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Abstract

We present a novel algorithm based on the ensemble Kalman filter to solve inverse problems
involving multiscale elliptic partial differential equations. Our method is based on numerical
homogenization and finite element discretization and allows to recover a highly oscillatory
tensor from measurements of the multiscale solution in a computationally inexpensive manner.
The properties of the approximate solution are analysed with respect to the multiscale and
discretization parameters, and a convergence result is shown to hold. A reinterpretation of
the solution from a Bayesian perspective is provided, and convergence of the approximate
conditional posterior distribution is proved with respect to the Wasserstein distance. A
numerical experiment validates our methodology, with a particular emphasis on modelling error
and computational cost.
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1 Introduction

In this work we consider the application of techniques derived from the Kalman filter to inverse
problems involving multiscale phenomena which can be modelled by means of partial differential
equations (PDEs). Inverse problems arise in many fields, such as seismography, meteorology and
tomography, all physical domains with a multiscale nature. Our reference mathematical model is
given by multiscale elliptic PDEs of the form{

−∇ · (Aεu∇pε) = f, in Ω,
pε = 0, on ∂Ω,

where Ω ⊂ Rd is the physical domain, Aεu is a tensor oscillating with an amplitude described by the
parameter ε and u is a possibly infinite-dimensional unknown which parametrizes the tensor Aεu.
We are then interested in the solution of inverse problems involving the retrieval of the parameter u
given noisy observations derived from the solution pε.

Multiscale inverse problems of this form have been recently introduced in [14] and analysed
extensively in [2, 3]. In particular, in [2] Abdulle and Di Blasio build a coarse-graining approach to
solve the inverse problem regularized with a Tikhonov technique. The main idea is replacing the
computationally expensive solution of the highly-oscillating multiscale problem with an homogenized
surrogate, which eliminates the fast variables and is therefore cheaper. In particular, the theory
of homogenization guarantees under certain assumptions, which will be specified throughout this
work, that there exists a PDE of the form{

−∇ · (A0
u∇p0) = f, in Ω,

p0 = 0, on ∂Ω,
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such that the solution p0 is the weak limit of the functions pε in the vanishing limit for ε, and such
that A0

u is independent of ε. In [2], the authors showed that employing this homogenized model
to the multiscale inverse problem guarantees a good approximation to its solution if a Tikhonov
regularization is employed. This framework has been successively enlarged by the same authors to
the Bayesian case in [3], where the analysis involves posterior distributions arising from both the
multiscale and the homogenized model. In the same work, a technique for estimating the modelling
error which was developed in [5, 6] is successfully applied to multiscale inverse problems to account
for the homogenization and discretization errors.

The ensemble Kalman filter (EnKF), first introduced in [10], is an algorithm which is widely employed
in the engineering community for the estimation of the state of partially-observed dynamical systems
whose dynamics are governed by a nonlinear agent. In particular, Kalman filters have long been
used successfully in meteorology, oceanography and automation applications. In [11], Iglesias et al.
propose the application of the EnKF method to obtain a point-wise solution to inverse problems
involving PDEs, and an extension of their analysis giving a Bayesian interpretation of the filtering
solution is presented in [17].

In this work, we present a combination of the well-established techniques of homogenization and
filtering to build a novel scheme for solving multiscale inverse problems in an efficient and reliable
manner. In the same spirit of [2,3], we prove that it is possible to eliminate the fast scales from the
PDE appearing in the inverse problem relying on the theory of homogenization, thus obtaining a
solution which is accurate in the vanishing limit for the multiscale parameter ε. In our analysis,
we both consider point-wise estimations as in [11] and Bayesian solutions as in [17], thus showing
convergence results which are endowed with decay rates under special assumptions on the problem.
Inspired by [3,5,6], we then consider offline and online techniques for estimating the modelling error
and prove a novel result indicating the computational cost which is required for such an estimation
for any given multiscale problem.

In general, the EnKF has two main advantages with respect to other approaches. First, a Bayesian
interpretation of the solution to the inverse problem is obtained from the algorithm without any
additional cost. The Bayesian paradigm, frequently adopted in the context of inverse problems
involving PDEs, provides a full uncertainty quantification on the solution and is therefore preferable
to a point-wise estimation. Secondly, the EnKF is easily parallelizable, thus allowing in practice to
solve complex inverse problems faster than employing, e.g., Markov chain Monte Carlo methods.

The main contributions of this paper are:

• to introduce a new method based on filtering techniques and numerical homogenization,
which is computationally efficient and easy parallelizable to solve multiscale inverse problems;

• to analyze theoretically the convergence properties of our method both from a point-wise
and a Bayesian perspectives, proving the results of convergence of the EnKF scheme in the
multiscale setting;

• to estimate the modelling error caused by homogenization and discretization, and prove a
novel theoretical results which strengthens its value in practice.

The outline of the work is the following. In Section 2 we briefly summarize the technique of ensemble
Kalman inversion, show how it can be applied to multiscale inverse problems and state our main
theoretical results. In Section 3 we present the analysis of our theoretical results, and Section 4
is dedicated to the estimation of the modelling error. Finally, in Section 5 we present a series of
numerical experiments which corroborate our analysis.

2 Ensemble Kalman inversion for multiscale problems

In this section, we present the ensemble Kalman inversion technique for multiscale inverse problems.
First, we introduce a generic framework and illustrate how the EnKF is employed to solve an inverse
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problem. Then we particularize to a inverse problems involving multiscale elliptic PDEs, and we
conclude this section by announcing our main theoretical results. For a more exhaustive treatment
of the EnKF in a generic PDE context, we refer the reader to [11,17].

2.1 Ensemble Kalman inversion

We first give a brief summary of the ensemble Kalman inversion for problems of the form

find u ∈ X given observations y = G(u) + η ∈ Y, (1)

where X and Y are Hilbert spaces, the operator G : X → Y is a generic forward map and the noise
η follows the Gaussian distribution η ∼ N (0,Γ) with a symmetric positive definite covariance Γ.
Kalman filters are traditionally employed to estimate the state of a dynamical system given partial
and noisy observations of its state. In order to approximate the solution of the otherwise static
problem (1), it is therefore natural to introduce some artificial dynamics. Let us consider the space
Z = X × Y and the map Ξ: Z → Z given by

Ξ(z) =
[
u

G(u)

]
, for z =

[
u

v

]
∈ Z,

Given an initial value z0 ∈ Z, we define artificial discrete dynamics on Z through the recursion

zn+1 = Ξ(zn), n = 0, 1, . . . (2)

The dynamics on Z are completed consistently with the problem (1) by the observation equation

yn+1 = Hzn+1 + ηn+1, (3)

where H : Z → Y is the projection operator defined by H =
[
0 I

]
and {ηn}n∈N is an i.i.d. sequence

of random variables distributed identically to the noise of the inverse problem (1), i.e., ηn ∼ N (0,Γ).
In fact, let us remark that combining (2) and (3) one gets yn+1 = G(un) + ηn+1, which is in law
equivalent to the equality appearing in (1).

Kalman filters proceed recursively to estimate the state of dynamics of the form (2) when observations
are provided by the model (3). At each time n, the estimation is performed in two steps. First,
equation (2) is employed in the so-called prediction step, and then (3) is employed to correct the
prediction in the update or analysis step. In case Ξ is a linear map, both prediction and update steps
admit a closed-form expression, often referred to in literature as the Kalman formulae. Conversely,
in case Ξ is nonlinear, there exist no explicit solution to the estimation problem and one has to
recur to an approximation such as the EnKF method, which we briefly describe here.

Given a positive integer J , the EnKF method proceeds by propagating and updating an ensemble
{z(j)
n }Jj=1 ⊂ Z of particles with discrete approximations of the Kalman formulae. Let A ⊂ X be

such that dim(A) ≤ J , and let the initial ensemble {z(j)
0 }Jj=1 to be given by

z
(j)
0 =

[
ψ(j)

G(ψ(j))

]
,

where {ψ(j)}Jj=1 ⊂ A. At each time n = 0, 1, . . . , N − 1, and for each j = 1, . . . , J , the prediction
step is simply given by

ẑ
(j)
n+1 = Ξ(z(j)

n ). (4)

In the analysis step, this partially-updated ensemble is updated given knowledge of the data y. For
better exploring the space Y , the data is randomized and each particle z(j)

n+1 is compared to i.i.d.
versions of the data given by y(j)

n+1 = y + η
(j)
n+1, where η

(j)
n+1 ∼ N (0,Γ). The analysis step is then

given by
z

(j)
n+1 = ẑ

(j)
n+1 +Kn+1(y(j)

n+1 −Hẑ
(j)
n+1). (5)
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The operator Kn+1 : Y → Z, the Kalman gain, weighs the effects of dynamics and observations in
this two-step procedure, and is defined as

Kn+1 = Cn+1H
∗Rn+1, Rn+1 = (HCn+1H

∗ + Γ)−1, (6)

where Cn+1 : Z → Z is the empirical covariance of the partially-updated ensemble {ẑ(j)
n+1}Jj=1, the

operator H∗ : Y → Z is the adjoint of H, which is given in (3), and we recall Γ to be the covariance
of the noise y, so that Rn+1 : Y → Y . Intuitively, one can notice that when the ensemble’s covariance
Cn+1 is large with respect to the noise covariance Γ, i.e., the observation model is more precise
than the dynamics, we will have z(j)

n+1 ≈ y
(j)
n+1, while in the opposite case we will have z(j)

n+1 ≈ ẑ
(j)
n+1.

A more precise definition of the operators appearing above will be given in Section 3. At the final
step N , we project the particles on the space X and average the result to obtain the estimate

uEnKF = 1
J

J∑
j=1

H⊥z
(j)
N = 1

J

J∑
j=1

u
(j)
N ,

where H⊥ : Z → X is defined by H⊥ =
[
I 0

]
. The last detail missing to fully define the EnKF

is its initialization, i.e., the choice of the space A defining the initial ensemble. We assume prior
knowledge is available on the parameter u ∈ X and that it is summarized by a probability measure
µ0 on X. In this case, one can draw J i.i.d. samples ψ(j) from µ0 and fix A = span{ψ(j)}Jj=1.
Remark 1. The computational cost of the EnKF method is approximately equal to the number
of evaluations of the forward operator, which in a PDE framework dominates with respect to the
algebraic operations needed in the analysis step. Therefore, the complexity of the algorithm is
O(JN). Nonetheless, let us remark that the prediction step (4) can be easily parallelized, since
the forward operator is applied independently to each particle. Hence, for a reasonable number of
particles (or a high number of computing units), we have that the overall cost is of order O(N).

