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Abstract —The Internet of Things creates opportunities to 

develop data-driven design methodologies for smart cities. 

However, effects rather than causes are often measured in 

complex urban systems, requiring robust data-interpretation 

methodologies. Additionally, effective monitoring of large urban 

components, such as civil infrastructure, often involves multiple 

sensor devices and invasive sensor systems. In these situations, the 

design of measurement systems is an important task. Usually, this 

task is carried out by engineers using only qualitative rules of 

thumb and experience. Recently, researchers have developed 

quantitative sensor-placement methodologies to maximize the 

information gain of measurement systems. Nonetheless, these 

methodologies are only weakly validated using field measurements 

due to the small amount of data collected and the difficulties 

comparing the predicted information gain with observations. This 

paper proposes a validation strategy for sensor-placement 

methodologies. In this strategy, predictions of both individual 

sensor and sensor-configuration performances are compared with 

observations using statistical tests and hypothesis testing. The 

validation procedure is illustrated through three full-scale-bridge 

case studies. This strategy helps engineers select an appropriate 

methodology to design measurement systems in order to optimize 

data collection using sensors. 

Keywords — Joint entropy, model updating, sensor placement, 

sparse measurements. 

I. INTRODUCTION 

The Internet of Things (IoT) involves connecting devices, 

objects, and people through exchanging data and information. 

However, when scaling up the IoT to a city level, “Things” 

become more complicated than simple household items.  

When complex systems, such as civil infrastructure, are 

monitored, several challenges arise. First, the interpretation of 

collected data requires population-based methodologies to infer 

causes from effects and then predict future behavior [1]. In such 

situations, model-free signal-analysis approaches do not 

provide good support for critical decisions [2]. Additionally, the 

uncertainty magnitudes are much larger than in other fields as 

these systems are affected by their environment and because 

they are designed primarily to be safe rather than efficient. 

Behavior models produce only approximate predictions. 

Eventually, when “Things” must be upgraded due to a change 

in demand, a simple replacement should be the last option. 

More sustainable solutions often involve retrofitting and 

improvement actions rather than replacement. Such actions 

need to be well designed to control costs and minimize the 

impact on users using updated behavior models. 

To illustrate these ideas, bridge infrastructure is taken as an 

example in this study. However, similar methodologies can be 

applied to a wide range of challenges that involve sensing. 

Many countries realize that they need to use more efficiently 

existing infrastructure and extend their lifespan due to the 

economic, environmental and social costs of replacement. 

Fortunately, most bridges have as-built load-carrying capacity 

that is well beyond that required by design standards. However, 

the quantification of this reserve capacity is challenging as it is 

affected by service-loading changes (for example, truck-load 

increases) ageing processes (for example, corrosion), new 

requirements (for example, widening bridges) and climate 

change. As critical limit states may involve plastic collapse, 

data interpretation and prediction are non-trivial. Monitoring 

has the potential to reveal this untapped reserve capacity, 

leading to important economies in asset management and 

smarter civil infrastructure [3]. Field measurements associated 

with robust data-interpretation methodologies contribute by 

improving the accuracy of behavior predictions, and this task is 

called structural identification. 

The aim of structural identification is to improve knowledge 

of structural behaviour using field measurements. However, 

this task is challenging due to the unavoidable large magnitudes 

of uncertainties in civil infrastructure. Most studies of structural 

identification have used either a residual-minimization strategy 

or the traditional Bayesian model-updating (BMU) framework. 

While researchers usually assume that uncertainties have zero-

mean independent Gaussian forms [4], [5], these assumptions 

are seldom valid in the context of civil infrastructure as models 

are approximate and safe [6]. When systematic uncertainty is 



1558-1748 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.2969470, IEEE Sensors
Journal

Sensors-29460-2019 

 

 

2 

admitted, the formulation of BMU becomes complex and 

diagnosis is computationally expensive [7]. 

Error-domain model falsification (EDMF) [8] is an easy-to-

use structural-identification methodology. Model-parameter 

values are identified without the requirement of assumptions on 

uncertainty correlations between sensor locations. In this 

methodology, model-instance predictions are compared with 

field measurements at each sensor location independently. 

Model instances that are compatible with behavior 

measurements – called candidate models – are identified among 

an initial population, generated according to prior knowledge 

and engineering judgment. A model instance is rejected if 

residuals between predictions and measurements exceed 

threshold bounds for at least one sensor location. These bounds 

are calculated based on the modeling and measurement 

uncertainties and a target reliability of identification. Model 

instances having residuals within these bounds are included in 

the candidate-model set (CMS). Identified parameter values 

correspond to the range of values in the CMS.  

