Detailed simulations of spatial snow accumulation

patterns and near surface snow properties

Nander Wever ${ }^{1}$, Eric Keenan ${ }^{1}$, Michael Lehning ${ }^{2,3}$, Hendrik Huwald ${ }^{3}$, Jan Lenaerts ${ }^{1}$
${ }^{1}$ Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, United States

Accumulation is determined by wind

Snow accumulation on the Antarctic Ice Sheet is governed by snow transport by wind. This complex process is challenging to include in models and makes the interpretation of measurements, remote sensing products and simulation results difficult.
Here we present model simulations of near surface (uppermost 10 cm) snow density under the influence of drifting and blowing snow.

One-dimensional simulations

SNOWPACK is a detailed, physics based, multi-layer snow model.
 microstructure.
Drifting snow conditions impact simulated new snow density during accumulation events. The SNOWPACK model, driven by locally measured weather data, correctly simulates the temporal evolution of snow density in accumulation events:

Simulated snow density in accumulation events, compared to observed density in accumulation events. By combining accumulation depths from repeat terrestrial laser scanning with snow
density measurements from SnowMicroPen (SMP) and density cutters the distribution density measurements from SnowMicroPen (SMP) and density cutters, the distribution of new
snow density of fresh accumulations could be precisely determined The violin plots ill ustrate the snow density of fresh accumulations could be precisely determined. The violin plots illustrate the
spread in density found by the SMP or density cutter measurements.

Study domain

The study domain is in east Dronning Maud Land, from the Princess Elisabeth Station to the coast, where measurements
were collected at ice rises.

Snow density measurements

Spatial variability in snow density

Observed (above) and simulated (below) near surface (uppermost 10 cm) density. Spatial variability in near surface snow density is found, both on 100 km and 10 km scales, with density varying between 314 and $444 \mathrm{~kg} / \mathrm{m}$.
Higher density is found near the plateau, and at the lee side of ice rises. Lowe
 windward side of ice rises.
The large scale variability is reproduced by the simulations forced by MERRA , albeit with a significant bias. The small scale variability is reproduced in the opposite way as observed.

Statistical downscaling of wind was found to not correspond to dynamic

