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"Well, in our country," said Alice, still panting a little,

"you’d generally get to somewhere else—if you run

very fast for a long time, as we’ve been doing."

"A slow sort of country!" said the Queen. "Now, here,

you see, it takes all the running you can do, to keep

in the same place. If you want to get somewhere

else, you must run at least twice as fast as that!"

— Lewis Carroll

. . . Assume a spherical cow, uniformly

emitting milk in all directions. . .

— a joke popular among physicists
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Abstract
Omnidirectional imaging has reached a level of widespread availability driven by recent

advances in integrated circuit technology, image sensors, and computer graphics which

now allow capturing, rendering and displaying of such type of immersive content in spatial

resolutions sufficient to convey visual information directly to humans, as opposed to its

previous use almost solely in computer vision for robotics and surveillance. In addition to its

main property of covering full spherical field of view, omnidirectional imaging nowadays is

an interactive multimedia; and, when experienced by means of virtual reality head-mounted

displays, it achieves a remarkably high level of immersiveness. The paradigm, thus, has shifted

toward human consumption of omnidirectional images and video.

Automatic prediction of salient regions in images is a well-developed topic in the field of

computer vision. Yet, omnidirectional imaging brings new challenges to it, due to a different

representation of visual information and additional degrees of freedom available to viewers.

Having a model for visual attention in omnidirectional imaging is important to continue

research in this subject. We develop such a model for interpreting experimental head-direction

trajectories with a goal to construct a visual attention heat-map representing salient regions

of an omnidirectional image. The developed model is further used in objective assessment of

perceptual visual quality of omnidirectional visual content.

The problem of objectively measuring perceptual quality of omnidirectional visual content

arises in many immersive imaging applications; and it is particularly important for com-

pression and delivery. The interactive nature of this type of content limits the performance

of earlier methods designed for static images or for video with a predefined dynamic. We

aim to address a non-deterministic impact by using a statistical approach. To be specific,

we attempt to describe and analyze viewer interactions in omnidirectional imaging through

estimation of visual attention. We propose an objective metric to measure perceptual quality

of omnidirectional visual content considering visual attention information.

Additionally, we explore certain related extensions and applications of omnidirectional imag-

ing. Firstly, we investigate a possible extension to 3+ degrees of freedom by considering an

individual case of rendering narrow baseline light filed images with limited translational inter-

actions. We also provide results of extensive analysis of these iterations, including: circular

histograms of directions of head movements, average vectors for a next perspective view, and

charts of time spent on a view. Secondly, we look into privacy protection which is yet another

field drawing more attention with the advances in image processing, visual and social media.

We present a method for protecting user privacy in omnidirectional media, by removing parts
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Abstract

of the content selected by the user, in a reversible manner. Results on distinct contents indicate

that our object removal methodology in the viewport domain enhances perceived quality,

thereby improves privacy protection as users are able to hide objects with less distortion in

the overall image.

Keywords: omnidirectional imaging, 360-degree images, visual attention, saliency maps,

perceptual visual quality, objective metrics, virtual reality, image processing, multimedia

signal processing
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Résumé
L’imagerie omnidirectionnelle s’est beaucoup répandue grâce aux progrès récents de la tech-

nologie dans les domaines des circuits intégrés, des capteurs d’images et de l’infographie. Ces

progrès permettent désormais de capturer, de rendre et d’afficher ce type de contenus im-

mersifs avec des résolutions spatiales suffisantes pour transmettre des informations visuelles

directement aux humains, alors qu’il était auparavant utilisé presque exclusivement en vision

par ordinateur pour la robotique et la surveillance. En plus de son objectif principal qui est

de couvrir tout le champ de vision sphérique, l’imagerie omnidirectionnelle est aujourd’hui

un multimédia interactif ; et, lorsqu’elle est expérimentée au moyen des casques de réalité

virtuelle, elle atteint un niveau d’immersion remarquablement élevé. Le paradigme s’est ainsi

déplacé vers la consommation humaine d’images et de vidéos omnidirectionnelles.

La prédiction automatique des régions saillantes dans les images est un sujet bien développé

dans le domaine de la vision par ordinateur. Pourtant, l’imagerie omnidirectionnelle apporte

de nouveaux défis à ce sujet, en raison d’une représentation différente des informations

visuelles et des degrés de liberté supplémentaires disponibles pour le spectateur. Il est im-

portant de disposer d’un modèle d’attention visuelle en imagerie omnidirectionnelle pour

poursuivre les recherches sur ce sujet. Nous développons un tel modèle pour interpréter les

trajectoires de direction de la tête observées expérimentalement dans le but de construire une

carte de fréquentation de l’attention visuelle représentant les régions saillantes d’une image

omnidirectionnelle. Le modèle développé est en outre utilisé dans l’estimation objective de la

qualité perceptuelle du contenu visuel omnidirectionnel.

Le problème de la mesure objective de la qualité perceptuelle de contenu omnidirectionnel

se pose dans de nombreuses applications d’imagerie immersive, et il est particulièrement

important dans la compression et la livraison. La nature interactive de ce type de contenu

limite les performances des méthodes antérieures conçues pour les images statiques ou pour

la vidéo avec une dynamique prédéfinie. Nous visons à aborder l’impact non déterministe

en utilisant une approche statistique. En particulier, nous tentons de décrire et d’analyser les

interactions des spectateurs en imagerie omnidirectionnelle en estimant l’attention visuelle.

Nous proposons une mesure objective pour évaluer la qualité perceptuelle du contenu visuel

omnidirectionnel en tenant compte des informations d’attention visuelle.

De plus, nous explorons certaines extensions et applications associées à l’imagerie omnidi-

rectionnelle. Premièrement, nous étudions une extension éventuelle à 3+ degrés de liberté

en considérant un cas individuel de rendu d’images plénoptiques de base étroite avec des

interactions de translation limitées. Nous fournissons également les résultats d’une analyse
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Résumé

approfondie de ces itérations, notamment : des histogrammes circulaires des directions des

mouvements de l’utilisateur, des vecteurs moyens pour une prochaine vue de perspective

et des graphiques du temps passé sur une vue. Deuxièmement, nous nous penchons sur la

protection de la vie privée, qui est un autre domaine qui attire davantage l’attention avec

les progrès du traitement d’image, des médias visuels et sociaux. Nous présentons une mé-

thode pour protéger la confidentialité des utilisateurs dans les médias omnidirectionnels, en

supprimant de manière réversible des parties du contenu sélectionné par l’utilisateur. Les

résultats sur des contenus distincts indiquent que notre méthodologie de suppression d’objet

sur la fenêtre améliore la qualité perçue, améliorant ainsi la protection de la vie privée, car

l’utilisateur est capable de masquer les objets avec moins de distorsion dans l’image globale.

Mots-clés : imagerie omnidirectionnelle, images à 360 degrés, attention visuelle, cartes de

saillance, qualité visuelle perceptuelle, mesure objective, réalité virtuelle, traitement d’images,

traitement du signal multimédia
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1 Introduction

1.1 Motivation

Omnidirectional imaging has reached a level of widespread availability following recent ad-

vances in integrated circuit technology, image sensors, and computer graphics which now

allow capturing, rendering and displaying of such type of immersive content in spatial resolu-

tions sufficient to convey visual information directly to humans, as opposed to its previous

use almost solely in computer vision for robotics. Besides covering full spherical field of view,

omnidirectional imaging nowadays is an interactive multimedia; and, when experienced by

means of virtual reality head-mounted displays, it achieves a remarkably high level of immer-

siveness. The paradigm, thus, has shifted toward human consumption of omnidirectional

images and video. This shift has occurred very recently, at once creating a great number of

new research problems in this field.

Automatic prediction of salient regions in images is a well-developed topic in the field of

computer vision. Yet, omnidirectional imaging brings new challenges to it, due to a different

representation of visual information and additional degrees of freedom available to viewers.

Analyzed previously only with estimation of eye gaze, now, head-movements must be also

accounted, as well as eye-head coordination in humans. Having a model for visual attention in

omnidirectional imaging is important to continue research in this subject. We aim to develop

such a model for interpreting experimental head-direction trajectories with a goal to construct

a visual attention heat-map representing salient regions of an omnidirectional image.

The problem of objectively measuring perceptual quality of omnidirectional visual content

arises in many immersive imaging applications; and it is particularly important in compression

and delivery. The interactive nature of this type of content limits the performance of earlier

methods designed for static images or for video with a predefined dynamic. We aim to

address a non-deterministic impact by using a statistical approach. More specifically, we

attempt to describe and analyze viewers’ interactions in omnidirectional imaging through

estimation of visual attention. We propose an objective metric to measure perceptual quality

of omnidirectional visual content considering visual attention information.

1



Chapter 1. Introduction

Additionally, we explore certain related extensions and applications in omnidirectional imag-

ing. Firstly, we investigate a possible extension to 3+ degrees of freedom by considering an

individual case of rendering narrow baseline light filed images with limited translational inter-

actions. We provide also results of extensive analysis of those iterations, including: circular

histograms of directions of user movements, average vectors for a next perspective view, and

charts of time spent on a view. Secondly, we look into privacy protection which is yet another

field drawing more attention with the advances in image processing, visual and social media.

Photo sharing is a popular activity, which also brings the concern of regulating permissions

associated with shared content. We present a method for protecting user privacy in omnidi-

rectional media, by removing parts of the content selected by the user, in a reversible manner.

Object removal is carried out using three different state-of-the-art inpainting methods, em-

ployed over the mask drawn in the viewport domain so that the geometric distortions are

minimized. The perceived quality of the scene is assessed via subjective tests, comparing the

proposed method against inpainting employed directly on the equirectangular image. Results

on distinct contents indicate our object removal methodology on the viewport enhances

perceived quality, thereby improves privacy protection as the user is able to hide objects with

less distortion in the overall image.

1.2 Contributions

The present work includes the following contributions made by author to the fields of omnidi-

rectional imaging and multimedia signal processing.

A method to obtain human visual attention data in virtual reality for omnidirectional con-

tent. We have proposed a method to obtain fixation locations and continuous fixation

maps from head-direction trajectories for omnidirectional content in head-mounted

virtual reality. The model incorporates analysis of head angular velocity and provides

the idea of a generic solution to produce continuous fixation maps for omnidirectional

images represented in panoramic projections. The saliency maps obtained from head

position data can be a suitable first-order approximation when eye tracking data is not

available. They can also be self-sufficient for interaction analysis and prediction. The

results were published in a peer-reviewed conference paper [109].

A testbed for subjective evaluation of omnidirectional visual content. We proposed and

demonstrated a testbed for subjective quality evaluation of omnidirectional visual

content. The testbed allows researchers to perform experiments using different methods

for subjective quality evaluations. The software implementation has a customizable

storyboard and immersive menus for rating. Experimental data that can be obtained

with this testbed includes subjective mean opinion scores, time spent on stimulus,

and view direction tracks. The results were published in a peer-reviewed conference

paper [111].
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Evaluation of performance of objective metrics for omnidirectional visual content. We per-

formed a subjective evaluation experiment on omnidirectional images. A total number

of 45 observers were involved in the study, including 40 naïve and 5 expert participants.

Subjective evaluation scores were obtained for 104 test stimuli. Seven objective metrics,

among which three are specifically designed to assess omnidirectional visual content,

were calculated for each stimuli. Rigorous performance evaluation has been carried out

for objective quality metrics for omnidirectional visual content. Analysis of the obtained

subjective and objective scores indicates moderate performance of investigated metrics

for omnidirectional visual content. Being PSNR based, these metrics do not outperform

significantly their ancestor in predicting visual quality of omnidirectional content. The

results were published in a peer-reviewed conference paper [112].

Visual attention based objective metric for omnidirectional content. We proposed a new

method called VA-PSNR which estimates perceptual quality of omnidirectional content

considering visual attention. We validated our method against subjective MOS and

benchmarked it against state-of-the-art objective metrics. VA-PSNR shows performance

which is as high as the best alternative approaches based on PSNR. The results were

published in a peer-reviewed conference paper [110] and presented at International

Conference on Image Processing.

Coding of Omnidirectional Visual Content. We proposed OmniJPEG, a JPEG backward com-

patible solution to encode omnidirectional images. In order to ensure the JPEG back-

ward compatibility, OmniJPEG extracts predefined regions of interest from omnidirec-

tional images, as well as properties of equirectangular projection, while at the same

time also keeping complete equirectangular information to preserve the capability of

correctly rendering an omnidirectional image with appropriate devices and software.

The results were published in a peer-reviewed conference paper [92].

Privacy issues in omnidirectional images. We presented a method for reversible object re-

moval in omnidirectional images, which is targeted for privacy protection in immersive

media. We show by performing subjective quality evaluation involving 16 naive subjects

that viewport extraction can enhance the performance of state-of-the-art inpainting

algorithms in omnidirectional images. The results were published in a peer-reviewed

conference paper [108].

Investigation toward an extension of omnidirectional imaging to 3+ DoF. We developed a

solution for rendering narrow baseline light field images in a virtual reality environment

which allows interactions with their perspectives. A pilot subjective quality evaluation

experiment for light field in virtual reality was conducted with 17 subjects participating

in the assessments. The results of extensive analysis of the iterations include: circular

histograms of directions of user movements, average vectors for a next perspective

view, and charts of time spent on a view. The results were published in a peer-reviewed

conference paper [113].
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1.3 Organization of the thesis

The remainder of this dissertation is organized as following:

In Chapter 2 "Omnidirectional Imaging", we provide an introduction to the main concepts of

omnidirectional imaging. We follow, then, with a review of the state of the art on acquisition,

representation and visualization of omnidirectional images and video. And, finally, we formally

describe the modalities of omnidirectional content and the relations between them.

In Chapter 3 "Visual Attention", firstly, we review prior research in visual attention and saliency

for conventional images. We provide some insights, afterwards, on eye-head coordination in

humans. Then we follow with a review of the state of the art on saliency in omnidirectional

imaging. The chapter continues with a description of the proposed method for estimation

of visual attention in virtual reality environment from experimental data. Then we describe

experiments which were performed to estimate visual attention with the proposed method

and present the results.

In Chapter 4 "Subjective Evaluation of Perceptual Visual Quality", we present a methodology

to perform subjective evaluation of perceptual visual quality of omnidirectional visual content

in head-mounted virtual reality. We describe, then, a testbed designed for such evaluations.

The results of multiple experiments performed in order to assess subjective perceptual quality

of omnidirectional visual content including mean opinion scores and viewing time statistics

are finally presented in this chapter.

Chapter 5 "Objective Metrics for Perceptual Visual Quality" starts with a brief review of the

state of the art in objective quality assessment for omnidirectional visual content. We describe,

then, a methodology of computing existing objective metrics on a dataset of compressed om-

nidirectional images and provide results of benchmarking of those metrics against subjective

mean opinion scores, followed by a discussion. In the second part of this chapter, we describe

a novel approach to incorporate visual attention data into a full-reference objective perceptual

visual quality measurement. We propose a metric which takes into account ground-truth

viewer’s visual attention information in order to make image quality assessment selective with

respect to regions of interest. We continue with the results of validation of our method using

subjective mean opinion scores and of benchmarking it against the existing metrics, followed

by a conclusive discussion.

Chapter 6 "Coding of Omnidirectional Visual Content" begins with a brief review of coding

and compression of omnidirectional visual content. We follow then with a description of a

method for JPEG backwards compatible coding of omnidirectional images, and provide details

on its architecture and implementation. Thereupon, the performance of the proposed coding

scheme is evaluated.

Chapter 7 "Applications and Extensions of Omnidirectional Imaging" addresses the topics of

privacy protection in omnidirectional imaging by improving perceptual visual quality of object
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removal, and of an extension of omnidirectional imaging to 3+ degrees of freedom by rendering

narrow baseline light field and analyzing viewers interactions.

Finally, Chapter 8 concludes this dissertation by summarizing the accomplishments of the

present work and by discussing the directions of future research in this subject.
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2 Omnidirectional Imaging

2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Acquisition and stitching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Omnidirectional cameras and camera systems . . . . . . . . . . . . . . 9

2.2.2 Stitching as part of omnidirectional acquisition . . . . . . . . . . . . . . 11

2.3 Planar representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Equirectangular projection . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Cube map projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Other projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Displaying omnidirectional visual content . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Displays and level of immersiveness . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Types of interactions and degrees of freedom . . . . . . . . . . . . . . . 19

2.5 Formal definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Planar projection as effective signal and its mapping to sphere . . . . . 20

2.5.2 Viewport domain and pixels on screen . . . . . . . . . . . . . . . . . . . 21

In this chapter, we provide an introduction to the main concepts of omnidirectional imaging.

We follow then with a review on acquisition, representation and visualization of omnidirec-

tional images and video. Finally, we formally describe the modalities of omnidirectional

content and the relations between them.

2.1 Basic concepts

Omnidirectional imaging, as a subject in the field of multimedia signal processing, studies

omnidirectional visual content, its acquisition, representation, rendering, processing, and

analysis. This subject finds its roots in panoramic photography, which has been known and

used for two hundred years and traces back to the first part of XIXth century [9].
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Capture Stitch Encode Transmit Decode Render

Figure 2.1 – General workflow of omnidirectional visual content

Omnidirectional visual content is an image or video signal which carries visual information

for all directions observed from a single point of view when looking outwards. The entire

field of view for omnidirectional images and video must cover 360 degrees horizontally and

180 degrees vertically, or a solid angle of 4π steradians. Colloquially, omnidirectional visual

content is also referred to as 360-degree images and video. In some cases, panoramic visual

content covering only a part of a full sphere may also be considered as an object of study in

omnidirectional imaging.

The main stages of the omnidirectional imaging workflow are depicted in Figure 2.1. It starts

with acquisition consisting of capturing and stitching of omnidirectional visual content. This

stage is typically followed by encoding, which is a crucial step required for transmission or

storing of any kind of information today. Decoding and rendering are performed during

consumption of omnidirectional visual content. One can notice here two stages which are

not usually present in conventional imaging: namely, stitching and rendering. The former

is required in many cases in order to obtain an omnidirectional image, and the latter is an

unavoidable step in displaying due to the interactive nature of this type of multimedia.