As shown in [17], a slight modification of the EnKF algorithm allows to obtain with no additional
cost a Bayesian solution to (1) from the evolving ensemble. Let µ0 be, as above, a prior probability
measure on X and let the initial ensemble {ψ(j)}Jj=1 consist of i.i.d. samples from µ0. Given a
number of steps N , let ∆ = 1/N be a “stepsize”. Let us modify the algorithm above by taking
instead of the covariance Γ of the noise its scaled version ∆−1Γ in formula (6). Moreover, let us
define the empirical measure µ̂n on X induced by the ensemble at the n-th step, i.e.

µ̂n(du) = 1
J

J∑
j=1

δ
u

(j)
n

(du),

where δx is the Dirac mass concentrated in x ∈ U . Then, it has been shown in [17] that µ̂n is a
good approximation of the measure µn defined by

µn(du) = 1
Zn

e−n∆Φ(u;y)µ0(du),

where Zn is the normalization constant and Φ(u; y) is the least squares functional

Φ(u; y) = 1
2

∥∥∥Γ−1/2(y − G(u))
∥∥∥2

2
.

For n = N , we have by definition N∆ = 1 and the measure µ := µN given by

µ(du) = 1
Z
e−Φ(u;y)µ0(du), (7)

where Z is the normalization constant, is exactly the posterior measure of the parameter u given
the prior µ0 in the Bayesian sense (see, e.g., [18]). Summarizing, if one carefully modifies formula
(6) for the Kalman gain, it is sufficient to run the EnKF method for N steps and the empirical
measure given by the particles is an approximation to the Bayesian posterior.
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2.2 Multiscale ensemble Kalman inversion

In this work, we consider the application of ensemble Kalman inversion to a multiscale inverse
problem of the form

find u ∈ X given observations y = Gε(u) + η ∈ Y, (8)

where ε > 0 is the multiscale parameter, which often is ε � 1, the operator Gε : X → Y is the
multiscale forward map and where, as above, η ∼ N (0,Γ) for some symmetric positive definite
covariance Γ on Y . Let Ω ⊂ Rd be an open bounded domain and let H1

0 (Ω) denote the space of
functions v : Ω → R in L2(Ω) with first order weak derivatives in L2(Ω) and whose trace on ∂Ω
vanishes. We consider the forward map Gε to be the composition Gε = O ◦ Sε of an observation
operator O : H1

0 (Ω) → Y and a multiscale solution operator Sε : X → H1
0 (Ω). In particular, for

u ∈ X, the operator Sε : u 7→ pε ∈ H1
0 (Ω) where pε is the weak solution of the elliptic PDE{
−∇ · (Aεu∇pε) = f, in Ω,

pε = 0, on ∂Ω,
(9)

for a right-hand side f ∈ L2(Ω). We assume that the tensor Aεu : Ω → Rd×d is a parametrized
multiscale tensor admitting explicit scale separation between slow and fast spatial variables, i.e.,

Aεu(x) = A
(
u(x), x

ε

)
,

where the map (t, x) 7→ A(t, x/ε) is assumed to be known and where A is periodic in its second
argument. In other words, the unknown u of the inverse problem (8) governs the slow-scale variations
of the rapidly-oscillating tensor Aεu.

Let us consider now the application of ensemble Kalman inversion to the inverse problem (8). Since
the PDE (9) does not in general admit a closed-form solution, one has to employ a numerical
approximation to evaluate the forward map Gε. If ε is small and we employ the finite element
method (FEM), a fine discretization is needed to resolve the smallest scale and thus evaluate the
forward operator Gε, which clearly leads to a high computational cost. Indeed, as for Remark 1, a
run of the EnKF algorithm would lead to O(N) solutions of (9), which is indeed unfeasible.

In order to approach the multiscale problem more efficiently we recur to the theory of homogenization
(see e.g. [8]), which ensures the existence of a non-oscillating homogenized tensor A0

u, such that for
ε→ 0 the solution pε of (9) tends weakly in H1

0 (Ω) to the solution p0 of the problem{
−∇ · (A0

u∇p0) = f, in Ω,
p0 = 0, on ∂Ω.

(10)

Hence, this homogenized problem is a good surrogate of (9) when ε� 1, and its non-oscillating
nature allows us to discretize it with FEM on an arbitrarily coarse mesh, whose maximum diameter is
denoted by h. Therefore, denoting by G0

h : O◦S0
h, where S0

h : u 7→ p0
h, the numerical solution of (10),

we study in this paper the behavior of the EnKF when Gε is replaced by its cheap approximation G0
h.

Let us denote by {u0,(j)
n,h }Jj=1 the ensemble obtained after n iterations of the EnKF algorithm with

the forward operators G0
h in the prediction step (4). With this notation, given an initial ensemble

{u0,(j)
0,h }Jj=1, at each step n = 0, 1, . . . , N − 1, our algorithm proceeds as

(i) for each u0,(j)
n,h , compute the homogenized tensor A0

u
(j)
n

and build the forward map G0
h,

(ii) perform the prediction step (4) with G0
h and the analyis step (5) to obtain the updated

ensemble {u0,(j)
n+1,h}Jj=1.

The computation of the homogenized tensor relies as well on numerical procedures, here we use the
finite element heterogeneous multiscale method (FE-HMM) [1,4]. Let us finally remark that similar
analyses have been carried on in [2, 3, 14] for different methodologies in the solution of (8).
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2.3 Statement of main results

Let us first introduce some assumptions and notation which will be employed in the analysis. First,
we introduce a regularity assumption on tensors which will be fulfilled by Aεu and A0

u.
Assumption 1. The tensor Au : Ω→ Rd×d satisfies for all u, u1, u2 ∈ X and ξ ∈ Rd

‖Au1 −Au2‖L∞(Ω;Rd×d) ≤M ‖u1 − u2‖X , Auξ · ξ ≥ α0 ‖ξ‖22 ,

where M and α0 are positive constants.

We now introduce a regularity assumption on the observation operator.
Assumption 2. The observation operator O : H1

0 (Ω)→ Y satisfies for all p1, p2 ∈ H1
0 (Ω)

‖O(p1)−O(p2)‖Y ≤ CO ‖p1 − p2‖L2(Ω) ,

where CO is a positive constant.

Note that since O is defined on H1
0 (Ω) ⊂ L2(Ω), Assumption 2 is stronger than Lipschitz continuity.

Finally, we introduce an assumption on the algorithm which will be employed in the analysis.
Assumption 3. All the particles in the ensemble lie at each iteration in a ball BR(u∗) for some
R > 0 sufficiently big, where u∗ is the true value of the unknown.

For clarity, we present the analysis the finite-dimensional setting X = RM and Y = RL but claim
that it can be readily generalized to the infinite-dimensional case. For an ensemble u = {u(j)}Jj=1
of particles in RM , we introduce the ensemble norm

‖u‖ := 1
J

J∑
j=1

∥∥∥u(j)
∥∥∥

2
, (11)

which is indeed a norm and where ‖·‖2 is the Euclidean norm in RM . Moreover, given a scalar α,
we define the linear combination w = u+αv between two ensembles u and v with the same number
of particles J as {w(j) = u(j) + αv(j)}Jj=1.

We can now present the first main result of this work, in which we show the convergence of the
ensemble obtained by the EnKF employing G0

h to the one obtained employing the exact operator
Gε linked to the PDE (9).

Theorem 1. Let u0
N,h = {u0,(j)

N,h }Jj=1, uεN = {uε,(j)N }Jj=1 be the ensembles after N iterations of the
EnKF method with forward operators G0

h and Gε respectively. Then, if Aεu and A0
u satisfy Assumption

1 and if Assumption 2 and Assumption 3 hold, we have

E
[∥∥uεN − u0

N,h

∥∥]→ 0 as ε, h→ 0.

In particular, if the exact solution p0 of the homogenized problem (10) is in Hq+1(Ω) with q ≥ 1
and we employ polynomials of degree r for the finite element basis, then

E
[∥∥uεN − u0

N,h

∥∥] ≤ C(ε+ hs+1),

where s = min{r, q} and C > 0 is a constant independent of h and ε.

The proof of this result is the main focus of Section 3.1. The second main theoretical result concerns
the Bayesian interpretation of the EnKF methodology for inverse problems in the multiscale setting.
Let µ0 be a prior measure on X and the ensembles u0

N,h = {u0,(j)
N,h }Jj=1, uεN = {uε,(j)N }Jj=1 resulting

from the EnKF algorithms as in Theorem 1 both initialized with an i.i.d. sample from µ0. We
consider the discrete probability measures

µε = 1
J

J∑
j=1

δ
u
ε,(j)
N

and µ0
h = 1

J

J∑
j=1

δ
u

0,(j)
N,h

, (12)
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i.e., the EnKF approximations of the posterior µ on u defined in (7). Our goal is providing a
measure on how far the two measures are from each other with respect to ε and h. Let us remark
that due to the randomization of the data at each step of the EnKF algorithm, both µε and µ0

h are
random probability measures. We now introduce the metric we consider for comparing the two
measures.

Definition 1. Let (Ω,A, P ) be a probability space. A sequence of random measures {µn}n∈N on a
metric space (E,B(E)) dependent on a random variable ξ on (Ω,A, P ) is said to weakly converge
in L1(Ω) to a random measure µ on the same metric space if for all bounded continuous functions
f ∈ C0

B(E) we have

Eξ
[∣∣∣∣∫

E

f dµn −
∫
E

f dµ

∣∣∣∣]→ 0.

In this case we write µn
L1

−−⇀ µ.

We can now state our second main result, whose proof is the main focus of Section 3.2.

Theorem 2. Let the hypotheses of Theorem 1 be satisfied. Then the sequence of random measures
{µε − µ0

h}ε,h, where µε and µ0
h are defined in (12), satisfies

{µε − µ0
h}ε,h

L1

−−⇀ 0 as ε, h→ 0.

