters.

Geodesic distance

While looking at the connectivity of a network, one intuitive feature to say whether or not two

nodes are close to each other is the geodesic distance g (i , j ). It corresponds to the shortest

path between two nodes and is standardly obtained out of the powers of the adjacency matrix

of the network. For a general weighted network, the geodesic distance between node i and j

reads,

g (i , j ) = min
all 〈i→ j 〉

[ ∑
e∈〈i→ j 〉

w(e)

]
, (1.11)

where 〈i → j 〉 denotes a path from i to j . Summing over all geodesic distances in the network

yields the average geodesic distance,

L = 2

n(n −1)

∑
i< j

g (i , j ) . (1.12)
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1.1. A survey about complex networks

Index L, also called characteristic path length, measures how close nodes are within a network.

Geodesic distance is a very intuitive metric to measure how far nodes are from each other.

However, it only accounts for the shortest path and does not even take into account multiplicity

of such paths that may occur. For example, a fluid flowing from one node to another will not

only use the shortest path but all existing ones as well. In the results presented below, we

consider the resistance distance which accounts for all existing paths between nodes.

Clustering coefficient

A network property that one may want to evaluate is the clustering. More precisely, whether a

network forms one large component with long range couplings or is made of small groups of

highly connected nodes. To measure such property of a network, one can define the clustering

coefficient cl (i ) [126]. The idea behind clustering coefficient is to see how well connected are

the neighbors of a node i . If node i has ki i neighbors then there can be at most ki i (ki i−1)
2 edges

connecting them together. The clustering coefficient of i is defined as,

cl (i ) = 2k ′

ki i (ki i −1)
, (1.13)

where k ′ is the actual number of edges connecting together the neighbors of i . Therefore,

nodes being part of a highly connected cluster have cl close to 1. Again one can define the

average clustering of a network as,

C l = n−1
n∑

i=1
cl (i ) . (1.14)

It has been shown that starting from an initial regular cycle network and gradually rewiring

edges leads to small-world networks with the interesting property to have a low average

geodesic distance l while keeping a high clustering coefficient C l [126]. This is illustrated in

Fig. 1.1, where small-world networks correspond to rewiring probabilities around 0.01. Inves-

tigation on such networks have demonstrated that they exhibit enhanced synchronization

properties [10].

PageRank

One of the most famous ranking of nodes in complex networks is probably the PageRank [23].

It is defined from the row stochastic adjacency matrix A,

ai j =
{ ai j

ki i
, if i 6= j ,

0 , if i = j .
(1.15)

Then one can define a new matrix as,[16]

G =αA+ (1−α)1T v , (1.16)
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Chapter 1. Preliminaries

Figure 1.1 – Clustering coefficient C l (denoted C on the figure) and characteristic path length
L for networks obtained from a rewiring procedure that starts from an initial regular cyclic
network with n = 1000 nodes and 1st- to 5th-nearest neighbors coupling. Then each edge is
rewired with a probability p. C l and L have been averaged over 20 realizations. Figure taken
from Ref. [126].

where α ∈ [0,1) and v is a distribution. By Perron-Fröbenius theorem, G has a left dominant

eigenvector p whose components are all positive. Therefore p can be interpreted as a proba-

bility distribution. The PageRank is then given by ordering the components of p . It gives a

ranking of the nodes according to the frequency at which they are visited during a random

walk on the network. The second term in Eq. (1.16) allows the random walker to jump with a

probability (1−α) to any node at each step. The main advantage of PageRank is its rather low

computational cost even for large networks. Indeed, from the row stochastic property of G ,

the eigenvalue corresponding to p is equal to 1 . Therefore p can be obtained by applying G

many times on any starting distribution w as,

p = lim
N→∞

GN w . (1.17)

The computational efficiency of this ranking has been exploited by Google web search engine

to order large number of referenced sites.

To summarize, most complex network metrics have been defined from coupling structure or

by considering random processes evolving on them. However, coupled dynamical systems

usually have to satisfy conservation laws dictated by the physics governing the system. It is

thus often complicated to connect analytically, complex network metrics that have intuitive

meaning to coupled dynamical systems. Some well-known results where such connection

has been established for epidemic spreading and diffusion on complex networks are given by
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1.2. Coupled oscillators and related models

Refs. [95, 44].

Coupled oscillators and related models

Kuramoto oscillators

The most famous model of coupled oscillators is that of Kuramoto [77] and reads,

θ̇i = Pi −
n∑

j=1
ai j sin(θi −θ j ) , i = 1, ...,n . (1.18)

These coupled differential equations describe a set of n oscillators, each of them having as

degree of freedom a compact angle coordinate θi ∈ (−π,π] and an internal parameter called

natural frequency6 Pi . The coupling is given by the elements of the adjacency matrix ai j .

Originally, Kuramoto introduced his model with a homogeneous all-to-all interaction network,

i.e. ai j = K /n and showed that above a critical coupling strength K > Kc , a finite fraction of

the oscillators synchronize with θ̇i − θ̇ j = 0 [77]. For even larger values of K , all oscillators

evolve in synchrony with θ̇i = θ̇ j ∀i , j . Such synchronous state is called phase-locking state.7

Synchronization is also achievable with oscillators coupled on complex networks provided

that the coupling is large enough compared to the width of distribution of Pi ’s [67, 39].

A phase-locking state θ(0) of Eq. (1.18) satisfies,

Pi =
n∑

j=1
ai j sin(θ(0)

i −θ(0)
j ) , i = 1, ...,n . (1.19)

The existence and number of different synchronous states as well as their characteristics

strongly depend on the coupling network and the distribution of Pi ’s. It has been shown for

planar networks that each stable fixed point can be identified by the winding vector q(θ(0))

describing the loop flows on each cycle of the network [73, 42, 68, 34]. For a network made of

a single cycle, the winding number reads,

q(θ(0)) = (2π)−1
n∑

i=1

∣∣∣θ(0)
i −θ(0)

i+1

∣∣∣
[−π,π)

, (1.20)

where
∣∣∣θ(0)

i −θ(0)
i+1

∣∣∣
(−π,π]

means angle differences taken module 2π in the interval (−π,π] .

Fig. 1.2 illustrates a stable fixed point for a meshed network with non zero winding vector. A

numerical procedure to find such synchronous states is given in Ref. [35].

The linear stability of θ(0) can be analyzed by calculating the Jacobian matrix8 J (θ(0)) of

6The reason of such a name is that in a completely decoupled system, from Eq. (1.18) each oscillator rotates at
its natural frequency i.e. θ̇i = Pi .

7We refer to such a state as stable fixed point, steady or stationnary or synchronous state or equilibrium.
8Also called stability matrix.
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Figure 1.2 – Example of a stable fixed point of Eq. (1.18) with identical natural frequencies
Pi = 0 ∀i defined on a meshed network (model of the UK AC transmission grid [84, 35]). The
fixed point is characterized by a non zero winding number q = 1 on the large cycle highlighted
in red. Figure adapted from Ref. [35].

Eq. (1.18) that is,

[
J (θ(0))

]
i j =

{
ai j cos(θ(0)

i −θ(0)
j ) , if i 6= j ,

−∑n
k=1 ai k cos(θ(0)

i −θ(0)
k ) , if i = j .

(1.21)

One should note that J (θ(0)) defined in Eq. (1.21) satisfies all the properties of a Laplacian

matrix, i.e
∑

j
[
J (θ(0))

]
i j =

∑
i
[
J (θ(0))

]
i j = 0 . Moreover, it has been shown that if |θ(0)

i −θ(0)
j | <

π/2 ∀i , j then the eigenvalues of J (θ(0)) are all non-positive and thus θ(0) is a stable fixed

point of Eq. (1.18) [35]. In the following chapters, whenever we consider a stable fixed point, it

means that the eigenvalues of its corresponding stability matrix are all negative.

To investigate the transient behavior of the system near its synchronous state, one can linearize

the dynamics of Eq. (1.18) around θ(0). Doing so, the initial non-linear oscillators are reduced

to linear oscillators evolving on a new network whose edge weights are given by minus the

stability matrix, namely ai j cos(θi −θ j ) instead of ai j . As it is a linear system, it is analytically

solvable. Some details are given in the next section.

The Kuramoto model can be extended to massive oscillators by adding a second-order time

derivative to Eq. (1.18) that yields,

mi θ̈i +di θ̇i = Pi −
n∑

j=1
ai j sin(θi −θ j ) , i = 1, ...,n . (1.22)
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1.2. Coupled oscillators and related models

Now each oscillator has two additional dynamical parameters, namely an inertia mi and a

damping di . One feature modelled by introducing inertia is non instantaneous response

of the frequency to perturbations. Obviously, the synchronous states of Eq. (1.22) are the

same as Eq. (1.18). Beside being paradigmatic models for synchronization for neuronal or

Josephson junctions networks, one physical realization of Eqs. (1.18), (1.22) that has attracted

an increasing interest over the last decade are high voltage power networks [104]. In that

case, θi ’s are phases of the complex voltage and natural frequencies are injected (Pi > 0) or

consumed (Pi < 0) power at each bus. Nodes are thus either loads (Pi < 0) or generators (Pi >
0). Usually loads do not have any inertia and thus their dynamics are governed by Eq. (1.18)

while conventional generators have inertia with a dynamics therefore given by Eq. (1.22). Such

mix of first- and second-order Kuramoto oscillators describes the dynamics of high voltage

power grids in the lossless line approximation9, on short time scales, where variations in

voltage amplitudes are neglected as they fluctuate on longer time scales [13, 39, 83].

Linear oscillators

Instead of the non-linear sine coupling of Eq. (1.18), one can consider linear coupled oscillators

with continuous degrees of freedom xi ∈R ∀i , whose dynamics takes the simple form,

ẋi = Pi −
n∑

j=1
ai j (xi −x j ) , i = 1, ...,n . (1.23)

Note that the second term on the right-hand side of Eq. (1.23) is the product of the Laplacian

of the network times x . Thus Eq. (1.23) reads in a vectorial form,

ẋ = P −Lx . (1.24)

The solution of Eq. (1.24) is simply obtained from eigenvalues λα and eigenvectors uα of L as,

x(t ) =∑
α

[
(x(t = 0) ·uα)e−λαt +e−λαt

∫ t

0
eλαt ′P (t ′) ·uαdt ′

]
uα , (1.25)

where we take into account a possible time-dependence of the natural frequencies P . Steady

states solution x (0) of Eq. (1.23) is obtain using the pseudo inverse of L as,

x (0) = L† P . (1.26)

With Pi = 0 ∀i , Eq. (1.23) corresponds to a first order consensus model [103].

9The real part of the admittance, namely the conductance of the lines is neglected. This is a justified approxima-
tion for high voltage power networks for which conductance is typically ten times smaller than susceptance.
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Linear response theory

When subject to modification or perturbation of internal parameters or degrees of freedom, a

dynamical system enters a transient regime. Depending on the strength of the perturbation,

one should differentiate small-signal response where the system stays close to its initial

fixed point from larger perturbations that eventually lead to escape from the initial basin

of attraction. In the case of small-signal response, the transient behavior of the system

can be approximated by its linear response. We give details and illustrations of the linear

response of Eq. (1.18) taken at a fixed point θ(0) for P (0) to an additive perturbation in the

natural frequencies. More precisely one has P (t) = P (0) +δP (t) that makes angles become

time-dependent as θ(t ) = θ(0) +δθ(t ) . Equation (1.18) then becomes,

δθ̇i (t ) = P (0)
i +δPi (t )−

n∑
j=1

ai j sin
[
θ(0)

i +δθi (t )−θ(0)
j −δθ j (t )

]
, i = 1, ...,n . (1.27)

The linear response is given by Taylor expanding the last term in the right hand side of Eq. (1.27)

that yields,

δθ̇i (t ) ∼= δPi (t )−
n∑

j=1
ai j cos

(
θ(0)

i −θ(0)
j

)[
δθi (t )−δθ j (t )

]
, i = 1, ...,n , (1.28)

where we used Eq. (1.19). Now that the time-dependence occurs only in linear expression, one

can rewrite Eq. (1.28) in a vectorial form as,

δθ̇ = δP (t )−L(θ(0))δθ . (1.29)

The linear response is equivalent to Eq. (1.24) with coupling strength given by L(θ(0))i j =
ai j cos

(
θ(0)

i −θ(0)
j

)
. Therefore solution of Eq. (1.28) has a form similar to Eq. (1.30) as,

δθ(t ) =∑
α

[
e−λαt

∫ t

0
eλαt ′δP (t ′) ·uαdt ′

]
uα , (1.30)

where λα and uα are eigenvalues and eigenvectors respectively of L(θ(0)) . Fig. 1.3 compares

δθi (t) numerically obtained by time-evolving Eq. (1.18) and the analytical expression for

the response Eq. (1.30) for two consecutive quench perturbations, δP1(t) = δP0Θ(τ0 − t)−
2δP0Θ(τ1− t )Θ(t −τ0) (see Eq (1.31)). To give a good illustration of the validity of the lineariza-

tion, we chose natural frequencies P (0) such that angle differences at the stable fixed point are

rather large (up to 45◦ ). One can remark that even for a perturbation with large amplitude

δP0 = 0.1a0, linear response still gives a fair approximation of oscillators response even if one

notice some discrepancies when δθi (t ) becomes large.

The analytical expression for the response of the system to δP1(t ) = δP0Θ(τ0− t )−2δP0Θ(τ1−
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t )Θ(t −τ0) is obtained from Eq. (1.30) as,

δθi (t ) =


δP0 t +∑

α≥2
δP0 uα,i uα, j

λα
(1−e−λαt ) , t < τ0,

3δP0τ0 −2δP0 t +∑
α≥2

δP0 uα,i uα, j

λα
(3e−λα(t−τ0) −e−λαt −2) , τ0 < t < τ1,

δP0 (3τ0 −2τ1)+∑
α≥2

δP0 uα,i uα, j

λα
(3e−λα(t−τ0) −e−λαt −2e−λα(t−τ1)) , τ1 < t .

(1.31)

Note that other tools are standardly used to analyze system’s responses such as observability

Gramians [119] or transfer functions [93].
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Figure 1.3 – Comparison between oscillators response numerically obtained (grey solid
lines) and the analytical expression Eq. (1.31) (red dashed lines) for perturbation shown
in lower panels (second and fourth rows) applied on node 1 depicted in inset, i.e δP1(t) =
δP0Θ(τ0 − t )−2δP0Θ(τ1 − t )Θ(t −τ0) . The amplitude of the perturbation has been multiplied
by ten in the bottom panels compared the top ones. The coupling among oscillators is
homogeneous with ai j = a0, and the natural frequencies P (0) are uniformly distributed in the
interval a0[−0.75,0.75] .
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2 Robustness of Synchrony in Complex
Networks and Generalized Kirchhoff
Indices

Chapter 2 is a postprint version of a letter published as:

M. Tyloo, T. Coletta, P. Jacquod, Physical Review Letters 120(8):084101 (2018) [121].
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Chapter 2. Robustness of Synchrony in Complex Networks and Generalized Kirchhoff
Indices

In network theory, a question of prime importance is how to assess network vulnerability in

a fast and reliable manner. With this issue in mind, we investigate the response to external

perturbations of coupled dynamical systems on complex networks. We find that for specific,

non-averaged perturbations, the response of synchronous states depends on the eigenvalues

of the stability matrix of the unperturbed dynamics, as well as on its eigenmodes via their

overlap with the perturbation vector. Once averaged over properly defined ensembles of

perturbations, the response is given by new graph topological indices, which we introduce as

generalized Kirchhoff indices. These findings allow for a fast and reliable method for assessing

the specific or average vulnerability of a network against changing operational conditions,

faults or external attacks.

Introduction

From social to natural sciences, communication technology to electrical engineering, in-

formation sciences to cybernetics, graph theory profoundly impacts many fields of human

knowledge [9]. Graphs allow for a convenient modelization of complex systems where their

structure defines the couplings between the system’s individual components, each of them

with its own internal dynamics. The resulting coupled differential equations determine the

system dynamics and its steady-state solutions. Of particular interest is to predict the behavior

of the system when it is perturbed away from steady-state, for instance when an electric power

plant goes offline in an operating power grid or when a line is cut and information has to

be redirected in a communication network. An issue of key importance for network security

is how to assess fast and reliably a network’s vulnerability. This is not an easy task: network

vulnerability depends on both the system dynamics and the network topology and geometry.

It is highly desirable to identify a set of easily computed descriptors that characterize network

vulnerability [45]. In this manuscript we propose a new family of network descriptors in

a two-step approach. We investigate the sensitivity against external perturbations of syn-

chronous states of coupled dynamical systems on complex networks. First, we quantify this

sensitivity using performance measures recently introduced in the context of electric power

grids [7, 119, 102]. Second, by direct calculation of these performance measures, we identify

a new class of easily computed topological indices that generally characterize synchrony

robustness/fragility under ensemble-averaged perturbations.

Synchronization is ubiquitous [117] in systems of coupled dynamical systems. It follows

from the interplay between the internal dynamics of the individual systems and the coupling

between them [77, 105, 3, 100]. Optimization of synchronization has been investigated from

various angles. The synchronous state can be optimal from the point of view of linear stabil-

ity [99], the range of parameters that allow synchronization [10, 26, 132], the value that an

order parameter takes at synchrony [111] or the volume of the basin of attraction around a sta-

ble synchronous fixed point [128, 86, 35]. Here we extend these investigations by asking what

makes synchronous states more or less fragile against external perturbations. The answer is

surprisingly simple and applies to a large variety of perturbations and of fragility performance
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measures – synchrony fragility depends on a family of topological indices, which generalize

the Kirchhoff index introduced in Ref. [71].

Model and method

Our analysis focuses on the Kuramoto model [77]

θ̇i = Pi −
∑

j
ai j sin(θi −θ j ) , i = 1, ...,n , (2.1)

though our results are more general and apply to a wider class of coupled dynamical systems

(see 2.9.8). Eq. (2.1) models the behavior of a set of n harmonic oscillators, each with its angle

coordinate θi and its natural frequency Pi , coupled to one another with couplings defined by

the weighted adjacency matrix ai j ≥ 0. Kuramoto originally considered identical all-to-all cou-

pling, ai j ≡ K /n [77]. It was found that for K > Kc , a finite number of oscillators synchronize,

with θ̇i − θ̇ j = 0. This type of frequency synchronization also occurs for nonhomogeneous

couplings bi j defined on a complex network [40], the case of interest here. Without loss of

generality we set
∑

i Pi = 0, for which the frequency synchronous state has θ̇i ≡ 0, ∀i 1.

We consider a stable fixed-point solution θ(0) = (θ(0)
1 , . . . ,θ(0)

n ) to Eq. (2.1) with unperturbed

natural frequencies P (0). We then subject this state to a time-dependent perturbation P (t ) =
P (0) + δP (t), so that angles become time-dependent, θ(t) = θ(0) + δθ(t). Linearizing the

dynamics of Eq. (2.1) about θ(0), one obtains

δθ̇ = δP −L(θ(0))δθ , (2.2)

where we introduced the weighted Laplacian matrix L(θ(0)) with matrix elements

Li j =
{

−ai j cos(θ(0)
i −θ(0)

j ) , i 6= j ,∑
k ai k cos(θ(0)

i −θ(0)
k ) , i = j .

(2.3)

This Laplacian is minus the stability matrix of the linearized dynamics, and since we consider

a stable synchronous state, it is positive semidefinite, with a single eigenvalue λ1 = 0 with

eigenvector u1 = (1,1,1, ...1)/
p

n, and λi > 0, i = 2,3, ...n.

The first term on the right-hand side of Eq. (2.2) perturbs angles away from the synchronous

state. To assess the magnitude of this excursion in the spirit of Refs. [7, 119, 102] we consider

1For systems with
∑

i Pi = nΩ 6= 0, this is equivalently achieved by considering the system in a rotating frame
with θi (t ) → θi (t )+Ωt .
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two fragility performance measures

P1(T ) = ∑
i

∫ T

0
|δθi (t )−∆(t )|2dt , (2.4a)

P2(T ) = ∑
i

∫ T

0
|δθ̇i (t )− ∆̇(t )|2dt . (2.4b)

Because synchronous states are defined modulo any homogeneous angle shift, the trans-

formation θ(0)
i → θ(0)

i +C does not change the synchronous state. Accordingly, only angle

shifts with
∑

i δθi (t ) = 0 matter, which is incorporated in the definitions of P1,2 by subtracting

averages ∆(t ) = n−1 ∑
j δθ j (t ) and ∆̇(t ) = n−1 ∑

j δθ̇ j (t ). An alternative procedure is to restrict

oneself to perturbations orthogonal to u1 [7, 119, 102]. Either procedure ensures, together

with the non-negativity of L, that P1,2 <∞, even when T →∞, if the perturbation is short and

weak enough that it leaves the dynamics inside the basin of attraction of θ(0). Low values for

P ∞
1,2 ≡P1,2(T →∞) indicate then that the system absorbs the perturbation with little fluctua-

tions, while large values indicate a temporary fragmentation of the system into independent

pieces – P ∞
1,2 measures the coherence of the synchronous state [7].

We expand angle deviations over the eigenstates uα of L, δθ(t) = ∑
α cα(t)uα, and rewrite

Eq. (2.2) as

ċα(t ) = δP (t ) ·uα−λαcα(t ) , (2.5)

whose general solution reads

cα(t ) = e−λαt cα(0)+e−λαt
∫ t

0
dt ′eλαt ′ δP (t ′) ·uα . (2.6)

Being interested in perturbations δP that start at t = 0, when the system is in the synchronous

state with δθ(0) = 0, we set cα(0) ≡ 0. The performance measures of Eqs. (2.4) are given

by P1(T ) = ∑
α≥2

∫ T
0 c2

α(t)dt and P2(T ) = ∑
α≥2

∫ T
0 ċ2

α(t)dt . We next introduce generalized

Kirchhoff indices in terms of which we express P1,2 for three different classes of perturbations

δP (t ).

Generalized Kirchhoff indices.

The Kirchhoff index originally followed from the definition of the resistance distance in a

graph [71]. To a connected graph, one associates an electrical network where each edge is a

resistor given by the inverse edge weight in the original graph. The resistance distance is the

resistanceΩ(1)
i j

2 between any two nodes i and j on the electrical network. The Kirchhoff index

is then defined as [71]

Kf1 ≡
∑
i< j
Ω(1)

i j , (2.7)

2Superscript notationΩ(1)
i j will become clear in chapter 3.
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where the sum runs over all pairs of nodes in the graph. For a graph with Laplacian L, it has

been shown that Kf1 is given by the spectrum {λα} of L as [133, 56, 29]

Kf1 = n
∑
α≥2

λ−1
α . (2.8)

Up to a normalization prefactor, Kf1 gives the mean resistance distance Ω over the whole

graph. Intuitively, one expects the dynamics of a complex system to depend not only on

Ω(1), but on the full set {Ω(1)
i j }. Higher moments of {Ω(1)

i j } are encoded in generalized Kirchhoff

indices Kfp (see 2.9.1) which we define as

Kfp = n
∑
α≥2

λ
−p
α , (2.9)

for integers p. Below we show that P1,2 can be expressed as linear combinations of the Kfp ’s

corresponding to L in Eq. (2.3). We note that, continued to p ∈C, Kfp is known as the spectral

zeta function of L [125].