When working with digital images which are intrinsically spherical we need to define a repre-

sentation and an arrangement of pixels in a data structure. Historically, in image processing

we deal with rectangular pictures. Hence, the legacy of all algorithms and approaches in

the field obliges us to treat omnidirectional images as matrices. Thus, a planar rectangular

representation (also called planar projection) is the most suitable for storing and interpreting

these data. There are many approaches to map a spherical surface to a plane including certain

of them which are two thousand years old. In omnidirectional imaging, two projections are

most commonly used: namely, an equirectangular and a cube map. The former has its origin

in cartography and can be easily recognized by one as a world map. The latter comes from the

field of computer graphics where it has been used for environmental mapping. See Section 2.3

for more details. In this work, we consider a planar rectangular form of an omnidirectional

image (such as equirectangular or cube map) to be the given input signal. The preceding

stages of acquisition and stitching are reviewed further in this chapter in Section 2.2; they fall,

however, outside of the scope of the present study.

Consumption of omnidirectional visual content differs rather notably from that of conven-

tional planar images. The human visual field of recognition is restricted by 46◦ of eccentricity

horizontally and 32◦ vertically [100, Fig. 14], which results in an effective field of view of

92◦×64◦. This is not enough to cover a full sphere, thus an observer, while consuming omnidi-
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Planar projection

Equirectangular

Cube map

. . .
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Figure 2.2 – Main concepts in omnidirectional imaging

rectional visual content, only sees a part of it at one moment, whether it is rendered on a full

dome or on a smaller screen. Typically, omnidirectional visual content is viewed by means of

a head-mounted display, a hand-held device, or a regular screen with assisting interaction

controls. The part of an entire omnidirectional image which is exposed to a viewer at one

moment in time and its viewing window are called a viewport. It is commonly rendered using

computer graphics software and hardware. More details about displaying omnidirectional

visual content can be found in Section 2.4.

Figure 2.2 depicts the relations between the planar projection, the spherical representation,

and the viewport of an omnidirectional image. One should notice that an input signal in the

form of a planar projection can be reversibly mapped to a virtual spherical domain, in order to

simplify understanding of processing. Rendering on a viewport, on the contrary, is irreversible,

due to the loss of information during possible re-scaling and the noise added by interpolation.

2.2 Acquisition and stitching

In this section, we review the state of the art in acquisition and stitching stages of omnidirec-

tional imaging workflow. Being a specific type of visual content, omnidirectional images are

acquired with the help of a particular type of cameras and camera systems which may require

extensive post-processing in order to obtain a final picture.

2.2.1 Omnidirectional cameras and camera systems

Early predecessors of today’s omnidirectional cameras are panoramic photo cameras [9]. The

main technique employed to acquire panoramic photographs was rotation of the camera by

means of a pan-tilt mechanism in order to keep the optical axes aligned. This technology only
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allowed to capture static pictures, and thus could not be applied for video. The complexity of

post-processing which required manual adjustments was also a significant drawback.

Modern omnidirectional cameras first attracted the attention of the academic community

working in computer vision and image processing during the last decade of the XXth cen-

tury [84, 89, 42], when availability of extra-wide-angle and omnidirectional optics, digital

sensors, and sufficient computational resources finally allowed capturing of digital images in

panoramic projections and manipulating them within reasonable time. Research on omnidi-

rectional imaging and vision was mostly targeting such applications as surveillance, robotic

vision, and video conferencing, due to the still existing limitations of those days technology.

Cameras used in acquisition of omnidirectional images and video can be divided into three

main classes: catadioptric, dioptric extra-wide-angle, and polydioptric or multi-camera sys-

tems. Catadioptric cameras along with lens use a mirror of parabolic, hyperbolic or elliptical

shape. They provide 360-degree in horizontal plane and up to 270 degrees in altitude angle.

Dioptric cameras use a single lens with an extremely wide angle of view, which is colloqui-

ally known as a fish-eye lens. Polydioptric and multi-camera systems use multiple lenses or

cameras to capture images in all directions with overlapping regions among different sensors.

A concept of a catadioptric omnidirectional camera covering a hemispheric field of view in

application to television was patented [90] by Rees in 1970 and later extended by Nayar [84]

to cover the full spherical field of view in 1997. The term catadioptric refers to an optical

system which forms an image by means of both lenses and mirrors: refraction and reflection;

such technique is often used in telescopes. A thorough review of a class of single-mirror

catadioptric omnidirectional cameras was presented by Baker and Nayar in [7]. Bruckstein

and Richardson independently summarized their findings on the same topic in [17]. It is

important to notice that catadioptric cameras require a sophisticated procedure of calibration

[37, 130]. This became a significant disadvantage in comparison to alternative acquisition

systems for omnidirectional imaging with the advances in lens production technology and

image processing.

The use of extra-wide-angle refractive-only lenses, known also as fish-eye lenses, is an al-

ternative approach to capture omnidirectional visual content with a single-lens camera. It

simplifies the configuration of the optical part of the acquisition workflow and does not

increase computational complexity in the image processing part. The widest known angle

of view achievable by a refractive-only optical system was reported by Martin in [81]. His

hyperfield fish-eye lens has an unvignetted field of view of 310 degrees. Other single lens

refractive-only systems include a 270-degree wide fish-eye lens patented by Nikon [57], as

well as, commercially available today, lenses with 250-1 and 270-2 degree field of view. The

main drawback of fish-eye-lens systems is the impossibility of covering a full spherical field of

view, even though the blind area can be very small. Geometrical distortions and low optical

1https://products.entaniya.co.jp/en/products/hal-250200/
2https://www.lensrentals.com/blog/2019/02/assembling-the-c-4-optics-hyperfisheye-prototype/
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resolution at the edge of the field of view impair also the quality of a final image.

Finally, the most recently developed technology for capturing omnidirectional visual content is

multi-camera systems. An acquisition apparatus of this class consist of several mechanically

fixed directional cameras installed on a mount and facing outwards in order to cover full

spherical field of view. Such a system can be either a one-piece device or manually assembled

equipment. Early examples of modern omnidirectional multi-camera systems can be traced

back to the last decade of the XXth century. A seamless multi-camera omnidirectional imaging

system was patented by Henley in 1997 [50]. Six years later, Ikeda et al. in [56], introduced

a telepresence solution based on a six-lens omnidirectional multi-camera system. Other

examples of omnidirectional multi-camera systems can be found in [39, 96].

The most important advantage of using omnidirectional multi-camera systems consist in

significantly higher spatial resolution of the final image, due to merging of multiple pictures

from multiple image sensors. The main drawback, however, is the necessity of computationally

heavy post-processing required to stitch together images from all the cameras.

2.2.2 Stitching as part of omnidirectional acquisition

As it was described in Section 2.2.1, there exist multiple ways to capture omnidirectional visual

content. The most preferred one today involves employing multi-camera systems, for the

reason that it provides the highest possible spatial resolution and a true full spherical field

of view. Images from individual directional cameras are combined in order to obtain a final

omnidirectional picture. This process is called image stitching.

Methods for seamless alignment and stitching of images into photo-mosaics are among the

oldest in topics of image processing and computer vision [104]. The goal is to merge several

photographs which have an overlapping field of view into a single panoramic image while

minimizing the amount of artifacts. The differences in illumination, color and geometry of the

pictures must be compensated prior to stitching per se. The images then need to be aligned

and seam paths should be defined. Blending is finally performed in order to smooth seam

borders.

When applied to omnidirectional imaging, stitching includes the following essential stages [78].

Firstly, pictures from each directional camera undergo a compensation of lens distortion [104].

Feature detection and matching is used then to find corresponding points in the overlapping

regions of the images [75, 8]. Next, each input picture is warped to conform to a target

projection [128, 21], which can be equirectangular, cube map or other. Exposure compensation

and color correction are then applied in order for all the images to have uniform brightness

level and matching color temperature [114, 120, 36]. Afterwards, several different methods

can be used in order to find an optimal seam path in the overlapping region [65, 24]. Image

blending is finally applied to the seams in order to smooth residual borders [18, 87, 35, 105].

The final result of stitching is an omnidirectional image or a video frame represented in a
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(a) Spherical view (b) Equirectangular projection

Figure 2.3 – Example of an omnidirectional image represented in equirectangular projection.

targeted panoramic projection.

2.3 Planar representations

Omnidirectional visual content, despite being intrinsically spherical, must be represented

in the form of a planar rectangular image in order to be stored, processed and transmitted.

Such representations are called planar projections. The history of representing a sphere as

a plane goes back to first attempts in cartography to draw a map of the globe on paper [98].

The main challenges in finding a perfect way to project a sphere to a plane are the introduced

geometrical distortions resulting in alternated shapes of objects and mismatching distances

and areas [43]. Only two planar projections are widely used in omnidirectional imaging:

namely, equirectangular projection and cube map projection.

2.3.1 Equirectangular projection

Equirectangular projection has been known in cartography for almost two thousand years

with a first mention circa 100 CE [98]. It is a cylindrical equidistant projection (also called

plate carré) where the horizontal coordinate is the longitude and the vertical coordinate is the

latitude. Coordinates in equirectangular projection have their origin at 0◦N 0◦E in terms of

geographical position. Figure 2.3 shows an omnidirectional image wrapped around a sphere

and its equirectangular representation.

Due to distortions introduced by equirectangular projection, it is not typically used in naviga-

tion or in real-estate land recording nowadays. Equirectangular projection has found its place,

however, in geographic information systems, where it is now a standard de facto for displaying

and storing data [80], on account of a simple correspondence between pixels in images and

geographic coordinates.
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In Figure 2.4, one can see a visualization of the distortion introduced by equirectangular

projection depicted with the help of the Tissot indicatrix, an imaginary circle of a perfect

symmetrical shape on the surface of a sphere which stretches to a form of ellipse when

projected onto a plane. One can see that the circles in the near-equator area are almost

perfectly symmetrical, whilst when moving close to the poles they become ellipses with a

noticeable eccentricity.

Figure 2.4 – Equirectangular projection (left) and spherical view (right). Tissot indicatrix
(blue) shows geometrical distortions in equirectangular projection. Longitude θ ∈ [−180,180]
degrees. Latitude ϕ ∈ [−90,90] degrees.

Equations 2.1 and 2.2 describe how to obtain Cartesian coordinates on the plane from spherical

coordinates for the more general case of equidistant cylindrical projection and for equirectan-

gular projection, respectively.

x = (θ−θ0) cosϕ0

y =ϕ
(2.1)

x = θ
y =ϕ

, for ϕ0 = 0 and θ0 = 0 (2.2)

where x, y are the Cartesian coordinates on the plane for equirectangular representation, and

θ,ϕ are the longitude and latitude, respectively, in spherical coordinates. The parameters

θ0,ϕ0, in Equation 2.1 specify the shift of the origin if the map is not centered at the crossing

of the equator and zero-meridian.

The inverse transform from Cartesian coordinates on a plane to equidistant cylindrical and
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equirectangular projections, respectively, is performed according to Equations 2.3 and 2.4.

θ = θ0 + x

cosϕ0

ϕ= y
(2.3)

θ = x

ϕ= y
, for ϕ0 = 0 and θ0 = 0 (2.4)

The equirectangular projection is the most widely used representation for omnidirectional

visual content for the moment. Despite its disadvantages of introducing the geometrical

distortion and overusing the pixels in the near-pole areas, it has been universally adopted by

industry and is now a default format for the vast majority of capturing, coding and displaying

software-hardware solutions. The equirectangular representation owes its success to the

comprehensive visualization of a scene as a panoramic picture and to the continuity of the

visual information in the frame which is beneficial for compression and rendering.

2.3.2 Cube map projection

The cube map projection in omnidirectional imaging takes its name and origin from the field

of computer graphics, where it appeared in 1984 as a solution to the problem of environmental

texture mapping, as opposed to a more complex way of achieving the result using ray tracing.

An unfolded cube projection of a 3-dimensional environment was proposed by Greene in [44].

(a) Spherical view (b) Cube map projection

Figure 2.5 – Example of an omnidirectional image represented as a cube map

Essentially, due to the fact that rendering of omnidirectional images is a problem of computer
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graphics, cube map projection was an obvious solution to display and therefore store omni-

directional visual content. It is also in its favor that all graphic processing units of modern

consumer computers have a hardware support of cube map rendering.

(a) Spherical view (b) Cube map projection

Figure 2.6 – Cube map projection (right) and a spherical view (left). Tissot indicatrix (blue)
shows geometrical distortions in cube map projection.

Geometrical distortions of cube map projection are far less severe that the ones introduced

by equirectangular projection as one can clearly see from Figure 2.6: only on the sides of the

cube facets Tissot indicatrices are stretched, and to much lesser extent than we observe in

Figure 2.4 for the equirectangular projection.

Formulae for obtaining a cube map from a spherical surface derive from the Rectilinear (also

called Gnomonic) projection [98, 118]. The transform of the coordinates for each cube face is

performed according to Equation 2.5:

x = cosϕ sin(θ−θ0)

cosc

y = cosϕ0 sinϕ− sinϕ0 cos(θ−θ0)

cosc

∣∣∣∣∣∣∣∣∣∣∣
θ ∈

[
−π

4
,
π

4

]
and ϕ ∈

[
−π

4
,
π

4

]
(2.5)

where

cosc = sinϕ0 sinϕ+cosϕ0 cosϕ cos(θ−θ0)

and θ,ϕ are the longitude and latitude, respectively, in spherical coordinate system; and θ0,ϕ0

define a vector pointing from the center of the sphere to the center of a current cube face.
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The inverse mapping is described in Equation 2.6.

ϕ= arcsin

(
cosc sinϕ0 + y sinc cosϕ0

ρ

)
θ = θ0 +arctan

(
x sinc

ρ cosϕ0 cosc − y sinϕ0 sinc

) (2.6)

where

ρ =
√

x2 + y2

c = arctanρ

In practice, however, Equations 2.5 and 2.6 can be simplified by using a two-argument arctan-

gent function, namely, arctan2(y,x). The Rectilinear projection can also be interpreted as a

pinhole camera forming an image on a cube face. In this case, the transforms are done in two

steps: firstly, points are mapped from the spherical coordinate system to the Cartesian one;

and, afterwards, they are projected to the image plane using the pinhole camera model. The

latter method is a typical solution used for software implementations.

(a) Cube map composed as 3x2 (b) Cube map with rotated faces (c) Half-resolution back

Figure 2.7 – Variations of cube map projection

The cube map projection has many variations which derive from rearranging and rotating cube

face in a final rectangular image. In Figure 2.7 one can see examples of different modifications

of cube map projection. Assessment of an impact of a type of cube map projection on codding

efficiency can be found in [132].

The cube map projection has much lighter distortions (see Figure 2.6) comparing to equirect-

angular projection. Moreover, cube mapping is implemented in hardware in all modern

graphic processing units, thanks to its long history in computer graphics. All these advantages,

nonetheless, did not allow the cube map projection to become a dominant format for omnidi-

rectional visual content. The reasons may not be obvious at a fist glance, but the drawbacks

are the following: discontinuity in the planar image reduces performance of compression

methods designed for conventional images and video; the visual representation is less com-

prehensive than in the case of equirectangular projection, which is an important property for
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production, monitoring and editing omnidirectional visual content.

2.3.3 Other projections

There exist other planar representations of omnidirectional visual content besides equirect-

angular projection and cube mapping. Those representations, however, are rarely used in

practice. We attempt to provide a short review of the most known of them in the following

paragraph for the sake of completeness.

An extensive and thorough review of planar representations in omnidirectional imaging can

be found in [23], where Chen et. al. propose their classification of projections and provide

a wide variety of examples. Polyhedron-based projections map a spherical image to the

faces of different convex polyhedra with the goal to reduce pixel redundancy. Examples of

such approaches can be found in [38, 71, 72, 5]. Tile-based projections divide a frame into

several stripes or tiles; typically it is performed in order to efficiently use a planar frame while

preserving quasi-constant pixel density in spherical domain. Tile-based projections has been

proposed in [125, 70, 117, 129]. Viewport dependent projections intend to exploit intentionally

introduced anisotropy in spatial resolution by giving more pixels to presumably more probable

viewing directions [3, 30].

2.4 Displaying omnidirectional visual content

Omnidirectional visual content is a particular form of immersive multimedia which extends

conventional image and video sensations to a three-dimensional space by providing full-

spherical coverage of field of view and allowing change-of-sight interactions. This type of

content is typically consumed using virtual reality head-mounted displays, hand-held devices,

and, less frequently, conventional displays of personal computers. Viewers perform interac-

tions by moving their heads, displacing and rotating an accelerometer-equipped device or by

means of direct controllers such as computer mice, trackpads and touchscreens.

The interactivity is a property of omnidirectional visual content as well as other immersive

multimedia which distinguishes them drastically from conventional images and video. The

information acquired by a viewer during consumption of such content may be affected by

their interaction, thus, making the experience personal.

2.4.1 Displays and level of immersiveness

The immersive quality of omnidirectional imaging, most certainly, originates from its display-

ing and rendering technologies. An increase in the power of commonly available computa-

tional resources, a significant breakthrough in LED and OLED display technology, and the

arrival of consumer devices equipped with motion and direction sensors led to a dramatic

raise in the amount of hardware which are capable of not only outputting visual information,
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but also of instant acquisition of signals from user interactions.

Omnidirectional visual content currently can be consumed by means of the following three

visualization technologies: namely, conventional displays, hand-held devices, and head-

mounted displays, placed here in the order of an increasing level of immersiveness.