Remark 2. It is possible to verify that in both Theorem 1 and Theorem 2 the limits with respect to
ε and h can be interchanged.

3 Convergence analysis

In this section we prove Theorem 1 and Theorem 2, the main results if this work. As announced
above, the analysis is carried out in the finite dimensional case X = RM and Y = RL, but it can
be generalized to the infinite dimensional setting. For the purpose of the analysis, we introduce
on top of the forward maps Gε and G0

h, which have been introduced in Section 2.2, the operator
G0 = O◦S0, where S0 : X → H1

0 (Ω) is the exact solution operator associated with the homogenized
PDE (10).

3.1 Convergence of the point estimate

We now focus on Theorem 1. It is clear from the desired bound that the effects of homogenization
and discretization can be analysed separately. In particular, we first show the convergence of the
ensemble generated employing the forward operator Gε to the one generated employing the exact
homogenized operator G0 for ε→ 0. Then, in an analogous fashion, we prove the convergence of
the ensemble generated with G0

h to the ensemble generated employing G0. In order to introduce a
compact notation, we denote by UJ,M the set of ensembles of dimension J with elements in RM
and we consider the homogenization error function e : R×UJ,M → R, which is defined for a generic
ensemble u as

e(ε, u) = 1
J

J∑
j=1

∥∥∥Gε(u(j))− G0(u(j))
∥∥∥

2
, (13)

and a discretization error function ẽ : R× UJ,M → R as

ẽ(h, u) = 1
J

J∑
j=1

∥∥∥G0
h(u(j))− G0(u(j))

∥∥∥
2
. (14)

Before proving the main theorem, we introduce some preliminary results.

Let us first consider a generic forward operator involving an elliptic PDE and show that the
associated forward map is Lipschitz continuous.
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Lemma 1. Let G : RM → RL, G = O ◦ S be a forward operator such that O : H1
0 (Ω) → RL is

Lipschitz and S : RM → H1
0 (Ω), S : u 7→ p is defined by the solution of{

−∇ · (Au∇p) = f, in Ω,
p = 0, on ∂Ω,

(15)

where Ω ⊂ Rd is an open bounded set, the right-hand side f ∈ L2(Ω) and the tensor Au satisfies
Assumption 1. Then G is Lipschitz with a constant depending only on the Poincaré constant of Ω,
on the constants M and α appearing in Assumption 1, on the right-hand side f and on the Lipschitz
constant of the operator O.

The proof of Lemma 1 is given in the Appendix. In the following Lemma, whose proof is also given
in the Appendix, we consider the homogenization error defined in (13) and shows that it vanishes
in the limit ε→ 0.

Lemma 2. Let e be defined as (13). Under Assumption 2, we have for all u ∈ UJ,M

e(ε, u)→ 0 as ε→ 0.

Moreover, if the solution of the homogenized problem (10) is in H2(Ω) independently of u, then
there exists K > 0 independent of ε and u such that

e(ε, u) ≤ Kε.

Finally, we consider the particle empirical covariances of ensembles given by the EnKF algorithm,
thus proving their boundedness and Lipschitz continuity. The proof of this Lemma can be found in
the Appendix.

Lemma 3. Let Cup(u) ∈ RM×L and Cpp(u) ∈ RL×L be defined as

Cup(u) = 1
J

J∑
j=1

(
u(j) − ū

)(
G(u(j))− Ḡ

)T
, Cpp(u) = 1

J

J∑
j=1

(
G(u(j))− Ḡ

)(
G(u(j))− Ḡ

)T
,

where ū ∈ RM and Ḡ ∈ RL are the empirical averages

ū = 1
J

J∑
j=1

u(j), Ḡ = 1
J

J∑
j=1
G(u(j)),

and let G : RM → RL be Lipschitz with constant CG. Then, there exist four constants Ci > 0,
i = 1, . . . , 4, such that

(i) ‖Cup(u)‖2 ≤ C1,

(ii) ‖Cpp(u)‖2 ≤ C2,

(iii) ‖Cup(u1)− Cup(u2)‖2 ≤ C3 ‖u1 − u2‖,

(iv) ‖Cpp(u1)− Cpp(u2)‖2 ≤ C4 ‖u1 − u2‖,

for all ensembles u, u1, u2 ∈ UJ,M which are stable in the sense of Assumption 3.

In order to clarify the exposition, we first consider the amplification the error over one step between
the EnKF algorithms employing the multiscale and the homogenized forward operators respectively,
which is summarized in the following lemma.

Lemma 4. For all n = 0, . . . , N − 1, let u0
n = {u0,(j)

n }Jj=1,uεn = {uε,(j)n }Jj=1 be the ensembles of
particles at the n-th iteration of the EnKF for the forward operators G0 and Gε respectively. Then,
under Assumption 1, Assumption 2 and Assumption 3, there exist positive constants α and γ such
that

E
[∥∥uεn+1 − u0

n+1
∥∥] ≤ αE [∥∥uεn − u0

n

∥∥]+ γE
[
e(ε, u0

n)
]
,

where e(ε, u) is given in (13).
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Proof. First, due to Assumption 2 and the Poincaré inequality with constant Cp we have

‖O(p1)−O(p2)‖2 ≤ CO ‖p1 − p2‖L2(Ω) ≤ COCp ‖∇p1 −∇p2‖L2(Ω;Rd) ,

which shows that O is Lipschitz with constant COCp. Therefore, applying Lemma 1, we deduce that
both G0 and Gε are Lipschitz with constant CG independent of ε. The Kalman update formulae (5)
restricted to the u variable read (see [11])

u
ε,(j)
n+1 = uε,(j)n + Cup(uεn)(Cpp(uεn) + Γ)−1(yn+1 − Gε(uε,(j)n )), (16)

u
0,(j)
n+1 = u0,(j)

n + Cup(u0
n)(Cpp(u0

n) + Γ)−1(yn+1 − G0(u0,(j)
n )). (17)

Combining (16) and (17), we have

E
[∥∥uεn+1 − u0

n+1
∥∥] = 1

J

J∑
j=1

E
[∥∥∥uε,(j)n + Cup(uεn)(Cpp(uεn) + Γ)−1(y(j)

n+1 − Gε(uε,(j)n ))

−u0,(j)
n − Cup(u0

n)(Cpp(u0
n) + Γ)−1(y(j)

n+1 − G0(u0,(j)
n ))

∥∥∥
2

]
,

and using the triangle inequality we obtain

E
[∥∥uεn+1 − u0

n+1
∥∥] ≤ E

[∥∥uεn − u0
n

∥∥]+ S1 + S2 + S3, (18)

where

S1 = 1
J

J∑
j=1

E
[∥∥Cup(uεn)− Cup(u0

n)
∥∥

2

∥∥(Cpp(uεn) + Γ)−1∥∥
2

∥∥∥y(j)
n+1 − Gε(uε,(j)n )

∥∥∥
2

]
,

S2 = 1
J

J∑
j=1

E
[∥∥Cup(u0

n)
∥∥

2

∥∥(Cpp(uεn) + Γ)−1 − (Cpp(u0
n) + Γ)−1∥∥

2

∥∥∥y(j)
n+1 − Gε(uε,(j)n )

∥∥∥
2

]
,(19)

S3 = 1
J

J∑
j=1

E
[∥∥Cup(u0

n)
∥∥

2

∥∥(Cpp(u0
n) + Γ)−1∥∥

2

∥∥∥G0(u0,(j)
n )− Gε(uε,(j)n )

∥∥∥
2

]
. (20)

Let us introduce two useful inequalities which will be employed in the following. Given A and B
square invertible matrices of the same size, it holds∥∥A−1 −B−1∥∥

2 ≤
∥∥A−1∥∥

2

∥∥B−1∥∥
2 ‖A−B‖2 . (21)

Moreover, if A is positive semidefinite and B is positive definite, it holds∥∥(A+B)−1∥∥
2 ≤

∥∥B−1∥∥
2 . (22)

Let us first consider S1. Applying Lemma 3 and (22) to the first two factors gives

S1 ≤
C3

J

J∑
j=1

E
[∥∥uεn − u0

n

∥∥∥∥Γ−1∥∥
2

∥∥∥y(j)
n+1 − Gε(uε,(j)n )

∥∥∥
2

]
.

Moreover, since y(j)
n+1 = y + η

(j)
n+1 and since y = Gε(u∗) + η, where u∗ is the true value of the

unknown and η is the true realization of the noise, the triangle inequality yields∥∥∥y(j)
n+1 − Gε(uε,(j)n )

∥∥∥
2
≤
∥∥∥Gε(u∗)− Gε(uε,(j)n )

∥∥∥
2

+
∥∥∥η(j)
n+1 + η

∥∥∥
2
,

which, since Gε is Lipschitz and due to Assumption 3, implies∥∥∥y(j)
n+1 − Gε(uε,(j)n )

∥∥∥
2
≤ CGR+

∥∥∥η(j)
n+1 + η

∥∥∥
2
.
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Hence, we get

S1 ≤
1
J
C3
∥∥Γ−1∥∥

2

J∑
j=1

E
[∥∥uεn − u0

n

∥∥(CGR+
∥∥∥η(j)
n+1 + η

∥∥∥
2

)]
.

Finally, the random variables ζ(j)
n+1 := η

(j)
n+1+η are i.i.d., distributed as ζ ∼ N (0, 2Γ) and independent

of uεn and u0
n, which implies first

E[‖ζ‖2] ≤
√

E[‖ζ‖22] =
√

2tr(Γ),

and second, defining α1 := C3
∥∥Γ−1

∥∥
2 (CGR+

√
2tr(Γ)), yields the final bound

S1 ≤ α1E
[∥∥uεn − u0

n

∥∥] . (23)

Let us now consider the second term S2. We apply Lemma 3 to the norm of Cup(u0
n). Moreover,

applying the inequalities (21), (22) and Lemma 3 gives∥∥(Cpp(uεn) + Γ)−1 − (Cpp(u0
n) + Γ)−1∥∥

2 ≤ C4
∥∥Γ−1∥∥2

2

∥∥uεn − u0
n

∥∥ .
Reasoning as for S1 for the third factor appearing in (19) finally yields

S2 ≤ α2E
[∥∥uεn − u0

n

∥∥] , (24)

where α2 := C1C4
∥∥Γ−1

∥∥2
2 (CGR +

√
2tr(Γ)). We now consider the last term S3. The first factor

appearing in (20) can be bounded by Lemma 3 and for the second factor we use (22), thus obtaining∥∥(Cpp(u0
n) + Γ)−1∥∥

2 ≤
∥∥Γ−1∥∥

2 .

