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Abstract
The propagation of fluid driven fractures is used in a number of industrial applications (well

stimulation of unconventional reservoirs, development of deep geothermal systems) but also

occurs naturally (magmatic dyke intrusion). While the mechanics of hydraulic fractures (HF)

in isotropic media is well established, the impact of the anisotropy of natural rocks on HF

propagation is still far from being understood. Sedimentary rocks like shales and mudstones

are ubiquitous in upper earth crust which are made of fine layers which result in transverse

isotropy. In the framework of continuous mechanics, these rocks are commonly modelled

as a transverse isotropic media (TI). In addition, a large number of fluids used in HF are

non-Newtonian. They typically exhibit a shear-thinning behavior which can be reproduced by

different rheological models with varying levels of accuracy (Carreau, power law, Ellis).

In this thesis, we focus on hydraulic fractures in impermeable TI media. We assume that the

fracture propagates normal to the isotropy plane without any further assumption on its shape.

This configuration is relevant for normal and strike-slip stress regimes where the minimum

in-situ stress is horizontal.

We combine a boundary element and a finite volume method with an implicit level set scheme

to model the growth of three dimensional planar HF. Both anisotropy of elasticity and fracture

energy/toughness are accounted for. This algorithm couples a finite discretization of the

fracture with the solution for a steadily moving hydraulic fracture in the tip region. We show

that the near tip elastic operator has a similar expression than in the isotropy pending the use of

a near-tip elastic modulus which now depends on the local propagation direction with respect

to the isotropy plane. Using this numerical model we quantify the fracture elongation as a

function of both the elastic and fracture toughness anisotropies. The elongation is maximal

in the toughness dominated regime. The transition of the viscosity to the toughness regime

occurs faster along the arrester direction, thus promoting fracture elongation.

In parallel, we report laboratory experiments of HF growth in cubic samples of slate Del

Carmen under true-triaxial confinement. We were able to propagate a planar HF perpendicular

to the bedding planes only when the initial stress normal to bedding was 20 times larger than

the other two stresses. For both regimes, the fracture surfaces are very rough with a self-affine

behavior in the direction of the bedding and a stationary state in the direction normal to

bedding.

We also investigate the effect of a non-Newtonian rheology on HF growth. We solve the

problem of steadily moving semi-infinite HF driven by a Carreau fluid. We use a Gauss-
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Abstract

Chebyshev method for elasticity combined with finite differences for lubrication flow and

solve the resulting non-linear system with the Newton Raphson method. The solution exhibits

four asymptotic regions: a linear elastic fracture mechanics (lefm) asymptote near the tip, high-

shear rate Newtonian and power law asymptotes in an intermediate region and a low-shear

Newtonian asymptote in the far field. For the same dimensionless toughness, the fluid lag is

smaller than for a Newtonian fluid of low shear rate viscosity. We show that simpler rheological

models (Ellis and power law) cannot capture the complete solution, which accounts for the

full rheological behavior.

Keywords: Hydraulic fracture mechanics, transverse isotropy, shear-thinning rheology, asymp-

totic solutions, fluid-solid coupling, experiments, numerical modeling, boundary element

method, tensile fractures.
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Résumé
La propagation des fractures hydrauliques (FH) est utilisée dans un certain nombre d’ap-

plications industrielles (stimulation des réservoirs non conventionnels, développement de

systèmes géothermiques profonds) mais se produit aussi naturellement (intrusion de dykes

magmatique). Alors que la mécanique des fractures hydrauliques dans les milieux isotropes

est bien établie, l’impact de l’anisotropie des roches naturelles sur la propagation des FH est

encore loin d’être comprise. Les roches sédimentaires comme les schistes et les mudstones

sont omniprésentes dans la croûte terrestre supérieure. Elles sont faites de couches fines qui

se traduit par une isotropie transverse. Dans le cadre de la mécanique des mileux continus, ces

roches sont généralement modélisées comme un milieu isotrope transverse (IT). En outre, un

grand nombre de fluides utilisées dans la fracturation hydraulique sont non-Newtoniennes.

Elles présentent généralement un comportement rhéo-fluidifiant qui peut être reproduit

par différents modèles rhéologiques avec un différent niveau de précision (Carreau, loi en

puissance, Ellis).

Dans cette thèse, nous nous concentrons sur les fractures hydrauliques dans les milieux IT

imperméables. Nous supposons que la fracture propage normale au plan d’isotropie sans

aucune autre hypothèse sur sa forme. Cette configuration est pertinente pour les cas des

régime de contraintes normale et décrochante pour lesquels la contrainte in-situ minimale

est horizontale. Nous combinons une méthode d’éléments frontière avec des volumes finis et

la méthode des surfaces de niveau implicites pour modéliser la croissance d’une FH planaire

tridimensionnel. L’anisotropie est prise en compte à la fois dans l’élasticité et dans l’énergie de

fracture / ténacité. Cet algorithme lie la discrétisation finie de la fracture avec la solution d’une

fracture hydraulique propageant avec une vitesse constante dans la région près du pointe.

Nous montrons que l’opérateur élastique près du pointe de la fracture a une expression

semblable à celle de la solution isotrope sauf que maintenant le module élastique dépend de

la direction de la propagation locale par rapport au plan d’isotropie. A l’aide de ce modèle

numérique, nous quantifions l’élongation de la fracture en fonction de l’anisotropie de la

ténacité et de l’élasticité. L’élongation est maximale dans le régime dominé par la ténacité. La

transition du régime dominé par la viscosité au régime de ténacité se produit plus rapidement

le long de la direction perpendiculaire au plan d’isotropie, favorisant ainsi l’ élongation de la

fracture.

En parallèle, nous rapportons des expériences de laboratoire de la croissance de la FH sur

des échantillons cubiques de l’ardoise Del Carmen sous confinement triaxial. Nous avons
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Résumé

été en mesure de propager une FH planaire perpendiculaire aux plans de lamination que

lorsque le confinement initial normal au lamination était 20 fois plus grand que les deux

autres contraintes. Pour les deux régimes, la surface de la fracture est très rugueuse avec

un comportement de type auto-affine dans la direction de lamination et comportement

stationnaire dans la direction normale au lamination.

Nous étudions également l’effet d’une rhéologie non-Newtonienne sur la croissance de la FH.

Nous résolvons le problème d’une fracture hydraulique semi-infinie conduite par le fluide de

Carreau. Nous utilisons une méthode de Gauss-Chebyshev pour l’élasticité combinée avec la

différence finie pour la loi de Poiseuille et nous résolvons le système non linéaire résultant avec

la méthode Newton Raphson. La solution présente quatre régions asymptotiques : l’asymptote

de la mécanique linéaire de fracture élastique (lefm) près de la pointe de fissure, l’asymptote

Newtonienne relative à la valeur maximale de la viscosité et de la loi en puissance dans une

région intermédiaire et l’asymptote Newtonienne relative à la valeur minimale de la viscosité

dans le champ lointain. Pour la même ténacité adimensionnelle, la distance entre la pointe

de la fracture et le front du fluide est plus petite que pour un fluide Newtonien avec la valeur

de viscosité la plus faible. Nous montrons que les modèles rhéologiques plus simples (Ellis

et la loi en puissance) ne peuvent pas englober la solution complète en tenant compte du

comportement rhéologique complet.

Mots-clés : Mécanique des fractures hydrauliques, isotropie transversale, fluides rhéo-fluidifiants,

solutions asymptotiques, couplage fluide-solide, expériences, modélisation numérique, mé-

thode des éléments frontière, fractures en tension.
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1 Introduction

1.1 Motivations and Background

1.1.1 Hydraulic fracturing

Hydraulic fractures (HF) are a class of tensile fractures that propagate in rock under a pre-

existing compressive state of stress due to the flow of a pressurized fluid. They occur naturally

as magmatic intrusions in the upper earth crust in the forms of dykes (Lister, 1990; Rivalta

et al., 2015), but also at glacier beds due to surface lake meltwater release (Tsai and Rice, 2010).

Hydraulic fractures are also routinely engineered in order to increase the productivity of oil

and gas wells - in particular in low to very low permeability reservoirs (Montgomery and Smith,

2010). The process involves the injection of a fluid at a given pump rate into a wellbore in

order to initiate and propagate a (or possibly several) hydraulic fracture. In a second stage,

proppant (solid particles) are added to the injected fluid in order to keep the fracture open in

the long term, thus creating a high permeability channel connecting the reservoir to the well.

Services associated with hydraulic fracturing amount to a market size in excess of 25 Billions

USD in 2019 in the United States alone (see also the press release at: ibisworld.com/industry-

statistics/market-size/hydraulic-fracturing-services-united-states). A typical hydraulic frac-

ture job requires several pump trucks for high-pressure injection, fluid and acid tanks, prop-

pant conveyer, a blender for fluid mixing, as well as other auxiliary equipment (figure 1.1).

High-pressure pumps up to100 MPa maximum pressure can be used1, and the injection rates

vary from 0.5 m3/min up to 6 m3/min for a single fracture treatment (Wan, 2011). Such injec-

tion rates are typically multiplied by the number of fractures in cases where several hydraulic

fracture are propagated simultaneously (Lecampion and Desroches, 2015).

Upon injection into a fracture, the pumped fluid volume is balanced between the fracture

volume and the volume lost due to leak-off into the rock mass.The ratio between the fracture

volume and the injected volume is coined the "fracturing efficiency". A good design for

1The pressure downhole at the hydraulic fracture entrance is equal to the sum of the surface pump pressure
plus the hydrostatic pressure minus the pressure drop due to fluid flow inside the wellbore (friction pressure drop).
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Chapter 1. Introduction

Figure 1.1 – Typical setup of a hydraulic fracturing job at the surface. Picture taken from
Montgomery and Smith (2010).

hydraulic fracturing (HF) aims to create a desired fracture geometry with a good proppant

coverage. It promotes maximizing the fracture efficiency and the ability to place sand particles

in the fracture for the long term improvement of well productivity. Thus the critical parameters

for the efficiency of the HF technique are the final propped fracture dimensions (surface

area and width) which directly depend on the rock mass properties (stiffness, toughness,

permeability), as well as the pumped fluid rheology and injection schedule (rate, proppant

loading).

For a given geological formation, the design of a treatment involves the selection of appropriate

fracturing fluids and proppants. Each fluid rheology will result in a specific fracture geometry

and fracture opening. Fluids are also selected according to their ability to carry fluid particles

efficiently. Shear-thinning fluids like Guar, Xanthan gum or VES (Viscoelastic Surfactant) are

commonly used in the oil and gas industries for their property of fluid loss control and good

proppant carrier capability (Montgomery and Smith, 2010).

Other applications of the hydraulic fracturing technique

Besides oil and gas well stimulation in conventional and unconventional reservoirs, other

applications of hydraulic fracturing exist in fields such as mining, geothermal energy, rock

mechanics and civil engineering. Hydraulic fracturing is used to improve water production

in rock aquifers by pumping water at low pressure into existing fractures to connect them

together within the water table. It is also used in the technique referred to as "compensation

grouting" in civil engineering, which is used to re-level buildings (Lancellotta et al., 2017).

In mining, hydraulic fracturing is carried out to pre-condition the rock in block-cave mining

operations. This is achieved by drilling multiple boreholes into the ore, placing multiple

2
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fractures to ensure continuous caving of the rock mass (Detournay, 2016). It is also used in

Coal Mine Methane (CMM) to reduce the methane content of coal seams in both horizontal

and vertical configurations but also in Coalbed Methane (CBM) reservoirs to increase gas

recovery.

A more recent development of hydraulic fracturing is in geothermal energy. In 2013, a large

scale stimulation was performed for producing heat or hot water in a subterranean area

adjacent to the Newbury volcano in Oregon (Adams and Rowe, 2013). Geothermal power

plants provide a tiny percentage of the world’s energy electricity (about 0.5% ) but may have a

large growth potential (Bertani, 2016).

Another important hydraulic fracturing application relates to the measurement of in-situ

stress (Haimson and Cornet, 2003). A micro-hydraulic fracturing test consists of pumping fluid

into a small section of a borehole isolated by inflatable packers under a constant injection rate

in order to initiate and propagate a fracture away from the wellbore concentrations. Upon

shut-in, the pressure in the interval decays to ultimately reach the in-situ pore-pressure. In

between, the pressure at which the fracture closes is a direct measure of the in-situ confining

stress normal to the fracture plane. It can be seen as a kink in specialized pressure decay plots

(Economides and Nolte, 2000). Multiple injection and shut-in cycles are typically performed

to ensure proper measurement of the minimum in-situ stress.

A new area of application of hydraulic fracturing remaining under development is the storage

of carbon in coal basins as well as saline aquifers where it is most likely that well injectivity

will need to be enhanced.

1.1.2 Unconventional reservoir

The term "unconventional reservoir" refers usually to very low permeability rocks such as tight

sandstone, coal, mudstones and shale in which hydrocarbons can not be produced without

hydraulic fracturing. Unconventional gas includes shale gas and tight gas which is extracted

from respectively tight sandstone, and mudstones (figure 1.3). Shale gas rocks include clays,

carbonate, quartz feldspar and micas as well as organic matter - and are thus the "source" rock

of conventional reservoirs. Their exact natures vary widely (figure 1.2). These sedimentary

rocks are typically anisotropic due to i) their lamination resulting from the deposition process

and ii) the intrinsic anisotropy of their constituents (e.g. clay). They represent the largest

distribution of hydrocarbon reservoirs on earth. Shale rocks are abundant with more than 200

trillion cubic meters of reserves (figure 1.4). The propagation of hydraulic fractures in these

rocks is likely affected by their anisotropy. However, conventional stimulation designs do not

consider material anisotropy. How such anisotropy impacts hydraulic fracture growth is still

an open question and is the primary driver of this thesis.

Hydraulic fractures propagates at depth normal to the principal minimum in-situ stress

direction as first demonstrated in the experiments of Hubbert and Willis (1957). In normal

3



Chapter 1. Introduction

Figure 1.2 – Mineral composition of gas-bearing shales. Picture taken from Rutter et al. (2017).

Figure 1.3 – Natural gas flaring in underground rock layers of Rhinestreet shale, Chestnut
Ridge Park, New York, USA. Picture taken from: www.oilprice.com
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Figure 1.4 – World map of shale gas basins. Taken from: EIA study based on Advanced
Resources International Inc data, BP.

and strike-slip stress regimes, which prevail in most unconventional reservoirs, the minimum

in-situ stress is horizontal. The vertical stress is generally equal to the weight of the overburden,

whereas the horizontal stress arises from a combination of the compaction of the overburden

in the horizontal direction and tectonic forces (Montgomery and Smith, 2010).

In the case of weak interfaces or the vertical stress not being sufficiently large, the HF may

deviate from the vertical plane to form a “T”-shaped fracture or to create jogs at the boundaries.

Furthermore, for tight reservoirs, the permeability of the rock normal to bedding can be

assumed negligible, whereas at the beddings it may not.

1.2 Hydraulic fracture growth - a brief review

The importance of the coupling between fluid flow and elastic deformation was recognized

early by Khristianovic and Zheltov (1955); Barenblatt (1962). A number of solutions were

constructed in the 1960s/1970s under a series of different simplifying assumptions: the PKN

model (Perkins and Kern, 1961) assumes that the fracture height is constant and that each

vertical cross section is deforming under a state of plane strain, whereas the KGD model

(Geertsma and De Klerk, 1969) assumes a cusp-shaped fracture with a plane strain condition

in the horizontal plane. PKN and KGD both consider a one-dimensional fluid flow problem.

Besides the PKN and KGD models, a radial fracture solution was developed for the case of great

toughness in impermeable media (Abe et al., 1976). An extension of the PKN was proposed by

Simonson et al. (1978) as a pseudo-3D model dividing the fracture into cells along the lateral

plane, so that the width and the height are calculated functions of the local fluid pressure

(see Adachi et al. (2010) for discussion). Detournay et al. (1990) introduced an explicit finite

difference scheme with a moving mesh for a PKN problem, followed by Adachi et al. (2001) for

KGD fracture driven in elastic media with zero fracture toughness.
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Spence and Sharp (1985); Lister (1990); Barenblatt (1962), were the first to discuss the fact that

in many cases the resistance of the solid to fracture (i.e. the fracture toughness) plays a very

small role in comparison to the viscous flow in the fracture. It was observed that the limit of

negligible fracture toughness leads to a peculiar behavior near the crack tip which was further

clarified by Desroches et al. (1994). The complete solution accounting for finite toughness

as well as fluid leak-off can be found in Garagash et al. (2011) under the assumption of a

vanishing fluid lag. The importance of properly resolving the different lengthscales associated

with the near-tip behavior has prompted the development of specific numerical algorithms.

The implicit level set scheme, introduced first by Peirce and Detournay (2008), was applied

to the solution of the problem of planar three-dimensional hydraulic fracture growth in

isotropic media (Dontsov and Peirce, 2017). This scheme is fully implicit based on the tip

asymptotic solution of a steadily moving fracture combined with a fast marching method

for the front reconstruction. The scheme has been extended to the case where the fracture

toughness is anisotropic by Zia et al. (2018). A new approach to three-dimensional full coupling

numerical code was developed by Itasca (XSite) based on the Lattice method. The solver

simulates propagation of hydraulic fracture in reservoirs naturally fractured. A review of recent

developments in the numerical solution of this class of problem can be found in Lecampion

et al. (2018).

One approach that enables us to quantify the competition between the elastic deformation of

the rock and the viscous flow is to zoom into the tip of a finite fracture where a plane-strain

configuration occurs. This technique allows us to derive analytically asymptotic solutions

and to better characterize the effect of the different physical processes on HF growth. The

impact of a power law fluid rheology was investigated in the zero toughness and zero lag case

(Desroches et al., 1994). Desroches et al. (1994) derived the analytical asymptotic solution

for fracture width and pressure using Goursat-Muskhelishkvili complex potential functions

for the rheological parameters of the power law fluid, elastic properties of the medium and

fracture velocity. The near-tip region of a fluid-driven fracture, with a lag, was studied by

Garagash and Detournay (2000, 1998) for the case of an impermeable elastic medium. They

developed a solution for a material of arbitrary toughness assuming a lag of a priory unknown

length between the fluid front and the crack tip. The fluid pressure in the tip cavity (lag) was

considered to be unknown and not uniform. Flow of pore fluid within the cavity, as well as

circulation of pore fluid between the rock and the tip cavity, was also assumed to take place

(Detournay and Garagash, 2003). The condition at which cavitation takes place was also

examined.

Another important line of research aims at clarifying, via scaling and dimensional analysis,

the structure of the HF growth solution. One of the key features of scaling is to grasp the

different dominant physical processes at play during hydraulic fracture evolution. One can

thus separate the different physical phenomena (fracture energy, viscosity, leak-off) and the

corresponding propagation regimes via a finite set of dimensionless numbers. Asymptotic

solutions for specific regimes are valid when one or more dimensionless groups of parameters
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goes to zero (Bunger et al., 2005; Madyarova and Detournay, 2003). Furthermore, the extent

of each propagation regime can be easily grasped via characteristic time and lenghtscales

(Garagash, 2009; Madyarova and Detournay, 2003; Savitski and Detournay, 2002; Lecampion

et al., 2017). This allows us to chiefly capture the evolution of a hydraulic fracture without

resorting to any complex numerical simulations. It is also particularly useful in properly

designing laboratory experiments targeting for example a given growth regime.

Proper measurement of hydraulic fracture growth in the laboratory is particularly challeng-

ing. We must measure fracture opening on the order of micrometers and track precisely the

growing fracture front that may not be strictly planar. In 1957, Hubbert and Willis presented

experimental work performed in gelatin where they indicated that the fractures grow perpen-

dicular to the minimum in-situ stress: i.e. vertically in most sedimentary basins contradictory

to the thinking at the time, which had thought that fractures grew horizontally. Daneshy (1978)

performed a HF test on limestone and sandstone by injecting fluid normal to the bedding.

Facing such a bedding boundary, the fluid pressure increases to remove the obstacle. His

results showed that depending on the strength of the interface and the in-situ stress, the

fracture may grow through them or not.

The first acoustic measurements of HF growth were carried out by Medlin and Masse (1984)

showing the possibility of measuring the fracture length by the transmission of compressional

P-waves. The first strong diffractions scattered from the perimeter of the fracture were detected

on a cement block (Savic, 1995). Both Savic (1995); Medlin and Masse (1984) have measured

two distinct fronts, corresponding to a dry fracture front and fluid front - confirming the

existence of a fluid lag in some cases.

