
Optimus Prime:
Accelerating Data Transformation in Servers
Arash Pourhabibi

arash.pourhabibi@epfl.ch
EcoCloud, EPFL

Siddharth Gupta
siddharth.gupta@epfl.ch

EcoCloud, EPFL

Hussein Kassir∗
hussein.kassir@zhinst.com

Zurich Instruments

Mark Sutherland
mark.sutherland@epfl.ch

EcoCloud, EPFL

Zilu Tian
zilu.tian@epfl.ch
EcoCloud, EPFL

Mario Paulo Drumond
mario.drumond@epfl.ch

EcoCloud, EPFL

Babak Falsafi
babak.falsafi@epfl.ch

EcoCloud, EPFL

Christoph Koch
christoph.koch@epfl.ch

EcoCloud, EPFL

Abstract
Modern online services are shifting away from monolithic
applications to loosely-coupled microservices because of
their improved scalability, reliability, programmability and
development velocity. Microservices communicating over
the datacenter network require data transformation (DT)
to convert messages back and forth between their internal
formats. This work identifies DT as a bottleneck due to re-
ductions in latency of the surrounding system components,
namely application runtimes, protocol stacks, and network
hardware. We therefore propose Optimus Prime (OP), a pro-
grammable DT accelerator that uses a novel abstraction, an
in-memory schema, to represent DT operations. The schema
is compatible with today’s DT frameworks and enables any
compliant accelerator to perform the transformations com-
prising a request in parallel. Our evaluation shows that OP’s
DT throughput matches the line rate of today’s NICs and
has ~60× higher throughput compared to software, at a tiny
fraction of the CPU’s silicon area and power. We also evalu-
ate a set of microservices running on Thrift, and show up to
30% reduction in service latency.

CCS Concepts • Computer systems organization →
Architectures; • Information systems→ Information in-
tegration; • Software and its engineering → Cloud com-
puting.
∗This work was done while the author was at EPFL.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378501

Keywords Data Transformation, Hardware Accelerators,
Microservices, Datacenters, Networked Systems
ACM Reference Format:
Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Suther-
land, Zilu Tian, Mario Paulo Drumond, Babak Falsafi, and Christoph
Koch. 2020. Optimus Prime: Accelerating Data Transformation in
Servers. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’20), March 16–20, 2020, Lausanne, Switzerland.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3373376.
3378501

1 Introduction
Deploying and maintaining online services in warehouse-
scale computers [4] has become a task so complex that it has
changed the best practices for software architecture [14, 22,
29, 31, 42]. Instead of single-binary monoliths, datacenter-
scale applications are now best constructed as microservices,
consisting of numerous self-contained modules communi-
cating through Remote Procedure Calls (RPCs) or RESTful
APIs [7, 9, 13, 14, 23, 45, 51]. Each microservice is written in
the programming language best suited to its purpose, and
uses the data formatmost natural to that language [13, 14, 26].
Therefore, inter-microservice RPCs must rely on the process
of Data Transformation (DT) to convert data back and forth
between the microservices’ various formats.
The tremendous bandwidth of datacenter networks (e.g.,

100Gbps in early deployment and 1Tbps on the roadmap) [48]
and the body of systems research to optimize network hard-
ware and software [1, 8, 21, 27, 33, 37, 40] have largely shifted
the performance onus to server-side factors. To quantify,
commodity NICs can already receive minimum-size Ether-
net packets in just a few ns, and specialized network stacks
already exist to keep up with such breakneck speeds [6, 27].
Additionally, as end-to-end transfer latencies approach the
electrical limitations of propagation and switching [15], im-
proving the performance of network communication has
led to a “hunt for the killer microseconds” across the entire

https://doi.org/10.1145/3373376.3378501
https://doi.org/10.1145/3373376.3378501
https://doi.org/10.1145/3373376.3378501


datacenter system stack [5]. We claim that because networks
and protocols have already taken great strides forwards, DT
is logically the next step to optimize and prevent from in-
hibiting the performance of network communication.

In theory, enforcing a single data format would eliminate
the need for DT and enable all applications to communi-
cate at the NIC’s line rate. But in practice, microservices re-
quire an intermediary DT layer to ensure interoperability be-
tween each communicating pair of microservices. Currently,
DT is performed exclusively by software, which expresses
each transformation in long sequences of instructions in the
CPU’s ISA. Due to the inherent limitations of ISAs to express
transformations and the CPU’s ability to execute them, DT
is already the bottleneck of inter-microservice RPCs.
We have observed that improving DT software’s perfor-

mance is difficult because each transformation executes copi-
ous dynamic instructions whose performance is hindered by
data-dependent control flow. Even optimistically assuming
five emitted instructions per output byte and perfect control
speculation, transforming a 300𝐵 message (representative
of common datacenter RPCs [33, 41]) requires upwards of
700𝑛𝑠 . This difficulty is exacerbated for more complex trans-
formations, which require many more instructions per byte.
Furthermore, even though each field of a message can be
operated on in parallel, the transformations are fine-grained
enough that synchronization costs limit any benefits from
parallelization using threads. Even in an optimistic scenario,
DT latency is already comparable to state-of-the-art protocol
processing latency [27] and merits attention to reduce it.
In this work, we focus on alleviating the DT problem by

first designing an abstraction for representing parallel trans-
formation tasks, and then architecting a data transformation
unit to unpack the tasks and perform them. Our key insight
is that the parallelism amongst a message’s fields is implicit
when expressed in a CPU’s ISA, but is much better repre-
sented by an explicitly parallel abstraction. To express this
explicit parallelism to our accelerator, we make use of an
in-memory schema that is created by the framework as the
message is being built. This important design decision also
means that our accelerator is applicable to anyDT framework
that generates this schema. We emphasize the importance
of our architecture being general-purpose as it helps justify
the investment in specialized hardware, which must apply
to a variety of applications to be worth deploying. Nowhere
is this challenge more pronounced than in the datacenter,
where workloads have been shown to demonstrate signifi-
cant diversity [4, 14, 28]. However, because our architecture
is intended to be general-purpose, it boosts the performance
of any datacenter-deployed microservice that depends on
DT; we therefore claim that such an accelerator is an ideal
candidate for inclusion in future server chips.

Finally, we implement and synthesize a concrete DT accel-
erator, and evaluate it against a set of representative DT tasks,
frameworks, and microservices. Our accelerator outperforms

commodity CPU cores by up to ~60× when transforming
300𝐵 Protobuf messages, with 2075× greater performance
per watt. When applied to microservices running on Thrift’s
RPC stack, our design shows up to 30% reduction in overall
service latency.

To summarize, we make the following contributions:

• An improved abstraction for transformation tasks: an
in-memory schema which is parsed and parallelized
by dedicated hardware.

• The design and architecture of an integrated data trans-
former, Optimus Prime. Our design goals are based on
the constraints of modern server systems and identify
the key characteristics for any DT accelerator.

• A concrete implementation of Optimus Prime which is
compatible with today’s DT frameworks and performs
at the line-rate of today’s 40Gbps server NICs, and
continues to scale up to the bandwidth capacity of the
server’s on-chip network.

The rest of the paper is organized as follows: We first
motivate the need for DT acceleration (§2). We then describe
the design space for a data transformation accelerator (§3),
followed by a description of our concrete implementation,
named Optimus Prime (§4). Next, we detail our evaluation
methodology (§5) and results (§6). Finally, we discuss related
work (§7) and conclude (§8).

2 Why Accelerate DT?
Microservices have emerged as a promising paradigm to
build modern online services at datacenter scale, as they pro-
vide significant benefits for scalability, fault tolerance, relia-
bility, and development velocity [4, 14, 26]. A microservices
architecture consists of fine-grained software components
with enforced modularity, interconnected through APIs such
as RPCs or REST [14, 26, 44]. Because code structured in
this fashion is often written in different languages with their
own data formats, RPCs that cross format boundaries must
perform data transformation (DT) to and from the desired for-
mat. Developers commonly use frameworks such as Google’s
Protocol Buffers (Protobuf) [19, 28] or Facebook/Apache’s
Thrift [3] for DT. These frameworks provide a structured
way for applications to define the format of each message,
and generate the code required to transform that message to
and from the wire representation.

To illustrate the essential nature of DT, we present an ex-
ample software stack in Fig. 1, where App 1 performs an RPC
to App 2 with a Person object as its argument. App 1 first
invokes the code generated by the DT framework to serialize
the object into its wire representation. The binarized buffer
is then passed down the stack to the RPC layer. When the
RPC arrives at App 2, the same procedure is performed in
reverse, where the object is deserialized into App 2’s format.
Critically, this step takes place for every network message



Serialization

RPC Handling

Application 1

Deserialization

RPC Handling

Application 2

Network

Person
uint64 id;
string name;
Phone phone;

Figure 1. Two applications communicating using RPC.

between microservices, even those using the same data for-
mat, as the data must be flattened into a byte-stream at the
sender and unflattened on the receiver side.