Conventional displays are the least immersive of the technologies capable of rendering om-

nidirectional visual content. A personal desktop computer or a laptop can run certain

software in order to visualize an omnidirectional image. The viewport is represented as

a dynamic window which includes only a part of an entire image corresponding to the

current field of view. Thanks to the fact that every personal computer is equipped with

direct input devices, such as a keyboard, a mouse, a touchpad, or a touchscreen, a user

is able to manually change the direction of sight for a current viewport. Conventional

displays provide three degrees of freedom. However, the viewer is not isolated from the

environment and must control the interactivity explicitly using input devices.

Hand-held devices act as a window to look through which users can move around themselves

in order to observe different parts of an omnidirectional image. The range in size of

this type of devices expands from 5-inch-screen mobile phones up to 13-inch-screen

tablet computers. Virtually all hand-held devices carry an on-board system for accurate

enough estimation of attitude, absolute orientation, and position. This typically can

be achieved by means of the following types of embedded sensors: accelerometers,

gyroscopes, and magnetometers. Usually, hand-held devices do not have any local refer-

ence of position and orientation other than a GPS module and a compass. Hence, even

though, in general, hand-held devices provide six degrees of freedom, the translational

motion cannot be accurate. Moreover, similarly to conventional displays, hand-held

devices do not isolate the viewer from the environment, which decreases the level of

immersiveness.

Head-mounted displays provide the most immersive abilities for consuming omnidirec-

tional visual content. Displays of this type are worn by a user and are able to accurately

capture the position and the orientation of the viewer’s head. From an engineering

perspective, head-mounted displays have different designs. They can be tethered or

untethered (wireless). Devices of the former class act typically as an external display and

are driven by a graphics processing unit of a personal computer. Thus all the computa-

tions for rendering are performed externally with respect to the device. This gives this

type of HMD a significant advantage in terms of computational performance.The latter

type of devices can have an embedded screen or can exploit a hand-held device as one.

Properties of hand-held based HMD are similar to the hand-held devices themselves,

with an exception that the user is isolated from the environment. Moreover, most of the

HMD exploit locally referenced positioning system, which improves accuracy. This helps

to provide six degrees of freedom with better user experience. HMD fully isolate viewers

from the environment and put them into a virtual reality. The interactivity is intrinsically
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2.4. Displaying omnidirectional visual content

implemented and is completely transparent for users, which ensures the highest level

of immersiveness among all the devices capable of rendering omnidirectional visual

content.

2.4.2 Types of interactions and degrees of freedom

Roll

Yaw

Pitch

Figure 2.8 – Head rotational position: yaw, pitch, and roll.

Let us list and classify the types of interactions possible when consuming omnidirectional

visual content. Being a dynamic type of multimedia, omnidirectional images and video

require an instant set of parameters at each moment in time in order to render the viewport

representing a current field of view.

Head rotational position is crucial and non-optional information required to render any

omnidirectional image of video. All devices must have the ability to capture head rota-

tional position either directly or indirectly by means of the user input. Head rotational

position is represented in three coordinates: namely, yaw, pitch, and roll. Yaw is a

horizontal angular displacement from the initial position. Pitch is an angle of elevation

from the horizon. And Roll is the angle of rotation about the vector representing the

person’s direction of sight (See Figure 2.8). This set of three coordinates along with

information about available field of view defines unambiguously the instant viewport of

an omnidirectional image or video. Head rotational position provides three degrees of

freedom.
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Eye movements are optional information, which can be used in, for example, foveated ren-

dering, or for statistical analysis of user interactions. In order to capture eye movements,

additional equipment is required, since most of the devices do not provide this option

by default. The process of eye movements acquisition is non-trivial and needs special

calibration procedures for every use, which restrict its application to only controlled

laboratory environments. Eye movements add two optional degrees of freedom to a

required head rotational position by describing a vector of eye gaze.

Range-limited head movements with a stationary body position are used in omnidirectional

imaging enhanced, for instance, with a depth map. This type of immersive omnidi-

rectional content is considered to provide so called 3+ degrees of freedom, because

the translational movements of the head are limited to a certain extent which may not

exceed the range achieved with a fixed position of the viewer’s body.

2.5 Formal definitions

In this section, we aim to formally define the modalities in omnidirectional imaging and the

relations between them. This includes describing the planar representation, the spherical

domain, and the viewport domain. We also provide insights on the irreversible changes of the

signal during rendering.

2.5.1 Planar projection as effective signal and its mapping to sphere

Despite the fact that omnidirectional images and video are intrinsically spherical, they are

stored and transmitted in a form of planar rectangular pictures. That is to say, our input signal

is a normal conventional image, and the only difference occurs in the way how we operate

with it.

Let us define a planar representation of an omnidirectional image as a tensor:

IP ∈RM×N , M , N ∈N (2.7)

The elements of the tensor IP can be defined by a continuous function fP (x, y):

IP
m,n = fP (xm , yn), where fP : R2 →R, and m ∈ {1, . . . , M }, n ∈ {1, . . . , N } (2.8)

M and N are the dimensions of the planar image; xm and yn are the coordinates of a pixel

(m, n) in the continuous domain. For the sake of simplicity, here, we only consider monochrome

images.
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2.5. Formal definitions

We should not forget, however, that omnidirectional visual content is spherical by nature, and,

thus, we may benefit from switching to the spherical domain in order to simplify notations of

processing algorithms.

The spherical representation of the image defined in Equation 2.7 will be:

IS ∈RM×N

IS
m,n = fS(θm ,ϕn), where fS : S2 →R, (θ,ϕ) 7→ fS(θ,ϕ),

(2.9)

where

S2 := {
(x, y) ∈R2

∣∣ x2 + y2 = 1
}

(2.10)

is a 2-dimensional manifold, or a spherical surface, and (θ, ϕ, ρ = 1) ∈ S2 are spherical

coordinates of all the points in S2.

The spherical coordinates of each point in IS are calculated as:

θm = θm(m), m ∈ {1, . . . , M }

ϕn =ϕn(n), n ∈ {1, . . . , N }

(2.11)

For the equirectangular projection case we have:

θm = 2π
m

M
, m ∈ {1, . . . , M }

ϕn =π n

N
, n ∈ {1, . . . , N }

(2.12)

2.5.2 Viewport domain and pixels on screen

The viewport is a rectilinear projection of the spherical image to a screen, and it is defined by

two pairs of parameters: namely, the direction of sight (θ0,ϕ0) (or a viewport position) and the

field of view (αH,αV) (or a viewport coverage).

An image representing a viewport when it is displayed on a screen is defined as:

IV ∈RP×Q , where P,Q ∈N (2.13)

with P and Q being the dimensions of a viewport in pixels. Thus, if fV (u, v) is a continuous

representetion of the viewport image, we have:

IV
p,q = fV (up , vq ) where fV : R2 →R, (u, v) 7→ fV (u, v) (2.14)
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Chapter 2. Omnidirectional Imaging

The viewport image fV (u, v) for a direction of sight (θ0,ϕ0) and a window angular size of

(αH,αV) can be obtained from a spherical image fS(θ,ϕ) as:

fV (u, v) =FV ( fS(θ,ϕ),θ0,ϕ0,αH,αV) (2.15)

where operator FV maps virtual pixels on a sphere to virtual pixels in the viewport, and (u, v)

are the continuous coordinates in the viewport domain u ∈ [0,1], v ∈ [0,1].

The correspondence between (θ,ϕ)-domain and (u, v)-domain must be known in order to

perform the transform (2.15) and is described in Equations 2.16 and 2.17.

[
u

v

]
=

[
0 k

x 0

0 0 m
x

]
Rϕ0

Z
Rθ0

Y

x

y

z


∣∣∣∣∣∣∣

x>0

(2.16)

where k and m are scaling coefficients for viewport coordinates, Rθ0
Y

and Rϕ0
Z are rotations cor-

responding to yaw and pitch respectively, and vector [x y z] represents Cartesian coordinates

of a point on the sphere, which are derived from the spherical coordinates as:x

y

z

=

sinϕcosθ

sinϕsinθ

cosϕ

 (2.17)

assuming that the radius of the sphere equals 1.

(a) Pixels of equirectangular image in the viewport in the near-equator area.

(b) Pixels of equirectangular image in the near-pole area.

Figure 2.9 – Changes in pixel density in the viewport.
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It is important to notice that the given input signal is always a rectangular digital image in

discrete coordinates. That is to say, not every point is defined for the planar representation

fP (x, y). Let us consider an example where an equirectangular image is given, and we would

like to extract a viewport from it. There can be two extreme cases for viewport positions:

namely, near-equator and near-pole. In Figure 2.9, one can see how these two extreme cases

affect the amount of available information after we move to the viewport domain. The density

of original pixels is notably higher if an observer looks up, so the viewport holds a near-pole

position.

Another aspect of viewport rendering which cannot be left unattended is interpolation. A

viewport is displayed on a screen whether it is an HMD, a hand-held device or a regular monitor.

Therefore, this screen has a finite discrete pixel grid which virtually never corresponds exactly

to the positions of mapped original pixels. Thus, the values of the pixels in the grid of a

viewport screen must be estimated from the original pixels or, in other words, interpolated.

Figure 2.10 shows an example of two viewports with screen pixel grid depicted in blue and

original pixel values depicted in orange. One can see from this figure how a viewport position

can affect a rendered image. The step of interpolation is irreversible. One cannot reconstruct

the original image (or its part) from a viewport.

(a) near-equator area (b) near-pole area

Figure 2.10 – Interpolation during rendering of a viewport. Input pixels of equirectangular
image (orange) in comparison to the rendered pixels of a viewport (blue).
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Automatic prediction of salient regions in images is a well developed topic in the field of

computer vision. Yet, virtual reality omnidirectional visual content brings new challenges to

this topic, due to a different representation of visual information and additional degrees of

freedom available to viewers. Having a model for visual attention is important to continue

research in this direction. In this chapter, we develop such a model for head direction trajec-

tories. The method consists of three basic steps: Firstly, a computed head angular speed is

used to exclude the parts of a trajectory where motion is too fast to fixate viewer’s attention.

Secondly, fixation locations from different subjects are fused together, optionally preceded by

a re-sampling step to conform to the equal distribution of points on a sphere. And finally, a
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Gaussian based filtering is performed to produce continuous fixation maps. The developed

model is used to obtain ground truth experimental data when eye tracking is not available.

3.1 Review of visual attention in VR

Omnidirectional images and video are typically consumed using a virtual reality (VR) head-

mounted display (HMD). Visual content represented in one of the projections is rendered on

a viewport of an HMD where data from acceleration and orientation sensors is used to define

which part of the content is to be displayed. This data, if stored, may then be used for analysis

of human visual attention in VR imaging.

3.1.1 Prior research in visual attention and saliency

Computational prediction methods for human visual attention have been studied for decades

in conventional flat images. The first theoretical computational model of human visual atten-

tion was introduced by Koch and Ullman in [61], and the first practical implementation was

presented by Clark and Ferrier in [25]. Detailed descriptions and classifications of state-of-

the-art visual attention models can be found in [13, 14, 59]. There exist two main approaches

for modeling human visual attention, namely, bottom-up and top-down. The former starts by

computing different features in images, typically intensity, color and orientation characteris-

tics. These features are then fused together to produce a saliency map. The latter approach

takes into account certain high level information about the scene which is used, for example,

by incorporating face, object, and text detection. Top-down methods are often combined with

bottom-up models.

Experimental visual attention data, unlike prediction models, does not provide saliency maps.

After initial processing, one can obtain fixation locations, i.e. points in the image where

observers fixated their attention. This data can be further processed to produce continuous

fixation maps. The first step is to analyze eye movements using one of the methods based on

velocity and distance criteria. Methods to obtain fixation locations are described in [94, 34, 51].

Typically the next step is to produce a continuous fixation map by applying to fixation locations

a Gaussian filter with a certain standard deviation corresponding to the high acuity vision area

[82].

3.1.2 Eye-head coordination in humans

In virtual reality environment, in addition to eye movements, the observer’s head direction

must be taken into consideration. One can find studies on eye-head coordination in humans

during different tasks in [45, 32]. The main findings in these studies support a hypothesis that

the human eye movement range is restricted not physiologically but neurologically and this

range is narrower when the subject’s head is not fixed. Nonetheless, there is no commonly
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3.2. Visual attention in VR with head-direction data

adopted model for interpretation of eye-head position data in visual attention fixation maps

for omnidirectional visual content.

3.1.3 State of the art in saliency for virtual reality

Current research on visual attention in omnidirectional images and virtual reality is mainly

represented by two trends: one concerns obtaining visual attention information from experi-

mental data involving human viewers, whilst another concentrates on prediction of salient

regions using algorithmic approaches. The problem of obtaining visual attention empirically

is investigated by researchers in [109, 97, 33, 85, 88, 4]. These works provide analysis of eye

and head movements during consumption of VR content and propose several methods to

process raw experimental data in order to obtain saliency maps. Prediction of salient regions

using the algorithmic approach is studied in [11, 12]. Bogdanova et al. propose bottom-up

methods to obtain saliency maps from omnidirectional images for static and dynamic cases.

Features are computed and fused in a spherical domain. In [99, 73] authors advocate mostly

adaptation of earlier conventional saliency prediction methods described in [13, 20]. Deep

learning approaches to predict visual saliency in omnidirectional visual content are presented

in [131, 83, 15].

3.2 Visual attention in VR with head-direction data

Typically, if one needs to obtain experimental data on visual attention, different types of

eye-tracking devices are exploited. This equipment is complex and requires many steps of

prior calibration. Thus, eye tracking in VR can only be performed in a controlled laboratory

environment. For the moment, there are no consumer devices available which provide

accurate tracking of eye movements. Nonetheless, the head tracking, being an intrinsic

part of any HMD and any hand-held device, is always available. Therefore, there is a need for

a method to estimate visual attention statistically using only head direction data.

We propose a simple approach to treat raw experimental head direction trajectories in virtual

reality content. The proposed approach implies three basic steps: First, a computed head

angular speed is used to exclude the parts of a trajectory where motion is too fast to fixate

viewer’s attention. Second, fixations of different subjects are fused together. If needed, this

step is preceded by re-sampling track coordinates in order to conform to the equal distribution

of points on a sphere. Finally, a Gaussian based filtering is performed to produce continuous

fixation maps.

3.3 Fixation locations

In this section, we describe a method to obtain viewer’s fixation locations from head direction

trajectories recorded when observing omnidirectional images using an HMD.
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Fixation locations, contrary to continuous fixation maps, consist in a set of discrete points,

each corresponding to a center of an area on an image where viewers fixated their attention.

Given head direction tracks, which are essentially sequences of coordinates with associated

timestamps, we start the analysis by computing a rotational speed at each point. An angular

velocity of observer’s head evidently impacts his ability to fixate attention. Although the fact

that human visual perception depends on motion is well known, the impact of the ocular-

vestibular reflex can decrease its effect. Nonetheless, we make the assumption that there exits

a threshold head angular velocity beyond which users are not able to focus their attention on

any object. A value of 15-20 degrees per second has been chosen as the upper boundary based

on observations during subjective experiments. However, we would like to point out that this

is a parameter and additional experimental data is needed to determine the optimal threshold

angular velocity.

3.3.1 Head angular velocity

3 2 1 0 1 2 3
Yaw

1.5

1.0

0.5

0.0
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tc
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Figure 3.1 – Example of a head direction trajectory. The color depicts the speed of rotational
movement, where green is lower and red is higher than the threshold.

We define observer head rotational position as a vector [θ ϕ], where θ andϕ represent yaw and

pitch respectively. Values of yaw and pitch in degrees over time are presented in Figure 3.2ab.

In order to obtain the head angular velocity, we compute a first order derivative of the vector

as following:

Vang =
[

Vθ

Vϕ

]
=

[ dθ
d t
dϕ
d t

]
(3.1)
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(a) Yaw value in time (blue) and its time derivative (orange)
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(b) Pitch value in time (blue) and its time derivative (orange)

0 10 20 30 40 50 60
Time [s]

0

20

40

60

80

100

120

140

160

V 
[d

eg
re

es
/s

]

Threshold

(c) Speed head angular movement in time (blue) and a visual fixation threshold (red)

Figure 3.2 – Head angular position and speed of a single head direction trajectory.
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Since we only consider the velocity magnitude, or in other words speed, depicted in Figure 3.2c,

we take the norm of the vector as:

∥∥Vang
∥∥=

√(
dθ

d t

)2

+
(

dϕ

d t

)2

(3.2)

The yaw and pitch data is represented in digital format. Thus we compute a derivative using a

standard method of numerical differentiation. For each signal sample the difference with its

next value is obtained and divided by the sampling period:

s′n = sn − sn−1

Tsampl
(3.3)

Then a 2nd order Butterworth low-pass filter with cutoff frequency of fc = 2 Hz is applied
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(a) No low-pass filter applied.
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(b) Butterworth low-pass filter with fc = 2H z applied.

Figure 3.3 – Applying low pass filter when computing angular speed.
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separately to Vθ and Vϕ in order to remove digital differentiation noise. We use a forward-

backward numerical implementation of the filter to avoid a group delay in the signal [46].

Figure 3.3 shows head angular speed of a typical track before and after applying a low-pass

filter. The resulting head angular velocity over time is depicted in Figure 3.2c. All the head

direction trajectory data with speed above the threshold (red line in Figure 3.2c) is discarded

from further analysis.

Figure 3.1 shows a typical head direction trajectory. The color of the trajectory reflects the

head angular velocity. Only the regions colored green are considered as fixations of attention.

3.3.2 Equal distribution of points on sphere

We assumed in Section 3.3.1 that the points in head-direction-track series are represented in a

uniform discrete coordinate system on the surface of a sphere. There exist, however, cases

when, under the head angular velocity restrictions, a resulting track requires an additional

step of processing before becoming a set of viewers’ fixations. Depending on the device used

to obtain the raw data, the discrete domain of coordinates can distribute points in a non-

(a) Points equally distributed in the equirectangular domain becoming more dense closed to the poles.

(b) The density on points is the same on the entire surface of a sphere.