A photometry technique was developed for a fluid driven fracture experiment in transparent

material (Bunger and Detournay, 2008). These experiments verified the predicted multi-scale

nature of the near-tip region of a HF. They also confirm the steady-state propagation solution

with scaling in different propagation regimes. The fracture curving effect, the near surface

effect and the stress shadowing due to multiple fracture stimulation were investigated in

Bunger and Detournay (2008); Bunger (2005). Experiments with in-situ stress variations were

performed to validate the results obtained with a numerical planar 3D HF simulator (Wu

et al., 2008). Comparisons between numerical predictions and laboratory experiments for the

initiation and propagation of radial-driven fracture were reported in Lecampion et al. (2017).

These laboratory experiments have shown the importance of the fluid compressibility effect

at early stages of injection which induce a transient regime that may govern laboratory scale

experiments if not properly controlled.

1.3 Research questions addressed in this thesis

For an anisotropic rock mass, the orientation of the hydraulic fracture is only dependent on

the in-situ stress configuration. In an infinite isotropic medium with uniform properties and

in-situ stresses, the hydraulic fracture propagates in a radial shape with its center located at

7



Chapter 1. Introduction

the point of injection. However, for laminated transversely anisotropic rocks, the hydraulic

fracture, initially propagating normal to the horizontal bedding plane may deviate to open

bedding planes forming a “T’”-shaped fracture due to the low resistance of bedding in sedi-

mentary rocks. In this thesis, we focus on the limiting case of very large vertical stress or/and

very strong bedding plane interfaces. As a result, we assume that the HF grows in a vertical

plane (normal to the minimum stress which as previously discussed is horizontal for most

unconventional reservoirs) perpendicular to the plane of material isotropy which is assumed

to be horizontal. Such a configuration is the most commonly encountered in oil and gas

unconventional reservoirs for which the minimum stress is typically horizontal as previously

discussed.

When considering transversely isotropic media, the elastic properties as well as the fracture

energy are no longer isotropic. The fracture will grow from a point source and may elongate

with different increments of length depending on the local orientation of the fracture front

with respect to the plane of material isotropy. We will investigate here how such a TI anisotropy

impacts the fracture shape and quantify the main problem parameters affecting the solution.

We will also present preliminary experimental results aiming at verifying these theoretical

predictions.

In industrial applications, non-linear fluids such as HPG, for which the viscosity decays with

the shear rate with two cutoffs at high and low share rates values, are extensively used. The

rheology of these fluids can be represented by different constitutive models, i.e: Carreau,

power law or Ellis. We focus here on the near-tip region and derive the solution of a semi-

infinite hydraulic fracture driven by a shear-thinning fluid. How the Carreau model differ from

simpler alternative rheological models (Ellis, power law and Newtonian) and how the extent

of the fluid lag reduces as compared to a Newtonian fluid is also studied.

1.4 Outline of the different chapters

This thesis is structured in six chapters which we briefly present below.

Chapter 2- Fracture mechanics of transversely isotropic media

This chapter recalls important results of fracture mechanics with a focus on transversely

isotropic medium. We notably discuss the boundary integral equation method for the solution

of crack problem. We also clarify the near-tip linear elastic fracture mechanics asymptote for a

fracture growing perpendicular to the material isotropy plane, and obtain an exact expression

of the near-tip plane-strain elastic modulus as a function of the direction of propagation.

We additionally re-derive the solution of a static elliptical fracture subject to uniform fluid

pressure in a TI material. We use it to validate a displacement discontinuity solver for planar

tensile crack in TI media.

8



1.4. Outline of the different chapters

Chapter 3- A semi-infinite hydraulic fracture driven by a shear thinning fluid

We investigate the near-tip region of a steadily moving semi-infinite hydraulic fracture driven

by a shear-thinning fluid propagating in an impermeable isotropic medium. A solution

that can be directly applied to the TI case depends on the use of the proper near-tip elastic

modulus as a function of propagation direction. We use the Carreau rheological model which

reproduces properly the experimental data of shear-thinning fluid on the whole range of shear

rate. We account for the presence of a fluid lag of a priori unknown length at the tip of the

fracture. Simpler rheological models (power-law, Ellis) are also used and compared to the

Carreau model with respect to HF growth.

Chapter 4- Planar hydraulic fracture growth in transversely isotropic materials perpendic-

ular to the isotropy plane

This chapter presents a three dimensional simulator for a planar hydraulic fracture propagat-

ing normal to the isotropy plane in transversely isotropic media. The elastic media exhibits

both an anisotropy of elasticity and fracture toughness. A solution for the limiting case where

the fracture is exactly elliptical (for a peculiar form of anisotropy) is derived in the toughness

dominated regime and allows us to validate the numerical solver.

Chapter 5- Laboratory experiments: Materials and Hydraulic Fracture Tests

This chapter reports the characterisation of the Del Carmen slate: notably measurements of

its mineralogy, elastic constants (static and ultrasonic) and fracture toughness in different

directions. The results of hydraulic fracture experiments are discussed with a focus on three

specific tests covering toughness and viscosity dominated growth. The roughness of the

created fracture surfaces are measured and analysed.

Chapter 6- Conclusions

This chapter summarizes the main outcomes of this research and discusses perspectives for

further development of this work.

Appendix A- A polyaxial frame for hydraulic stimulation experiments with acoustic moni-

toring

The experimental set-up is detailed in the appendix both in terms of mechanical hardware

and measurement systems.
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2 Fracture mechanics of transversely
isotropic media

The most general definition of anisotropy is “the directional variation in the value of a vector

measurement of a property” (Tsvankin, 2012). It is important to note that this definition

is scale dependent. Sedimentary rocks - in particular- are composed of beds of metric to

sub-metric scales. The effect of such rock configuration on a propagation of a fracture is still

an open question. One of the goals of this chapter is to study the elastic deformation due to the

discontinuity in displacement in transversely isotropic (TI) homogeneous media. This issues

from the existence of a fracture that is assumed planar and perpendicular to the bedding

planes. Additionally, the elastic field near the fracture tip is direction dependent. The case of

an elliptical static fracture subject to uniform pressure is also addressed in this chapter.

2.1 Elasticity

2.1.1 Voigt notation

The theory of linear elasticity postulates that strains and stresses at each material point are

proportional (Ting, 1996):

σi j = ci j klεkl (2.1)

where ci j kl is the 4-th order symmetric stiffness tensor and σi j and εkl are 2×2 tensors.

Since the stresses and strains are symmetric, the stiffness matrix must satisfy the minor

symmetries ci j kl = c j i kl = ci j lk . In addition, the strain energy density ψ= 1
2εi j ci j klεkl should

not change when interchanging i j and kl , thus, the tensor ci j kl satisfies also the major

symmetries ci j kl = ckl i j . Using these symmetries, we can reduce the number of the subscripts

of the stiffness constants by regrouping into one subscript the first two and the last two

subscripts (ci j→α,kl→β) according to table 2.1. This is called the Voigt notation.

In the following, we will use the notation Ci j to refer to the stiffness tensor in Voigt notation,

and write:

σi =Ci j ε j (2.2)
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Classical notation i j /kl 11 22 33 23 32 13 31 12 21

Voigt notation α/β 1 2 3 4 4 5 5 6 6

Table 2.1 – Correspondence between the Voigt notation and the classical notation for the
stiffness tensor.

where σi = (σ11 σ22 σ33 σ23 σ13 σ12)t and εi = (ε11 ε22 ε33 ε23 ε13 ε12)t are the 6×1 vector rep-

resentations of stress and strain tensors.

2.1.2 Stress-strain relation in the material basis

We introduce in figure 2.1 the basis (e1e1e1,e2e2e2,e3e3e3) where e3e3e3 is the axis of rotational symmetry. The

plane (e1e1e1,e2e2e2) is a plane of material isotropy. In the case of a transversely isotropic (TI) material,

the elastic properties have an axis of symmetry. The stiffness tensor Ci j is completely defined

by five independent parameters: C11,C12,C13,C33,C44. In the material frame, we express the

tensor ci j kl function of Ci j ’s as:

ci j kl =(C11 −2C66)δi jδkl +C66(δi kδ j l +δi lδ j k )

+(C11 +C33 −2C13 −4C44)δi 3δ j 3δk3δ3l

+(C13 −C11 +2C66)(δi 3δ j 3δkl +δk3δl3δi j )

+(C44 −C66)(δ j 3δk3δi l +δi 3δl3δ j k +δ j 3δl3δi k

+δi 3δk3δ j l )

where C66 = 1
2 (C11 −C12) and δi j is the Kronecker delta.

The stress strain relation (2.1) in Voigt notation reads:

σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 1
2 (C11 −C12)





ε11

ε22

ε33

2ε23

2ε13

2ε12


(2.3)

The elastic constitutive relation can be also expressed in terms of compliance matrix Si j =C−1
i j

or the set of engineering elastic constants {E1,E3,ν12,ν13,G13}. The relationships between

three sets of constants are given in appendix A1.

We introduce in table 2.2 the Ci j constants for TI rocks. The anisotropy for the direct compres-

sion along e1e1e1 and e3e3e3 is computed using the ratio C11/C33 which varies from 1 for an isotropic
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2.1. Elasticity

Plane of isotropy 

Figure 2.1 – Left: Transversely isotropic material frame where e3e3e3 is the axis of symmetry and
(e1e1e1,e2e2e2) is the plane of isotropy. Right: Configuration of the rotated basis (e ′1e ′1e ′1,e ′2e ′2e ′2,e ′3e ′3e ′3) with respect
to the material basis (e1e1e1,e2e2e2,e3e3e3).

Material C11 C33 C12 C13 C44 C11/C33

Stripa granite (Alm et al., 1985) (isotropic) 73.17 73.17 19.45 19.45 26.9 1
Olkiluoto mica gneiss (Hakala et al., 2007) 89.74 65.87 22.22 23.51 24 1.36

Gas-saturated Shaly Coal (Wang, 2002) 22.08 10.91 8.36 1.25 3.71 2.02
Woodford53 shale (Laubie, 2013) 28 17.3 7.5 8.3 5.6 1.62

Opalinius Clay (Thöny, 2014) 57.65 28.8 54.61 38.7 0.9 2
Yeocheon schist (Cho et al., 2012) 91.44 27.61 33.76 20.03 13.7 3.31

Calcareous mudstone (Chertov, 2012) 90.4 35.13 51.57 39.85 6.49 2.57
Callovo-Oxfordian argilite (David et al., 2007) 20.5 13.11 8.16 4.87 5.22 1.56

Jurassic shale (Hornby, 1998) 39.42 27.09 15.65 16.52 6.9 1.45
Slate Del Carmen (this study) 35.4 26.4 0.41 1.03 21.2 1.34

Table 2.2 – Example of elastic coefficients Ci j for TI rocks (in GPa).

media (e.g: Stripa-granite) to 3.31 for highly anisotropic medium (e.g: Yeocheon schist).

2.1.3 Thomsen’s parameters

The Thomsen parameters necessarily arise to describe the effective parameters that principally

govern the wavefields. The anisotropy of a P-wave is described by Thomsen’s parameters ε and

δ, whereas γ quantifies the fractional difference of S-waves propagating in e1e1e1 and e3e3e3 (Tsvankin,

2012). The idea of Thomsen notation is also based in separating the effect of anisotropy from
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isotropy since these dimensionless parameters are Null for isotropic media.

ε=C11 −C33

2C33

δ= (C13 +C44)2 − (C33 −C44)2

2C33(C33 −C44)

γ=C11 −C12 −2C44

4C44

(2.4)

Measurements made for TI formations at seismic frequencies indicate that typically ε> δ even

in cases where the intrinsic anisotropy of shales dominates the contribution of fine layering

(Tsvankin, 2012) (see table 2.5). The anisotropy is called elliptical when ε= δ, which refers to

elliptical P wavefronts emanating from a point source (Thomsen, 1986).

The comparison of P-wave velocities for TI formations usually yields moderate positive δ

values (typically on the order of 0.1–0.2), whereas interbedding of different thin isotropic

layers typically produces small negative δ (Berryman, 1979). The values of ε in sedimentary

sequences, on the other hand, ranges from 0.1 – 0.3 for moderately anisotropic rocks to 0.3 –

0.5 for compacted shale formations (Thomsen, 1986). As for γ, it should be positive (Tsvankin,

2012) as we can see from table 2.5.

2.1.4 Stress-strain relation in a rotated basis

Consider the orthonormal basis (e ′1e ′1e ′1,e ′2e ′2e ′2,e ′3e ′3e ′3) of figure 2.1-right where e ′2e ′2e ′2 is parallel to e2e2e2. We

denote the angle α as the rotation angle between the two axis e1e1e1 and e ′1e ′1e ′1. We will refer to the

material basis (e1e1e1,e2e2e2,e3e3e3) using the subscripts (i , j ) and to the rotated basis (e ′1e ′1e ′1,e ′2e ′2e ′2,e ′3e ′3e ′3) using the

subscripts (i ′, j ′). The relation between the two basis is such that:

e ′i ′e ′i ′e ′i ′ = Pi ′ieieiei

where:

Pi ′i =

 cos(α) 0 sin(α)

0 1 0

−sin(α) 0 cos(α)

 (2.5)

The stiffness tensor c ′i j kl in the basis (e ′1e ′1e ′1,e ′2e ′2e ′2,e ′3e ′3e ′3) can be deduced from the one in the material

basis using the formula:

c ′i j kl = Pi ′i P j ′ j Pk ′k Pl ′l ci j kl (2.6)
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In the Voigt notation we obtain:

C ′
i j (α) =



C ′
11(α) C ′

12(α) C ′
13(α) 0 C ′

15(α) 0

C ′
12(α) C11 C ′

23(α) 0 C ′
25(α) 0

C ′
13(α) C ′

23(α) C ′
33(α) 0 C ′

35(α) 0

0 0 0 C ′
44(α) 0 C ′

46(α)

C ′
15(α) C ′

25(α) C ′
35(α) 0 C ′

55(α) 0

0 0 0 C ′
46(α) 0 C ′

66(α)



The three dimensional Hooke’s law in the rotated basis becomes:

σi ′ =C ′
i j (α)ε j ′

where: σi ′ = (σ1′1′ σ2′2′ σ3′3′ σ2′3′ σ1′3′ σ1′2′)T and ε j ′ = (ε1′1′ ε2′2′ ε3′3′ 2ε2′3′ 2ε1′3′ 2ε1′2′)T .

2.2 Boundary element method for a planar fracture in TI

The boundary value problem for elastic media describes the problem in a region Ω which

is subject to constraints on the boundary (see figure 2.2). Relating the field problem to

the enclosed boundary leads to a small algebraic system of equations. Boundary element

methods are used to solve not only elasto-static problems, linear viscoelasticity or dynamic

elasticity, but also heat flow. The literature on boundary element methods in elasticity is

divided between direct and indirect approaches. Indirect methods were introduced by Crouch

and Starfield (1983); Massonnet (1965) and consist of expressing the elastic field using a

combination of surface potentials sought as density functions and regularizing the equations

to avoid the integral singularities. In the general case, the physical meaning of the unknown

density is unclear. However for crack problems, the unknown involved in the representations

takes the meaning of a jump in displacement (Mogilevskaya, 2014). The direct approach

explained by Cruse (1996); Green (1828) and introduced in the following, involved the so called

Green representation of potential theory based on the Maxwell-Betti reciprocal formula. This

method enables us to solve for the unknown boundary displacements or stresses in terms of

the specified boundary conditions. In the case of equilibrated cracks, the two approaches are

equivalent.

2.2.1 Boundary Value Problem

Let’s consider an infinite mediumΩ loaded with a far field stressσ∞σ∞σ∞ (see figure 2.2). The finite

crack is treated as a cut over a surface Γ, creating a discontinuity of displacement �uuu� =u+u+u+−u−u−u−

(see figure 2.2) while the vector traction remains continuous. In the case of a loaded crack, the
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Figure 2.2 – Schematic of crack in mediaΩ.

equilibrium field equation of elastostatic problems with no body forces reads:

σi j , j (yyy) = 0, y ∈Ω (2.7)

σi j n j =−tn j , y ∈ Γ (2.8)

σi j (yyy →∞) =σ∞
i j (2.9)

where: n j is the unit outward normal vector and t is the internal normal loading. For hy-

draulically loaded fracture, a shear stress is also induced which we neglect in this present work

(more details on the effect introduced by hydraulically induced tangential traction is in Wrobel

et al. (2017)). We adopt the rock mechanics sign convention: the traction components are

considered positive if they are oriented in the directions opposite to the outward unit normal

vector.

2.2.2 Reciprocity identity

We consider two different states of the same elastic mediaΩ defined by stresses and strains

σ(1)σ(1)σ(1),ε(1)ε(1)ε(1) andσ(2)σ(2)σ(2),ε(2)ε(2)ε(2). Maxwell-Betti’s reciprocal theorem states that the work of stresses of the

first state on the strains of the second state is equal to the work of stresses of the second state

on the strains of the first state:

σ(1)
i j ε

(2)
i j =σ(2)

i j ε
(1)
i j (2.10)

After integration of equation (2.10) and making use of the divergence theorem, we obtain:∫
Γ
σ(1)

i j u(2)
j ni dS −

∫
Ω
σ(1)

i j , j u(2)
i dV =

∫
Γ
σ(2)

i j u(1)
j ni dS −

∫
Ω
σ(2)

i j , j u(1)
i dV (2.11)

2.2.3 Fundamental point force solution - Green function

The fundamental solution for a unit point force δ(yyy −xxx) applied at the point source xxx ∈Ω
is referred as Green’s function. We write U m

k (xxx, yyy) as the k-th component of displacement

at point yyy ∈Ω due to the point force in the direction m located at xxx ∈Ω. The fundamental
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solution is formulated as the following:

ci j klU
m
k,l j (xxx, yyy)+δi mδ(yyy −xxx) = 0

where the notation f, j above is the convention for the partial derivative of a function f with

respect to the j -th component of the field point yyy , and δi m is the Kronecker delta. The

fundamental stress is given by the formula:

Σk
i j (xxx, yyy) = ci j mnU k

m,n(xxx, yyy)

The fundamental point force solution is singular at yi = xi .

General properties of the point force solution

We can use the Maxwell-Betti theroem (2.10) for two elastic states corresponding to: 1) a point

force at xxx in the direction m and 2) a point force at yyy in the direction k. Thus, we obtain the

following symmetry of the Green’s function:

U m
k (xxx, yyy) =U k

m(yyy ,xxx)

Introducing small perturbations δxi and δyi of the points xxx, and yyy respectively, the equality

U m
k (xxx +δxxx, yyy +δyyy) =U k

m(yyy +δyyy ,xxx +δxxx)

holds true for any δxxx and δyyy . Matching the first and second order terms in δxxx, δyyy on both

sides of the equality, we obtain:

U m
k, j (xxx, yyy) =U k

m, j̄
(yyy ,xxx) (2.12)

U m
k,ī j

(xxx, yyy) =U k
m,i j̄

(yyy ,xxx)

where f,l̄ refers to the partial derivative with respect to the l-th component of the source xxx.

For a free surface we can interchange xxx and yyy of the formula (2.12):

U m
k, j̄

(xxx, yyy) =−U k
m, j (xxx, yyy)

2.2.4 Boundary Integral representation

The displacement of any point in the domain yyy ∈Ω not located on Γ is given in terms of the

elastic variables on the boundary Γ via the integral representation formula of displacements

also known as Somigliana’s identity. If we consider the boundary as the fracture’s surface,

the displacement uuu and the stress σi j interior to Ω are obtained in terms of the body force

distribution and the values of the displacement discontinuity �uuu� and the surface traction

ttt found on the boundary. In the case of a self equilibrated fracture with no body force,
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Somigliana’s identity becomes:

uk (yyy) =
∫
Γ
Σk

i j (xxx, yyy)n j (xxx)�u(xxx)�i dSxxx (2.13)

where Σk
i j (xxx, yyy) = ci j mnU m

k,n(xxx, yyy). The equation (2.13) is derived from Maxwell-Betti’s identity

(2.10) using the point force solution as one of the two states.

