
Project Report

Linker call graph with full Dotty support

Nicolas Stucki
Supervisor: Martin Odersky

LAMP

École Polytechnique Fédérale de Lausanne

January 30, 2017

1 Overview

This project [1] consisted in bringing the linker [10] call graph up to date with
dotty/master (section 2), restructure the code (3), make it support the full Scala
language [9, 5] (section 4.1) and make it support calls to Java code [4] (section
4.2). Also implemented dead code elimination of unreachable methods based
on the call graph [7] as a first optimization (section 3.3). Section 4.3 describes
a new graph visualization.

2 Making it stable

The firsts tasks in this project was to make the linker [2] call graph construction
work on top of dotty/master [3]. This consisted in updating to different tree
and type shapes that come from the typer. The first iteration was the most
complicated one as the linker was forked quite a long time ago. After this first
rebase, subsequent rebases have been becoming simpler and stabler (with the
exception of the new higher kinds encoding).

3 Architecture
Once the call graph construction was stable enough, I started working on the
architecture of the code to make it simpler to understand and easier to maintain.
The original code was a prototype and as such was monolithic. The current ver-
sion consists of a two phase for the call graph construction CollectSummaries
and BuildCallGraph and one for the dead code elimination DeadCodeElimina-
tion.

3.1 Method summary collection

CollectSummaries is a phase that creates MethodSummarys which are sum-
maries of all the calls effectuated in a particular method body. The main infor-

1



mation in the MethodSummary is a map from call receivers to a list of CallInfo.
These CallInfo contain a TermRef reference to the method called along with
the types of the arguments passed in this call. CollectSummaries will also ma-
terialise some calls that are not yet present in the trees (see 4.1).

3.2 Building the call graph

BuildCallGraph is a phase in the pipeline that runs after all method summaries
have been collected in CollectSummaries. This consists in registering all the
entry points of the program into a CallGraphBuilder and then let the it build
the complete graph from these entry points. Currently entry points consist of all
main methods and all methods annotated with @EntryPoint with their class/-
module initialisers. The CallGraphBuilder is the core and contains the logic to
build the call graph. This builds a graph on nodes defined by CallInfoWithCon-
text which are CallInfo that also has the outer type parameters of the current
call. Edges of the graph are listed in each CallInfoWithContext. We wont go
into details of how the call graph is expanded while building as the details are
too long for this report.

3.3 Deadcode elimination

The DeadCodeElimination is a phase that runs on all methods that can be
DCEed that have been materialised. In this phase bodies of unreachable meth-
ods are replaced by a throw new DeadCodeEliminated. We also wish to eliminate
classes that are never used but this is currently not done as it makes error mes-
sages from classes loaded through reflection less explicit on the source of the
issue. But classes that could be eliminated have only methods that have the
same body that throws which makes them efficiently compressible.

3.4 Test infrastructure

To test the call graph and the dead code elimination we need some custom test
infrastructure. We currently have two sets of tests that run on top partest. The
first set of tests that dead code eliminate on the whole Scala standard library
with the test code. The other set of tests only compiles the test code. Tests
using the Scala standard library compile a copy of the stdlib along with the
tests files. These are quite slow as the whole compilation pipeline is run on the
complete stdlib, but doing so cover most of the Scala language features while
constructing the call graph. Unsurprisingly from these tests came most of the
bugs that were found during this project, including bugs on dotty/master. The
ones that do not use the standard library, use the precompiled Scala library and
handles calls to it as if they are calls on methods defined in java bytecode (see
4.2). These tests are fast and are used to tests single language features and to
avoid regressions.

3.5 Future infrastructure work

To support separate compilation, we need to be able to save method Method-
Summary in the tasty file and load them when needed. The code to does it
exist but still needs to be updated to the current dotty/master.

2



4 Full Scala support

4.1 Adding missing calls

As CollectSummaries runs as early as possible in the compilation pipeline, there
are some calls that do not exist yet in the trees. These calls need to be synthe-
sised and added to the MethodSummarys.

4.1.1 Mixin constructors

The constructor of some class that uses mixins could have a call to the initialiser
of the mixed in trait (if it has one). Therefore when there we call a class primary
constructor we add all directly inherited mixin initializers.

4.1.2 Varargs

When we call a method with a variable number of arguments these will be
converted to a WrappedArray[T]. Hence we need to synthesise a call to one of
genericWrapArray, wrapRefArray, wrapIntArray, wrapLongArray, ..., wrapUni-
tArray. On the other side, in the method called, we need to adapt the type of
the arguments corresponding WrappedArray[T].

4.1.3 Predef module load

At this phase calls to methods on the Predef module are missing the call to the
module getter. These can be in a variety of different shapes including calls to
LowPriorityImplicits, DeprecatedPredef and wrapped arrays for the varargs.

4.1.4 Pattern matching and closures

Pattern match inserts calls to unapply, empty or get. Closures need some addi-
tional information. Details of these two can be found in [8].

4.1.5 Future Scala language work

Future work will consist mainly of maintaining the inserted calls up to date.
We should also explore mechanisms to register them directly in the phases were
they are added or detect them automatically.