2.1 The Need for Faster DT
DT latency was long hidden behind slow network interfaces
and protocol processing overheads. However, focused evo-
lution efforts in the networking and systems domains have
removed much of the overhead from the critical path of
RPCs. Therefore, we claim that DT in its current form will
inevitably dominate the future latency of inter-microservice
RPCs. Furthermore, as the processing times of the microser-
vices shrink to the 𝜇𝑠-scale [5], DT will soon account for a
considerable fraction of end-to-end latency. In fact, a recent
study has shown that RPC and Protobuf software accounts
for ~12% of total CPU cycles in Google datacenters [28]. We
studied three microservices from DeathStarBench [14], and
observed up to 30% of service time being spent in DT.
To quantify this claim, Fig. 2 illustrates the impact of

improved network fabrics and protocol stacks on the la-
tency of an RPC with a 300𝐵 payload, by comparing proto-
col processing time to DT time. The wire time is relatively
small (< 200𝑛𝑠) and as such is not considered. The DT time
is based on (de)serialization of Protobuf messages we used
in our evaluation (§5), and protocol processing latencies for
TCP and eRPC are taken from IX [6] and eRPC [27], respec-
tively. In 10𝐺𝑏𝑝𝑠 commodity network stacks running TCP
(e.g., in AWS [2]), protocol processing forms the dominant
component of RPC latency. Combining faster fabrics [15]
with optimized user-level software stacks [6, 27, 40] has
resulted in sub-1𝜇𝑠 protocol processing latencies [27, 33].
Therefore, with 40𝐺𝑏𝑝𝑠 fabrics and user-level RPC protocols,
DT dominates the communication latency.
Finally, as silicon density scaling has slowed down in re-

cent years (to as low as 17% annually), architects can no
longer rely on the speedups historically granted by CMOS
scaling to accelerate DT and match the rate of future NICs.
To demonstrate, we used an Intel Xeon X5670, and measured
the (de)serialization throughput of the messages in our eval-
uation (§5) as 100 − 300𝑀𝐵/𝑠 . This is already an order of
magnitude less than commodity 10𝐺𝑏𝑝𝑠 NICs and will fall
further behind future higher-bandwidth NICs. Our goal is to
eliminate DT as an inter-microservice communication bot-
tleneck and boost the overall rate at which microservices can
perform RPCs. We now present a walkthrough of the soft-
ware DT, explain its limitations, and present the key insight
enabling us to achieve DT at rates matching the NIC.

0 5 10 15 20 25

40Gbps + eRPC

10Gbps + TCP

Latency (μs)

Protocol Processing Data Transformation

Figure 2. Breakdown of communication latency.

2.2 Data Transformation Walkthrough
As DT operations are similar across frameworks, we use
Protobuf as a reference framework throughout this paper. For
brevity’s sake we focus on serialization operations, because
the process of deserialization is similar but performed in
reverse. The serialization process converts objects to a series
of keys and values. Listing 1 shows pseudo-code for the
serialization function. We use Fig. 3 to aid our explanation
— it shows the fields of a basic Person object, and its final
binary wire representation.
To serialize a Person, each field is individually trans-

formed using the serializeField function based on its
type. The output of each field contains a key (aka. tag), acting
as an identifier for the field, and the serialized bytes of data.
For example, the second field in Fig. 3, name, has its tag set to
0x12, which comes from its type, 2 representing a string,
and its field ID which is 2. Because the third field is an em-
bedded message called Phone, serializeField recursively
calls serialize, and all the output bytes corresponding to
this message will be placed into the output stream following
the tag. The Phone message is shown in Fig. 3 as an ellipsis.

For some fields, such as float, the source data is directly
copied, but for others the source is completely transformed
before beingwritten. These complete transformations are the
most challenging and compute intensive operations. For the
rest of this section, we use variable length integer encoding
(known as varint) as an example, but emphasize that all
frameworks contain these types of transformations. The wire
representation for the id field is called a varint in Protobuf,
an encoding which depends on the data value. Only the
number of bits required to encode the value (e.g., 32 bits to
represent the value 123456789, even though the language
specifies 64 bits) will be sent on the wire. In order to signal to
the receiver that there are more bytes to be processed which
represent this integer value, the upper bit of each is reserved
for the continuation bit, and is set to 1 if there are more
bytes to come. These bits are shown as red and underlined in
Fig. 3. Reading from left to right, each continuation bit would
signal the receiver to “keep reading” as there are more bytes
to come. The receiver stops processing the varint when it
reaches a continuation bit with the value of 0.

2.3 Software DT’s Bottlenecks
The process of transforming data on CPUs has two critical
limitations, both inherently connected to the use of the ISA
as an abstraction to represent the underlying operations.



Listing 1. Serialization Pseudo-code.
serialize (byteStream target):
for (field f from 1 to N):
serializeField(f, target)

writeVarInt64 (uint64 value, byte* target):
while(value >= 0x80):
*target = value | 0x80
value = value >> 7
++target

*target = value | 0x80

08 95 9a ef 3a 12 08 4a 6f 68 6e 20 44 6f 65

123456789

“John Doe”Length:8

111010 1101111 00101010011010 10010101 10011010 0011101011101111

00000001
Field:1 Type:0

01000010
F:2  T:2

. . .
message Person {
  uint64 id = 1;
  string name = 2;
  Phone phone = 3;
}

uint64 id String name Phone phone

Figure 3. Sample Person object in Protobuf binary format.

Performing DT on CPUs entails a high instruction count per
serialized field and relies on implicit instruction-level rather
than explicit field-level parallelism. Additionally, DT is so
fine-grained that it is unable to benefit from parallelization
with software threads due to synchronization costs.

The cause for instruction bloat is the fact that many format
encodings (e.g., varint) require performing an operation on
each byte of the source data. In Listing 1, we show pseudo-
code for transforming a 64-bit integer to a varint. For each
byte of the input value, the code performs a branch to check
whether or not the value is large enough to require the use
of this byte. Then, bitwise operations are performed to iso-
late the correct byte and write it to the output buffer. On a
commodity ARM X-Gene server with the microbenchmark
used in our evaluation (see §5), we measured 25 dynamic
instructions per byte, adding up to thousands of instructions
per message. Executing this many dynamic instructions caps
the achievable transformation throughput at roughly 1Gbps.
Improving the performance of serial instruction streams

requires boosting the CPU’s IPC. Unfortunately, transform-
ing fields such as varints results in a data-dependent branch
per byte; these branches are known to be difficult to predict
and limit the achievable IPC by causing pipeline flushes.
The limited success of control speculation when applied to
data-dependent branches has also been observed by prior
work studying ETL workloads for data cleaning and inges-
tion [12]. Although classical microarchitecture techniques
such as predication [39] would help the performance of
varint encoding, today’s CPUs only support partial predi-
cation and lack the ability to perform conditional stores [30].

Finally, we do not expect parallelizing fields with software
threads will yield significant improvements due to synchro-
nization costs. Using a simple lock to signal work completion
costs a minimum of 200𝑛𝑠 per thread [10], which becomes
equal to the time of performing the work serially with only
five threads. In principle, each field in Person could be in-
dependently transformed if the hardware is made aware of
each field’s type and memory location. In that case, while
the varint encoding is being performed, the name can be
copied and the Phone’s data can be fetched. Unfortunately,
neither software threads nor CPU ISAs are the right form to
represent this parallelism between fields.
Designing an effective abstraction that explicitly repre-

sents this parallelism is key to accelerating DT. Serial in-
structions are the wrong abstraction to expose these types of
independent operations, because the problem is inherently
parallel. Therefore, because CPU-centric DT continues to be
bound by the limitations imposed by the ISA, we argue that
accelerating DT requires both hardware and software to be
co-designed around a new parallel abstraction that replaces
the ISA. The next section presents our hardware/software
co-design for rapid and flexible DT.

3 Design for DT Acceleration
In this section, we describe the design space for a data trans-
formation accelerator (DTA) that we argue must be com-
prised of an explicitly parallel DT abstraction, and the requi-
site hardware to perform the underlying operations. We lay
out the design of a DTA prioritizing the following three goals.
First, a DTA should perform DT at NIC line rate. Second,
a DTA should be compatible with existing DT frameworks
and programmable to allow compatibility with future data
formats. Third, a DTA should have minimal impact on exist-
ing server architecture, limiting deployment cost. To achieve
these goals, we seek to answer the following questions: i)
what interfaces should the accelerator have with the soft-
ware framework and the server system, ii) what components
should be used as building blocks, and iii) where should the
accelerator reside in the server?