Applying the stress-strain relation and making use of the symmetry properties of the stiffness,

we obtain the integral representation of the stress tensor for an infinite medium as:

σmn(yyy) = cmnkl uk,l (yyy)

=−cmnkl

∫
Γ
Σk

i j ,l̄
(xxx, yyy)n j (xxx)�u(xxx)�i dSxxx

We introduce a tangent differential operator (Bonnet, 1999) Di j ( f ) = ni ( f ), j −n j ( f ),i and

since we have Σk
i j , j̄

(xxx, yyy) = 0 on Γwhen yyy ∉ Γ, the previous equation gives:

σmn(yyy) =−cmnkl

∫
Γ

D j lΣ
k
i j (xxx, yyy)�u(xxx)�i dSxxx − cmnkl

∫
Γ
Σk

i j , j̄
(xxx, yyy)n j (xxx)�u(xxx)�i dSxxx (2.14)

=−cmnkl

∫
Γ

D j lΣ
k
i j (xxx, yyy)�u(xxx)�i dSxxx (2.15)

Making use of integration by parts, we obtain:

σmn(yyy) =−cmnkl

∫
Γ
Σk

i j (xxx, yyy)Dl j �u(xxx)�i dSxxx (2.16)

For a traction vector applied at the surface, we have:

tm(yyy) =σmn(yyy)nn(yyy)

tm(yyy) =−cmnkl

∫
Γ
Σk

i j (xxx, yyy)Dl j �u(xxx)�i nn(yyy)dSxxx (2.17)

Planar fracture in a pure opening mode

We assume that the fracture surface lies in the (e1e1e1,e3e3e3) plane subject to a normal traction along

e2e2e2 (figure 2.5). For any xxx and yyy on the fracture plane, we have:

nn(yyy) = nn(xxx) = e2e2e2,

x2 = y2 = 0,

�u(xxx)�i = �u(x1, x3)�2 e2e2e2,

Dl j �u(xxx)�2 = δl 2 �u(xxx)�2, j −δ j 2 �u(xxx)�2,l .
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The elastic traction and the strains integral representation become:

tm(yyy) =−cm2kl

∫
Γ
Σk

2 j (xxx, yyy)Dl j �u(xxx)�2 dSxxx (2.18)

εkl (yyy) =−
∫
Γ
Σk

2 j (xxx, yyy)Dl j �u(xxx)�2 dSxxx (2.19)

Existing Green’s function

The Green’s function was derived for the case of transversely isotropic media by Pan and Chou

(1976) using displacement complex potentials. This solution presents some errors corrected

in Loloi (2000) for the displacement field and extended to transformed TI materials by Pouya

(2007), although its first derivative is still not correct for some components. Lin and Keer

(1989) obtained the same Green’s functions in compact form for the full space and also for

the multilayered media using a Hankel approach. Távara et al. (2008, 2012) also give the

Green’s functions with the first and second derivatives using a Cauchy residue theory. The

first derivative of the point force solution is also described in Fabrikant (1989, 2004) for the

non degenerate case in which:
√

C11C33 −C13 −2C44 6= 0. An alternative form of the Green

function, extended to the degenerate case, was given by Fabrikant (2004) but the analytical

expressions suffer from some misprints.

Green function solution - Fabrikant (2004, 1989)

Our study is based on the analytical solution of Fabrikant (1989, 2004) of the Green’s functions

and their first derivatives. The analytical expression for the elastic field uses the effective

harmonic complex potential functions, while the displacement is given by their first derivatives.

Two basic sets of material constants are introduced:

m1,2 =−1+ 1

2C44(C13 +C44)

×
(
C11C33 −C 2

13 ±
√

C11C33 −C 2
13

√
C11C33 − (C13 +2C44)2

)
and

γi =
√

C44 +mi (C13 +C44)

C11
=

√
mi C33

mi C44 + (C13 +C44)
, i = {1,2}

γ3 =
√

C44

C66

where m1m2 = 1

m1 −m2 = C11
(
γ2

1 −γ2
2

)
/(C13 +C44)
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This solution is only valid for the non degenerate case:
√

C11C33 −C13 −2C44 6= 0 : γ1 6= γ2 (i.e.

m1 6= m2). We point out that for the isotropic case: m1 = m2 = 1, the stiffness matrix should be

defined slightly different: 

C44 = (1+εe )µ

C66 = (1+3εe )µ

C13 = (1+5εe )λ

C11 = (1+7εe )(λ+2µ)

C33 = (1+9εe )(λ+2µ)

(2.20)

where λ and µ are Lame constants for isotropic media, and εe is a small perturbation (for

example: εe = 10−4). The second term in the Ci j coefficients is defined slightly different in

order to avoid a proportional factor Ci j /Ckl of 1.

Let a concentrated force be applied at the origin xxx = (0,0,0), where P is the component along

e3e3e3 and T = T1 + i T2 (i 2 = −1) is the corresponding tangential force along e1e1e1 and e2e2e2. The

general solution for the elastic field at the point yyy is solved in terms of the elastic parameters

and the applied force for the complex tangential displacement U =U1 + iU2 and the normal

displacement U3 such that:

U k
1 = Re(U (P = 0;T = Tk = 1)) , k = 1,2

U 3
1 = Re(U (P = 1;T = 0))

U k
2 = Im(U (P = 0;T = Tk = 1)) , k = 1,2

U 3
2 = Im(U (P = 1;T = 0))

U k
3 = U3 (P = 0;T = Tk = 1) , k = 1,2

U 3
3 = U3 (P = 1;T = 0)

We denote T̄ as the conjugate of T : T̄ = T1 − i T2 and we introduce the following variables:

q = y1 + i y2

zk = y3

γk
, k = 1,2,3

R2
k = y2

1 + y2
2 + z2

k , k = 1,2,3

The displacement is given as the following:

U = 1

4πC44(m1 −m2)

[
γ1

2m1

(
q2T̄

R1 (R1 + z1)2 − T

R1

)
− γ2

2m2

(
q2T̄

R2 (R2 + z2)2 − T

R2

)
− P

q̄

(
z1

R1
− z2

R2

)]
+ γ3

8πC44

(
q2T̄

R3 (R3 + z3)2 + T

R3

)
,

(2.21)
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2.2. Boundary element method for a planar fracture in TI

U3 = 1

4πC44(m1 −m2)

[
1

2

(
T

q
+ T̄

q̄

)(
z2

R2
− z1

R1

)
+P

(
m1

γ1R1
− m2

γ2R2

)]
. (2.22)

We compare in table 2.3 the 3rd component of the Green’s functions U 2
3 at the field point

yyy = (0,10,5) (in meters) due to a unit point force applied at xxx = (0,0,0) using the solutions of

Pan and Chou (1976); Fabrikant (1989); Lin and Keer (1989); Távara et al. (2008) for different

elastic coefficients. We set our reference solution to the Fabrikant (1989) solution (equation

2.22) and we calculate the relative difference of the solutions of Pan and Chou (1976); Lin

and Keer (1989); Távara et al. (2008). As we can see from table 2.3, the analytical solutions

match exactly except for the isotropic case where the solution of Fabrikant (1989) is 0.005%

off from the others possibly due to the small perturbation εe = 10−4 in the definition of the

isotropic Ci j (2.20). Thus, we can use either the solution of Fabrikant (1989), Pan and Chou

(1976), Lin and Keer (1989) or Távara et al. (2008) to express the fundamental solution of the

displacement U (xxx, yyy).

Similarly, using the complex variables to express the fundamental stress:

Σ1 =Σ11 +Σ22, Σ2 =Σ11 −Σ22 +2iΣ12, τ3 =Σ31 + iΣ32,

in such a way that:

Σk
11 = Re((Σ1 (P = 0;T = Tk = 1)+Σ2 (P = 0;T = Tk = 1))/2) , k = 1,2

Σ3
11 = Re((Σ1 (P = 1;T = 0)+Σ2 (P = 1;T = 0))/2)

Σk
22 = Re((Σ1 (P = 0;T = Tk = 1)−Σ2 (P = 0;T = Tk = 1))/2) , k = 1,2

Σ3
22 = Re((Σ1 (P = 1;T = 0)−Σ2 (P = 1;T = 0))/2)

Σk
12 = Im(Σ2 (P = 0;T = Tk = 1)) , k = 1,2

Σ3
12 = Im(Σ2 (P = 1;T = 0))

Σk
33 = Σ33 (P = 0;T = Tk = 1) , k = 1,2

Σ3
33 = Σ33 (P = 1;T = 0)

Σk
31 = Re(τ3 (P = 0;T = Tk = 1)) , k = 1,2

Σ3
31 = Re(τ3 (P = 1;T = 0))

Σk
32 = Im(τ3 (P = 0;T = Tk = 1)) , k = 1,2

Σ3
32 = Im(τ3 (P = 1;T = 0))

, the fundamental solution for stress is expressed as:

Σ1 = 1

4πγ2
3(m1 −m2)

[
−

(
1− (1+m1)γ2

3

γ2
1

)(
γ1

m1

T q̄ + T̄ q

R3
1

+ 2P z1

R3
1

)

+
(

1− (1+m2)γ2
3

γ2
2

)(
γ2

m2

T q̄ + T̄ q

R3
2

+ 2P z2

R3
2

)]
,

(2.23)
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Chapter 2. Fracture mechanics of transversely isotropic media

Fabrikant Pan and Chou Lin and Keer Tavara
U 2

3 (1/GPa) relative difference
Degenerate case-Stripa granite 0.047 0.005% 0.005% 0.005%

Woodford53 shale 1.48×10−4 0 0 0
Opalinius Clay 1.45×10−3 0 0 0

Yeocheon schist 7.05×10−5 0 0 0

Table 2.3 – Comparison of 3rd component of the fundamental displacement U 2
3 (in GPa−1) at

point yyy = (0,10,5) meters due to a unit force along e2e2e2 applied at the center xxx = (0,0,0) using
the analytical solutions of Pan and Chou (1976); Lin and Keer (1989); Távara et al. (2008) with
respect to the reference solution of Fabrikant (1989). The rocks are defined in table 2.2.

Σ2 = C66

4πC44(m1 −m2)

[
γ1

m1

(
T q

R3
1

− T̄
q3 (3R1 + z1)

R3
1 (R1 + z1)3

)
− γ2

m2

(
T q

R3
2

− T̄
q3 (3R2 + z2)

R3
2 (R2 + z2)3

)

−2P q2 (2R1 + z1)

R3
1 (R1 + z1)3

+ 2P q2 (2R2 + z2)

R3
2 (R2 + z2)3

]
− 1

4πγ3

(
T q

R3
3

+ T̄
q3 (3R3 + z3)

R3
3 (R3 + z3)3

)
,

(2.24)

Σ33 =− 1

4π

[
1

2

(
T q̄ + T̄ q

)( γ1

(m1 −1)R3
1

+ γ2

(m2 −1)R3
2

)
+P

(
m1z1

(m1 −1)R3
1

+ m2z2

(m2 −1)R3
2

)]
, (2.25)

τ3 = T

8π

(
z1

(m1 −1)R3
1

+ z2

(m2 −1)R3
2

− z3

R3
3

)
− T̄ q2

8π

[
2R1 + z1

(m1 −1)R3
1 (R1 + z1)2

+ 2R2 + z2

(m2 −1)R3
2 (R2 + z2)2

+ 2R3 + z3

R3
3 (R3 + z3)2

]
− P q

4π

(
m1

γ1 (m1 −1)R3
1

+ m2

γ2 (m2 −1)R3
2

)
.

(2.26)

Table 2.4 exhibits the expressions of the stress Σ3
22 at the field point yyy = (0,10,5) (in meters)

due to unit point force applied at xxx = (0,0,0) using Pan and Chou (1976); Távara et al. (2012)

and Fabrikant (1989) (equation 2.25) in the example of TI rocks. We also validate Fabrikant

(1989), taken as the reference solution, using numerical calculations (see section 2.2.5). The

analytical solution of Pan and Chou (1976) converges for this example (table 2.4) which is

not the case for all components due to some misprints (see (Loloi, 2000; Pouya, 2007) for

more details), whereas the solution of Távara et al. (2012) differs very much from the reference

solution (Fabrikant, 1989).

2.2.5 Displacement discontinuity method

An easy approach is to discretise the fracture plane over ne ×me rectangular elements and

assume piece-wise constant displacement over element Γe . For yyy ∈ Γe , evaluated at the centers
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2.2. Boundary element method for a planar fracture in TI

Fabrikant Pan and Chou Tavara
Σ3

22 (1/m) relative difference
Degenerate case-Stripa granite −3×10−4 0.01% 63%

Woodford53 shale −5×10−4 0 187%
Opalinius Clay −9×10−4 0 4116%

Yeocheon schist −6×10−4 0 361%

Table 2.4 – Comparison of fundamental stress Σ3
22 (in m−1) at point yyy = (0,10,5) meters due

to a unit force along e3e3e3 applied at the center xxx = (0,0,0) using the analytical solutions of Pan
and Chou (1976); Távara et al. (2012) with respect to the reference solution of Fabrikant (1989).
The rocks are defined in table 2.2.

of the elements, the elasticity equation (2.18) can be written in the following matrix form:

ti = Ki j �u�i (2.27)

where Ki j depends on the coordinates of the point source xi and the observation point y j

(besides the elastic constants) and is known as the "global influence matrix" for stresses .

The matrix Ki j was derived by Pan et al. (2014) using the point-force Green’s solution of Fab-

rikant (1989). This area integral is transformed to a line integral along a closed dislocation loop

using Stokes’ theorem (Yuan et al., 2013). This integrated element also allowed propagation

of a a fracture inclined with respect to the bedding plane. Furthermore, it accounts also for

the half space by superposing two solutions: i- dislocation solution in TI full space, ii- the

image source due to the free surface of the half-space. In our study, we carry out our calcu-

lations while assuming a planar fracture normal to the bedding in full space with constant

displacement jumps over uniform rectangular elements. For a uniform rectangular mesh,

the global influence matrix verifies the Pseudo-Toeplitz property which reduces the assembly

by storing only a 1D array. But first, we start by benchmarking the elastic matrix with some

verified solutions.

Verification of the rectangular displacement discontinuity-Far field

Here we examine the case of rectangular dislocation of a unit surface embedded in a trans-

versely isotropic medium. When the observation point yyy is far from the dislocation loop, the

fundamental stress solution Σk
i j (xxx, yyy) at any point xxx in the loop can be simplified to the center

x0x0x0 of the rectangle.

Σk
i j (xxx, yyy)≈Σk

i j (x0x0x0, yyy)

Thus, the displacement due to a unit dislocation in direction i is given by equation (2.13):

uk (yyy) =Σk
i j (x0x0x0, yyy)n j �u(x0x0x0)�i
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Chapter 2. Fracture mechanics of transversely isotropic media

Bedding

Figure 2.3 – Finite rectangular dislocation in an infinite TI media.

We use the fundamental stress derived by Fabrikant (1989) for the non degenerate case, with

Ci j corresponding to Olkiluoto mica gneiss (table 2.2). The displacement discontinuity along

the vector e3e3e3 is set to: �u(x0x0x0)�i = �u(x0x0x0)�3 = 1. The observation point yyy is taken as the projection

of the point x0x0x0 in the third axis such that (figure 2.3):

y1 = x01 , y2 = x02 , ||x0i − yi || = y3

We compare in figure 2.4 the displacement in the e3e3e3 direction obtained numerically using

the elastic kernel of Pan et al. (2014) (red dots) and the analytical solution (solid line) (Fab-

rikant, 1989) where we span the e3e3e3 axis as shown in figure 2.3. The displacement decays with

||x03 − y3||−2 and the two solutions match precisely.

We will perform an another verification of the colocation method for the case of elliptical static

fracture (section 2.5.2). But first, we need to derive the near-tip elastic operator for mode I

propagation.

2.3 Near-tip elastic operator

Here we zoom into the region near the tip, where point along the edge (parameterised by

angle α) behaves locally as the tip of a semi-infinite fracture propagating quasi-statically. The

two-dimensional equivalent fracture belongs to the plane (e ′1e ′1e ′1,e ′2e ′2e ′2) and the problem is identical

to that of a plane strain fracture where the infinite direction lies along e ′3e ′3e ′3 (figure 2.5).

We recall the local system of coordinates (e ′1e ′1e ′1,e ′2e ′2e ′2) defined in figure 2.1, where e ′1e ′1e ′1 is the axis of

propagation of the semi-infinite fracture and e ′2e ′2e ′2 = e2e2e2 is the normal axis to the surface.
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2.3. Near-tip elastic operator

��� ��� ��� ��� ��� ���
��������

��×��-�

��������

��������

��������

Point force solution (Fabrikant 1989)

Dislocation elastic kernel (Pan et al. 2014)

Figure 2.4 – Far-field verification: Displacement due to a unit rectangle tensile dislocation func-
tion of the relative distance using the analytical solution (Fabrikant, 1989) and the numerical
solution of Pan et al. (2014).

2.3.1 Near-tip elastic operator via a change of reference

For each point along the fracture front, the orientation of the semi-infinite fracture changes,

and does the plane of propagation, as we can observe from figure 2.5. For the first case where

the edge is on the bedding plane (case A in figure 2.5,α= 0), the equivalent fracture propagates

on the plane of isotropy of the body (e1e1e1,e2e2e2) and is infinite along the axis of symmetry e3e3e3.

The fracture propagates along e1e1e1 and �u(x1)�2 is the fracture opening, which depends only

on the coordinate x1. Whereas, in case C (α = π/2), the semi-infinite fracture propagates

perpendicular to the bedding (e ′1e ′1e ′1 = e3e3e3) and e1e1e1 is the axis of plane strain (ε1i = 0, i = 1,2,3). For

the general case when the axis of propagation forms an angle α with the horizontal (case B),

the semi-infinite fracture propagates along e ′1e ′1e ′1 and is contained in the plane (e1e1e1,e3e3e3) while the

normal is aligned with e2e2e2.

We will refer to the coordinate in the local basis by using x ′
i while in the material basis we will

use xi . Consider two points x ′
i and y ′

i with the corresponding coordinates in the local system

(e ′1e ′1e ′1,e ′2e ′2e ′2,e ′3e ′3e ′3):

x ′x ′x ′ = (x ′
1,0, x ′

3), y ′y ′y ′ = (y ′
1,0,0)�

u(x ′x ′x ′)
�

i =
�

u(x ′
1)

�
2 e2e2e2

Dl ′ j ′
(�

u(x ′
1)

�)= δl ′2δ1′ j ′
�

u(x ′
1)

�
2,1′ −δ j ′2δl ′1′

�
u(x ′

1)
�

2,1′ (2.28)

It results from combining equation (2.28) and the equation of strains (2.19), that ε1′3′ = ε2′3′ =
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C

B

A

(divider)

(arrester)

B

A

C

Figure 2.5 – Schematic of a planar three dimensional hydraulic fracture growing perpendicular
to the isotropy plane. The different configurations of the near-tip region along the fracture
front are also depicted: case A is a semi-infinite fracture propagating along the plane of
isotropy or the so-called "divider direction", case B is a semi-infinite fracture propagating
within the plane (e1e1e1,e3e3e3) and case C is a semi-infinite fracture propagating in the direction
perpendicular to the layering defined as the "arrester direction"
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2.3. Near-tip elastic operator

ε3′3′ = 0 and the remaining non zero components are:

ε(y ′y ′y ′) =

 ε1′1′ ε1′2′ 0

ε1′2′ ε2′2′ 0

0 0 0

 (2.29)

Thus, the normal component of the traction is described by:

t2(y ′y ′y ′) =−c ′22k2

∫
Γ
Σk ′

21′
(
x ′x ′x ′,x ′x ′x ′)�u(x ′

1)
�

2,1′ dSx ′x ′x ′ + c ′22k1

∫
Γ
Σk ′

22

(
x ′x ′x ′, y ′y ′y ′)�u(x ′

1)
�

2,1′ dSx ′x ′x ′

Semi-infinite fracture propagating along the divider e1e1e1

Since the local basis for this case corresponds to the material basis (e ′1e ′1e ′1,e ′2e ′2e ′2,e ′3e ′3e ′3) = (e1e1e1,e2e2e2,e3e3e3),

we have c2221 = c2212 = c2232 = c2231 = 0 and c2211 = C12, c2222 = C11. This configuration

corresponds to case A in figure 2.5. The traction depends on two fundamental stressesΣ2
21(xxx, yyy)

and Σ1
22(xxx, yyy), which in plane strain condition gives:

t2(yyy) =−C11

∫ ∞

0
�u(x1)�2,1

(∫ ∞

−∞
Σ2

21(xxx, yyy)d x3

)
d x1 +C12

∫ ∞

0
�u(x1)�2,1

(∫ ∞

−∞
Σ1

22(xxx, yyy)d x3

)
d x1

(2.30)

Using the expressions of the fundamental stress derived by Fabrikant (1989) and integrating

them with respect to x3, we get:

t2(y1) = (C11 −C12)(C11 +C12)

4πC11

∫ ∞

0

1

y1 −x1
�u(x1)�2,1 dx1 (2.31)

Semi-infinite fracture propagating along the arrester e3e3e3

In this case (corresponding to sketch C in figure 2.5), the local basis is a rotation of the

material basis with respect to the normal e2e2e2: (e ′1e ′1e ′1,e ′2e ′2e ′2,e ′3e ′3e ′3) = (e3e3e3,e2e2e2,−e1e1e1) (see figure 2.5). We

can still express the traction vector function of the elastic parameters in the material basis

(Σk ′
21′

(
x ′x ′x ′, y ′y ′y ′)=Σk

23

(
xxx, yyy

)
, Σk ′

23′
(
x ′x ′x ′, y ′y ′y ′)=Σk

21

(
xxx, yyy

)
). Since the stiffness matrix in the global space

is characterized by c2223 = c2213 = c2212 = c2232 = 0 and c2233 =C13, c2222 =C11, the remaining

components of the traction are the fundamental stresses Σ2
23(xxx, yyy) and Σ3

22(xxx, yyy), which in the

plane strain condition give:

t2(yyy) =−C11

∫ ∞

0
�u(x3)�2,3

(∫ ∞

−∞
Σ2

23(xxx, yyy)dx1

)
dx3 +C13

∫ ∞

0
�u(x3)�2,3

(∫ ∞

−∞
Σ3

22(xxx, yyy)dx1

)
dx3

Integrating the expression of the stress tensor Σk
i j (Fabrikant, 1989) for x1, we find that the
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plane strain elastic expression for this case is:

t2(xxx) =
p

C33/C11(−C 2
13 +C11C33)

2πC33

√
−C 2

13 −2C13C44 +C11(C33 +2
p

C33/C11C44)

C11C44

∫ ∞

0

1

y3 −x3
�u(x3)�2,3 dx3 (2.32)

Semi-infinite fracture propagating in the rotated plane

For this case (corresponding to sketch B in figure 2.5), we first need to describe the stress

density tensor Σk
i j in the rotated plane Σk ′

i ′ j ′ using the rotation matrix Pi ′i (equation (2.5)):

Σk ′
i ′ j ′(xxx

′) = Pi ′i P j ′ j Pk ′kΣi j k (xxx)

We obtain the traction function of the stiffness matrix c ′i j kl (2.6) as:

t2(x ′x ′x ′) =c ′2222

∫ ∞

0

�
u(x ′

1)
�

2,1′

(∫ ∞

−∞
Σ2

21′(x ′x ′x ′, y ′y ′y ′)dx ′
3

)
dx ′

1 − c ′2211

∫ ∞

0

�
u(x ′

1)
�

2,1′

(∫ ∞

−∞
Σ1′

22(x ′x ′x ′, y ′y ′y ′)dx ′
1

)
dx ′

1

(2.33)

−c ′2231

∫ ∞

0

�
u(x ′

1)
�

2,1′

(∫ ∞

−∞
Σ223′(x ′x ′x ′, y ′y ′y ′)dx ′

3

)
dx ′

1

where

c ′2222 =C11, c ′2211 =C12 cos2(α)+C13 sin2(α), c ′2231 =
sin(2α)

2
(−C12 +C13)

The equation (2.33) has no known simpler analytical expression. Therefore, we will now use

the edge dislocation solution for anisotropic media to re-derive the explicit expression for the

elastic operator (equation (2.33)).