4.2 Calls on java code

Whenever we call a method for which we don’t have a MethodSummary such
as a method defined in java we can’t we have to use other ways to know which
methods could be called. It is important to know which methods can be called
from java code as the following example makes evident.

// In Scala source
class Foo {
def foo(): String = toString() + "!"
def toString(): String = "Foo"
}

System.out.println(new Foo)

// In Java java.io.PrintStream source
public void println(Object x) { ... x.toString() ... }

3



It is obvious that the toString of Foo will be called from the println, unfor-
tunately this information is nowhere in the Scala source. Hence the normal
approach would bailout when reaching the println, probably dead code elimi-
nating Foo.toString and failing at runtime.

4.2.1 Current solution

The solution is simple, we need to add to the println all potential calls that it
could do. This implies all methods that can be called on any of the arguments
(including the this) then it can call any method on the return types of those
method (and on the return types of those methods, and so on until a fixed point
is reached). There would be two methods on Foo, 33 methods on PrintStream
and 65 methods on String (see red nodes on the right of figure 1). These are
an approximation of the actual calls but it ensures that all reachable code at
runtime is reachable in the call graph, most likely with calls that will never be
reached such as Foo.foo.

We take advantage of the knowledge that some of the sources were compiled
before. Such information can reduce the number of potential calls, as for exam-
ple when PrintStream was compiled it had no idea of the existence of Foo and
hence could never call Foo.foo. We can also remove method that we know that
can not be defined in our Scala code such as final methods or methods in final
classes.

4.2.2 Future work on Java call graph

Another approach to reduce the number of calls is constructing the calls based
on method names found in the class file constant table. This approach should
reduce considerably the possible calls on the parameters and the calls on the
return type of the parameters. This will make the graph more precise and
probably faster to compute as it would reduce the calls that will need to be
expanded. A step further would be to reconstruct the list names of methods
called by each method. This would mainly help to reduce the number of calls
on this as all the names of these methods will be present in the constant table.

4.3 Call graph visualization

Originally the call graph could be exported as a graphviz .dot file. This visual
representation was key while debugging some bugs in the call graph, specially see
and understand how some calls are reached (or are not reached). Unfortunately
this format does not scale with the number of nodes that we generate, calling one
function on the standard library Predef is enough to make it unintelligible. A
new interactive graph visualizer that can scale to larger and more detailed graphs
was implemented to solve the previous shortcomings. This one is exported to a
stand alone HTML file that uses vis.js [6] to layout and manipulate the graph.
The following snippet of code produces the graph in figure 1.

4



object Test {
def main(args: Array[String]): Unit = Bar().test()
}

class Bar {
def test() = {
class Foo { def bar: Int = 42 }
val foo = new Foo
System.out.println(foo.bar)

}
}

Figure 1: Call graph visualization of the code snippet above. The green node
is the entry point to the main method and it’s module, blue are calls to Scala
code and red are calls to Java code.

5 Conclusion

Currently the call graph is up to date with dotty/master and supports the
language features found in the standard library. There are still a couple bugs
that need to be fixed to support some of the most complex code patterns in the
standard library. The call graph also was extended to support calls to methods
defined in bytecode, a requirement to create a complete call graph (compiled or
not with the standard library). Future work will consist mainly of maintaining
inserted calls up to date, fixing the remaining bugs and improving reducing the
possible calls from bytecode methods.

5



References

[1] Call graph pull request for dotty/master. https://github.com/
lampepfl/dotty/pull/1840.

[2] Dotty-linker project. https://github.com/dotty-linker/dotty.

[3] Dotty project. https://github.com/lampepfl/dotty.

[4] Java language and jvm specifications. https://docs.oracle.com/
javase/specs/.

[5] Scala programming language. http://scala-lang.org/.

[6] vis.js. http://visjs.org/.

[7] Call graphs for languages with parametric polymorphism. OOPSLA, 2016.

[8] Romain Beguet. Call-graph-based optimizations in scala. Technical report,
EPFL, 2016.

[9] M. Odersky. The scala language specification version 2.9. 2014. http:
//www.scala-lang.org/docu/files/ScalaReference.pdf.

[10] D. Petrashko. Dotty linker: Making your scala applications smaller and
faster. https://d-d.me/talks/scaladays2015/#/, 2015.

6

https://github.com/lampepfl/dotty/pull/1840
https://github.com/lampepfl/dotty/pull/1840
https://github.com/dotty-linker/dotty
https://github.com/lampepfl/dotty
https://docs.oracle.com/javase/specs/
https://docs.oracle.com/javase/specs/
http://scala-lang.org/
http://visjs.org/
http://www.scala- lang.org/docu/files/ScalaReference.pdf
http://www.scala- lang.org/docu/files/ScalaReference.pdf
https://d-d.me/talks/scaladays2015/#/

	Overview
	Making it stable
	Architecture
	Method summary collection
	Building the call graph
	Deadcode elimination
	Test infrastructure
	Future infrastructure work

	Full Scala support
	Adding missing calls
	Mixin constructors
	Varargs
	Predef module load
	Pattern matching and closures
	Future Scala language work

	Calls on java code
	Current solution
	Future work on Java call graph

	Call graph visualization

	Conclusion