Regarding the third factor of (20), we apply the triangle inequality and the Lipschitz continuity of
the forward operator Gε, which yield∥∥∥G0(u0,(j)

n )− Gε(uε,(j)n )
∥∥∥

2
≤
∥∥∥G0(u0,(j)

n )− Gε(u0,(j)
n )

∥∥∥
2

+ CG

∥∥∥u0,(j)
n − uε,(j)n

∥∥∥
2
.

Substituting back into S3 and by definition of e(ε, u0
n) and of the ensemble norm we obtain

S3 ≤ C1
∥∥Γ−1∥∥

2 E
[
e(ε, u0

n)
]

+ C1
∥∥Γ−1∥∥

2 CGE
[∥∥u0

n − uεn
∥∥] .

Therefore, defining α3 = C1
∥∥Γ−1

∥∥
2 CG and γ = C1

∥∥Γ−1
∥∥

2 we have the bound

S3 ≤ α3E
[∥∥u0

n − uεn
∥∥]+ γE

[
e(ε, u0

n)
]
. (25)

Finally, defining α := 1 + α1 + α2 + α3, and using the results (18), (23), (24) and (25), we obtain
the desired result.

We now present the main result about global multiscale convergence of the EnKF algorithm.

Proposition 1. Under the notation and assumptions of Lemma 4, letting uε0 = u0
0 be the same

initial ensemble, we have
E
[∥∥uεN − u0

N

∥∥]→ 0 as ε→ 0.

Moreover, if the solution of the homogenized problem (10) is sufficiently regular, namely p0 ∈ H2(Ω),
then there exists K1 > 0 independent of ε such that

E
[∥∥uεN − u0

N

∥∥] ≤ K1ε.

Proof. Since uε0 = u0
0, iterating the estimate of Lemma 4 yields

E
[∥∥uεN − u0

N

∥∥] ≤ γ N−1∑
i=0

αN−1−iE
[
e(ε, u0

i )
]
.
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Applying Lemma 2, we have e(ε, u0
i )→ 0 for all i = 0, . . . , N − 1, hence as ε→ 0

E
[∥∥uεN − u0

N

∥∥]→ 0.

Moreover, if p0 belongs to H2(Ω), applying Lemma 2 gives

E
[∥∥uεN − u0

N

∥∥] ≤ K1ε,

where K1 = γ(αN − 1)K/(α− 1), which is the desired result.

We now consider convergence with respect to the FEM discretization of the homogenized problem.
First, we introduce a preliminary result, which plays the role of Lemma 2 in the context of numerical
convergence and whose proof is given in the Appendix.

Lemma 5. Let ẽ be defined in (14) and let Assumption 2 hold. If the exact solution p0 of the
homogenized problem (15) is in Hq+1(Ω), the right-hand side f is in Hq−1(Ω) and we employ
polynomials of degree r for the finite element basis, then

ẽ(h, u) ≤ K̃hs+1,

where s = min{r, q}.

We can now state the main result concerning convergence with respect to the numerical discretization
of the homogenized problem.

Proposition 2. Let u0
N = {u0,(j)

N }Jj=1, u0
N,h = {u0,(j)

N,h }Jj=1 be the ensembles of particles at the last
iteration of the iterative ensemble Kalman filter for the forward operators G0 and G0

h respectively.
Then, under Assumption 1, Assumption 2, Assumption 3 and if the exact solution p0 of the
homogenized problem (15) is in Hq+1(Ω) and we use polynomials of degree r for the finite element
basis, we have

E
[∥∥u0

N,h − u0
N

∥∥] ≤ K2h
s+1,

where s = min{r, q} and K2 is a positive constant independent of h.

Proof. The proof of Proposition 2 is identical to the proof of Proposition 1, except that all the
ensembles {uεn}Nn=1 obtained by the multiscale operator Gε have to be replaced by the ensembles
{u0

n,h}Nn=1 obtained by the finite element discretization of the homogenized operator G0
h. Moreover

Lemma 2 for the error e has to be replaced by Lemma 5 for the error ẽ.

Applying Proposition 1 and Proposition 2, we finally prove Theorem 1.

Proof of Theorem 1. An application of the triangle inequality yields

E[
∥∥uεN − u0

N,h

∥∥] ≤ E[
∥∥uεN − u0

N

∥∥] + E[
∥∥u0

N − u0
N,h

∥∥].

The two addends can be bounded applying Proposition 1 and Proposition 2, thus obtaining the
desired result for C = max{K1,K2}.

3.2 Convergence of the posterior distributions

In this section, we give the proof of Theorem 2, i.e., the convergence of the discrete posterior
measures µε to µ0

h introduced in (12) as ε, h→ 0. Let u∗ ∈ RM and let BR(u∗) be the ball of radius
R centered in u∗ with respect to the norm ‖·‖s with s ∈ [1,∞]. Due to the discrete nature of these
distributions, we study convergence with respect to the Wasserstein metrics, for which we report its
standard definition in the metric spaces (BR(u∗), ‖·‖s), which can be found, e.g., in [16].

11



Definition 2. Let µ and ν be two probability measures on the metric space (BR(u∗), ‖·‖s). The
Wasserstein distance between µ and ν is defined for all p ∈ [1,∞) as

Wp,s(µ, ν) =
(

inf
γ∈Γ(µ,ν)

∫
BR(u∗)×BR(u∗)

‖u− v‖ps dγ(u, v)
)1/p

, (26)

where Γ(µ, ν) denotes the collection of all joint distributions on BR(u∗)×BR(u∗) with marginals µ
and ν on the first and second factors respectively.

Remark 3. If µ and ν are two discrete distributions on finite state spaces, respectively Ω1 =
{u1, . . . , uK1} and Ω2 = {v1, . . . , vK2} included in BR(u∗), then (26) can be written as

Wp,s(µ, ν) =

 inf
γ∈RK1×K2

K1∑
i=1

K2∑
j=1
‖ui − vj‖ps γij

1/p

, (27)

where the matrix γ has to satisfy the following constraints

K2∑
j=1

γij = µ(ui) for all i = 1, . . .K1,

K1∑
i=1

γij = ν(vj) for all j = 1, . . .K2. (28)

We now show that the distance W1,2 is bounded by the distance induced by the ensemble norm
defined in (11). This result will be crucial later to prove Theorem 1.

Lemma 6. Let u1 = {u(j)
1 }Jj=1, u2 = {u(j)

2 }Jj=1 be two ensembles of particles and let µ1, µ2 be the
corresponding distributions defined as sum of Dirac masses

µ1 = 1
J

J∑
j=1

δ
u

(j)
1
, µ2 = 1

J

J∑
j=1

δ
u

(j)
2
.

Then for all s ∈ [1,∞] and p ∈ [1,∞) it holds

Wp,s(µ1, µ2) ≤

 1
J

J∑
j=1

∥∥∥u(j)
1 − u

(j)
2

∥∥∥p
s

 1
p

and, in particular,
W1,2(µ1, µ2) ≤ ‖u1 − u2‖ .

Proof. Take γ∗ defined as

γ∗(u(j)
1 , u

(i)
2 ) =

{
1
J if i = j

0 if i 6= j,

which satisfies the constraints (28), and note that

J∑
j=1

J∑
i=1

∥∥∥u(j)
1 − u

(i)
2

∥∥∥p
s
γ∗(u(j)

1 , u
(i)
2 ) = 1

J

J∑
j=1

∥∥∥u(j)
1 − u

(j)
2

∥∥∥p
s
.

Therefore, by definition of Wasserstein distance for discrete distributions on finite spaces (27), we
deduce that

Wp,s(µ1, µ2) ≤

 1
J

J∑
j=1

∥∥∥u(j)
1 − u

(j)
2

∥∥∥p
s

 1
p

,

which is the desired result. Finally, taking p = 1 and s = 2 and recalling the ensemble norm defined
in (11), we obtain the second inequality.
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We now analyze the relationship between the weak L1 convergence introduce in Definition 1 and
the convergence with respect to the expectation of the Wasserstein distance for random probability
measures. In particular, we prove that the latter implies the former, which was already proved
in [16] for non-random measures. Here, we extend the result to random probability measures. The
proof of the following Lemma is given in the Appendix.

Lemma 7. Let (Ω,A, P ) be a probability space. Let the sequence {µn}n∈N and µ be random
probability measures on the metric space (BR(u∗), ‖·‖s) dependent on the random variable ξ on
(Ω,A, P ). If

Eξ[W1,s(µn, µ)]→ 0,

then µn
L1

−−⇀ µ.

We can now complete the proof of Theorem 2.

Proof of Theorem 2. Applying Lemma 6 and due to Theorem 1, we deduce that for ε, h → 0 it
holds

E[W1,2(µε, µ0
h)]→ 0.

Note that the only difference in the update step of the EnKF when used for a point estimate and in
the Bayesian framework is that Γ is replaced by ∆−1Γ where ∆ = 1/N . The constants of the proof
of Theorem 1 depend on

∥∥Γ−1
∥∥

2, which is now replaced by
∥∥(∆−1Γ)−1

∥∥
2, which can be bounded

by
∥∥Γ−1

∥∥
2 as ∥∥(∆−1Γ)−1∥∥

2 = ∆
∥∥Γ−1∥∥

2 ≤
∥∥Γ−1∥∥

2 .

Finally, applying Lemma 7, we obtain the desired result.