3.1 New Abstraction: Transformation Schema
Based on our analysis in §2.3, we claim that accelerating
DT requires an abstraction that expresses the parallelism
inherent in transforming independent fields and solves the
bottlenecks of expressing transformations in traditional ISAs.
When a transformation is compiled into a CPU’s ISA, field-
level parallelism is only unlocked if the core is able to spec-
ulate far enough ahead to issue instructions that actually
operate on two fields simultaneously. Our experiments in
§2.3 show that doing so requires many hundreds or thou-
sands of instructions, greatly exceeding the practical limits
on a CPU’s speculative state. An efficient DT abstraction



Person Schema

Type Address
uint64 0x100

string 0x200

message 0x300

Person
 uint64 id;
 string name;
 Phone phone;

Phone Schema

Figure 4. Sample Person object and its schema.

therefore requires representing transformations in an ex-
plicitly parallel fashion. The hardware can then unpack the
field-level parallelism and enjoy the performance benefits.
The critical observation that leads to our novel transfor-

mation abstraction is the transformation on each field is
completely described by its type (thus identifying the op-
eration the hardware must perform) and the address of the
input data. Therefore, a data structure containing these two
pieces of information for each field is the leanest abstraction
required to express all of a message’s transformations. We
call our DT abstraction the schema, which resides in memory
and holds the type and address of each field. The schemata
are generated by the application, and passed to the accelera-
tor to invoke a new transformation. The software framework
(e.g., Protobuf) needs to be modified to create the schemata
during the process of creating the message. This can be done
by updating the setter methods generated by the Protobuf
compiler, to populate the schema’s address field as well as
the message’s value. Fig. 4 shows an example of the schema
for a Person after each field has been initialized.
Our schema design achieves both goals: first, it enables

the hardware to operate on each field in parallel by scan-
ning the schema, accessing the data to be transformed, and
performing the requested operations. Second, it enables any
framework to use the accelerator; the only requirement is
that it updates the schema while creating the message. We
now present the interface design between a DTA and the
software stack.

3.2 DTA Interfaces
In the left half of Fig. 5, we see a traditional multi-core server
system, with a number of cores connected by an on-chip
network (NoC). The DTA’s interfaces are constrained primar-
ily by the 𝜇𝑠-scale latency requirements of transformation
tasks (§2), and thus we architect its invocation and data ac-
cess paths to minimize latency. Kernel drivers and interrupts
are too slow in this climate and therefore we use interfaces
that allow user-level polling. Additionally, as the DTA needs
access to the schemata and messages, it requires access to
the server’s virtual memory system.

Given such access to the virtual memory system, the DTA
can use regular pointers for schemata and messages, avoid-
ing wasteful copies. The DTA exposes a set of internal reg-
isters to the system software, which we map to I/O virtual
addresses (IOVAs) in each process’ address space to enable
kernel-bypass and minimize latency [6]. Applications use

On-chip 
Network

PCIe Root

Complex

NIC

OS
uServ

DTA

Control

Data

D

WR

Block Buffer

Req. Completion

Output Addr.

Request

Field

Read Write

TLB

C
I-Mem

Core Core

Field

To NoC

To NoC

Figure 5. Architectural overview of a DTA. Light grey struc-
tures are configured by the control path, and dark grey struc-
tures directly communicate with the application.

memory-mapped I/O (MMIO) writes to these IOVAs to re-
quest new transformations, and repeated MMIO reads to
poll for completions. Each request contains pointers to the
schema and the output buffer for this transformation.
For an application to begin using the DTA, it performs

a system call that returns a private context containing: (i)
a set of per-core memory arenas where all messages from
the application must be constructed, and (ii) the I/O vir-
tual addresses where new requests are to be submitted. It
is common for DT frameworks to use arena-based memory
management [17], which follow the principles of user-level
allocators like jemalloc. Because software already builds
its messages in these arenas, the system call provides the
arenas’ virtual addresses to the OP so it can access the mes-
sages to be transformed. While there are rare cases where
the application has pre-populated responses in its internal
data structures, we focus on the general case where the ap-
plication creates a new response message for every request.

To provide compatibility with a variety of DT frameworks,
our DTA also has an interface for applications to program
custom transformations. Upon requesting a new transfor-
mation context, the application also has the option to issue
system calls to program custom operations into the DTA
itself. We now present the internal building blocks of our
DTA and how they implement the above interfaces.

3.3 Building Blocks
The right half of Fig. 5 shows the specialized hardware com-
ponents comprising the DTA. We start with the Dispatcher
(labelled D) component as it is responsible for interacting
with the server’s cores. The Dispatcher contains the DTA’s
internal registers which are read/written by the cores when
invoking new transformations. Upon receiving a new re-
quest, the Dispatcher unpacks the schema and output buffer
pointers and sends them to the transformation pipeline.

Conceptually, theDTA is architected as a decoupled access-
execute pipeline [43], to deal with the challenge of special-
ized hardware components that can perform transforma-
tions an order of magnitude faster than data can be accessed



from the memory hierarchy. Therefore, our DTA contains
a pipeline of three components dedicated to parsing the
schema and accessing data from the server’s memory, per-
forming transformations, and writing back results.
We first describe the specialized Converters (denoted C

in Fig. 5), and how they achieve complex transformation
operations (e.g., varint encoding) in a few cycles.

Recall from §2.3 that serializing a varint requires at least
one branch, two arithmetic operations, and one memory
access per byte. By extracting each byte from the source
data independently, performing the range checks, and insert-
ing the correct continuation bits, specialized hardware can
achieve this complex operation in a single cycle. Each such
operation is read from a small instruction memory (I-Mem)
which resides in the Converter. By designing the DTA’s Con-
verter around such specialized operations, the accelerator
can attain transformation throughput at higher rates than
traditional cores.
In keeping with our goal that the DTA’s architecture

should apply to various DT frameworks, we also make the
Converter’s I-Mem programmable by system software. This
means that the DTA is still usable for rare transformation
operations, and is forward-compatible with new software.
Such custom operations will inevitably have reduced trans-
formation performance due to the return of ISA limitations,
but they will still reap the field-level parallelism enabled
by using our schema. If software wishes to customize the
I-Mem’s contents for new transformations, it supplies an
argument to the system call which creates each application’s
transformation context (see §3.2).
To overcome the problem of idle Converters in the pres-

ence of memory accesses to the schemata and messages, we
create two decoupled components responsible for access-
ing the memory hierarchy. These two components are the
Reader and Writer (denoted R and W in Fig. 5 respectively),
which access data and stream it to/from the programmable
Converter. Our schema also enables the Reader to perform
multiple parallel memory accesses without requiring spec-
ulation, as each field’s address is explicitly written in the
schema by software.
All memory accesses are performed by means of a non-

coherent Block Buffer which acts as a scratchpad for the
Reader and Writer, translates the virtual addresses of each
field, and issues the corresponding reads and writes to the
server’s NoC. Once the transformation is complete, the Dis-
patcher’s registers are updated and the core will see the
completion with its next MMIO read. We next discuss the
physical placement of DTA in the server.

3.4 Physical Location
Placing the DTA off-chip near PCIe-attached network inter-
face cards (NICs) offers the lowest cost and least intrusive
design point. However, the ~1𝜇𝑠 latency of the PCIe intercon-
nect [36] quickly becomes an obstacle for common nested

messages (e.g., Person), due to the multiple PCIe roundtrips
to fetch the nested message’s pointers. Therefore, we focus
on the tradeoffs inherent to an on-chip DTA, and discuss the
following options: a private DTA co-located with each core,
or a shared DTA that is placed on one of the chip’s tiles.

These two choices expose a critical tradeoff between trans-
formation latency variability and silicon provisioning. In the
case where a DTA is co-located with each CPU core, it shares
the core’s L1 cache and TLB, eliminating the need for the
Block Buffer component. However, private DTAs will require
the Reader, Writer, Converter and Dispatcher to be replicated.
Effectively, choosing private DTAs costs more silicon but
eliminates variability in transformation latency, which is
attributable to the NUCA architecture of the server’s LLC. In
contrast, attaching the DTA to the NoC as a shared compo-
nent accepts the variability but attains more efficient silicon
provisioning. We claim that despite the higher memory ac-
cess latency and variability, the DTA should be shared due
to the fact that the silicon costs of private DTAs quickly add
up with increasing core counts. Our DTA is therefore shared
and sits at the chip’s edge, as shown in Fig. 5.

Summary: To achieve all the design goals (i.e., transfor-
mation at network line-rate, limited programmability, and
integration simplicity) for an effective DTA, our design con-
tains the following three essential characteristics: 1) The use
of a powerful schema which uses simple type identifiers and
memory addresses, enabling field-level parallelism and the
ability to overlap data access latency. 2) Specialized hard-
ware converters which can perform data transformations in
a handful of cycles, and support a variety of operations de-
fined by the software. 3) On-chip integration for low-latency
access to the server’s virtual memory system.