Dirac delta perturbation

We first consider δP (t) = δP0τ0δ(t) with the Dirac delta-function δ(t). Because the pertur-

bation is limited in time, the limit T →∞ can be taken in Eqs. (2.4). One obtains (see 2.9.3)

P ∞
1 = ∑

α

(δP0 ·uα)2τ2
0

2
λ−1
α , (2.10a)

P ∞
2 = ∑

α

(δP0 ·uα)2τ2
0

2
λα . (2.10b)

Both performance measures depend on the scalar product of the perturbation δP0 with

the eigenmodes uα of L. Such scalar products occur also when analyzing propagation of

disturbances on networks [69]. To get more insight on the typical network response, we

define an ensemble of perturbation vectors with 〈δP0i δP0 j 〉 = δi j 〈δP 2
0〉3. Averaging over that

ensemble gives

〈P ∞
1 〉 = 〈δP 2

0〉τ2
0

2n
Kf1 , (2.11a)

〈P ∞
2 〉 = 〈δP 2

0〉τ2
0

2n
Kf−1 . (2.11b)

The network structure determines the performance measures via the spectrum of the weighted

Laplacian of Eq. (2.3). The latter depends on the network structure – its topology and edge

weights, as well as the internal dynamics of the oscillators, which modifies the edge weights

3The choice δP0 = (0,0, ...,0,∆i ,0, ...) is equivalent to the averaging procedure used in the approach to perfor-
mance measures used in Refs.[7, 119].
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via angle differences θ(0)
i −θ(0)

j determined by P (0). The way all these ingredients determine

average network fragility is however simply encoded in Kf−1 and Kf1. We note that Eq. (2.11a)

appeared in slightly different, but equivalent form in Ref. [7].

Box perturbation

Next, we go beyond the δ-perturbations discussed so far [7, 119, 102] and consider a perturba-

tion that is extended, but still limited in time, δP (t ) = δP0Θ(t )Θ(τ0 − t ),4with the Heaviside

functionΘ(t ) = 0, t < 0 andΘ(t ) = 1, t > 0. Here also, the limit T →∞ can be taken in Eqs. (2.4).

One obtains (see 2.9.4)

P ∞
1 = ∑

α≥2

(δP0 ·uα)2

λ3
α

(λατ0 −1+e−λατ0 ) , (2.12a)

P ∞
2 = ∑

α≥2

(δP0 ·uα)2

λα
(1−e−λατ0 ) . (2.12b)

As in Eqs. (2.10), both performance measures depend on δP0·uα. After averaging over the same

ensemble of perturbation vectors as above, Eq. (2.12) becomes (see Supplemental Material)

〈P ∞
1 〉 = 〈δP 2

0〉
∑
α≥2

λατ0 −1+e−λατ0

λ3
α

'
{

〈δP 2
0〉τ2

0 Kf1
/

2n , λατ0 ¿ 1,∀α ,

〈δP 2
0〉τ0 Kf2/n , λατ0 À 1,∀α .

(2.13a)

〈P ∞
2 〉 = 〈δP 2

0〉
∑
α≥2

1−e−λατ0

λα
'

{
〈δP 2

0〉τ0 Kf0/n , λατ0 ¿ 1,∀α ,

〈δP 2
0〉Kf1/n , λατ0 À 1,∀α .

(2.13b)

Compared to Dirac delta perturbations, 〈P ∞
1 〉 now depends on Kf2 when τ0 is the longest time

scale. This is so, because time-extended perturbations scatter through the network before

they are damped by L. Accordingly, they depend on details of the network contained in higher

moments of the distribution of resistance distances, hence on a generalized Kirchhoff index of

higher order.

Noisy perturbation

We finally consider fluctuating perturbations characterized by zero average and second mo-

ment δPi (t1)δP j (t2) = δi jδP 2
0i exp[−|t1 − t2|/τ0] correlated over a typical time scale τ0. Be-

cause this perturbation is not limited in time, we consider P1,2(T ) at finite but large T . Keeping

only the leading order term in T , we have (see 2.9.5)

P1(T ) = T
∑
α

∑
i∈Nn

δP 2
0i u2

α,i

λα(λα+τ−1
0 )

+O (T 0) , (2.14a)

P2(T ) = (T /τ0)
∑
α

∑
i∈Nn

δP 2
0i u2

α,i

λα+τ−1
0

+O (T 0) . (2.14b)

4We also refer to such perturbation as quench perturbation.
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The response is determined by the overlap of the perturbation vector with the eigenmodes

of L. The noise amplitude δP 2
0i is localized on the set Nn of noisy nodes. Averaging over an

ensemble of perturbations defined by all permutations of the noisy nodes over all nodes (see

2.9.5), 〈P1,2〉 is given by Eqs. (2.14) with
∑

i δP 2
0i u2

α,i →〈δP 2
0〉. If τ−1

0 lies inside the spectrum

of L, P1,2 are functions of the spectrum of L and the inverse correlation time τ−1
0 . If, on the

other hand, τ−1
0 lies outside the spectrum of L, averaged measures are directly expressable as

infinite sums over generalized Kirchhoff indices, 〈P1,2〉 = n−1 〈δP 2
0〉T

∑∞
m=0 C (m)

1,2 with

C (m)
1 =

{
(−1)m τ(m+1)

0 Kf−m+1 , λατ0 < 1,

(−1)m τ−m
0 Kfm+2 , λατ0 > 1,

(2.15a)

C (m)
2 =

{
(−1)m τm

0 Kf−m , λατ0 < 1,

(−1)m τ−(m+1)
0 Kfm+1 , λατ0 > 1.

(2.15b)

Numerical simulations

To confirm our results numerically, we focus on P1 for both box and noisy perturbations,

varying their time scale τ0. We consider Eq. (2.1) with two types of networks, (i) small-world

networks, where a cycle graph with constant coupling ai j = a0 for any node i to its 4 near-

est neighbors undergoes random rewiring with probability pr ∈ [0,1] [126]5, and (ii) simple

cyclic networks where each node is coupled to its nearest- and q th-neighbors with a constant

coupling ai ,i±1 = ai ,i±q = a0 (see inset in Fig. 2.2). In both cases, we fix the number of nodes

to n = 50. In all cases, the unperturbed natural frequencies vanish, P (0)
i = 0. The box pertur-

bation has δP0 = (0,0, ...,δP0i1 ,0, ...,δP0i2 ,0, ...) with δP0i1 =−δP0i2 = 0.01 a0, and averaging is

performed over all pairs of nodes (i1, i2). The noisy perturbation acts on all nodes, and we

construct noise sequences Pi (t) satisfying δPi (t1)δP j (t2) = δi jδP 2
0i exp[−|t1 − t2|/τ0] using

the method described in Ref. [48], with δP0i = 0.01 a0.

The theory is numerically confirmed for small-world networks in Fig. 2.1, where P1 decreases

monotonously as the rewiring probability p increases, in complete agreement with the pre-

dictions of Eqs. (2.13a) and (2.14a) (colored solid lines). This is qualitatively understood as

follows. As pr increases and more network edges are rewired, more couplings with longer

range appear in the network, which stiffens the synchronous state. Fig. 2.1 shows that the

resulting decrease in fragility of synchrony occurs already with pr ' 0.1−0.2, where only few

long-range couplings exist in the network – true small-world networks [126]. Earlier works

showed that small-world networks have larger range of parameters over which synchrony

prevails, compared to random networks [10]. Fig. 2.1 shows that, additionally, synchronous

states in small-world networks are more robust than in regular networks.

Further insight into synchrony fragility is obtained when considering our cyclic graph model

with nearest- and q th-neighbor coupling. If the range of the coupling were the only ingredient

5Small-world networks roughly correspond to a p ' 0.1 rewiring probability. Here we refer to the rewiring model
defined in Ref. [126] as "small-world networks" for any p ∈ [0,1] by some abuse of language.
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Figure 2.1 – Performance measure 〈P ∞
1 〉 (for box perturbation, left panel) and P1/T (for

noisy perturbation, right panel) for the small-world model with n = 50 nodes as a function of
the rewiring probability pr [126] and with τ0 = 0.1/a0 (black), 0.5/a0 (blue), 1/a0 (red), 10/a0

(green) and 50/a0 (violet). Solid lines give Eqs. (2.13a) (left) and (2.14a) (right) calculated
numerically over an ensemble of networks obtained from 20 different rewirings. The dotted-
dashed lines give Kf1 and the dashed lines Kf2, both vertically shifted. In the right panel, P1(T )
is averaged over T ′ ∈ [T −200/a0,T +200/a0] with T = 800/a0, and error bars give the standard
deviation of numerically obtained values with 10 different noise sequences.

determining the fragility of the synchronous state, then one would observe a monotonous

decrease of P1 as a function of q . Fig. 2.2 shows numerical results for the cyclic graphs and

five values of τ0 ranging from λατ0 . 1 to λατ0 & 1, ∀α. Analytical results of Eqs. (2.13a) and

(2.14a), in particular, the crossover from 〈P ∞
1 〉 ∼ Kf1 to 〈P ∞

1 〉 ∼ Kf2 predicted in Eq. (2.13a)

when τ0 increases, are clearly confirmed. Particularly remarkable is that Kf1 and Kf2 are not

monotonous in the coupling range q (see 2.9.7), which is clearly reflected in the behavior

of 〈P ∞
1 〉. This unambiguously demonstrates that average fragility of synchrony does not

depend trivially on the range of the couplings between oscillators, but is entirely determined

by generalized Kirchhoff indices.

Conclusion

Using both performance measures defined in Eqs. (2.4), we have expressed synchrony fragility

in terms of the weighted Laplacian matrix L of the system’s network. We have first shown

that the response to specific perturbations is determined by both the spectrum of L and its

eigenmodes uα through their scalar product δP0 ·uα with the perturbation vector. Eqs. (2.10),

(2.12) and (2.14) clearly indicate that perturbations overlapping with the eigenmodes with

smallest Lyapunov exponents have the largest impact on the synchronous state. The most

vulnerable nodes are accordingly identified as the nodes carrying these eigenmodes. Second,

we considered performance measures averaged over ergodic ensembles of perturbations. In
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Figure 2.2 – Performance measure 〈P ∞
1 〉 (for box perturbation, left panel) and P1/T (for

noisy perturbation, right panel) for the cyclic graph with n = 50 nodes with nearest- and
q th-neighbor coupling, ai ,i±1 = bi ,i±q = a0, as a function of q and with τ0 = 0.1/a0 (black),
0.5/a0 (blue), 1/a0 (red), 10/a0 (green) and 50/a0 (violet). Solid lines give Eqs. (2.13a) (left)
and (2.14a) (right). The dotted-dashed lines give Kf1 and the dashed lines Kf2, both vertically
shifted. In the right panel, P1(T ) is averaged over T ′ ∈ [T −200/a0,T +200/a0] with T = 800/a0,
and error bars give the standard deviation of numerically obtained values with 10 different
realizations of noisy perturbations. The inset sketches the model for n = 8 and q = 3.

this case, they depend on L only through generalized Kirchhoff indices, which we introduced

in Eq. (2.9). The latter are both spectral and topological in nature, as they can be re-expressed

in terms of the resistance distances in the virtual network defined by L (see 2.9.1). A network’s

average/global fragility can therefore be easily quantified by a direct calculation of generalized

Kirchhoff indices. This is a computationally easy task, requiring in most instances to determine

few of the smallest eigenvalues of L, and that, for a given system, can be done for few typical

fixed points once and for all. Our findings are rather general and generalized Kirchhoff indices

naturally characterize the fragility of synchronous states for many coupled dynamical systems,

beyond the Kuramoto model considered here as well as for other types of perturbation not

discussed here (see 2.9.8).

Two extensions of this work should be considered in priority. First, our approach has been

based on the implicit assumption that the perturbation is sufficiently weak that the system

stays close to its initial state. Criteria for acute vulnerability should account for the breakdown

of this assumption and quantify the perturbation threshold above which networks either lose

synchrony or change their synchronous state. Second, synchrony fragility for second-order

systems with inertia should be considered, investigating in particular more closely the case

of electric power grids under the influence of fluctuating power injections [131]. Work along

those lines is in progress.
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Appendix

Generalized Kirchhoff indices

For a complex graph determined by its Laplacian matrix L, we introduce a family of graph

invariants

Kfp = n
∑
α≥2

λ
−p
α , (2.16)

where λα is an eigenvalue of L. We call them generalized Kirchhoff indices because the Kirch-

hoff index introduced in Ref. [71] can be expressed as [133, 56]

Kf1 = n
∑
α≥2

λ−1
α . (2.17)

We show that, just like the original Kirchhoff index Kf1, generalized Kirchhoff indices can

be expressed as functions of the resistance distances between any pair of nodes (i , j ) in the

network. The network’s Laplacian matrix L has one zero eigenvalue. We therefore define the

matrix Γ

Γ= L+u1
>u1 , (2.18)

in terms of which the resistance distanceΩ(1)
i j between nodes i and j is defined as [71]

Ω(1)
i j = Γ−1

i i +Γ−1
j j −Γ−1

i j −Γ−1
j i . (2.19)

This can be rewritten in terms of the eigenvectors of L as [28]

Ω(1)
i j = ∑

α≥2

(uα,i −uα, j )2

λα
, (2.20)

where the zero mode corresponding to λ1 = 0 is omitted in the sum. We show that Kf1 and Kf2

can be rewritten in terms of resistance distances. For Kf1, one has

∑
i< j
Ω(1)

i j = 1

2

∑
i , j

∑
α≥2

(uα,i −uα, j )2

λα
= Kf1 , (2.21)

because the eigenvectors α≥ 2 of L satisfy
∑

i uα,i = 0 and
∑

i u2
α,i = 1. To express Kf2, higher

moments of the distribution of resistance distances are needed. One has,

∑
i , j
Ω(1)

i j

2 = ∑
i , j ;α,β≥2

(uα,i −uα, j )2(uβ,i −uβ, j )2

λαλβ
= 2n

∑
i ;α,β≥2

u2
α,i u2

β,i

λαλβ
+ 2(Kf1)2

n2 + 4Kf2

n
,

(2.22)

∑
i , j ,k

Ω(1)
i j Ω

(1)
j k = ∑

i , j ,k ;α,β≥2

(uα,i −uα, j )2(uβ, j −uβ,k )2

λαλβ
= 3(Kf1)2

n
+n2

∑
i ;α,β≥2

u2
α,i u2

β,i

λαλβ
. (2.23)
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Combining the latter two equations, one has

n

4

(∑
i , j
Ω(1)

i j

2
)
− 1

2

( ∑
i , j ,k

Ω(1)
i j Ω

(1)
j k

)
+ (Kf1)2

n
= Kf2 . (2.24)

For p ≥ 3, it is possible though algebraically tedious to show that Kfp can be expressed in a

similar way in terms of higher moments of resistance distances.

Direct calculation of fragility measures

The fragility performance measures introduced in Eqs. (2.4) of the main text can be rewritten

in terms of the coefficients of the expansion δθ(t ) =∑
α cα(t )uα of angle displacements over

the eigenvectors uα of L. One has

P1(T ) = ∑
α≥2

∫ T

0
c2
α(t )dt , P2(T ) = ∑

α≥2

∫ T

0
ċ2
α(t )dt . (2.25)

The coefficients cα(t ) are solutions of

cα(t ) = e−λαt cα(0)+e−λαt
∫ t

0
dt ′eλαt ′ δP (t ′) ·uα , (2.26)

and in our case where the perturbation starts at t = 0, cα(0) = 0. We treat sequentially, and in

some additional details, the three perturbations considered in the main text.

Dirac delta perturbation

We first consider δP (t ) = δP0τ0δ(t ). Inserting it into Eq. (2.26) one obtains,

cα(t ) = (δP0 ·uα)τ0e−λαt . (2.27)

This directly gives

P1(T ) = ∑
α≥2

(δP0 ·uα)2τ2
0

2λα
(1−e−2λαT ) , P2(T ) = ∑

α≥2

(δP0 ·uα)2τ2
0

2
λα(1−e−2λαT ) . (2.28)

Taking the limit λαT À 1, one obtains Eqs. (10a,b) of the main text,

P1(T →∞) = P ∞
1 = τ2

0

2

∑
α≥2

(δP0 ·uα)2

λα
, (2.29a)

P2(T →∞) = P ∞
2 = τ2

0

2

∑
α≥2

(δP0 ·uα)2λα . (2.29b)

Averaging over the ensemble of perturbation vectors defined by 〈δP0i 〉 = 0, 〈δP0iδP0 j 〉 =
δi j 〈δP 2

0〉, we have 〈(δP0 ·uα)2〉 =∑
i , j 〈δP0iδP0 j 〉uα,i uα, j = 〈δP 2

0〉, ∀α. The averaged fragility
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measures become,

〈P ∞
1 〉 = 〈δP 2

0〉τ2
0

2

∑
α≥2

1

λα
= 〈δP 2

0〉τ2
0

2n
Kf1 , (2.30a)

〈P ∞
2 〉 = 〈δP 2

0〉τ2
0

2

∑
α≥2

λα = 〈δP 2
0〉τ2

0

2n
Kf−1 , (2.30b)

just as in Eqs. (2.11) in the main text.

Box perturbation

We next consider δP (t ) = δP0Θ(t )Θ(τ0 − t ). Eq. (2.26) with cα(0) = 0 now gives,

cα(t ) =
{

(δP0 ·uα)(1−e−λαt )
/
λα , t ≤ τ0 ,

(δP0 ·uα)(eλα(τ0−t ) −e−λαt )
/
λα , t > τ0 .

(2.31)

Eqs. (2.25) become

P1(T ) = ∑
α≥2

(δP0 ·uα)2

λ3
α

(λατ0 −1+e−λατ0 − e2λα(τ0−T )

2
+eλα(τ0−T ) − e−2λαT

2
) ,(2.32a)

P2(T ) = ∑
α≥2

(δP0 ·uα)2

λα
(1−e−λατ0 − e2λα(τ0−T )

2
+eλα(τ0−2T ) − e−2λαT

2
) . (2.32b)

Taking the limit λαT À 1, one recovers Eqs. (2.12) in the main text,

P ∞
1 = ∑

α≥2

(δP0 ·uα)2

λ3
α

(λατ0 −1+e−λατ0 ) , (2.33a)

P ∞
2 = ∑

α≥2

(δP0 ·uα)2

λα
(1−e−λατ0 ) . (2.33b)

Following the same averaging procedure as for the δ-perturbation, one finally recovers

Eqs. (2.13) in the main text,

〈P ∞
1 〉 = 〈δP 2

0〉
∑
α≥2

1

λ3
α

(λατ0 −1+e−λατ0 ) , (2.34a)

〈P ∞
2 〉 = 〈δP 2

0〉
∑
α≥2

1

λα
(1−e−λατ0 ) . (2.34b)

The asymptotic behaviors for λατ0 ¿ 1 and λατ0 À 1 are easily computed via a Taylor-

expansion.

Noisy perturbation

We finally consider fluctuating perturbations characterized by zero average δP0i = 0, and

second moments δPi (t1)δP j (t2) = δi jδP 2
0i exp[−τ−1

0 |t1 − t2|] correlated over a typical time
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scale τ0. With this ensemble average, one obtains,

P1(T ) = ∑
α≥2

∫ T

0
c2
α(t )dt

= ∑
α≥2

∫ T

0
e−2λαt

∫ t

0

∫ t

0
eλα(t1+t2)δP (t1) ·uαδP (t2) ·uαdt1dt2dt

= ∑
α≥2

∑
i

(δP0i uα,i )2
∫ T

0
e−2λαt

∫ t

0

∫ t

0
eλα(t1+t2)e−|t1−t2|/τ0 dt1 dt2 dt

= ∑
α≥2

∑
i

(δP0i uα,i )2

[
T

λα(λα+τ−1
0 )

+ 1−e−2λαT

2λ2
α(λα−τ−1

0 )
+ 2(e−(λα+τ−1

0 )T −1)

(λα+τ−1
0 )(λ2

α−τ−2
0 )

]
.

To calculate P2 we note that,

ċ2
α(t ) = λ2

αc2
α(t )+ (δP (t ) ·uα)2 −2λαe−λαt

∫ t

0
eλαt ′ δP (t ′) ·uαδP (t ) ·uαdt ′ . (2.35)

One obtains, after some algebra

P2(T )〉 = ∑
α≥2

∑
i

(δP0i uα,i )2

[
T

τ0(λα+τ−1
0 )

+ 1−e−2λαT

2(λα−τ−1
0 )

+ 2λατ−1
0 (e−(λα+τ−1

0 )T −1)

(λα+τ−1
0 )(λ2

α−τ−2
0 )

]
.

For λαT À 1, one recovers Eqs. (eq:c12noisy) in the main text,

P1(T ) = ∑
α≥2

∑
i

(δP0i uα,i )2 T

λα(λα+τ−1
0 )

+O (T 0) , (2.36)

P2(T ) = ∑
α≥2

∑
i

(δP0i uα,i )2 τ−1
0 T

(λα+τ−1
0 )

+O (T 0) . (2.37)

Averaging over all permutations, σ, of the components of δP0 = (δP01, ...,δP0n) , one has the

following identity,

1

n!

∑
σ

∑
i

(δP0σ(i )uα,i )2 = (n −1)!

n!

(∑
i
δP 2

0i

)(∑
j

u2
α, j

)
= (δP0)2

n
≡ 〈δP0

2〉. (2.38)

We finally obtain the leading-order contribution in T ,

〈P1〉(T ) = 〈δP 2
0〉

∑
α≥2

T

λα(λα+τ−1
0 )

+O (T 0) , (2.39)

〈P2〉(T ) = 〈δP 2
0〉

∑
α≥2

τ−1
0 T

(λα+τ−1
0 )

+O (T 0) , (2.40)

which can be Taylor-expanded in geometric series when either λατ0 > 1 or λατ0 < 1, ∀α
to obtain 〈P1,2〉 = n−1 〈δP 2

0〉T
∑∞

m=0 C (m)
1,2 . One easily recovers the coefficients P (m)

1,2 given in
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Eqs. (2.15) in the main text. Note that, when λατ0 ¿ 1,

〈P1〉(T ) ' T 〈δP 2
0〉

n
P (0)

1 = T 〈δP 2
0〉τ0

n
Kf1 , (2.41)

〈P2〉(T ) ' T 〈δP 2
0〉

n
P (0)

2 = T 〈δP 2
0〉

n
Kf0 . (2.42)

For λατ0 À 1, one obtains,

〈P1〉(T ) ' T 〈δP 2
0〉

n
P (0)

1 = T 〈δP 2
0〉

n
Kf2 , (2.43)

〈P2〉(T ) ' T 〈δP 2
0〉

n
P (0)

2 = T 〈δP 2
0〉

τ0n
Kf1 . (2.44)

Perturbations as Fourier series

From Eq. (2.6) in the main text, it is clear that, with cα(0) = 0, P1,2 will always be a sum

over eigenmodes of L labeled α, and that each term in that sum contains a factor (δP ·uα)2,

regardless of the choice of perturbation. Our first main conclusion, that the response of the

synchronous state under specific, nonaveraged perturbation depends on the spectrum of L

and on the overlap of its eigenmodes with the perturbation vector is therefore rather general.