Engineers usually design measurement systems using 

qualitative rules of thumb and signal-to-noise ratios. 

Quantitative studies on optimal sensor placement have been 

recently carried out to maximize the information collected 

during monitoring, where the task is usually formulated as a 

discrete optimization problem [9].  Additionally, sensor-

placement algorithms are useful measurement-selection tools to 

choose most informative sensor measurements when the data-

interpretation task requires selecting good data within the IoT 

[10]. Therefore, measurement-point-selection algorithms have 

the potential to be critical tools for the design of future smart 

cities. 

The number of possible sensor configurations increases 

exponentially with the number of sensors and locations. 

However, all possible configurations cannot be assessed in a 

reasonable time as the sensor-placement objective functions are 

computationally expensive to evaluate. Therefore, most studies 

have used greedy algorithms to reduce the computational effort 

[11]. The objective function is defined in order to select sensor 

locations based on their predicted information content 

calculated for instance using information entropy in posterior 

model-parameter distributions [12], [13]. However, this 

objective function leads to a sensor-location clustering [14], 

limiting the total information gain. Joint entropy, evaluated 

using a hierarchical algorithm, is a new objective function [15] 

that explicitly includes mutual information between locations 

during sensor placement.  

Sensor-placement methodologies have been only weakly 

validated using field measurements [16]. Many studies, see for 

example [17], [18] among others, only use information-gain 

metrics prior to monitoring to justify their sensor-placement 

methodologies. To the best of authors’ knowledge, no 

methodology exists to validate sensor networks after field 

measurements are collected. One challenge for the validation of 

sensor-placement methodologies is that information-entropy 

and joint-entropy metrics provide only an average evaluation of 

the information gain at a sensor location with respect to all 

possible monitoring scenarios, since measurements are 

unknown before monitoring. Additionally, bridge load testing 

usually involves only a few sensors due to their costs, limiting 

the number of data points for each case study. Sensor data are 

also correlated as they measure structural system behavior; 

however, the correlation value between predictions at sensor 

locations is unknown in practice. Therefore, several case 

studies are necessary to validate sensor-placement 

methodologies as well as several assessment metrics to 

overcome the challenge of validation using small-data sets. 

This paper introduces a stepwise process to validate sensor-

placement methodologies when only sparse data sets of field 

measurements are available. Predicted information gains, 

measured in terms of information entropy of individual sensors 

and joint entropy of sensor configurations are compared with 

the observed information gain calculated as the falsification rate 

of model instances using EDMF. This methodology supports 

engineers in the choice of the sensor-placement methodology 

that maximizes the information gain collected by the IoT.  

The paper is organized as follow. Section II contains 

background information on EDMF and the sensor-placement 

methodology. Section III presents the methodology to validate 

the sensor placement using sparse field measurements. Then, 

three case-studies are employed in Sections IV and V to 

validate sensor-performance predictions obtained using the 

hierarchical algorithm and signal-to-noise ratios respectively. 

II. BACKGROUND 

A. Model-updating methodology 

EDMF [8] helps identify plausible parameter values of 

behavior models using information provided by field 

measurements. An initial population of model instances (IMS) 

is generated through assigning parameter values to the model 

class using a sampling technique, for example, Latin Hypercube.  

Let 𝑛𝑦 be the number of measurement locations. For each 

location 𝑖 ∈ {1, … , 𝑛𝑦} , 𝑅𝑖  denotes the real responses of a 

structure (unknown in practice) and 𝑦𝑖  corresponds to the 

measured value at location 𝑖 that is compared to model-instance 

predictions 𝑔𝑖(𝜽) . Model-prediction 𝑈𝑖,𝑔 and measurement 

uncertainties 𝑈𝑖,𝑦 are unavoidable. 𝑈𝑖,𝑦 is usually estimated by 

conducting multiple series of tests under site conditions and 

based on manufacturer specifications, while 𝑈𝑖,𝑔  is estimated 

using values taken from the literature, stochastic methods and 

engineering judgment. The relationship between 𝑅𝑖 , 𝑦𝑖 , and 

𝑔𝑖(𝜽) is presented in (1). 