4 Modelling error

In this section, we consider the effects of model misspecification due to the homogenization and
discretization error. All the results presented in Section 3 deal with the asymptotic case h, ε→ 0,
which is unrealistic in applications. Let us recall that the original inverse problem involves predicting
the exact unknown u∗ from observations originated by the model

y = Gε(u∗) + η, (29)

where η ∼ N (0,Γ) is the noise. Since evaluating Gε is too expensive and in many applications
unfeasible, we wish to employ the cheaper forward operator G0

h. Hence, we rewrite (29) as

y = G0
h(u∗) + E(u∗) + η, (30)

where
E(u∗) := Gε(u∗)− G0

h(u∗).
The quantity E(u∗) represents the error introduced by misspecification of the forward model.
Equation (30) shows that the observed data y can be seen as data originating by the discrete
homogenized model which is affected by two sources of errors, the original noise and the modelling
error. This formulation of modelling error was originally presented in [6], and then applied to
multiscale inverse problems in [3]. Following [3,6], we assume that the modelling error is a Gaussian
random variable independent of the noise η, so that E ∼ N (m,Σ) for all u, and write

y = G0
h(u∗) +m+ ζ + η, (31)

where ζ ∼ N (0,Σ). There is no theoretical guarantee for the modelling error to be distributed as a
Gaussian in this framework. Nevertheless, it has been shown in [13] that in the one-dimensional
case a Gaussian assumption can be employed effectively for the modelling error, thus partially
justifying our choice. Then we define

ỹ = y −m and η̃ = η + ζ ∼ N (0,Γ + Σ)

13



and, from (31), we obtain
ỹ = G0

h(u∗) + η̃. (32)
Therefore, if the mean m and covariance Σ of the modelling error are known, a more reliable
approximation of the unknown u∗ can be obtained applying the EnKF to (32). The modelling error
distribution, by assumption fully determined by its mean and covariance, is approximated offline.
We sample NE unknowns {ui}NEi=1 from µ0 and, for all i = 1, . . . , NE , we apply both the forward
operators Gε(ui) and G0

h(ui). Then we compute

Ei = Gε(ui)− G0
h(ui),

and the mean m and the covariance Σ are obtained as the empirical mean and covariance of the
sample {Ei}NEi=1. This procedure is computationally involved due to the multiple evaluations of Gε,
but it has to be performed only once and can then be applied to different sets of observations and
true values u∗. Let us also remark that on the one hand, due to the theory of homogenization, the
modelling error can be considered negligible when ε is very small, and the expensive estimation of
E may not be necessary. On the other hand, when ε is larger, the homogenized equation does not
provide with a good approximation of the multiscale problem, and an estimation of E is required.
One may rightfully argue that in case ε = O(1), it is possible to evaluate the forward operator Gε
without a large computational effort. Hence, the techniques presented in this section are relevant
for mid-range values of ε, for which E is significant with respect to the noise η. Moreover, we
remarked in practice via numerical experiments that a small number NE can be employed to obtain
a satisfactory approximation of the modelling error. A theoretical justification of this property is
provided by Theorem 3 and Theorem 4.

In order to obtain a more reliable approximation of the distribution of the modelling error, we can
follow a dynamic approach based on the estimation of the mean m and the covariance Σ online, i.e.,
during the run of the EnKF algorithm. This methodology has been developed in [5]. In particular,
we sequentially apply the ensemble Kalman method for L levels and, at each level ` = 1, . . . ,L, we
update the distribution of the modelling error, which is denoted by ν` = N (m`,Σ`). Letting

µ`n = 1
J

J∑
j=1

δ
u
`(j)
n

be the approximation of the distribution of the particles at iteration n at level `, µ`+1
0 = µ`N` and

µ1
0 = µ0, where N ` is the number of iterations at level `, then the mean m` and the covariance

Σ` are approximated as in the offline approach with the only difference that µ0 is replaced by µ`0.
This approach provides indeed a better approximation of the modelling error as instead of taking
the samples from the prior distribution, they are drawn from distributions which are progressively
closer to the true posterior. On the other hand, this procedure has to be done online and it is
computationally expensive because it requires the resolution of NE =

∑L
`=1N

`
E full multiscale

problems.

Finally, we are interested in studying whether the simple offline method for estimating the modelling
error provides indeed a good approximation. In this direction, we give in Theorem 3 and Theorem
4 a criterion on how to choose the number NE of full multiscale problems which has to be solved in
order to have a reliable approximation of the true mean m∗ and covariance Σ∗ of the modelling
error with respect to ε and h. Before stating Theorem 3 and Theorem 4, let us recall the Hoeffding’s
and McDiarmid’s inequalites, which will be used in the proofs. Let {Yi}Ni=1 be independent random
variables with values in [a, b], and let Ȳ be the sample average of {Yi}Ni=1. Then, the Hoeffding’s
inequality states that for all η ∈ R it holds

P(
∣∣Ȳ − E[Y ]

∣∣ ≥ η) ≤ 2 exp
{
− 2η2N

(b− a)2

}
.

Moreover, let {Xi}Ni=1 be independent random variables with values in the space X , and let
ϕ : XN → R satisfy for all i = 1, . . . , N

sup
x1,...,xN ,x̂i

|ϕ(x1, . . . , xi−1, xi, xi+1, . . . , xN )− ϕ(x1, . . . , xi−1, x̂i, xi+1, . . . , xN )| ≤ c,
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then the McDiarmid’s inequality states that for all η ∈ R it holds

P(|ϕ(X1, . . . , XN )− E[ϕ(X1, . . . , XN )]| ≥ η) ≤ 2 exp
{
− 2η2

Nc2

}
.

Theorem 3. Let α ∈ (0, 1), η > 0 and CE = max{K, K̃}, where K and K̃ are the constants of
Lemma 2 and Lemma 5. Let {Ei}NEi=1 ⊂ RL be given by

Ei = Gε(ui)− G0
h(ui) for all i = 1, . . . , NE ,

for a sample of realizations {ui}NEi=1 from the standard normal distribution N (0, I), let m be the
sample mean of {Ei}NEi=1 and m∗ = E[Ei]. If

NE ≥ 4C2
E
L

η2 log
(

2L
α

)[
ε2 + h2(s+1)

]
,

where s is given by Lemma 5, then

P (‖m−m∗‖2 ≤ η) ≥ 1− α.

Proof. First, note that the modelling error is bounded, indeed by Lemma 2 and Lemma 5, we have
for each i = 1, . . . , NE

‖Ei‖2 =
∥∥Gε(ui)− G0

h(ui)
∥∥

2 ≤
∥∥Gε(ui)− G0(ui)

∥∥
2 +

∥∥G0(ui)− G0
h(ui)

∥∥
2 ≤ Kε+ K̃hs+1,

so each component (Ei)l, for l = 1, . . . , L, is bounded by the same constant

|(Ei)l| ≤ ‖Ei‖2 ≤ Kε+ K̃hs+1 ≤ CE(ε+ hs+1). (33)

Observe that if
|ml −m∗l | ≤

η√
L

for each l = 1, . . . , L,

then

‖m−m∗‖2 =
(

L∑
l=1
|ml −m∗l |

2

) 1
2

≤ η,

which implies that

P(‖m−m∗‖2 ≤ η) ≥ P
(
|ml −m∗l | ≤

η√
L
∀ l = 1, . . . , L

)
. (34)

Using (33) and applying Hoeffding’s inequality we have

P
(
|ml −m∗l | ≥

η√
L

)
≤ 2 exp

{
− 2η2NE

4LC2
E(ε+ hs+1)2

}
≤ 2 exp

{
− η2NE

4LC2
E(ε2 + h2(s+1))

}
. (35)

Define the events Al =
{
|ml −m∗l | ≤

η√
L

}
for each l = 1, . . . , L, then we have

P
(
|ml −m∗l | ≤

η√
L
∀ l = 1, . . . , L

)
= P

(
L⋂
l=1

Al

)
,

and, applying the De Morgan’s laws and the union bound, we obtain

P

(
L⋂
l=1

Al

)
= 1− P

( L⋂
l=1

Al

)C = 1− P

(
L⋃
l=1

ACl

)
≥ 1−

L∑
l=1

P(ACl ). (36)

Therefore, thanks to (34), (35) and (36), we have

P(‖m−m∗‖2 ≤ η) ≥ 1−L max
l=1,...,L

P
(
|ml −m∗l | ≥

η√
L

)
≥ 1−2L exp

{
− η2NE

4LC2
E(ε2 + h2(s+1))

}
,

and if NE satisfies the hypothesis we obtain the desired result.
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Theorem 4. Let α ∈ (0, 1), η > 0 and CE = max{K, K̃}, where K and K̃ are the constants of
Lemma 2 and Lemma 5. Let {Ei}NEi=1 ⊂ RL be given by

Ei = Gε(ui)− G0
h(ui) for all i = 1, . . . , NE ,

for a sample of realizations {ui}NEi=1 from the standard normal distribution N (0, I), let m and Σ be
the sample mean and covariance of {Ei}NEi=1 and m∗ = E[Ei] and Σ∗ = E[(Ei −m)(Ei −m)T ]. If

NE ≥ ĈC4
E
L2

η2 log
(

2L2

α

)[
ε4 + h4(s+1)

]
,

where s is given by Lemma 5 and Ĉ is specified in the proof, then

P (‖Σ− Σ∗‖2 ≤ η) ≥ 1− α.

Proof. First, repeating verbatim the first part of the proof of Theorem 3 we have

|(Ei)l| ≤ ‖Ei‖2 ≤ Kε+ K̃hs+1 ≤ CE(ε+ hs+1).