Our approach can moreover be extended to any perturbation that can be expanded in a Fourier

series,

δP (t ) =∑
f

(
δP+

f exp[2πi f t/τ0]+δP−
f exp[−2πi f t/τ0]

)
. (2.45)

The condition that the components of the perturbation vector are real, δPi ∈R, gives either

δP+
f ,i = δP−

f ,i ∈ R or δP+
f ,i = −δP−

f ,i ∈ iR. Because δP (t = 0) = 0, we consider only the latter

case in what follows. Eq. (6) in the main text gives

cα(t ) = exp[−λαt ]
∑
f ,i

uα,i δP f ,i (t )
(e(λα+2πi f /τ0)t −1

λα+2πi f /τ0
− e(λα−2πi f /τ0)t −1

λα−2πi f /τ0

)
. (2.46)

In the long time limit we obtain

cα(t →∞) =∑
f ,i

uα,i |δP f ,i (t )| (4π f /τ0) cos(2π f t/τ0)−2λα sin(2π f t/τ0)

λ2
α+4π2 f 2/τ2

0

(2.47)

To get the average of the performance measure P1, we square this expressions, average it over

an homogeneous ensemble of perturbation as in the main text and sum over α. For a suffi-

ciently long duration of perturbation, integrating over time gives the dominant contribution

to the fragility performance measures (under the assumption that T is large, but shorter than
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the duration of the perturbation)

P1(T ) ' T τ2
0

2

∑
α, f

〈δP 2
f ,0〉

4λ2
ατ

2
0 +16π2 f 2

(λ2
ατ

2
0 +4π2 f 2)2

. (2.48)

For each Fourier harmonics, the denominator can be Taylor-expanded, depending on whether

λατ0 > 2π f or λατ0 < 2π f . When 2π f /τ0 lies outside the spectrum of the Laplacian, Eq. (2.48)

allows to express P1(T ) as a sum over even-order generalized Kirchhoff indices.

Kirchhoff indices and phase dynamics

Kirchoff indices in the cycle model with nearest and qth-neighbor coupling

The eigenvalues λα of the Laplacian of our model with uniform nearest and q th-neighbor

coupling are obtained by a Fourier transformation and are given by,

λα = 4−2cos(kα)−2cos(kαq) , α= 1, ...,n , (2.49)

where kα = 2π(α−1)
n . Then one obtains,

Kf1 = n
∑
α≥2

1

4−2cos(kα)−2cos(kαq)
. (2.50)

The dependence of the denominator of Eq. (2.50) with q makes it is clear that Kf1 is a non

monotonous function of q . This is shown in Fig. 2.3 for n = 50. As mentioned in the main

text, two seemingly similar choices of long range interactions may lead to large differences of

the Kirchhoff index. This translates into large variations of the network’s average resistance

distance, which can be understood topologically in terms of the commensurability of the

q th-neighbor coupling with the number n of nodes in the network. Since the resistance

distance between any two nodes accounts for all paths between them, one may expect that

q th-neighbor couplings provide short, alternative paths between nodes, effectively bringing

them closer to each other. This is however not always the case. In fact, if n is a small integer

multiple of q , or nearly so, paths involving multiple q-range hops, starting from a given node,

come back to the initial node or close to it. Such paths only allow to reach nodes in the close

vicinity of the starting node and do not reduce significantly the resistance distance between

many nodes close to the original one. In contrast, without commensurability between q and

n, the resistance distance between most of the nodes to the original one is reduced.

This is illustrated in Fig. 2.3 which plots Kf1 and Kf2 as a function of q for n = 50. As expected

peaks are present for q = 10,17 and 24 such that n/q is a small integer or close to a small

integer. The insets of Fig. 2.3 sketch how despite these long range interactions some portions

of the network keep the same geodesic distance to the red node 1.
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Figure 2.3 – Kf1 (green) and Kf2 (violet) for a cyclic graph with n = 50 with nearest and q th-
neighbor coupling, ai ,i±1 = ai ,i±q = a0. The inset sketches the model for q = 17, 19, and 24 and
illustrates one path involving q th-range interactions starting from node 1 (red). The addition
of q th- neighbor interactions does not reduce the geodesic distance between the reference
node (red) and the set of nodes colored in blue.

Influence on the phase dynamics

The two seemingly similar cycle models with n = 50, nearest- and q th-neighbor coupling with

q = 17 and q = 19 considered in Fig. 2 in the main text nevertheless behave strikingly differently

under an external perturbation. This is so, because they have very different generalized

Kirchhoff indices Kf1 and Kf2. To illustrate this behavioral discrepancy, Fig. 2.4 compares the

phase dynamics for the box perturbation for these two graphs. The left panel is for the cyclic

graph with q = 17, which has a fragility performance measure P1 bigger than for the cyclic

graph with q = 19 in the right panel. Clearly the angle deviations on the left panel spread more

and take more time to return to the initial fixed point after the perturbation than on the right

panel. From Eq. (13b) in the main text, 〈P ∞
1 〉 is proportional to Kf2 in the corresponding limit

λατ0 À 1 ∀α. The numerically obtained values (indicated in Fig. 2.4) of P1 follow that trend,

though not exactly, as expected for this single realization of perturbation.

λ2 vs. Generalized Kirchhoff indices

Here we show that the generalized Kirchoff indices give more information on the fragility of

synchronous states than the smallest Lyapunov exponent, λ2. We compare star and cycle

graphs with the same number of nodes. In both cases the eigenvalues of the Laplacian matrix

can be calculated analytically. The spectrum of the Laplacian of a star graph with n nodes is

{0,1,n}, with the eigenvalue 1 having multiplicity n −2, thus λ2 = 1, Kf1 = (n −1)2, and Kf2 =
(n3 −2n2 −1)/n. The spectrum of the Laplacian of a cycle graph with only nearest neighbor
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Figure 2.4 – Phases δθi for the cyclic graph with n = 50 with nearest and q th-neighbor coupling,
ai ,i±1 = ai ,i±q = a0 with q = 17 (left panel) and q = 19 (right panel), as a function of the
normalized time t/τ0, for a box perturbation with τ0 = 50/a0 and perturbation vector with
non zero components δP0,1 = a0, δP0,11 =−a0.

coupling is λα = 2[1− cos(2π(α− 1)/n)], with α = 1, . . . ,n. One has, λ2 = 2[1− cos(2π/n)],

Kf1 = n(n2 −1)/12, and Kf2 = n(n2 −1)(n2 +11)/720. The density of eigenvalues approaching

zero increases with n in the cycle graph, while in the star graph the Lyapunov exponents

accumulate at a finite value as n increases (i.e. λ2 = λ3 = . . . = λn−1 = 1). Thus we expect a

crossover in the vulnerability of these two network topologies as n is increased. Fig. 2.5 shows

λ2 (left panel), and the performance measure P1 in both the limits λατ0 ¿ 1 (center panel)

and λατ0 À 1 (right panel) as a function of the number of nodes. For n < 6, the cycle network

has a larger λ2 and a smaller P1 compared to the star network which means that the largest

contribution to Kf1 and Kf2 comes from λ−1
2 . However, for 6 > n > 8, both Kf1 and Kf2 are not

dominated by λ−1
2 , therefore the cycle network is less fragile under an external perturbation

than the star network even though it has a smaller λ2. For n = 8 and n = 9, the cycle network is

less fragile against short time perturbation but more fragile against long time perturbation

compared to the star network. This reflects the fact that for those values, Kf1 is smaller for the

cycle than for the star network, while the relation is opposite for Kf2 [see the corresponding

relation between P1 and generalized Kirchhoff indices in Eq. (2.13a)].

We apply the same analysis to small-world graphs, which are obtained from a n = 20 cycle

network with first and second nearest neighbor couplings, which are rewired [126]. Fig. 2.6

shows three graphs obtained with this procedure, which have different relations between λ2

and their generalized Kirchhoff indices Kf1 and Kf2. Graph 1 has a smaller λ2 but smaller

Kf1 or Kf2 compared to graph 2, while graph 3 has a smaller λ2, similar Kf1 and larger Kf2

compared to graph 2. These relations are reflected by the performance measures P1 for box

perturbations presented in Table 2.1.
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Figure 2.5 – λ2 (left panel) and performance measure 〈P ∞
1 〉 for a box perturbation with

τ0 = 50/a0 (center panel) and τ0 = 0.1/a0 (right panel) as a function of the number of nodes
for the star network (red) and the cyclic network (blue). Solid lines give Eq. (2.13a). The dashed
lines give the two limits of Eq. (2.13a) : λατ0 ¿ 1 (center panel) and λατ0 À 1 (right panel)

Figure 2.6 – Starting from a homogeneous cyclic network with first and second nearest
neighbor couplings and size n = 20, graphs 1, 2 and 3 have been obtained after rewiring some
randomly chosen edges.

Graph 1 2 3
λ2 0.834 0.954 0.835

λατ0 ¿ 1 : 〈P ∞
1 〉∝ Kf1 3.16e-7 3.24e-7 3.22e-7

λατ0 À 1 : 〈P ∞
1 〉∝ Kf2 1.83e-3 1.91e-3 1.98e-3

Table 2.1 – λ2, performance mesure 〈P ∞
1 〉 obtained numerically in the two limits : λατ0 ¿ 1

(τ0 = 0.1/a0), λατ0 À 1 (τ0 = 50/a0).
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Beyond Kuramoto

Instead of the Kuramoto model defined by Eq. (2.1), one may consider other models of cou-

pled dynamical systems. Two extensions have to be differentiated. First, one may consider

different coupling than the sine-coupling in the Kuramoto model. This is straightforwardly

included in our approach and leads only to a differently weighted Laplacian matrix, giving, for

a fixed network, a different Lyapunov spectrum and different eigenmodes uα, but leaving all

expressions for the performance measures unchanged. Second, one may consider dynamical

systems with more internal degrees of freedom, such as the one considered by Pecora and

Carroll [99]

ẋ = P(x)+B⊗H(x) , (2.51)

with x = (x1,x2, ...xn), P(x) = (
f(x1), f(x2), ...f(xn)

)
, B the Laplacian matrix of the graph con-

sidered and H a function defining the coupling between adjacent dynamical systems with

coordinates xi ∈ Rd . Our approach assumes the existence of a synchronous state with

x(0)
1 = x(0)

2 = ... = x(0)
n . Linearizing about the synchronous state with x = x(0) +δx and con-

sidering a perturbation gives, instead of Eq. (2.2),

δẋ = δP+ [I⊗DP(x(0))+B⊗DH(x(0))]δx , (2.52)

where DP and DH are Jacobian matrices. The first term on the right-hand side is similar to the

perturbation considered above, and the third one is a generalization of the Laplacian term in

Eq. (2.2), where the network Laplacian is extended to take account of additional nodal degrees

of freedom. The new second term occurs because P now depends on internal degrees of

freedom x (it does not in the Kuramoto model). The formula given for the performance need

now to be evaluated with the eigenvaluesΛα,l and eigenmodes Uα,l of I⊗DP(x(0))+B⊗DH(x(0)),

l = 1,2, ...d .
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3 Global Robustness vs. Local Vulner-
abilities in Complex Synchronous
Networks

Chapter 3 is a postprint version of an article published as:

M. Tyloo, P. Jacquod, Physical Review E, 100(3):032303 (2019) [120].
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In complex network-coupled dynamical systems, two questions of central importance are

how to identify the most vulnerable components and how to devise a network making the

overall system more robust to external perturbations. To address these two questions, we

investigate the response of complex networks of coupled oscillators to local perturbations. We

quantify the magnitude of the resulting excursion away from the unperturbed synchronous

state through quadratic performance measures in the angle or frequency deviations. We find

that the most fragile oscillators in a given network are identified by centralities constructed

from network resistance distances. Further defining the global robustness of the system from

the average response over ensembles of homogeneously distributed perturbations, we find

that it is given by a family of topological indices known as generalized Kirchhoff indices. Both

resistance centralities and Kirchhoff indices are obtained from a spectral decomposition of

the stability matrix of the unperturbed dynamics and can be expressed in terms of resistance

distances. We investigate the properties of these topological indices in small-world and regular

networks. In the case of oscillators with homogeneous inertia and damping coefficients, we

find that inertia only has small effects on robustness of coupled oscillators. Numerical results

illustrate the validity of the theory.

Introduction

Complex networks are widely used to model nature- as well as man-made coupled dynamical

systems [104]. Physical realizations of such systems range from microscopic Josephson junc-

tion arrays [127] and interacting molecules in chemical reactions [78, 77] to macroscopic high

voltage electric power grids [13] and communication or social networks [115, 9]. Individual

elements are represented by nodes in a complex network, which have internal parameters

and degrees of freedom. The latter are governed by differential equations that depend on both

the internal dynamics of the individual elements and the coupling to the adjacent nodes. Two

central questions are (i) how to identify nodes, which, once attacked, perturbed or removed,

have the most dramatic effect on the overall dynamics of the coupled system and (ii) how to

devise a coupling network guaranteeing robustness of the system against random external

perturbations. Attempts to answer such questions are often based on complex network theory,

numerically relating dynamical effects to graph-theoretic metrics. This approach has been

often criticized, e.g. in Refs. [19, 16, 63], because (i) it gives no a priori criterion for which

metric should be considered in which situation and (ii) it does not directly incorporate the

intrinsic dynamics of the network-coupled system.

Here we propose an altogether different analytical approach. First, we use robustness per-

formance measures that quantify the excursion during the transient dynamics following a

perturbation. Second, we spectrally decompose the coupling matrix to calculate the response

of the system to some external perturbations. Third, by direct calculation, we relate the ob-

tained analytical expressions for performance measures (i) to local centralities when analyzing

local vulnerabilities, and (ii) to global topological indices when assessing global robustness

of the networked system. Following these steps, we identify a new class of local and global
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topological indices that characterize robustness of synchrony of complex network-coupled

oscillators. Our method builds up on investigations of consensus algorithms [7, 54], electric

power systems [102, 93, 110] and coupled oscillators systems [121, 123]. Already implicitly

present in Refs. [54, 93, 110], the Kirchhoff index was first identified as a global robustness

quantifier in our earlier work, Ref. [121]. Local vulnerabilities have been more recently con-

nected to centralities related to the resistance distance [54, 123].

In this manuscript, we investigate vulnerabilities and global robustness of synchronous

network-coupled oscillators. Frequency synchronization often occurs in such systems when

the coupling between individual oscillators is strong enough that they start to oscillate at

the same frequency, even when their natural frequency is not homogeneous [117, 100]. Fre-

quency synchronization has attracted a large interest, in particular, the robustness of the

synchronous state has been studied from a variety of points of view. One may for instance

consider the linear stability of the synchronous state [99], the range of network parameters

where synchrony occurs [10, 26, 132], the volume of the basin of attraction of the synchronous

state [128, 86, 35], the influence of noise on the synchronous state, in particular how it can lead

to desynchronization or drive the system to another synchronous state [38, 60, 107, 61, 122, 62],

how disturbances spread across the network [69, 129, 94], or even how topological changes

affect synchrony [30, 113, 29]. Here, we investigate the robustness of the synchronous state

against external perturbations. For both local and ensemble-averaged perturbations on oscilla-

tors with identical dynamical parameters, we find that the robustness of the synchronous state

is given by a new family of topological indices based on the resistance distance [71, 121, 123].

The manuscript is organized as follows. Section 3.2 recalls the definition of the resistance

distance and generalizes it to graphs corresponding to powers of the Laplacian matrix. Section

3.3 describes our model of coupled oscillators, briefly discusses synchronized states and

evaluates how they respond to external perturbations. Performance measures quantifying

this response are also introduced and calculated for quench perturbations. Sections 3.4

numerically illustrates the theory on different graphs for local and global vulnerabilities. An

analysis of Kirchhoff indices in both small-world and regular networks is also done. We

conclude in Section 3.5.

Resistance Distances, Centralities and Kirchhoff Indices

The resistance distanceΩ(1)
i j is a graph-theoretic metric with an intuitive physical interpreta-

tion [71]. To any graph, one associates an electrical network of resistors whose capacities are

given by the inverse of the edge weights. In this case,Ω(1)
i j is the effective resistance between i

and j , i.e. the voltage that develops between i and j when a unit current is injected at i and

collected at j with no injection nor collection at any other node. The resistance distance can

be expressed with the network Laplacian matrix L as

Ω(1)
i j = L†

i i +L†
j j −L†

i j −L†
j i , (3.1)
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where L† is the Moore-Penrose pseudo inverse of L. The resistance distance can be formulated

in a convenient way using eigenvectors uα and eigenvalues λα of L. It is given by [130, 29],

Ω(1)
i j = ∑

α≥2

(uα,i −uα, j )2

λα
, (3.2)

where the zero-eigenvector of L corresponding to λ1 = 0 is omitted in the sum. The resistance

distance is a graph-theoretic distance metric because (i)Ω(1)
i i = 0, ∀i , (ii)Ωi j ≥ 0 ∀i , j , and (iii)

Ω(1)
i j +Ω(1)

j k ≥Ω(1)
i k , ∀i , j ,k (triangle inequality) [71].

A measure of nodal centrality is given by the inverse of the average resistance distance from

any node k to all other network nodes,

C1(k) =
[

n−1
∑

j
Ω(1)

k j

]−1

=
[ ∑
α≥2

u2
α,k

λα
+n−2Kf1

]−1

. (3.3)

It is a closeness centrality in the usual sense [16], meaning in particular that large values of

C1(k) indicate nodes k that are central in the network according to the resistance distance

Ω(1)
i j . The second term in bracket on the right-hand-side of Eq. (3.3) is a graph topological

index known as the Kirchhoff index of the network and defined by [71],

Kf1 = ∑
i< j
Ω(1)

i j = n
∑
α≥2

λ−1
α , (3.4)

where the second equality follows from Eq. (3.2) [121].

Until now we have introduced global topological indices and local centralities expressed

through resistance distances of the original coupling network. In the upcoming sections, we

show how resistance distances naturally come out when quantifying robustness of network-

coupled oscillators, but that new distance metrics related to powers of the Laplacian matrix

also emerge. We therefore generalize Eqs. (3.1)–(3.4) to quantities corresponding to the pth

power Lp of the Laplacian matrix (p ∈ N). This matrix is still a Laplacian matrix, and the

associated resistance distance is defined as

Ω
(p)
i j = (Lp )†

i i + (Lp )†
j j − (Lp )†

i j − (Lp )†
j i . (3.5)

Still using the eigenvectors and eigenvalues of L we have,

Ω
(p)
i j = ∑

α≥2

(uα,i −uα, j )2

λ
p
α

. (3.6)

One can easily check thatΩ(p)
i j is still a graph-theoretic distance metric satisfying the properties

mentioned between Eqs. (3.2) and (3.3). We finally have generalized resistance centralities
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[123]

Cp (k) =
[

n−1
∑

j
Ω

(p)
k j

]−1

=
[ ∑
α≥2

u2
α,k

λ
p
α

+n−2Kfp

]−1

, (3.7)

and generalized Kirchhoff indices [121]

Kfp = ∑
i< j
Ω

(p)
i j = n

∑
α≥2

λ
−p
α . (3.8)

We note that generalized resistance distances can in principle be expressed as function ofΩ(1)
i j .

For instance one has

Kf2 = n

4

∑
i , j
Ω(1)

i j

2 − 1

2

∑
i , j ,k

Ω(1)
i j Ω

(1)
j k + (Kf1)2

n
. (3.9)

Below we show how global robustness and local vulnerabilities quantified with performances

measures can be expressed in terms of the resistance distance-based centralities and the

generalized Kirchhoff indices just introduced.

Synchronized oscillators under external perturbations

The Kuramoto model with inertia and its linearization

We consider a set of network-coupled oscillators defined by the following set of coupled

differential equations,

mi θ̈i +di θ̇i = Pi −
∑

j
ai j sin(θi −θ j ) . (3.10)

Oscillators labeled i = 1, ...,n sit on the n nodes of a weighted graph defined by the adjacency

matrix with elements ai j ≥ 0. They have compact angle coordinates θi ∈ (−π,π], natural

frequencies Pi /di
1 and inertia as well as damping parameters mi and di . For mi = 0, Eq. (3.10)

gives the celebrated Kuramoto model on a complex network, for which it is known that when

the couplings are sufficiently strong, a finite fraction of, or all oscillators synchronize, i.e. with

θ̇i − θ̇ j = 0, depending on the distribution of the natural frequencies [77, 100, 67, 2]. Here, we

consider Pi defined on a bounded, real interval and set
∑

i Pi = 0 without loss of generality, so

that synchronous states have θ̇i = 0, ∀i .

Eq. (3.10) is governed by three sets of time scales. The first one consists of the inverse natural

frequencies di /Pi . The second one is given by ratios mi /di and corresponds to the relaxation

time of individual oscillators. Finally, the third one is given by the network relaxation times

di /λα defined by the damping parameters and the eigenvalues λα of the weighted Laplacian

1By some abuse of language, we often refer to Pi as natural frequencies.
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matrix defined in Eq. (5.3) below. The first of these sets essentially determines the synchronous

state, together with the coupling network. Depending on the other two sets of time scales,

perturbations are locally damped or they propagate across the network [121, 123, 94].

We consider a stable fixed-point solution θ(0) = (θ(0)
1 , . . . ,θ(0)

n ) to Eq. (3.10) with unperturbed

natural frequencies P (0). We subject this state to a time-dependent perturbation P (t ) = P (0) +
δP (t ), which renders angles time-dependent, θ(t ) = θ(0) +δθ(t ). Linearizing the dynamics of

Eq. (3.10) about θ(0), one obtains

M δθ̈+D δθ̇ = δP (t )−L({θ(0)
i })δθ , (3.11)

where we introduced inertia and damping matrices, M = diag{mi } and D = diag{di }, respec-

tively, and the weighted Laplacian matrix L({θ(0)
i }) with matrix elements

Li j =
{

−ai j cos(θ(0)
i −θ(0)

j ) , i 6= j ,∑
k ai k cos(θ(0)

i −θ(0)
k ) , i = j .

(3.12)

This Laplacian is minus the stability matrix of the linearized dynamics, and since we con-

sider a stable synchronous state, it is positive semidefinite, with a single eigenvalue λ1 = 0

with eigenvector u1 = (1,1,1, ...1)/
p

n, and λα > 0, α = 2,3, ...n. From here on, we order the

Lyapunov exponents λα in increasing order, i.e. λ1 = 0 <λ2 < . . . <λn .

Eq. (3.11) can be solved analytically through a spectral expansion if (i) both M and D commute

with L or (ii) if M−1D = γI. In case (i), the spectral expansion is over the eigenmodes of L, while

in case (ii) it is over the eigenmodes of M−1/2LM−1/2 [93, 29]. Here, we focus on case (i) with

mi = m, di = d ∀i .

Expanding the angle deviations over the eigenmodes of L as δθ(t) = ∑
α cα(t)uα, Eq. (3.11)

leads to a Langevin equation,

m c̈α(t )+d ċα(t ) = δP (t ) ·uα−λα cα(t ) , (3.13)

whose general solution reads

cα(t ) =m−1 e−(γ+Γα)t/2
∫ t

0
eΓαt1

∫ t1

0
δP (t2) ·uα e(γ−Γα)t2/2 dt2dt1 , (3.14)

withΓα =
√
γ2 −4λα/m andγ= d/m. Similar expressions have been derived using the transfer

function formalism [93, 55] or within linear response [84, 121, 69]. When γ2 < 4λα/m, Γα ∈ iR

and accordingly, |Γα| corresponds to the angular frequency of oscillations along the eigenmode

uα of L. When on the other hand γ2 > 4λα/m, Γα ∈R and gives an additional damping beyond

γ. From Eq. (5.10), angle and frequency deviations can be calculated as δθ(t) =∑
α cα(t)uα.

The above described perturbation in the natural frequencies of Eq. (3.10) models physical

disturbances that can occur e.g. when a magnetic field is applied to an array of coupled

Josephson junctions [127] or when the injected or consumed powers change in a high voltage

46



3.3. Synchronized oscillators under external perturbations

electric power grid [13].

