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Abstract. To understand the opportunities and challenges of large shares of solar photovoltaics 
(PV) in our electricity mix, various large-scale studies of PV potential on building roofs have 
been conducted in recent years. The use of different datasets, methods and spatio-temporal 
resolutions leads to widely varying results, making a comparison across different studies 
intrinsically difficult. In this work, six studies carried out in Switzerland are compared in a 
quantitative way, in order to understand how different methods impact the potential estimates. 
We observe a strong trend towards increasing spatial and temporal resolutions, using larger and 
more accurate datasets for the analysis. While the earliest study relies on rules of thumb, later 
studies use data-driven estimations, enabled by the use of Machine Learning, scalable algorithms 
and powerful computational engines. Our analysis shows that the largest differences are caused 
by the source of the solar radiation input data, the computation of shading effects on rooftops 
and the estimation of available roof area for PV panel installation. The latter is the most uncertain 
parameter in the presented studies and offers opportunities for future work.  

1.  Introduction 
Installing photovoltaics (PV) on building rooftops is a promising approach to reduce greenhouse gas 
emissions, especially in dense urban areas. Understanding the large-scale potential for rooftop PV is 
important for several reasons, including electricity network design, urban and regional energy planning, 
as well as incentive policies for PV installations. Several studies in recent years focus on assessing a 
large-scale technical rooftop PV potential. Early methods relying on “rules of thumb” [1] have been 
continuously improved by incorporating environmental and building data as well as using powerful 
computational engines and advanced analytic methods such as Machine Learning (ML). This progress 
in data processing, enabled by the availability of larger and more accurate datasets, has led to widely 
varying results of PV potential studies, even for the same geographic area. This makes the comparison 
across studies intrinsically challenging. Assouline et al. [2] provide an overview of the existing methods 
to estimate a large-scale technical rooftop PV potential, however this methodological review does not 
discuss the results obtained by individual studies. Some of these compare their results with those of 
other studies, but the discrepancies are explained in a qualitative rather than quantitative way [3,4].  

In this paper, we propose a framework to compare large-scale rooftop PV assessment studies in a 
quantitative way. This helps us to understand how different methods impact the potential estimates. We 
focus our comparison on Switzerland, where six different studies have been carried out at national scale 
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from 2002 to 2019 [1,3–7]. The results are interpreted with respect to the following aspects: (i) target 
audience, (ii) spatio-temporal resolution, (iii) datasets, and (iv) methods. We finally provide a 
perspective on future developments which may further improve the PV potential studies. In Switzerland, 
the following six studies have been conducted at different scales.  

1. The first study (S1) was conducted for several European countries including Switzerland by the 
International Energy Agency (IEA) in 2002 [1]. The method is based on rules of thumb, 
established at European scale, and does not reflect the local building stock characteristics within 
Switzerland. The technical potential is given as a yearly value for the entire country, 
representing the lowest temporal and spatial resolution among the compared studies. It is aimed 
at indicating an order of magnitude of the total technical rooftop PV potential at national scale.  

2. The second study (S2) for Switzerland was conducted by Assouline et al. [3] at commune scale. 
In this study, a Machine Learning algorithm, Support Vector Machines (SVM), combined with 
Geographic Information Systems (GIS), is used in order to estimate the technical PV potential 
on building rooftops. ML is used as an effective method of extrapolation to solve problems of 
data availability in parts of the study area. The study is performed at monthly-mean-daily 
temporal resolution for all Swiss communes.  

3. The third study (S3) is again conducted by Assouline et al. [4] at 200 ́  200 m2 spatial resolution. 
In this study, another ML algorithm, Random Forests (RF), is used in combination with GIS to 
estimate the potential. The method from S3 is enhanced in S4 using (i) larger and more accurate 
datasets, (ii) a more efficient  ML algorithm that includes the estimation of model uncertainties, 
and (iii) a higher spatial resolution of 200´200 m2. Both studies aim at a large-scale estimation 
of PV potential on building roofs to inform regional and national decision making. 