Figure 3.4 – Distribution of points on sphere
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equidistant manner on the surface of a sphere. If so, a re-sampling needs to be performed on

the data in order to comply with equal uniform spatial distribution.

Thanks to the discrete nature of the signal, we can treat each line of the equirectangular

coordinate grid independently. Being a function of latitude, the sampling rate for each line

must be adjusted considering the length of the latitudinal circumference. For each latitude

level one re-samples the longitude signal s(n) defined on n ∈ N to the signal g (m) defined on

m ∈ M , where M = N cos(φ) and φ ∈ (−π/2,π/2).

Figure 3.4 (a) shows how points which are equally distributed in the equirectangular domain

(left), when wrapped around a sphere (right), do not preserve constant density. In the near pole

area the are more points per unit area than at the equator. Figure 3.4 (b) provides an example

of the distribution of points on the surface of the sphere (right) after applying re-sampling

procedure, and the correspondent equirectangular projection view (left).

3.3.3 Fusion of fixation points

Thus far, in Section 3.3, we were talking about extracting fixation points from an individual

track obtained from a single viewer. However, this is not the final result one would need to

describe human visual attention. The same stimuli must be shown to multiple observers

under the same conditions and an identical task. Afterwards, fixation locations obtained from

different subjects must be fused in order to derive statistical information. Several methods to

perform the fusion can be considered.

Simple conjunction adds all the fixation points from each subject as unity values to a result-

ing set of overall fixations. One should keep in mind that simple re-sampling might be

needed to adapt the coordinates to the effective resolution of the equirectangular image.

The resulting set of fixation locations is binary, meaning that any point can be either

one (a fixation point) or zero (not a fixation point).

Simple histogram Sums-up all the points in a predefined number of cells with specified size

producing a weighted set. The cells are organized as a two-dimensional array with

indexes corresponding to the yaw and pitch coordinates of an equirectangular image.

Because of the wide range of values, the resulting data might need to be represented in

logarithmic scale.

Thresholded histogram method only adds points if a certain number or a percent of subjects

fixated at a location falling into a cell is reached. The thresholding is binary thus the

resulting matrix only contains ones and zeroes corresponding to fixating or not fixating,

respectively, in the area covered by a cell.

We use the second method (simple histogram) to produce fixation locations further in the

present work because of its moderate computational complexity and its satisfactory accuracy.
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3.4 Continuous fixation map

In this section, we provide a description of the calculation of continuous fixation maps from

fixation locations in an equirectangular image.

Fixation location data does not typically allow to properly depict the regions of visual attention.

Because of its discrete nature, this information is not consistent even among human subjects.

Indeed, very rarely a person will fixate their attention at the same exact point as another. Thus,

there is a need to introduce statistical areas of fixations. For conventional images, typically,

a Gaussian filter is applied to model a human acuity vision region of 1-2 degrees. In case of

head direction fixations we assume, considering our observations and research in human

physiology [45, 32], that the region of possible attention is 30 degrees. As in Section 3.3.1, this

value is a parameter and may be changed after further experimentation.

3.4.1 Gaussian filter in viewport domain

Omnidirectional content is consumed using an HMD. An observer sees a part of a panoramic

picture rendered in the viewport. Therefore, to highlight the viewing area angle we need to

apply a Gaussian filter in the viewport domain.

The kernel for the filter is defined as follows:

G(u, v) = 1

2πσ2 e−
u2+v2

2σ2 (3.4)

where u and v are viewport coordinates. However, one normally works with an equirectan-

gular or other panoramic representations of omnidirectional image or video. Thus, in the

equirectangular domain, the kernel becomes:

Geqr (θ,ϕ) = 1

2πσ2 e−
u2(θ,ϕ)+v2(θ,ϕ)

2σ2 (3.5)

Functions u(θ,ϕ) and v(θ,ϕ) are calculated using the following expression:

[
u

v

]
=

[
0 k

x 0

0 0 m
x

]
Rβ

Z
Rα

Y

x

y

z


∣∣∣∣∣∣∣

x>0

(3.6)

where k and m are the scaling coefficients for viewport coordinates, Rβ
Z and Rα

Y
are rotations
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Figure 3.5 – Modified Gaussian kernel (Eq. 3.8) at different latitudes ϕ.

for yaw and pitch respectively, and vector [x y z] represents the Cartesian coordinates of a

point on the image sphere, derived from yaw and pitch as:

x

y

z

=

sinϕcosθ

sinϕsinθ

cosϕ

 (3.7)

assuming that the radius of the sphere equals 1.

The result of applying kernel Geqr (θ,ϕ) to filter the image directly in the equirectangular

format is shown in Figure 3.6 (b).

Another approach to perform Gaussian smoothing in an equirectangular picture is to apply

the filter in the rendered viewport and then project it back. However, the drawback of this

method is the interpolation noise added during the transformations.

3.4.2 Modified Gaussian kernel in equirectangular domain

The filtering method proposed in Section 3.4.1 is computationally very heavy. To simplify the

calculations we propose a modified Gaussian kernel.

Gmod (x, y) = 1

2πσ2
y

e−
x2

2σx e
− y2

2σy (3.8)

where

σx = σy

cos(ϕ)
(3.9)

and σy is a constant value. In the denominator normalization coefficient, one can use σ2
y

instead of σxσy to prevent the change of the amplitude with x.
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3.4. Continuous fixation map

Figure 3.6 (c) shows an equirectangular image filtered using kernel Gmod (x, y). As can be

seen by comparing Figures 3.6 (b) and (c), the Gaussian filter in the viewport domain and the

Modified Gaussian kernel give visually similar results.
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Figure 3.6 – Different Gaussian based filters on equirectangular image: (a) Gaussian filter
applied in equirectangular domain. (b) Gaussian in viewport domain. (c) Proposed Modified
Gaussian. Filters are applied to equirectangular image containing three unity points at (-90,-
72), (0,0), and (90,45) degrees.

3.4.3 Generic statistical kernel in equirectangular domain

Faced with a lack of statistical data on eye-head relative movements, we assumed a Gaussian

distribution of eye fixations around the center of the viewport. However, if such statistics is

available, it can be used to form a kernel in the viewport domain:

K ≡ f (u, v) (3.10)

where f (u, v) is a probability density function on (u, v) ∈ R2, which can be estimated from

statistical frequency distribution of eye fixations in the viewport by applying a regression to its

two-dimensional histogram mi , j with k2 being the number of bins:

f (u, v)
∣∣∣u=(i−k/2)w

v=( j−k/2)w

∼= mi , j∑
i , j∈N

mi , j
(3.11)

where i , j ∈ N are the indexes of each histogram bin, and w ∈ R+ is the bin width. The
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histogram is calculated as:

mi , j = ∑
(i−1−k/2)w<up≤(i−k/2)w
( j−1−k/2)w<vp≤( j−k/2)w

X [up , vp ]

∣∣∣∣∣∣∣∣∣i∈[1,k]
j∈[1,k]

(3.12)

where X [up , vp ] is the relative frequency distribution of fixation locations (up , vp ) ∈R2, which

are determined as a shift from the viewport center for p ∈ [1, M ], p ∈Z and M is finite. The

number of bins must be chosen according to one of the criteria described in [101, 31] depend-

ing on the distribution law.

Moving to the equirectangular domain can be performed as in Section 3.4.1:

Keqr (θ,ϕ) = K (u(θ,φ), v(θ,ϕ)) (3.13)

A filter with the kernel Keqr (θ,ϕ) can be applied to fixation locations directly in the equirect-

angular domain.

3.5 Experimentally obtained visual attention data

The data used in the current section of this work has been obtained during a subjective quality

evaluation experiment [112] on omnidirectional images.

3.5.1 Head direction tracks

Raw data of a head direction trajectory contains an array of y aw and pi tch coordinates

along with their time-stamps. The tracks were recorded for each assessed stimulus. However,

only the trajectories obtained from images rated "Fair" and higher have been selected for the

current analysis. Each presented content has head-direction tracks from 40 subjects. Two

seconds of data in the beginning of each track were dropped, in order to compensate the

initial head position impact on calculating user gaze fixations.
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Chapter 3. Visual Attention

3.5.2 Experiment

Observers were asked to assess visual quality of four different omnidirectional images repre-

sented in the equirectangular projection and compressed with different quality parameters

and different codecs. In particular, viewers were instructed to search for compression artifacts.

Overall, 40 subjects participated in the experiment, 25 male and 15 female subjects, between

18 and 32 years old with the average and the median of 24.9 and 24.8, respectively. All partici-

pants were tested for correct color vision and visual acuity using Ishihara and Snellen charts

respectively.

The experiment was conducted using the testbed for subjective evaluation of omnidirectional

visual content proposed in [111]. This software has been developed for iOS and is publicly

available for download1. During the experiment, subjects were wearing an HMD composed

of a VR head-mount with buttons2 and a mobile device installed inside as a screen. iPhone 6

was used to display the images. The overall resolution of the phone’s screen was 1334×750

pixels, which gives 667×750 pixels per eye. The vertical field of view provided by the hardware-

software solution was 90 degrees, which corresponds to 8.33 pixels per degree. All the subjects

were sitting on a spinning chair during the experiment.

3.5.3 Results and discussion

We apply the proposed approach to compute fixation locations and continuous fixation maps

as interpretation of the raw experimental data described in [112]. A head angular velocity

threshold equal to 15 degrees per second was used. The Gaussian filtering was performed

using σ = 15 in the base function. In order to fuse individual fixation locations, the points

ware summed up in cells of 1×1 degree. The modified Gaussian kernel Gmod (x, y) was used to

filter the data in the equirectangular domain. Figure 3.7 shows the fixation locations for four

contents used in the experiment. The generated continuous fixation maps are presented in

Figure 3.8.

In the present work, we applied Gaussian filtering in the equirectangular projection. However,

the proposed approach can be easily generalized to cope with other panoramic representa-

tions of omnidirectional visual content, such as cube mapping and other convex polyhedron

projections. Only the calculation of u = u(x, y) and v = v(x, y) must be changed to comply

with a new projection.

In more theoretically oriented work [11, 12], the authors developed a mathematical model for

Gaussian filtering in the geometry of the two-dimensional surface of a sphere. We consider

these to be unnecessary complications, due to the fact that an observer sees only a rendered

rectilinear viewport of an omnidirectional content and not the entire image. Thus, applying

1https://github.com/mmspg/testbed360
2https://mergevr.com
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Chapter 3. Visual Attention

vision field range models in the viewport geometry appears to reflect better user experience

and perception.

Head motion information is typically available without any additional cost during rendering

of omnidirectional visual content in VR environments. For instance, during broadcasting, a

content provider can obtain anonymized head direction trajectory statistics of consumers.

This information can be further used to adapt compression parameters when adaptive coding

is applied. An example of such an adaptive coding method has been proposed in [52] for

conventional images.
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4.1 Subjective evaluation of omnidirectional content . . . . . . . . . . . . . . . . 41

4.1.1 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.2 Workflow and conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.3 Testbed for subjective evaluation . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Impact of projections on perceived quality . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Projections reducing spatial resolution . . . . . . . . . . . . . . . . . . . 47

4.2.2 Impact of projections on perceptual quality . . . . . . . . . . . . . . . . 47

4.3 Subjective quality evaluation experiments . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Testbed pilot subjective evaluation . . . . . . . . . . . . . . . . . . . . . 51

4.3.2 Impact of compression and projections on perceived visual quality . . 53

In this chapter, we, firstly, describe methodologies for subjective assessment of omnidirec-

tional visual content. Then, we present a testbed designed as a solution for performing such

evaluation experiments, including the descriptions of its architecture and implementations.

We follow, afterwards, by presenting results of subjective evaluations with mean opinion scores

and time statistics, which are used further in Chapter 5 for benchmarking and validating of

objective metrics.

4.1 Subjective evaluation of omnidirectional content

Evaluation of perceptual visual quality is crucial for many applications in image processing.

It plays an important role in encoding, compression and transmission of images and video.

Subjective evaluation of visual quality is typically applied for establishing the ground truth for

objective quality prediction metrics, as well as for assessing performance of newly proposed

methods for compression and coding. A generic subjective evaluation experiment consists in

showing visual content to human observers and asking them to rate visual quality. The ratings

are used afterwards for computing mean opinion scores (MOS).
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Chapter 4. Subjective Evaluation of Perceptual Visual Quality

Omnidirectional visual content has additional features, such as interactivity and immersive-

ness, comparing to conventional images and video. Thus, even though conditions, require-

ments, and procedures for subjective evaluation of perceptual visual quality have been already

developed and validated for conventional visual content [1, 2], they need to be extended in

order to cope with omnidirectional images and video. Very few studies have been published

on this subject: In [68], authors present new strategies for assessing the quality of composite

video streams focusing on videoconferencing applications only.

4.1.1 Approaches

Omnidirectional visual content can be consumed by means of different technologies (see Sec-

tion 2.4 in Chapter 2), which provide different level of immersiveness. Thus, an experimenter

needs, fist of all, to choose a type of display. We argue in favor of head-mounted virtual reality,

because it isolates subjects from their surroundings and simplifies the setup of an experiment

by eliminating the impact of room lighting conditions and other distractions.

Interactivity of omnidirectional imaging can also be approached differently in experiments on

subjective visual quality evaluation:

Free exploration is an approach where subjects are not restricted or only restricted by time

in their interactions with an omnidirectional image or video. The task is defined and

explained prior to the viewing sessions. Participants need to understand that they are

evaluating visual quality; and the expected artifacts must be pointed out. The flaw of

this method is that every subject sees different parts of the entire omnidirectional image

and the complete coverage by a single observer cannot be guaranteed. This can be,

however, compensated by increasing the number of subjects.

Prerecorded interactions is another way to cope with interactive content. Following this

approach, subjects are not given the ability to interact freely, but are exposed to a

prerecorded scenario, as if they were watching a video sequence. The main flaw of this

approach is its non-compliance with the natural way of consuming immersive content,

and the lack of evidence that prerecorded interactions are perceptually equivalent to

free exploration. Even in those cases, where prerecorded interactions conform to a

statistical average path, the latter can only be obtained from prior subjective evaluations

with free exploration conditions.

Further in our work, we only perform free exploration experiments on subjective evalua-

tions of omnidirectional visual content, due to advantages of this approach compared to the

prerecorded interactions.
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Figure 4.1 – The workflow of a subjective evaluation implemented in the proposed testbed

4.1.2 Workflow and conditions

Let us discuss the general workflow of an experiment on subjective evaluation of omnidi-

rectional visual content. This concerns the following aspects: equipment and software, in-

troduction, prior instructions, and explanations for subjects, the sessions in virtual reality

environment, presentation of stimuli, and collection of data.

In order to fully exploit immersive capabilities of omnidirectional visual content, it is favorable

to use a head-mounted display for subjective quality evaluations. Although, hand-held devices

and personal computers can render omnidirectional images and video, they both lack the

intrinsic ability to isolate a subject from the environment, which would complicate the setup.

Moreover, disconnection from the environment reduces the impact of external factors on the

results of subjective evaluation. It is important also to point out that one can only benefit from

a HMD setup if training and voting is performed within virtual reality.

For safety reasons subjects must be in a seated position during the entire experiment. Since

omnidirectional visual content requires only three rotational degrees of freedom with possible

range-limited head movements this does not affect the ability to perform any possible inter-

actions. The chair, however, must be a revolving one. All subjects should pass visual acuity

and color vision tests. Prior to the evaluation and training in virtual reality environment, an

experimenter should orally explain to subjects how to use the equipment and the software,

and inform them about the task and the types of expected visual artifacts which could be

found in impaired omnidirectional images.

Figure 4.1 shows the workflow of the VR part of a generic subjective visual quality evaluation

experiment. It begins with a welcome message which is shown to a subject first. At this

step the HMD position can be adjusted. The welcome screen is followed by instructions

43



Chapter 4. Subjective Evaluation of Perceptual Visual Quality

rendered as text inside the immersive virtual reality environment. After finishing reading the

instructions subjects proceed to a training session during which they are exposed to three

or more omnidirectional images with degradation to different extent. These images have

pre-selected ratings in order to familiarize subjects with expected levels of visual quality. Next,

follows an evaluation session, the payload of the experiment, where subjects give their opinion

about perceptual visual quality of tested omnidirectional images or video according to a

selected type of comparison and a scale. The voting is performed inside the virtual reality.

When the last stimulus is graded, the score data and the interaction data are stored. After the

data are collected from all subjects, it is screened offline in order to exclude possible outliers.

4.1.3 Testbed for subjective evaluation

In this subsection, we describe a testbed for subjective evaluation of omnidirectional visual

content. The main purpose of this testbed is to provide researchers with a tool to perform

subjective assessment of omnidirectional images and video. The testbed consists in a software

application for the hand-held and mobile platforms and can be used with head-mounted

displays. The application is able to visualize omnidirectional images and video represented

in different projections. The set of supported projections or geometrical representations can

be easily extended. Moreover, the testbed provides a special customizable graphical user

interface and a storyboard for subjective quality evaluation experiments.

The application allows viewing images and video using head-mounted displays, available

from many manufacturers. These mounts do not contain the display itself and a mobile

device with a screen is inserted inside in order to use them. Additionally, images and video

can be displayed by the application without HMD using only hand-held devices, i.e. tablet

computers and mobile phones. The developed testbed supports visualization for different

types of geometrical representations or projections of omnidirectional visual content. The

current set includes equirectangular, cubic, half-back cubic, and cubic with rotated facets

projections. However, thanks to the fact that the interfaces are open and scalable, other

projections can be easily implemented and added in the future by authors or by third party

contributors from the open source community. Running with an HMD mount or on a single

hand-held device, the application allows one to freely change the direction of sight by means

of the motion control. This feature is implemented by obtaining the attitude data from built-in

accelerometer and magnetometer sensors in the mobile device or tablet computer. In the

hand-held mode it is also possible to configure the application to use finger gestures in order

to control the direction of view.