Performance Measures

The perturbation δP (t ) moves the oscillators angles and frequencies away from their value at

synchrony and renders them time dependent. For not too strong, finite-time perturbations,

they eventually relax to their synchronous values and to assess the magnitude of the excursion

away from synchrony, we introduce the following quadratic performance measures

P1(T ) = ∑
i

∫ T

0
|δθi (t )−∆(t )|2dt , (3.15a)

P2(T ) = ∑
i

∫ T

0
|δθ̇i (t )− ∆̇(t )|2dt . (3.15b)

Fig. 3.1 shows the ratio between performance measure P1, defined in Eq. (3.15a), numerically

obtained by perturbing each node of graphs (a) and (e) shown in the inset. Even if the average

value of the performance measure is lower for graph (e), the latter can be more strongly

sensitive to certain local perturbations. Below we show that specific local vulnerabilities and

global averaged robustness are determined by nodal centralities and global topological indices

(orange). Similar measures have been discussed in the context of consensus algorithms [7, 54],

electric power systems [102, 93, 110] and coupled oscillators systems [121, 123]. The results

we are about to present directly connect these performance measures to resistance-distance

based centralities and Kirchhoff indices introduced in Section 3.2. While similar connections

may have been inferred from some of these works (in particular Refs. [93, 110, 121]), to the

best of our knowledge, it was first unambiguously stated in Ref. [123].

Because synchronous states are defined modulo any homogeneous angle shift, they are

unaffected by the transformation θ(0)
i → θ(0)

i +C . Accordingly, only angle shifts with
∑

i δθi (t ) =
0 matter, which is incorporated in the definitions of P1,2 by subtracting averages ∆(t) =
n−1 ∑

j δθ j (t ) and ∆̇(t ) = n−1 ∑
j δθ̇ j (t ). If the perturbation is not too strong and finite in time,

both P1 and P2 are finite even for T →∞. Low values for P ∞
1,2 ≡P1,2(T →∞) indicate then

that the system absorbs the perturbation with little fluctuations, while large values indicate a

temporary fragmentation of the system into independent pieces – qualitatively speaking, P ∞
1,2

measures the coherence of the synchronous state [7].

Using the spectral expansion with coefficients given in Eq. (5.10), the performance measures

of Eqs. (3.15) read, in our case of homogeneous inertia and damping coefficients

P1(T ) = ∑
α≥2

∫ T

0
c2
α(t )dt , (3.16a)

P2(T ) = ∑
α≥2

∫ T

0
ċ2
α(t )dt . (3.16b)

Performance measures depend on the perturbation vector δP (t ) = δP0 f (t ), which may have
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Figure 3.1 – Ratio of the performance measures P1 for graph (a) vs. (e) of Fig. 3.2 (shown in
the insets), for a quench perturbation of magnitude δP0 = 0.01 and duration γτ0 = 500 on
node k = 1,2,3, . . .20 (see text). On average, graph (e) is four times more robust to external
perturbations than graph (a) (blue dashed line). However, some nodes of graph (a) can be more
robust than those of graph (e) (red crosses correspond to quench perturbation applied on the
red nodes shown in the inset). Both specific local vulnerabilities (crosses) and global averaged
robustness (blue dashed lines) are well predicted by combinations of local centralities, and
global topological indices (orange solid line, see text).

different time dependences f (t ) – such as, for instance, noisy fluctuations or instantaneous,

Dirac-delta perturbations – and different geographical dependences encoded in δP0. In this

manuscript we consider quenches where f (t) vanishes outside some time interval, inside

which it is constant but nonzero. In the next section we calculate performance measures for

general perturbation vectorsδP0 for such quenches. As for geographical dependences, we then

consider two cases of (i) nodal vulnerabilities, with local perturbations δP0 = (0, ...,δP0,k , ...,0)

and (ii) global robustness, where performance measures are averaged over all possible loca-

tions k for the perturbation.
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3.3. Synchronized oscillators under external perturbations

Quench Perturbation

We compute both performance measures P1,2 for a quench perturbationδP (t ) = δP0Θ(t )Θ(τ0−
t ) with the Heaviside functionΘ(t ) and a perturbation vector δP0 encoding the geographical

distribution of the perturbation. The duration τ0 of the quench allows to explore the different

time scales of the system and we show below that P1,2 varies significantly depending on τ0.

Using Eq. (5.10), Eqs.(3.15) give

P ∞
1 = m

8γ

∑
α≥2

(δP0 ·uα)2

Γαλ
3
α

[
2Γα(4γτ0λα/m −3γ2 −Γ2

α)+ (γ+Γα)3e−τ0
(γ−Γα)

2 − (γ−Γα)3e−τ0
(γ+Γα)

2

]
,

P ∞
2 = 1

2d

∑
α≥2

(δP0 ·uα)2

Γαλα

[
2Γα− (γ+Γα)e−

τ0(γ−Γα)
2 + (γ−Γα)e−

τ0(γ+Γα)
2

]
.

(3.17a)

It is easily checked that P ∞
1,2 ∈R in both cases γ2 > 4λα/m (with Γα ∈R) and γ2 < 4λα/m (with

Γα ∈ iR).

Both performance measures are given by a spectral sum of terms corresponding to the eigen-

modes of the network Laplacian matrix L. Each term in this sum depends on the scalar

product of the perturbation vector δP0 with the eigenmodes uα of L times a mode-dependent

factor. The latter is an almost always decreasing function of the eigenvalues λα. Therefore,

Eqs. (3.17) suggest that the largest excursion can be obtained by overlapping δP0 with few of

the lowest-lying eigenmodes of L, in particular u2, the so-called Fiedler mode of the network

[46].

To get more insight into Eqs. (3.17), we compute their two asymptotic limits of long and short

τ0. For perturbations with very short duration i.e. τ0 ¿ m/d , (γ±Γα)−1, we have,

P ∞
1 = τ2

0

2d

∑
α≥2

(δP0 ·uα)2

λα
, (3.18a)

P ∞
2 = τ2

0

2md

∑
α≥2

(δP0 ·uα)2 . (3.18b)

Each term in the sum over modes depends on λα for P ∞
1 but not for P ∞

2 . Consequently, P ∞
1

depends explicitly on the location of the perturbation, while there is no such dependence for

P ∞
2 , which depends only on the squared norm of the perturbation vector δP0 orthogonal

to u1. This reflects the fact that in the regime of short τ0, the perturbation does not act long

enough to change the kinetic energy of inertiafull oscillators, which P ∞
2 essentially measures.

Consequently, the perturbation is quickly damped locally, with little dependence on its loca-

tion in the situation we consider of homogeneously distributed inertia. We note that similar

topology-independent results were obtained for instantaneous, Dirac-delta perturbations [6].
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In the other limit τ0 À m/d , (γ±Γα)−1, the performance measures read

P ∞
1 = τ0

∑
α≥2

(δP0 ·uα)2

λ2
α

, (3.19a)

P ∞
2 = d−1

∑
α≥2

(δP0 ·uα)2

λα
. (3.19b)

In this case of a long-lasting perturbation, both P ∞
1 and P ∞

2 depend on the location of the

perturbation. Furthermore, and perhaps more importantly, the inertia affects neither P ∞
1

nor P ∞
2 . This is so since, for long quenches, oscillators have the time to synchronize at a

new frequency with zero angular acceleration before the perturbation is over. We further

note that τ0 no longer appears in P ∞
2 , since the latter considers deviations orthogonal to u1.

Consequently, the whole time spent by the oscillators at the new frequency does not contribute

to P ∞
2 . Most importantly, Eqs. (3.18) and (3.19) suggest that in both asymptotic limits of short

and long perturbations, P ∞
1,2 ∝ ∑

α≥2(δP0 ·uα)2/λp
α with p = 0,1,2. That result was already

hinted at in Ref. [121] for inertialess oscillators and various types of perturbations. Below

we show how this dependence leads to performance measures depending on the resistance

distances, centralities and Kirchhoff indices introduced in Section 3.2.

Eqs. (3.17) and their asymptotic limits, Eqs. (3.18) and (3.19), give the performance measures

P ∞
1,2 for any perturbation vector δP0. We next discuss two important cases of (i) a single-

node perturbation, δP0,i = δP0δi k , where large values of the node-dependent performance

measures P ∞
1,2 → P ∞

1,2(k) identify local vulnerabilities and (ii) averaged perturbation over

ensemble of homogeneously distributed perturbation vectors δP0, where large values of

P ∞
1,2 →〈P ∞

1,2〉 indicate globally fragile networks.

Specific Local Vulnerabilities

To assess local vulnerabilities of the coupled oscillators, we apply a quench perturbation on a

single node. The vulnerability of node k is then given by Eqs. (3.17) with the components of

the perturbation vector given by δP0,i = δP0δi k . In the limit of short duration of perturbation,

τ0 ¿ m/d , (γ±Γα)−1, one obtains

P ∞
1 (k) = δP 2

0τ
2
0

2d

∑
α≥2

u2
α,k

λα
= δP 2

0τ
2
0

2d
[C−1

1 (k)−n−2Kf1] , (3.20a)

P ∞
2 (k) = δP 2

0τ
2
0

2md

∑
α≥2

u2
α,k = δP 2

0τ
2
0

2md

(n −1)

n
, (3.20b)

where the right-hand side of Eq. (3.20a) directly follows from Eq. (3.3). For a perturbation on

node k, P ∞
1 (k) is expressed in terms of the centrality, C1(k), a local nodal descriptor, and the

Kirchhoff index Kf1, a global network descriptor. Consequently, the most vulnerable nodes

in a given network, according to P ∞
1 (k), are identified by their resistance-distance based

centrality C1(k).
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In the other limit of long perturbations, τ0 À m/d , (γ±Γα)−1, Eqs. (3.19) give

P ∞
1 (k) = δP 2

0τ0
∑
α≥2

u2
α,k

λ2
α

= δP 2
0τ0[C−1

2 (k)−n−2Kf2] , (3.21a)

P ∞
2 (k) = δP 2

0

d

∑
α≥2

u2
α,k

λα
= δP 2

0

d
[C−1

1 (k)−n−2Kf1] . (3.21b)

This time P ∞
1 is given by the higher order centrality C2(k) and Kirchhoff index Kf2.

When considering a given, fixed network, Eqs. (3.20) and (3.21) show that perturbations on

the most central nodes – as measured by either centrality C1(k) or C2(k) – give the smallest

overall responses, except when considering P ∞
2 (k) for a short-time perturbation. In that latter

case, the response is homogeneous and perturbing any node leads to the same performance

measure P ∞
2 (k). When comparing two nodes with similar centrality on two different networks,

on the other hand, Eqs. (3.20) and (3.21) indicate that the largest response occurs on the

network with smallest generalized Kirchhoff index – except again for P ∞
2 (k) and a short-time

perturbation. We show below that the overall network robustness is actually given by these

generalized Kirchhoff indices, which makes this observation quite counterintuitive: when

perturbing two nodes of equal centrality on two different networks, the largest response is

actually recorded on the overall more robust network ! We will come back to this point below.

Averaged Global Robustness

We next assess the global robustness of synchrony in a given network, by averaging Eqs. (3.17)

over an homogeneously distributed ensemble of perturbation vectors defined by 〈δP0,iδP0, j 〉 =
δi j 〈δP 2

0〉 [121]. Averaging Eqs. (3.17) gives, in the limit of short perturbations, τ0 ¿ m/d ,

(γ±Γα)−1

〈P ∞
1 〉 = 〈δP 2

0〉τ2
0

2d

∑
α≥2

λ−1
α = 〈δP 2

0〉τ2
0

2nd
Kf1 , (3.22a)

〈P ∞
2 〉 = 〈δP 2

0〉τ2
0

2md

n −1

n
. (3.22b)

We see that 〈P ∞
1 〉 is given by the Kirchhoff index Kf1 which is proportional to the network’s

average resistance distanceΩ(1)
i j [see Eq. (3.4)]. Similarly to the local vulnerability in this limit,

〈P ∞
2 〉 depends on the network only marginally through the number of nodes.

In the other limit τ0 À m/d , (γ±Γα)−1, Eqs. (3.19) give

〈P ∞
1 〉 = 〈δP 2

0〉τ0
∑
α≥2

λ−2
α = 〈δP 2

0〉τ0

n
Kf2 , (3.23a)

〈P ∞
2 〉 = 〈δP 2

0〉
d

∑
α≥2

λ−1
α = 〈δP 2

0〉
nd

Kf1 . (3.23b)
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Figure 3.2 – Six networks with n = 20 nodes obtained by the rewiring procedure of Ref. [126],
starting from a cyclic graph and rewiring every edge of the network with a probability pr = 0.15
(a), pr = 0.3 (b), pr = 0.45 (c), pr = 0.6 (d), pr = 0.75 (e) and pr = 0.9 (f). The node numbering
used in Fig. 3.3 is indicated in panel (a).

Both performance measures depend on generalized Kirchhoff indices. Quite remarkably and

as for local vulnerabilities, the only average performance measure that depends on inertia is

〈P ∞
2 〉 in the short τ0 limit.

The results of Sections 3.3.4 and 3.3.5 can be easily extended to other types of perturbations.

For inertialess oscillators, Ref. [121] reached similar conclusions, that performance measures

can be expressed in terms of resistance centralities and Kirchhoff indices, for several other

types of perturbations. In the next Section, we numerically confirm the validity of the analytical

theory presented in this Section.

Numerical Results

Local Vulnerabilities and Resistance Centralities

We numerically investigate local vulnerabilities by perturbing individual nodes with the

quench perturbation discussed above. Our theory applies to network of any geometry with

any number n of nodes. However in order to better visualize the agreement between analytical

predictions and numerical results we restrict ourselves to relatively small graphs with n = 20

nodes of the kind shown in Fig. 3.2.

We check Eqs. (3.17) for the model defined in Eq. (3.10) with bi j = 1 on the edge of the

graph considered and ai j = 0 otherwise, mi ≡ m = 1 and di ≡ d = 1. We numerically time-

evolve Eq. (3.10) with a fourth-order Runge-Kutta method, following a perturbation δPi (t ) =
δP0δi kΘ(t)Θ(τ0 − t) away from P (0) = 0 and starting from the corresponding synchronous
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Figure 3.3 – Performances measures P1 (left) and P2 (right) for the graphs of Fig. 3.2a (top),
Fig. 3.2c, (middle), Fig. 3.2e (bottom) and a quench perturbation of magnitude δP0 = 0.01
on node k. Numerical results (circles) and analytical Eqs. (3.17) (solid lines) are plotted for
different durations of perturbation γτ0 = 0.5 (black), 1 (blue), 10 (red), 100 (green). The
asymptotic values of short and long τ0 given in Eqs. (3.20) (dotted line) and (3.21) (dashed
line) are shown, vertically shifted by an arbitrary amount for clarity. The node numbering is
given in Fig. 3.2a.
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Figure 3.4 – Resistance centralities C1(k) (top) and C2(k) (bottom), given in Eqs. (3.3) and (3.7)
respectively, for the six graphs of Fig. 3.2.

stateθ(0) = 0. Fig. 3.3 shows that the theory of Eqs. (3.17) is in perfect agreement with numerical

results. In particular, one clearly sees the crossover from [C−1
1 (k)−n−2Kf1] to [C−1

2 (k)−n−2Kf2]

for P ∞
1 (dotted to dashed lines on the left panels) and from a constant to [C−1

1 (k)−n−2Kf1]

(dotted to dashed line on the right panels) for P ∞
2 , as τ0 increases. This fully confirms our

theoretical predictions, Eqs. (3.20)-(3.21). We conclude that, generally speaking (i.e. except

for P ∞
2 and short perturbations), the most central nodes are the most robust. They are

connected by multiple paths to the rest of the network, and when they are perturbed, the

disturbance quickly diffuses across the network with small angle differences. In contrast, the

most peripheral nodes such as dead ends have only few paths connecting them to the bulk of

the network and the disturbance diffuses across the network with large angle differences. It

has been numerically found that dead ends undermine grid stability [87], and our results shed

some analytical light on that observation.

We further illustrate this strong connection between resistance centralities and response of

the system. We show in Fig. 4.6 resistance centralities C1(k) and C2(k) for the six graphs of

Fig. 3.2. One sees that C1(k) and C2(k) tend to become higher while going from graph (a) to (f)

indicating that graphs with more rewired edges (and thus with more long-range couplings)

have shorter distances between nodes and thus lower Kirchhoff indices. Interestingly, several

nodes with a high centrality C1(k) do not necessarily have a high centrality C2(k), and vice-

versa. This is illustrated in the C1(k) vs. C2(k) scatterplot of Fig. 3.5. Still there is an overall
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Figure 3.5 – Comparison between C1(k) and C2(k) for the six graphs of Fig. 3.2 (see inset).

positive correlation between C1(k) vs. C2(k), quantified by a Pearson correlation parameter

cov[C1(k),C2(k)]/(rms[C1(k)]rms[C2(k)]) = 0.87. We then show in Fig. 3.6 the time-evolution

of angles and frequencies following a local quench perturbation on two different nodes of

graph (f) with very different resistance centralities. One clearly sees that for a perturbed node

with low resistance centrality (Fig. 3.6, top), angles and frequencies spread more during the

perturbation than for a node with higher centrality (Fig. 3.6, bottom).

Generally speaking, networks with higher rewiring probabilities have smaller global topolog-

ical indices Kf1 and Kf2 and thus smaller 〈P ∞
1,2〉 according to our theory. This is confirmed

numerically in the four left panels in Fig. 3.7, where we apply the same quench perturbation

on nodes with resistance centralities C1(k) close to their median value in the corresponding

graph. One observes that angles and frequencies spread more and take more time to return to

the initial fixed point in the graph with higher Kf1 and Kf2 (first and third rows) compared to

the one with more rewired edges (second and fourth rows).
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Figure 3.6 – Time-evolution of angles (left) and frequencies (right) following a quench per-
turbation applied on node 6 (top panels) and 11 (bottom panels) of graph (f) in Fig. 3.2 with
γτ0 = 50. The trajectory of the perturbed oscillator is shown in red. Angles and frequencies
spread more when the perturbation is applied on node 6 than on node 11, in agreement with
predictions of Eqs. (3.21) since node 6 has the smallest, node 11 the largest centrality in this
graph.

While this is a rather general rule, it does not forbid exceptions. As a matter of fact, specific

perturbations can lead to higher response in a network with lower Kirchhoff index than in a

network with higher Kirchhoff index. Such an exception is illustrated in the four right panels

in Fig. 3.7, where the same quench perturbation is applied on nodes with similar resistance

centralities C2(k) but belonging to graphs with very different Kirchhoff indices (see insets

of Fig. 3.7). As expected from Eqs. (3.21), if two nodes on different networks have the same

centralities, then, a perturbation applied on the one in the network with lower Kirchhoff index

produces the largest response. Another illustration of this effect is given in Fig. 3.1, where

graph (e) is more robust than graph (a) on average (dashed lines). But if we compare the

response to specific local perturbations, some nodes of graph (a) are more robust than those of

graph (e) (red crosses). Both the generic and the exceptional behaviors are accurately captured

by our theory.
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Figure 3.7 – Trajectories of angles and phases for the graphs of Fig. 3.2 with pr = 0.15 (first
and third rows) and pr = 0.9 (second and fourth rows) obtained by numerically time-evolving
Eq. (3.10) for the same quench perturbation with γτ0 = 50 applied on the node colored in
red in the insets. In the four left panels, perturbed nodes are close to median value of C2(k),
respectively in graph with pr = 0.15 (first and third rows) and pr = 0.9 (second and fourth
rows). In the four right panels, perturbed nodes are the most (first and third rows) and least
(second and fourth rows) central ones according to C2(k), respectively in graph with pr = 0.15
and pr = 0.9.
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Global Robustness and Generalized Kirchhoff Indices

We next investigate global robustness by averaging performance measures over an ensemble of

perturbation vectors located on a single node, δP0 = (0, ..,δP0,k ,0, ...) with k = 1, ...,n. Fig. 3.8

compares the resulting numerical averages 〈P ∞
1,2〉with the average of the theoretical prediction

of Eqs. (3.17). Numerics and theory agree well. In particular the left panel confirms nicely

the crossover between Kf1 and Kf2 predicted by Eqs. (3.22a) and (3.23a). A similar behavior

is visible in the right panel, where 〈P ∞
2 〉 does not depend on the network topology for short

duration of perturbation (black and blue lines and symbols) but crosses over to Kf1 as τ0

increases, as predicted by Eqs. (3.22b) and (3.23b). We finally note that networks with high

Kf1 do not necessarily have a high Kf2, and vice-versa. This is illustrated in Fig. 3.8 where the

chosen network with pr = 0.15 has a higher Kf2 but a lower Kf1 than the chosen network with

pr = 0.3. Below we analyze in more details Kf1,2 in randomly rewired networks.

Figure 3.8 – Averaged Performances measures 〈P ∞
1 〉, 〈P ∞

2 〉 for the graphs of Fig. 3.2 obtained
numerically (circles) and predicted analytically, Eqs. (3.17) (solid lines) for perturbations with
γτ0 = 0.5 (black), 1 (blue), 10 (red), 100 (green). The asymptotic values of short and long τ0

given in Eqs. (3.22) (dotted line) and (3.23) (dashed line) are shown, vertically shifted by an
arbitrary amount for clarity.

Generalized Kirchhoff Indices in Small-World Networks

The results obtained above relate local vulnerabilities to nodal centralities and global net-

work robustness to generalized Kirchhoff indices. This connection is powerful: it gives a

vulnerability ranking of nodes and provides robustness assessment based on well-defined,

easily calculated network descriptors. To gain qualitative insight on what favors robustness

in a graph, we investigate the behavior of the Kirchhoff indices for Watts-Strogatz, randomly

rewired networks. Following Ref. [126], we consider initially regular, circular graphs where
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nodes are coupled to their nearest, second-nearest aso. up to their 10th neighbors. Each edge

in the corresponding coupling network is then rewired with probability p. Fig. 3.9 compares

the standard measures of "nearest-neighborness" of average geodesic distance l and clustering

coefficient C l with the generalized Kirchhoff indices Kf1 and Kf2, as a function of p.

Figure 3.9 – Left panel: clustering coefficient C l , average geodesic distance l and generalized
Kirchhoff indices Kf1 and Kf2, as a function of the rewiring probability pr for Strogatz-Watts
rewired networks [126]. Each data point corresponds to an average over 30 realizations of
randomly rewired graphs, obtained from an initial cyclic graph with n = 1000 nodes and
nearest to 10th- neighbor coupling, where each edge is randomly rewired with a probability
pr (parameters chosen similar as in Ref. [126], such that the graph remains connected while
rewiring and is still sparse). Right panel: ratio of the Kirchhoff indices and of clustering
coefficient vs. average geodesic distance. Small-world network are easily identified by the
steepest slope of the orange line.