4 Optimus Prime
In this section we present Optimus Prime (OP), our imple-
mentation of a DTA which follows the principles in §3. Fig-
ure 6 displays the microarchitecture of OP, comprising its
five major components: Dispatcher (§4.1), Block Buffer (§4.2),
Reader (§4.3), Converter (§4.4), and Writer (§4.5). As we de-
scribe each component, we walk through the process of
serializing a message. A similar process applies for deserial-
ization.

4.1 Dispatcher
The Dispatcher receives transformation requests from the
cores and notifies the corresponding core upon completion. It
contains a set of dedicated control registers which CPU cores
access through MMIO to request new transformations (§3.2).
Each request includes a pointer to the schema to be trans-
formed, a pointer to the output buffer where data has to be
written, a pointer to the serialized buffer (for deserialization
only), and a valid bit. When a new request arrives in the con-
trol registers, the Dispatcher controller passes the schema



D

WR

Req. Completion

Output Address

Request

Chunk

Read Req. to BB

Reply from BB
Write to BB

TLB

Block Buffer

C

Field Buffer

Req.

Data Buffer

From/to BB

 
Controller

ChunkPrefetcher

Controller
Request 
Control 
Regs

To BB

Output 
Address Table

From/to D

Write Buffers

Controller
Chunk

Chunk

Data

Inst. 
Memory

Reg. File

Type

M
ux

Req.

From/to W

To NoC

To NoC

Chunk

FINAL!!!

Figure 6. Overview of the microarchitecture of Optimus Prime.

pointer to the Reader and output buffer pointer to the Writer.
Upon request completion, the valid bit is cleared and the
CPU core will determine the transformation is completed
with its next MMIO read. In our implementation, transforma-
tions are synchronous in nature; therefore, a core waits for
a request completion before it issues another. Asynchronous
transformations can also be implemented by writing each
request to a different control register and polling each one.

4.2 Block Buffer
OP has a virtually-indexed, virtually-tagged Block Buffer,
which is not coherent with the rest of the on-chip hierarchy.
Synonyms are resolved by tagging each entry with the core
ID associated with the transformation. If a data request to
the Block Buffer results in a miss, the Block Buffer issues
an explicit read request using the cache coherence protocol.
The Block Buffer has a TLB, which contains the virtual-to-
physical translations for per-core memory arenas where
applications construct their messages. The OS allocates and
pins a per-core arena at initialization time for each applica-
tion and fills the TLB with the translations (§3.2).
Due to their latency-critical nature, microservices are

likely to run on dedicated cores. As such, the TLB has as
many entries as cores, is directly indexed by core ID and
maintains the translation for as long as the microservice is
active. Such a direct-mapped table has a small silicon foot-
print even with hundreds of cores. As the cores create every
message in their private arenas whose translations are pre-
installed, the TLB never misses. The total amount of pinned
memory for the arenas is also relatively small given that mod-
ern servers integrate hundreds of GB of DRAM [2]. Filling

translations into the TLB at initialization time is a low-cost
operation required only in the case of a context switch.

4.3 Reader
The Reader parses the schema that comes from the Dis-
patcher, fetches all the fields from memory (via the Block
Buffer), and sends them to the Converter. The Reader receives
a request’s schema pointer from the Dispatcher through a
hardware queue and issues amemory request for that address
to the Block Buffer. All cache blocks must be re-requested
from the memory hierarchy the first time they are accessed
in each transformation, because the Block Buffer is non-
coherent. The Block Buffer returns a cache line containing
schema fields, which the Reader stores in a dedicated Field
Buffer. The Reader then fetches a field from the Field Buffer,
extracts the data pointer, and issues a read request to the
Block Buffer. If a field is a sub-message, such as the Phone
field of Person in Fig. 4, the Reader recursively fetches the
schema of that sub-message in a depth-first manner.

The Block Buffer returns a cache line containing the field’s
raw data, which the Reader stores in the Data Buffer. The
Reader then extracts the required data (in Chunks) from the
Data Buffer based on the field’s type, and forwards it to
the Converter to carry out the transformation. The Reader
also calculates the offset where the Writer should place the
transformed data, again depending on the schema. To il-
lustrate this process, consider the string field in Figure 4.
Once the second field of the schema is present in the Field
Buffer, the Reader determines that it is a string of length
eight. The Reader picks the correct eight bytes from the
cache line, forms a Chunk with the correct output buffer
offset and transformation type, and sends it to the Converter.



During deserialization, the Reader fetches data from the se-
rialized buffer, finds the corresponding field in the schema,
and passes the information to the Converter.

4.4 Converter
The Converter takes in the Chunks sent by the Reader and
performs the required data transformation. The Chunks con-
tain information that identifies the field’s type and therefore
what operation to execute. A small (128-entry) instruction
memory stores a sequence of instructions for each application-
defined type to perform the conversion. This memory is
initialized when the application requests to use the accelera-
tor (see §3.2) and is indexed by the type field in the Chunk.
After data is transformed, the Converter passes the converted
bytes to the Writer to be written to the output buffer.
The Converter is implemented as a simple pipeline with

the following four stages: instruction fetch, decode and reg-
ister file read, execute, and register file writeback. The field
type included in the Chunk indicates the entry in the instruc-
tion memory that the Converter executes. For common data
types (e.g., varint), a single instruction performs the con-
version. Other transformations that do not have specialized
instructions can execute a sequence of instructions at the
cost of reduced throughput.

4.5 Writer
The Writer receives transformed data from the Converter,
and writes it at the appropriate location in the output buffer,
which is identified by a (base,offset) pair. The base ad-
dress is supplied by the requesting core, and is passed to the
Writer by the Dispatcher, while the offset is calculated by the
Reader and passed to theWriter. TheWriter contains internal
write buffers that assemble a cache line of transformed data
from the Converter, and writes it through the Block Buffer to
the on-chip memory hierarchy. During deserialization, the
Writer also writes the data pointers in the schema. Finally,
once the Writer issues all the writes for a request, it notifies
the Dispatcher of completion.

4.6 Transformation Pipeline Abstraction
A Transformation Pipeline is architected as a decoupled access-
execute pipeline [43], and includes a single Reader, Converter,
and Writer. We provision a single component per pipeline
because when operating at peak throughput, a Reader can
produce one Chunk per cycle if it is picking bytes from a
contiguous array. A single Converter and Writer can keep
up with this peak throughput. Once the Reader has finished
queuing all of the Chunks for a message, it can continue to
the next message while the Converter and Writer complete
the transformations and writebacks. We next identify two
key optimizations to improve pipeline throughput.

Prefetching: Each Transformation Pipeline’s throughput
heavily depends on memory access latency. Before any Con-
verter can begin transforming data, a Reader must perform

Table 1. Architectural simulation parameters.

Cores
ARM Cortex-A57-like; 64-bit, 2GHz, OoO
3-wide dispatch/retirement, 128-entry ROB, TSO

L1 Caches
32KB 2-way L1d, 48KB 3-way L1i, 64-byte blocks
2 ports, 32 MSHRs, 2-cycle latency (tag+data)

LLC
Shared block-interleaved NUCA, 8MB total
16-way, 1 bank/tile 6-cycle access

Coherence Directory-based Non-Inclusive MESI
Interconnect 2D mesh, 16B links, 3 cycles/hop
Memory 45ns access latency

Block Buffer: 8KB, 2-way, 64-byte blocks, LRU
OP 64MSHRs, 1 cycle hit, 2 read/write ports

TLB: 2MB pages, 64 entries, direct mapped

at least two memory accesses, one the for schema and an-
other for the corresponding data. More accesses are required
for sub-messages. However, as the Reader has access to the
message schema in its Field Buffer, it can issue prefetches
for each upcoming field and overlap the access latency. The
Reader’s prefetches attain 100% accuracy because the mes-
sage’s schema explicitly contains the address of each field.

Time-Sharing: Even with prefetching, we find that the
pipeline still spends the majority of its cycles waiting for
memory accesses. To increase utilization further, the pipeline
can be time-shared among multiple requests. This technique
is similar to coarse-grained multithreading in CPUs [35]
and requires keeping multiple request contexts per Reader,
which can be rotated in one cycle. The Converter and the
Writer do not require contexts as they do not retain message
state. Time-sharing provides almost the same performance as
physically replicating the entire pipeline. The optimal degree
of time-sharing is limited by the pipeline’s idle fraction. For
example, a pipeline that is stalled 75% of the time will have
a utilization of 100% with four contexts. Adding contexts
beyond this point will only increase request latency.