Observe that if ∣∣Σj,k − Σ∗j,k
∣∣ ≤ η

L
for each j, k = 1, . . . , L,

then denoting by ‖·‖F the Frobenius norm we have

‖Σ− Σ∗‖2 ≤ ‖Σ− Σ∗‖F =

 L∑
j,k=1

∣∣Σj,k − Σ∗j,k
∣∣2 1

2

≤ η,

which implies that

P(‖Σ− Σ∗‖2 ≤ η) ≥ P
(∣∣Σj,k − Σ∗j,k

∣∣ ≤ η

L
∀ j, k = 1, . . . , L

)
. (37)

For all j, k = 1, . . . , L define the functions ϕj,k : (RL)N → R as

ϕj,k(x1, . . . , xN ) = 1
N − 1

N∑
i=1

(x(j)
i − x̄

(j))(x(k)
i − x̄

(k)),

where

x̄ = 1
N

N∑
i=1

xi,

and the function Φ: (RL)N → RL×L whose component (j, k) is given by ϕj,k. Observe that
Σ = Φ(E1, . . . , EN ) and Σ∗ = E[Φ(E1, . . . , EN )]. Since the modelling error is bounded, we can
restrict the functions ϕj,k to the ball of radius CE(ε+hs+1) centred in 0, ϕj,k : (BCE(ε+hs+1))N → R,
allowing us to prove the following bound∣∣ϕj,k − ϕ′j,k∣∣ ≤ 48

N
C2
E(ε2 + h2(s+1)), (38)

where

ϕj,k = ϕj,k(x1, . . . , xi−1, xi, xi+1, . . . , xN ) and ϕ′j,k = ϕj,k(x1, . . . , xi−1, x
′
i, xi+1, . . . , xN ).
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In fact we have

∣∣ϕj,k − ϕ′j,k∣∣ =

∣∣∣∣∣∣ 1
N − 1

∑
n 6=i

(x(j)
n − x̄(j))(x(k)

n − x̄(k)) + 1
N − 1(x(j)

i − x̄
(j))(x(k)

i − x̄
(k))

− 1
N − 1

∑
n6=i

(x(j)
n − x̄′(j))(x(k)

n − x̄′(k))− 1
N − 1(x′(j)i − x̄′(j))(x′(k)

i − x̄′(k))

∣∣∣∣∣∣
≤ 1
N − 1

∑
n 6=i

∣∣∣(x(j)
n − x̄(j))(x(k)

n − x̄(k))− (x(j)
n − x̄′(j))(x(k)

n − x̄′(k))
∣∣∣

+ 1
N − 1

∣∣∣(x(j)
i − x̄

(j))(x(k)
i − x̄

(k))− (x′(j)i − x̄′(j))(x′(k)
i − x̄′(k))

∣∣∣ ,
=: Q1 +Q2,

(39)

where

x̄ = 1
N

∑
n 6=i

xn + xi

 and x̄′ = 1
N

∑
n 6=i

xn + x′i

 . (40)

Now we bound the two terms separately. First, we have

Q1 ≤
1

N − 1

∣∣∣x̄(k) − x̄′(k)
∣∣∣∑
n 6=i

∣∣∣x(j)
n − x̄(j)

∣∣∣+ 1
N − 1

∣∣∣x̄(j) − x̄′(j)
∣∣∣∑
n 6=i

∣∣∣x(k)
n − x̄′(k)

∣∣∣ .
Let x, y ∈ BCE(ε+hs+1) and note that for all j = 1, . . . , L we have∣∣∣x(j) − y(j)

∣∣∣ ≤ ‖x− y‖2 ≤ 2CE(ε+ hs+1). (41)

By equations (40) and (41), it holds for all j = 1, . . . , L∣∣∣x̄(j) − x̄′(j)
∣∣∣ = 1

N

∣∣∣∣∣∣
∑
n 6=i

x(j)
n + x

(j)
i −

∑
n 6=i

x(j)
n − x

′(j)
i

∣∣∣∣∣∣ = 1
N

∣∣∣x(j)
i − x

′(j)
i

∣∣∣ ≤ 2
N
CE(ε+ hs+1),

therefore we obtain
Q1 ≤

8
N
C2
E(ε+ hs+1)2 ≤ 16

N
C2
E(ε2 + h2(s+1)). (42)

Moreover, by (41) we also get

Q2 ≤
8

N − 1C
2
E(ε+ hs+1)2 ≤ 16

N − 1C
2
E(ε2 + h2(s+1)),

witch, together with (39), (42) and the fact that (2N − 1)/(N − 1) ≤ 3 for all N ≥ 2, implies (38)∣∣ϕj,k − ϕ′j,k∣∣ ≤ 16(2N − 1)
N(N − 1) C

2
E(ε2 + h2(s+1)) ≤ 48

N
C2
E(ε2 + h2(s+1)).

Therefore, applying McDiarmid’s inequality we have

P
(∣∣Σj,k − Σ∗j,k

∣∣ ≥ η

L

)
≤ 2 exp

{
− 2η2NE

2304L2C4
E(ε2 + h2(s+1))2

}
≤ 2 exp

{
− η2NE

ĈL2C4
E(ε4 + h4(s+1))

}
,

(43)
where Ĉ = 2304. Finally, we define the events Aj,k =

{∣∣∣Σj,k − Σ∗j,k
∣∣∣ ≤ t

L

}
for each j, k = 1, . . . , L

and we repeat the same argument as in the last part of the proof of Theorem 3. Hence, due to (37)
and (43) we have

P(‖Σ− Σ∗‖2 ≤ η) ≥ 1− L2 max
j,k=1,...,L

P
(∣∣Σj,k − Σ∗j,k

∣∣ ≥ η

L

)
≥ 1− 2L2 exp

{
− η2NE

ĈL2C4
E(ε4 + h4(s+1))

}
,

and if NE satisfies the hypothesis we obtain the desired result.
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Remark 4. Note that, in Theorem 3 and Theorem 4, as expected, the number NE of full multiscale
problems tends to infinity if we require no error between the sample and the true mean and
covariance (η → 0) or certainty that the error is below a certain value (α→ 0). Moreover, observe
that for any given accuracy the number of samples required NE is a increasing function of ε and h,
so that if the model G0

h is a good approximation of G, thus computationally expensive, then only
few samples are needed. In particular, notice that in order to obtain a good approximation of the
true mean, the number of full multiscale problems is

NE = O
(
η−2 log(α−1)

(
ε2 + h2(s+1)

))
,

while to have a reliable approximation of the covariance matrix it is required that

NE = O
(
η−2 log(α−1)

(
ε4 + h4(s+1)

))
.

5 Numerical experiments

In this section, using the setting of [3], we present some numerical experiments to illustrate the
iterative ensemble Kalman method to solve multiscale inverse problems.
Let Ω be a bounded open domain. We consider a class of parametrized multiscale locally periodic
tensors of the type Aεσ∗(x) = A(σ∗(x), x/ε), where σ∗ : Ω → R. We assume to know the map
(t, x) → A(t, x/ε) for all x ∈ Ω and t ∈ R and we want to estimate the function σ∗ given
measurements computed from the model{

−∇ · (Aεσ∗∇pε) = 0 in Ω,

pε = g on ∂Ω.
(44)

Remark 5. Note that the theory has been developed for Dirichlet homogeneous boundary conditions,
but it can be applied to the non-homogeneous case by considering an extension of the function at
the boundary and slightly modifying the PDE. For more details we refer to [15, Remark 8.10].

For the unknown σ∗ we consider the following admissible set

Σ = {σ ∈ L∞(Ω): σ− ≤ σ(x) ≤ σ+},

where σ− and σ+ are two given values.
The measurements, which we take into account, are the integrals of the normal flux multiplied by
some functions with compact support in a portion of the boundary of the domain. More precisely,
we consider I ∈ N disjoint portions of Ω, which we denote by Γi ∈ ∂Ω, i = 1, . . . , I, Γi ∩ Γj = ∅
for i 6= j, and I functions ϕi ∈ H1/2(∂Ω) with compact support supp (ϕi) ⊂ Γi for all i = 1, . . . , I.
Moreover, we solve (44) for K ∈ N Dirichlet data gk, k = 1, . . . ,K, and we denote by pεk the solution
of the problem. Let ΛAεσ : H1/2(∂Ω)→ H−1/2(∂Ω) be the operator which maps the Dirichlet data
g to the normal flux of the solution pε of (44)

ΛAεσg = Aεσ∇pε · ν,

where ν is the exterior unit normal vector to ∂Ω. Then we define the multiscale operator Fε : Σ→ RL
where L = IK by components

Fε(σ)ik = Fε(σ)l =
〈
ΛAεσgk, ϕi

〉
H−1/2(∂Ω),H1/2(∂Ω) , i = 1, . . . , I, k = 1, . . . ,K, (45)

which, with an abuse of notation, can be written

Fε(σ)ik =
∫

Γi
Aε∇pεk · νϕids.

The final vector of observations y is given by the sum of the operator Fε and a noise

y = Fε(σ∗) + η,
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where η ∼ N (0,Γ) and Γ is a given symmetric positive definite covariance matrix, which, in
our experiments, is a multiple of the identity Γ = γ2I and γ is a given value. Observations
are computed with a refined Finite Element Method (FEM) with mesh size hobs � ε, while the
homogenized version of problem (44) is solved using a macro mesh size h� hobs. We call Th the
macro triangulation and Nh the total number of nodes defining Th. We assume that the prior
distribution for the discretization of the unknown σ∗ on the macro triangulation Th is given by
N (σ0, C), where σ0 is a given discretization of a function in Σ and C ∈ RNh×Nh is defined by

Cij = δ exp
(
−
‖xi − xj‖2

λ

)
,

where δ, λ ∈ R+ and {xi}Nhi=1 are the nodes of the macro triangulation Th. The parameter λ is a
correlation length that describes how the values at different positions of the functions supported by
the prior measure are related, while the parameter δ is an amplitude scaling factor. Regarding the
prior modelling, we need to take into account that even if in the homogenized problem the coarse
and fine scales have been separated, functions drawn from the prior distribution on the coarse scale
can exhibit multiple scales, including the fine scale of our multiscale model, depending on the rate
of decay of the prior covariance. This issue can thus be controlled by setting the parameters δ
and λ. Even though this does not ensure a clear separation between coarse and fine scales, our
numerical results illustrate that it is sufficient in practice.
In order to reduce the dimensionality of the unknown we use a truncated Karhunen-Loève expansion.
Any sample from the prior distribution N (σ0, C) can be represented as

σ = σ0 +
Nh∑
m=1

√
λmumψm, (46)

where {ψm}Nhm=1 is an orthonormal set of eigenvectors of C with corresponding eigenvalues {λm}Nhm=1
in decreasing order, and {um}Nhm=1 is an i.i.d sequence with um ∼ N (0, 1). Note that the Karhunen-
Loève expansion works also in the infinite dimensional setting, where σ0 ∈ Σ, C is a covariance
operator and {λm, ψm}∞m=1 is an orthonormal set of eigenvalues-eigenfunctions with respect to the
scalar product in L2(Ω). Then the truncated Karhunen-Loève expansion of the discretization of σ
consists of taking the first M components of the series in (46)

σ ' σ0 +
M∑
m=1

√
λmumψm, (47)

and the actual unknown becomes the vector u ∈ RM , whose components are the coefficients um in
(47). Then we define the multiscale forward operator Gε : RM → RL as the composition of Fε with
the truncated Karhunen-Loève expansion

Gε(u) = Fε
(
σ0 +

M∑
m=1

√
λmumψm

)
.