Both Kirchhoff indices drop, roughly following l , as p is increased, with Kf2 decreasing sig-

nificantly faster than Kf1 and l . Traditionnally, the "small-world" behavior occurs around

pr = 0.01, where l is significantly smaller than its initial value, while C l has not yet changed

much. In that region, Kf1 has been reduced to ∼ 40% of its initial value, while Kf2 reaches

only few percents of its initial value. Accordingly, small-world networks are significantly more

robust to external perturbations than regular networks, particularly when considering P ∞
1 for

long quenches. Only a fraction of edges need to be rewired to achieve a level of robustness

comparable to that of random networks. As a side-remark, we note that the ratio of Kirchhoff

indices provides for a clear identification of small-world networks, which correspond to values

of pr where Kf1(pr )/Kf2(pr ) is fast increasing with pr .
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Regular Networks

We finally comment on regular networks. In such networks, all the nodes are equivalent

and therefore global robustness is equivalent to local vulnerability, P ∞
1,2(k) = 〈P ∞

1,2〉, ∀k, fur-

thermore, Kirchhoff indices can be calculated analytically. The Laplacian matrix can be

diagonalized with a Fourier transform, and its spectrum is given by

λα = 4−2cos(kα)−2cos(kαq) , α= 1, ...,n, (3.24)

with kα = 2π(α−1)/n. Kirchhoff indices Eq. (3.8) are then given by,

Kfp = n
∑
α≥2

[4−2cos(kα)−2cos(kαq)]−p . (3.25)

Fig. 3.10 shows Kf1 and Kf2 for such regular networks with n = 50 nodes. When extending the

coupling range q , Kirchhoff indices are generally decreasing, indicating the standard trend

that longer-range couplings reduce centralities. However, for some values q = 10,17,24 equal

or close to integer divisors of n, Kirchhoff indices suddenly become larger. This is so, since

then, paths made of few long-range interactions form either closed or almost closed loops (see

the inset of Fig. 3.10 for q = 17,24), which do not reduce the geodesic distance between many

pairs of nodes, compared to long range coupling with n/q not integer (e.g. q = 19 in Fig. 3.10).

Consequently, graphs that may appear similar, such as those with q = 17 and q = 19 or with

q = 23 and q = 24 may exhibit Kirchhoff indices differing by factors of 2-4 or even more. This

illustrates how assessing global robustness is hard to do from a network’s general appearance

and/or from arguments solely based on the existence of long-range couplings.

Conclusion

Building up on earlier works [7, 54, 102, 93, 110, 121, 123], we have investigated the response

under external perturbations of network-coupled dynamical systems initially in a stable

synchronous state. We proposed to assess network robustness and identify nodal vulnerabili-

ties through quadratic performance metrics quantifying the magnitude of the perturbation-

induced transient excursion away from the synchronous state. As we reported earlier for

first-order oscillators [121], we found that the response of inertiaful, second-order oscillators

depends on the overlap between the perturbation vector and the eigenmodes of the weighted

Laplacian. In particular, the set of nodes located on the slowest eigenmode corresponding to

the smallest eigenvalue produces the largest excursions when perturbed. Considering distur-

bances localized on a single node we found that, oscillators which, once perturbed, induce

the largest transient excursion are the ones with smallest resistance centralities. Extending

the results of Ref. [121] to second-order oscillators, we found that global robustness, assessed

by averaging performance measures over ergodic ensembles of perturbation vectors, is also

given by generalized Kirchhoff indices. A network can then be made more robust to perturba-

tions by minimizing its average resistance distances, for instance by introducing long-range
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Figure 3.10 – Generalized Kirchhoff indices Kf1 (green) and Kf2 (purple) given in Eq. (3.25), for
a cyclic network with n = 50 nodes with nearest and q th- neighbor coupling. The inset sketches
the model for q = 17, 19 and 24 and with one path involving q th range coupling starting from
node 1 (red). The addition of the q th- neighbor coupling does not reduce geodesic distance
between the reference node (red) and the set of nodes colored in blue.

edges. Quite remarkably, except for P2 and short time perturbation, asymptotic behaviors

of performance measures in either limit of long or short perturbations do not depend on the

inertia of the oscillators.

Our findings are rather general. Together with Refs. [121, 123], they make it clear that, almost

regardless of the presence of inertia, and of the type of perturbation chosen, quadratic perfor-

mance measures are given by the generalized resistance distance-based centralities or, once

averaged over ergodic ensembles of perturbations, by the generalized Kirchhoff indices that

we introduced in Section 3.2. These local and global network characteristics therefore provide

well-defined, numerically easy to calculate robustness descriptors and local vulnerability

indicators.

Further studies could consider the effect of spatially correlated perturbations and go beyond

the assumption of homogeneous inertia and damping. Moreover, generalized resistance

centralities and Kirchhoff indices could be investigated with different network generating

algorithms.

61





4 The Key Player Problem in Com-
plex Oscillator Networks and Electric
Power Grids: Resistance Centralities
Identify Local Vulnerabilities

Chapter 4 is a preprint version of an article published in Science Advances:

M. Tyloo, L. Pagnier, P. Jacquod, Science Advances 5(11):eaaw8359 (2019) [123].
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Identifying key players in a set of coupled individual systems is a fundamental problem in

network theory [5, 19, 47]. Its origin can be traced back to social sciences and the problem

led to ranking algorithms from most to least important individual systems based on graph

theoretic centralities [16]. Coupled dynamical systems differ from social networks in that, first,

they are characterized by degrees of freedom with a deterministic dynamics and second the

coupling between individual systems is a well-defined function of those degrees of freedom.

One therefore expects the resulting coupled dynamics, and not only the network topology, to

also determine the key players - the most important individual dynamical systems, in a prede-

fined sense. Here, we investigate synchronizable network-coupled dynamical systems such as

high voltage electric power grids and coupled oscillators on complex networks. We define key

players as those network nodes which, once perturbed by a local noisy disturbance, generate

the largest overall transient excursion away from synchrony. A spectral decomposition of the

network coupling matrix leads to an elegant, concise, yet accurate solution to this identifi-

cation problem. For inertialess oscillators, or when the inertia and damping parameters are

either constant or with constant ratio, we show that, when the internodal coupling matrix

is Laplacian, these key players are peripheral in the sense of a centrality measure defined

from effective resistance distances. For linearly coupled dynamical systems such as weakly

loaded electric power grids or consensus algorithms, the nodal ranking is efficiently obtained

through a single Laplacian matrix inversion, regardless of the operational synchronous state.

We call the resulting ranking index LRank. For heavily loaded electric power grids or cou-

pled oscillators systems closer to the transition to synchrony, nonlinearities render the nodal

ranking dependent on the operational synchronous state. In this case a weighted Laplacian

matrix inversion gives another ranking index, which we call WLRank. Quite surprisingly, we

find that LRank provides a faithful ranking even for well developed coupling nonlinearities,

corresponding to oscillator angle differences up to ∆θ. 40o approximately. Numerical results

further establish the validity of these results for more general distributions with spatially

varying inertia and damping parameters.

Introduction

Because of growing electric power demand, increasing difficulties with building new lines

and the emergence of intermittent new renewable energy sources, electric power systems are

more often operated closer to their maximal capacity [74, 1]. Accordingly, their operating state,

its robustness against potential disturbances and its local vulnerabilities need to be assessed

more frequently and precisely. Furthermore, because electricity markets become more and

more integrated, it is necessary to perform these assessments over geographically larger areas.

Grid reliability is commonly assessed against n −1 feasibility, transient stability and voltage

stability, by which one means that a grid is considered reliable if (i) it still has an acceptable

operating state after any one of its n components fails, (ii) that acceptable state is reached

from the original state following the transient dynamics generated by the component failure

and (iii) the new operating state is robust against further changes in operating conditions
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such as changes in power productions and loads. This n −1 contingency assessment is much

harder to implement in real-time for a power grid loaded close to its capacity where the

differential equations governing its dynamics become nonlinear – the fast, standardly used

linear approximation breaks down as the grid is more and more heavily loaded. Nonlinear

assessment algorithms have significantly longer runtimes, which makes them of little use for

short-time evaluations. In worst cases, they sometimes even do not converge. In short, heavily

loaded grids need more frequent, more precise reliability assessments which are however

harder to obtain, precisely because the loads are closer to the grid capacities.

Developing real-time procedures for n −1 contingency assessment requires new, innovative

algorithms. One appealling avenue is to optimize contingency ranking [47] to try and identify

a subset of ns < n grid components containing all the potentially critical components. The

n −1 contingency assessment may then focus on that subset only, with a significant gain in

runtime if ns ¿ n. Identifying such a subset requires a ranking algorithm for grid components,

following some well-chosen criterion. Procedures of this kind have been developed in network

models for social and computer sciences, biology and other fields, in the context of the

historical and fundamental problem of identifying the key players [5, 19, 112, 88]. They may be

for instance the players who, once removed, lead to the biggest changes in the other player’s

activity in game theory, or to the biggest structural change in a social network. That problem

has been addressed with the introduction of graph theoretic centrality measures [16, 18]

which order nodes from the most "central" to the most "peripheral" – in a sense that they

themselves define. A plethora of centrality indices have been introduced and discussed in the

literature on network theory [16, 18], leading up to PageRank [23]. The latter ranks nodes in a

network according to the stationary probability distribution of a Markov chain on the network,

accordingly it gives a meaningful ranking of websites under the reasonable assumption that

websurfing is a random process. Their computational efficiency makes PageRank, as well

as other purely graph theoretic indicators very attractive to identify key players on complex

networks. It is thus quite tempting to apply purely graph theoretic methods to identify fast

and reliably key players in network-coupled dynamical systems.

Processes such as web crawling for information retrieval are essentially random diffusive walks

on a complex network, with no physical conservation law beyond the conservation of prob-

ability. The situation is similar for disease [70] or rumor [20] spreading, and for community

formation [52] where graph theoretic concepts of index, centrality, betweenness, coreness

and so forth have been successfully applied to identify tightly-bound communities. Coupled

dynamical systems such as complex supply networks [8], electric power grids [83], consensus

algorithm networks [81] or more generally network-coupled oscillators [77, 2] are however fun-

damentally different. There, the randomness of motion on the network giving e.g. the Markov

chain at the core of PageRank is replaced by a deterministic dynamics supplemented by physi-

cal conservation laws that cannot be neglected. Pure or partially extended graph theoretic

methods have been applied in vulnerability investigations of electric power grids [17, 106, 59],

and investigations of cascades of failures in coupled communication and electric power net-

works [24, 11]. They have however been partially or totally invalidated by investigations on
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Figure 4.1 – Comparison between theoretical predictions and numerical results for both
performance measures P1 and P2 defined in Eqs. (4.3). Each point corresponds to a noisy
disturbance on a single node of the European electric power grid sketched in Fig. 4.2 (see
Appendix, 4.5) and governed by Eq. (4.1) with constant inertia and damping parameters. The
time-dependent disturbance δPi (t ) is defined by an Ornstein-Uhlenbeck noise of magnitude
δP0 = 1 and correlation time γτ0 = 4 ·10−5 (red crosses), 4 ·10−4 (cyan), 4 ·10−3 (green), 4 ·10−2

(purple), 4 ·10−1 (black) and 4 (blue). Time scales are defined by the ratio of damping to inertia
parameters γ= di /mi = 0.4s−1 which is assumed constant with di = 0.02s. The insets show P1

and P2 as a function of the resistance distance-based graph theoretic predictions of Eqs. (4.22)
valid in both limits of very large and very short noise correlation time τ0. Not shown is the
limit of short τ0 for P2, which gives a node-independent result, Eq. (4.22b).

more precise models of electric power transmission that take fundamental physical laws into

account (in this case, Ohm’s and Kirchhoff’s laws) [63, 72]. It is therefore doubtful that purely

topological graph theoretic descriptors are able to identify the potentially critical components

in deterministic, network-coupled dynamical systems. Purely graph-theoretic approaches

need to be extended to account for physical laws [17]. The influence of the dynamics on

transient performance for regular graphs on d-dimensional tori has been emphasized in

Ref. [7].

Here, we give an elegant solution to the key player problem for a family of deterministic,

network-coupled dynamical systems related to the Kuramoto model [77, 2]. While we focus

mostly on high voltage electric power grids whose swing dynamics, under the lossless line

approximation, is given by a second-order version of the Kuramoto model [83, 40], we show

that our approach also applies to other, generic models of network-coupled oscillators. Key

players in such systems can be defined in various ways. For instance, they can be identified

by an optimal geographical distribution of system parameters such as inertia, damping or

natural frequencies, or alternatively as those whose removal leads to the biggest change in

operating state. In this article we define key players as those nodes where a local disturbance
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leads to the largest short-time transient network response. In the context of electric power

grids, transient stability is the ability of the grid to maintain synchrony under relatively large

disturbances such as loss or fluctuations of power generation or of a large load [76]. If under

such a fault, the system remains in the vicinity of its original state, it has maintained synchrony.

There are different measures to quantify the magnitude of the transient excursion, such

as nadir and maximal rate of change of the network-averaged frequency [93, 55] or other

dynamical quantities such as network susceptibilities [84] and the wave dynamics following

disturbances [118]. Here, we quantify the total transient excursion through performance

measures that are time-integrated quadratic forms in the system’s degrees of freedom (see

Appendix, 4.5). Transient excursions typically last ten to twenty seconds in large, continental

power grids, which sets the time scales we are interested in.

Anticipating on results to come, Fig. 4.1 illustrates the excellent agreement between analytical

theory and numerical calculations for such performance measures. Particularly interesting

is that in both asymptotic limits of quickly and slowly decorrelating noisy disturbance, the

performance measures are simply expressed in terms of the resistance centrality [116, 21],

which is a variation of the closeness centrality [16] based on resistance distances [71]. This is

shown in the insets of Fig. 4.1. Our main finding is that the resistance centrality is the relevant

quantity to construct ranking algorithms in network-coupled dynamical systems.

Results

We consider network-coupled dynamical systems defined by sets of differential equations of

the form

mi θ̈i +di θ̇i = Pi −
∑

j
ai j sin(θi −θ j ) , i = 1, ...,n. (4.1)

The coupled individual systems are oscillators with a compact angle degree of freedom

θi ∈ (−π,π]. Their uncoupled dynamics are determined by natural frequencies Pi
1, iner-

tia parameters mi and damping parameters di . Because the degrees of freedom are compact,

the coupling between oscillators needs to be a periodic function of angle differences and

here we keep only its first Fourier term. The coupling between pairs of oscillators is defined

on a network whose Laplacian matrix has elements L(0)
i j = −ai j if i 6= j and L

(0)
i i = ∑

k 6=i ai k .

Without inertia, mi = 0 ∀i , Eq. (4.1) gives the celebrated Kuramoto model on a network with

edge weights ai j > 0, ∀i , j [77, 2]. With inertia on certain nodes, it is an approximate model

for the swing dynamics of high voltage electric power grids in the lossless line approxima-

tion [83, 13, 40]. The latter is justified in high voltage transmission grids, where the resistance

is smaller than the reactance typically by a factor of ten or more. Applied to high voltage grids,

Eq. (4.1) describes the transient behavior of power grids on time scales of up to roughly ten

to twenty seconds. Over such time intervals, voltage amplitudes of high voltage power grids

1We allow ourselves a small abuse of language since, strictly speaking, the natural frequency of the i th oscillator
would be Pi /di .
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are almost constant, accordingly it is justified to consider only the dynamics of voltage angles

[76]. In this manuscript we are interested in that transient time regime and accordingly focus

on the voltage angle dynamics given by Eq. (4.1). When angle differences are small, a linear

approximation sin(θi −θ j ) ' θi −θ j is justified, giving first- (without) or second-order (with

inertia) consensus dynamics [81].

When the natural frequencies Pi are not too large, synchronous solutions exist that satisfy

Eq. (4.1) with θ̈i = 0 and θ̇i = ω0, ∀i . Without loss of generality, one may consider Eq. (4.1)

in a frame rotating with the synchronous angular frequency ω0 in which case such states

correspond to stable fixed points with θ̇i = 0. We consider a fixed point with angle coordinates

θ(0) = (θ(0)
1 , . . . ,θ(0)

n ) corresponding to natural frequencies P (0) = (P (0)
1 , . . . ,P (0)

n ), to which we

add a time-dependent disturbance, Pi (t) = P (0)
i +δPi (t). In the case of electric power grids,

we will consider fixed points that are solutions to an optimal power flow problem. These

solutions account for physical grid constraints such as thermal (i.e. capacity) limits of the lines

and technical limitations of the power plants, as well as economic constraints following from

different production costs for different power plant types (see Appendix, 4.5) [14]. Linearizing

the dynamics about that solution, Eq. (4.1) becomes

mi δθ̈i +di δθ̇i = δPi (t )−∑
j

ai j cos(θ(0)
i −θ(0)

j )(δθi −δθ j ) , i = 1, ...,n, (4.2)

where δθi (t) = θi (t) − θ(0)
i . This set of coupled differential equations governs the small-

signal response of the system corresponding to weak disturbances. The couplings are de-

fined by a weighted Laplacian matrix Li j (θ(0)) = −ai j cos(θ(0)
i −θ(0)

j ) if i 6= j and Li i (θ(0)) =∑
k ai k cos(θ(0)

i −θ(0)
k ) which contains information on both the topology of the network and the

operational state of the system. This weighted Laplacian matrix significantly differs from the

network Laplacian L(0) when angle differences between coupled nodes are large.

We assess the nodal vulnerability of the system defined in Eq. (4.1) via the magnitude of the

transient dynamics determined by Eq. (4.2) under a time-dependent disturbance δPi (t ). We

take the latter as an Ornstein-Uhlenbeck noise on the natural frequency of a single node,

with vanishing average, δPi (t ) = 0, variance δP 2
0 and correlation time τ0, δPi (t1)δP j (t2) =

δi k δ j k δP 2
0 exp[−|t1 − t2|/τ0]. It is sequentially applied on each of the k = 1, . . .n nodes. This

noisy test disturbance is designed to investigate network properties on different time scales by

varying τ0 and identify the set of most vulnerable nodes, i.e. the key players, as the nodes where

the system’s response to δPk (t ) is largest. Besides being a probe to test nodal vulnerabilities,

such noisy disturbances alternatively model fluctuating renewable energy sources in electric

power grids. In this latter case, however, the correlation time τ0 is no longer a free parameter

and is typically of the order of a minute or more, i.e. larger than any dynamical time scale in

the system, as we discuss below. We quantify the magnitude of the response to the disturbance

with the following two performance measures [121]

P1 = lim
T→∞

T −1
∑

i

∫ T

0
|δθi (t )−∆(t )|2 dt , (4.3a)
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P2 = lim
T→∞

T −1
∑

i

∫ T

0
|δθ̇i (t )− ∆̇(t )|2 dt . (4.3b)

They are similar to quadratic performance measures based on L2 or H2-norms previously

considered in the context of electric power grids, networks of coupled oscillators or consensus

algorithms [119, 109, 110, 102, 93, 121, 31] but differ from them in two respects. First, here we

subtract the averages ∆(t ) = n−1 ∑
j δθ j (t ) and ∆̇(t ) = n−1 ∑

j δθ̇ j (t ) because the synchronous

state does not change under a constant angle shift. Without that subtraction, artificially

large performance measures may be obtained, which reflect a constant angle drift of the

synchronous operational state but not a large transient excursion. Second, we divide P1,2 by

T before taking T →∞ because we consider a noisy disturbance that is not limited in time

and which would otherwise lead to diverging values of P1,2.

In this manuscript, we calculate P1,2 for the network-coupled dynamical system defined in

Eq. (4.1) when (i) both inertia and damping parameters are constant, mi ≡ m0, di ≡ d0, (ii) the

inertia vanishes, mi ≡ 0, (iii) the ratio γ ≡ di /mi is constant, (iv) both inertia and damping

vary independently. In cases (i)–(iii), P1,2 can be analytically expressed in terms of resistance

centralities that will be introduced in the next section (see Appendix, 4.5). The next paragraphs

focus on case (i), following which we present numerical data for case (iv) which illustrate the

general applicability of these results for not too short noise correlation time.

The performance measures P1,2 can be computed analytically from Eq. (4.2) via Laplace

transforms (see Appendix, 4.5), for homogeneous damping and inertia, i.e. di = d = γmi , ∀i .

In the two limits of long and short noise correlation time τ0, they can be expressed in terms

of the resistance centrality of the node k on which the noisy disturbance acts and of graph

topological indices called generalized Kirchhoff indices [71, 121]. Both quantities are based

on the resistance distance, which gives the effective resistanceΩ(1)
i j between any two nodes i

and j on a fictitious electrical network where each edge is a resistor of magnitude given by the

inverse edge weight in the network defined by the weighted Laplacian matrix. One obtains

Ω(1)
i j (θ(0)) = L†

i i (θ(0))+L†
j j (θ(0))−L†

i j (θ(0))−L†
j i (θ(0)) , (4.4)

where L† denotes the Moore-Penrose pseudo-inverse of L [71]. The resistance centrality of the

kth node is then defined as C1(k) = [n−1 ∑
j Ω

(1)
j k ]−1. It measures how central is the node kth in

the electrical network, in terms of its average resistance distance to all other nodes – more

central nodes have smaller C1(k). A network descriptor, the Kirchhoff index is further defined

as [71]

Kf1 ≡
∑
i< j
Ω(1)

i j . (4.5)

Generalized Kirchhoff indices Kfp and resistance centralities Cp (k) can be defined analogously

from the pth power of the weighted Laplacian matrix, which is also a Laplacian matrix (see

Appendix, 4.5). In terms of these quantities, the performance measures defined in Eqs. (4.3)
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depend on the value of the noise correlation time τ0 relative to the different time scales in

the system. The latter are the ratios d/λα of the damping coefficient d with the nonzero

eigenvalues λα, α= 2, . . .n, of L(θ(0)) and the inverse ratio γ−1 = m/d of damping to inertia

parameters. In high voltage power grids, they are approximately given by d/λα < 1s and

m/d ∼= 2.5s. Performance measures Eqs. (4.3) can be obtained for any correlation time τ0

(see Appendix, 4.5). However, it is interesting to consider the specific cases where τ0 is

the smallest (τ0 ¿ d/λα,γ−1) or the largest (τ0 À d/λα,γ−1, appropriate for noisy power

injections from new renewables) time scale in the probed system. The performance measures

take in particular the asymptotic values

P1 =
{ (

δP 2
0τ0

/
d)

(
C−1

1 (k)−n−2Kf1
)

, τ0 ¿ d/λα,γ−1

δP 2
0

(
C−1

2 (k)−n−2Kf2
)

, τ0 À d/λα,γ−1 (4.6a)

P2 =
{ (

δP 2
0τ0

/
dm

)(
n −1

)/
n , τ0 ¿ d/λα,γ−1(

δP 2
0

/
dτ0

)(
C−1

1 (k)−n−2Kf1
)

, τ0 À d/λα,γ−1,
(4.6b)

in the two limits when τ0 is the smallest or the largest time scale in the system. After averaging

over the location k of the disturbed node, C−1
1,2 = 2Kf1,2/n2, and one recovers the results of

Refs. [109, 110, 121] for the global robustness of the system.

These results are remarkable : they show that the magnitude of the transient excursion under

a local noisy disturbance is given by either of the generalized resistance centralities C1(k) or

C2(k) of the perturbed node and the generalized Kirchhoff indices Kf1,2. The latter are global

network descriptors and are therefore fixed in a given network with fixed operational state.

One concludes that perturbing the less central nodes – those with largest inverse centralities

C−1
1,2(k) – generates the largest transient excursion. In a given network, key players are therefore

nodes with smallest resistance centralities. It is important to keep in mind, however, that these

centralities correspond to the weighted Laplacian defined above, where internodal couplings

are normalized by the cosine of voltage angle differences. Accordingly, these centralities are

dependent on the initial operating state. The asymptotic analytical results of Eqs. (4.22) are

corroborated by numerical results in the insets of Fig.4.1, obtained directly from Eq. (4.1), i.e.

without the linearization of Eq. (4.2). The validity of the general analytical expressions for

any τ0 (see Appendix, 4.5) is further confirmed in the main panel of Fig. 4.1, and by further

numerical results obtained for different networks shown in the Appendix (see 4.5).