In Figure 4.2 one can find a block-diagram of the testbed application architecture. The software

is logically divided into three modules: namely, Control, View, and Model. The application

takes image files and auxiliary data, such as user instructions and evaluation methodology

type, as an input. After the experiment is finished, the acquired data is stored as an output. The

Model module keeps the current state of the application, according to which it takes signals
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Figure 4.2 – Testbed application architechture.

representing user interactions from the Control module, and provides data and instructions

to the View module. The Control module is responsible for capturing signals from motion

sensors and input controls of a device. The View module performs the rendering of the

omnidirectional visual content according the type of projection in which it is represented.

Additionally, the View module controls an immersive voting menu and the overlay text.

The testbed application provides a special storyboard of screens to perform subjective quality

evaluation of omnidirectional visual content. The storyboard contains customizable textual

instructions displayed to subjects. This text can be easily updated and should contain informa-

tion such as instructions to the subject on how to proceed during different parts of evaluation.

For example, during the training, it can include information on how to score: what part of the

content the subjects must pay attention to, what type of distortion and artifacts they should

consider and what they should exclude from consideration.

After a welcome message and basic instructions, participants proceed to the training session.

During the training session no special action is required from subjects as the training stimuli

are shown with the corresponding votes already provided. Subsequently, during the evaluation

session, subjects see the test stimuli and, when ready to give a quality score, they can activate a

scoring menu. The scoring menu is displayed as an overlay on the screen and contains voting
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items according to the selected evaluation methodology. Once the voting score is selected

and recorded, the next stimulus is displayed immediately. The scoring menu as well as the

entire storyboard can be customized for different subjective evaluation methodologies, such

as single stimulus or double stimulus impairment scale. The data gathered from subjects are

anonymized in the application by automatically assigning a unique identification number to

each subject at the beginning of each session.

Prior to the experiment, a stimulus set must be prepared by an experimenter according to the

special naming convention and uploaded to the device in order to perform tests. Additionally,

the experimenter explicitly marks images for the training session and dummy stimuli. The

developed testbed application automatically performs randomization of the test stimuli

according to the ITU recommendations described in Section 2.7 of [2], in such a way that the

same content is never shown consecutively.

For each evaluation session the proposed testbed application stores: subjective scores, tracks

of direction of view for each stimulus, and time spent by each subject on each stimulus.

The direction of subjects’ sight during the evaluation of each stimulus is represented by two

coordinates: yaw and pitch, where the former represents horizontal angle and the latter

represents vertical angle. Attitude coordinates correspond to the center of a current viewport.

A separate track is recorded for each test stimulus with a configurable sampling rate, e.g. 10 to

60 samples per second. Additionally, during the evaluation session, time spent by a subject on

each stimulus is measured. It is also possible to restrict the subjects to spend limited time on

each stimulus. All experimental data, including scores and viewing direction tracks are stored

locally on the device in comma-separated-values (CSV) format. It can be transferred from the

device to a server or a work station for further analysis.

The testbed software is implemented for iOS and Android platforms and can be found

on Github by the following URLs, respectively: https://github.com/mmspg/testbed360,

https://github.com/mmspg/testbed360-android.

Types of data which can be obtained

The types of data which can be obtained during subjective evaluation and consuming of om-

nidirectional visual content includes opinion scores and interaction information. Subjective

ratings can be collected along with the track of head rotational and translational movements

for each stimulus, which can help during further analysis.

Additionally, there exists an option to collect eye tracking data and obtain fixation information

after analysis of this data. However, eye tracking is only possible in laboratory conditions and

cannot be used, for example, in crowdsourcing experiments, nor by a typical consumer.
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4.2 Impact of projections on perceived quality
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Figure 4.3 – Impact of remapping on the number of required pixels.

Reducing the spatial resolution of certain regions of an omnidirectional image is a practical

approach to optimize encoding via representation. One can apply this set of methods to

either reduce the bitrate or possibly increase the visual quality within a limited bandwidth

transmission channel.

Figure 4.3 depicts an approach for remapping equirectangular projection to a cube based

projection preserving effective angular resolution. However, the Cube 180 projection only

preserves effective resolution of the front face and the front half of each side face. After

transforming an omnidirectional image represented in equirectangular projection to a cube

map, we save 16% of pixels required to store it. See the image area hatched in orange in the

Cube 3x2 schematic drawing in Figure 4.3. Further remapping to a half-resolution-back cube

projection releases 32% more pixels (blue hatched area) from the original equirectangular

image making the picture only 52% of the input size. It preserves, however, the effective

angular resolution only in the front part of the cube.

In contrast to the approach shown in Figure 4.3, one can keep the same height for the Cube 180

representation. (See Figure 4.4). In this case, the front facet of the Cube 180 has increased

effective resolution comparing to the Cube 3x2, while the back facet decreases in quality.

4.2.2 Impact of projections on perceptual quality

A limited-scale subjective evaluation experiment was conducted in order to assess how dif-

ferent projections affect perceptual visual quality of omnidirectional visual content. The

purpose of this experiment was only to estimate the impact of remapping and compression in

a conventional sense was not considered.
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The stimuli set (Figure 4.5 (e-l)) was created from four stitched uncompressed omnidirectional

video sequences (Figure 4.5 (a-d)) of 10 seconds duration each. The originals were remapped

following the approach depicted in Figure 4.4 and compressed with visually transparent

quality with AVC using libx264 library. Three different types of projections were used in the

experiment: namely, equirectangular (EQR), cubic (C32), and cube map with half resolution

in the back hemi-cube (C180). The compression step was necessary because of the limitations

of the equipment unable to playback raw uncompressed video.

A special player for omnidirectional video supporting required projections was developed for

the purpose of this experiment. A hand-held device was used to render the stimuli. The size

of the device was 250 mm (9.7 inches) diagonally, the resolution was 2048x1536 pixels. The

display is a color IPS LCD at (264 ppi) with a 4:3 aspect ratio. The tablet was held by subjects

in front of the face at a distance of approximately 30 cm, while sitting in a revolving chair.

The pair comparison methodology was used to assess omnidirectional video. It consists in

picking one out of two subsequently shown video stimuli by choosing an answer "A is better

than B", "B is better than A", and "A and B are equal" in terms of visual quality. Subjects

were asked to select the one which had a better visual quality, or in case no difference could

be perceived, they were allowed to mark the pair as having the same visual quality. 18 sub-

jects participated in the experiment. Each of them made 12 comparisons for 4 different test

sequences. This resulted in total 216 answers, 72 for each pair of projections being compared.
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Figure 4.6 shows charts of vote distribution for each video and overall. Figure 4.7a depicts

normalized frequencies of choosing mapping A over B, e.g. coefficient 0.69 at the point (A=EQR,

B=C32) means that 69 times out of 100 the subjects preferred EQR over C32, when comparing

the pair. This matrix allowed us to estimate mean opinion scores using Bradley-Terry-Luce

(BTL) model [16, 76] described in [41]. BTL scores are shown in Figure Figure 4.7b.
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Figure 4.6 – Results of pair comparison. EQR: equirectangular projection, C32: cubic projec-
tion, C180: cubic projection with half resolution back part. The labels on the left of each plot
denote the pairs A-B being compared.
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Figure 4.7 – Subjective scores of remapping evaluation

Results show that subjects find the quality of video samples in equirectangular representation

higher than that of both cube maps. Moreover, cube map and half-back cube map scores lie

within the margin of error with respect to each other.

50



4.3. Subjective quality evaluation experiments

4.3 Subjective quality evaluation experiments

4.3.1 Testbed pilot subjective evaluation

Six different 360-degree image contents were used in the experiment. Original unstitched and

uncompressed raw samples from Ladybug 5 omnidirectional camera were provided by Point

Grey Research Inc. Images were processed and stitched to equirectangular projection using

LadybugSDK software package. Figure 4.8 shows examples of equirectangular projections of

the test samples used in the experiment.

Reference images in a prepared stimulus set were in lossless compressed PNG format, sRGB 8-

bit color space, and a resolution of 3000x1500 pixels for equirectangular format and 2250x1500

for cube map. Test stimuli were prepared by compressing the reference images with a JPEG

encoder using four different quality parameters for each image: 20, 45, 60, and 92. The latter

was set to achieve transparent quality. The stimuli used in the experiment contained a training

set of five samples obtained from the same content representing all the quality levels, including

original and an evaluation set consisting of 25 images for each of two projections obtained

from five different contents. To select the lower and upper quality bounds, an expert screening

session was conducted for each content separately with the aim to cover the full quality scale

for each content.

(a) (b) (c)

(d) (e) (f)

Figure 4.8 – Dataset for testbed pilot subjective evaluation

The Absolute Category Rating with Hidden Reference (ACR-HR) methodology [1] was selected

for evaluations. A five-grade quality scale (1: Bad; 2: Poor; 3: Fair; 4: Good; 5: Excellent) was

used. The subjects were asked to judge the overall quality of the evaluated omnidirectional

images. To reduce contextual effects, the order of rendered stimuli was randomized so that

the same content was never shown consecutively. The randomization was done automatically

by the testbed software.

Half of 48 subjects participating in the subjective assessment study evaluated test stimuli rep-
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Chapter 4. Subjective Evaluation of Perceptual Visual Quality

resented in equirectangular format; another half evaluated the cube map projection. Subjects

(36 males and 12 females) were between 19 and 36 years old with a corresponding age average

and median of 25.1 and 24.7 years, respectively.

In order to minimize visual fatigue effects, each test session was designed to take no longer

than 15 minutes. Prior to each experiment, short written training instructions were provided

to subjects to explain their tasks. Subsequently, more detailed instructions were shown on the

screen during the training session, where five training samples, representing all quality levels

were displayed to familiarize subjects with the assessment procedure. The training instructions

and samples as well as the entire test were presented to subjects using the evaluation testbed

described in Section 4.1.3.
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Figure 4.9 – MOS with CI obtained using ACR-HR method for JPEG-compressed omnidirec-
tional images. Blue lines depict MOS for equirectangular projection, orange lines are for
cube map. Collor-filled area corresponds to the confidence interval of the reference for each
projection (blue for equirectangular, orange for cube map). JPEG quality parameters are: 20,
45, 60, 92.

Subjects were asked to observe the images using a particular HMD mount ("MergeVR"1) with

a mobile device (iPhone 6S) placed inside as a screen. Resolution of the device screen was

1334x750 pixels overall, or 667x750 per eye. The HMD mount had two buttons on the top to

select and scroll within a menu in order to rate the quality of presented stimuli. All subjects

were asked to sit on a revolving chair with an ability to easily rotate left and right.

In order to evaluate perceived quality, standard statistical indicators describing distribution of

scores across subjects for each test condition were computed. Firstly, outlier detection was

1https://mergevr.com/
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Figure 4.10 – Histogram of time spent on a stimulus by subjects during testbed pilot subjective
evaluation experiment.

performed according to the guidelines described in Section 2.3.1 of Annex 2 in [2] to remove

subjects whose scores deviated strongly from others. Two subjects were detected as outliers for

all test sessions. Secondly, the mean opinion scores (MOS) and corresponding 95% confidence

intervals (CI), assuming a Student’s t-distribution of the scores, were computed for each test

condition.

Figure 4.9 shows the resulting MOS and CI plots for equirectangular and cubic projections

obtained from subjective evaluation experiments performed using ACR-HR method. Color-

filled areas correspond to the confidence intervals of the reference stimuli for each projection.

One can observe in the plots that, for certain contents, stimuli which were compressed with

quality parameters 60 and 92 were perceived as having transparent quality compared to the

reference, and, for other contents, stimuli which were compressed with the quality parameter

45 are also perceived as transparent. However, the MOS for the stimuli with the lowest quality

parameter 20 had statistically significant differentiation from the neighbors for all the contents.

There exists a tendency among subjects to under-rate stimuli. It can be possibly explained by

the fact that many of participants reported themselves evaluating existing stitching artifacts,

despite the instructions. According to the recorded values of the time spent to evaluate each

test stimulus by the participants of the experiment with a combined number of 48 volunteers,

in average subjects looked at each omnidirectional image for a duration of 30 seconds (see

Figure 4.10). These data can be used in designing future subjective quality evaluation tests for

omnidirectional images and video.

4.3.2 Impact of compression and projections on perceived visual quality

Four high fidelity uncompressed omnidirectional images represented in equirectangular

projection were used to compose an evaluation test-set; an additional image different from
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.11 – Dataset used in impact of compression and projections experiment

those four was selected for training. The dataset is based on omnidirectional video test-

set proposed by Joint Video Exploration Team (JVET) of ITU-T VCEG and ISO/IEC MPEG.

Omnidirectional video sequences were examined, and a still frame from each of the selected

four sequences was taken to compose the dataset. Figure 4.11 depicts the selected contents

in equirectangular projection. In order to keep the balance in spatial complexity and colors,

spatial index (SI) [1] and colorfulness (CF) [48] were taken into account when selecting the

images. Table 4.1 shows SI and CF for the contents used in the experiment.

Original images are represented in YUV color-space format with 4:2:0 chroma sub-sampling.

Initial high resolution images were down-sampled using bi-cubic interpolation to 3000×1500

pixels in order to correspond with the resolution of the HMD screen used in the experiments.

Reference original images were then remapped to a cubic projection with rotated faces. This

projection is a variation of a cube mapping introducing the least amount of additional non-

continuities (face edges) to the picture. Figure 4.11 (e-h) shows examples of images represented

in the cubic projection with rotated faces.

Both equirectangular and cubic images were compressed with three different codecs, namely

JPEG, JPEG 2000, and HEVC intra. Afterwards, an expert screening was conducted to select

bitrates representing the full scale of visual quality. As a result, four target bitrates, namely

0.25, 0.50, 0.75, and 1.00 bits per pixel, were selected. To compress original images with JPEG,

JPEG 2000, and HEVC, the libjpeg2, OpenJPEG3, and FFmpeg with x2654 software packages

were used, respectively. The selected parameters and settings for all the codecs exploited

in the subjective experiments are presented in Table 4.2. It also contains the details on the

command-line arguments used to produce the compressed images. In order to perform

subjective assessments, all the encoded images were decompressed using the same respective

software packages to produce reconstructed impaired stimuli.

2https://github.com/thorfdbg/libjpeg. Commit: 0x0009dcc
3https://github.com/uclouvain/openjpeg. Ver.: 2.1.2, commit: 0x1f1e968
4https://ffmpeg.org/ Ver.: 3.2.2, http://x265.org/ Ver.: 1.9
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Table 4.1 – Spatial index (SI) and colorfulness (CF) computed for the test contents used in the
experiment.

Harbor KiteFlite PoleVault SkateboardTrick

Spatial Index (SI) 7.96 10.45 10.33 6.31

Colorfulness (CF) 15.64 14.88 42.81 25.62

Table 4.2 – Selected parameters and settings for all codecs exploited in the subjective experi-
ments.

Codec Software Command line

JPEG libjpeg jpeg -q quality referencefile.png compressedfile.jpg

JPEG 2000 OpenJPEG opj_compress -q quality -i referencefile.ppm -o compressedfile.j2k

HEVC libx265 ffmpeg -f rawvideo -r 1 -s size -pix_fmt yuv420p -i infile.yuv -c:v hevc -crf qlt outfile.hevc

The experiment was conducted in the Multimedia Signal Processing Group (MMSPG) labora-

tory at EPFL where naïve subjects were invited to participate. It was performed according to

Absolute Category Rating with Hidden Reference (ACR-HR) method described in [1]. ACR-HR

is a single stimulus evaluation where the reference stimuli are randomly shown to observers

among the impaired images. Stimuli were presented subsequently to subjects, and voting was

performed after each viewing. Images were assessed using five-grade quality scale with the

following levels: "5 - Excellent", "4 - Good", "3 - Fair", "2 - Poor", and "1 - Bad".

The observers were placed in an immersive environment where omnidirectional images were

presented to them by means of an HMD. Immersive textual instructions were provided inside

the VR along with a verbal guidance by the experimenter. Every test session started with an

immersive training that consisted of three consequently shown images of a content not used

in the evaluations. Subjects observed the examples of "Excellent", "Bad", and "Fair" quality

levels shown in this particular order and were provided with the explanations and illustrations

of impairment artifacts which can be found in the images. During the evaluation, subjects

assessed the stimuli shown to them consequently without any time restrictions. When ready

to rate an image subjects had to activate a 3D immersive voting menu by pressing a button

and select the grade proceeding immediately to the next image. All stimuli were automatically

randomized in each session.

All the steps described above in the current subsection including immersive training and

evaluation were conducted using a testbed for subjective evaluation of omnidirectional visual

content proposed in [111]. This software was developed for iOS and Android platforms.

The source code is publicly available for download5. It renders omnidirectional images with

OpenGL using perspective projection and bi-cubic interpolation. The testbed allows uploading

test stimuli to a device and changing immersive textual instructions. Voting data is acquired by

the software and stored on the device. It can be further transmitted to a server for processing.

5https://github.com/mmspg/testbed360
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The following hardware equipment was used to perform immersive subjective quality eval-

uation of omnidirectional images along with the software testbed. During the experiment

subjects were wearing an HMD composed of a VR head-mount with buttons6 and a mobile

device installed inside as a screen. An iPhone 6 was used to display the images. The overall

resolution of the phone screen was 1334×750 pixels, which gives 667×750 pixels per eye.

The vertical field of view provided by the hardware-software solution is 90 degrees and corre-

sponds to 8.33 pixels per degree. All the subjects were sitting on a revolving chair during the

assessment.

Prior to the experiment, a non-immersive training was provided to the subjects. The experi-

menter explained the purpose of the evaluation, showed examples of compression artifacts,

and pointed to differences between coding and stitching artifacts. Subjects were instructed

not to assess stitching artifacts. The test material, consisting of 104 test stimuli, was randomly

distributed between two sessions. Each participant took part only in one session in order to

shorten the time when the subject is exposed to VR immersive environment to a maximum of

25 minutes. Overall, 41 naïve subjects participated in the experiment. One subject was not

able to complete the evaluations due to motion sickness. Subjects, 25 males and 15 females,

were between 18 and 32 years old with an average and median of 24.9 and 24.8, respectively.