5 Methodology
CPU Performance Study. To study the performance of DT
on real hardware, we used an X-Gene system-on-chip with
eight ARM Atlas A57 cores available on CloudLab [49]. Our
microbenchmark runs (de)serialization tasks using Google
Protobuf v3.7 and the message types in Table 2. We use the
C API for Unix time and perf to measure transformation
throughput and dynamic instruction count respectively.

System Organization. We simulate a 16-core ARMv8
server running Ubuntu Linux 18.04 in full-system cycle-level
detail, by combining the QEMU emulator with the timing
models from the Flexus simulator [50]. Table 1 summarizes
the simulation parameters. All workloads are pinned on 15
cores, leaving one core for OS threads and interrupts. OP
is attached to a corner tile of the NoC mesh, which has
access to two NoC links. Therefore, OP has a total read/write
bandwidth of 32 bytes/cycle i.e., 512Gbps.



Table 2. Message types and their characteristics.
Message Type R/W Ratio Max Depth Size (B)

Flat 2.6 1 485
Mixed 2.75 2 297
Nested 4.25 2 232

Microbenchmark.We use a multithreaded microbench-
mark that generates (de)serialization tasks based on Google
Protobuf. In order to directly evaluate the maximum through-
put of OP, the microbenchmark sends (de)serialization re-
quests to OP in a tight loop. This scenario represents the
upper bound of the load offered to OP, as in a real-world
deployment, the application will also consume CPU time. As
specified in §3.2, each core sends a transformation request
to OP with MMIO writes, and repeatedly polls the address to
check if the request is complete. Once the request completes,
the core generates a new request and sends it to OP.

To choose representative messages to be transformed, we
create three message classes shown in Table 2, based on
prior work [44]. The sizes of these messages are chosen to
represent the fact that the majority of network packets sent
by latency-critical applications are sub-1KB [33, 41]. The
R/W ratio is the number of bytes that must be read for each
byte written in the serialized output, and depends on each
field’s depth and type. For example, varints are converted to
different byte-streams based on their values, where strings
have a R/W ratio of one. Moreover, the depth of each field
(i.e., the number of sub-messages that must be parsed before
returning to the top level) increases the read/write ratio. We
analyze these effects in §6.1.

Microservices.We also evaluate OP using threemicroser-
vices taken from DeathStarBench [14], which use Apache
Thrift’s RPC stack. Each microservice runs in isolation on
the CPU, and uses Thrift’s in-memory transport layer. We
measure the latency of each service starting from the point
the application receives a request until it finishes processing
it and sends out the response. This includes RPC process-
ing, message (de)serialization and the actual service. The
microservices perform URL-shortening, user login, and read-
post operations. Our experiment compares each microser-
vice’s latency between a completely CPU-centric deploy-
ment, and one where (de)serialization uses OP.

Synthesis. To estimate OP’s area and power, we imple-
mented OP in VHDL and synthesized it with the Synopsys
Design Compiler [47] using TSMC 28nm technology (Core
library: TCBN28HPMBWP35, Vdd: 0.9V). We use a 2GHz
clock rate and set the compiler to the high area optimiza-
tion target. The synthesized RTL only takes into account
the Dispatcher, Reader, Converter and Writer. We add the
power and area of the Block Buffer and TLB using CACTI
6.5 [34]. Finally, we compare our area and power overheads
with Cortex-A57 numbers from prior work [38] in Table 4.

Notation for OP Configurations. To aid explanation of
OP’s possible configurations, we introduce the following

0

5

10

15

20

25

30

35

40

Flat Mixed Nested

Th
ro

ug
hp

ut
 (G

bp
s)

Message Types

CPU Ser CPU Deser OP_Base Ser OP{1,1} Ser OP{1,1} Deser

1.7 1.3 1.3

Figure 7. Data transformation throughput comparison of a
single core with 𝑂𝑃 {1,1} .

notation:𝑂𝑃 {𝑖, 𝑗 } refers to OP with 𝑖 physical transformation
pipelines, with each being time-shared between 𝑗 messages.

6 Evaluation
Our evaluation focuses on Optimus Prime’s ability to trans-
form data at the bandwidths of modern NICs. We first evalu-
ate the benefits of OP using a single pipeline. We then eval-
uate an OP configuration which exploits parallel pipelines
to match the NIC bandwidth. Next, we evaluate the impact
of time-sharing and its effectiveness in improving pipeline
utilization, thus reducing the number of required physical
pipelines. Finally, we evaluate three microservices using OP
to show the reduction in service latency, and conclude by
analyzing the power and area of our synthesized RTL.

6.1 Single-Pipeline OP Throughput
We first measure the performance of OP configured with a
single physical pipeline (𝑂𝑃 {1,1}) against CPU-centric DT,
and plot the results in Fig. 7 for all three message classes.
To isolate the improvement from Converter specialization,
we also measure a configuration labeled OP_Base Ser that
disables pipelining and prefetching. Fig. 7 shows that a CPU
core can at best achieve a throughput of ~1.7Gbps for serial-
ization, while OP is ~5× faster. OP_Base Ser’s throughput is
limited because it spends most of its time waiting for data
from the memory hierarchy.
Next we enable pipelining and prefetching; the through-

put of this configuration is shown by the 𝑂𝑃 {1,1} Ser and
𝑂𝑃 {1,1} Deser bars. Prefetching and pipelining overlap the
latency of transformations and memory accesses, improv-
ing throughput by another 2-4×. The key enabler for this
overlap is our schema, which represents each field as a {type,
address} pair, allowing OP to extract field-level parallelism.
Such parallelism allows 𝑂𝑃 {1,1} to reduce the average field
read latency from 27 cycles to 9 with prefetching. The CPU
baseline does not attain this parallelism because the trans-
formations are compiled into serial instruction slices that
are lengthy, and highly control- and data-dependent.
The Nested message class represents the worst case per-

formance for OP with a throughput of ~11Gbps, because



every field in this message class is a sub-message. Therefore,
each schema field must be read before the sub-message’s
data can be forwarded to the Converters. Additionally, the
prefetcher only operates at the top message level, and there-
fore it does not overlap accesses further than the schemata
of the first level of sub-messages. The Flat message class
exhibits ~33Gbps of throughput, because all the schemata
and data can be prefetched in parallel. Mixed messages have
characteristics of both flat and nested, with OP reaching
~15Gbps.

Deserialization exhibits higher throughput because OP
reads already-serialized items from a contiguous buffer, rather
than making dependent accesses to the data elements, thus
enjoying high spatial locality. However for messages which
exhibit more nested fields, the degree of dependent accesses
to the schema grows and limits throughput. The bottleneck
in 𝑂𝑃 {1,1} is the serial processing of messages by a single
transformation pipeline. Given that messages are naturally
independent of each other, we now evaluate configurations
with multiple pipelines. For brevity’s sake, all further experi-
ments only display results for serialization as deserialization
has similar performance.

6.2 Parallel-Pipeline OP Throughput
Although 𝑂𝑃 {1,1} attains 9-20× higher serialization through-
put than a core, there is significant headroom left to attain
the 40Gbps sustainable by modern NICs. Next, we measure a
scale-up OP by adding transformation pipelines which oper-
ate in parallel. Fig. 8 depicts the serialization throughput for
𝑂𝑃 {𝑛,1} as we vary the number of transformation pipelines.

Flat messages achieve 40Gbps with only two pipelines,
benefiting the most because they have the fewest depen-
dent memory accesses. In contrast, Nested messages require
four pipelines to achieve 40Gbps, and Mixed messages re-
quire three. Throughput increases linearly with up to three
pipelines in all cases, because each extra pipeline adds addi-
tional independent memory accesses and transformations.
Overall, our OP design can easily meet the target NIC band-
width of 40Gbps for all the three message classes.

The throughput plateaus beyond a certain number of
pipelines because they, in aggregate, exhaust the available
NoC bandwidth. Flat messages are the most read-efficient
(lowest R/W ratio) class of messages, and therefore gen-
erate less NoC traffic and higher throughput. In contrast,
Nested messages require more reads per write (i.e., they
have a greater R/W ratio), thus limiting the OP’s serialization
throughput to ~50Gbps. We confirm that each configuration
has reached the maximum link bandwidth of 512Gbps by
summing the bandwidth needed for the schema and message
data, the additional NoC header overhead, and other on-chip
coherence protocol requests.

When OP saturates the NoC links of the tile it is attached
to, the whole NoC has an average link utilization of 16%. Pre-
serving the NoC bandwidth that is available to the core on

40 Gbps NIC

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (

Gb
ps

)

Number of physical transformation pipelines

Flat Mixed Nested

Figure 8. Serialization throughput with 𝑂𝑃 {𝑛,1} .
the contended link would require slightly over-provisioning
the NoC’s link width. The silicon costs of doing so are negli-
gible, as the per-tile cost of the NoC components has been
shown to be less than 1.5% [32].