The generalized resistance centralities and Kirchhoff indices appearing in Eqs. (4.22) depend

on the operational state via the weighted Laplacian L(θ(0)). For a narrow distribution of natural

frequencies Pi ¿∑
j ai j , ∀i , angle differences between coupled nodes remain small, and the

weighted Laplacian is close to the network Laplacian, L(θ(0)) ' L(0). The resistance centralities

C (0)
1 and C (0)

2 for the network Laplacian of the European electric power grid (see Appendix, 4.5)

are shown in Fig. 4.3. For both centralities, the less central nodes are dominantly located in

the Balkans and Spain. Additionally, for C (0)
1 , nodes in Denmark and Sicily are also among the

most peripheral. The general pattern of these most peripheral nodes looks very similar to the
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Figure 4.2 – Synchronous high voltage power grid of continental Europe. (a) Topology of the
European electric power grid (see Appendix, 4.5) and location of the ten test nodes listed in
Table 4.1.

pattern of most sensitive nodes numerically found in Ref. [49], and includes in particular many,

but not all dead ends, which have been numerically found to undermine grid stability [87].

The asymptotic results of Eqs. (4.22), together with the numerical results of Fig. 4.1 make a

strong point that nodal sensitivity to fast or slowly decorrelating noise disturbances can be

predicted by generalized resistance centralities. One may wonder at this point how generalized

resistance centralities differ in that prediction from other, more common centralities such

as geodesic centrality, nodal degree or PageRank. Table 4.1 compares these centralities to

each other and to the performance measures corresponding to slowly decorrelating noisy

disturbances acting on the ten nodes shown in Fig. 4.2. As expected from Eq. (4.22), P1 and P2

are almost perfectly correlated with the inverse resistance centralities C−1
2 and C−1

1 respectively,

but with no other centrality metrics. For the full set of nodes of the Europen electric power

grid, we found Pearson correlation coefficients ρ(P1,C−1
2 ) = 0.997, and ρ(P2,C−1

1 ) = 0.975

fully corroborating the prediction of Eqs. (4.22).

Discussion

Once a one-to-one relation between the generalized resistance centralities C1(k) and C2(k)

of the disturbed node k and the magnitude of the induced transient response is established,

ranking of nodes from most to least critical is tantamount to ranking them from smallest
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Figure 4.3 – Synchronous high voltage power grid of continental Europe. Normalized general-
ized resistance centralities C (0)

1 (i ) (b), and C (0)
2 (i ) (c) for the network Laplacian matrix of the

European electric power grid.

to largest C1 or C2. From Eqs. (4.22), which of these two centralities is relevant depends on

whether one is interested (i) in the transient response under fast or slowly decorrelating noise,

or (ii) in investigating transient behaviors for angles (using the performance measure P1) or

frequencies (P2). Quite interestingly, while this gives a priori four different rankings, Eqs. (4.22)
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node # Cgeo Degree PageRank C1 C2 P num
1 P num

2 [γ2]
1 7.84 4 2782 31.86 5.18 0.047 0.035
2 6.8 1 199 22.45 5.68 0.021 0.118
3 5.56 10 3802 22.45 2.33 0.32 0.116
4 4.79 3 362 21.74 3.79 0.126 0.127
5 7.08 1 1217 21.74 5.34 0.026 0.125
6 4.38 6 3091 21.69 5.65 0.023 0.129
7 5.11 2 445 19.4 5.89 0.016 0.164
8 4.15 6 3648 19.38 1.83 0.453 0.172
9 5.06 1 8 10.2 5.2 0.047 0.449

10 2.72 4 3124 7.49 2.17 0.335 0.64

Table 4.1 – Centrality metrics and performance measures P1,2 for the European electric power
grid (see Appendix, 4.5) with noisy disturbances with large correlation time τ0 applied on the
nodes shown in Fig. 4.2. The performance measures P1 and P2 are almost perfectly correlated
with the resistance centralities C2 and C1 respectively, but neither with the geodesic centrality,
nor the degree, nor PageRank.

lead to only two rankings, either based on C−1
1 or C−1

2 , which can be obtained through the

performance measure P1 only, in either asymptotic limit of very fast (shortest time scale τ0)

or very slowly (largest τ0) decorrelating noise. From here on, we therefore focus on the angle

performance measure P1 of Eq. (4.3a) and consider the two asymptotic limits in Eq. (4.22a).

We therefore define WLRank1 and WLRank2 as two rankings which order nodes from smallest

to largest C1 and C2 respectively2. Smallest WLRank1,2 therefore identify the most vulnerable

nodes in a given network. Fig. 4.4 shows that they differ very significantly. In particular a

number of nodes are among the most critical according to WLRank1 but not to WLRank2 and

vice-versa. This discrepancy means that nodes are not central in an absolute sense, instead,

their centrality and hence how critical they are depends on details of the disturbance – in the

present case, the correlation time τ0 – and the perfomance measure of interest. One should

therefore chose to use one or the other centrality measure, according to the network sensitivity

one wants to check.

The resistance centralities in Eqs. (4.22) correspond to the network defined by the weighted

Laplacian L(θ(0)) defined by Eq. (4.2). They therefore depend on the unperturbed, operating

state θ(0), consequently, WLRank depends not only on the nework topology, but also, as

expected, on the natural frequencies and the coupling between the nodal degrees of freedom.

As mentioned above, in the strong coupling limit, angle differences between coupled nodes

remain small and L(θ(0)) ' L(0). In that limit, one therefore expects nodal ranking to be

given by resistance distances corresponding to the network Laplacian L(0). How long this

remains true is of central interest and to answer this question we define further rankings

2When used, subscripts LRanki and WLRanki indicate that these are rankings obtained from the centralities Ci ,
i = 1,2.
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Figure 4.4 – Comparison of the two nodal rankings WLRank1 and WLRank2 obtained from
the generalized resistance centralities C1 and C2 respectively for the 3809 nodes of the Euro-
pean electric power grid sketched in Fig. 4.2 (see Appendix, 4.5). Blue dots correspond to a
moderate load during a standard winter weekday and red dots to a significantly heavier load
corresponding to the exceptional November 2016 situation with a rather large consumption
and twenty french nuclear reactors shut down.

LRank1,2 as the rankings using resistance centralities C (0)
1,2 obtained from the network Laplacian

L(0). As long as angle differences between network-coupled nodes are not too large, the

ranking LRank based on the network Laplacian matrix is almost the same as the true ranking

WLRank based on the weighted Laplacian. This is shown in Fig. 4.5 for three electric power

grid models and one random network of coupled oscillators. For the electric power grid

models, injections/natural frequencies are limited by the standard operational constraint

that the thermal limit of each power line is at most only weakly exceeded. This corresponds

approximately to a maximal angle difference of max(∆θ) ' 30o between any pair of coupled

nodes. Accordingly, we find that even in relatively strongly loaded power grids (corresponding

for instance to the exceptional situation of the fall of 2016 when twenty french nuclear reactors

were simultaneously offline; see red points in Fig. 4.5c, there is not much of a difference

between LRank and WLRank. The two rankings start to differ from one another only when

at least some natural frequencies become comparable with the corresponding nodal index,

Pi .
∑

j bi j , and angle differences become very large. This case has been investigated for an

inertialess coupled oscillator system on a random rewired network with constant couplings

(see Appendix, 4.5) [126]. It is shown in green in Fig. 4.5d and corresponds to max(∆θ) = 106o .

In Fig. 4.6 we investigate more closely when the approximate ranking LRank starts to differ

from the true ranking WLRank. To that end we used the randomly rewired model of inertialess
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Figure 4.5 – Comparison between LRank and WLRank corresponding to P1 for noisy distur-
bances with large correlation time τ0. (a–c) Electric power grid models for normally (blue) and
more heavily loaded (red) operating states governed by Eq. (4.1). (a) IEEE 57 testcase where
the more loaded case has injections six times larger than the moderately loaded, tabulated
case [91]. (b) Pegase 2869 testcase where the more loaded case has injections 30% larger
than the moderately loaded, tabulated case [134]. (c) European electric power grid model
sketched in Fig. 4.2 (see Appendix, 4.5) where the moderately loaded case corresponds to a
standard winter weekday and the more heavily loaded case to the November 2016 situation
with twenty french nuclear reactors offline. For both cases, the operational state is obtained
from an optimal power flow including physical, technological and economic constraints (see
Appendix, 4.5). (d) Inertialess coupled oscillators governed by Eq. (4.1) with mi = 0, ∀i , on a
random network with 1000 nodes obtained by rewiring a cyclic graph with constant nearest
and next-to-nearest neighbor coupling with probability 0.5 (see Appendix, 4.5) [126]. Natural
frequencies are randomly distributed as Pi ∈ [−1.8,1.63] (blue), Pi ∈ [−2.16,1.95] (red) and
Pi ∈ [−2.7,2.45] (green), corresponding to maximal angle differences max(∆θ) = 31o , 70o and
106o respectively.

coupled oscillators of Fig. 4.5d and calculated the percentage of nodes with highest LRank2

necessary to give the top 15 % ranked nodes with WLRank2. The results are plotted as a

function of the maximal angle difference between directly coupled nodes. Each of the 12000

red crosses in Fig. 4.6 corresponds to one of 1000 natural frequency vectors P (0), with com-
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Figure 4.6 – Percentage of the nodes with highest LRank2 necessary to give the top 15 %
ranked nodes with WLRank2 for a random network of inertialess coupled oscillators with 1000
nodes obtained by rewiring with probability 0.5 a cyclic network with constant nearest and
next-to-nearest neighbor coupling (see Appendix, 4.5) [126]. Each of the 12000 red crosses
corresponds to one of 1000 random natural frequency vector P (0) with components randomly
distributed in [−0.5,0.5] and summing to zero, multiplied by a prefactor β= 0.4,0.6, . . .2.4,2.6.
The blue crosses correspond to running averages over 500 red crosses with consecutive values
of max(∆θ). Inset : running averages of the Frobenius distance between the matrices L(θ(0))
and L(0). The steps in the curve reflect discrete increments of β.

ponents randomly distributed in [−0.5,0.5] and summing to zero, multiplied by a prefactor

β= 0.4,0.6, . . .2.4,2.6. The blue crosses correspond to running averages over 500 red crosses

with consecutive values of max(∆θ). One sees that, up to almost max(∆θ) ' 40o , the set of the

18 % of nodes with highest LRank2 always includes the top 15 % ranked nodes with WLRank2.

Similar results for obtaining the top 10 and 20 % ranked nodes with WLRank2, and for rankings

using C1 instead of C2 are shown in the Appendix (see 4.5).

That nodal ranking remains almost the same up to angle differences of about 40o is quite

surprising, since coupling nonlinearities are already well developed there. This is illustrated

in the inset of Fig. 4.6 which plots the Frobenius distance

√∑
i j

(
Li j (θ(0))−L(0)

i j

)2
between

the network Laplacian L(0) and the weighted Laplacian L(θ(0)). When max(∆θ) ' 40o , the

Frobenius distance has already reached about 27 % of its maximal observed value, indicating

that coupling nonlinearities are already significant. Yet, obtaining a desired set of the ns most

critical nodes for any configuration with max(∆θ) . 40o , including cases with nonegligible

nonlinearities, is achieved with a single matrix inversion of the network Laplacian L(0), while

considering a slightly extended set of ns +δns nodes with highest LRank, δns/ns ¿ 1. This is a
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moderate price to pay, compared to the price of calculating WLRank for each configuration,

which each time requires inverting the weighted Laplacian matrix L(θ(0)). That latter procedure

would be too-time consuming for real-time assessment of large networks.

So far we have assumed constant inertia and damping parameters, which led us to the ana-

lytical expressions given in Eqs. (4.22) for the performance measures. Analytical results can

further be obtained for inertialess systems with mi = 0 as well as in the case of homogeneous

damping to inertia ratio, di /mi ≡ γ. In this latter case the ranking is again given by a resis-

tance centrality, but this time related to the inertia-weighted matrix M−1/2LM−1/2 with M

the diagonal matrix whose i th diagonal entry is given by mi (see Appendix, 4.5), but not in

the case of independently varying mi and di . We therefore finally address this more general

case using a purely numerical approach. This question is especially important for electric

power grids where only nodes connected to rotating machines (such as conventional power

plants) have inertia, and consumer nodes have significantly smaller damping parameters [13].

Time scales in electric power grids have typical values mi /di ∈ [1,3]s and di /λα . 1s, and

accordingly we focus on the regime of large noise correlation time τ0 À mi /di ,di /λα, which

is appropriate for persisting power fluctuations such as those arising from renewable energy

sources. Fig. 4.7 shows results corresponding to inertia and damping parameters fluctuating

randomly from node to node by up to 40 %. The ranking obtained from a full numerical

calculation is compared to the ranking obtained from a direct calculation of the centrality

of the weighted Laplacian Li j (θ(0)), corresponding to the long correlation time asymptotic

limit of Eqs. (4.22). One sees that the centrality-based ranking is close to the true, numerically

obtained ranking, even in this case of strongly fluctuating inertia and damping parameters.

This extends the validity of Eqs. (4.22) for large τ0 in a much wider range of parameters than

their derivation would suggest.

Conclusion

We have formulated a key player problem in deterministic, network-coupled dynamical sys-

tems. The formulation is based on the dynamical response to a nodal additive disturbance

of the initial problem, and the most critical nodes – the key players – are defined as those

where the response to the disturbance is largest. While this manuscript focused on (i) noisy

Ornstein-Uhlenbeck disturbances, (ii) network-coupled systems on undirected graphs, in

particular with symmetric couplings ai j = a j i in Eq. (4.1), and (iii) performance measures of

the transient response that are quadratic forms in the system’s degrees of freedom, the method

is not restricted to such cases. First, it can be used to deal with different disturbances and in

the Appendix (see 4.5), we calculate P1,2 for a box disturbance δPi (t) = δi kδP0Θ(t)Θ(τ0 − t)

with the Heaviside function Θ(t). Remarkably, this disturbance gives the same ranking as

the Ornstein-Uhlenbeck noise disturbance considered above. Second, asymmetric couplings

occurring e.g. in directed graphs [36], in Kuramoto models with frustration [2] or in electric

power grids with Ohmic dissipation [83] can also be considered. In this case, the internodal

coupling is given by asymmetric real matrices instead of symmetric Laplacian matrices. How-
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Figure 4.7 – (Left) Numerically obtained ranking based on the performance measure P1 plot-
ted against the ranking WLRank2 based on the centrality C2 and (Right) numerically obtained
ranking based on the performance measure P2 plotted against the ranking WLRank1 based on
the centrality C1. Each point is an average over 40 different noisy disturbances on a single node
of the European electric power grid sketched in Fig. 4.2, with independently fluctuating damp-
ing and inertia coefficients, di = d0+δdi and mi = m0+δmi with δmi /m0,δdi /d0 ∈ [−0.4,0.4]
and γ= d0/m0 = 0.4s−1. The noise correlation time is given by γτ0 = 4.

ever, the definition of the resistance distance, Eq. (4.4), remains valid even if L is replaced by

an asymmetric matrix A, in that it still givesΩ(1)
i i = 0,Ω(1)

i j ≥ 0, andΩ(1)
i j ≤Ω(1)

i k +Ω(1)
ki , ∀i , j ,k as

long as the synchronous fixed point considered remains stable. Third, nonquadratic perfor-

mance measures can in principle be considered within the spectral decomposition used in

this article. One may think of average frequency nadir and rate of change of frequency, which

are linear performance measures [93, 55]. It is at present unclear whether these quantities can

be analytically related to the location of disturbances via resistance or other centralities.

We gave an elegant answer to this key player problem : ranking nodes from most to least critical

is tantamount to ranking nodes from least to most central in the sense of resistance centralities.

Depending on how the problem is formulated – mostly on details of the disturbance as well

as on how the magnitude of the transient response is measured – different centralities have

to be considered, giving different rankings. The key player problem in deterministic systems

is therefore not uniquely defined and its formulation must be tailored to reflect the most

relevant dynamical properties one wants to evaluate. Averaged rankings, reflecting several

such properties simultaneously could also be considered. Finally we found numerically that

resistance centralities are still accurate to identify the most critical nodes even when nodal

dynamical parameters (damping and inertia) are not homogeneous.

The results shown in Fig. 4.7 are rather surprising, and further inspection of our analytical

results, Eqs. (4.22) as well as Eq. (4.20b) suggest that an inertia dependence could emerge in

the opposite limit of short correlation time τ0 ¿ mi /di ,di /λα. This point deserves further
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investigations. It would be furthermore interesting to extend our investigations to cases of

distributions of inertia and damping parameters corresponding to realistic electric power

grids. Work along those lines is in progress.
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Appendix

Calculation of the Performance Measures

We give some details of the calculation of the performance measures, Eqs. (4.3). These cal-

culations generalize to second-order swing equations the results obtained for the first-order

Kuramoto model in Ref. [121]. Starting from Eq. (4.1), we consider a stable fixed-point solution

θ(0) = (θ(0)
1 , . . . ,θ(0)

n ) with unperturbed natural frequencies P (0). We subject this state to a time-

dependent disturbance P (t) = P (0) +δP (t), which makes angles become time-dependent,

θ(t) = θ(0) +δθ(t). Linearizing the dynamics defined by Eq. (4.1) about θ(0) and under the

assumption that di /mi = γ, ∀i , one obtains

δ ¨̄θ+γδ ˙̄θ = M−1/2δP −M−1/2L(θ(0))M−1/2δθ̄ , (4.7)

where we introduced matrices with elements Di j = δi j di = γMi j and new angle coordinates

δθ̄ = M 1/2δθ. The weighted Laplacian matrix L(θ(0)) is defined as

Li j =
{

−ai j cos(θ(0)
i −θ(0)

j ) , i 6= j ,∑
k ai k cos(θ(0)

i −θ(0)
k ) , i = j .

(4.8)

This Laplacian is minus the stability matrix of the linearized dynamics about a stable syn-

chronous state. It is therefore positive semidefinite, with its largest eigenvalue λ1 = 0 corre-

sponding to a constant eigenvector u1 = (1,1,1, ...1)/
p

n, and λα > 0, α= 2,3, ...n. We define

the matrix LM = M−1/2LM−1/2 with eigenvectors uM
α and eigenvalues λM

α , for α= 1,2, ...n. To

calculate the response of the system to δP (t ), we expand angle deviations over the eigenstates

uM
α of LM , δθ̄(t ) =∑

α cα(t )uM
α . Eq. (4.7) becomes

c̈α(t )+γċα(t ) = M−1/2δP (t ) ·uM
α −λM

α cα(t ) . (4.9)

The disturbance starts at t = 0 and therefore δθ̄(0) = 0 and δ ˙̄θ(0) = 0. Performing a Laplace

transform on Eq. (4.9), one gets

s2cα(s)+γ s cα(s) =λM
α cα(s)+ (M−1/2δP ·uM

α )(s) , (4.10)

where cα(s) = ∫ t
0 e−st ′cα(t ′)d t ′ and (M−1/2δP ·uM

α )(s) = ∫ t
0 e−st ′M−1/2δP (t ′) ·uM

α d t ′. Finally

one obtains the Laplace transformed expansion coefficients of the angles over the eigenbasis

of uM
α of LM ,

cα(s) = (M−1/2δP ·uM
α )(s)

/(
s − −γ+Γα

2

)(
s + γ+Γα

2

)
, (4.11)

with Γα =
√
γ2 −4λM

α . Applying an inverse Laplace transform leads to,

cα(t ) = e
−γ−Γα

2 t
∫ t

0
eΓαt ′

∫ t ′

0
M−1/2δP (t ′′) ·uM

α e
γ−Γα

2 t ′′d t ′′d t ′ . (4.12)
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The time-dependence of angle and frequency degrees of freedom is then given by,

δθ(t ) = M−1/2δθ̄(t ) =∑
α

cα(t )M−1/2uM
α , (4.13)

δθ̇(t ) = M−1/2δ ˙̄θ(t ) =∑
α

ċα(t )M−1/2uM
α . (4.14)

The variances p1(t ) and p2(t ) of the angle and frequency deviations read,

p1(t ) = δθ2(t ) = ∑
α,β

cα(t )cβ(t )uM
β

>
M−1uM

α , (4.15)

p2(t ) = δθ̇2(t ) = ∑
α,β

ċα(t )ċβ(t )uM
β

>
M−1uM

α . (4.16)

When di = d = γmi ∀i , both matrices L and LM have the same eigenvectors and λM
α =λα/m.

Below we consider noisy disturbances sequentially for the homogeneous case, mi = m, di = d ,

inertialess case, mi = 0 and constant ratio case, di /mi = γ.

Correlated Noisy disturbances

Homogeneous Case

We assume homogeneous inertia and damping factor, respectively mi = m and di = d , for the

next calculations. In the case of stochastic disturbances that persist in time, we average the

pi ’s as follows,

P i = lim
T→∞

T −1
∫ T

0
pi (t )d t , i = 1,2, (4.17)

where pi (t ) indicates an average taken over the ensemble defined by e.g. the moments of the

stochastic disturbance. We consider Ornstein-Uhlenbeck correlated noise on a single node, k,

with zero mean δPk (t ) = 0 and second moment δPi (t1)δP j (t2) = δi kδ j k δP 2
0 exp[−|t1 − t2|/τ0],

correlated over a typical time scale τ0. We have,

P1 = lim
T→∞

T −1
∑
α≥2

∫ T

0
c2
α(t )d t (4.18)

= lim
T→∞

T −1
∑
α≥2

∫ T

0
e−(γ+Γα)t

∫ t

0

∫ t

0
eΓα(t ′1+t ′2) × (4.19)∫ t ′1

0

∫ t ′2

0

∑
i , j

uα,i uα, j

m
δPi (t ′′1 )δP j (t ′′2 )e

γ−Γα
2 (t ′′1 +t ′′2 ) d td t ′1d t ′2d t ′′1 d t ′′2 .
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For homogeneous damping and inertia one has Γα =
√
γ2 −4λα/m. The integrals can be

performed straightforwardly and one obtains

P1 = δP 2
0

∑
α≥2

u2
α,k (τ0 +m/d)

λα(λατ0 +d +mτ−1
0 )

, (4.20a)

P2 = δP 2
0

∑
α≥2

u2
α,k

d(λατ0 +d +mτ−1
0 )

. (4.20b)

Taking the two limits λατ0 À d , λατ2
0 À m and λατ0 ¿ d , λατ2

0 ¿ m, Eqs. (6a,b) of the main

text are then easily obtained.

Inertialess case

The performance measures for Kuramoto oscillators are obtained from Eqs. (4.20) with m = 0

[39]

P1 = δP 2
0

∑
α≥2

u2
α,kτ0

λα(λατ0 +d)
, (4.21a)

P2 = δP 2
0

∑
α≥2

u2
α,k

d(λατ0 +d)
. (4.21b)

The asymptotics are then obtained by taking the asymptotic limits of large/small τ0 only after

setting m = 0. One obtains,

P1 =
{ (

δP 2
0τ0

)/
d)

(
C−1

1 (k)−n−2Kf1
)

, λατ0 ¿ 1,

δP 2
0

(
C−1

2 (k)−n−2Kf2
)

, λατ0 À d ,
(4.22a)

P2 =
{ (

δP 2
0τ0

/
d

)(
n −1

)/
n , λατ0 ¿ 1,(

δP 2
0

/
dτ0

)(
C−1

1 (k)−n−2Kf1
)

, λατ0 À d ,
(4.22b)

where we use the generalized resistance centralities C1,2(i ) and Kirchhoff indices Kf1,2 dis-

cussed in Section 4.5.2 below.