2.3.2 Near-tip elastic operator via the edge dislocation solution

We consider a general case of a semi-infinite fracture propagating in the local axis e ′1e ′1e ′1, where

e2e2e2 is the fracture opening direction (Case B in figure 2.5). The corresponding strains in the

basis (e ′1e ′1e ′1,e2e2e2,e ′3e ′3e ′3) where e ′3e ′3e ′3 is a axis such that (e ′1e ′1e ′1,e2e2e2,e ′3e ′3e ′3) is a direct orthonormal basis, are (see

equation (2.19)):

εk ′l ′(yyy ′) =−
∫
Γ
Σk ′

2 j ′(xxx
′, yyy ′)Dl ′ j ′

�
u(x ′

1)
�

2 dSx ′x ′x ′

with the surface gradient:

Dl ′ j ′
(�

u(x ′
1)

�)= δl ′2δ1′ j ′
�

u(x ′
1)

�
2,1′ −δ j ′2δl ′1′

�
u(x ′

1)
�

2,1′
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As shown in equation (2.29), we have:

ε1′3′(y ′y ′y ′) = ε2′3′(y ′y ′y ′) = ε3′3′(y ′y ′y ′) = 0

Form the above equation we have the plane strain conditions. The following study will

be conducted in 2D where the out of plane stresses σi ′3′ , {i ,1′,3′} are substituted from the

remaining non zero strains via Hooke’s law (2.3). The stress-strain relation in plane strain

conditions on the local basis (e ′1e ′1e ′1,e2e2e2,e ′3e ′3e ′3) becomes: σ1′1′

σ22

σ1′2

=

 C ′
11(α) C ′

12(α) 0

C ′
12(α) C ′

22(α) 0

0 0 C ′
66(α)


 ε1′1′

ε22

2ε1′2



The given problem is equivalent to a pure edge dislocation in anisotropic media for which the

edge component
�

u(x ′
1)

�
gives rise only to displacement u1′ and u2. The classical anisotropic

elasticity theory of dislocations was developed by Eshelby et al. (1953) and extended by

Foreman (1955). Hirth and Lothe (1982) followed the method of Eshelby et al. (1953); Stroh

(1958) to explicitly establish the stress and displacement elastic tensors for pure edge and pure

screw dislocations.

The Stroh formalism (Stroh, 1958) for a pure edge dislocation consists in the solution of a

fourth order polynomial equation (second order polynomial equation for screw dislocation)

function of the anisotropic parameters Ci j . The roots give the magnitude of the displacement

field. The stress components for a single normal dislocation density b2 = δ
�

u(x ′
1)

�
2,1′ are (see

Hirth and Lothe (1982) for details):

δσ1′1′(y ′y ′y ′) =−MC ′
66(α)

2π

1

y ′
1 −x ′

1

b2 (2.34)

δσ22(y ′y ′y ′) = MC ′
22(α)C ′

66(α)

2πC̄ ′
11(α)

1

y ′
1 −x ′

1

b2 (2.35)

δσ12(y ′y ′y ′) = 0 (2.36)

with:

M =
(√

C ′
22(α)C ′

11(α)+C ′
12(α)

)
√

C ′
22(α)C ′

11(α)−C ′
12(α)

C ′
22(α)C ′

66(α)
(√

C ′
22(α)C ′

11(α)+C ′
12(α)+2C ′

66(α)
)


1/2

Integrating the normal stress due to a single dislocation (2.35) over the line of the fracture

gives:

σ22(y ′y ′y ′) = MC ′
22(α)C ′

66(α)

2πC̄ ′
11(α)

∫ ∞

0

1

y ′
1 −x ′

1

�
u(x ′

1)
�

2,1′ dx ′
1
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We retrieve the well known elasticity integral equation for isotropic media depending on an

equivalent near-tip elastic modulus E ′
α.

t2(y ′y ′y ′) = E ′
α

4π

∫ ∞

0

1

y ′
1 −x ′

1

�
u(x ′

1)
�

2,1′ dx ′
1 (2.37)

E ′
α = 2MC ′

22(α)C ′
66(α)

C̄ ′
11(α)

(2.38)

For isotropy, this elastic modulus reduces to the plane strain Young’s modulus:

E ′
i so = (C11 +C12) (C11 −C12)

C11
(2.39)

Semi-infinite fracture propagating along the divider e1e1e1

For the case of a semi-infinite fracture propagating in the material axis e1e1e1 and perpendicular

to e2e2e2 (case A in figure 2.5), we get the same elastic modulus, called E ′
1 as in equation (2.31):

C̄ ′
11(α= 0) =C11

M(α= 0) = C11 +C12

C11

E ′
1 =

(C11 +C12) (C11 −C12)

C11

The fracture lies in the isotropic plane and the elastic modulus depends on two stiffness

constants, as in the isotropic case (equation (2.39)).

Semi-infinite fracture propagating along the arrester direction e3e3e3

The semi-infinite fracture propagates in the material symmetry axis e3e3e3, which corresponds to

case C of figure 2.5

C̄ ′
11(α= π

2
) =

√
C33C 11

M(α= π

2
) =

(√
C33C 11 +C13

)( p
C33C 11 −C13

C11C44
(p

C33C 11 +C13 +2C44
))1/2

After some simplifications, we obtain the same anisotropic modulus as was shown in equation

(2.32):

E ′
3 =

2
p

C33/C11(−C 2
13 +C11C33)

C33

√
−C 2

13−2C13C44+C11(C33+2
p

C33/C11C44)
C11C44
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2.3. Near-tip elastic operator

The elastic modulus depends on four elastic parameters and is also given in Chertov (2012);

Laubie and Ulm (2014).

2.3.3 Evolution of the near-tip elastic modulus along the crack front

We can rewrite E ′
α as the product of an equivalent elastic modulus and a dimensionless

function F depending on four elastic Ci j : E ′
α = E∗F (Ci j ). The characteristic elastic modulus

E∗ can be either E ′
1, E ′

3, or any combination of Ci j . Here, however, we choose the mean value:

〈
E ′〉= E ′

1 +E ′
3

2

The anisotropy of the TI medium is quantified via the ratio of E ′
1 = E ′

α (α= 0) and E ′
3 =

E ′
α

(
α= π

2

)
(see table 2.5) that we call β

β= E ′
1/E ′

3

The dimensionless function F
(
β,ε,δ,C13/C11

)
, however, is a rearranged function of relevant

dimensionless parameters such as the anisotropy ratio β= E ′
1/E ′

3, the ratio C13/C11, and the

Thomsen parameters {ε,δ} (Thomsen, 1986), as were in equations (2.4). The anisotropic

near-tip modulus is redefined as:

E ′
α =< E ′ >×F (β, ε, δ, C13/C11)

The near-tip elastic modulus function of the scaling elastic parameters in the divider and

arrester directions simply become:

E ′
1 =

2β
〈

E ′〉
1+β , E ′

3 =
2
〈

E ′〉
1+β .

For most rocks, the Thomsen parameters range from 0 for weak anisotropy to 1 for strong

anisotropy, where ε> δ for fine layering anisotropic media (Berryman, 1979). The anisotropy

ratioβ varies between 1 and 2 for typical orders of magnitude of the stiffness parameters, while

C13/C11 is usually smaller than 1 (see table 2.5). We plot in figure 2.6 the scaled anisotropic

modulus E ′
α/

〈
E ′〉 function of the angle α where we study the effect of the dimensionless

parameters {β,ε,δ,C13/C11}. We compare the analytical expression E ′
α/

〈
E ′〉 (equation (2.38))

(solid line) to the approximation function E ′
app /

〈
E ′〉 derived in Laubie and Ulm (2014) (dashed

line).
1

E ′
app

= cos2(α)

E ′
1

+ sin2(α)

E ′
3

We first set our dimensionless parameters to the given reference values: β= 1.5, ε= 0.3, δ= 0.2,

and C13/C11 = 0.5, and then vary each dimensionless parameter while maintaining other
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Chapter 2. Fracture mechanics of transversely isotropic media

Material β C13/C11 ε δ γ

Isotropy-Stripa granite (Alm et al., 1985) 1 0.26 0 0 0
Olkiluoto mica gneiss (Hakala et al., 2007) 1.159 0.262 0.181 0.0912 0.203

Gas-saturated Shaly Coal (Wang, 2002) 1.259 0.057 0.511 −0.173 0.424
Woodford53 shale (Laubie, 2013) 1.311 0.296 0.309 0.139 0.415

Opalinius Clay (Thöny, 2014) 1.327 0.671 0.5 0.491 0.344
Yeocheon schist (Cho et al., 2012) 1.434 0.219 1.156 1.229 0.552

Calcareous mudstone (Chertov, 2012) 1.903 0.441 0.786 0.659 0.995
Callovo-Oxfordian argilite (David et al., 2007) 1.066 0.238 0.281 0.191 0.091

Jurassic shale (Hornby, 1998) 1.32 0.419 0.227 0.128 0.361
Slate Del Carmen (this study) 1.03 0.029 0.17 1.7 0

Table 2.5 – Example of the dimensionless parameters values for the anisotropic rocks given in
table 2.2.

parameters at the default values. We should note that the approximation function does not

depend on {ε,δ,C13/C11}. For the case of a given constant β, E ′
app /

〈
E ′〉 has only one plot (see

figure 2.6.b, c and d).

The anisotropic elastic modulus is monotonically varying with respect to α (see figure 2.6) and

satisfies:

E ′
α (α) = E ′

α (π−α) = E ′
α (π+α) = E ′

α (−α) .

As we can see from figure 2.6, the magnitude of the elastic modulus depends on the ratio β,

whereas the slope is a function of all the elastic parameters {β,δε,C13/C11}. The transition

from E ′
1 to E ′

3 happens more slowly when increasing {β,δ} and more quickly when increasing

{ε,C13/C11}. For the case of β= 1.2 in figure 2.6.a, where the anisotropy ratio is low, a similar

evolution is observed for the analytical and the approximation solution. As the anisotropy

ratio increases, the E ′
app differs drastically from the analytical solution except at the two fixed

boundaries E ′
α (α= 0) = E ′

app (α= 0) and E ′
α (α=π/2) = E ′

app (α=π/2). The approximation

solution also significantly diverges from the analytical solutions with a variation of δ (see

figure 2.6.d). Whereas, E ′
app /

〈
E ′〉 corresponds more to the case of high C13/C11 = 0.7 (steep

transition slope) or high ε = 0.5 (see figure 2.6.b and c) for the case when varying C13/C11

or ε respectively. The approximation solution, thus underestimates in most of the cases the

anisotropic plane strain modulus and decreases more quickly when compared to E ′
α with

respect to the angle.
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2.3. Near-tip elastic operator

E�ect of E�ect of

E�ect ofE�ect of

(a) (b)

(c) (d)

Figure 2.6 – Near-tip elastic modulus as a function of α using the exact solution obtained
analytically (solid line) and its approximation (Laubie and Ulm, 2014) (dashed line). The
reference set of values of the dimensionless parameters: β = 1.5, C13/C11 = 0.5, ε = 0.3 and
δ = 0.2 is displayed in dark grey with the variations of each elastic scalar: (a) effect of β =
{1.2,1.5,2}, (b) effect of C13/C11 = {0.4,0.5,0.7}, (c) effect of ε= {0.2,0.3,0.5}, and (d) effect of
δ= {0.1,0.2,0.3}.
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Chapter 2. Fracture mechanics of transversely isotropic media

2.4 Fracture propagation criterion

2.4.1 Energy release rate

We define the "energy release rate" as the energy that flows to the fracture tip of new area S

when a crack is created:

G =−∂P
∂S

where: P is the elastic potential energy of the media

P = 1

2

∫
S
σi j εi j dS

The Griffith theory postulates that a crack will grow when the energy released by the body per

unit area is equal to 2γs where γs is the surface energy and the factor2 refers to the upper and

lower fracture surfaces.

Griffith also introduced a local energy release rate known as fracture energy G . For an incre-

ment of fracture length l (figure 2.7), the elastic potential is given as a function of G as (Irwin,

1962):

dP =
∫ l

0
Gdx ′

1

The propagation criterion in terms of the local energy release rate G is summarised as follows:
G ≤Gc

(G −Gc )V = 0

V > 0

where V is the crack velocity and Gc is the critical local energy release rate which is also called

the "fracture energy". For anisotropy, the fracture energy is direction dependent: Gc (α).

2.4.2 Irwin relation in transverse isotropy

2.4.3 Stress Intensity Factor (SIF)

In linear elastic fracture mechanics, the stress is singular at the crack tip. The singularity term

is a square root of the normal distance to the tip σ∼ x ′
1
−1/2 (Williams, 1961). We introduce,

following the configuration of figure 2.7, the stress intensity factors (SIF) K I ,K I I and K I I I as

the amplitude of the stress singularity for opening, shear and out-of plane shear modes as (Sih

et al., 1965): �
ui (x ′

1)
�=√

32

π
Λi j K j (α)

√
x ′

1, x ′
1 ¿ 1 (2.40)

where Ki = (K I ,K I I ,K I I I )t andΛi j is the 3×3 Irwin’s matrix (Ting, 1996).

Similarly to fracture energy, there is a critical SIF denoted, as fracture toughness K I c (α) cannot
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2.4. Fracture propagation criterion

Figure 2.7 – Co-linear extension of the fracture in the local basis.

be exceeded and below which the fracture can not propagate. The propagation criterion is

formulated as the following: 
K I ≤ K I c

(K I −K I c )V = 0

V > 0

2.4.4 Irwin relation in transverse isotropy

For a coplanar crack extension and at the limit of l (l → 0), the stress intensity factor and the

fracture energy are connected via Irwin’s formula (Stroh, 1958; Barnett and Asaro, 1972) . In

the case of three dimensional problems, it can be written (Barnett and Asaro, 1972):

G = K t
i Λi j K j

For an isotropic material, Λi j is a diagonal matrix with: Λ11 =Λ22 = 1/E ′
i so , and Λ33 = (1+

ν)/Ei so . However, the Irwin matrixΛi j for an anisotropic solid is not necessarily diagonal. It

depends on the local direction of propagation and a matrix related to the pre-factor of the

solution of an edge dislocation (Stroh, 1958; Barnett and Asaro, 1972) - which is related to the

point force Green’s function. For general anisotropy and arbitrary orientation planar fracture,

its expression can be obtained numerically (Barnett and Swasger, 1971; Barnett and Asaro,

1972), or semi-explicitly in the material frame (Malén and Lothe, 1970).
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Chapter 2. Fracture mechanics of transversely isotropic media

Irwin relation for a planar fracture in TI

In the configuration investigated here where the planar fracture is perpendicular to the isotropy

plane of a transversely isotropic material (figure 2.5), as already mentioned, the fracture mode

decouples (shear dislocation does not induce normal traction on the fracture plane and vice

versa). As a result the Irwin matrix is diagonal. However, the expressions for Λi i remain

functions of the local propagation direction. For such a planar fracture, they are entirely

captured by the angle α between the normal to the local tangent to the fracture front and the

material axis e1e1e1 (the divider direction).

For a fracture subjected to pure opening mode e2e2e2 (see figure 2.7), we can relate the fracture

energy to the stress intensity factor through the expression:

G (α) = K 2
I (α)

E ′
α

(2.41)

where:

Λ−1
11 = E ′

α.

The displacement discontinuity is reduced to the normal non zero component:

�
u2(x ′

1)
�=√

32

π

K I c (α)

E ′
α

√
x ′

1, x ′
1 ¿ 1. (2.42)

As a result of equation (2.37), all the linear elastic tip asymptote (lefm) obtained for the

isotropic case can be used in anisotropy depending on the proper use of the anisotropic

modulus. In the following, we use w(x ′
1) to refer to the normal component of the displacement

jump w(x ′
1) = �

u(x ′
1)

�
2.

2.5 Elastic solutions of fracture problem in TI material

2.5.1 Existing solutions

When considering anisotropy, extensive studies have been made on fractures of elliptical shape.

One classic paper dealing with cracks is Eshelby et al. (1953) which deals with inhomogeneities

in anisotropic bodies using stress-free strains. Ting (1996) derived in implicit form the problem

of an elliptic rigid body subject to an external moment. He also investigated the Green’s

functions in half-space for an ellipse rotated with respect to the plane of anisotropy. A general

expression for the stress concentration was presented in Hwu and Ting (1989) using the Stroh

formalism. Willis (1968) also addressed the problem of the stress field around an elliptical

crack in a linear anisotropic media but is not applicable to the degenerate case of TI medias.

Irwin (1962) on the other hand established the analytical expression for the displacement and

stress intensity factor for a flat crack in isotropic media that was extended to TI by Hoenig

(1978). More recently, Fabrikant (2011); Kanaun (2007) have also worked on elliptical cracks
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2.5. Elastic solutions of fracture problem in TI material

subject to uniform pressure in TI media but their analytical solutions contain some errors as

we will prove in the next section. In the light of the work of Hoenig (1978), we will re-derive

below an analytical solution of static elliptical fracture in TI media.

2.5.2 Elliptical fracture in a transversely isotropic media

For an elliptical fracture of semi-major axis a and semi-minor axis b subject to a uniform

pressure p in an infinite medium, following Eshelby et al. (1953) the corresponding fracture

opening takes the following form:

w = Bo p
p

ab

√
1− x2

1

a2 − x2
3

b2 (2.43)

where Bo is a pre-factor that needs to be determined. We will follow here the approach

described by Hoenig (1978) to obtain Bo .