𝑔𝑖(𝜽) +  𝑈𝑖,𝑔 = 𝑅𝑖 = 𝑦𝑖 + 𝑈𝑖,𝑦∀𝑖 ∈ {1, … , 𝑛𝑦}.    (1) 

 By rearranging the terms in (1) and combining the two 

sources of uncertainty 𝑈𝑖,𝑔 and 𝑈𝑖,𝑦 in a unique source 𝑈𝑖,𝑐, Eq. 

(2) is obtained. 

𝑔𝑖(𝜽) − 𝑦𝑖 = 𝑈𝑖,𝑐  ∀𝑖 ∈ {1, … , 𝑛𝑦}.  (2) 

The left-hand side of (2) shows the difference between a 

model-instance prediction and a field measurement at location 

𝑖, called the residual 𝑟𝑖 = 𝑔𝑖(𝜽) − 𝑦𝑖 . At each sensor location, 

falsification thresholds are defined in the uncertainty domain 

according to a confidence level. This confidence level is a 

tradeoff between accepting incorrect models and falsifying the 
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correct model. This confidence level is typically fixed at 95% 

[3], [8], similarly to characteristic values for material properties 

in civil engineering. If the residual exceeds thresholds at one 

location, the model instance is falsified. On the contrary, 

models for which residuals are within threshold bounds at each 

sensor location are included in the candidate model set (CMS) 

and these models are used for predictions. 

B. Hierarchical algorithm 

In this section, the hierarchical algorithm for  sensor 

placement is presented. The optimal measurement system 

depends on the goal of monitoring, such as structural 

identification or damage detection. Based on this choice, a 

behavior model is then built and possible ranges of model-

parameters values are determined. For a sensor-placement 

methodology, inputs at each possible sensor location are a 

population of model predictions and the quantification of 

uncertainty sources. 

Sensor placement is defined as an optimization task, where 

an objective function and optimization algorithm must be 

defined. The information entropy was introduced by 

Papadimitriou [12] as an objective function for the task of 

sensor placement. In EDMF, information entropy is evaluated 

in the prediction domain [19]. The distribution of model-

instance predictions at each sensor location i is divided in 

intervals based on the combined uncertainty Ui,c (2). The 

probability that model instance output gi,j falls inside the jth 

interval among 𝑁𝐼,𝑖  intervals is equal to 𝑃(𝑔𝑖,𝑗) =

𝑚𝑖,𝑗 ∑ 𝑚𝑖,𝑙
𝑁𝐼,𝑖

𝑙=1
⁄ , where mi,j is the number of model instances in 

the jth interval. The information entropy 𝐻(𝑔𝑖) is evaluated for 

a sensor location i according to (3).  

𝐻(𝑔𝑖) = − ∑ 𝑃(𝑔𝑖,𝑗) log2 𝑃(𝑔𝑖,𝑗)
𝑁𝐼,𝑖

𝑗=1 . (3) 

To explicitly account for the mutual information between 

sensor locations, joint entropy was proposed as a new sensor-

placement objective function [15]. This metric evaluates the 

information entropy between sets of predictions while taking 

into account the mutual information between them. For a set of 

two sensors i and i+1, the joint entropy 𝐻(𝑔𝑖,𝑖+1) is defined 

following (4), where 𝑃(𝑔𝑖,𝑗 , 𝑔𝑖+1,𝑘) is the probability that a model 

instance falls in both intervals j and k and 𝑘 ∈ {1, … , 𝑁𝐼,𝑖+1}, NI,i+1 

is the maximum number of prediction intervals at location i+1, 

𝑖 + 1 ∈ {1, … , 𝑛𝑠}, and ns is the number of potential sensor 

locations. 

𝐻(𝑔𝑖,𝑖+1) = − ∑ ∑ 𝑃(𝑔𝑖,𝑗 , 𝑔𝑖+1,𝑘) log2 𝑃(𝑔𝑖,𝑗, 𝑔𝑖+1,𝑘).
𝑁𝐼,𝑖

𝑗=1

𝑁𝐼,𝑖+1

𝑘=1  (4) 

The joint entropy is less than or equal to the sum of the 

individual information entropies of sets of predictions. Eq. (5) 

presents the joint entropy of two sensors, where I is the mutual 

information between sensor i and i+1. 