All the participants were tested for correct color vision and visual acuity using Ishihara and

Snellen charts respectively. An additional evaluation session was independently conducted

with 5 expert viewers at the 74th JPEG meeting in Geneva.

Outlier detection was performed separately on the raw experimental data from each of two

test sessions, since an individual subject had only assessed stimuli from one subset. A boxplot

based method was used to remove outliers in the same way as in [29]. One subject was

detected as an outlier in the first session. Therefore, to preserve the symmetry of the data, one

randomly selected subject was removed from the second session. MOS values were computed

for each stimulus in the entire dataset as mean values for the set of scores provided by different

subjects. In order to estimate statistical significance, 95% confidence intervals (CI), assuming

a Student’s t-distribution of the scores, were computed alongside with MOS values.

Figure 4.12 shows MOS and CI plotted for different contents. MOS obtained from naïve

subjects were shown to be highly correlated with expert subject results. More particularly,

standard correlation indexes between naïve and expert scores are PLCC = 0.95, SROCC = 0.87,

RMSE = 0.40. Certainly, this allows us to consider the subjective evaluation results being

reliable and consistent.

The results of the subjective evaluation experiment and the data analysis show, as expected,

higher performance of HEVC and JPEG 2000 when compared to JPEG at lower bitrates. Some

of the contents, however, namely "Pole Vault" and "Skateboard Trick", are systematically

underrated, which can be possibly explained by the lower perceptual quality of the original

pictures. Other explanations for the former can be the following. There are many human faces

6https://mergevr.com
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Figure 4.12 – Mean opinion scores of compression and projections experiment.

Figure 4.13 – Histogram of time spent on a stimulus by subjects during subjective evaluation
experiment.

in the "Pole Vault" content, and thus, due to a relatively low resolution of the HMD screen,

observers’ expectations to distinguish facial features were not met. In the "Skateboard Trick"
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content, there is an artificially blurred circle below the camera used to camouflage a tripod,

which could influence the decision of naïve subjects.This hypothesis is supported by the fact

that in the expert subjective results "Skateboard Trick" reference stimuli was not underrated,

whilst "Pole Vault" was.

When compressing images represented in a cube map projection, edges of continuous parts of

the frame are distorted non-uniformly with different intensity. This makes cube-face borders

distinguishable for some stimuli in the rendered viewport when observed using an HMD.

Experimental results, indeed, show lower scores for cubic mapping at medium bitrates and

the same scores as for equirectangular mapping at high and low bitrates. This may occur for

the reason that at high bitrates there are no impairments, and at low bitrates the entire image

is distorted. Thus, the cube-facet borders are distinguishable only at medium bitrates, due to

compression artifacts.
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In this chapter, we review the state of the art in objective perceptual visual quality measure-

ment for omnidirectional content. Afterwards, we present results of benchmarking of existing

objective metrics against subjective mean opinion scores. In the second part of this chapter,

we propose a novel method for objectively assessing perceptual visual quality based on visual

attention, following with its validation and conclusive discussion.

5.1 Review of the state of the art

An important part of the development of future 360-degree image and video compression

algorithms is related to the selection of objective metrics required to automate the process of

visual quality assessment. Thus far, however, there is no agreement on which metrics should be

used to predict perceived quality of omnidirectional content, as there is not enough evidence

about their performance. Recently, new objective metrics for omnidirectional content have

been introduced [124, 127]. To benchmark the available objective metrics, a ground-truth data

is necessary. The most reliable way to obtain such ground-truth data is by means of subjective
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quality evaluation. Further in this chapter, we use the results of the experiments described in

Section 4.3 of Chapter 4.

State-of-the-art research on perceptual visual quality assessment of omnidirectional content

mainly focuses on adaptation of conventional full-reference objective metrics in order to

cope with geometrical distortions and spatial entropy redistribution introduced by different

representations of such content. A review and benchmarking results of recently proposed ob-

jective quality metrics for omnidirectional visual content are provided by authors in [112, 111].

Among the proposed metrics methodology varies from applying forward-and-backward geo-

metrical mappings as in [127] to different schemes of weighting during pixel-wise comparison

as in [102, 124]. Croci et al. propose in [27] a framework for perceptual visual quality control

in stereoscopic omnidirectional imaging. Their method considers empirical visual attention

data to define the significance of regions.

5.2 Benchmarking of existing methods

We aim here to assess the performance of available objective metrics designed specifically

for omnidirectional visual content against ground-truth subjective mean opinion scores

(MOS). Additionally, a comparison to the performance of conventional 2D objective metrics

has been carried out. In particular, the 96 mean opinion score (MOS) and corresponding

confidence interval (CI) values to measure the correlation between objective and subjective

scores is used. The objective metrics are evaluated, in terms of commonly used performance

indexes, i.e. linearity, monotonicity, accuracy, and consistency, based on their correlation

with the perceived visual quality. It is shown that the VIFp objective metric provides the best

performance indexes. However, overall results indicate the need for new algorithms, which

better predict perceived quality of omnidirectional content.

5.2.1 Objective evaluation

This section presents objective evaluation data for omnidirectional visual content obtained by

calculating particular metrics. Performance of these metrics is then evaluated by comparison

to the ground-truth subjective scores. Finally, the results are presented alongside with a

discussion.

Omnidirectional visual content can be assessed with conventional 2D objective metrics as well

as with metrics designed specifically for 360-degree images. Here we provide a list of objective

evaluation methods used in this study. The following objective metrics were computed:

• Conventional 2D metrics

1) Peak signal-to-noise ratio (PSNR)

2) Structural Similarity (SSIM)
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Chapter 5. Objective Metrics for Perceptual Visual Quality

3) Multi-Scale Structural Similarity (MSSSIM)

4) Visual Information Fidelity in pixel domain (VIFp)

• Metrics designed for omnidirectional visual content

1) Spherical PSNR (S-PSNR) computes PSNR for the set of points uniformly distributed on

a spherical surface, where corresponding pixels from a reference and an assessed image

are reprojected to this set [124].

2) Weighted Spherical PSNR (WS-PSNR) computes PSNR in such a way that intermediate

values for pixels in an equirectangular image of height h are weighted with a coefficient

wi , j = cos((i −h/2)π/h) [103]. This weighting reduces the impact of the pixels with

higher latitudes. It should be noted that WS-PSNR is only applicable for images in

equirectangular projection.

3) Craster Parabolic Projection PSNR (CPP-PSNR). Both an assessed image and a refer-

ence are re-mapped to a Craster parabolic projection, then PSNR is computed in that

domain [127].

To compute conventional objective metrics, namely PSNR, SSIM, MSSSIM, and VIFP, a publicly

available software package VQMT 1 was used. For metrics designed specifically for omnidi-

rectional content, S-PSNR, WS-PSNR, and CPP-PSNR, publicly available Samsung 360 Tools2

were used.

5.2.2 Performance evaluation

Standard performance indexes, namely, the Pearson linear correlation coefficient (PLCC), the

Spearman rank order correlation coefficient (SROCC), the Root mean square error (RMSE),

and the Outlier ratio (OR), were computed to compare objective results with the ground-truth

subjective ratings. To calculate the above listed performance coefficients, the raw objective

evaluation data was fitted to the MOS values. Logistic fitting was performed considering that

the data were in different ranges and in order to compensate possible saturation of subjective

scores. One can see the fitted curves in Figure 5.1.

Table 5.1 presents linearity, monotonicity, accuracy, and consistency indexes. These indexes

were computed assuming different mapping schemes of test data:

A - for equirectangular projection, on all the contents,

B - for cubic projection, on all the contents,

C - for both projections, on all the contents,

D - for both projections, each content separately.

1http://mmspg.epfl.ch/vqmt
2https://github.com/Samsung/360tools. Commit: 0x54845f0
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Chapter 5. Objective Metrics for Perceptual Visual Quality

More specifically, for A and B cases the fitting was performed only for the data points rep-

resenting each individual projection, for C and D cases the fitting was performed on all the

contents to compute the indexes. Moreover, for D case, an average of resulted indexes for each

content was considered.

5.2.3 Results and discussion

Figure 5.1 shows scatter plots of MOS values against objective metrics. For the cases A,

B, and C, the results of the objective metrics performance evaluation show only moderate

correlations with the ground-truth subjective scores and do not significantly change for

different projections. As can be seen from scatter plots in the Figure 5.1, points are sparse and

not concentrated along the fitting curve. Moreover, objective metrics designed specifically for

omnidirectional visual content do not show better performance when compared to common

objective quality evaluation measures. For the case D, performance per content is significantly

higher compared to cases A, B, and C. However, conventional metrics still outperform those

designed for 360-degree content.

Since S-PSNR, WS-PSNR, and CPP-PSNR are all based on PSNR, it is reasonable to compare

them. Looking at the scatter plots in the Figure 5.1, one can notice that the distribution

patterns of the score points are of high similarity for all the PSNR based metrics showing

strong content dependency.

Analysis of the obtained subjective and objective scores indicates moderate performance of

the investigated metrics for omnidirectional visual content. Being PSNR based, these metrics

do not outperform significantly their ancestor in predicting visual quality of omnidirectional

content. All the evidence above suggests that the problem of better objective quality evaluation

methods for omnidirectional visual content remains open. Future work should consider

developing a more suitable objective metric for 360-degree content.

5.3 Saliency driven perceptual quality metric

In this section, we propose a novel objective perceptual visual quality metric which takes into

account ground-truth viewer’s visual attention information in order to make image quality

assessment selective with respect to regions of interest.

5.3.1 Visual attention weighting

Weighting pixel-based objective quality metrics is a well known approach. However, to the

best of our knowledge, very little has been done regarding visual attention in this topic.

As a base for our method we decided to use the Peak Signal to Noise Ratio (PSNR) metric

because it is widely accepted, its implementation is simple, and its performance is satisfactory
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Figure 5.2 – Subjective mean opinion scores (MOS) with 95% confidence intervals. The
area filled with transparent purple color depicts the 95% confidence interval of the hidden
reference.

to test our hypothesis. We define a ground-truth image as I (i , j ), where i = 0,1, ..., H , j =
0,1, ...,W , with W and H dimensions of the image. The impaired image is defined as Î (i , j ).

Thus, PSNR is described by the following equation:

PSN R = M AX 2
I

MSE

where

MSE =
∑H−1

i=0

∑W −1
j=0

(
I (i , j )− Î (i , j )

)2

H ∗W

and M AX I is the maximum possible value of pixel intensity of the assessed image, e.g. for an

8-bit image it equals 255.

Given that sufficient amount of empirical data of head movements is available for an assessed

omnidirectional image, one can obtain a continuous visual saliency map using the method

described in [109].
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Chapter 5. Objective Metrics for Perceptual Visual Quality

The saliency map can be defined as:

hi , j ∈ [0,1], i = 0,1, ..., H , j = 0,1, ...,W

where each pixel of hi , j provides a visual attention value for each corresponding pixel of

Î (i , j ). The saliency map hi , j can be obtained independently for different degradation levels

of impaired images. This issue is further addressed in Section 5.3.4.

Visual saliency map is used to compute a saliency-weighted mean square error MSEV A which

contributes to the PSNR equation as a denominator.

MSEV A =
∑H−1

i=0

∑W −1
j=0

(
I (i , j )− Î (i , j )

)2
hi , j∑H−1

i=0

∑W −1
j=0 hi , j

Therefore, a Visual Attention PSNR (VA-PSNR) is defined as:

PSN RV A = M AX 2
I

MSEV A

VA-PSNR allows comparison of two omnidirectional images regardless of the projection

(equirectangular, cubic etc.) they are represented in, provided that both are represented in the

same way.

The source code and data are publicly available on-line at:

https://github.com/mmspg/saliencymetric360

5.3.2 Validation with subjective experiments

This section describes experiments performed by the authors with the goal to validate and

benchmark proposed objective perceptual visual quality evaluation method.

Two independent content viewing sessions were conducted. Participants were divided in two

disjoint groups: one was asked to evaluate omnidirectional images according to visual quality,

whilst another performed free exploration with a dummy task to assess the aesthetic value of

the pictures.
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5.3. Saliency driven perceptual quality metric

PSNR WS-PSNR
[102]

VA-PSNR
Eval

VA-PSNR
Expl

VA-PSNR
Eval-Refs

VA-PSNR
Eval-LowQ

PLCC 0.6959 0.7106 0.7107 0.7074 0.7114 0.7083
SRCC 0.3706 0.4131 0.4131 0.4075 0.4163 0.4080
KRCC 0.2706 0.2976 0.3012 0.2904 0.2976 0.2958

Table 5.2 – Standard performance indexes. Pearson linear correlation coefficient (PLCC), the
Spearman rank correlation coefficient (SRCC), and Kendall rank correlation coefficient (KRCC).
Bold text shows the best result per index, italic text shows the second best result for PLCC.

Dataset and equipment

Selected contents were compressed using three different codecs, namely JPEG, JPEG 2000,

and HEVC Intra-frame. Images were compressed using the same software as in [112] with the

quality parameters specified in Table 5.3. Original high-fidelity images were downscaled to

5760×2880 pixels before compression in order to comply with technical requirements of the

display.

Codec Harbor KiteFlite Skateboard.. Train

JPEG 9,53,79,87 4,23,54,73 8,71,87,93 8,65,85,92
JPEG 2000 41,44,46,47 35,39,42,44 44,47,49,51 43,46,48,50
HEVC-I 32,27,24,21 37,30,26,23 29,23,21,18 30,24,21,19

Table 5.3 – Quality "Q" parameters used to encode images. The software is the same as used in
[112].

Experiments were conducted with the help of a testbed for subjective evaluation of omnidirec-

tional content proposed in [111] which is publicly available for downloading3. Participants

were observing stimuli using a head-mount4 with a mobile device acting as a screen. Galaxy

S7 Edge SM-G935F was used. The resolution of the device was 2560×1440 pixels. During the

experiments, subjects were sitting on a rotating chair. All subjects passed color vision and

visual acuity tests.

5.3.3 Evaluation and exploration

During the evaluation experiment subjects were assessing omnidirectional images following

the methodology called Absolut Category Rating with Hidden Reference (ACR-HR). They were

asked to rate stimuli on the five-level scale ”5 - Excellent”, ”4 - Good”, ”3 - Fair”, ”2 - Poor”, and

”1 - Bad”. 19 subjects participated in the evaluation session, among which 9 were females, with

an overall median age of 24.5. Results of subjective assessment are presented in Figure 5.2.

Exactly the same set up as for evaluation was used in the exploration experiment. However,

subjects were asked to evaluate the aesthetic value of the pictures and only uncompressed

3https://github.com/mmspg/testbed360-android
4https://mergevr.com
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Chapter 5. Objective Metrics for Perceptual Visual Quality

stimuli were used. Their subjective scores were discarded and only head direction tracks were

collected. Exploration sessions had 17 participants, of which 10 were females, with an overall

median age of 24.3.

5.3.4 Visual attention and quality

Head direction tracks were collected from both evaluation and exploration experiments. They

were processed according to the method described in [109] in order to produce saliency

maps. Additionally, raw visual attention data from evaluation sessions were grouped into

three categories: all tracks, tracks from stimuli which have Mean Opinion Scores (MOS) lying

withing the 95% confidence interval of hidden reference, and with MOS lower then 3.0. The

resulting saliency maps are depicted in Figure 5.3.

5.3.5 Validation and discussion

VA-PSNR as well as other metrics were computed for all the stimuli using each set of saliency

maps described in Section 5.3.4. Standard performance indexes were calculated (Table 5.2).

Notably, VA-PSNR-Refs computed using saliency maps from high quality evaluation stimuli

outperforms VA-PSNR-Expl, VA-PSNR-Eval, and VA-PSNR-lowQ computed using maps from

exploration sessions, from all evaluation tracks, and from low quality evaluation stimuli tracks

respectively.

The proposed method requires empirical visual saliency data and it can be applied in post-

production of cloud services where, after a certain time from the moment of initial release,

sufficient amount of data can be collected and used a posteriori to estimate quality during

re-compression of the content which can be beneficial for saving bandwidth.

We proposed a novel method called VA-PSNR which estimates perceptual quality of omnidi-

rectional content considering visual attention. We validated our method against subjective

MOS and benchmarked it against state-of-the-art objective metrics. VA-PSNR shows better

performance when compared to alternative approaches based on PSNR.
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In this chapter, we propose OmniJPEG, a JPEG backward-compatible solution to encode

omnidirectional images. In order to ensure the JPEG backward compatibility, OmniJPEG

extracts predefined regions of interest from omnidirectional images, as well as uses properties

of equirectangular projection, while at the same time also keeps complete equirectangular

information to preserve the capability of correctly rendering an omnidirectional image with

appropriate devices and software.

6.1 Review of existing methods

The approaches to code omnidirectional visual content have been proposed in the past few

years. The most notable of these approaches to compress omnidirectional images and video

presented in the literature can be listed as follows: a) adaptive and partial content delivery

methods, b) algorithms exploiting or adapting to 2D spherical surface geometry of the content

to be compressed, and c) geometric representation or projection based methods as pre- and

postprocessing prior to compression.

One of the very first attempts to introduce a solution to code an omnidirectional or a panoramic

image data was developed by Apple Inc. The so-called Quicktime VR [22], which refers to both

a file format and visualization software, allows for creation and display of panoramic images.

More specifically, it proposes to store 360 degree cylindrical panoramic images divided in tiles.

While displaying panoramic images with a specially designed viewer, only the tiles visible in

the current viewport are decoded. However, the proposed panoramic image format did not
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Chapter 6. Coding of Omnidirectional Visual Content

have backward compatibly with conventional image viewers, such as legacy JPEG decoders,

and it did not consider any region of interest (RoI) estimation to provide users with a default

viewport.