4. The fourth study (S4) was conducted as a national project, namely Sonnendach.ch, by the Swiss 
Federal Offices of Energy (SFOE), Topography (Swisstopo), and Meteorology and Climatology 
(MeteoSwiss) [5,8]. Monthly solar PV potential is estimated for each rooftop in Switzerland 
using a GIS-based approach [5] complemented by rules of thumb [8]. In contrast to the above 
studies (S1-S3), the primary target group of this study is individual property owners and energy 
service providers interested in installing PV on specific building roofs. Thus, the primary output 
of this study is a classification of rooftop suitability for solar PV installation. 

5. The fifth study (S5), conducted by Buffat et al. [6], estimates PV potential from solar radiation 
profiles in half-hour temporal resolution for pixels of 0.5 ´ 0.5 m2. In this study, GIS is used to 
estimate the solar radiation on tilted surfaces. In addition, the study includes a detailed model 
of the panel and inverter efficiencies. The results presented in the study aim primarily at a 
comparison between different PV technologies and are validated against measurement data. 

6. The sixth study (S6) has been carried out by Walch et al. [7] based on a big data approach. In 
this study, Geographic Information Systems and Machine Learning approaches are used to 
estimate the solar PV potential for each building roof surface at hourly temporal resolution. ML 
is used to quantify not only the modelling uncertainty for the resulting PV potential estimation, 
but also the uncertainty in the data. The hourly temporal resolution of the results is very 
important for the spatio-temporal modelling of future electricity systems.    

2.  Methods and data 
To compute the technical rooftop PV potential, a hierarchical approach has been widely accepted in the 
literature and is used in all studies. It includes (i) physical potential, that is, the amount of solar energy 
reaching the earth’s surface, (ii) geographic potential, that is, the amount of solar radiation received by 
the tilted PV panels, which is affected by the geometry of the panel (slope and aspect), the shading from 
surrounding buildings and trees and the suitable area for the panel installation, and (iii) technical 
potential, that is, the maximum electricity output considering the technical characteristics of the PV 
technology (e.g. efficiency and system performance).  

The physical potential is defined as the global horizontal solar radiation (Gh), consisting of a direct 
horizontal (GB) and a diffuse horizontal (GD) component. In S1, a constant Gh of 1,167kWh/m2 (from 
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Meteonorm) is used for the entire country. In all other studies (S2-S6), the three horizontal radiation 
components Gh, GB and GD are obtained from satellite-derived solar radiation data based on the Heliosat 
algorithm [9]. S2 and S3 use the mentioned data for 100 locations, S5 uses a gridded dataset at 3.8´5.6 
km2 spatial resolution (SARAH) and S4 and S6 use satellite data on a 1.6´2.3 km2 grid provided by 
MeteoSwiss, which contains improvements for radiation modelling at high altitude [10]. S4 and S5 
directly use the input data as physical potential. S2, S3 and S6 use Machine Learning to derive Gh, GB 
and GD on a 200´200 m2 grid to better represent the local terrain. In S2 and S3, additional measurements 
of temperature, precipitation, sunshine duration and cloud cover are used to support the estimation, while 
S6 use exclusively spatial features, namely longitude, latitude and altitude.  

The geographic potential is driven by two factors: (i) tilted radiation, that is, the solar radiation on a 
tilted PV panel (Gt, in kWh/m2) and (ii) available area for PV panel installation (APV, in m2). Gt and APV 
for a rooftop PV potential estimation may be generally defined as: 

 Gt = (1 – ShA) (ShBt * GBt + SVF * GDt + GRt) (1) 

 APV = Afloor * CR    " APV > Amin  (2) 
 
where GBt, GDt and GRt are the direct, diffuse and reflected tilted radiation components, ShA and ShBt 

are parameters of shading losses, explained below, SVF denotes the sky view factor, Afloor is the ground 
floor area, CR denotes the ratio of available area for PV panel installation over ground floor area and Amin 
describes the minimum roof area considered for PV installation. Despite following the same physical 
principles, differences in spatio-temporal resolution and available datasets lead to significantly varying 
methods for calculating the parameters for geographic potential, as summarized in table 1. It should be 
noted that probabilistic functions are used in S2 and S3 to compute the geographic potential as detailed 
roof shapes are unknown. One exception to equations (1) and (2) is S1, where the geographic potential 
is computed in a simplified way. In S1, Gt is obtained by multiplying Gh with an average solar yield (~ 
93.3% for Switzerland, derived from [1]). APV is computed by multiplying an estimated floor area (45m2 

per person) with the population size and a constant ratio of “architecturally suitable area / ground floor 
area”, equal to 0.72. This accounts for construction elements (here CR) as well as shading (here ShA) [1]. 