𝐻(𝑔𝑖,𝑖+1) = 𝐻(𝑔𝑖) + 𝐻(𝑔𝑖+1) − 𝐼(𝑔𝑖,𝑖+1). (5) 

Due to the large number of combinations of possible sensor 

configurations, an optimization strategy is required to find 
high-quality solutions in a reasonable amount of time. The 

hierarchical algorithm is a sequential algorithm with a forward 

approach. In a sequential search, once a sensor location is 

selected, this choice is not reevaluated in subsequent sensor 

placements. This strategy reduces the computational time and 

was shown to provide high-quality sensor configurations for 

structural identification [20].  

III. STRATEGY TO VALIDATE SENSOR-PLACEMENT 

METHODOLOGIES 

In this section, a strategy to compare predictions in terms of 

sensor-configuration performance with the observations is 

presented. In order to validate sensor-placement 

methodologies, several steps must be performed due to the 

small size of data sets. Sensor-placement methodologies 

provide three outputs that must be validated using field 

measurements (Fig. 1). The validation of the sensor-placement 

methodology is effective only if these three validation 

assessments are successful. 

In order to select the most informative sensor locations, the 

sensor-placement algorithm must be able to correctly rank the 

sensor locations according to their performance. This sensor 

ranking must include locations from several sensor types such 

as strain gauges or deflection targets. Then, the predicted 

information-gain value of individual sensors must be 

corroborated using the observed information gain after field 

measurements. Finally, the total information gain of a sensor 

configuration must be accurately estimated by the sensor-

placement algorithm in order to correctly predict the optimal 

number of sensors that should be used for monitoring.  

Each validation assessment is discussed in more detail 

below. In these assessments, the hierarchical algorithm is used 

as an example of sensor-placement methodology to predict 

sensor performance, while EDMF is used as the structural-

identification methodology to assess the observed sensor 

performance once field measurements are collected. 

Nevertheless, these assessments can be performed for any  

sensor-placement and data-interpretation methodologies as 

only normalized predicted and observed performances are 

compared.

 

Fig. 1. Flowchart of the 3-step methodology to validate a sensor-placement algorithm using field measurements. 
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A. Individual sensor ranking 

The hierarchical algorithm provides an evaluation of sensor 

location in terms of entropy values (predicted performance), 

while observations are made in terms of number of falsified 

model instances (observed performance), called falsification 

rate. Although these two values cannot be directly compared, 

one aspect for validation is that the sensor ranking provided by 

the sensor-placement algorithm must be comparable with the 

observed ranking according to their sensor falsification 

performance. The sensor-placement methodology must thus 

select in the first position the most powerful sensors defined 

using falsification rate.  

The first assessment involves the comparison of these 

sensor rankings. For each case study, sensors are ranked 

according to predicted and observed performance. Then, these 

rankings are compared using the generalized rank correlation 

metric Γ [21], where 𝑎𝑖  denotes the information entropy and 𝑏𝑖 

indicates the falsification performance of sensor i after 

monitoring (6). 𝑏𝑖  is calculated as the proportion of model 

instances that are falsified by the individual field measurement 

𝑦𝑖  using (2).When Γ is equal to 1, this result reflects a perfect 

correlation between the prediction and observation, while Γ 
equal to 0 indicates no correlation between data sets. Therefore, 

Γ values larger than 0.95 are required.  

Γ =
∑ 𝑎𝑖𝑏𝑖

𝑛
𝑖=1

√∑ 𝑎𝑖
2𝑛

𝑖=1 √∑ 𝑏𝑖
2𝑛

𝑖=1

. (6) 

B. Correspondence between predicted and observed 

individual-sensor performance 

An additional comparison between these data sets is aimed at 

evaluating the relation between the predicted (entropy value) 

and the observed (falsification rate) performances. Once 

normalized using the maximum performance value for each 

case study, results of all case studies can be combined. 

Statistical tests are performed to assess the hypothesis of a 

correlation between predictions of sensor performance and the 

observations. In case of perfect correlation, results must be 

close to the linear regression of 𝐻 =  𝐹̂ , where 𝐻  is the 

normalized sensor information entropy and 𝐹̂ is the normalized 

falsification rate. To corroborate this assumption, the 

experimental linear regression must be similar to x = y and the 

R2 value must be close to 1. Additionally, the p-value (α) is used 

to quantify the statistical significance of the hypothesis of a 

correlation between entropy and falsification performance. In 

statistical hypothesis testing, the p-value is defined as the 

probability that the data would be at least as extreme as those 

observed if the null hypothesis (i.e., no correlation) is true. In 

this study, a threshold of α equal to 0.05 is set to corroborate 

the statistical significance of the hypothesis. In other words, if 

p-value is less than α the null hypothesis is rejected. 