In the iterative ensemble Kalman method we do not compute the exact solution of problem (44),
but we solve its homogenized version numerically using the macro triangulation Th, therefore we
obtain the homogenized discrete solution p0

h. The problem is solved applying the finite element
heterogeneous multiscale method (FE-HMM), which is described in [1,4]. Hence, analogously to
the multiscale case, we define the discrete homogenized operator F0

h : Σ → RL with an abuse of
notation as

F0
h(σ)l = F0

h(σ)ik =
∫

Γi
A0∇p0

hk
· νϕids, i = 1, . . . , I, k = 1, . . . ,K, (48)

and the discrete homogenized forward operator G0
h : RM → RL, which is actually used in the

algorithm, as

G0
h(u) = F0

h

(
σ0 +

M∑
m=1

√
λmumψm

)
.
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Finally, we call uEnKF the solution of the iterative ensemble Kalman algorithm and the estimated
σEnKF is obtained from the truncated Karhunen-Loève expansion

σEnKF = σ0 +
M∑
m=1

√
λmuEnKFmψm.

5.1 Data

In the numerical results presented in the following section the computational domain is the unit
square

Ω = (0, 1)2 ⊂ R2.

For the discretization parameters we set ε = 1/64 and hobs = 1/4096 and for the forward homogenized
problem we use a macro mesh size h = 1/32, which is much larger than hobs and reduces the
computational cost significantly. We solve the problem for K = 3 Dirichlet conditions {gk}3k=1
and gk = √µkϑk where {(µk, ϑk)}3k=1 are couples of eigenvalues and eigenfunctions of the one
dimensional discrete Laplacian operator corresponding to the first K = 3 smallest eigenvalues. For
each gk we consider its restriction to the boundary ∂Ω in order to obtain a Dirichlet condition.
These functions are orthonormal with respect to the scalar product in L2(Ω) and this ensures that
each function gives independent information.
To compute the boundary integrals in (45) and (48), we consider I = 12 boundary portions, three
for each side of the square Ω. In particular, for each side, all Γi have length equal to 0.2 and they
consist of the intervals (0.1, 0.3), (0.4, 0.6) and (0.7, 0.9). The functions {ϕi}12

i=1 are hat functions
with supp (ϕi) = Γi, which take value one at the midpoint and value 0 at the extremes of Γi. Then
the parameter of the noise, which perturbs the observations, is γ = 0.01.
Moreover, regarding the prior distribution for the unknown, we consider σ0 = 0 and the parameters
of the covariance matrices are δ = 0.05 and λ = 0.5. In the truncated Karhunen-Loève expansion
we take M = 100. Finally, about the ensemble Kalman method, we consider J = 1000 particles for
each ensemble and 500 iterations.
The exact tensor Aεσ∗ is given by

a11

(
σ∗(x), x

ε

)
= eσ

∗(x)
(

cos2
(

2πx1

ε

)
+ 1
)

+ cos2
(

2πx2

ε

)
,

a12

(
σ∗(x), x

ε

)
= 0,

a21

(
σ∗(x), x

ε

)
= 0,

a22

(
σ∗(x), x

ε

)
= eσ

∗(x)
(

sin
(

2πx2

ε

)
+ 2
)

+ cos2
(

2πx1

ε

)
,

where
σ∗(x) = log(1.3 + 0.31D1 − 0.41D2),

and

D1 =
{
x = (x1, x2) :

(
x1 −

5
16

)2
+
(
x2 −

11
16

)2
≤ 0.025

}
,

D2 =
{
x = (x1, x2) :

(
x1 −

11
16

)2
+
(
x2 −

5
16

)2
≤ 0.025

}
.

Figure 1 shows the exact unknown σ∗. Note that σ∗ is a non-continuous function, but, in order to
approximate it, we are using a truncated Karhunen-Loève expansion, where the eigenfunctions are
smooth.

One can verify that the tensor Aεσ satisfies Assumption 1. In particular, for ξ ∈ R2 we have

Aεσξ · ξ = a1,1

(
σ(x), x

ε

)
ξ2
1 + a2,2

(
σ(x), x

ε

)
ξ2
2 ≥ eσ(x)(ξ2

1 + ξ2
2) ≥ eσ− ‖ξ‖22 .
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Figure 1: Exact unknown σ∗ employed for numerical experiments.

Figure 2: EnKF estimation after N = {10, 50, 250, 500} iterations.

Moreover, since the EnKF algorithm estimates the coefficients {um}Mm=1 of the truncated Karhunen-
Loève expansion, we show that Aε(u) : RM → L∞(Ω,Rd×d), which maps u into Aεσu , is Lipschitz.
In fact we first have

‖Aε(u1)−Aε(u2)‖L∞(Ω,Rd×d) ≤
√

13eσ
+

sup
x∈Ω
|σu1(x)− σu2(x)| ,

then using the truncated Karhunen-Loève expansion and the Cauchy-Schwarz inequality we obtain

‖Aε(u1)−Aε(u2)‖L∞(Ω,Rd×d) ≤
√

13eσ
+

sup
x∈Ω

(
M∑
m=1

λmψ
2
m(x)

)1/2

‖u1 − u2‖2 ,

which shows that Aε(u) is Lipschitz with constant equal to
√

13eσ+ supx∈Ω

(∑M
m=1 λmψ

2
m(x)

)1/2
.

5.2 Results

We first fix the multiscale parameter ε = 1/32 and the ensemble size J = 500 and study the evolution
with respect to the number of steps. In Figure 2 we plot the estimation σEnKF after 10, 50, 250
and 500 iterations of the ensemble Kalman algorithm. We clearly see that the approximation gets
better as the number of iterations increases and that convergence has been reached. In particular,
already after N = 250 iterations the algorithm seem to have reached convergence. We point out
that we obtain a quite good approximation of the real unknown σ∗ , indeed we are trying to recover
a non-continuous function in the whole domain given only some observations at the boundary.

We now perform a sensitivity analysis with respect to the ensemble size. In Figure 3 we vary the
number of particles J and we compare the results obtained at the end of the algorithm after 500
iterations for ε = 1/32. As expected, the approximation becomes better when the ensemble contains
more particles. In particular, note that if the number of particles is too small, e.g. J = 10, then the
approximation is not satisfying.

Further, we fix the ensemble size J = 500 and we perform N = 500 iterations of the EnKF
for different values of the multiscale parameter. Results, shown in Figure 4, highlight how the
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Figure 3: EnKF estimation after N = 500 iterations with ensemble size J = {10, 100, 500, 1000}.

Figure 4: EnKF estimation after N = 500 iterations for the multiscale parameter ε =
{1/4, 1/8, 1/16, 1/32}.

approximation becomes worse when ε is bigger, indeed the homogenized problem becomes too
different with respect to the multiscale one and, if ε is too big, the solution does not approximate
the true unknown.

Moreover, in order to obtain good results even in case ε is not close to the asymptotic limit ε→ 0,
in Figure 5 we apply offline modelling error estimation with NE = 20 and we plot the solution of
the inverse problem (32) for different values of the multiscale parameter ε. Comparing these plots
with the ones in Figure 4, in particular for ε = 1/4, we observe that the modelling error estimation
significantly improves the results.

Finally, in Figure 6 we show the results obtained by applying the ensemble Kalman method with
dynamic updating of the modelling error distribution with L = 5 levels, N `

E = 4 samples and
N ` = 100 iterations at each level ` = 1, . . . ,L. The number of resolutions of the full multiscale
problem is 20 and the total number of iterations is 500, which are equal to the previous approach,
where the distribution of the modelling error was approximated offline. Comparing these plots with
the ones in Figure 5, we note that updating the distribution of the modelling error dynamically still
improves the results.

6 Conclusion

In this paper we analyzed the ensemble Kalman inversion methodology in the context of inverse
problems for multiscale elliptic PDEs with tensors highly oscillatory at a scale ε� 1. The multiscale
algorithm we propose relies on the EnKF, on a surrogate homogenized forward operator and on
numerical homogenization techniques such as the FE-HMM. It guarantees a significant reduction in
computational cost for problems which would be otherwise computationally involved or unfeasible.
In Theorem 1 we have shown that the ensemble of particles approximating the unknown parameter
generated by our multiscale algorithm converges to the ensemble generated by the true model as
the small scale parameter ε and the numerical discretization parameter h go to zero. Furthermore
in a Bayesian framework, we have shown in Theorem 2 that the discrete probability measure based
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Figure 5: EnKF with offline modeling error estimation after 500 iterations for the multiscale
parameter ε = {1/4, 1/8, 1/16, 1/32}.

Figure 6: EnKF with online iterative modeling error estimation after 500 iterations for the
multiscale parameter ε = {1/4, 1/8, 1/16, 1/32}.

on the ensemble originating from our multiscale algorithm converges to the measure generated by
the true model, again as ε and h go to zero. Hence when ε � 1 and the full model is expensive
to solve, the multiscale numerical method we propose is both accurate and efficient to recover
an unknown parameter in multiscale elliptic PDEs. Moreover, we equipped our method with a
technique which allows to account for the discrepancy between the artificial homogenized surrogate
forward model and the true multiscale data, thus alleviating the effects of model misspecification.
This technique requires additional offline or online computations involving the numerical solution of
the full multiscale problem. The optimal number of such additional solves is quantified in Theorem 3
and Theorem 4. In particular, we have proved that the number of solves needed to reach any required
accuracy tends to zero when the small scale parameter ε and the numerical discretization parameter
h vanish. Hence, we can conclude that accounting for model misspecification is particularly beneficial
for mid-range values of ε, when a small number of full solves should be computationally affordable.
The efficiency and usefulness of the multiscale algorithm have been further demonstrated through a
series of numerical experiments.
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Appendix

Proof of Lemma 1

Let u1, u2 ∈ RM , and p1 = S(u1), p2 = S(u2). From the weak formulations of (15) we get that∫
Ω

(
Au1∇p1 −Au2∇p2

)
· ∇v = 0 for all v ∈ H1

0 (Ω),

which yields ∫
Ω
Au1(∇p1 −∇p2) · ∇v = −

∫
Ω

(Au1 −Au2)∇p2 · ∇v.