In S2-S6, shading effects (ShA, ShBt) are computed separately from CR using GIS and a Digital 
Elevation Model (DEM).  All studies use Switzerland’s DEM in 2´2 m2 resolution, which was created 
by Swisstopo. S4 and S5 interpolate this DEM to a 0.5´0.5 m2 resolution. We distinguish between two 
types of shading, namely (i) the fraction of a roof area in full shade (ShA), and (ii) the average amount 
of shading on the remaining roof (ShBt), reducing the direct tilted radiation. ShA is only considered in S2, 
S3 and S6. S2 and S3 follow a Hillshade (HS) approach which estimates shading by computing relief 
maps for each pixel of a Digital Elevation Model (DEM). ShA is obtained from pixels with a HS value 
of 0, while ShBt is obtained by averaging the remaining pixels over a building roof. ML is used by S2 
and S3 to estimate shading effects at commune and pixel scale for Switzerland based on data from 
Geneva Canton. In contrast, S4-S6 use a horizon-based method, where binary maps of sun visibility are 
computed for each hour and each pixel of a DEM. S5 directly uses these binary maps to compute the 
per-pixel tilted radiation, so ShBt Î {0, 1}. S4 and S6 average the results for each roof such that ShBt Î 
[0, 1]. ShA is computed in S6 as areas with low sunlight exposure, i.e. Sh!!!Bt < 40%. SVF, which reduces 
the diffuse tilted radiation, is accounted for in S2 and S3 through a constant (0.9) and in S4 and S6 by 
using GIS. GBt, GDt and GRt are computed in S2 and S3 from daily solar radiation models [3,4]. S4-S6 
use hourly models, explained in [11], and apply the anisotropic Perez model for the diffuse component. 

The available roof area for PV panel installation is estimated in each study to a different extent. S5 
does not compute any CR, while S4 uses roof-specific rules of thumb based on expert knowledge, which 
are in the range of 0.42-0.8 [8]. S2, S3 and S6 use a combination of GIS and ML to obtain CR. GIS is 
used in S2 to remove superstructures (SP) from roof polygons and to compute the resulting useful roof 
area. S3 improves on S2 by virtually installing PV panels (VP) on the building roofs. In both cases, the 
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GIS algorithms are applied to all rooftops in Geneva Canton, where detailed city GML data (LOD 4) is 
available. ML is then used to estimate CR in all other communes/pixels based on building characteristics, 
which are derived from the Swiss building registry (RegBL). In contrast, S6 uses roof data for the entire 
country to virtually install panels, reducing the uncertainty related to estimating CR with respect to S2 
and S3. ML is applied in S6 to consider superstructures at national scale, by extrapolating the change in 
CR when accounting for SP, which is again computed for Geneva Canton where LOD 4 data is available. 

The technical potential is computed as shown in equation (3) by multiplying Gt, APV, the module 
efficiency (h) and a performance factor (PF), which accounts for losses of the inverter, soiling, 
degradation, etc. Most studies approximate h and PF using constants. S5 and S6 use physical models 
for module and inverter efficiencies. S5 further compares the results for monocrystalline, poly-
crystalline and thin film technologies. From an economic point of view, it is necessary to exclude 
unsuitable surfaces when estimating the solar rooftop PV potential. In S1, unsuitable surfaces are defined 
as those with a yield below 80%, which is approximated to be 55% of roofs [1]. S2, S3 and S6 define 
suitable roofs as those facing southwards, with an aspect angle of ± 90° (east to west), while S4 and S5 
exclude those roofs/pixels with an annual tilted radiation below 1,000 kWh (see table 1 for reference). 

 EPV = Gt * APV * h * PF    " suitable roofs (3) 
 

Table 1. Comparison of methods for computing the main parameters of rooftop PV potential. 