C. Correspondence between predicted and observed sensor-

configuration performance 

The information gain of a sensor configuration is influenced 

by the mutual information between sensor locations. In the 

hierarchical algorithm, the joint entropy assesses (4) the 

predicted information gain of a sensor configuration. As it 

explicitly accounts for the mutual information between sensor 

locations [15], this metric provides an output that can be 

corroborated using field measurements. 

First, the joint-entropy assessment with respect to the 

number of sensors provides the information on the optimal 

number of sensors as usually the joint-entropy value reaches a 

maximum value. As the predicted information gain is assessed 

considering all potential field measurements, the falsification 

rate should not increase once the joint entropy reaches a 

maximum value (the inverse is not necessarily true). 

Then, the predicted redundancy of information gain 

between two sensors must be similar to the observed mutual 

information. The unique information provided by sensor i when 

this sensor is added to a configuration involving previously a 

given number of sensors t (t≥1) must be correctly estimated by 

the sensor-placement algorithm. This new information is 

evaluated using the ratio between the increase of performance 

(joint entropy or falsification) when sensor i is included in the 

sensor configuration t, 𝑃𝑒𝑟𝑓𝑡+𝑖 − 𝑃𝑒𝑟𝑓𝑡 , and the individual 

performance of sensor i, 𝑃𝑒𝑟𝑓𝑖 . However, the unique 

information provided by sensor i is influenced by the 

information already gained by the sensor configuration 𝑃𝑒𝑟𝑓𝑡, 

as new information is more difficult to collect when most 

information has already been gained. For this reason, predicted 

and observed performance in terms of new information cannot 

be directly compared. A metric evaluating the new information 

is calculated in (7). The unique information is multiplied by the 

ratio between the information already collected by the sensor 

configuration, 𝑃𝑒𝑟𝑓𝑡, and the maximum theoretical information 

gain, 𝑃𝑒𝑟𝑓𝑚𝑎𝑥. 

  𝑃𝑒𝑟𝑓𝑚𝑎𝑥 corresponds to a CMS with only a single model 

instance (perfect identification). In the falsification domain, 

𝑃𝑒𝑟𝑓𝑚𝑎𝑥  is equal to (𝐼𝑀𝑆 − 1)/𝐼𝑀𝑆 where 𝐼𝑀𝑆 is the initial 

number of model instances generated. In the joint-entropy 

domain, 𝑃𝑒𝑟𝑓𝑚𝑎𝑥  is equal to – log(1 𝐼𝑀𝑆)⁄ that is the 

maximum joint-entropy value. For both prediction and 

observation domains, 𝑃𝑒𝑟𝑓𝑚𝑎𝑥 is thus only related to the initial 

population of model instances. 

N(i) = {
1, 𝑖𝑓 𝑡 = 1

𝑃𝑒𝑟𝑓𝑡+𝑖−𝑃𝑒𝑟𝑓𝑡

𝑃𝑒𝑟𝑓𝑖
∗

𝑃𝑒𝑟𝑓𝑡

𝑃𝑒𝑟𝑓𝑚𝑎𝑥
 ∀𝑡 > 1

.  (7) 

This metric allows a comparison of the predicted (𝑁𝑒𝑛𝑡𝑟𝑜𝑝𝑦) 

and observed (𝑁𝑓𝑎𝑙𝑠) new information when sensor i is added 

to the sensor configuration. Results of the sensor-placement 

methodology are corroborated only if there is a correlation 

between 𝑁𝑓𝑎𝑙𝑠 and 𝑁𝑒𝑛𝑡𝑟𝑜𝑝𝑦 . To verify this assumption, the 

linear regression must be similar to x = y with R2 close to 1. 

Additionally, a threshold α equal to 0.05 is set on the p-value in 

order to corroborate the statistical significance of the hypothesis 

of a correlation between the predicted and observed new 

information N(i) given by sensor i related to a sensor 

configuration t. 
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IV. CASE STUDIES – HIERARCHICAL ALGORITHM 

In this section, results of the hierarchical-algorithm sensor 

placement are compared with falsification performance of 

sensors and sensor configurations for three full-scale case 

studies.  