6.3 Time-Shared Pipeline OP
This section quantifies the benefits of time-sharing transfor-
mation pipelines and studies the effects of a larger diameter
NoC on OP’s performance. Fig. 9 illustrates the impact of
longer average memory access latency (AMAT) on the num-
ber of pipelines required to attain peak throughput, by plot-
ting 𝑂𝑃 {𝑛,1}’s throughput and latency per 100𝐵 for Mixed
messages for a 4×4 and an 8×8mesh. The 8×8mesh has twice
the AMAT of the 4×4 mesh, resulting in half the throughput
for an equivalent OP configuration. Doubling the number of
pipelines for 8×8 mesh OP recovers the original throughput
of the 4×4. Following this trend, while the NoC link attached
to OP saturates with six pipelines in the case of the 4×4 mesh,
we need 12 pipelines to saturate the same link in an 8×8. Be-
yond this point, increasing the number of pipelines results
in elevated latency due to contention for NoC bandwidth.
When time-sharing is enabled, OP can continue to issue

memory accesses to hide cycles where the pipeline is idle.
For instance, with a time-sharing degree of two (𝑂𝑃 {𝑛,2}) we
are able to saturate OP’s NoC link in the 4×4 mesh with three
pipelines as opposed to six in Fig. 8. The 8×8 mesh benefits
more from time sharing due to its larger average latency,
and requires a time-sharing degree of four to saturate OP’s
NoC link with three physical pipelines. Fig. 9a shows that
a time-sharing degree of four, 𝑂𝑃 {𝑛,4} , has a nearly identi-
cal throughput curve with increasing 𝑛 as the time-sharing
degree of two for a 4×4 mesh. Time-sharing enables OP to
achieve roughly the same throughput per pipeline even with
different NoC sizes. As long as there is available NoC band-
width and request-level parallelism, adding more pipelines
or time-sharing pipelines increases attainable throughput.
Finally, in Table 3 we place the transformation latency

achieved by OP in the context of future datacenters. We
assume protocol processing latencies of ~850ns as claimed
by eRPC [27]. Even with a large host node, 𝑂𝑃 {3,4} achieves
average serialization latency of 430ns, which is less than the



0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14

T
h

ro
u

g
h

p
u

t 
(G

b
p

s
)

Number of physical transformation pipelines

4x4: OP{n,1} 8x8: OP{n,1} 4x4: OP{n,2} 8x8: OP{n,4}

(a) Transformation bandwidth.

0
20
40
60
80

100
120
140
160
180
200

0 2 4 6 8 10 12 14Tr
an

sfo
rm

at
io

n 
La

te
nc

y p
er

 1
00

B 
(n

s)

Number of physical transformation pipelines

4x4: OP{n,1} 8x8: OP{n,1} 4x4: OP{n,2} 8x8: OP{n,4}

(b) Average Transformation latency per 100B.

Figure 9. OP throughput and latency for serialization over Mixed messages comparing different NoC sizes.

Table 3. Communication latency breakdown (in 𝜇s) into
Wire Time (WT), Protocol Processing (PP), and Data Trans-
formation (DT). 𝑂𝑃 {3,2} sits in a 4×4, and 𝑂𝑃 {3,4} in an 8×8
mesh.

Network Stack WT PP DT
40 Gbps + TCP 0.05 20 4
40 Gbps + eRPC 0.05 0.85 4

40 Gbps + eRPC + 𝑂𝑃 {3,2} 0.05 0.85 0.22
40 Gbps + eRPC + 𝑂𝑃 {3,4} 0.05 0.85 0.43

time spent in the eRPC stack. We conclude that OP removes
DT from the critical path of inter-microservice communica-
tion, as it achieves network line-rate and latency below that
of the current-best networking protocols.

Scale-Out OP: As shown in Fig. 8, improving through-
put by scaling the number of transformation pipelines is
constrained by the bandwidth of the connected NoC links.
However, with the roadmap for Ethernet and Infiniband
NICs already forecasting speeds as high as 1Tbps [24, 48],
OP needs to be scaled out and attached to multiple NoC
links. This is possible by replicating the whole accelerator
across multiple tiles of the NoC, providing OP more aggre-
gate NoC bandwidth and allowing DT throughput to meet
NIC bandwidth.

6.4 Case Study on Microservices
In order to quantify OP’s benefits on the performance of
real microservices, we run three microservices taken from
DeathStarBench [14]. Fig. 10 breaks down the total latency
of each microservice into the time spent in the application,
Thrift’s data transformation and the rest of the Thrift RPC
stack. Compared to our CPU baseline, OP reduces DT latency
by up to 10× and service latency by up to 30%. Our improve-
ments are upper-bounded by the fraction of the baseline
service time spent in data transformation.

The highest improvement is registered on the URL-Shorten
benchmark, where initially ~31% of the time was spent on
data transformation. Even though this benchmark uses small

0

0.2

0.4

0.6

0.8

1

1.2

1.4

CPU OP CPU OP CPU OP

URL-Shorten Login Read-Post

Se
rv

ic
e 

La
te

nc
y 

(n
or

m
al

ize
d 

to
 O

P'
s)

App Thrift-Other DT

Figure 10. Microservices: CPU vs. OP.

incoming and outgoing messages, OP still decreases DT la-
tency by 5.65×, benefiting from the specialized Converters.
Similarly, OP gives 24% improvements for the Login service.
The smallest improvement is obtained for the Read-Post mi-
croservice because only 7% of the baseline service’s time is
spent on DT. Full service deployments commonly include
hundreds of sequentially connected microservices [9, 14, 31,
45, 51]; in such a case, the cumulative latency improvements
from OP will be significantly greater.

6.5 Synthesis Results
To model the area and power consumption of OP, we syn-
thesized our RTL design using TSMC 28nm technology, and
display the results in Table 4. Configured with 12 pipelines,
𝑂𝑃 {12,1} requires 0.45𝑚𝑚2 of area, and consumes 532𝑚𝑊
when operating at 2𝐺𝐻𝑧. Additionally, each time-shared
pipeline requires an enhanced 4-way Reader to switch be-
tween different message contexts. Such time-shared Readers
have ~20% greater area and power overhead compared to nor-
mal Readers. Fortunately, time-sharing reduces the number
of transformation pipelines required at saturation from 12 to
3. Therefore the𝑂𝑃 {3,4} configuration achieves the same per-
formance as𝑂𝑃 {12,1} with a silicon area reduction of 60% and
a performance/watt improvement of 3.5×. Compared to a
CPU core, 𝑂𝑃 {3,4} achieves 2075× higher performance/watt.



Table 4. Synthesis results for different configurations of OP,
compared to the CPU baseline. All throughput numbers are
for serializing Mixed messages on the 64-core setup, and all
performance per watt numbers are normalized to the CPU.

Power Throughput Area Performance
[mW] [Gbps] [mm2] per Watt

CPU 5400 1.3 2.57 1
𝑂𝑃{1,1} 58 8.8 0.12 655
𝑂𝑃{12,1} 532 73 0.45 593
𝑂𝑃{3,4} 152 73 0.19 2075

Finally, we compare the area of a shared version of OP
to a core-private version, as discussed in §3.4. Private OPs
do not require a Block Buffer and share the CPU core’s TLB,
and therefore require 0.03𝑚𝑚2 of area. The silicon area of
𝑂𝑃 {3,4} is only ~7% of a single CPU core, whereas having 64
private OPs, one for each core, costs ~75% of a core. This
overhead from replication justifies our choice of having a
shared OP component.

7 Related Work
Other Data Transformation Frameworks. We focus on
Protobuf [19] and Thrift [3] as two state-of-the-art frame-
works for generalized cross-language data transformation.
Optimus Prime is designed to be a general-purpose DT ac-
celerator, which is compatible with other frameworks pro-
vided they simply update their setter methods to create each
message’s schema. Custom frameworks such as Google’s
FlatBuffers [18] sacrifice interoperability to remove the need
for data transformation for use-cases where large immutable
messages are sent among many participants (e.g., for online
games). In these systems, messages are effectively serial-
ized in memory during creation, amortizing the cost of DT
and eliminating costly deserialization of the whole message
when only parts of it are accessed. However, this comes at the
price of more costly object creation, object immutability, less
flexibility and larger messages, preventing such frameworks
from being a good fit for general-purpose inter-language
RPCs. OP instead targets general-purpose DT frameworks
designed for inter-microservice communication.