Parameter S1  S2 S3 S4 S5 S6 
GBt, GDt, GRt Gh * yield Daily Daily  Hourly  Hourly  Hourly  
SVF - 0.9 0.9 Horizon 1 0.9 
ShBt - Hillshade  Hillshade Horizon Horizon Horizon 
ShA 0.72 Hillshade = 0 Hillshade = 0 0 0 Sh!!!Bt < 40% 
CR SP SP + VP 0.42 – 0.8 1 SP + VP 
Amin - 28m2 8m2 10m2 - 8m2 
Suitable roofs 55% of roofs roof aspect Î[-90°, 90°] Gt > 1000 kWh a⁄  as S2/S3 
h 10% 17% 17% 17% Panel model Panel model 
PF 80% 80% 80% Inverter model Inverter model 
 

Finally, the number of buildings considered in each study and the type of dataset used to describe 
buildings/roofs is important, as it impacts the total floor area (Afloor) and hence the order of magnitude 
of final PV potential. Again, S1 applies a rule of thumb of Afloor = 45m2 per capita. S2 uses polygons of 
building clusters (Vector25) in urban areas only. S3 uses a combination of these building clusters and 
roof surface polygons with a higher spatial resolution, representing a total of nearly 2 million buildings 
in Switzerland [4]. The estimation in S5 is based on individual building footprints for the entire country, 
mostly from the Swiss cadastral survey. S4 and S6 use a national dataset of 9.6M roof surface polygons, 
representing 3.7M buildings, which was derived from a national 3D building model (LOD 2) by 
Swisstopo3. It should be noted that the building footprint area in S5 is lower than the total building area 
declared by the Swiss Federal Statistical Office (2009 estimate) [6]. In contrast, the national roof surface 
dataset used in S3 (partly), S4 and S6 may overestimate total roof area, as some polygons overlap [12]. 

3.  Metrics of comparison 
The quantitative comparison of the studies, shown in table 2, is performed in terms of the main factors 
defined in equations (1)-(3) which can be derived from the results quoted in [1,3–7]. They include (i) 
ground floor area (Afloor), (ii) ratio of available roof area to ground floor area (CR), (iii) available area for 
PV panel installation (APV), (iv) average national tilted radiation (Gt), (v) percentage of total roof area 
suitable for PV installation (suitable roofs, see table 1), (vi) system efficiency (hsys = h * PF), (vii) 
                                                   
3 Detailed roof surface data for Switzerland were provided by the Swiss Federal Office of Energy. 
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annual estimated PV potential (EPV) and (viii) PV potential normalized by roof surface area (E#PV). As 
not all quantities are quoted in every study, some need to be derived from the given data. For this we 
use equation (3) together with some approximations that are specific to individual studies: 

a. In S1, only “solar architecturally suitable area” [1] is given as 138.2km2, which combines 
suitable roofs and CR. APV and Afloor are approximated by dividing by these factors, respectively. 

b. S2 and S3 do not state a percentage of suitable roofs, that is, a fraction of roof surfaces with a 
roof aspect Î [-90°, 90°]. This percentage is approximated based on the national roof surface 
dataset, in which 60.5% of roof area is facing southwards with roof aspect Î [-90°, 90°]. 

c. In S4, no national total PV potential is mentioned [5,8]. We thus aggregate the results for 
individual roofs, obtained by applying the method described in [8], to a national total. 

d. For S5, we derive the percentage of suitable roofs by dividing the suitable roof area (340km2), 
where Gt > 1000kWh/m2, by the total ground floor area (485km2). Gt is obtained by dividing the 
total annual irradiation (400TWh) by the suitable roof area (340km2).   

e. S4 and S6 compute the PV potential per rooftop, based on a national dataset of building roofs. 
This dataset does not contain information on the floor area. Afloor is thus approximated as the 
total polygon area of all roof surfaces. 