Table I presents characteristics of the Singapore Flyover 

(Singapore) [22], [23], Exeter Bascule Bridge (UK) [24], [25] 

and Rockingham Bridge (Australia) [26]. Monitoring has been 

performed in 2016, 2017 and 2014 respectively. For each 

bridge, the aim of the monitoring is to identify model-parameter 

values in order to provide more accurate predictions of 

structural behavior and assessing their reserve capacity 

Fig. 2. presents the sensor configuration selected by 

engineers for each bridge. In each case study, the sensor 

locations have been selected based on their predicted signal-to-

noise ratio and engineering experience. In the Singapore 

flyover (Fig. 2A), 10 accelerometers are disposed in order to 

estimate the first four natural frequencies of the bridge during 

dynamic excitations. Therefore, these sensor locations are not 

directly assessed in this study as only the natural frequencies 

are used during falsification.  

Table II presents the initial intervals of model parameters 

that must be identified during monitoring. These intervals are 

estimated based on engineering judgement of plausible 

parameter values for existing bridges [22-26]. For each bridge, 

a population of model instances IMS is generated, where each 

instance had a unique set of parameter values within initial 

feasible ranges. These populations correspond to the input for 

the sensor-placement methodology. Using field measurements 

and EDMF, candidate models have been identified and 

identification ranges are also shown in Table II. The aim of 

monitoring is to reduce as much as possible these initial ranges 

by falsifying model instances. Globally, parameter ranges have 

been drastically reduced, showing that the selection of sensor 

configurations by engineers was appropriate. However, some 

parameter-value ranges have not been significantly reduced 

(𝜽𝟐,𝟏, 𝜽𝟐,𝟐 and 𝜽𝟑,𝟏) as these parameters have little impact on 

model-instance predictions at selected sensor locations [24-26]. 

To measure the information gain of the monitoring, the 

number of falsified model instances (falsification rate) is used 

instead of parameter-range reductions as the falsification rate is 

measured in a one-dimensional domain. This choice is made as 

the number of model instances is sufficient for all case studies 

TABLE I 

CASE STUDY DESCRIPTION 

Parameters Initial range Identification 

Singapore Flyover 

 

4 precast prestressed 

concrete beams 

Poured-concrete deck 

Built in 1985 

Single span of 32.0m  

4 deflection and 2 inclination measurements under a static load test. 

4 frequency measurements under dynamic tests using 10 accelerometers. 

Values of model parameters to identify: 

- equivalent concrete Young’s modulus 𝜃1,1 

- equivalent concrete density 𝜃1,2 

- rotational stiffness of bearing devices 𝜃1,3 

- vertical stiffness of bearing devices 𝜃1,4 

Number of initial model instances (𝐼𝑀𝑆1): 1000 

Exeter Bascule Bridge 

 

2 steel girders 

Aluminum deck 

Built in 1972 

Single span of 17.3m 

1 deflection and 5 strain measurements under a static load test. 

Values of model parameters to identify: 

- equivalent deck Young’s modulus 𝜃2,1 

- rotational stiffness of bearing devices 𝜃2,2 

- axial stiffness of hydraulic jacks 𝜃2,3 

Number of initial model instances (𝐼𝑀𝑆2): 3000 

Rockingham bridge 

 

8 precast prestressed 

concrete beams 

Poured-concrete deck 

Built in 1970 

Spans of 13.7, 24.3 

and 13.2m. 

5 strain measurements under a static load test 

Values of model parameters to identify: 

- beam concrete Young’s modulus 𝜃3,1 

- deck concrete Young’s modulus 𝜃3,2 

Number of initial model instances (𝐼𝑀𝑆3): 300 

 

TABLE II 

INITIAL AND IDENTIFIED INTERVALS FOR MODEL PARAMETERS  

Parameters Initial range Identification 

Singapore Flyover 

𝜽𝟏,𝟏 [GPa] 20 –  42 28.1 – 29.9 

𝜽𝟏,𝟑 [kg/m3] 1800 – 3000  1810 – 1950  

𝜽𝟏,𝟑 [log(Nmm/rad)] 9 – 13  12.2 – 12.8 

𝜽𝟏,𝟒 [log(N/mm)] 8 – 11 8.5 – 8.9  

Exeter Bascule Bridge 

𝜽𝟐,𝟏 [GPa] 60 – 80 60.2 – 79.8  

𝜽𝟐,𝟐 [log(Nmm/rad)] 8 – 12 8.1 – 11.9 

𝜽𝟐,𝟑 [log(N/mm)] 3 – 5 4.3 – 4.4 

Rockingham Bridge 

𝜽𝟑,𝟏 [GPa] 25 – 45  25.1 – 44.9 

𝜽𝟑,𝟐 [GPa] 30 – 50  46.4 – 48.3 
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to cover thoroughly parameter domains. Additionally, 

parameter-value identification is uninterrupted for the three 

bridges. Therefore, a very-high correlation is observed between 

the parameter-range reductions and the falsification rate.  