First we define a point (x1, x3) inside the fracture and its projection on the ellipse front (x f
1 , x f

3 )

(see figure 2.8). The distance between these two points is |x ′
1|, where α is the angle between

the major axis e1e1e1 and the local axis e ′1e ′1e ′1 as described in figure 2.8. With the use of the geometrical

properties of the ellipse:

tanα= a2

b2

x f
3

x f
1

Introducing the angle characterizing the ellipse:x f
1 = a cosθ

x f
3 = b sinθ

we have:

tanα= a

b
tanθ (2.44)

The series expansion of the equation of the opening (2.43) to first order is:

1− x2
1

a2 − x2
3

b2 = 2
∣∣x ′

1

∣∣( x f
1 cosα

a2 + x f
3 sinα

b2

)
+O

(
x ′

1
2
)

(2.45)

Using the definition of angle θ, the equation (2.45) becomes:

1− x2
1

a2 − x2
3

b2 = 2
∣∣x ′

1

∣∣(cos2θ

a2 + sin2θ

b2

)1/2

+O
(
x ′

1
2
)
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Chapter 2. Fracture mechanics of transversely isotropic media

We thus obtain near-tip the first order term of the fracture opening as (Hills et al., 2013):

w = Bo p
p

a
√

2
∣∣x ′

1

∣∣(sin2θ+γ2
e cos2θ

)1/4
(2.46)

where γe = b/a < 1 is the fracture aspect ratio.

We substitute the expression of the stress intensity factor by equalizing the tip asymptote (2.42)

and taking the limit of equation (2.46) for small
∣∣x ′

1

∣∣
K I = Bo

4

p
πaE ′

αp
(
sin2θ+γ2

e cos2θ
)1/4

(2.47)

On the other hand, the global energy release rate G is obtained from the work W applied by

the uniform pressure as:

G = 1

2πγe a

∂W

∂a
= 1

2πγa

∂

∂a

(
1

2
pV f r ac

)
= 1

2
p2γ1/2

e aw0. (2.48)

The global energy is also equal to the integral of the local energy release rate along the fracture

front:

G = 1

2π

∫ 2π

0
Gdθ, (2.49)

where G is given by the local stress intensity factor and the near-tip anisotropic modulus via

equation (2.41).

Equalizing the two expression of the global energy release rate (2.48) and (2.49), we obain Bo :

Bo = 16γ1/2
e

1∫ 2π
0 E ′

α

(
γ2

e cos[θ]2 + sin[θ]2
)1/2

dθ
. (2.50)

For the isotropic elastic case, Bo can be obtained analytically as a function of the complete

elliptical integral of the second kind E

(√
1−γ2

e

)
(Irwin, 1962).

Bo,i so = 4

〈E ′〉E
(√

1−γ2
e

)γ1/2 (2.51)

We should point out that Lin and Keer (1989) gives an approximation of Bo for the case of a

penny shaped crack a = b as: B−1
o,app = πE1

8
(
1−ν2

13

) , where E1 is the elastic Young’s modulus in

the divider direction and ν13 is the Poisson’s ratio in the e1e1e1 direction due to a loading in e3e3e3

direction. The approximation coincides with the exact solution only in the isotropic case.
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2.5. Elastic solutions of fracture problem in TI material

Figure 2.8 – The point (x1, x3) inside the elliptical fracture and its closest projection (x f
1 , x f

3 ).

Analytic TI Kernel Abaqus Fabrikant Kanaun
Bo p

p
ab (mm) relative error

Isotropy-Stripa granite 0.096 0.05% 0.95% 29% 5.7%
Olkiluoto mica gneiss 0.086 0.11% 0.42% 30.4% 28.4%

Gas-saturated Shaly Coal 0.4 1.45% 0.83% 52% 62.6%
Slate Del Carmen (this study) 0.092 0.04% 0.26% 38.6% 55%

Table 2.6 – Opening magnitude (in mm) for an elasto-static elliptical fracture of γe = 0.5 subject
to uniform pressure p = 1 MPa. Comparison of the analytical solution is with numerical
simulations in Abaqus and with the analytical solutions of Fabrikant (2011); Kanaun (2007).
The rocks are defined in table 2.2.

Verification against Finite Element Method

We aim to validate our analytical solution using finite element Abaqus calculations and also

by modeling an ellipse in rectangular media described by the TI kernel of Pan et al. (2014)

(see equation(2.27)) (see figure 2.10). We consider an ellipse of major axis a = 2 m and minor

axis b = 1 m embedded in a TI medium (table 2.2) and subject to net pressure p = 1 MPa.

We compare the resulting maximum width with the solutions of Fabrikant (2011); Kanaun

(2007) in table 2.6. As we can see from table 2.6, the numerical solutions are aligned with

the analytic one with a maximum of 1.45% of error, whereas the solutions given by Fabrikant

(2011); Kanaun (2007) are incorrect and their relative errors range up to 62.6%.

Verification against Displacement Discontinuity Method solver

Here we consider the fracture plane of dimension [−3,−2,3,2] meters, divided into 80*80 cells

(figure 2.9-right). We use the elastic parameters corresponding to slate Del Carmen (table

2.2). We set the pressure at p = 1 MPa and the ellipse aspect ratio to γe = 0.5 (a = 2m and

b = 1m) . We compare in figure 2.10 the opening profile in the e1e1e1 and e3e3e3 directions using the

analytical expression 2.43 (black line) and the numerical model using the TI kernel of Pan et al.

(2014) (red dots) (see equation(2.27)). The numerical solution accurately follows the analytical

solution along both axes e1e1e1 and e3e3e3.
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Chapter 2. Fracture mechanics of transversely isotropic media

Figure 2.9 – Left: Schematic of elliptical planar fracture normal to the bedding and subject to
uniform pressure p, and right: Fracture plane discretised into rectangular elements.
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Figure 2.10 – Opening profile �u(x1, x3)�2 along e1e1e1 and e3e3e3 of elliptical fracture of γe = 0.5
embedded in slate Del Carmen under a uniform pressure p = 1 MPa. Comparison of the
analytical solution in black solid line with the numerical elastic kernel in red dots (Pan et al.,
2014).
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2.6. Conclusions

2.6 Conclusions

The main conclusions of this chapter are the following:

• We have reviewed the elasticity principles and the fundamental solutions of a point

force in a transverse isotropic media. A displacement discontinuity method (DDM) was

developed to discretise the boundary elastic representation over a cartesian rectangular

mesh assuming a piece-wise constant displacement. We benchmarked the DDM solver

against some existing solutions.

• Zooming into the near-tip region, we showed that for planar fracture normal to the

isotropy plane, the fracture mode decouples and the fracture propagates in pure opening

mode.

• Solving the steady-state growth near the tip allows us to derive the asymptotic elastic

integral operator – which has a similar expression to that in the isotropic space – with

the use of an elastic modulus accounting for the anisotropic local propagation direction.

Therefore, all the known mode I solutions for fracture problems in isotropic media can

be easily used in the TI case.

• We re-derived an exact solution for elliptical fracture in TI media that we validated

against a finite element method and a DDM solver. This solution will be further used

for the case of a self-similar elliptical fracture propagating in the toughness dominated

regime (chapter 4).
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3 A semi-infinite hydraulic fracture
driven by a shear thinning fluid

This chapter is a modified version of an article published in the Journal of Fluid Mechanics:

Moukhtari and Lecampion (2018): "A semi-infinite hydraulic fracture driven by a shear-

thinning fluid." Journal of Fluid Mechanics 838:573-605.

Contributions:

F-E. Moukhtari has formulated the problem, performed the scaling analysis and write the

numerical solver. B. Lecampion has participated in the methodology. F-E. Moukhtari and

B. Lecampion have written the manuscript. B. Lecampion have guided the discussion of the

numerical results.
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Chapter 3. A semi-infinite hydraulic fracture driven by a shear thinning fluid

3.1 Abstract

In this chapter, we focus our study on the near tip solution of a hydraulic fracture driven

by a Non-Newtonian fluid in isotropic impermeable media. We use the Carreau rheological

model which properly account for the shear-thinning behavior between the low and high

shear rates Newtonian limits. We allow for the occurrence of a region without fluid of a-priori

unknown length at the fracture tip. We show that the solution depends on four dimensionless

parameters: a dimensionless toughness (function of the fracture velocity, confining stress,

material and fluid parameters), a dimensionless transition shear stress (related to both fluid

and material behaviour), the fluid shear thinning index and the ratio between the high and

low shear rate viscosities. We solve this problem numerically combining a Gauss-Chebyshev

method for the discretization of the elasticity equation, the quasi-static fracture propagation

condition and a finite difference scheme for the width-averaged lubrication flow. The solution

exhibits a complex structure with up to four distinct asymptotic regions as we move away from

the fracture tip: a region governed by the classical linear elastic fracture mechanics behaviour

near the tip, a high shear rate viscosity asymptotic and power-law asymptotic region in the

intermediate field and a low shear rate viscosity asymptotic far away from the fracture tip. The

occurrence and order of magnitude of the extent of these different viscous asymptotic regions

are obtained analytically. Our results also quantify how shear thinning drastically reduces the

size of the fluid lag compared to a Newtonian fluid.

We also investigate the response obtained with simpler rheological models (power- law, Ellis).

In most cases, the power-law model does not accurately match the predictions obtained with

a Carreau rheology. In the zero lag limit, the Ellis model properly reproduces the results of

a Carreau rheology, albeit only for a dimensionless transition shear stress below a critical

dimensionless transition shear stress whose expression is given analytically as function of the

shear thinning index and magnitude.

3.2 Introduction

In the stimulation of oil and gas wells by hydraulic fracturing, the rheology of the fluid is

the only thing that can be engineered (beside the value of the rate at which the fluid is

injected). Large research efforts have thus led to the development of various fluid types over

the years, essentially trying to maximize fracture opening and minimize particles settling

(Barbati et al., 2016; Economides and Nolte, 2000). Although other complex rheologies are

sometimes encountered in practice (viscoelasticity, yield stress etc.), most of these engineered

fluids exhibit a shear thinning behaviour: their viscosity decreases as a function of the applied

shear rate (see figure 3.1 for examples of the rheology of typical fracturing fluids). All these

fluids exhibit a Newtonian plateau at low shear rate where their viscosity is maximum and

starts to shear thin for value of shear rate larger than a critical value γ̇c . At very large shear

rate, the viscosity tends to the Newtonian viscosity of the base solvent used (typically water).

How such a complex rheological behaviour of the fluid impacts the actual propagation of a
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Figure 3.1 – Viscosity as function of shear rate for two fracturing fluids: Hydroxypropylguar
(HPG - data taken from Guillot and Dunand (1985)) and in inset a viscoelastic surfactant (VES
- data taken from Kefi et al. (2004)). These experimental data do not cover the large shear rate
region where the viscosity typically tends toward the solvent viscosity (water in those case) -
see e.g. Pipe et al. (2008) for experimental data on Xanthan gum covering the complete range
of shear rates. A number of rheological models can be used to reproduce these data over parts
or all of the range of shear rates. We display here the best fit for the power-law (dashed brown
line), Carreau (continuous black line) and Ellis (dot-dashed red line) rheological models. The
corresponding best-fit parameters are listed in table 3.1 for these two fluids and the different
models.

hydraulic fracture has been mostly investigated using a simple power-law model (e.g. Sousa

et al., 1993; Desroches et al., 1994; Adachi and Detournay, 2002). The impact of the low and

large shear rate plateau as well as the amplitude of shear thinning remains poorly understood.

Similarly the effect of shear thinning on the extent of the fluid-less cavity at the fracture tip

(fluid lag) observed for a Newtonian fluid (Garagash and Detournay, 2000) remains unknown.

The rheology of a shear thinning fluid over the whole range of shear rates can be well repro-

duced by either the Carreau (1972) or Cross (1965) constitutive models. We focus here on the

Carreau rheology, but similar results would be obtained using the Cross model. Two others

rheological models are often used for shear thinning fluids: i) the power-law model which

captures only the shear thinning part of rheological data (over-estimating viscosity at low

shear rate, under-predicting at large shear rate) and ii) the Ellis model (Brodkey, 1969) which

reproduces the low shear rate Newtonian plateau as well as the power-law shear thinning
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Fluid
Power-law Carreau Ellis

n M (Pa.sn) n µo (Pa.s) µ∞ (Pa.s) γ̇c
(
s−1) m µo (Pa.s) β (Pa)

HPG (15◦C ) 0.46 0.75 0.46 0.44 0.001 3.3 2.22 0.44 2.01
VES (77◦C ) 0.1 13 0.1 49 0.0003 0.254 13 49 8.836

Table 3.1 – Rheological parameters of a HPG and VES fluids (for a given temperature) for the
power-law, Carreau and Ellis models corresponding to the experimental data of figure 3.1.
Note that the majority of fracturing fluids have a power-law index n between 0.1 and 0.5.

region but does not reproduce the large shear rate Newtonian limit. The differences between

these models can be clearly seen in figure 3.1 while the corresponding rheological parameters

are listed in table 3.1. In order to best fit the experimental data, the power-law index may be

adjusted independently from the Carreau index (see examples in Sochi (2015); Myers (2005)).

However, in the interest of comparison and simplification, we will consider that the power-law

index is equal to the Carreau shear thinning index. The power-law consistency M (dimensions

Pa.sn) can thus be expressed directly from the rheological parameters of the Carreau model:

M = µo +µ∞

2γ̇c
n−1

(p
2−2/(n−1) −1

)n−1 (3.1)

where µo , µ∞ are the viscosity at low and high shear rates respectively and γ̇c is the critical

shear rate at which the fluid starts to shear thin in the Carreau model.

Within a fracture, fluid flow occurs under lubrication condition between parallel plates. For

the same average velocity (and the rheological parameters of the HPG fluid listed in table

3.1), the different rheologies exhibit a different velocity profile across the cross section of the

fracture and the corresponding pressure gradient differs significantly between models as can

be seen in figure 3.2. For that particular example, the power-law fluid has a profile close to

a plug flow around the centerline and yield the largest pressure gradient. The Carreau and

Ellis models exhibit similar velocity profiles except close to the centerline (but with different

pressure gradients). We shall see in the following that these differences between models will

impact the solution of the hydraulic fracturing problem.

In order to study the impact of the fluid shear thinning behaviour on hydraulic fracturing, we

focus our analysis on the case of a semi-infinite hydraulic fracture propagating at a constant

velocity in a linear elastic and impermeable material. Such a configuration corresponds to

a zoom into the tip region of a finite hydraulic fracture (Garagash, 2009; Detournay, 2016)

where a state of plane-strain locally prevails. Such a semi-infinite fracture problem has been

extensively studied for the case of a Newtonian fluid (Spence and Sharp, 1985; Desroches

et al., 1994; Garagash and Detournay, 2000; Garagash et al., 2011). It has notably enabled to

properly quantify the competition between the dissipative processes associated with fracture

surface creation and viscous flow. Such a competition is intrinsically linked to the transition

between the classical linear elastic fracture mechanics asymptotic region near the fracture tip

to a viscosity dominated asymptotic region far from the tip. The extent of the transition being
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Figure 3.2 – Fluid velocity profiles for a lubrication flow between parallel plates (as it occurs
within a fracture) at a given mean velocity < u >=V = 1 m/s for a Carreau, power-law, Ellis
and Newtonian fluids. The corresponding fluid pressure gradient is also displayed for each
model. The rheological parameters correspond to a HPG fluid (see table 3.1 for the different
models, figure 3.1 for the rheogram). For the Newtonian velocity profile (dotted green line),
the low shear rate viscosity of the HPG is used. Note that the solution for a Carreau fluid
is semi-analytical while the solution for the other models can be obtained analytically (see
sections 3.10.1, 3.10.2 and 3.10.3 for details).

governed by a combination of the fluid viscosity, material fracture toughness, elasticity and

fracture velocity.

Our goal is to perform a similar analysis for a shear thinning fluid. We will use the Carreau

rheology to model the complete shear thinning behaviour of the fluid. We also allow for the

possible presence of a fluid-less cavity of a priori unknown length at the fracture tip. Using

scaling analysis and a numerical solution of the problem, we aim at understanding the struc-

ture of the solution and in particular the extent of the different asymptotic regions (associated

with different dissipative mechanisms) as function of the different problem parameters. We

will also investigate how an approximation of the shear thinning behaviour by either the

power-law or the Ellis rheological model compare with the more precise Carreau rheology. In

other words, how precise we need to be on the fluid rheology in hydraulic fracturing modeling.

3.3 Problem formulation

We consider a semi-infinite fluid-driven fracture under plane-strain condition propagating at

a constant velocity V in an impermeable linear elastic medium (see figure 3.3). The fracture is

propagating normal to the minimum in-situ compressive stress σo and is internally loaded

by the spatially non-uniform fluid pressure p f . We also allow for the presence of zone of

a-priori unknown size λ without fluid at the fracture tip (fluid lag). The fracture is assumed to
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w pf
xV

x

λ

σo

Figure 3.3 – Sketch of a semi-infinite hydraulic fracture propagating at a constant velocity V in
an impermeable elastic material under a pre-existing normal compressive stress σo . A fluid
lag zone of a-priori unknown length λ adjacent to the fracture tip may be present.

propagate at a constant velocity V in quasi-static equilibrium under a pure opening mode

loading. The fracture propagation condition is written as the equality of the mode I stress

intensity factor K I to the material fracture toughness K I c (Rice, 1968):

K I = K I c (3.2)

The linear elastic fracture near-tip asymptote for the fracture opening w is related to the mode

I stress intensity factor K I and can be written in view of the propagation condition (3.2) as

(Rice, 1968):

w(x) =
√

32

π

K I c

E ′ x1/2 x ¿ 1. (3.3)

In the plane-strain pure tensile configuration of figure 3.3, the elastic deformation of the

material reduces to the following normal traction boundary integral equation between the

net pressure loading p(x) = p f (x)−σo and the fracture opening w(x) (see e.g. Garagash and

Detournay (2000)):

p(x) = p f (x)−σo = E ′

4π

∫ ∞

0

∂w(s)

∂s

ds

x − s
(3.4)

where E ′ = E/(1−ν2) is the material plane-strain elastic modulus, related to the Young’s mod-

ulus E and Poisson’s ratio ν. We account explicitly for the possible presence of a region of

length λ without fluid near the tip of the fracture due to the possible occurrence of cavitation.

This fluid lag zone is filled with fluid vapor and is under a constant pressure equal to the fluid

cavitation pressure. Such a cavitation pressure is typically smaller than the confining stress σo

such that we write the net loading in this lag zone simply as:

p(x) = pcav −σo ≈−σo x ∈ [0,λ] (3.5)
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The semi-infinite hydraulic fracture propagates under a constant velocity V , such that for

an impermeable medium, in the moving coordinates centered on the fracture tip, the fluid

continuity equation reduces to (Desroches et al., 1994):

V f =V.

The width-averaged fluid velocity V f is equal to the fracture velocity V at any distance from

the tip. Under the lubrication approximation, this width-averaged fluid velocity can be related

at any x to the fracture opening and pressure gradient via the solution of pressure-driven flow

between parallel plates. For a Carreau rheology, no analytical formula exists but the solution

can be expressed in a similar form that the well-known Poiseuille solution for a Newtonian

fluid:

V = 1

12µoΓ
(
τw ,n,µ∞/µo , γ̇c

) w2 ∂p f

∂x
, x ∈]λ,∞[ (3.6)

where the dimensionless apparent width-averaged viscosity for parallel plates flow

Γ
(
τw ,n,µ∞/µo , γ̇c

)
depends non-linearly on the shear stress at the fracture wall τw = w

2

∣∣∣∣∂p

∂x

∣∣∣∣
as well as the rheological parameters of the Carreau model. This dimensionless apparent

viscosity requires the solution of the rheological equation at the fracture wall in order to obtain

the wall shear rate γ̇w = τw /µ(γ̇w ) for a given value of wall shear stress (Sochi, 2014, 2015)

(see section 3.10.1 for details). It is interesting to note that an analytical solution exists for the

lubrication of a power-law rheology as well as for the Ellis rheological model (Myers, 2005).

Also the lubrication flow for a simplified Carreau modelled as truncated power law fluid is

explicitly given in Lavrov (2015).

The aim is to solve for both the fracture opening w(x) and net pressure p(x) profiles as well as

the extent of the lag λ as function of the fracture velocity V , solid material properties (elastic

modulus E ′, fracture toughness K I c ) and fluid rheological properties.

3.4 Scaling

We follow the scaling first introduced by Garagash and Detournay (2000) for the case of a semi-

infinite hydraulic fracture driven by a Newtonian fluid. A characteristic viscous lengthscale

Lµo scales all distances, while the fracture width is scaled by εLµo (with ε a small number)

and the characteristic pressure is taken as the in-situ compressive stress σo . We thus define

the normalized moving coordinate ξ= x/Lµo and the normalized fracture openingΩ(ξ), net

pressureΠ(ξ) and fluid lagΛ size as

w = εLµoΩ(ξ) p =σoΠ(ξ) λ= LµoΛ

The scaling parameters (Lµo ,ε) can be obtained from the elasticity equation (3.4) and the

lubrication relation (3.6): Lµo is a fracture characteristic lengthscale related to the viscosity

propagation regime and its expression depends on the fluid rheological model. The small
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dimensionless parameter ε is independent of the fluid rheology and is defined as the ratio

between confining stress and the solid material plane-strain Young’s modulus. For a Carreau

rheology, choosing the low-shear rate viscosity µo as a representative value of viscosity, we

write similarly to Garagash and Detournay (2000)

Lµo =
12µoV E ′2

σ3
o

ε= σo

E ′ .