4.  Results and Discussion 
Table 2 shows the quantitative comparison between the different studies. A first noticeable difference 
is related to the ratio of available area for PV panel installation over ground floor area. The ratios used 
in S1 and S4 are comparable, indicating a rule of thumb for current installation practices. S2 and S3, 
which are based on data-driven methods that extrapolate CR from Geneva Canton to the rest of the 
country, estimate higher ratios. In contrast, S6 quote a significantly lower value for CR. As S6 is the only 
study which uses a GIS algorithm at national scale to obtain CR, it is likely that earlier methods 
overestimated the ratio of available roof area to ground floor area. However, S3 and S6 also show that 
the estimation of the available roof area is highly uncertain. “Big data” can bring future improvements 
to reduce this uncertainty, e.g. through an image-based classification of superstructures. The percentage 
of suitable roofs, on the other hand, is comparable across studies. In general, we can see that assessing 
suitability by a minimum radiation threshold of 1000kWh/m2 leads to approximately 10% more suitable 
roof surface area then using south-facing surfaces with a roof aspect below 90°.  

The annual mean tilted radiation (Gt) ranges from 662 to 1,243kWh/m2. The lowest values are found 
in S2 and S3, which use a conservative Hillshade analysis rather than the more optimistic Horizon 
method for computing shading. The highest values for Gt are found in S4 to S6, which follow similar 
approaches for the computation of the shading and tilted radiation components. These studies all use 
satellite data for the horizontal solar radiation. This is a strong indication that the choice of satellite or 
station data as source for the solar radiation impacts the PV potential estimate. System efficiency is 
assumed equally throughout most studies. S1, which was published over a decade ago, assume a lower 
value of 10%. S5 quote a value of 10.3% which is derived from measurements. However, a higher value 
of 17% average module efficiency and 80% performance factor appear realistic when considering the 
constantly improving performance of PV installations. These values used in S2-S4 are confirmed by the 
results obtained from the detailed model of module and inverter efficiencies used in S6. 

The final technical PV rooftop potential ranges from the lowest estimate of 15TWh by S1 up to 
53TWh by S4. The lower values are based on a smaller ground floor area and hence likely underestimate 
the total available roof area for PV installation. The upper estimates are characterized in particular 
through a high ratio of available area to ground floor area and high tilted radiation. The former leads to 
an overestimation of technical PV potential, as superstructures and roof geometry have a significant 
impact on the total available roof area. The latter is largely based on the meteorological input data. 
Estimates based on MeteoSwiss data, which is corrected for high altitudes [6], have the highest Gt. As 
the satellite sources are known to over-estimate solar radiation by 2-3% [5], the upper estimates of Gt 
should be considered slightly optimistic. 
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Table 2. Quantitative comparison of results from six studies of rooftop PV potential in Switzerland. 

 
Study 

Afloor 

(km2) 
CR 

 (%) 
APV  

(km2) 
Gt  

(kWh/m2) 
Suitable 

roofs (%) 
hsys  
(%) 

EPV  
(TWh) 

E#PV 
(kWh/m2) 

S1  349.0a 72 251.3a 1,088* 55 10 15.04 108.8 
S2 407 81 328 662* 60.5b 13.6 17.86 90.6 
S3 269 94 252 786* 60.5b 13.6 16.29 107.6 
S4 581.5c 74.8c 314.1c 1,243c 72.2c 13.6 53.09c 169.0 
S5 485 100 485 1,176d 70.1d 10.3 41.32* 121.5 
S6 581.5c 45.9 267 1,186 56.4 13.8 24.58 163.2 

* Derived from equation (3); a,b,c,d See approximations in Section 4; bold values quoted directly from study 

5.  Conclusions 
Throughout the past two decades, six studies have estimated the technical rooftop solar PV potential in 
Switzerland. During this time, the methodologies have changed significantly, moving from simple rules 
of thumb to data-driven approaches that process very large datasets. Different datasets and methods lead 
to widely varying potential estimations, ranging from 15TWh to 53TWh. A quantitative comparison 
showed that in particular the estimation of available roof area for PV panel installation, the source of 
the solar radiation data as well as the method to compute shading effects on rooftops has a large impact 
on the results. The analysis also showed that methods based on Machine Learning have achieved good 
results with using only a small amount of data, indicating that ML is an effective tool to handle missing 
data and to estimate uncertainty. Uncertainties can be systematically reduced by using powerful 
processing methods, as larger and more accurate data become available. This is particularly important 
for a reliable extraction of the available roof area for PV installation, which is currently the most 
uncertain aspect of the rooftop PV potential estimation. A promising approach is the use of Machine 
Learning to extract these areas from high-resolution satellite images, for example using deep learning.  
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