A. Sensor information entropy 

Fig. 3. presents the information entropy (left-hand side) and 

falsification performance (right-hand side) of each sensor for 

the three bridges. Each symbol shows a different type of 

measurements. Globally, the predicted performance is similar 

to the observations. Additionally, the best sensor in terms of 

falsification rate has always been identified by the hierarchical 

algorithm as the sensor with the largest information entropy for 

all case studies. This result shows the accuracy of the sensor-

placement algorithm for prediction of independent sensor 

performance.  

For the Exeter Bascule Bridge, S2 to S4 have entropy and 

falsification values equal to zero due to their locations (Fig.  2). 

These strain gauges are placed on a secondary beam, where 

model-instance predictions are little influenced by model-

parameter values and thus they provide little support for 

parameter values identification. For the Rockingham Bridge, 

similar sensor performance is obtained because selected sensor 

locations are only on the midspan section of the bridge. 

Table III presents the ranking correlation Γ  between 

falsification rate and information entropy values. Results show 

high correlation between the predicted and observed rankings 

as the Γ value is close to 1 for each case study. These results 

highlight the ability of the hierarchical algorithm to predict 

correctly the relative individual performances of sensors among 

a set of possible sensor locations. 

Based on the ranking correlation values of each bridge 

individually, a hypothesis of a correlation between the 

prediction and observation of sensor performances can be 

made. However, this result is not sufficient to validate this 

hypothesis because the size of data sets for each bridge 

individually is too low and sensor results may be correlated in 

 

Fig. 2. Sensor positions on the bridge. (a) Singapore Flyover; (b) Exeter 

Bascule Bridge; (c) Rockingham Bridge. 
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Fig. 3. Comparison of information entropy (predicted performance – (a); (c); 

(e)) and falsification rate (observed performance – (b); (d); (f)) for each sensor 

individually. (a); (b)) Singapore Flyover, (c); (d)) Exeter Bascule Bridge, (e); 

(f)) Rockingham Bridge. 
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TABLE III 

RANKING CORRELATION VALUE FOR EACH CASE STUDY – HIERARCHICAL 

ALGORITHM FOR SENSOR PLACEMENT 

Ranking 

correlation 

Singapore 

Flyover 

Exeter Bascule 

Bridge 

Rockingham 

Bridge 

𝚪 [-] 0.993 0.992 0.989 
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the same case study. Therefore, case-study results should be 

combined to perform hypothesis testing. 

B. Comparison of normalized bridge data 

Fig. 4. presents the relationship between information-

entropy 𝐻 and falsification-rate 𝐹̂ values for each sensor 

individually. Values have been normalized in order to 

aggregate data from the three case studies. Additionally, the 

linear regression between data is shown. In case of a perfect 

correlation, the observed linear regression should be 𝐹̂  = 𝐻. 

Based on the data collected, results are shown to be near to the 

perfect correlation with a R2 value of 0.867. The p-value is 

equal to 0.01 when removing data points at 𝐻 =  𝐹̂ = 0  to 

avoid extreme values in the statistical test of the p-value. These 

results mean that the null hypothesis of no correlation between 

the information entropy and the falsification performance can 

be a priori rejected given data sets of the three case studies. 

Therefore, predictions of the hierarchical algorithm in terms of 

predicted individual sensor performances are corroborated 

using field measurements.  

C. Comparison of sensor configuration information-gain 

assessment 

Fig. 5. presents the joint entropy (left-hand side) and 

falsification rate (right-hand side) with respect to the number of 

sensors for the three case studies. Globally, similar trends are 

observed between the predictions of information gain of sensor 

configuration with the observations. The falsification rates 

reach their maximum values at 9, 2 and 1 sensors in the sensor 

configuration for the Singapore Flyover, Exeter Bascule Bridge 

and Rockingham Bridge, respectively, while predictions reach 

maximum values at 10, 3 and 4 sensors. This result verifies the 

validation condition specifying that the predicted information 

gain must reach a maximum value after the falsification rate. 