The idea of using RoI to code omnidirectional visual content recently appeared in a work

considering adaptive coding and partial delivery methods [93]. This approach proposes to

deliver only a part of the omnidirectional content which is being viewed. Each frame, after an

equirectangular projection, is divided into tiles or regions which are then coded separately

with a different quality according to an adaptive model. The tiles covered by the portion of

the frame which is being viewed are encoded with the highest possible quality. The quality

of other regions is determined considering their probability of being viewed next. However,

authors did not investigate any statistical model to predict the next candidate tiles which will

be viewed. Additionally, it did not consider that an omnidirectional image can be divided into

tiles corresponding to a predicted RoI.

Coding by taking into account a specific 2D spherical surface has also been investigated in

the past [106]. Assuming that a raw image from all different types of cameras after stitching

can be mapped onto a sphere, authors proposed a generic compression method based on

decomposition over a dictionary of geometric atoms. A redundant dictionary is built over two

generating functions (low frequency and high frequency) extended with scaling and affine

transformations on a 2D sphere. The coder performs matching pursuit to select atoms from

the dictionary, sorts the atoms along the decreasing magnitude of their coefficients, and then

applies adaptive quantization. The proposed codec outperforms JPEG 2000 at low bitrates,

however, yields to it at high bitrates.

Representing omnidirectional visual content using geometric projections, which produce less

amount of data, is another approach. Example of such an approach can be found in [38], where

authors propose a rhombic dodecahedron (RD) mapping model. This convex polyhedron was

chosen considering the restriction that the faces should be of quad-based nature, which allows

constructing unfolded rectangular images for encoding. The model provides almost uniform

pixel distribution without significant oversampling or undersampling, which allows applying

DCT and wavelet based coding more efficiently when compared to alternatives, such as cubic

mapping. However, this method has not been widely adopted, because of its complexity.

Regarding solutions with JPEG backward compatibility, several such approaches [47, 64]

have been proposed in the past. However, none of them targets omnidirectional image

compression.

6.2 OmniJPEG: JPEG backward compatible coding

We propose a format called OmniJPEG, as an extension of the most popular image format

JPEG. The architecture of the corresponding proposed codec is designed with an emphasis

on the backward compatibility with the legacy JPEG decoders. Additionally, we assess the
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6.2. OmniJPEG: JPEG backward compatible coding

performance of the proposed approach.

As mentioned above, OmniJPEG exploits the RoI within an omnidirectional image, and relies

on properties of the projection onto a plane, to visualize an omnidirectional image content

from a representative viewport by a legacy JPEG decoder, while taking at the same time full

advantage of the omnidirectional content by an extended decoder. Although, the proposed

architecture for OmniJPEG can cope with various capture, representation, and projection alter-

natives. The prototype software implemented in the framework of this work only supports 360

omnidirectional images of a spherical model projected to an equirectangular representation.

6.2.1 Proposed coding architecture

The proposed scheme for JPEG backward compatible coding of omnidirectional images aims

at providing the ability to visualize omnidirectional content in cases when advanced omni-

directional viewing is not available. Rendering of omnidirectional image content requires

efficient implementation of sphere-to-plane projections, such as the widely used equirectan-

gular or cube map projections. Therefore, to successfully and interactively visualize a desired

viewport, a 3D graphics powered viewer is necessary. To display omnidirectional image in-

formation with a conventional 2D image viewer without a need for an advanced rendering

algorithm, a predefined viewport representing a limited field of view of the original content

has to be identified a priori. This viewport can then be encoded with a conventional 2D

image compression algorithm and consequently displayed after decoding. However, if one

can perform necessary geometrical transformations to a particular part of the omnidirectional

image and embed it into the file, then the viewport can be displayed by any conventional

image viewer without applying any rendering algorithm.

The block diagram of the proposed JPEG backward compatible coding scheme for omnidirec-

tional image content, OmniJPEG, is presented in Figure 6.1. The input is either a compressed

or an uncompressed omnidirectional image in one of the sphere-to-plane geometric pro-

jections (such as equirectangular or cube map). The input data is first read into a memory

block and, if needed, decompressed. Afterwards, the RoI of an input image is extracted and its

corresponding viewport is generated and geometrically corrected. Then, a viewport image

is compressed with a conventional JPEG encoder and stored in the JPEG File Interchange

Format (JFIF) [58], which can then be displayed by any legacy viewer. Subsequently, the entire

omnidirectional image is stored in the same JFIF file as a metadata.

A block diagram of OmniJPEG decoder is presented in Figure 6.2. The process of decoding

consists in extracting the original omnidirectional image from metadata of the JFIF file. The

obtained image can be displayed by an omnidirectional image viewer supporting OmniJPEG

coding, or stored in a file in order to be displayed later by an omnidirectional visualization

software.

On the other hand, Figure 6.3 depicts how an omnidirectional image encoded by the proposed
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Figure 6.1 – Block diagram of the proposed OmniJPEG encoder.
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Figure 6.2 – Block diagram of the proposed OmniJPEG decoder.

OmniJPEG format can be decoded and displayed both by legacy JPEG viewers or by decoders

supporting OmniJPEG decoding, respectively. Generally, an omnidirectional image can only

be displayed by dynamically rendering the particular viewport with a special software allowing

users to freely change the view direction. However, when an OmniJPEG encoded image

file is opened with a conventional legacy viewer, the latter can only access the predefined

viewport corresponding to a particular RoI specified during encoding. On the contrary, when

an encoded image is opened by an omnidirectional viewer, which supports OnmiJPEG, the

application has access to an entire omnidirectional image stored in OmniJPEG metadata.

6.2.2 Implementation

To test OmniJPEG encoding process, a prototype software was implemented. The imple-

mented software allows to encode and decode image files with the proposed OmniJPEG

algorithm. The assumed input is an omnidirectional image represented in equirectangu-

lar projection. The software reads the input image to a memory block and decompress it,

if already compressed.Then, it extracts the predefined RoI and renders its corresponding

viewport, performing geometric transformations necessary for the given position within the

omnidirectional image. The produced viewport is subsequently compressed with JPEG and
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RoI image

360
image

Bitstream JPEG−1

OmniJPEG−1

Decoder used

RoI
image

360
image

Figure 6.3 – Visualization of an omnidirectional content encoded in OmniJPEG format.

stored in a JFIF file. The original omnidirectional image is stored in the APP11 application

marker in JPEG format [126].

The developed application requires the following parameters:

- yaw, as a horizontal spherical coordinate in degrees,

- pitch, as a vertical spherical coordinate in degrees,

- vertical field of view in degrees, and

- aspect ratio of the desired viewport.

The implemented prototype uses the open-source library LibJPEG to cope with JFIF file format

and JPEG compression. Additionally, a graphical user interface has been developed to help in

the process of OmniJPEG encoding.

To apply the geometrical transformation and to produce an undistorted viewport for the

specified RoI of an omnidirectional image, we use the pinhole camera model. Omnidirectional

image represented in equirectangular format is mapped to a sphere first. Then, perspective

projection transformation, which removes the geometric distortions, is applied either to a

manually defined or to an automatically extracted RoI. Examples of RoI areas in equirectan-

gular projection and their viewport counterparts extracted with the developed prototype are

shown in Figure 6.4. The desired RoI, highlighted in green (see Figure 6.4), is processed, all ge-

ometric distortion related to sphere-to-plane projection are removed, and the corresponding

viewport representing the omnidirectional image is produced.

6.2.3 Performance evaluation

Table 6.1 presents results of the proposed backward compatible coding scheme for omnidirec-

tional visual content. For five different contents in their original resolution , we calculate the
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Omnidirectional image Viewport image

Possible RoI viewport areas

Figure 6.4 – Examples of visualization of regions of interest in equirectangular projection and
its counterpart viewport.

file size overhead after encoding with OmniJPEG. Three different relative viewport sizes with a

vertical and horizontal field of view, corresponding to 30×60, 60×90, and 90×120, are used.

As expected, file size is increasing with increasing size of the desired viewport. Another factor

affecting the file size overhead is the actual content in the viewport, because, for example, the

amount of details in the picture can decrease JPEG compression efficiency. Results show an

average overhead of approximately 8% for the viewport size of 60×90.
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In this chapter, we explore certain related extensions and applications in omnidirectional

imaging. At first, we look into privacy protection which is yet another field drawing more

attention with the advances in image processing, visual and social media. We present a method

for protecting user privacy in omnidirectional media, by removing parts of the content selected

by the user, in a reversible manner.

In the second part of this chapter, we investigate a possible extension to 3+ degrees of freedom

by considering an individual case of rendering narrow baseline light field images with limited

translational interactions. We provide also results of an extensive analysis of those iterations,

including: circular histograms of directions of user movements, average vectors for a next

perspective view, and charts of time spent on a view.

7.1 Privacy and perceptual visual quality

Privacy protection is drawing more attention with the advances in image processing, visual

and social media. Photo sharing is a substantive contemporary activity, which also brings
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Chapter 7. Applications and Extensions of Omnidirectional Imaging

the concern of regulating permissions associated with shared content. We present here a

method for protecting user privacy in omnidirectional media, by removing parts of the content

selected by the user, in a reversible manner. Object removal is carried out using three different

state-of-the-art inpainting methods, employed over the mask drawn in the viewport domain

so that the geometric distortions are minimized. The perceived quality of the scene is assessed

via subjective tests, comparing the proposed method against inpainting employed directly

on the equirectangular image. Results on distinct contents indicate that our object removal

methodology on the viewport enhances perceived quality, and thereby improves privacy

protection as the user is able to hide objects with less distortion in the overall image.

Viewport 
extraction Inpainting

Viewport 
insertion

Encryption

Metadata

Decryption

100101001010

Figure 7.1 – Viewport extraction method for object removal using inpainting

7.1.1 Related work

With the advent of smart mobile devices and social networks, photo sharing has become

an easy and widespread activity among users. The increasing distribution of images also

raises issues on privacy protection and creates the need for adjusting permissions, as the

shared content contains sensitive information concerning users. Access control over contents

provide exclusive rights to only selected correspondents, thereby enhancing user security and

privacy. A widely preferred form of privacy protection is to obfuscate parts of images, instead of

encrypting or permuting the whole image [126]. This results in less visual distortions that are

confined only to the specific area of interest. The obfuscation can be achieved using a variety

of image processing techniques, such as blurring, mosaicking, censoring and object removal.

Among these methods, the first three have to introduce a high amount of distortion to hinder

the underlying content, whereas object removal provides more natural viewing conditions

while still being able to protect the content. This process can also be made reversible, as in

work [126]. Therefore, the access to the original data can be granted to selected users with

permissions.

We present an object removal methodology via inpainting on omnidirectional images per-

formed on the selected viewport instead of the equirectangular representation, which yields

visually plausible results. Given an omnidirectional image, we extract the viewport and ap-
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7.1. Privacy and perceptual visual quality

ply the mask defining the objects to be removed on the viewport. We remove objects using

three distinct state-of-the-art inpainting algorithms [26, 63, 123]. Inpainting on the viewport

rather than on the equirectangular image minimizes the geometric distortions and limits the

source region to more relevant components within the content. After removing an object and

inpainting the background, we project the viewport back onto the equirectangular image. We,

furthermore, the assess quality of the protected content by performing subjective evaluations,

where we compare the images inpainted using our method and in the equirectangular domain

directly, using Absolute Category Rating (ACR) [1].

Image inpainting algorithms can be divided into four general classes: statistical methods,

partial differential equation (PDE)-based methods, exemplar-based methods and deep gen-

erative models based on convolutional neural networks [123, 6]. Statistical methods make

use of parametric models to describe the input textures. However, they fail in the presence

of additional intensity gradients [69]. PDE-based methods propagate information from the

known part of the image [10, 107, 40] using smoothness priors, which introduces blurring

when large and high frequency regions needs to be inpainted. Exemplar-based methods and

deep generative models are most widely used, where the former fill the holes in the image

using exemplars from local or global search regions [26, 63, 67, 49, 19] and the latter exploit se-

mantics learned from large scale datasets [119, 55, 121]. We have selected two robust methods

for exemplar-based inpainting [26, 63] as well as one semantic learning-based state-of-the-art

method [122] in order to reduce the bias of the preferred inpainting technique on our object

removal strategy on the viewport.

While most works on object removal and inpainting focus on planar images, panoramic con-

tent is considered in [77]. A field-of-view expansion method using retargeting techniques

combined with Graphcut Textures is proposed to remove objects near the equator, and ex-

tended to farther portions of the sphere by tripod rotations. Although objects can be removed

regardless of their locations, rotation of the full equirectangular image is more costly than

viewport extraction. Our approach minimizes the geometric distortions within a limited

search region, thereby reducing the complexity of inpainting simultaneously.

7.1.2 Viewport extraction method

In this section, we present a method to perform object removal in omnidirectional images

using inpainting.

Viewport extraction

A viewport is a part of an omnidirectional image which is observed by a user at one moment.

During the process of rendering a viewport is extracted from an equirectangular representation

and shown to the user. Unlike in the back-end equirectangular representation, the geometrical

distortion in the viewport image is negligible.
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7.1. Privacy and perceptual visual quality

The block-diagram in Figure 7.1 describes the method of viewport extraction for object removal

in omnidirectional images. Here we apply inpainting algorithms in the viewport domain such

as it would be performed on common planar images. Afterwards, the viewport with the

inpainted area is inserted back to the equirectangular image. In order to make the process of

object removal reversible, one can keep the original viewport and store it as metadata in the

image file, similarly to what is done in [92]. The original viewport which contains information

critical for privacy protection can be also encrypted.

7.1.3 Inpainting experiment

This section contains a step-by-step description of the removal of objects on images in order

to further assess the performance of the proposed method.

Dataset

Five distinct omnidirectional contents were selected amongst publicly available photographic

works licensed with Creative Commons1. Masks for object removal were created manually,

as depicted in figure 7.2. Original contents and prepared masks can be retrieved from a GIT

repository in 2. Each content was downsampled to 2048x1024 resolution and the resolutions of

masks were identical. All contents were natural images with outdoor views, where the location

of objects to be removed varies from the equator to the south pole of the scene.

Inpainting algorithms

Abbreviation Base algorithm name Viewport Source code

CSH Coherency sensitive hashing No http://github.com/PetterS/patch-inpainting [Commit: 03cc575]

CSH360 Coherency sensitive hashing Yes - -
Criminisi Exemplar-Based Image In-

painting
No http://github.com/cheind/inpaint [Commit: 864128c]

Criminisi360 Exemplar-Based Image In-
painting

Yes - -

GIIwCA Generative Image Inpainting
w/ Contextual Attention

No http://github.com/JiahuiYu/generative_inpainting [Commit: 6bfaa20]

GIIwCA360 Generative Image Inpainting
w/ Contextual Attention

Yes - -

Table 7.1 – Inpainting algorithms used in the experiments

We used three state-of-the-art algorithms to perform inpainting in the viewport domain.

Table 7.1 lists the algorithms selected to be enhanced with viewport extraction.

1https://creativecommons.org/
2https://github.com/mmspg/inpainting360

83



Chapter 7. Applications and Extensions of Omnidirectional Imaging

Content Viewport position FoV◦ Size

C1 yaw: 30◦, pitch: -80◦ 90×90 1024×1024 px
C2 yaw: 180◦, pitch: 0◦ 90×90 1024×1024 px
C3 yaw: 180◦, pitch: -80◦ 90×90 1024×1024 px
C4 yaw: 0◦, pitch: -90◦ 90×90 1024×1024 px
C5 yaw: 0◦, pitch: -90◦ 90×90 1024×1024 px

Table 7.2 – Viewport positions for inpainted contents

Inpainting procedure

Table 7.2 details the viewport parameters selected for each content from the dataset described

in Section 7.1.3. All the viewports have the same size and field of view. The positions were

selected in such a way that an object to be removed appears approximately in the canter of

the viewport and the whole inpainted area fits inside.

For each omnidirectional image represented in equirectangular projection the viewport was

extracted according to the parameters specified in Table 7.2. Then inpainting was applied in

the viewport domain in the areas depicted in Figure 7.2 using the algorithms CSH, Criminisi,

and GIIwCA (Table 7.1). The inpainted viewport was then inserted back in the equirectan-

gular image. Further here, these methods are called CSH360, Criminisi360, and GIIwCA360,

respectively.

In order to have a reference to assess viewport extraction enhancement, we also applied

inpainting directly in the equirectangular domain for all the images from the dataset using

exactly the same masks.

7.1.4 Subjective evaluation

Test methodology

The Absolute Category Rating (ACR) method described in [1] was chosen to assess the effect

of the proposed viewport extraction method for object removal on the quality of selected

contents. ACR is a single stimulus evaluation where the test stimuli are randomly presented

to subjects and voting is performed after each viewing. Overall quality is assessed using a

five-grade scale with the following levels: ”5 - Excellent”, ”4 - Good”, ”3 - Fair”, ”2 - Poor”, and

”1 - Bad”.

A total of 16 consenting subjects participated in the study, of which 7 were female, with an

overall median age of 26.5. All subjects had passed color vision and visual acuity tests prior to

experiments, using Ishihara and Snellen charts, respectively. The subjects were placed in an

immersive environment; and stimuli were presented to them using a head mounted display

(HMD) composed of a VR head-mount with buttons3 and a mobile device installed inside as a

screen. Samsung Galaxy S7 edge SM-G935F with a screen resolution of 2560x1440 pixels was

3https://mergevr.com
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used to display the images. Subjects were sitting on a rotatable chair during the assessment.

Immersive textual instructions were provided inside the VR along with a verbal guidance by

the experimenter, as described in [112].

Each experiment started with an immersive training, where original contents were presented

to the subjects with a red circle indicating the position of the objects to be removed later in

the test session. This way, subjects were familiarized with the contents and surroundings of

the objects to be removed. The circles were omitted during test session in order not to disturb

the natural viewing of the stimuli. During evaluation, subjects assessed the stimuli shown to

them consequently without any time restrictions. When ready to rate an image subjects had

to activate a 3D immersive voting menu by pressing a button and select the grade proceeding

immediately to the next image. All stimuli were automatically randomized in each session.