Constant inertia to damping ratio

The cases of varying mi and di can be further treated analytically, provided the ratio di /mi = γ
remains constant. The price to pay is to include inertia coefficients in the performance

measures and consider

P1 = lim
T→∞

T −1
∑

i
mi

∫ T

0
|δθi (t )−∆(t )|2 dt , (4.23a)

P2 = lim
T→∞

T −1
∑

i
mi

∫ T

0
|δθ̇i (t )− ∆̇(t )|2 dt . (4.23b)

Note that this is not a fundamental redefinition, since all previously obtained results in the

case of constant inertia and damping can be multiplied by mi ≡ m for comparison with results
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about to be presented. Performance measures are then obtained in a similar way as for the

homogeneous case. They read,

P1 =
δP 2

0

mk

∑
α≥2

uM
α,k

2
(τ0γ+1)

γλM
α (λM

α τ0 +γ+τ−1
0 )

, (4.24a)

P2 =
δP 2

0

mk

∑
α≥2

uM
α,k

2

γ(λM
α τ0 +γ+τ−1

0 )
. (4.24b)

Here, λM
α , uM

α are respectively the eigenvalues and eigenvectors of the matrix M−1/2LM−1/2.

Similar expressions were obtained for other performance measures such as kinetic energy,

primary control effort or line dissipation [119, 109, 110, 31]. In both limits τ0 ¿ γ−1,λM
α

−1/2

and τ0 À γ−1,λM
α

−1/2
performance measures P1, P2 can be expressed in terms of resistance

centralities related to M−1/2LM−1/2 (see Eq. (4.32) with L′ = M−1/2LM−1/2) and the inertia mk

of the perturbed node.

Box disturbances

The same kind of computation as for the noisy disturbance can be done with a box disturbance

acting on node k, i.e. δPi (t ) = δi k δP0Θ(t )Θ(τ0 − t ) with the Heaviside step functionΘ(t ) = 0

for t < 0 and Θ(t) = 1 for t ≥ 1. As the perturbation is limited in time, we consider the

performance measures,

P ∞
1 =∑

i

∫ ∞

0
|δθi −∆(t )|2d t , (4.25)

P ∞
2 =∑

i

∫ ∞

0
|δθ̇i − ∆̇(t )|2d t , (4.26)

instead of (4.17). For uniform inertia and damping one obtains,

P ∞
1 = δP 2

0 m

8γ

∑
α≥2

u2
α,k

Γαλ
3
α

[
2Γα(4γτ0λα/m −3γ2 −Γ2

α)+ (γ+Γα)3e−τ0
(γ−Γα)

2 − (γ−Γα)3e−τ0
(γ+Γα)

2

]
,

P ∞
2 = δP 2

0

2d

∑
α≥2

u2
α,k

Γαλα

[
2Γα− (γ+Γα)e−

τ0(γ−Γα)
2 + (γ−Γα)e−

τ0(γ+Γα)
2

]
,

with Γα =
√
γ2 −4λα/m. The two asymptotic limits of large and small τ0 are given by,

P ∞
1 =

{ (
δP 2

0τ
2
0

/
2d)

(
C−1

1 (k)−n−2Kf1
)

, (γ±Γα)τ0 ¿ 1,

δP 2
0τ0

(
C−1

2 (k)−n−2Kf2
)

, (γ±Γα)τ0 À 1 andλατ0/d À 1,
(4.27a)

P ∞
2 =

{ (
δP 2

0τ
2
0

/
2md

)(
n −1

)/
n , (γ±Γα)τ0 ¿ 1,(

δP 2
0

/
d

)(
C−1

1 (k)−n−2Kf1
)

, (γ±Γα)τ0 À 1,
(4.27b)

which are also given by resistance centralities and Kirchhoff indices.
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Resistance Distances, Centralities and Kirchhoff Indices

The resistance centralities C1 and C2 can be expressed as functions of the distribution of

resistance distances Ω(1)
i j , between any pairs of nodes (i , j ) of the network. The Laplacian

matrix L of the network has one zero eigenvalue associated to the constant eigenvector u1,i =
1/
p

n, its pseudoinverse L† is defined by [71],

LL† = L†L= 1−u>
1 u1 , (4.28)

from which the resistance distance between nodes i and j is expressed as,

Ω(1)
i j = L†

i i +L†
j j −L†

i j −L†
j i . (4.29)

Using the eigenvectors of L we can rewrite Eq. (4.29) as [39],

Ω(1)
i j = ∑

α≥2

(uα,i −uα, j )2

λα
. (4.30)

The resistance distance is a graph metric in the sense that : i) Ω(1)
i i = 0, ∀i , ii) Ω(1)

i j ≥ 0, ∀i , j ,

and iii)Ω(1)
i j +Ω(1)

j k ≥Ω(1)
i k , ∀i , j ,k (triangle inequality) [71]. The Kirchhoff index of a network is

obtained from the resistance distances by summing over all pairs of nodes [71],

Kf1 =
∑
i< j
Ω(1)

i j = n
∑
α≥2

λ−1
α . (4.31)

The Kirchhoff index is, up to a normalization factor, the mean resistance distance over the

whole graph.

We generalize this definition of the resistance distance for matrices that are powers of the

original Laplacian matrix, L′ = Lp and thus
[
L′

]† = [
Lp +u>

1 u1
]−1

. One has

Ω
(p)
i j = [L′†]i i + [L′†] j j − [L′†]i j − [L′†] j i . (4.32)

The eigenvectors of L′ are the same as those of L. Thus we have,

Ω
(p)
i j = ∑

α≥2

(uα,i −uα, j )2

λ
p
α

. (4.33)

We still have to check that the generalized resistance distancesΩ(p)
i j have the three properties

of a graph metric. We remark thatΩ(p)
i j corresponds to the resistance distance between nodes

i and j in a new graph whose Laplacian is L′ = Lp . Therefore it is sufficient to show that L′

is also a Laplacian matrix. to that end we demonstrate that the product of two Laplacian

matrices A and B is still a Laplacian matrix. For a Laplacian matrix A one has (i)
∑

i Ai j = 0,

(ii) Ai i =−∑
j 6=i Ai j . From these generic properties of Laplacian matrices, matrix elements of
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the product A B satisfy∑
j

[A B]i j = ∑
j ,k

Ai kBk j = 0 , (4.34)∑
j 6=i

[A B]i j = ∑
j

[A B]i j − [A B]i i =−[A B]i i . (4.35)

We conclude that the product A B is also a Laplacian matrix, and therefore, the generalized

resistance distances Ω(p)
i j have the three properties of a graph metric. With the generalized

resistance distances, we can define generalized Kirchhoff indices [121],

Kfp = ∑
i< j
Ω

(p)
i j = n

∑
α≥2

λ
−p
α . (4.36)

The relation between the resistive centrality C1(i ) and the resistance distance is obtained from

Eqs. (4.30) and (4.31),

C1(i ) =
[

n−1
∑

j
Ω(1)

i j

]−1

=
[ ∑
α≥2

u2
α,i

λα
+n−2Kf1

]−1

. (4.37)

The expression for C2(i ) involves higher moments of the distribution of resistance distances.

We obtain

C2(i ) = ∑
j
Ω(1)

i j

2 −n C−2
1 (i )+2

∑
j
Ω(1)

i j C−1
1 ( j )−4 C−1

1 (i ) n−1Kf1 −3
∑

j
C−2

1 ( j )+12n−3Kf 2
1 .

Numerical Comparison of LRank with WLRank

In Fig.5 of the main text, we calculated the percentage of nodes with highest LRank2 necessary

to give the top 15 % ranked nodes with WLRank2. The conclusions drawn from these data are

generic – they are valid for different percentages than 15% and for LRank1 vs. WLRank1. This

is illustrated in Fig. 4.8, which shows similar results for the percentage of nodes with highest

LRank1,2 that include the top 10% and 20% ranked nodes with WLRank1,2.
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Figure 4.8 – Percentage of the nodes with highest LRank1,2 necessary to give the top 10 %
(left), 20% (right) ranked nodes with WLRank1,2 for a random network of inertialess coupled
oscillators with 1000 nodes obtained by rewiring with probability 0.5 a cyclic graph with
constant nearest and next-to-nearest neighbor coupling (see Appendix, 4.5). Each of the
12000 red crosses corresponds to one of 1000 random natural frequency vector P (0) with
components randomly distributed in [−0.5,0.5] and summing to zero, multiplied by a prefactor
β= 0.4,0.6, . . .2.6. The blue crosses correspond to running averages over 500 red crosses with
consecutive values of max(∆θ).

86



5 Noise-Induced Desynchronization and
Stochastic Escape from Equilibrium
in Complex Networks

Chapter 5 is a postprint version of an article published as:
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Complex Networks

Complex physical systems are unavoidably subjected to external environments not accounted

for in the set of differential equations that models them. The resulting perturbations are

standardly represented by noise terms. If these terms are large enough, they can push the

system from an initial stable equilibrium point, over a nearby saddle point, outside of the

basin of attraction of the stable point. Except in some specific cases, the distance between

these two points is not known analytically. Focusing on Kuramoto-like models and under

simple assumptions on this distance, we derive conditions under which such noise terms

perturb the dynamics strongly enough that they lead to stochastic escape from the initial

basin of attraction. We numerically confirm the validity of that criterion for coupled oscillators

on four very different complex networks. We find in particular that, quite counterintuitively,

systems with inertia leave their initial basin faster than or at the same time as systems without

inertia, except for strong white-noise perturbations.

Introduction

Complex physical systems are mathematically modelled as dynamical systems. Equilibrium

and steady states, if they exist, are determined and characterized by fixed points and limit

cycles/tori of the corresponding differential equations [92]. For deterministic dynamical

systems, the latter equations should be complemented by stochastic terms to account for

unavoidable perturbations from unaccountable environmental degrees of freedom [124]. A

central question of broad interest is to determine the magnitude and statistical properties

of the relevant stochastic terms that could lead to the loss of equilibrium or induce transi-

tions between different local equilibria. Some physically important situations where such

stochastic escape phenomena may occur are electric power grids with high penetration of

fluctuating renewable energy sources [82, 4, 107], superconducting rings [53] and Josephson

junction arrays [64] subjected to noisy magnetic fields, as well as neuronal systems subjected

to synaptic, ion-channel, neurotransmitter or membrane potential noise [22, 80].

Despite decades of investigations, theoretical studies of problems related to stochastic escape

are generally extensions of the pioneering work of Kramers [75], which relates chemical reac-

tion rates to action integrals between different potential minima. The problem is analytically

tractable in low dimensions only (see also Ref. [41]), and several recent works considered noise-

induced large fluctuations in the dynamical behavior of higher-dimensional network-coupled

systems through the numerical determination of action minimizing paths [38, 107, 60, 61].

A better analytical understanding of the interplay of noise characteristics with the network

topology is clearly desirable.

For some noisy coupled dynamical systems, escapes from a basin of attraction can be related

to noise characteristics and to the topology of the interaction network. For sufficiently weak,

bounded noise, fluctuations are small and there is no stochastic escape [79]. Noise makes the

system fluctuate about its equilibrium, and typical deviation amplitudes can be evaluated from

a linearized dynamics about the equilibrium [7, 121, 57]. The situation becomes fundamentally
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Figure 5.1 – Time evolution of the winding number q for Eq.(5.1) on a single-cycle network
with n = 83 nodes, m = 0 (red lines) and m

d / d
λ2

= 10/175 (blue dashed lines). (a) Noise with

short correlation timeλ2τ0/d = 5.7·10−4. (b) Noise with longer correlation timeλ2τ0/d = 0.03.

different for stronger noise. For Kuramoto-like models, Eq. (5.1), with additive Ornstein-

Uhlenbeck noise, this is illustrated in Fig. 5.1, which shows the time-evolution of the winding

number q (defined in Sec. 5.4), characterizing different equilibrium fixed points. Changes in q

indicate that the system visits other basins of attraction, surrounding different equilibrium

states. Below we use q to detect transition from one basin to another. Depending on the

oscillators’ inertia and the noise amplitude and correlation time, this happens more or less

quickly and for longer or shorter periods of time. Due to the high dimensionality of the state

space and the nonlinear coupling between oscillators, the exact shape and size of the basins

are impossible to capture [128, 86, 35], consequently, the escape time from one basin is hard to

predict. For the Kuramoto model with cyclic interactions, DeVille [38] showed that the escape

time scales as the exponential of the potential barrier height between the initial and final

equilibrium states. In the spirit of Kramers [75], Hindes and Schwartz [60, 61] further relate the

escape time to the numerically computed action on the action-minimizing trajectory between

the two equilibria. In higher dimensions it is hard to see how these approaches could give

analytical estimates other than in specific situations.

In this paper we propose a resolutely different approach to stochastic escape from stable equi-

libria in complex, network-coupled dynamical systems, incorporating noise characteristics as

well as network dynamics and topology. We focus on synchronous fixed points of Kuramoto-

like models [i.e., θ̇i (t) = θ̇ j (t) , ∀ i , j , t ], but stress that the approach is applicable to more

general systems. We subject the initial, synchronous state to additive Ornstein-Uhlenbeck

noise. Linearizing the dynamics about the synchronous state, we calculate the standard

deviation of the noise-induced fluctuations about that state. The linearized dynamics is no

longer accurate when the standard deviation exceeds some threshold distance Dc . Clearly,

Dc is bounded from above by the distance ∆ between the stable synchronous state and the

closest saddle point to the next basin of attraction. We postulate that Dc is parametrically

proportional to ∆. This postulate allows us to derive a criterion for stochastic escape based on

the distance ∆ between the initial stable synchronous fixed point and the nearest saddle point

and not as in Kramers’ and other approaches [75, 38, 107, 60, 61] on their potential height
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difference. We validate numerically our postulate that Dc ∼∆ for four, very different networks

and furthermore show that it gives precise estimates for the first stochastic escape time. We

note that similar linearization procedures have been used in a different context in Ref. [101] to

predict transitions in an evolutionary ecology model.

The paper is organized as follows. In section 5.2, we introduce our model of coupled oscillators

and give analytical expressions for the response induced by noisy perturbations. Section

5.3 describes our criterion for stochastic escapes, and section 5.4 illustrates numerically our

theory. Our conclusions are given in section 5.5.

The Model

We consider generic, Kuramoto-like models of nonlinearly coupled oscillators on complex

graphs defined by the differential equations [77]

m θ̈i +d θ̇i = Pi −
∑

j
ai j sin(θi −θ j ) . (5.1)

Oscillators with inertia m and damping parameter d are described by compact angle coor-

dinates θi ∈ (−π,π] and natural frequencies Pi ∈ R. They are located on nodes i = 1, ...,n

of a connected coupling network defined by the adjacency matrix, ai j ≥ 0. Without loss of

generality, we consider
∑

i Pi = 0, which is equivalent to considering the system in a rotating

frame, because Eq. (5.1) is invariant under θi (t) → θi (t)+Ωt , Pi → Pi +dΩ. For bounded

distributions of natural frequencies on small enough intervals, synchronous states exist with

θ̇i ≡ 0, ∀i .

We consider a stable synchronous state θ(0) = (θ(0)
1 , . . . ,θ(0)

n ) corresponding to natural fre-

quencies P (0). We subject this state to a time-dependent perturbation P (t) = P (0) +δP (t).

Linearizing the dynamics defined by Eq. (5.1) with θ(t ) = θ(0) +δθ(t ), one obtains

mδθ̈+d δθ̇ ≈ δP −L({θ(0)
i })δθ , (5.2)

with the weighted Laplacian L({θ(0)
i }) defined by

Li j =
{

−ai j cos(θ(0)
i −θ(0)

j ) , i 6= j ,∑
k ai k cos(θ(0)

i −θ(0)
k ) , i = j .

(5.3)

This matrix is positive semidefinite, with a single eigenvalue λ1 = 0 and associated eigenvector

u1 = (1,1,1, ...1)/
p

n, while λα > 0, α= 2,3, ...n.

The dynamics of Eq. (5.2) is characterized by different times scales. The first one characterizes

the noisy perturbations. We consider spatially uncorrelated noise with vanishing average and
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Ornstein-Uhlenbeck correlator

〈δPi (t1)δP j (t2)〉 = δi j δP 2
0 exp[−|t1 − t2|/τ0] . (5.4)

Thus, the perturbation is characterized by its variance, δP 2
0 and its correlation time, τ0 > 0. The

second time scale is m/d . It gives the typical time over which local excitations are damped by

d , neglecting the network dynamics. Finally, one has a set of time scales d/λα, α= 2, ...n, each

of them defined by the ratio of the damping parameter and an eigenvalue of the Laplacian.

For m/d > d/4λα these are related to oscillation time scales of the Laplacian modes, while for

m/d < d/4λα they relate to network-dynamical corrections to the damping time scale. We

consider τ0 as a tunable parameter allowing us to explore different regimes depending on its

relation with m/d and d/λα.

We measure the distance between the state of the system and the initial synchronous state

as the square root of the variance 〈δθ2(t)〉 = ∑
i 〈[δθi (t)−δθ(t)]2〉 with δθ(t) = n−1 ∑

i δθi (t)

and brackets indicating an average over different realizations of noise with the same first

two moments. It appropriately gives the standard deviation of the angle deviations in the

subspace orthogonal to u1, because displacements in that subspace do not change the state.

To calculate 〈δθ2(t )〉, we expand angle deviations over the eigenbasis of L and solve Eq. (5.2)

for the coefficients of that expansion [123, Appendix 5.6.1]. We obtain the long-time limit

lim
t→∞〈δθ2(t )〉 = δP 2

0

∑
α≥2

τ0 +m/d

λα(λατ0 +d +m/τ0)
. (5.5)

In the two limits of long and short τ0, one has

lim
t→∞〈δθ2(t )〉 '


δP 2

0 τ0

nd
Kf1 , τ0 ¿ d

λα
, m

d ,

δP 2
0

n
Kf2 , τ0 À d

λα
, m

d ,

(5.6)

with Kfp = n
∑
α≥2λ

−p
α [71, 121]. Interestingly, none of these asymptotics depend on inertia.

Escape from the basin

The dynamics of Eq. (5.1) is described by a vector function θ(t ) following the gradient of the

potential

V (θ, t ) =
n∑

i=1
Pi (t )θi −

∑
i , j

ai j
[
1−cos(θi −θ j )

]
, (5.7)

starting from θ(t = 0) = θ(0). When the noisy perturbation tilts this potential strongly enough,

θ can escape the basin of attraction of θ(0). DeVille showed that, for not too large δP0, the

system almost surely escapes the basin in a neighborhood of a saddle point with a unique
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unstable direction, which we call 1-saddle [38]. Comparing the typical distance between θ

and θ(0) of Eq. (5.5) with the distance ∆ between θ(0) and its closest 1-saddle ϕ gives us a

parametric condition for noise-induced stochastic escape

δP 2
0

∑
α≥2

τ0 +m/d

λα(λατ0 +d +m/τ0)
≤∆2 . (5.8)

Our task is therefore to identify the position of the 1-saddles. This is in general no trivial

task because the geometry of basins of attraction in such high-dimensional problems is

impossible to fully capture. For single-cycle networks with identical frequencies, 1-saddles

can be identified analytically [38, 35]. For more general networks, we give in Appendix 5.6.4

a numerical algorithm which locates 1-saddles ϕ and constructs the distribution of their

distance to θ(0).

Numerical simulations

We first check Eq. (5.8) against numerical simulations of the Kuramoto model of Eq. (5.1) with

m = 0. We consider four different networks (see Appendix 5.6.3) with constant couplings b0 = 1

and identical frequencies, which are a single-cycle network with nearest-neighbor coupling,

a single-cycle with nearest- and 3rd-neighbor coupling, a model of the UK transmission

network and a realization of a small-world network [126]. At each node, natural frequencies

are perturbed by spatially uncorrelated Gaussian noisy sequences δPi (t ) satisfying Eq. (5.4).

We integrate the dynamics of Eq. (5.1), using a 4th-order Runge-Kutta method, during an

observation time Tobs, and check for a stochastic escape at every time step. Our method

for detecting such occurrences is based on Refs. [40, 34, 85] which showed that on meshed

networks, different fixed-point solutions of Eq. (5.1) correspond to different vectors of winding

numbers q . While winding around a cycle of a meshed network, the sum of angle differences is

an integer multiple of 2π. This integer is the winding number q on the corresponding cycle of

the interaction graph. Such winding numbers can be defined on each cycle of the network and

form together a winding vector q . Refs. [38, 61] observed that transitions between different

such equilibrium states occur by phase slips of few oscillators, and we show in Appendix

5.6.2 that these slips can be detected by recording the time evolution of q , as illustrated on

Fig. 5.1. We therefore detect desynchronizing events through variations of winding numbers.

For each set of noise parameters δP0 and τ0 we perform several calculations corresponding to

different noise realizations. Fig. 5.2 shows the fraction P of runs that remain in the initial basin

for t ≤ Tobs. The parameter space is sharply divided into (a) the red region (denoted U for

"unstable") where all runs left the basin of attraction before Tobs, (b) the blue region (denoted

S for "stable"), where none of the runs left the initial basin of attraction and (c) a rather narrow

intermediate region between U and S where some runs left and some runs stayed in the initial

basin.
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Figure 5.2 – Color-coded survival probabilityP for Eq. (5.1) with m = 0. (a) Single-cycle network
with n = 83 and nearest-neighbor coupling; (b) single-cycle network with n = 83, nearest- and
3rd-neighbor coupling; (c) UK transmission network with n = 120; (d) small-world network
with n = 200 nodes. Yellow dashed lines give the boundary of the region of validity of the
inequality in Eq. (5.8) with m = 0 and ∆ obtained analytically for panel (a) and numerically for
panels (b-d). Observation times Tobs correspond to comparable dimensionless parameters
λ2Tobs/d = 143 (a), 143 (b), 130 (c) and 115 (d).

It is quite remarkable that the intermediate region (c) is qualitatively if not quantitatively

identified by Eq. (5.8) with a network-dependent ∆. As discussed above, ∆ is given by a typical

distance between the initial stable fixed point θ(0) and the nearest saddle point ϕ roughly

giving the smallest linear size of the basin of attraction. For the single-cycle network, all

1-saddles are located at the same distance from θ(0), which can be obtained analytically [38].

For the other three networks, many, though likely not all 1-saddles are identified numerically.

The detailed methods for finding 1-saddles are given in Appendix 5.6.4. For the single-cycle

network with nearest- and 3rd-neighbor coupling, the distance ∆ from θ(0) only takes a few

different values of which we only consider the most representative. For the UK and small-

world networks, on the other hand, we find a distribution of ∆ ∈ [∆min,∆max], which is likely

due to the complexity of those meshed networks. The yellow dashed lines in Fig. 5.2 then

indicate our theoretical prediction Eq. (5.8) for the obtained value ∆ for the two single-cycle

networks and for values of ∆ corresponding to the 25th, the 50th and the 75th percentiles

of the distribution of ∆ for the UK and small-world networks. In all cases, the shape of the
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Figure 5.3 – Color-coded survival probability P for Eq. (5.1) with m = 0 for a single-cycle
network with n = 83 and nearest-neighbor coupling; λ2Tobs/d = 14.3 (a), 143 (b), 569 (c). The
yellow dashed line give the boundary of the region of validity of the inequality in Eq. (5.8) with
m = 0 and ∆ obtained analytically.