This condition is essential to ensure that the hierarchical 

algorithm is correctly estimating the unique information 

provided by each sensor in the sensor configuration.  

Fig. 6. shows the relation between the new information 

metric evaluations calculated using the joint entropy 

predictions and falsification rate for all case studies. Sensors S2 

to S4 of the Exeter Bascule Bridge (Fig. 3) are not included as 

they present an information-entropy value equal to zero and 

thus the metric values cannot be calculated. The computed 

linear regression between data sets is close to 𝑁𝑓𝑎𝑙𝑠 =  𝑁𝑒𝑛𝑡𝑟𝑜𝑝𝑦 

with a R2 value of 0.984. Additionally, the p-value is smaller 

than 0.01 when removing data points at 𝑁𝑓𝑎𝑙𝑠 =  𝑁𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 1 

to avoid extreme values in the statistical test of the p-value. 

These results corroborate the hypothesis that the hierarchical 

algorithm is able to predict the information gain of sensor 

configurations. Based on this three assessments, the 

hierarchical algorithm is thus recommended as sensor-

placement methodology.  

 
 Fig. 4. Relationship between the normalized sensor information entropy 𝐻̂ 

and the normalized sensor falsification rate 𝐹̂. 

 

 
Fig. 5. Comparison of joint entropy (predicted performance – (a); (c); (e)) and 

falsification rate (observed performance – (b); (d); (f)) with respect to the 

number of sensors. (a); (b)) Singapore Flyover, (c); (d)) Exeter Bascule 

Bridge, (e); (f)) Rockingham Bridge. 
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 Fig. 6. Relationship between the new information metric values calculated 

using observations 𝑁𝑓𝑎𝑙𝑠  and hierarchical-algorithm predictions 𝑁𝑒𝑛𝑡𝑟𝑜𝑝𝑦. 
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V. CASE STUDIES- SIGNAL-TO-NOISE RATIO 

In this Section, a sensor-placement methodology commonly 

used by engineers is to dispose sensors on locations that present 

the largest signal-to-noise ratio (SNR) (8). The proposed 

strategy to validate sensor-placement methodologies is 

employed using the three bridge case studies (Fig. 2 and 3, Tab. 

I and II) as for the hierarchical algorithm (Section IV). 

𝑆𝑁𝑅 =
𝑀𝑒𝑎𝑛 (𝑔𝑖)

𝑈𝑖,𝑦
  (8) 

First, the predicted individual sensor performance is 

calculated using the SNR metric for each case study. Tab. IV 

presents the ranking correlation Γ  between falsification-rate 

and SNR values.  Although results are similar with the 

hierarchical-algorithm values (Tab. III) for the Singapore 

Flyover and Rockingham Bridge, the Γ value for the Exeter 

Bascule Bridge is smaller than 0.80. Therefore, the first 

validation condition (0.95) is not satisfied (Section IIIA).  

To corroborate this result, Fig. 7 presents the predicted and 

observed sensor performance for the Exeter Bascule Bridge. 

Results show that the sensor performance has been wrongly 

predicted by this sensor-placement strategy. This is because the 

SNR metric does not account for the variability of model-

instance predictions and  model uncertainties.  

Furthermore, the SNR metric does not provide evaluations 

of sensor configurations because locations are evaluated 

independently and thus, the third validation assessment 

(Section IIIC) cannot be performed. This sensor-placement 

strategy is not validated by field measurements and is thus not 

recommended. 

VI. CONCLUSIONS 

 Sensor-placement methodologies have the potential to 

enhance information gain when complex urban systems are 

monitored. These methodologies support engineers in the 

identification of the most powerful individual sensors  as well as 

in the estimation of the information gain of a sensor 

configuration prior monitoring. Given the importance of the 

choice of sensor configuration for the Internet of Things, sensor-

placement methodologies must be validated using field 

measurements. The validation of sensor-placement 

methodologies  helps asset managers review their decision in 

terms of measurement-system design. Furthermore, performing 

a validation strategy allows the assessment of the value of 

monitoring information by comparing the predicted and 

observed information gain. 

This study proposes a stepwise process to validate sensor-

placement algorithms when data sets are small. The validation 

strategy helps reveal important outputs of the sensor-placement 

methodology that must be validated using field measurements. 

The hierarchical algorithm is shown to effectively predict the 

information gain provided by sensor configurations based on 

data sets of three full-scale case studies, while a strategy based 

on the signal-to-noise ratio is not recommended.  
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