Architectures for Data Ingestion & Streaming. Intel
has recently released the specifications for an integrated
Data Streaming Accelerator (DSA), supporting operations
like data copying, virtual switching, and integrity check-
ing [25]. Although DSA does not currently target general-
purpose DT, our key insights would equally apply to DSA, as
it follows many of our design choices, e.g., integration into
to the virtual memory system. Applying our transformation
schema would enable DSA’s internal hardware to unlock
the field-level parallelism inherent in transformation tasks.
SoC designers wishing to perform general-purpose DT with
DSA could construct specialized DSA Engines (which are in
principle similar to our Converters) for common DT tasks.

Finite automata (FA) processing is an emerging compu-
tational model that promises orders of magnitude better
performance than CPUs in executing Finite State Machines
(FSMs) [11, 16, 46]. FSMs traditionally suffer from complex
control flow, limiting the benefits of branch prediction, and
irregular memory access patterns, reducing the effectiveness
of caching. We observe similar behavior for code generated
from DT frameworks. Therefore, FA accelerators for tasks
such as pattern matching or replacement could easily be
deployed as a type of Converter in OP’s pipelines. UDP [12]
applies the FA model to a coarse-grained class of workloads
such as data mining and CSV file parsing. Their architecture
is targeted towards bulk loading and cleaning of batches of
data, and motivate UDP by comparing CPU processing time
to disk I/O. In contrast, our work targets eliminating DT as
a bottleneck for latency-critical inter-microservice RPCs.

ISA Extensions for DT. CPU vendors have also realized
the difficulties in expressing transformations using existing
ISAs. In fact, Intel has already been granted a patent for ISA
extensions to x86-64 which provide dedicated support for
specific DT operations [20]. The performance impact of ISA
extensions would be more or less similar to our specialized
Converters, which are specialized pipelines tailored for trans-
formation. However, the serialization of an entire message
is still expressed as a serial sequence of many transforma-
tion instructions with implicit parallelism. Our work goes
further by proposing an entire new abstraction for explicit
parallelism between the many fields of a message.

8 Conclusion
With improvements in network technology and protocol
processing, data transformation forms a significant portion
of end-to-end communication latency. We propose an accel-
erator, Optimus Prime (OP), to transform data at network
line-rate, thus removing data transformation from the critical
path. Our key contributions are a parallel schema abstraction
that allows our hardware implementation to (de)serialize all
the fields of a message in parallel, and the hardware accelera-
tor design to efficiently use the parallel schema. OP achieves
~60× higher throughput and 2075× better performance per
watt than traditional CPU cores. It also shortens the service
latency of our evaluated microservices by up to 30%.

Acknowledgments
We thank the anonymous reviewers and Alexandros Daglis
for their precious comments and feedback. This work was
partially funded by SNSF’s Memory-Centric Server Archi-
tecture for Datacenters project, Microsoft Research’s joint
research agreement for Near-Memory Data Services, and Or-
acle’s research donation for the Accelerating Distributed Sys-
tems with Advanced One-Sided Operations project.



References
[1] Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra

Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data center TCP (DCTCP). In Proceedings of the ACM
SIGCOMM 2010 Conference. 63–74.

[2] Amazon Web Services, Inc. [n.d.]. Amazon EC2 Instance Types. Re-
trievedNovember 29, 2018 from https://aws.amazon.com/ec2/instance-
types/

[3] Apache Software Foundation. [n.d.]. Thrift. Retrieved August 16, 2019
from https://thrift.apache.org/

[4] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. 2013. The Data-
center as a Computer: An Introduction to the Design of Warehouse-Scale
Machines, Second Edition. Morgan & Claypool Publishers.

[5] Luiz André Barroso, Mike Marty, David A. Patterson, and
Parthasarathy Ranganathan. 2017. Attack of the killer microseconds.
Commun. ACM 60, 4 (2017), 48–54.

[6] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane Op-
erating System for High Throughput and Low Latency. In Proceedings
of the 11th Symposium on Operating System Design and Implementation
(OSDI). 49–65.

[7] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter
Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,
Harry C. Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun
Song, and Venkateshwaran Venkataramani. 2013. TAO: Facebook’s
Distributed Data Store for the Social Graph. In Proceedings of the 2013
USENIX Annual Technical Conference (ATC). 49–60.

[8] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang, Saman Kazemkhani,
Rob Sherwood, Ying Zhang, and Hongyi Zeng. 2018. FBOSS: building
switch software at scale. In Proceedings of the ACM SIGCOMM 2018
Conference. 342–356.

[9] Adrian Cockcroft. 2015. Microservices the Good Bad and the
Ugly. Retrieved August 16, 2019 from https://www.slideshare.net/
adriancockcroft/microservices-the-good-bad-and-the-ugly

[10] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2013. Ev-
erything you always wanted to know about synchronization but were
afraid to ask. In Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP). 33–48.

[11] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal,
and Harold Noyes. 2014. An Efficient and Scalable Semiconductor
Architecture for Parallel Automata Processing. IEEE Trans. Parallel
Distrib. Syst. 25, 12 (2014), 3088–3098.

[12] Yuanwei Fang, Chen Zou, Aaron J. Elmore, and Andrew A. Chien.
2017. UDP: a programmable accelerator for extract-transform-load
workloads and more. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 55–68.

[13] Yu Gan and Christina Delimitrou. 2018. The Architectural Implications
of Cloud Microservices. Computer Architecture Letters 17, 2 (2018),
155–158. https://doi.org/10.1109/LCA.2018.2839189

[14] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. 2019. An Open-Source Benchmark Suite for Microservices
and Their Hardware-Software Implications for Cloud & Edge Systems.
In Proceedings of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-
XXIV). 3–18.

[15] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira,
Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
2016. Network Requirements for Resource Disaggregation. In Proceed-
ings of the 12th Symposium on Operating System Design and Implemen-
tation (OSDI). 249–264.

[16] Vaibhav Gogte, Aasheesh Kolli, Michael J. Cafarella, Loris D’Antoni,
and Thomas F. Wenisch. 2016. HARE: Hardware accelerator for regular
expressions. In Proceedings of the 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 44:1–44:12.

[17] Google. [n.d.]. C++ Arena Allocation Guide . Retrieved April 5, 2019
from https://developers.google.com/protocol-buffers/docs/reference/
arenas

[18] Google. [n.d.]. FlatBuffers. Retrieved April 5, 2019 from https://google.
github.io/flatbuffers/

[19] Google. [n.d.]. Protocol Buffers. Retrieved November 30, 2018 from
https://developers.google.com/protocol-buffers/

[20] James D. Guilford and Vinodh Gopal. 2016. Instruction Set for Vari-
able Length Integer Coding. https://patents.google.com/patent/
US20180095760A1/en

[21] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W. Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-
architecting datacenter networks and stacks for low latency and high
performance. In Proceedings of the ACM SIGCOMM 2017 Conference.
29–42.

[22] Todd Hoff. 2016. Lessons Learned From Scaling Uber To 2000 Engi-
neers, 1000 Services, And 8000 Git Repositories. Retrieved August 16,
2019 from http://highscalability.com/blog/2016/10/12/lessons-learned-
from-scaling-uber-to-2000-engineers-1000-ser.html

[23] Qi Huang, Petchean Ang, Peter Knowles, Tomasz Nykiel, Iaroslav
Tverdokhlib, Amit Yajurvedi, Paul Dapolito IV, Xifan Yan, Maxim
Bykov, Chuen Liang, Mohit Talwar, Abhishek Mathur, Sachin Kulka-
rni, Matthew Burke, and Wyatt Lloyd. 2017. SVE: Distributed Video
Processing at Facebook Scale. In Proceedings of the 26th ACM Sympo-
sium on Operating Systems Principles (SOSP). 87–103.

[24] Infiniband Trade Association. 2018. Infiniband Roadmap. Retrieved
November 29, 2018 from https://www.infinibandta.org/infiniband-
roadmap/

[25] Intel Corp. 2019. Intel Data Streaming Accelerator Prelim-
inary Architecture Specification. Retrieved January 16,
2020 from https://software.intel.com/en-us/download/intel-data-
streaming-accelerator-preliminary-architecture-specification

[26] Gopal Kakivaya, Lu Xun, Richard Hasha, Shegufta Bakht Ahsan,
Todd Pfleiger, Rishi Sinha, Anurag Gupta, Mihail Tarta, Mark Fussell,
Vipul Modi, Mansoor Mohsin, Ray Kong, Anmol Ahuja, Oana Pla-
ton, Alex Wun, Matthew Snider, Chacko Daniel, Dan Mastrian, Yang
Li, Aprameya Rao, Vaishnav Kidambi, Randy Wang, Abhishek Ram,
Sumukh Shivaprakash, Rajeet Nair, Alan Warwick, Bharat S. Narasim-
man, Meng Lin, Jeffrey Chen, Abhay Balkrishna Mhatre, Preetha Sub-
barayalu, Mert Coskun, and Indranil Gupta. 2018. Service fabric: a
distributed platform for building microservices in the cloud. In Pro-
ceedings of the 2018 EuroSys Conference. 33:1–33:15.