These scales for the slightly different cases of a power-law and Ellis rheology are discussed in

sections 3.10.2 and 3.10.3.

The corresponding dimensionless governing equations in that scaling simplify to the following:

• Elasticity equation relating net pressure to fracture opening

Π(ξ) = 1

4π

∫ ∞

0

∂Ω(ξ′)
∂ξ′

dξ′

ξ−ξ′ (3.7)

• The fracture propagation expressed as a near tip width asymptotic

Ω(ξ) = κ
√
ξ for ξ→ 0 (3.8)

where κ is a dimensionless toughness defined in such a scaling as

κ=
√

8

3π

(
σo

V µo

)1/2 K I c

E ′ (3.9)

• The net pressure in the lag region

Π=−1 for ξ ∈ [0,Λ] (3.10)

• The lubrication flow equation

1

Γ

(
Ω

2

∣∣∣∣∂Π∂ξ
∣∣∣∣ ,α,n,µ∞/µo

)Ω2 ∂Π

∂ξ
= 1 for ξ ∈]Λ,∞[ (3.11)

The dimensionless apparent viscosity Γ

(
1

2
Ω

∣∣∣∣∂Π∂ξ
∣∣∣∣ ,α,n,µ∞/µo

)
can be written as a function of

the dimensionless fluid shear stress at the wall
Ω

2

∣∣∣∣∂Π∂ξ
∣∣∣∣, the fluid shear thinning index n, the

viscosity ratio µ∞/µo and a parameter α which is defined as the ratio between the characteris-

tic shear stress at the wall εσo and the critical fluid shear stress τc =µo γ̇c corresponding to
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the critical shear rate γ̇c at which the fluid starts to shear-thin (see figure 3.1):

α= εσo

µo γ̇c
= σ2

o

µo γ̇c E ′ . (3.12)

For typical order of magnitude of the far field stress σo (MPa) and elastic modulus E ′ (GPa),

such a dimensionless transition shear stress α ranges from 10 for a fluid with a large low

shear-rate Newtonian plateau (large value of γ̇c ) to 105 for a fluid with a shorter transition to a

shear thinning behaviour (small γ̇c ). The fluid index n varies for most of hydraulic fracturing

fluids between 0.1 and 0.5. For a fluid with large shear thinning magnitude, the viscosity ratio

is about 10−3 versus 0.1 for a fluid with a small shear thinning magnitude.

The dimensionless solution of the problem thus depends on four dimensionless parameters:

the dimensionless toughness κ defined in (3.9), dimensionless transition shear stress α (3.12),

fluid index n and the overall extent of the shear thinning behaviour of the fluid captured by

the ratio between the large and low shear rate viscosity µ∞/µo .

3.5 Asymptotes

The knowledge of the solution for the case of a Newtonian fluid (Garagash and Detournay,

2000) as well as the limiting solution for zero-lag / zero toughness for a power-law rheology

(Desroches et al., 1994) will provide some guideline to understand how the solution for a

Carreau rheology is structured as we move away from the fracture tip. The different tip

asymptotes can be expressed in terms of the following characteristic lengthscales:

`k = 32

π

(
K I c

E ′

)2

, `mo =
12µo

E ′ V , `mn =
(

M ′

E ′

)1/n

V , `m∞ = 12µ∞
E ′ V , (3.13)

where M ′ = 2n+1(2n +1)n

nn M , and M is the power-law consistency which is defined from the

Carreau parameters as per equation (3.1).

Near field asymptote

The near tip asymptote of the fracture opening is governed by linear elastic fracture mechanics

(lefm). In this region, the fracture width evolves with the square-root of distance to the tip and

the toughness characteristic lengthscale `k (see equation 3.13):

κ−as ymptote : wk = `1/2
k x1/2 +O(x3/2), pk =−σo

which takes the following form in the scaling previously defined:

Ωk = κξ1/2 +O(ξ3/2), Πk =−1 (3.14)
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For the strictly zero toughness case (κ= 0), the width evolves as ξ3/2 which corresponds to the

higher order term in the linear elastic fracture mechanics asymptotic development (see e.g.

Rice (1968); Garagash (2009)). In the complete problem, the extent of this lefm region depends

on the viscous lengthscale Lµo as well as the value of the dimensionless toughness (i.e. the

corresponding lag size).

Far field asymptotes

In the case where both the fluid lag and toughness are negligible (κ¿ 1,Λ¿ 1), the behaviour

of the solution is governed by the coupling between lubrication flow and elasticity which yields

a different power-law dependence of the opening with distance from the tip. The solution

for a power-law rheology (for zero-lag and zero toughness) have been obtained in Desroches

et al. (1994). Such a solution corresponds to a far-field asymptote valid at a distance from

the tip where the effect of dimensionless toughness and the presence of the lag vanishes (see

e.g. Garagash and Detournay (2000); Garagash (2009); Garagash et al. (2011) for discussion).

For a Carreau rheology, as the average shear rate V /w decreases as we move away from the

fracture tip, we can expect to see two or more viscosity dominated asymptotes. Far away from

the fracture tip, i.e. for very low shear-rate, we should recover the viscosity asymptote for a

Newtonian with the low shear-rate viscosity (see figure 3.1), i.e:

mo-asymptote (κ=Λ= 0) : wmo =βo`
1/3
mo

x2/3, pmo =− βo

6
p

3
E ′`1/3

mo
x−1/3,

where

βo = 21/3 ×35/6.

This mo-asymptote in the scaling previously defined in section 3.4 has the following form:

Ωmo =βoξ
2/3, Πmo =− βo

6
p

3
ξ−1/3. (3.15)

As we move closer to the fracture tip, the fluid will exhibit shear thinning. The fracture opening

should thus eventually follow the viscosity asymptote for a power-law fluid. We will refer to

this power-law asymptote -first derived by Desroches et al. (1994)- as mn :

wmn =βn`
n/(2+n)
mn

x2/(n+2),

pmn =− βn

2(n +2)
cot

( −2π

n +2

)
E ′`n/(2+n)

n x−n/(n+2)

where

βn =
(
2

(n +2)2

n
tan

( −2π

n +2

))1/(n+2)

.

We can re-express this asymptote using the expression of the power-law consistency M as

function of the Carreau rheological parameters (see equation (3.1)). Moreover, using the low

52



3.6. Numerical scheme

shear rate scaling defined in the section 3.4, such mn asymptote (κ=Λ= 0) reads:

Ωmn =α
n−1
n+2βµβnξ

2/(n+2), Πmn =−α
n−1
n+2βµβn

2(n +2)
cot

( −2π

n +2

)
ξ−n/(n+2)

where

βµ =

(
2n +1

6n

)n 1+µ∞/µo(p
2−2/(n−1) −1

)n−1


1/(n+2)

.

Finally, as we move closer to the fracture tip, for larger average shear rate, it may well be that

another Newtonian viscous asymptote linked to the Newtonian behaviour at large shear-rate

µ∞ could be observed (see equation 3.16). In the low-shear rate scaling, this large shear rate

asymptote is given by :

m∞-asymptote (κ=Λ= 0) : wm∞ =βo`
1/3
m∞x2/3, pm∞ =− βo

6
p

3
E ′`1/3

m∞x−1/3 (3.16)

or alternatively in dimensionless form in the lag scaling:

Ωm∞ =βo
(
µ∞/µo

)1/3
ξ2/3, Πm∞ =− βo

6
p

3

(
µ∞/µo

)1/3
ξ−1/3. (3.17)

The evolution of the complete solution between these different asymptotes as well as the

extent of the regions where these asymptotes may be valid will depend on the values of the

different dimensionless parameters governing the problem, namely κ, α, n and µ∞/µo .

3.6 Numerical scheme

We develop a numerical scheme for the solution of the complete problem for a given set of

dimensionless parameters (κ, α, n and µ∞/µo). In our simulation, following Garagash and De-

tournay (2000), we actually prescribe the dimensionless lag sizeΛ such that the domain where

the lubrication equation is enforced is known a-priori. We thus solve for the corresponding

value of dimensionless toughness κ, as well as dimensionless pressure and opening.

We use a Gauss-Chebyshev quadrature for the discretization of the elasticity equation. We

embed the linear fracture mechanics asymptote directly in the discretization of the dislocation

density:
dΩ

dξ
= κ√

ξ
+

√
ξφ(ξ),

We also perform the following changes of coordinates to map the semi-infinite interval

ξ ∈ [0,∞[ to v ∈ [−1,1] so as the Gauss-Chebyshev quadrature to become applicable to the
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numerical solution (Ioakimidis and Theocaris, 1980; Viesca and Garagash, 2015)

ξ= 1+ v

1− v

in order to discretize the elasticity equation using a Gauss-Chebyshev quadrature of the third

kind at N collocation points:

Π[ξ(v j )]

1− v j
= 1

4π

N∑
i=1

Ai

1−ui

φ[s(ui )]

v j −ui
(3.18)

where ui = cos

(
π(i −0.5)

N

)
and Ai = π

N
(1+ui ). The net pressure is evaluated at points

v j = cos

(
π j

N

)
for j = 1,2, ..., N , whereas the dislocation density φ[s(ui )] is evaluated at points

ui for i = 1,2, ..., N .

The lubrication equation is discretized at the mid distance ξi+1/2 between net pressure collo-

cation points, and the pressure gradient is approximated by centered finite difference. The

discretization of equation (3.11) is thus:

Ω2(ξi+1/2)
Π(ξi+1)−Π(ξi )

ξi+1 −ξi
= Γ

(
Ω(ξi+1/2)

2

Π(ξi+1)−Π(ξi )

ξi+1 −ξi
, α, n, µ∞/µo

)
(3.19)

The openingΩ(ξi+1/2) at ξi+1/2 is evaluated from a linear interpolation of the opening eval-

uated at ξi and ξi+1. The non-linear tangent viscosity Γ function of the wall shear stress is

estimated from the interpolated function built for the given values of α, n and µ∞/µo over

the whole range of dimensionless wall shear stress (see section 3.10.1). The net pressure Π

is directly set in the lag zone for the collocation points i ∈ [1, NΛ] where NΛ is the number of

points in the lag region:

Π(ξi ) =−1, (3.20)

while at infinity the net pressure is set to zero, i.e. we set the following constraint at the last

collocation point

Π(ξN ) = 0. (3.21)

It follows that the solution for the fracture openingΩ is positive while the net pressure Π is

everywhere negative. This is a direct consequence of the semi-infinite nature of this problem

where pressure is determined up to a constant (see e.g. Garagash and Detournay (2000) for

discussion).

The resulting non-linear system of equations is solved via a quasi-Newton root-finding scheme

using the dimensionless net pressure at the collocation points and κ as the primary unknown

variables. The algorithm has been implemented in Mathematica with computational accuracy

in mind (but not efficiency). The numerical results reported in the remaining of this paper

have been obtained with a total number of collocation points between 1600 and 3000. Conver-
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gence of the lubrication equation (3.19) has been obtained with an accuracy of 10−8 on the

norm of the residuals. A simulation typically takes from few minutes up to three hours on a

modern personal computer (Macbook Pro, Early 2015, 2.9 GHz Intel core i5) depending on

the prescribed size of the lag, the amplitude of shear thinning and the number of collocation

points.

3.7 Results for a finite fluid lag

3.7.1 Effect of dimensionless toughness κ

We first investigate the effect of dimensionless toughness κ for a given set of rheological

dimensionless parameters representative of a Carreau fluid: µ∞/µo = 10−3, n = 0.5, and

α= 102. The profile of dimensionless fracture opening with distance from the tip for different

values of dimensionless lag size/ dimensionless toughness is displayed on figure 3.4, while the

corresponding dimensionless net pressure profiles (in semi-log) and the apparent viscosity

Γ are displayed on figures 3.5 and 3.6. We can directly observe the extent of the lag on the

net-pressure profiles which depart from the valueΠ=−1 at the fluid front ξ=Λ. The relation

between the dimensionless toughness and the dimensionless lag size for these simulations

are better grasped on figure 3.7. The dimensionless lag size Λ is decreasing function of

dimensionless toughnessκ. This is similar to the Newtonian case (see Garagash and Detournay

(2000)) with the difference that for a given value of dimensionless toughness, due to shear

thinning, the dimensionless lag is always smaller compared to the Newtonian case (see figure

3.10 for more simulations with different shear thinning index n, and figure 3.8 for different

transition shear-stress α).

The dimensionless opening profiles (figure 3.4) also evolve in a similar way to that in the

Newtonian case with a region dominated by the lefm toughness κ-asymptote (3.14) near the

fracture tip (for x ¿ Lµo ) and a region in the far-field (for x À Lµo ) dominated by the low

shear-rate viscosity asymptote mo (equation (3.15)). However, here due to the shear thinning

nature of the Carreau rheology, an intermediate region following the power-law dominated

asymptote mn can be observed for intermediate distances between the lefm near-tip region

and the far-field low shear rate viscosity region. It is worth noting the particularity of the zero

toughness case (κ= 0) for which the dimensionless lag is maximum and the opening in the

near-tip lefm region evolves as ξ3/2 (see figure 3.4).

The same evolution can be seen on the net pressure profiles (figure 3.6). The different viscosity

regimes as function of distance from the tip are also visible in figure 3.5 where the dimension-

less apparent viscosity Γ is plotted along the fracture for the two cases κ= 0 (Λ= 0.049) and

κ = 0.74 (Λ = 8.3×10−8). The largest shear rate and therefore the lowest tangent apparent

viscosity is always located at the fluid front. For the largest lag case, a smaller shear thinning

region can be observed (see figure 3.5). On the other hand, for a very small lag (κ = 0.74),

the fluid strongly shear thin, although the value of the tangent viscosity at the fluid-front
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Figure 3.4 – Dimensionless fracture opening w/εLµo along the fracture for κ= 0, 0.002, 0.008,
0.043, 0.33, 0.74 (with corresponding lag sizeΛ= 0.049, 0.048, 0.047, 0.041, 0.008, 8.3×10−8)
in log-log scale for α= 102, µ∞/µo = 10−3, and n = 0.5. The dashed lines correspond to the
asymptotic solution in the toughness dominated regime (κ-asymptote), power-law viscosity
regime (mn-asymptote) and low shear-rate Newtonian viscosity regime (mo-asymptote).

(ξ=Λ) remains larger than the large shear rate value µ∞/µo . It is important to note that the

large shear rate asymptote is absent for all the simulations performed with this given set of

rheological parameters (n = 0.5, α= 102, and µ∞/µo = 10−3).

The relative extent of these different asymptotic regions depends on the values of the dimen-

sionless problem parameters. In order to picture the variation of the size of these asymptotic

regions as function of dimensionless toughness κ, we determine from our numerical results

the spatial locations (ξκ, ξn and ξo) where our numerical results for the fracture opening are

within 1% of these different asymptotes. The results are displayed on figure 3.7 for that same

set of parameters (α = 102, µ∞/µo = 10−3, and n = 0.5) where we see that the extent of the

power-law and low shear-rate viscosity regions do not significantly change with dimensionless

toughness while the lefm near-tip region shrinks when the dimensionless toughness decreases

(and the lag size increases) as expected. We also see that the fluid lag region is always localized

in the toughness asymptotic region (for large κ) - or in the transition between the toughness

and power-law region (small κ).

3.7.2 Effect of the dimensionless transition shear stressα

The value of the dimensionless transition shear stress ratio α reflects the extent of the low

shear rate plateau: α is inversely proportional to the critical shear rate γ̇c (see equation (3.12)).
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Figure 3.5 – Dimensionless apparent viscosity Γ along the fracture starting from the fluid
front ξ = Λ for κ = 0 (Λ = 0.049) and κ = 0.74 (Λ = 8.3× 10−8) in log-log scale for α = 102,
µ∞/µo = 10−3, and n = 0.5.
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Figure 3.6 – Dimensionless fluid pressure p/σo along the fracture for κ= 0, 0.002, 0.008, 0.043,
0.33, 0.74 in semi-log scale for α = 102, µ∞/µo = 10−3, and n = 0.5. The dashed lines corre-
spond to the asymptotic solution of pressure in power-law viscosity regime (mn-asymptote)
and in Newtonian viscosity regime (mo-asymptote).
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Figure 3.7 – Extent of the regions where the numerical solution can be approximated by the
different asymptotes (κ-asymptote, mn-asymptote, and mo-asymptote) with accuracy of 10−2

as function of dimensionless toughness with α= 102, µ∞/µo = 10−3, n = 0.5. The position of
the fluid lag is also displayed for comparisons.

For large α, the fluid shear thin faster and as a result the dimensionless lag is getting smaller

for a similar value of dimensionless toughness. This can be clearly seen on figure 3.8 where

theΛ−κ evolution is plotted for different values of α for n = 0.5 and µ∞/µo = 10−3.

More interestingly, the structure of the solution also changes for larger value of α. We present

on figure 3.9 the evolution of the dimensionless fracture opening and apparent viscosity for a

large dimensionless transition shear stress ratio α= 107 while the shear thinning index n and

extent µ∞/µo are kept the same as in the previous sub-section: n = 0.5 and µ∞/µo = 10−3. For

this case, the dimensionless opening profiles (for different κ) involve an additional viscosity

asymptote corresponding to the large shear rate m∞ viscosity asymptote located in between

the toughness and shear thinning asymptotic regions. Even though the toughness region

increases with κ, the validity of the m∞ asymptote roughly starts at the same distance from the

fracture tip ξ' 0.01 for all values of κ. This can also be clearly seen on the apparent viscosity

profiles depicted on figure 3.9b: the apparent viscosity close to the fluid front reaches the large

shear rate value at about ξ≈ 0.1.

The opening in the shear thinning region actually do not coincide exactly with the mn power-

law asymptote (red dashed line on figure 3.9a). This is the case for all dimensionless toughness.

This difference is rooted in the behaviour of the Carreau viscosity at large shear rate. If we zoom

in the region of large γ̇> 1000 on figure 3.1, we observe that the transition from the power-law

behaviour to the Newtonian high shear rate behaviour occur over a large range of shear rate for

a Carreau rheology. This large transition region can be clearly seen on the apparent viscosity

profiles (figure 3.9b), where it departs from the large shear rate value at ξ≈ 0.1 and reaches
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Figure 3.8 – Dimensionless lag length λ/Lµo versus the dimensionless toughness κ for a
Carreau rheology for different value of α (µ∞/µo = 10−3, n = 0.5). The corresponding results
for a power-law rheology are also displayed for α= 105 and α= 103 for comparisons.

the power-law branch at about ξ≈ 100 (or more). As a result the opening profile beyond the

large shear rate viscosity asymptotic region are shifted from the mn power-law asymptote

although they exhibit a similar power-exponent. This difference is negligible for sufficiently

small dimensionless shear stress α as observed in the previous section (see e.g. figure 3.4),

where the large shear-rate viscosity asymptote was not visible. The difference between the

Carreau opening profile and the power-law asymptote in the shear thinning region becomes

more significant for large α. It is also worthwhile to point out that for the simulations for

α= 107 reported in figure 3.9a, the extent of our computational domain (ξmax = 104) was not

sufficient to observe the low shear rate asymptotic region.

It is also worth noting that the value of dimensionless toughness (and thus the extent of the

lag region) has an effect limited to the near-tip region, such that the transition between the

different far-field viscosity asymptotes are not influenced by κ.

3.7.3 Effect of the fluid shear thinning index n

The shear thinning index n dictates how fast the Carreau fluid transition from the low to

high shear rate viscosity. For the same value of dimensionless toughness κ, same shear

thinning extent µ∞/µo and transition shear stress α, a smaller shear thinning index results

in a significantly smaller dimensionless fluid lag as can be seen on figure 3.10. This result is

expected as the extent of the fluid lag is governed mostly by the value of the apparent viscosity

near the fluid front. The apparent viscosity actually gets toward the large shear rate limit

µ∞/µo near the fluid front for small n (steeper shear thinning branch).
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Figure 3.9 – a) Dimensionless fracture opening w/εLµo along the fracture for κ= 0, 0.013, 0.045,
0.085, 0.11 (with corresponding lag sizeΛ= 0.0004, 0.00025, 5.8×10−5, 2.5×10−6, 8.3×10−8)
in log-log scale for α = 107, µ∞/µo = 10−3, and n = 0.5 (the dashed lines correspond to the
asymptotic solution of opening in the toughness dominated regime (κ-asymptote), high shear
rate Newtonian viscosity regime (m∞-asymptote) and the power-law viscosity regime (mn-
asymptote)). b) Corresponding dimensionless apparent viscosity Γ starting from the fluid
front ξ=Λ for κ= 0, 0.11.
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Figure 3.10 – Dimensionless lag length λ/Lµo versus the dimensionless toughness κ for differ-
ent values of n, (µ∞/µo = 10−3, α= 102).