Then choosing v = p1 − p2, by the hypotheses on Au and applying the Hölder inequality we obtain

α ‖∇p1 −∇p2‖2L2(Ω;Rd) ≤M ‖u1 − u2‖2 ‖∇p2‖L2(Ω;Rd) ‖∇p1 −∇p2‖L2(Ω;Rd) ,

which due a standard coercivity argument implies

‖∇p1 −∇p2‖L2(Ω;Rd) ≤
MCp
α2 ‖f‖L2(Ω) ‖u1 − u2‖2 , (49)

where Cp is the Poincaré constant associated to the domain Ω. Hence (49) shows that S is Lipschitz
with constant

LS = MCp
α2 ‖f‖L2(Ω) .

Finally, since G is the composition of two Lipschitz operators, we deduce that it is also Lipschitz
with constant LG = LOLS .

Proof of Lemma 2

Let us consider an ensemble u ∈ UJ,M with particles u(j) ∈ RM , for j = 1, . . . , J . For each particle
we have∥∥∥Gε(u(j))− G0(u(j))

∥∥∥
2

=
∥∥∥O(Sε(u(j)))−O(S0(u(j)))

∥∥∥
2
≤ CO

∥∥∥pε(u(j))− p0(u(j))
∥∥∥
L2(Ω)

,

where we write explicitly the dependence of the solutions pε and p0 on the particle they are generated
by. Due to homogenization theory, we have that pε(u(j)) ⇀ p0(u(j)) in H1

0 (Ω) for all j = 1, . . . , J ,
and therefore pε(u(j))→ p0(u(j)) in L2(Ω), which implies

e(ε, u) = 1
J

J∑
j=1

∥∥∥Gε(u(j))− G0(u(j))
∥∥∥

2
≤ CO

J

J∑
j=1

∥∥∥pε(u(j))− p0(u(j))
∥∥∥
L2(Ω)

→ 0.

Moreover, if the solution of the homogenized problem p0 is sufficiently smooth independently of
u, namely p0 ∈ H2(Ω), letting C > 0 be a constant independent of ε, we have by [12] for all
j = 1, . . . , J ∥∥∥pε(u(j))− p0(u(j))

∥∥∥
L2(Ω)

≤ Cε,

which implies

e(ε, u) = 1
J

J∑
j=1

∥∥∥Gε(u(j))− G0(u(j))
∥∥∥

2
≤ CO

J

J∑
j=1

∥∥∥pε(u(j))− p0(u(j))
∥∥∥
L2(Ω)

≤ COCε,

and defining K = COC gives the desired result.
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Proof of Lemma 3

First, for all x ∈ BR(u∗) we have

‖x‖2 ≤ ‖x− u
∗‖2 + ‖u∗‖2 ≤ R+ ‖u∗‖2 =: m,

‖G(x)‖2 ≤ ‖G(x)− G(u∗)‖2 + ‖G(u∗)‖2 ≤ CG ‖x− u
∗‖2 + ‖G(u∗)‖2 ≤ CGR+ ‖G(u∗)‖2 =: M.

(50)
We can also deduce the same bounds for the mean values

‖ū‖2 ≤
1
J

J∑
j=1

∥∥∥u(j)
∥∥∥

2
≤ m, and

∥∥Ḡ∥∥2 ≤
1
J

J∑
j=1

∥∥∥G(u(j))
∥∥∥

2
≤M. (51)

Then by (50) and (51) we get

‖Cup(u)‖2 = sup
x∈RL : ‖x‖2=1

∥∥∥∥∥∥ 1
J

J∑
j=1

(u(j) − ū)(G(u(j))− Ḡ)Tx

∥∥∥∥∥∥
2

≤ 1
J

J∑
j=1

(∥∥∥G(u(j))
∥∥∥

2
+
∥∥Ḡ∥∥2

)(∥∥∥u(j)
∥∥∥

2
+ ‖ū‖2

)
≤ 4Mm,

and defining C1 = 4Mm we get (i). The argument is similar for the matrix Cpp(u), for which we
have

‖Cpp(u)‖2 ≤
1
J

J∑
j=1

(∥∥∥G(u(j))
∥∥∥

2
+
∥∥Ḡ∥∥2

)2
≤ 4M2,

and defining C2 = 4M2 we get (ii). Before proving (iii) and (iv), we need the following estimates
for two ensemble of particles u1 and u2

‖ū1 − ū2‖2 =

∥∥∥∥∥∥ 1
J

J∑
j=1

(u(j)
1 − u

(j)
2 )

∥∥∥∥∥∥
2

≤ 1
J

J∑
j=1

∥∥∥u(j)
1 − u

(j)
2

∥∥∥
2

= ‖u1 − u2‖ ,

∥∥Ḡ1 − Ḡ2
∥∥

2 =

∥∥∥∥∥∥ 1
J

J∑
j=1

(G(u(j)
1 )− G(u(j)

2 ))

∥∥∥∥∥∥
2

≤ CG
J

J∑
j=1

∥∥∥u(j)
1 − u

(j)
2

∥∥∥
2

= CG ‖u1 − u2‖ .

(52)

Then we have

‖Cup(u1)− Cup(u2)‖2

= sup
x∈RL : ‖x‖2=1

∥∥∥∥∥∥ 1
J

J∑
j=1

[
(u(j)

1 − ū1)(G(u(j)
1 )− Ḡ1)Tx− (u(j)

2 − ū2)(G(u(j)
2 )− Ḡ2)Tx

]∥∥∥∥∥∥
2

≤ 1
J

J∑
j=1

(∥∥∥u(j)
1

∥∥∥
2

+ ‖ū1‖2
)(∥∥∥G(u(j)

1 )− G(u(j)
2 )
∥∥∥

2
+
∥∥Ḡ2 − Ḡ1

∥∥
2

)

+ 1
J

J∑
j=1

(∥∥∥u(j)
1 − u

(j)
2

∥∥∥
2

+ ‖ū2 − ū1‖2
)(∥∥∥G(u(j)

2 )
∥∥∥

2
+
∥∥Ḡ2

∥∥
2

)
,

and since G is Lipschitz and due to (50), (51), (52), we obtain

‖Cup(u1)− Cup(u2)‖2 ≤ 2m(CGJ ‖u1 − u2‖+ CG ‖u1 − u2‖) + (J ‖u1 − u2‖+ ‖u1 − u2‖)2M
≤ 2(J + 1)(mCG +M) ‖u1 − u2‖ ,
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and defining C3 = 2(J + 1)(mCG +M) we get (iii). The argument is similar for the matrix Cpp(u),
for which we have

‖Cpp(u1)− Cpp(u2)‖2 ≤
1
J

J∑
j=1

(∥∥∥G(u(j)
1 )
∥∥∥+

∥∥Ḡ1
∥∥

2

)(∥∥∥G(u(j)
1 )− G(u(j)

2 )
∥∥∥

2
+
∥∥Ḡ2 − Ḡ1

∥∥
2

)

+ 1
J

J∑
j=1

(∥∥∥G(u(j)
1 )− G(u(j)

2 )
∥∥∥

2
+
∥∥Ḡ2 − Ḡ1

∥∥
2

)(∥∥∥G(u(j)
2 )
∥∥∥+

∥∥Ḡ2
∥∥)

≤ 4(J + 1)MCG ,

and defining C4 = 4(J + 1)MCG we get (iv), which concludes the proof.

Proof of Lemma 5

Let us consider an ensemble u ∈ UJ,M with particles u(j) ∈ RM , for j = 1, . . . , J . For each particle
we have∥∥∥G0

h(u(j))− G0(u(j))
∥∥∥

2
=
∥∥∥O(S0

h(u(j)))−O(S0(u(j)))
∥∥∥

2
≤ CO

∥∥∥p0
h(u(j))− p0(u(j))

∥∥∥
L2(Ω)

,

where we write explicitly the dependence of the solutions p0 and p0
h on the particle they are generated

by. Then due to standard a priori error estimates of FEM (see e.g. [7, Theorem 3.2.5]) and higher
order boundary regularity results for elliptic partial differential equations (see e.g. [9, Theorem
6.3.5]) we have for all j = 1, . . . , J∥∥∥p0

h(u(j))− p0(u(j))
∥∥∥
L2(Ω)

≤ C
∣∣∣p0(u(j))

∣∣∣
Hs+1(Ω)

hs+1 ≤ C ‖f‖Hq−1(Ω) h
s+1,

where C > 0 is a constant independent of h. Therefore, we obtain

ẽ(h, u) = 1
J

J∑
j=1

∥∥∥G0
h(u(j))− G0(u(j))

∥∥∥
2
≤ COC ‖f‖Hq−1(Ω) h

s+1,

and defining K̃ = COC ‖f‖Hq−1(Ω) gives the desired result.

Proof of Lemma 7

We follow the same steps of the proof of Theorem 5.9 in [16]. Let us first recall the duality formula
for the Wasserstein distance with p = 1

W1,s(µn, µ) = sup
ϕ∈Φ

{∫
BR(u∗)

ϕd(µn − µ)
}
,

where Φ is the set of all globally Lipschitz continuous functions ϕ : BR(u∗) → R with Lipschitz
constant CLip ≤ 1. Note that if ϕ ∈ Φ, then also −ϕ ∈ Φ. Hence we deduce that

W1,s(µn, µ) = sup
ϕ∈Φ

{∣∣∣∣∣
∫
BR(u∗)

ϕd(µn − µ)

∣∣∣∣∣
}
.

Then we have

sup
ϕ∈Φ

Eξ

[∣∣∣∣∣
∫
BR(u∗)

ϕd(µn − µ)

∣∣∣∣∣
]
≤ Eξ

[
sup
ϕ∈Φ

{∣∣∣∣∣
∫
BR(u∗)

ϕd(µn − µ)

∣∣∣∣∣
}]

= Eξ[W1,s(µn, µ)],

where the right hand side vanishes by hypothesis. Therefore we obtain

Eξ

[∣∣∣∣∣
∫
BR(u∗)

ϕdµn −
∫
BR(u∗)

ϕdµ

∣∣∣∣∣
]
→ 0, (53)

for all ϕ ∈ Φ. Finally, we extend (53) to all Lipschitz functions by linearity and to all bounded
continuous functions by density, thus proving the desired result.
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