The experiments were conducted using a testbed for subjective evaluation of omnidirectional

visual content proposed in [111]. This software was developed for Android and is publicly

available for downloading4.

Data processing

Outlier detection was performed separately on the raw scores using a method described in [2].

None of the subjects were identified as outliers during our experiments. The mean opinion

score (MOS) and 95% confidence intervals (CIs) assuming a Student’s t-distribution of the

scores were computed for each test condition [29].

7.1.5 Results and discussion

Figure 7.3 presents the results of the subjective evaluation described in Section 7.1.4. Bar plots

with 95% confidence intervals show how different methods perform on different contents.

The plots are grouped by content. As one can see, viewport extraction significantly enhances

inpainting. CSH360 performs better than CSH on four contents, Criminisi360 is better on

three contents, and GIIwCA360 is superior to GIIwCA on one content.

For the contents C3-C5 viewport extraction brings higher quality gain than for C1-C2. The fact

that on C2 the quality does not improve in two cases out of three can be possibly explained

by the position of inpainted area lying near equator where geometrical distortion is minimal

hence its compensation is not needed.

We presented a method for reversible object removal in omnidirectional images, which is

targeted for privacy protection in immersive media. We show by performing subjective quality

evaluation involving 16 naive subjects that viewport extraction can enhance the performance

of state-of-the-art inpainting algorithms in omnidirectional images.

4https://github.com/mmspg/testbed360-android
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7.2 Towards 3+ degrees of freedom extension

Here, we explore a possibility of extending omnidirectional imaging to 3+ degrees of freedom

by considering an individual case of rendering narrow baseline light field images with limited

translational interactions. We provide, afterwards, results of extensive analysis of those itera-

tions, including: circular histograms of directions of user movements, average vectors for a

next perspective view, and charts of time spent on a perspective view.

Light field is yet another type of immersive multimedia content which describes the amount

and the dicertion of light passing trough each point of picture. In practice, this allows refocus-

ing, changes of depth of field and limited change of perspective during consumption of such

content.

Light field imaging is associated with augmented reality (AR) more often than it is with virtual

reality (VR). Nonetheless, it is becoming a very desirable type of content for VR, along with

omnidirectional imaging and point clouds which are naturally designed for this type of media.

7.2.1 Related work

When compared to traditional omnidirectional content, light field rendering allows for more

realistic visualization of 3D spaces in a virtual or augmented reality scenario, thanks to the full

parallax environment that can provide depth and focus cues. In recent years, several wearable

light field display prototypes have been designed and proposed by both academics [53, 79, 74]

and industry [66, 54]. The development of commercial devices such as the Avegant light field

display headset5 or Magic Leap Digital Lightfield6 promises near-eye light field head-mounted

displays (HMD) to be available to consumers in the near future. However, as those devices

are currently either in prototype state or too expensive to be widely accessible to the public,

off-the-shelf solutions are needed to perform quality assessment of light field content in a

virtual reality scenario. In particular, if already available devices are used to perform quality

assessment, crowd-sourcing can be employed to collect a large number of scores with reduced

costs in terms of time and expenses [95].

Several studies of quality assessment for light field images can be found in the literature.

Paudyal et al. investigate the impact of watermarking on visual quality of light fields using

Absolute Category Rating (ACR), and in particular on the relationship between watermark

strength and visual quality [86]. Darukumalli et al. and Kara et al. examine the quality

of experience using light field displays, and their relationship with angular resolution and

zooming levels [28, 60]. Viola et al. evaluate a compression solution through subjective quality

assessment using passive and interactive methodologies on conventional 2D displays [115].

They also perform a statistical comparison between the two methodologies to determine the

impact of interaction on the results [116]. Konrad et al. evaluate the quality of experience

5https://www.avegant.com/
6https://www.magicleap.com/
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related to several focus-tunable near-eye display modes, as well as the effect of the display

mode on the user performance [62]. However, to the best of the author’s knowledge, no quality

assessment of compression artifacts for light field images has been performed on HMD.

7.2.2 Rendering light field in VR

In this section, we propose a software solution to render narrow baseline light filed images in

virtual reality implemented using WebGL. We describe its architecture, main components and

features.

The proposed VR rendering solution allows visualizing light field images on mobile HMD

platforms, such as Google Cardboard or Samsung GearVR, desktop computers, and head-

mounted displays, such as HTC Vive and Oculus Rift. The portability is achieved by using a

web-based platform. The types of implemented interactions include horizontal and vertical

narrow baseline perspective changes. In the VR environment viewers interact with movements

of a head, whilst on personal computer a mouse or a trackpad can be used.

The rendering can be performed in any web-browser which supports WebGL standard in

its version 1.0, including all mobile devices supporting OpenGL ES 2.0. The source code is

written in JavaScript language and requires Three.JS 3D graphics library. Light field images

are rendered as separate perspective views which are changed in real time according to the

data from motion sensors of a device in the mobile and HMD case, and according to mouse or

trackpad movements in the desktop computer case. In order to display a light field image, all

its perspective views are downloaded from the server as texture files. Then those textures are

loaded into GPU memory. The application tracks user movements and renders the texture

corresponding to the current perspective view image.

Besides the rendering per se, the application provides additional features allowing one to use

the software to conduct subjective quality evaluation experiments for narrow baseline light

field assessment. This includes a storyboard implementing training and evaluation scenarios,

an ability to assign a score to a light field image in an immersive way within VR, and store

resulting assessment data on a server.

The storyboard currently includes a training session followed by an evaluation session. An

absolute category rating (ACR) methodology [1] is implemented to collect subjects’ votes and

send them to the server after evaluation is completed. During the evaluation process subjects

use a 3D menu for voting without leaving the immersive VR environment.

An important direction of research in immersive imaging and in particular in light field and

omnidirectional imaging is the analysis of user interactions. The proposed software tracks

how users interact with narrow baseline light field content. Every time a subject moves from

one perspective view to another, it is recorded and sent to the server.

In order to deploy the developed software, one needs an HTTP-server supporting PHP server-
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7.2. Towards 3+ degrees of freedom extension

side scripting. The latter is required for storing results on the server. Once the software is

on-line it can be accessed by multiple users simultaneously over the Internet. Assuming the

high availability of affordable consumer HMD, this can allow for large scale crowd-sourcing

subjective quality evaluations with interaction analysis.

The source code of the developed software for rendering light field in VR and a demo are

publicly available on-line at https://mmspg.github.io/lightfieldvrtb/.

7.2.3 Pilot experiment

This section describes a pilot experiment on subjective quality evaluation in VR environment

conducted in Multimedia Signal Processing Group laboratory at EPFL with the purpose to

validate the solution proposed in Section 7.2.2.

Population and environment

The experiment was performed with 17 subjects, of which 9 were males and 8 were females.

The age of the subjects ranged from 18 to 37 years old, with the average equal 25.38 and the

median equal 26.73. Prior to the experiment all the subjects were tested for their visual acuity

and color vision.

Equipment

To render narrow baseline light field images in VR, experimenters used the software solution

described in Section 7.2.2. Subjects were wearing a Google Cardboard compatible HMD-

mount for mobile devices (MergeVR7) with a Samsung Galaxy S7 Edge smartphone installed

inside. The resolution of the device was 2560×1440 pixels or 1280×1440 pixels per eye. The

pixel density was 534 pixels per inch. The field of view of this HMD-mount was 96 degrees. It

had 42 mm lenses and allowed for adjustment of interpupillary distance.

Stimulus set

The set of stimuli used in the pilot subjective quality evaluation experiment is based on

the light field image data set created by Rerabek et al. [91]. Five light field images have

been selected to represent different categories. Figure 7.4 shows central-view all-in-focus

thumbnails of the unimpaired stimuli in 2D representations.

Light field images have been compressed using two different codecs adapted in such a way

that they process the perspective views as a pseudo-temporal sequence in a serpentine order.

Before being fed to encoders, all the perspective images were padded with black pixels, color-

space was converted to YUV and re-sampled to 422 with 10-bit depth.

7https://mergevr.com/goggles
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7.2. Towards 3+ degrees of freedom extension

Table 7.3 – QP values selected to encode contents with HEVC.

Content R1 R2 R3 R4

I01 (Bikes) 13 24 33 44
I02 (Danger de mort) 15 26 35 43
I04 (Stone pillars) 14 23 30 40
I09 (Fountain) 14 24 32 43
I10 (Friends) 12 21 29 40

Table 7.4 – Settings for VP9 coder.

--i422 --input-bit-depth=10 --profile=3 -w < Width > -h < Height >
--target-bitrate=< bitrate> --cq-level=0 --bit-depth=10 --codec=vp9
--fps=30000/1000 --best -o < Output > < Input >

The codec number one (P1) was the HEVC Main10 profile. The x2658 library was used to

perform the compression. The quantization parameters (QP) were set to match the preselected

compression ratios. In the Table 7.3, one can find the exact values of different QP used in the

test.

The codec number two (P2) was the VP99. The full command line used to produce compressed

stimuli can be found in Table 7.4. The target bitrate was chosen to match the corresponding

compression ratios as defined below.

The codecs were evaluated on four bitrates, namely R1 = 0.75 bpp, R2 = 0.1 bpp, R3 = 0.02

bpp, R4 = 0.005 bpp. The compression ratios were computed as ratios between the size of

the uncompressed raw images in 10-bit precision (5368×7728×10 bits = 414839040 bits = 10

bpp) and the size of the compressed bitstream.

Methodology

The subjective quality evaluation experiment was designed to follow a single stimuli Absolute

Category Rating (ACR) method [1]. ACR is a single stimulus evaluation where stimuli are

presented subsequently to subjects, and voting is performed after each viewing. Images are

assessed using five-grade quality scale with the following levels: ”5 - Excellent”, ”4 - Good”, ”3 -

Fair”, ”2 - Poor”, and ”1 - Bad”.

Due to distortions naturally occurring in lenslet-based light field content, the border per-

spective views were deemed not suitable for visualization, since they would negatively bias

subjects. Hence, only the central 9×9 perspective views out of the 15×15 views were selected

8https://www.videolan.org/developers/x265.html
9https://www.webmproject.org/vp9/
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for the test. The contents were converted from PPM file format in 10 bits to PNG file format in

8 bits, due to limitations of the display.

7.2.4 Results and discussion

This section describes the analysis of experimental data and presents its results including

mean opinion scores and interaction vectors, including mean opinion scores for every stimu-

lus, average time spent on a perspective view per content per codec, circular histograms of

interaction vectors per content per codec, and average interaction vectors for a perspective

view per content per codec.

Raw experimental data obtained from the evaluations consists of ACR scores given by each

subject for each stimulus and iteration records for each subject grouped by stimulus. The

latter contains time stamps for every change of a perspective view initiated by a subject. Before

proceeding to further analysis the data was screened for outlier subjects using the method

described in [2]. Zero outliers were detected among the subjects.

Mean opinion scores

Figure 7.5 presents subjective mean opinion scores (MOS) for five contents compressed

with two different codecs at four different bitrates selected as described in Section 7.2.3.

95% confidence intervals were computed for each MOS assuming T-Student’s distribution

of subjective scores for a stimulus. The MOS values are plotted against the bitrates R4-R1

where R4 is the lowest bitrate and R1 is the highest bitrate. The exact values can be found in

Subsection 7.2.3.

Interaction analysis

Interaction analysis includes two main parts: temporal analysis and spatial vector analysis.

The former concerns the time spent looking at each perspective view of a narrow baseline

light field image. The latter computes interaction vectors of changes between the perspective

views shown to a user.

In order to compute the time spent on each view, the difference between the time stamps of

two subsequently shown perspective views was taken. All the time stamps were grouped by

stimulus. The first and the last time stamps in each group were dropped. Then the average

time spent on a view was computed. Stimuli compressed with all the bitrates were counted

for average. Figure 7.6 depicts maps of average time spent on a view for each content for two

codecs.

Interaction vectors were computed in the following way. The time stamps for every change

of a perspective view initiated by a user were grouped by stimulus and subject. The first and
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the last time stamps in a group were dropped. An interaction vector was computed per each

time stamp record as a difference between corresponding x and y coordinate pairs of the

subsequent view and the current view compensating the reverse Y-axis direction (i.e. from

top to down) in perspective view coordinate system. Figure 7.7 shows circular histograms of

interaction vectors per content per codec.

In order to analyze a typical path from each perspective view to a subsequent one, we have

computed an average interaction vector for each view. This average was taken among all

subjects and all bitrates grouped by content and by codec. One can find the vector field plots

depicting average interaction vectors for each view in Figure 7.8.

Discussion

Mean opinion scores in Figure 7.5 show no statistically significant difference in visual quality

for the codecs except in bitrate R3 for content I04 where VP9 outperforms HEVC.

From the average time spent on a view in Figure 7.6 one can see that subjects were systemati-

cally biased towards spending more time on the top row. This can be possibly explained by a

wrong vertical position of light field images in the VR space, which was exactly in front of the

camera. In order to compensate this bias in future experiments one should consider placing

images higher than the camera. Furthermore, the average time spent on a view can be used in

the future to compute weighted subjective scores for each view.

Circular histograms of the interaction vectors in Figure 7.7 show clearly that subjects tend

to interact more horizontally than vertically. One can also notice correlation between the

histograms for the same content with respect to different codecs.

Average interaction vectors for each perspective view presented in Figure 7.8 can be used as

ground truth data for estimation of the most probable subsequent view. This is required to

develop efficient compression algorithms providing fast random access to perspective views

of a light field image.

In conclusion, we propose a solution for rendering narrow baseline light filed images in a

VR environment which allows interactions with their perspectives. The developed software

includes features to perform subjective evaluations and tracks users interactions. A pilot

subjective quality evaluation experiment for light field in VR was conducted with 17 subjects

participating in the assessments. The results of the pilot experiment have been presented,

including MOS and interaction analysis for 5 light field images compressed with two different

codecs.
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8 Conclusion

In this dissertation, we have studied visual attention and perceptual visual quality in om-

nidirectional imaging. We thoroughly investigated the following topics in the field: visual

attention in head-mounted virtual reality, subjective assessment of perceptual visual quality,

and objective measurement of perceptual visual quality. In addition to the above, we have

also looked into other specific problems in omnidirectional imaging: namely, backwards

compatible coding, privacy applications, and extension to 3+ degrees of freedom.

8.1 Accomplishments

First of all, we established a new direction in the topic of visual attention analysis by using in

our method the data obtained from head-direction only trajectories. By computing angular

speed of rotational movements we were able to estimate in which regions viewers fixate their

attention. Afterwards, by applying particular filters to one- and two-dimensional signals, we

obtained pixel-based saliency maps. This approach has many applications, thanks to the fact

that every rendering device can record such head-direction trajectories, allowing massive data

collection from consenting consumers.

We have made contributions to the methodology for subjective evaluation of perceptual visual

quality of omnidirectional images in head-mounted virtual reality environment by proposing a

testbed for subjective quality evaluation of omnidirectional visual content.The testbed allows

researchers to perform experiments using different methods for subjective quality evaluations.

Experimental data that can be obtained with this testbed includes subjective mean opinion

scores, time spent on stimulus, and view direction tracks. The software implementation is

publicly available as open source under the GNU license. Furthermore, with the proposed

testbed, we conducted multiple subjective evaluation experiments and used the obtained

data for benchmarking a number objective metrics specifically designed for omnidirectional

visual content.

In objective measurement of perceptual visual quality, we designed a novel metric which
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incorporates experimental visual attention information; and we showed that the performance

improves comparing to the same base measurement without visual attention weighting.

The proposed metric has a particularly important application in on-demand streaming of

omnidirectional video, where the first critical number of viewers contribute to the statistics of

visual attention the sources can be re-encoded for better quality or bandwidth performance.

As contributions to specific related problems, we achieved the following: We developed

OmniJPEG, a JPEG backward compatible solution to encode the omnidirectional images. In

order to ensure the JPEG backward compatibility, OmniJPEG extracts predefined regions of

interest from omnidirectional images, as well as properties of equirectangular projection, while

at the same time also keeping complete equirectangular information to preserve the capability

of correctly rendering an omnidirectional image with appropriate devices and software. We

presented a method for reversible object removal in omnidirectional images, which is targeted

for privacy protection in immersive media and showed by performing subjective quality

evaluation involving 16 naive subjects that viewport extraction can enhance the performance

of state-of-the-art inpainting algorithms in omnidirectional images. We explored a possibility

of extending omnidirectional imaging to 3+ degrees of freedom by considering an individual

case of rendering narrow baseline light filed images with limited translational interactions

and provided results of extensive analysis of those iterations, including: circular histograms of

directions of user movements, average vectors for a next perspective view, and charts of time

spent on a perspective view.

8.2 Future directions

In this section, we discuss possible future directions to continue the work presented in this

dissertation. We focus mainly on the topics of visual attention and objective measurement of

perceptual visual quality.

We approached the problem of visual attention in omnidirectional imaging by considering

only head rotational movements of a viewer. The rationale behind this approach was the

simplicity of obtaining these data in a large scale due to the fact that every rendering device

can provide such information. Future work may consider also statistics of eye movements

with respect to the viewport and its relation to the rotational position of the head. Research in

this direction may improve the accuracy in estimation of visual attention.

Further incorporating of visual attention approaches in subjective and objective evaluation of

perceptual visual quality of omnidirectional visual content may potentially bring additional

improvements to the state of the art. One possible scenario would be to indirectly estimate

perceptual visual quality based on user interactions with the content. This may lead also to

integration of visual attention predictors into methods of objective quality measurement.

In the present dissertation, we did not explore deep learning approaches for compressing

omnidirectional visual content. The variety of recent findings in the field of artificial neural
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networks are remarkably promising; and applying such approaches, for example, autoen-

coders, to the specific domain of omnidirectional imaging may result in improvements of

current compression methods for this type of multimedia.
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