[27] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter
RPCs can be General and Fast. In 16th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2019, Boston, MA,
February 26-28, 2019. 1–16.

[28] Svilen Kanev, Juan Pablo Darago, Kim M. Hazelwood, Parthasarathy
Ranganathan, Tipp Moseley, Gu-Yeon Wei, and David M. Brooks. 2016.
Profiling aWarehouse-Scale Computer. IEEE Micro 36, 3 (2016), 54–59.

[29] Staci Kramer. 2011. The Biggest Thing Amazon Got Right: The Plat-
form. Retrieved August 16, 2019 from https://gigaom.com/2011/10/
12/419-the-biggest-thing-amazon-got-right-the-platform

[30] Scott A. Mahlke, Richard E. Hank, James E. McCormick, David I. Au-
gust, and Wen-mei W. Hwu. 1995. A Comparison of Full and Partial
Predicated Execution Support for ILP Processors. In Proceedings of
the 22nd International Symposium on Computer Architecture (ISCA).
138–150.

[31] Tony Mauro. 2015. Adopting Microservices at Netflix: Lessons for Ar-
chitectural Design. Retrieved August 16, 2019 from https://www.nginx.
com/blog/microservices-at-netflix-architectural-best-practices

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://thrift.apache.org/
https://www.slideshare.net/adriancockcroft/microservices-the-good-bad-and-the-ugly
https://www.slideshare.net/adriancockcroft/microservices-the-good-bad-and-the-ugly
https://doi.org/10.1109/LCA.2018.2839189
https://developers.google.com/protocol-buffers/docs/reference/arenas
https://developers.google.com/protocol-buffers/docs/reference/arenas
https://google.github.io/flatbuffers/
https://google.github.io/flatbuffers/
https://developers.google.com/protocol-buffers/
https://patents.google.com/patent/US20180095760A1/en
https://patents.google.com/patent/US20180095760A1/en
http://highscalability.com/blog/2016/10/12/lessons-learned-from-scaling-uber-to-2000-engineers-1000-ser.html
http://highscalability.com/blog/2016/10/12/lessons-learned-from-scaling-uber-to-2000-engineers-1000-ser.html
https://www.infinibandta.org/infiniband-roadmap/
https://www.infinibandta.org/infiniband-roadmap/
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices


[32] Michael McKeown, Alexey Lavrov, Mohammad Shahrad, Paul J. Jack-
son, Yaosheng Fu, Jonathan Balkind, Tri M. Nguyen, Katie Lim, Yanqi
Zhou, and David Wentzlaff. 2018. Power and Energy Characterization
of an Open Source 25-Core Manycore Processor. In Proceedings of
the 24th IEEE Symposium on High-Performance Computer Architecture
(HPCA). 762–775.

[33] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John K.
Ousterhout. 2018. Homa: a receiver-driven low-latency transport pro-
tocol using network priorities. In Proceedings of the ACM SIGCOMM
2018 Conference. 221–235.

[34] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P.
Jouppi. 2007. Optimizing NUCA Organizations and Wiring Alter-
natives for Large Caches with CACTI 6.0. In Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). 3–14.

[35] Mario Nemirovsky and Dean M. Tullsen. 2013. Multithreading Ar-
chitecture. Morgan & Claypool Publishers. https://doi.org/10.2200/
S00458ED1V01Y201212CAC021

[36] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich,
Sergio López-Buedo, and Andrew W. Moore. 2018. Understanding
PCIe performance for end host networking. In Proceedings of the ACM
SIGCOMM 2018 Conference. 327–341.

[37] Fabian Ohler, Markus C. Beutel, Sevket Gökay, Christian Samsel,
and Karl-Heinz Krempels. 2018. A Structured Approach to Sup-
port Collaborative Design, Specification and Documentation of Com-
munication Protocols. In Proceedings of the 13th International Con-
ference on Evaluation of Novel Approaches to Software Engineering,
ENASE 2018, Funchal, Madeira, Portugal, March 23-24, 2018. 367–375.
https://doi.org/10.5220/0006787503670375

[38] Ali Pahlevan, Javier Picorel, Arash Pourhabibi Zarandi, Davide Rossi,
Marina Zapater, Andrea Bartolini, Pablo García Del Valle, David
Atienza, Luca Benini, and Babak Falsafi. 2016. Towards near-threshold
server processors. In Proceedings of the 2016 Design, Automation, and
Test in Europe Conference and Exhibition (DATE). 7–12.

[39] Dionisios N. Pnevmatikatos and Gurindar S. Sohi. 1994. Guarded
Executing and Branch Prediction in Dynamic ILP Processors. In Pro-
ceedings of the 21st International Symposium on Computer Architecture
(ISCA). 120–129.

[40] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:
Achieving Low Tail Latency for Microsecond-scale Networked Tasks.
In Proceedings of the 26th ACM Symposium on Operating Systems Prin-
ciples (SOSP). 325–341.

[41] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C.
Snoeren. 2015. Inside the Social Network’s (Datacenter) Network. In
Proceedings of the ACM SIGCOMM 2015 Conference. 123–137.

[42] A. Schaffer. 2018. Testing of microservices. Retrieved August 16, 2019
from https://labs.spotify.com/2018/01/11/testing-of-microservices

[43] James E. Smith. 1984. Decoupled Access/Execute Computer Architec-
tures. ACM Trans. Comput. Syst. 2, 4 (1984), 289–308.

[44] Akshitha Sriraman and Thomas F. Wenisch. 2018. 𝜇 Suite: A Bench-
mark Suite for Microservices. In 2018 IEEE International Symposium on
Workload Characterization, IISWC 2018, Raleigh, NC, USA, September
30 - October 2, 2018. 1–12. https://doi.org/10.1109/IISWC.2018.8573515

[45] Akshitha Sriraman and Thomas F. Wenisch. 2018. 𝜇Tune: Auto-Tuned
Threading for OLDI Microservices. In 13th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2018, Carlsbad,
CA, USA, October 8-10, 2018. 177–194.

[46] Arun Subramaniyan and Reetuparna Das. 2017. Parallel Automata Pro-
cessor. In Proceedings of the 44th International Symposium on Computer
Architecture (ISCA). 600–612.

[47] Synopsys. [n.d.]. Synopsys Design Compiler. Retrieved November 29,
2018 from https://synopsys.com

[48] The Ethernet Alliance. 2018. The 2018 Ethernet Alliance Roadmap.
Retrieved November 29, 2018 from https://ethernetalliance.org/the-
2018-ethernet-roadmap/

[49] The University of Utah. [n.d.]. CloudLab Hardware. https://www.
cloudlab.us/hardware.php Retrieved 15-Jan-2020.

[50] Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman, Anastas-
sia Ailamaki, Babak Falsafi, and James C. Hoe. 2006. SimFlex: Statistical
Sampling of Computer System Simulation. IEEE Micro 26, 4 (2006),
18–31.

[51] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu,
Rui Gu, Beng Chin Ooi, and Junfeng Yang. 2018. Overload Control for
Scaling WeChat Microservices. In Proceedings of the ACM Symposium
on Cloud Computing, SoCC 2018,Carlsbad, CA, USA, October 11-13, 2018.
149–161. https://doi.org/10.1145/3267809.3267823

https://doi.org/10.2200/S00458ED1V01Y201212CAC021
https://doi.org/10.2200/S00458ED1V01Y201212CAC021
https://doi.org/10.5220/0006787503670375
https://labs.spotify.com/2018/01/11/testing-of-microservices
https://doi.org/10.1109/IISWC.2018.8573515
https://synopsys.com
https://ethernetalliance.org/the-2018-ethernet-roadmap/
https://ethernetalliance.org/the-2018-ethernet-roadmap/
https://www.cloudlab.us/hardware.php
https://www.cloudlab.us/hardware.php
https://doi.org/10.1145/3267809.3267823

	Abstract
	1 Introduction
	2 Why Accelerate DT?
	2.1 The Need for Faster DT
	2.2 Data Transformation Walkthrough
	2.3 Software DT's Bottlenecks

	3 Design for DT Acceleration
	3.1 New Abstraction: Transformation Schema
	3.2 DTA Interfaces
	3.3 Building Blocks
	3.4 Physical Location

	4 Optimus Prime
	4.1 Dispatcher
	4.2 Block Buffer
	4.3 Reader
	4.4 Converter
	4.5 Writer
	4.6 Transformation Pipeline Abstraction

	5 Methodology
	6 Evaluation
	6.1 Single-Pipeline OP Throughput
	6.2 Parallel-Pipeline OP Throughput
	6.3 Time-Shared Pipeline OP
	6.4 Case Study on Microservices
	6.5 Synthesis Results

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