3.7.4 Effect of the viscosity ratio µ∞/µo

The overall magnitude of the shear thinning behaviour (between low and high shear rate) is

governed by the ratio µ∞/µo . We have so far set this ratio to 10−3, a value corresponding to a

relatively large shear thinning magnitude. We now vary this ratio as well as the dimensionless

toughness while keeping α= 103 and n = 0.5. The lag size - dimensionless toughness relation

for different values of µ∞/µo can be seen on figure 3.11. As expected, the fluid lag is smaller

for smaller µ∞/µo (larger shear thinning magnitude). For µ∞/µo = 1, we obviously recover the

Newtonian case.

3.7.5 Comparison between the Carreau, power-law & Ellis Models

The numerical solver previously discussed can be easily adapted to solve the same problem

for a different fluid rheology. Here, we investigate the differences obtained if we use either a

power-law or an Ellis model to model the fluid shear thinning behaviour instead of the more

complete Carreau rheology. We refer to figure 3.1 for the difference between these models.

The only difference in the solution between the different rheologies lies in the lubrication

relation (equation (3.6)). As a result, the scalings for the power-law and Ellis models are slightly

different than for Carreau. The details of the lubrication equations and the corresponding

scalings are described in sections 3.10.2 and 3.10.3 respectively for these two rheologies. The

solution for the power-law rheology can actually be re-expressed in the Carreau scaling (see

section 3.10.2) using the expression of the power-law consistency parameter as function of

the Carreau rheological parameters (see equation (3.1)). The solution for the Ellis model is

expressed with the same low shear-rate viscosity scaling than for the Carreau rheology but the

dimensionless parameter αe related to the transition from the low shear-rate plateau to the

shear thinning branch is defined differently for the Ellis model (see section 3.10.3, equation
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Figure 3.11 – Dimensionless lag length λ/Lµo versus the dimensionless toughness κ for a Car-
reau rheology with respect to µ∞/µo (α= 103, n = 0.5). The results for a power-law rheology
are also displayed for µ∞/µo = 10−3.

(3.33)).

In order to compare the solution obtained with these different rheological models, we set the

rheological parameters of the different models to the ones reproducing the rheology of a HPG

fluid (see figure 3.1, and table 3.1 for the corresponding rheological parameters of the different

models). It is worth re-emphasizing that the large shear rate / low viscosity limit is absent

from both the power-law and Ellis models. The power-law rheology also overestimates the

viscosity for low shear rate. The deviation of the responses obtained with these two models

can be grasped by comparing them with the solution obtained with the Carreau rheology.

We perform simulations for two different values of transition shear stress and dimensionless

toughness: α = 7× 103, κ = 0.01, and α = 106, κ = 0.002 respectively. In order to set the

dimensionless shear stress, we set the ratio σ2
o/E ′ and thus using the rheological parameters

reproducing the HPG fluid, obtain the corresponding transition shear stress for the Ellis model:

αe = 4975 and 7.2×105 (for α= 7×103, and 106 respectively). The results of the power-law

model are also dependent on both µ∞/µo and α via the relation between the consistency

index and the Carreau parameters. The dependence of the power-law results on µ∞/µo is

weak however as can be seen from the contribution of µ∞/µo on the correspondence between

the power-law - Carreau scaling (1+µ∞/µo)1/n ' 1 (see equation (3.30) in section 3.10.2).

A similar structure for the fracture opening profile is observed for the Ellis and Carreau on

figure 3.12 for the case α= 7×103, κ= 0.01. The toughness region is larger for the Carreau

model compared to the other two models as well as the lag size (CarreauΛ= 8.7×10−4, Ellis

Λ = 3×10−4, and power-law Λ = 1.9×10−4). As we move away from the tip (ξ > 10−2), the

Ellis model follows closely the Carreau solution all the way to the far field zero shear rate

viscosity asymptote mo (slope in 2/3). Similarly, the power-law model also follows closely
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Figure 3.12 – Dimensionless fracture opening w/εLµo along the fracture in log-log scale for
Carreau (with µ∞/µo = 10−3), Ellis, power-law rheology: left- α = 7× 103 (αe = 4975, Ellis
Model), n = 0.46 and κ = 0.01, right- α = 106 (αe = 7.2 × 105, Ellis Model), n = 0.46 and
κ= 0.002.

the Carreau solution in the intermediate power-law region but starts to deviate in the far-

field (ξ> 105) where the low shear rate plateau (absent from the power-law model) start to

dominate. For such a value of dimensionless transition shear stress (α= 7×103), the tangent

apparent viscosity of the Carreau model did not reach the large shear rate Newtonian plateau

near the fluid front, and thus the m∞ asymptote is not visible in the corresponding Carreau

opening profiles.

On the contrary, for α = 106 and κ = 0.002, the large shear rate asymptote is reached near

the fluid front for the Carreau model and the m∞ asymptote is clearly visible on the opening

profile (figure 3.12 right). As a result, both the power-law and Ellis models -which do not

capture the large shear rate viscosity - are significantly off from the Carreau rheology for that

case. This difference observed in the transition between the near-tip toughness asymptote and

the far-field shear thinning regions increases with increasingα. The value of the corresponding

dimensionless lag size are respectively CarreauΛ= 3.3×10−4, EllisΛ= 8×10−8, and power-law

Λ = 1.2×10−8. The power-law and Ellis model actually always underestimate the value of

the fluid lag for any value of dimensionless shear stress and toughness. This is due to their

over-estimation of the shear thinning behavior over the complete range of shear rates.

3.8 Case of a vanishing fluid lag / large dimensionless toughness

(Λ≈ 0 / κÀ 1)

3.8.1 Scaling

The limiting case of large dimensionless toughness κÀ 1 corresponds to a vanishing lag. As

can be observed from equation (3.9), large confining stress σo implies large dimensionless

toughness. A situation that will necessarily occur at great depth in the sub-surface (σo >
1 MPa). The limit of zero lag is therefore particularly important in hydraulic fracturing
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Characteristic Carreau/Ellis Power-law (n)

length ` `mo k = 211K 6
I c

32π3V 2µ2
oE ′4 `mn k =

((
π

32K 2
I c

)2+n

V 2nE ′2+2n M ′2
) 1

n−2

net pressure p pmo k = 3π

8

µoE ′2V

K 2
I c

pmn k =
((

πV

32K 2
I c

)n

M ′E ′1+n

) −1
n−2

width w wmo k = 27K 4
I c

3π2V µoE ′3 wmn k =
((

π

32K 2
I c

)2

V nE ′3M ′
) 1

n−2

Table 3.2 – Characteristic scales for the zero lag case for the three different rheology. The low
shear rate viscosity Newtonian scaling is used for both the Ellis and Carreau model.

practice. Moreover, as observed previously, the effect of the fluid lag is localized near the

tip region and does not readily influence the transition between the different viscosities -

power-law asymptotic regions (see figure 3.7 for example). We will therefore analyze in more

depth the influence of the different governing parameters on the extent of these different

asymptotic regions on the zero lag case.

The zero lag assumption leads to the disappearance of the pressure boundary condition p =σo

and the net pressure becomes singular at the fracture tip (see Garagash and Detournay (2000);

Garagash et al. (2011) for discussion on the Newtonian case). As a result, another scaling

-following Garagash et al. (2011)- has to be adopted (see section 3.10.4). We can choose for

example to scale the width, net pressure and distance from the tip using the scaling for the

transition between the toughness and low shear rate viscosity asymptote. We therefore use a

new characteristic opening wmo k , pressure pmo k and length `mo k (see table 3.2) and express

the solution as:

w = wmo kΩ̄ p = pmo kΠ̄ x = `mo k ξ̄ (3.22)

where Ω̄, Π̄ and ξ̄ are the dimensionless width, net pressure and spatial coordinates. The

lengthscale `mo k characterizes the transition from the toughness dominated regime to the mo

viscosity regime. It is defined as the distance x from the tip where the toughness asymptote

and the low shear rate viscosity asymptote intersect: w ∼ `1/2
k x1/2 ∼ `1/3

mo
x2/3 (see section 3.5

for the expression of the different asymptotes). Similarly wmo k and pmo k are the corresponding

characteristic pressure and width where these two asymptotes intersect.

In such a zero-lag scaling, the solution of the problem depends now on three remaining

dimensionless parameters: the fluid index n, dimensionless transition shear stress and the

extent of the shear thinning magnitude µ∞/µo . The dimensionless transition shear stress is

now defined slightly differently due to the different definition of the characteristic lengthscale

and pressure for this zero lag case. We obtain (see section 3.10.4 for more details):

ᾱ=
(

3π

8

)2 µoE ′3V 2

γ̇c K 4
I c

(3.23)
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3.8. Case of a vanishing fluid lag / large dimensionless toughness (Λ≈ 0 / κÀ 1)

The value of this dimensionless transition shear stress varies significantly depending on both

fluid and rock properties. It may actually span an interval as wide as ᾱ ∈ [10, 107], taking values

for shear thinning fluid (see table 3.1) and typical ranges of rock properties.

The general solution follows the same structure as in the non-zero lag case. In the region

near the fracture tip, the fracture toughness is the dominating dissipative process and govern

the fracture width. As we move away from the tip, the dissipation in the fluid takes over as

the dominant mechanism. Depending on the dimensionless transition shear stress ᾱ, fluid

index n and extent of the shear thinning µ∞/µo , three different viscosity asymptotic regions

can be observed: high shear rate viscosity asymptote m∞ for large values of the wall shear

stress when the low shear rate Newtonian viscosity plateau γ̇c is small enough (large ᾱ), power-

law viscosity asymptote mn in an intermediate shear thinning region and the low shear rate

viscosity asymptote mo for small value of shear rate / large distance from the tip.

The extent, occurrence and transition between these asymptotic regions can be estimated

based on the different limiting asymptotes (see section 3.5), by defining transition length-

scales where two given asymptotes intersect. For example, we can define `m∞k as the tran-

sition lengthscale between the k-asymptote to the m∞−asymptote as the distance x from

the tip where the two asymptotes are comparable: w ∼ `1/2
k x1/2 ∼ `1/3

m∞x2/3 such that we ob-

tain x = `m∞k = `3
k /`2

m∞ . We can also define a transition lengthscale between the toughness

k and power-law mn asymptotes, the distance x where w ∼ `1/2
k x1/2 ∼ `n/(2+n)

mn
x2/(n+2), i.e.

x = `mn k = (
`2+n

k /`2n
mn

) 1
2−n . Similarly, we can define `m∞mn and `mo mn as the boundaries of

the high shear rate-power-law viscosity and low shear rate viscosity-power-law asymptotic

regions. The expressions of theses different transition lengthscales can be found in table 3.3 as

function of the problem parameters as well as function of the lengthscales `k , `m∞ , `mn , and

`mo .

It is important to realize that depending on the dimensionless transition shear stress ᾱ, shear

thinning index n and extent µ∞/µo , not all of the different asymptotes may be realized in the

solution. For example, the high shear rate viscosity regime can only be seen if the solution

transitions first from the toughness k asymptote to the m∞ and then mn asymptotes. In

other words, if the mnk transition lengthscale is larger than the m∞k transition lengthscale:

`mn k > `m∞k . This condition `mn k > `m∞k can be re-expressed as the boundary of a region

in the parametric space n − ᾱ−µ∞/µo . For a given n, this region can be seen on figure 3.13,

and expressed in terms of a limiting transition shear stress ᾱl∞
(
µ∞/µo ,n

)
(ᾱl∞ is a decreasing

function of µ∞/µo). For ᾱ> ᾱl∞
(
µ∞/µo ,n

)
, the solution exhibits all the possibles asymptotes:

k, m∞, mn and mo as we move away from the fracture tip. This limit can be obtained from the

equality `mn k = `m∞k and can actually be expressed analytically as function of n and µ∞/µo :

ᾱl∞ =
p

2−2/(n−1) −1( 6n
1+2n

) n
1−n

(
µ∞/µo

)2−n

1+µ∞/µo

1/(n−1)

(3.24)

65



Chapter 3. A semi-infinite hydraulic fracture driven by a shear thinning fluid

`mo k
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m∞

211K 6
I c

32π3V 2µ2∞E ′4

`mn k

(
`2+n

k

`2n
mn

) 1
2−n

((
32

π

) 2+n
2 K 2+n

I c

M ′V nE ′1+n

)2/(2−n)

`m∞mn

(
`2+n

m∞

`3n
mn

) 1
2−2n

V

((
12µ∞

)2+n

M ′3E ′n−1

)1/(2−2n)

`mo mn

(
`2+n

mo

`3n
mn

) 1
2−2n

V
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12µo

)2+n

M ′3E ′n−1

)1/(2−2n)

Table 3.3 – Transition lengthscales between the different asymptotic regions expressed as
function of the asymptotes characteristic scales (equation (3.13)) and directly as function of
the problem parameters.

Another case worth considering is when `mn k > `mo mn . This means that the distance at which

the solution transition from the power-law to the low shear rate viscosity is smaller than the

distance at which the solution transition from the toughness to the power-law region. In

other words, because the shear-rate decreases as we move away from the tip, such a situation

indicates that no power-law asymptotic region exist. The condition `mn k = `mo mn therefore

defines another boundary of a region in the parametric space where the solution exhibits

only two asymptotic regions: the toughness k asymptote near the tip and the low shear-rate

viscosity mo away from the tip. Similarly, for a given n, this boundary can be recasted in term

of a limiting value of the dimensionless transition shear-stress ᾱln

(
µ∞/µo ,n

)
expressed as

function of n and µ∞/µo (ᾱln increases with µ∞/µo):

ᾱln =
p

2−2/(n−1) −1( 6n
1+2n

) n
1−n

(
1

1+µ∞/µo

)1/(n−1)

(3.25)

The two limits are actually related as

ᾱl∞ = ᾱln ×
(
µ∞
µo

)− 2−n
1−n

.

Figure 3.13 displays these two limits for n = 0.46 which therefore define three regions in the

parametric space. In region A (ᾱ < ᾱln

(
µ∞/µo

)
), only two asymptotic regions (k and mo)

are present in the solution. In region B, for ᾱln (µ∞/µo) < ᾱ< ᾱl∞(µ∞/µo), three asymptotic

regions k, mn and mo are present as we move away from the tip. Finally, ᾱ > ᾱl∞(µ∞/µo)

defines a third region where all the different asymptotes may be visible: k, m∞, mn and mo in

that order from the tip.
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B

A

C

Figure 3.13 – Occurrence of the different viscous asymptotes as function of ᾱ and µ∞/µo

for n = 0.46. Three distinct regions separate the parametric space: region (A) defined as
ᾱ< ᾱln (µ∞/µo , n) where the solution transition from k directly to mo , region (B) defined as
ᾱln (µ∞/µo , n) < ᾱ< ᾱl∞(µ∞/µo , n) where three asymptotes k, mn and mo can be observed,
and region (C) defined for ᾱ> ᾱl∞(µ∞/µo , n) where up to four asymptotes k, m∞, mn and
mo may be observed. The dot-dashed orange lines refer to the coordinates of the numerical
simulations performed in figure 3.14.
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3.8.2 Evolution of the different asymptotic regions

In the previous sub-section, based on scaling considerations, we have defined three distinct

regions in the parametric space, where two, three or four asymptotic regions may be observed.

Here we compare a large series of numerical results (57 simulations in total) with the limits

established previously. We plot as function of the scaled distance from the tip x/`mo k the

limits where the numerical results are within 1% of the different asymptotes as function of ᾱ

(for a given n and µ∞/µo) or µ∞/µo (for a given n and ᾱ). For comparison, we also plot the

analytical asymptotic transitions based on the defined lenghtscales (table 3.3).

We perform 4 series of simulations corresponding to 2 vertical and 2 horizontal cross sections

of the parametric space ᾱ−µ∞/µo (see figure 3.13). All reported simulations are for n = 0.46

(HPG fluid index). The value of n modifies the shape of the different boundaries but do not

change qualitatively the over-all picture. The results of these four series of simulations are

summarized in figure 3.14.

Let us first discuss the cases where we vary ᾱ in the range
[
10−8,108

]
for two distinct val-

ues of the shear thinning magnitude µ∞/µo = 10−3 and µ∞/µo = 10−1 (top plots in figure

3.14). The overall extent of the different asymptotic regions as function of tip distance and

dimensionless transition shear stress follow the structure presented previously. For small

value of ᾱ, only the toughness (near the tip) and low shear rate viscosity mo asymptotes are

visible. Above a given value of ᾱ, the power-law asymptote start to be visible on our numerical

results albeit in a very narrow region (for a relative asymptotic error of 1%). Finally, for large

ᾱ for µ∞/µo = 10−1, the large shear rate viscosity m∞ asymptote can be clearly seen on the

numerical results. For these two series of simulations for µ∞/µo = 10−3 and 10−1, the limit-

ing value ᾱln under which only the toughness and low shear rate viscosity asymptotes are

present is respectively ᾱln

(
µ∞/µo = 10−1)= 3.03, and ᾱln

(
µ∞/µo = 10−3)= 2.55. Our numer-

ical results report a smaller value for this lower limit ᾱln : ᾱlnnum

(
µ∞/µo = 10−1

) ' 10−4 and

ᾱlnnum

(
µ∞/µo = 10−3

)' 10−2. For the small shear thinning magnitude case (µ∞/µo = 10−1),

the high shear rate viscosity region is visible in the figure 3.14b for value of ᾱ greater than

ᾱl∞
(
µ∞/µo = 10−1)= 2.1×104, while the numerical value at which we start to observe the m∞

asymptote is slightly larger ᾱl∞num

(
µ∞/µo = 10−1)' 4.6×104. Note that for µ∞/µo = 10−3, the

high shear rate viscosity region is pushed out of the dimensionless transition shear stress

interval investigated here, the analytical expression gives ᾱl∞
(
µ∞/µo = 10−3)= 9.1×108 in

that case, and the m∞ asymptote is not visible on our numerical results.

The extent of the toughness region near the fracture tip is roughly constant for small ᾱ, then

increases with ᾱ until reaching a constant value for sufficiently large ᾱ (above the limit ᾱl∞)

for which the m∞ asymptote becomes visible. For small enough values of ᾱ (below ᾱln ),

the distance at which the numerical results can be approximated by the toughness and low

shear rate viscosity asymptote are respectively x ≈ 10−7`mo k and x ≈ 1.3`mo k which is exactly

consistent with the bounds obtained by (Garagash et al., 2011). Similarly for the case of large

dimensionless transition shear stress ᾱ> ᾱl∞ , the numerical boundaries demonstrate that the
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3.8. Case of a vanishing fluid lag / large dimensionless toughness (Λ≈ 0 / κÀ 1)

m∞ asymptote starts at x ≈ 101`mo k from the fracture tip regardless the value of ᾱ.

Similarly we have studied the effect of the viscosity ratio in the range [10−3, 0.75] for two

distinct dimensionless transition shear stress ᾱ= 102 and 105, see figures 3.14c and 3.14d. In

both cases, the extent of the toughness region (scaled by `mo k ) is decreasing with larger value

of µ∞/µo . In fact, the evolution of the toughness region tracks the evolution of `mn k and `m∞k

as function of ᾱ and µ∞/µo for all cases.

For the series of simulation with ᾱ= 102, the mo low shear rate viscosity region has the same

domain of validity regardless of the value of µ∞/µo (figure 3.14c). This low shear rate region

can not, however, be observed for the series of simulation with ᾱ= 105, where it is estimated

to appear for distances away from the tip above 107`mo k . A value which is larger than the

extent of our computational domain.

The high shear rate viscosity region m∞ can be seen for values of µ∞/µo larger than 0.33

(ᾱ= 102) and 0.025 (ᾱ= 105) respectively from the scaling arguments. These values are in line

with the numerical results which gives respectively (µ∞/µo)num = 0.75 (ᾱ= 102, where this

m∞ region can be seen for the largest value of µ∞/µo only), and (µ∞/µo)num = 0.07 (ᾱ= 105).

It is also worthwhile to note that for all the simulations reported on figure 3.14, the extent of

the power-law region where the numerical results obtained are within 1% of the mn asymptote

is extremely limited, and significantly smaller than the predictions obtained from scaling

arguments.

3.8.3 Comparison between the Carreau, power-law & Ellis Models

In this section, we compare these three models in the zero lag case and investigate how close

the predictions based on Ellis and power-law models are to the complete Carreau model

depending on the occurrence of the different asymptotic regions highlighted in figure 3.13.