Figure 5.4 – Escape time Tesc from the initial basin of attraction vs. noise amplitude, δP0, for
cycle networks with n = 83 (a), n = 249 (b), and for the UK transmission network (c). The noise
correlation time corresponds toλ2τ0/d = 8.6·10−3 (a),λ2τ0/d = 9.6·10−4 (b) andλ2τ0/d = 0.02
(c). Blue circles are averages over 40 realizations of noise. Red crosses correspond to Eq. (5.9),
with β∼= 5/8 (a-b) and β∼= 2/5 (c).

boundary is well predicted. For the more complex UK transmission network, Fig. 5.2(c), there

is a horizontal shift between theory and numerics, presumably due to to stronger anisotropies

of the basins of attraction in this more complex network, effectively requiring a larger Tobs.

In the case of bounded noise, we expect an inertialess system to remain in its initial basin

for weak enough noise [79]. However, the noise considered in our case is Gaussian and

arbitrarily large excursion will occur if one waits long enough. As a matter of fact, we found

that increasing Tobs shifts the boundary between stable and unstable regions to lower δP0.

We evaluated the influence of the observation time by reproducing Fig. 5.2(a) with different

Tobs. This is shown in Fig. 5.3 where we performed simulations for the cycle, increasing the

observation time. Fig. 5.3 shows the fraction of simulations that stay in the initial basin of

attraction after an observation time satisfying λ2Tobs/d = 14.2 [Fig. 5.3(a)], 142.4 [Fig. 5.3(b)],

569 [Fig. 5.3(c)], for a cycle network with n = 83 nodes. As Tobs increases exponentially, we

observe the boundary between regions U and S drifting to the left due to the escape time that

is superexponential as δP0 decreases.
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Figure 5.5 – Color-coded difference in survival probability P with and without inertia for a
single-cycle network with n = 83 with nearest- and 3rd-neighbor coupling obtained from 20
realizations of noise; (a) m

d / d
λ2

= 0.25/0.35, (b) 2.5/0.35 and (c) 25/0.35. The yellow dashed
lines give the boundary of the region of validity of the inequality in Eq. (5.8), as discussed in
the main text.

Fig. 5.4 further shows the stochastic escape time as a function of δP0. A superexponential

behavior is observed which can be understood as follows. The noise generates a distribution of

angle deviations which we expect to be Gaussian with a variance given by Eq. (5.5). The escape

time is then inversely proportional to the probability to have such a deviation exceeding ∆, i.e.

Tesc ∝
[

2
∫ ∞

β∆
P (δθ)d(δθ)

]−1

(5.9)

with a free parameterβ of order 1. Fig. 5.4 validates this argument using a Gaussian distribution

of single-angle deviation P (δθ) with variance 〈δθ2(t )〉/n, see Eq. (5.5). We have found, but do

not show, that Tesc diverges at a finite value of δP0 for a box-distributed, bounded noise.

We finally consider Eq. (5.1) with nonzero inertia. We focus on the single-cycle network with

nearest- and 3rd-neighbor coupling, and tune the inertia parameter m to explore different

regimes defined by the different time scales of Eq. (5.1). Fig. 5.5 shows the difference in

survival probabilities with and without inertia in the regimes (a) d/λα&m/d , (b) d/λα.m/d

and (c) d/λα ¿ m/d . Deep in the stable (unstable) regions, both inertialess and inertiaful

models have P= 1 (P= 0) and the difference P(m = 0)−P(m) = 0. Somehow counterintuitively,

however, there is an intermediate region where the presence of inertia facilitates stochastic

escape compared to the inertialess case, P(m = 0)−P(m) > 0. The boundary of that region are

in excellent agreement with the prediction of Eq. (5.8), giving the two dashed yellow lines for

m = 0 and m 6= 0.

For large τ0, the faster escape of the system with finite inertia is easily understood. With long

correlation time, the noise tends to push the system in the same direction for long sequences.

This is sufficient to have the inertiaful system accumulate a significant kinetic energy. The

system keeps then moving, even if, after some time, the noise starts pushing the other way

and allows it to move above a saddle point with inertia, whereas the inertialess system is
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immediately stopped by noise reversal.

For smaller τ0, on the other hand, inertia resists short sequences of pushes in rapidly varying

directions and accordingly, we found that inertia stabilizes the system in that case (see Ap-

pendix 5.6.5). This is not predicted by Eq. (5.8) and is probably due to contributions beyond

our linear response theory, because discrepancies appear for values of δP0 comparable to the

coupling strength a0. The influence of inertia on stochastic escapes is perhaps best illustrated

in Fig. 5.1, where the presence of inertia stabilizes the system under short-correlated noise

[panel (a)] but leads to more frequent stochastic escapes for long-correlated noise [panel (b)].

Conclusion

We have constructed a novel approach to stochastic escape. We compare a spectral calcula-

tion of typical sizes of stochastic excursions about synchronous equilibrium states with an

evaluation of the distance between this synchronous equilibrium state and 1-saddles. This

method provides analytical results with a single, model-dependent free parameter of order

one [β in Eq. (5.9)]. It gives remarkably accurate estimates for stochastic escape times, as is

illustrated in Fig. 5.4. Even if, in this work, we considered networks of coupled oscillators, our

method can be applied to any dynamical system where some stable fixed points and 1-saddles

are available, and the linearization of the dynamics in a neighborhood of the considered

fixed point is possible. The distance ∆ between stable fixed points and 1-saddles, and the

eigenvalues of the linearization of the dynamical system are the main ingredients of Eq. (5.8),

which determine regions where escape is unlikely in reasonable time.

In the context of coupled oscillators, we interestingly observed that the presence of inertia

leads to faster, more frequent escapes for long noise coherence times, while the effect is

reversed for short noise coherence times. This is illustrated in Fig. 5.1. Further studies

should consider the effect of spatially correlated noise and non-Gaussian, long-tailed noise

distributions [57].

Appendix

Details of Calculations for the variance of the angle displacements

We give some details of the calculation that leads to Eq. (5.5). Expanding the angle deviations

over the eigenmodes of the Laplacian Eq. (5.3), i.e., δθ(t ) =∑
α cα(t )uα, Eq. (5.2) becomes,

m c̈α(t )+d ċα(t ) = δP (t ) ·uα−λαcα(t ) , α= 2, ...,n . (5.10)
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With the help of a Laplace transform, the solution of Eq. (5.10) is given by

cα(t ) = m−1e
−d/m−Γα

2 t
∫ t

0
eΓαt ′

∫ t ′

0
δP (t ′′) ·uαe

d/m−Γα
2 t ′′d t ′′d t ′ , (5.11)

with Γα =
√

(d/m)2 −4λα/m. Taking advantage of the orthogonality between eigenmodes of

the Laplacian we have,

〈δθ2(t )〉 ≡∑
i
〈[δθi (t )−δθ(t )]2〉 = ∑

α≥2
〈c2
α(t )〉 , (5.12)

with δθ(t ) = n−1 ∑
i δθi (t ). Inserting Eq. (5.10) into Eq. (5.12), using the time correlator of δP

Eq. (5.4), and finally taking the long time limit one obtains, after some algebra, Eq. (5.5).

Method to determine escape times

Various methods can be used to determine, at any iteration step of the simulation, if the

system under consideration has escaped its initial basin of attraction. We compared three of

them, which we detail here.

Method 1. As stated above, stable equilibria of Eq. (5.17) can be unambiguously distinguished

by their winding vector q . The method that we used for the numerical simulations proceeds

as:

1. At each time step, compute q ;

2. If q 6= q (0) the winding vector of the initial basin of attraction, check if the system is

still in the initial basin. To do so, simulate the dynamics without noise, taking the

current state of the system as initial conditions. Once synchrony is reached, compute

the winding vector q (1);

3. If q (1) 6= q (0), then the system was out of the initial basin. Otherwise, if q (1) = q (0), the

system was still in the basin and thus the simulation can move to the next time step.

Method 2. This method is based on DeVille’s observation [38] that escapes from basins of

attraction occur on a short time interval and can be identified by a fast slip of a small group of

angles. It proceeds as:

1. At each time step, check if some angles made a large excursion, i.e., ‖θ(t )−θ(0)‖∞ > 2π;

2. If so, then simulate the dynamics without noise, taking the current state of the system

as initial conditions, until it synchronizes to the state θ(1);

3. If θ(1) 6= θ(0), then the system was out of the initial basin. Otherwise, if θ(1) = θ(0), the

system was still in the basin and thus the simulation can move to the next time step.
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Simulation Method q (1) No. iterations

1
1 -1 400
2 -1 400
3 -1 400

2
1 -1 685
2 -1 685
3 -1 685

3
1 -1 558
2 -1 558
3 -1 550

4
1 1 1609
2 1 1609
3 -1 950

5
1 -1 1664
2 -1 1664
3 -1 1249

6
1 1 1887
2 1 1887
3 -1 1151

Table 5.1 – Final winding number q (1) and number of iterations before the escape for m = 0
(simulations 1-3) and finite inertia (simulations 4-6). Each triplet is obtained by integrating
Eq. (5.1) with the same noise sequence.

Method 3. Finally, we tested the method in which we check at every time step whether the

system returns to the initial basin or not. This method guarantees to find the best estimate of

the escape time, at least for the Kuramoto model (m = 0), but is very time-consuming.

Table 5.1 compares escape times and final winding numbers for a single-cycle of n = 83 nodes.

For the Kuramoto model (m = 0) the three methods give very similar results. For the case with

inertia, the first two give larger escape times compared to the last method. We explain this as

follows. When the noise is removed, the system may have accumulated some kinetic energy

that will drive it out of the basin of attraction. And this can happen before the winding number

changes or a large angle excursion occurs. Furthermore, if the perturbation was still active, it

could have pushed the system back towards the stable fixed point before it leaves the basin of

attraction, increasing the escape time.

The four networks

We briefly describe the networks used for the numerical simulations.
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Figure 5.6 – Maximum value δP∗
0 of the noise amplitude obtained from Eqs. (5.14), (5.15) for

large (blue) and short (green, red) time correlation, τ0, as a function of the size of the cyclic
network n. For the red curve, we consider a constant ratio τ0/d = 0.001. For the green curve
we consider a constant ratio λ2τ0/d = 0.001 where λ2 = 2−2cos(2π/n) depends on the size of
the network.

Cycle with nearest neighbors coupling

We consider a cycle network of size n, with identical natural frequencies. The eigenvalues of

its weighted Laplacian, Eq. (5.3), can be obtained analytically,

λα = cos(δ)[2−2cos(kα)] , α= 1, ...,n , (5.13)

where δ is the angle difference between neighboring sites (which are identical at a stable

equilibrium [33]) and kα = 2π(α−1)n−1. For n = 83 we have λα ∈ [0,4cos(δ)] and λ2 = 0.0057.

Eq. (5.6) can be explicitly calculated for cyclic networks as functions of the number of nodes n

δP 2
0 ≤ π2dn

τ0(n −2)2 , τ0 ¿ d/λα ,m/d , (5.14)

δP 2
0 ≤ 60π2n

(n −2)2(n2 +11)
, τ0 À d/λα ,m/d . (5.15)

Fig. 5.6 shows the maximum values of δP0 satisfying Eqs. (5.14), (5.15). One remarks that, while

increasing the size of the cycle, the stable region gets smaller and even vanishes for n →∞
similarly to fluctuations that destroy long-range order in 1 dimensional locally interacting

quantum magnets [51].

99



Chapter 5. Noise-Induced Desynchronization and Stochastic Escape from Equilibrium in
Complex Networks

Figure 5.7 – (a) Illustration of the connections of a vertex to its first and second neighbors
on a cycle. (b) Illustration of the connections of a vertex to its nearest- and 3rd-neighbors
on a cycle. (c) Illustration of the UK network with n = 120 vertices and m = 165 edges. (d)
Illustration of our small world network with n = 200 vertices. Its relative clustering coefficient
is C (Gp )/C (G0) ≈ 0.89 and its relative characteristic path length is L(Gp )/L(G0) ≈ 0.32.

Cycle with nearest- and 3rd-neighbors coupling

We consider a cycle network of size n, where each vertex is connected to its nearest- and 3rd-

neighbors [see Fig. 5.7(b)]. With identical natural frequencies, the eigenvalues of its weighted

Laplacian, Eq. (5.3), can be obtained analytically,

λα = cos(δ)[4−2cos(kα)−2cos(3kα)] , α= 1, ...,n , (5.16)

where δ is the angle difference between neighboring sites (which are identical at a stable

steady-state [33]) and kα = 2π(α−1)n−1. For n = 83 we have λα ∈ [0,8cos(δ)] and λ2 = 0.057.

UK transmission grid

Model of the electrical transmission grid of UK depicted in Fig. 5.7(c). It is composed of 120

nodes and 165 edges making 44 cycles. During the numerical simulations, to check whether

the system has left the initial basin of attraction or not, we check the winding number on each

cycle, i.e., the winding vector q = (q1, ..., q44). The second eigenvalue of its Laplacian matrix is

λ2 ≈ 0.013.

Small world

A small world network is constructed from an initial network, where some edges are randomly

rewired (see [126]). In our case, the initial network G0 is a cycle with n = 200 vertices and where

each vertex is connected to its first and second neighbors [see Fig. 5.7(a)]. Each edge (i , j ) is

then replaced with probability p = 0.05 by the edge (i ,k), where k is chosen at random among

the vertices not already connected to i . The network obtained Gp is illustrated in Fig. 5.7(d). It

is a small world as it has a large relative clustering coefficient C (Gp )/C (G0) ≈ 0.89 and a small

relative characteristic path length L(Gp )/L(G0) ≈ 0.32 (see [126] for more details). The second
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eigenvalue of its Laplacian matrix is λ2 ≈ 0.046.

Finding 1-saddles

We detail our methods for finding 1-saddles (equilibria with a unique unstable direction) of

the dynamical system

mi θ̈i +di θ̇i = P (0)
i +δPi (t )−∑

j
ai j sin(θi −θ j ) , (5.17)

with i = 1, ...,n, for arbitrary coupling graph.

Cycle Networks

For cycle networks with nearest neighbor coupling and identical natural frequencies, the

distance between the stable equilibrium θ(0) = (0, ...,0), and the 1-saddleϕ, can be computed

analytically as [35]

∆2 = ∥∥θ(0) −ϕ∥∥2
2 =

n(n2 −1)

12(n −2)2π
2 . (5.18)

General Networks

For general networks, the anisotropy of the basins of attraction renders the 1-saddles compli-

cated to identify analytically. We propose a numercial method to locate 1-saddles, which is

based on two results of DeVille [38]:

• Escapes from basins of attraction almost always occur in a neighborhood of a 1-saddle

of the potential

V (θ) =
n∑

i=1
P (0)

i θi −
∑
i< j

ai j
[
1−cos(θi −θ j )

]
; (5.19)

• Transitions from a basin to another occur on a short time interval compared to the time

the system remains in a basin of attraction.

We numerically integrate Eq. (5.17), where δPi is a noise with small variance, and keep track

of the angles in order to identify iterations where the system is close to a 1-saddle. As observed

in [38], when the system is driven (by the noise) to another basin of attraction, its trajectory

goes close to a 1-saddle, and this can be seen in the time-evolution of the angles as a fast jump

of a set of angles of amplitude 2π (see Fig. 5.8). The stateϕ(0) of the system in the middle of

this jump will be a candidate for a 1-saddle. This state is probably not exactly a 1-saddle, but
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Figure 5.8 – Example of the time evolution of the 120 angles of the UK network [Fig. 5.7(c)]. We
clearly see two angles jumping from a value close to 0 to a value close to 2π. The state of the
system at the time given by the vertical dashed line is our candidate for a 1-saddleϕ.

according to [38], it should be close to one. We then solve the steady-state equations

P (0)
i =∑

j
ai j sin(θi −θ j ) , i = 1, ...,n , (5.20)

using a Newton-Raphson method with initial conditionsϕ(0). This gives an equilibriumϕ∗ of

Eq. (5.17), which we expect to be close to θ(0). Computing the eigenvalues of the Jacobian of

Eq. (5.17), the equilibriumϕ∗ is a p-saddle if and only if it has p positive eigenvalues. Note

that one eigenvalue is always zero due to invariance of Eqs. (5.17) and (5.19) under a constant

shift of all angles.

Running this simulation for a long enough time, we identified:

• 284 1-saddles for the cycle with nearest- and 3rd-neighbor. The distribution of their

distance to the stable equilibrium θ(0) is given in Fig. 5.9(a). Looking more into details,

we observe that each value in Fig. 5.9(a) corresponds to a unique 1-saddle, up to an

index shift or the angles’ sign reversal. The 1-saddles with the two smallest norm,ϕ(1)

andϕ(2), are represented in Fig. 5.10. The first one [Fig. 5.10(a)] has the smallest 2-norm,

but its configuration with n −1 equal angles and one angle π apart from all others is,

in our opinion, unlikely to occur. As we consider noisy perturbation at all nodes, a

configuration with a single large angle excursion and no excursion for all other nodes

seems less likely than a configuration where all angles are slightly displaced from their

neighbors. We performed our study using ϕ(2) as 1-saddle for the cycle with nearest-

and 3rd-neighbor.
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Figure 5.9 – Histograms of the 2-norm distance from the fixed point of the set of 1-saddles
found numerically for the cycle with 3rd-neighbor (a), the UK network (b), and the small
world network (c). We found: (a) 284 1-saddles for the cycle with 3rd-neighbor, with smallest
2-norm nmin ≈ 3.12, and quartiles of the 2-norms (Q1,Q2,Q3) ≈ (3.12,8.61,8.61); (b) 788 1-
saddles for the UK network, with smallest 2-norm nmin ≈ 3.13, and quartiles of the 2-norms
(Q1,Q2,Q3) ≈ (7.24,10.02,12.17); and (c) 4956 1-saddles for the small-world network, with
smallest 2-norm nmin ≈ 3.13, and quartiles of the 2-norms (Q1,Q2,Q3) ≈ (10.74,12.13,13.95).
The yellow dashed lines indicate the three quartiles Q1, Q2, and Q3, and the red dashed lines
indicate the norm of the closest 1-saddle.

Figure 5.10 – The two 1-saddles, ϕ(1) and ϕ(2), with smallest 2-norm, for the cycle network,
with nearest- and 3rd-neighbors. (a) ϕ(1): all angles are equal, except one which is π apart
from all others. The 2-norm of this 1-saddles is ∼ 3.12. (b)ϕ(2): all angles are slightly displaced
compared to their neighbors. The 2-norm of this 1-saddle is ∼ 8.61. This configuration is, in
our opinion, more likely to occur under noisy perturbations applied to all nodes.

• 788 1-saddles for the UK network, whose distribution of the distances to the stable

equilibrium is given in Fig. 5.9(b). Distances cover a large range of value, due to the

anisotropy of the basin of attraction;

• 4956 1-saddles for the small-world network. The distribution of the distances to θ(0) is

given in Fig. 5.9(c). Most of the 1-saddles are at similar distance.
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Figure 5.11 – Color plot of the difference of fraction of trajectories that stay in the initial basin
of attraction with finite inertia compared to m = 0 for a cycle network of n = 83 nodes. Time
scales are m

d

/ d
λ2

= 10/175.

Linearization Breakdown

We showed that, according to our theory, inertia always destabilizes the system compared to

the inertialess case. However, for the cycle network, we found that for small τ0 and large δP0,

inertia stabilizes the system, as illustrated on Fig. 5.11. The blue area where inertia stabilized

the system is not predicted by our theory, Eq. (5.8). This can be explained by the breakdown of

the linear approximation. Indeed, the blue region on Fig. 5.11 starts for value of the order of

the coupling δP0
∼= a0 ≡ 1.
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Many graph theoretic metrics have been defined over the years to identify most important

nodes in a network or to compare different networks. Most of these metrics have been con-

structed considering only networks’ structures decoupled from any deterministic dynamics.

In order to correctly identify vulnerabilities of coupled dynamical systems, these complex

network metrics need to be extended to account for physical conservation laws governing

such systems. We achieved such extension to assess vulnerabilities of complex synchronous

networks. We quantified their transient responses to weak external perturbations and directly

connected them to newly defined distances that include both the topology of the coupling

network and the dynamical features of the synchronous states. These new distances are

generalization of the resistance distance originally introduced in Ref. [71], to powers of the

weighted Laplacian of the system. Both global robustness and local vulnerabilities are ef-

ficiently and accurately assessed using resistance distances. Indeed, on the one hand, by

considering the magnitude of transient excursion of ensemble averaged perturbations, we

directly connected global robustness of oscillatory networks to generalized Kirchhoff indices.

The latter are intuitively interpreted as the sum of all resistance distances in the network

and are easily obtained from the eigenvalues of the weighted Laplacian of the system. To

improve the overall robustness of an oscillatory network, one should minimize its Kirchhoff

indices. On the other hand, we straightforwardly related magnitude of the transient follow-

ing specific local perturbations to generalized resistance centralities. We constructed these

latter as closeness centralities using resistance distances. Moreover they are easily expressed

in term of the eigenvectors and eigenvalues of the weighted Laplacian of the system and

Kirchhoff indices. Most vulnerable elements, leading to largest excursion, are then the least

central according to resistance centralities. With Kirchoff indices and resistance centralities

respectively as global and local network descriptors, we have defined an efficient and intuitive

framework to evaluate vulnerabilities of complex synchronous networks. Additionally, we

found that, for second order oscillators, inertia does not affect much transient excursions. The

formalism we developed is rather general and therefore may also be useful to analyze other

types of dynamical systems. Current work under preparation focuses on the extension of the

above results to oscillators with non-homogeneous dynamical parameters namely inertia
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and damping coefficients. In that case, distances similar to resistance distances can still be

defined but this time out of a rescaled Laplacian D−1/2LD−1/2 where D is the diagonal matrix

of damping coefficients.

We then considered robustness of coupled oscillators against larger perturbations that can

potentially drive the system through a transition to another stable fixed point. More precisely

we investigated couple oscillators subjected to noise and found a simple heuristic criterion to

predict escape from the initial basin of attraction. Using linear response and little knowledge

about the structure of the basin of attraction, we obtained estimates for the survival probability

and first escape time as function of the noise characteristics and eigenvalues of the weighted

Laplacian of the system. The latter estimates were surprisingly well validated by numerical

simulations. Moreover, we showed that, most of the time, increasing the inertia of oscillators

tends to facilitate transitions between fixed points. Interestingly, the heuristic criterion used is

rather general and thus may be applied to other dynamical systems.

In summary, we have investigated fragility of coupled oscillators systems from both their

small-signal responses and the potential transitions they may undergo due to larger pertur-

bations. In both cases we have defined frameworks allowing to assess and predict efficiently

vulnerabilities.

Possible extensions of the results presented in this thesis should include topological perturba-

tion such as edge removals. We recently made some progresses in that direction calculating the

rate of change of frequency–second time derivative of angles– following an edge removal [37].

Another direction of research building on presented results is about network inference and

disturbance location. As network response can be directly connected to a complex network

metric, namely resistance distances, by measuring the response of the system subject to noise

or to some known input signal, one may be able to infer the connectivity of the system. Current

works on that topic are under preparation. Note also that the results obtained for coupled

oscillators can be adapted to investigate consensus algorithms and opinion dynamics [12].
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