We use the zero lag scaling (equation 3.22) in all cases. The expressions of the characteristic

opening, pressure and length for the power-law model (see table 3.2) are different from the

Carreau model (while they are similar for the Ellis model). The scaling and dimensionless

problem are detailed in section 3.10.4.

Like previously for the lag case, we fix the rheological parameters to the ones reproducing

the rheology of a HPG fluid (see table 3.1 for the different models). We vary the value of the

dimensionless transition shear stress ᾱ (by varying
E ′3V 2

K 4
I c

at fix rheological parameters), as

well as the shear thinning amplitude ratio µ∞/µo .

We first fix the shear thinning magnitude µ∞/µo at 10−3. Figures 3.15a, b, c and d exhibit the

fracture opening for the three models for four different values of ᾱ (small ᾱ - figure 3.15a,

intermediate ᾱ - figure 3.15b and c, and large ᾱ - figure 3.15d). As discussed in section 3.13,

there are two limits that define the behaviour of solution for the Carreau model (ᾱln , ᾱl∞) for a
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Figure 3.14 – Numerical bounds and transition lengthscales (black solid lines) between the
different asymptotic regions:(a) variations of ᾱ for n = 0.46, µ∞/µo = 10−3, (b) variations of
ᾱ for n = 0.46, µ∞/µo = 10−1, (c) variations of µ∞/µo for n = 0.46, ᾱ= 102, and (d) µ∞/µo for
n = 0.46, ᾱ= 105. The regions where the numerical results fall within 1% of accuracy of an
asymptote are also displayed. For the power-law region, limits where the numerical results are
within 1% accuracy of the mn asymptote are displayed in red, and in orange when within 5%
of accuracy.
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3.8. Case of a vanishing fluid lag / large dimensionless toughness (Λ≈ 0 / κÀ 1)

given viscosity ratio and power-law index. These values of the dimensionless transition shear

stress can be approximated analytically using the transition lengthscales (see sub-section

3.8.1). For µ∞/µo = 10−3, the high shear rate viscosity asymptote may become visible for

values of ᾱ larger than ᾱl∞ = 9.1×108,whereas the power-law region may appear for ᾱ larger

than ᾱln = 2.55.

For value of ᾱ smaller than ᾱln (see figure 3.15a), as expected the Carreau dimensionless

opening transition from the toughness k asymptote near the tip to the far-field low shear

viscosity asymptote without any visible power-law region. The solution for the Ellis model is

matching perfectly the solution of the Carreau rheology for that case (figure 3.15a). As expected,

the prediction of the power-law rheology widely differ from Carreau for this small ᾱ case (due

to the large effect of the low shear rate plateau). As the value of ᾱ exceeds ᾱln , a power-law

region appear just beyond the near-tip toughness region. For ᾱ= 74 (see figure 3.15b), the

Ellis model still follows closely the complete Carreau rheology - pending a small deviation

in the transition between the power-law and far-field region (for x/`mo k ∈ [1−100]). Here

again, the power-law model still significantly deviates in the far-field due to the effect of the

low shear rate viscosity absent from the power-law model. For larger value of ᾱ (figure 3.15c),

the difference between the Ellis and Carreau rheology slightly increases in the intermediate

power-law mn region where the effect of the transition from the power-law branch to the high

shear rate Newtonian plateau in the Carreau rheology starts to influence the overall solution

(see section 3.7.2 for details) even tough ᾱ did not yet reach the bound ᾱl∞ . However, the Ellis

model still match exactly the Carreau solution in the near-tip toughness region and in the

far-field low shear-rate mo region. The power-law model gets closer to the predictions of the

Carreau and the Ellis models except in the far-field low-shear rate mo region (x/`mo k > 104) as

expected.

All the results depicted in figures 3.15a, b and c are for the case of a large shear thinning ampli-

tude (µ∞/µo = 10−3). The effect of its influence can be seen in figure 3.15d for a large value of ᾱ

(46.2×103). For such a large value of ᾱ, the power-law region stretches out far away from the tip,

actually driving the low-shear rate region outside of our numerical grid. Over those lengthscale,

the Ellis and the power-law models are very close to one another. They both differ however

from the Carreau rheology outside the near-tip toughness k region. Such a difference in-

creases as the shear thinning amplitude decreases (i.e. for smaller viscosity ratio µ∞/µo). The

power-law region significantly decreases in the Carreau solution with increasing viscosity ratio

µ∞/µo . The high shear rate viscosity region m∞ dominates the Carreau response in the inter-

mediate field for the case µ∞/µo = 10−1 for ᾱ> ᾱl∞(µ∞/µo = 10−1) = 2.1×104. For both cases

µ∞/µo = 10−2 and µ∞/µo = 10−3, the high shear rate viscosity m∞ region is still absent from

the Carreau solution (ᾱln (µ∞/µo = 10−2) = 2.59 < ᾱ< ᾱl∞(µ∞/µo = 10−2) = 1.3×106, and

ᾱ< ᾱl∞(µ∞/µo = 10−3) = 9.1×108) but the solution is already significantly affected by the

rather long transition from the power-law branch to the high shear rate viscosity intrinsic to

the Carreau model.

These comparisons are in line with the structure of the solution with respect to the different
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Figure 3.15 – Zero lag case. Dimensionless fracture opening w/wmo k as function of the
dimensionless distance from the tip x/`mo k for the three rheologies (see table 3.2 for the
expressions of the characteristic scales wmo k and `mo k ). The rheological parameters of the
fluid are the one of a HPG. Influence of ᾱ with µ∞/µo = 10−3: (a) ᾱ = 74×10−8 (Ellis ᾱe =
53.4×10−8), (b) ᾱ= 74 (Ellis ᾱe = 53.4; (c) ᾱ= 103 (Ellis ᾱe = 2088.7), (d) ᾱ= 46.2×103 (Ellis
ᾱe = 33.4×103) with also the solution for different µ∞/µo for the Carreau model. The Ellis
model starts to depart from the Carreau in the intermediate region for α≥ 103 even for a large
shear thinning magnitude (µ∞/µo = 10−3).

limiting asymptotes depicted in the previous sub-section. We notably see that the scaling

estimate of ᾱln and ᾱl∞ provide the overall trend of the validity of the different models, with

the caveat that the transition from the power-law branch to the high shear rate viscosity

plateau has a significant effect on the solution even for ᾱ lower than ᾱl∞ . In summary, for

value of ᾱ sufficiently lower than ᾱl∞(µ∞/µo ,n), the Ellis model reproduce relatively well

the results obtained with the Carreau rheology. Deviations start to occur for larger values

of the dimensionless shear stress ᾱ. The power-law model reproduce poorly the results of

the complete Carreau solution in the far-field region in all cases. It may only provide an

acceptable approximation up to a distance x/`mo k ≈ 10 from the tip for intermediate values of

ᾱ in between the limits ᾱln (µ∞/µo ,n) and ᾱl∞(µ∞/µo ,n). This intermediate region between

ᾱln (µ∞/µo ,n) and ᾱl∞(µ∞/µo ,n) drastically shrinks for increasingµ∞/µo ratio (i.e. decreasing

shear thinning amplitude).
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3.9 Conclusions

The use of shear thinning fluid is ubiquitous in hydraulic fracturing applications. By focusing

on the near-tip behaviour, we have clarified the impact of the details of the fluid rheological

behaviour on the complex coupling between lubrication flow and linear elastic fracture me-

chanics. Depending on the problem parameters, three scenarios are possible. First (region A

in figure 3.13), for small values of dimensionless transition shear stress case: the solution for

the Carreau rheology reduces to the Newtonian model with a viscosity given by the low shear

rate value. Secondly (region B in figure 3.13) for the case characterised by intermediate values

of the dimensionless transition shear stress and large shear thinning amplitude, the solution

exhibits three distinct asymptotic regions (and transitions in between) as we move away from

the tip: toughness, shear thinning/power-law and a far-field low shear rate viscosity region.

Finally for large dimensionless transition shear stress, the solution depends on all the details

of the Carreau rheology with up to four different asymptotic regions: toughness, high shear

rate viscosity, shear thinning/ power-law and low shear rate viscosity (region C in figure 3.13).

The fluid lag always fall within the toughness dominated region near the fracture tip.

For small dimensionless toughness κ, the extent of the fluid lag is drastically impacted by the

shear thinning behaviour, with smaller lag for stronger shear thinning fluid. The approxima-

tions of the complete rheology by simpler shear thinning models (Ellis, power-law) always

under-predict the actual fluid lag size compared to the Carreau model, whereas it is over

estimated using a Newtonian model with the low-shear rate viscosity. In order to grasp some

order of magnitude, let us compare the dimensional extent of the fluid lag for both a HPG fluid

(see table 3.1) and a Newtonian fluid with a viscosity equal to the low shear rate viscosity of

the HPG fluid. First, if we take values akin to a laboratory experiment performed in PMMA

under a small confinement (σo = 0.1 MPa), and an average value of the propagation velocity

realistic for a laboratory experiment (V = 0.002 m/s), we obtain a dimensionless toughness

κ = 3.24 (see table 3.4 for the values of the different parameters used). The corresponding

estimate of the fluid lag λ=ΛLµo of 0.0011 cm for the Carreau fluid while for the low shear

rate Newtonian fluid we obtain λ = ΛLµo ≈ 1.63 cm, i.e. a extend of the lag three order of

magnitude larger for the Newtonian fluid compared to the shear thinning one. Similarly, for a

hydraulic fracture propagating under significant confinement (σo = 20 MPa) in a sandstone at

an average velocity of 0.5 m/s (see table 3.4 for the corresponding parameters), we obtain a

dimensionless toughness κ= 0.527. The corresponding lag size for a HPG fluid is essentially

zero (λ< 10−7 cm - see figure 3.8 for α= 104) whereas for a Newtonian fluid (low shear rate

viscosity equivalent) the corresponding lag would be of 2.5 cm (see figure 3.10 forΛ(κ) in that

case).

The limiting case of a large dimensionless toughness / vanishing lag is especially relevant

in industry practice as it corresponds to the case of a fracture propagating at depth under

a sufficient level of confining stress. In that limit, the structure of the solution for a given

fluid index and extent of the shear thinning magnitude µ∞/µo can be readily grasped by

computing for large κ the dimensionless shear stress ᾱ defined in equation (3.23). Depending
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on the value of ᾱ with respect to the limits ᾱln (µ∞/µo , n) and ᾱl∞(µ∞/µo , n), the solution

as we move away from the tip consist of two (region A), three (region B) or four (region C)

asymptotic regions. An order of magnitude of these different regions can also be readily

grasped by computing the different transition lengthscales listed in table 3.3. Furthermore, the

computation of these limits ᾱln (µ∞/µo , n) and ᾱl∞(µ∞/µo , n) can help in deciding if one of

the alternative rheological models (power-law, Ellis and Newtonian) can provide similar results

if the complete Carreau model is required. Notably, we have seen that the domain where

simpler models (power-law, Ellis) approximate sufficiently well the Carreau solution can also

be directly grasped by estimating the relative ordering of ᾱ, ᾱln (µ∞/µo , n) and ᾱl∞(µ∞/µo , n).

The Ellis model is a good approximation for values of ᾱ sufficiently lower than ᾱl∞(µ∞/µo ,n).

The power-law model has a narrow domain of validity: it is a good approximation of the

complete solution only up to a distance x/`mo k ≈ 10 from the tip and this only for intermediate

values of ᾱ, above ᾱln (µ∞/µo , n) but still sufficiently lower than ᾱl∞(µ∞/µo , n). As an example

of illustration, let us consider a hydraulic fracture driven by a HPG-like fluid (see table 3.1)

in a rock with stiffness E ′ = 30 GPa and fracture toughness of K I c = 1 MPa
p

m propagating at

a velocity V = 1 m/s resulting in a dimensionless shear stress ᾱ= 50×103. For a HPG fluid

with a shear thinning extent µ∞/µo = 10−3, this case falls within region B (ᾱln

(
µ∞/µo

)< ᾱ<
ᾱl∞

(
µ∞/µo

)
) where the Ellis model (and to a lesser extent the power-law model) can properly

reproduce the tip behavior especially because the transition lengthscale `mo mn is extremely

large (`mo mn ≈ 12.8×103 meters) and thus unlikely to be probed in finite hydraulic fractures in

the field. In the case where the shear thinning magnitude is smaller - e.g. forµ∞/µo = 10−1, the

dimensionless shear stress is larger than ᾱl∞ (ᾱ= 50×103 > ᾱl∞(µ∞/µo = 10−1) = 2.1×104) and

the solution structure is akin to the one of region C (see figure 3.13): the large shear rate range

of the Carreau rheology affect the tip structure (with values for the transition lengthscales

`m∞k = 0.5 meters, `m∞mn ≈ 40 meters respectively). This example illustrates how we can

easily estimate which asymptotic region may appear at the scale of the finite fracture for a

given set of problem parameters from the transition lengthscales defined in table 3.3 and the

expression of the critical dimensionless shear stress (equations (3.24) and (3.25)) defining the

boundaries between regions A and B, and B and C.

The shear thinning tip solution presented here could eventually be used in numerical scheme

for the propagation of finite hydraulic fracture (see Peirce and Detournay (2008); Detournay

and Peirce (2014); Peirce (2015) for discussion for a Newtonian fluid). However, in order

to be used efficiently in a finite hydraulic fracture simulator, this tip solution needs to be

computed extremely fast (as it needs to be inverted), and thus approximated analytically

or semi-analytically (see Dontsov and Peirce (2015, 2017) for the Newtonian case). Such an

approximation for a Carreau fluid (for which the lubrication relation is not analytical) is far

from obvious and would require significant developments.

Besides the importance of shear thinning fluid in hydraulic fracturing industrial practice, it

is also interesting to note that the propagation of magmatic dykes toward the earth’s surface

(see e.g. Spence and Turcotte (1985); Lister (1990)) may also be affected by the shear thinning

behaviour of some magmas (Caricchi et al., 2007).
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Material Fluid K I c E ′ σo V α κ Lµo ε

MPa.
p

m GPa MPa m/s − − m −
PMMA HPG 1.3 3.93 0.1 0.002 1.75 3.24 163.09 2.5×10−5

Bebertal sandstone HPG 1.2 20 20 0.5 1.37×104 0.527 0.132 0.001

Table 3.4 – Values of the dimensionless parameters for example hydraulic fracturing fluids
and materials for propagating velocity V . PMMA data from Bunger and Detournay (2008) and
Bebertal sandstone data from Stoeckhert et al. (2015).

3.10 Supplemental material

3.10.1 Poiseuille flow for a Carreau fluid

The solution for the uni-dimensional pressure-driven flow of a Carreau fluid between parallel

plate can be solved semi-analytically (Sochi, 2015). The dimensionless apparent viscosity

Γ

(
Ω

2

∣∣∣∣∂Π∂ξ
∣∣∣∣ ,α,n,µ∞/µo

)
is obtained from the dimensionless shear stress at the wall τ̃w as

Γ

(
Ω

2

∣∣∣∣∂Π∂ξ
∣∣∣∣ ,α,n,µ∞/µo

)
= τ̃3

w

3I (n, ˙̃γw ,α,µ∞/µo)
(3.26)

where I (n, ˙̃γw ,α,µ∞/µo) is an analytical function derived by Sochi (2015) which depends on

the rheological parameters (n, µ∞/µo , α) and the dimensionless wall shear rate ˙̃γw :

I (n, ˙̃γw ,α,µ∞/µo) = n′δ2α−2 ˙̃γw

[
2F1

(
1

2
,1−n′;

3

2
;−(

α ˙̃γw
)2

)
− 2F1

(
1

2
,−n′;

3

2
;−(

α ˙̃γw
)2

)]
+

n′δα−2(µ∞/µo) ˙̃γw

[
2F1

(
1

2
,1− n′

2
;

3

2
;−(

α ˙̃γw
)2

)
− 2F1

(
1

2
,−n′

2
;

3

2
;−(

α ˙̃γw
)2

)]
+ (µ∞/µo)2 ˙̃γ3

w

3

+
(1+n′)δ2 ˙̃γ3

w 2F1

(
3
2 ,−n′; 5

2 ;−(
α ˙̃γw

)2
)

3
+

(2+n′)(µ∞/µo)δ ˙̃γ3
w 2F1

(
3
2 ,−n′

2 ; 5
2 ;−(

α ˙̃γw
)2

)
3

where n′ = n −1, δ= 1−µ∞/µo , and 2F1 is the hypergeometric function with real variables.

The dimensionless shear rate at the wall ˙̃γw is related to the dimensionless wall shear stress

τ̃w via the Carreau rheological equation:

τ̃w = Ω
2

∣∣∣∣∂Π∂ξ
∣∣∣∣= [µ∞/µo +δ(1+ (α ˙̃γw )2)n′/2] ˙̃γw , (3.27)

In the scaling of section (3.4), the characteristic shear stress and shear rate are given by

τ∗ = εσo =αµo γ̇c , γ̇∗ =αγ̇c

where α is defined by equation (3.12).
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Figure 3.16 – Exact and interpolated values of the dimensionless tangent viscosity in log-log
scale with respect to the wall shear stress for different values ofα and: n = 0.46, µ∞/µo = 10−3.

For a given value of dimensionless shear stress at the wall τ̃w = Ω
2

∣∣∣∣∂Π∂ξ
∣∣∣∣, the equation (3.27)

can be solved for the corresponding dimensionless wall shear rate ˙̃γw using quasi-Newton root-

finding scheme. We are thus able to get the correspondent apparent viscosityΓ
(
τ̃w ,α,n,µ∞/µo

)
from equation (3.26). In order to speed up our computation, for a given set of dimension-

less rheological parameters (n, µ∞/µo , α), we tabulate the evolution of this dimensionless

apparent viscosity Γ as function of the dimensionless wall-shear stress. We then built an

interpolation using Mathematica built-in spline routine and use it to solve the semi-infinite

hydraulic fracture problem. The tabulated data and the created interpolated function can be

seen on figure 3.16 for a given set of dimensionless rheological parameters.

3.10.2 Power-law model

The governing equations for a semi-infinite fracture driven by a power-law fluid propagating

at constant velocity V involve the elasticity equation (3.4), the near-tip asymptotic solution

(3.3), the boundary condition (3.5) and the flow equation for a power-law fluid. According to

lubrication theory, the equation governing the flow of power-law fluid within the fracture is

given by Bird et al. (1987)

V n = wn+1

M ′
∂p f

∂x
, x ∈]λ,∞[ (3.28)

with M ′ = 2n+1(2n +1)n

nn M , and M is defined in equation (3.1).

Following section 3.4, we scale the fracture openingΩn , the net pressureΠn and the moving

coordinate ξn by the characteristic opening εLn , the far field stress σo and the lengthscale Ln
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respectively, where

Ln =V

(
M ′

σo

)1/n (
E ′

σo

) n+1
n

, ε= σo

E ′

The dimensionless equations to be solved are : the elasticity equation (3.7), the propagation

condition (3.8), the boundary condition (3.10) and the following dimensionless lubrication

equation for the power-law fluid:

Ωn+1
n

∂Πn

∂ξn
= 1, ξn ∈]Λ,∞[ (3.29)

The numerical results includes the fracture openingΩn , fluid pressure Πn profiles over the

whole fracture as well as the corresponding value of the dimensionless lagΛn which depend

only on the fluid index n and the dimensionless toughness κn :

κn =
√

32

π

1

V 1/2

(
σ2−n

o

M ′E ′3n+1

)1/2n

K I c

The transition from power-law scaling to the low shear rate viscosity scaling is established via

the given length ratio

Ln

Lµo

=
(

2n +1

6n

)
α(n−1)/n

 µi /µo +1(p
2−2/(n−1) −1

)n−1


1/n

(3.30)

such that the dimensionless opening (the dimensionlesss fluid lag and the moving coordinate)

in Carreau scaling is calculated as:

Ω= Ln

Lµo

Ωn .

The dimensionless toughness in the low shear rate viscosity scaling, can be finally obtained as:

κ=
√

Ln

Lµo

κn

3.10.3 Ellis model

The lubrication flow of an Ellis fluid in a channel has been investigated by Myers (2005)

analytically (see also Matsuhisa and Bird (1965)). The flow is subject to no-slip at the top and

bottom surfaces. The driving force is the pressure gradient. The fluid pressure is linked to the

fracture opening using the following non linear equation:

V =− 1

µo

∂p f

∂x

[
w2

12
+

(
− 1

β

∂p f

∂x

)m−1 wm+1

2m+1(m +2)

]
(3.31)

with m is the Ellis index, and β is a characteristic shear stress.
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In the low shear rate viscosity scaling, the dimensionless form of this equation is given by

−∂Π
∂ξ

[
Ω2 + 12

2m+1(m +2)

(
−αe

∂Π

∂ξ

)m−1

Ωm+1
]
=−1, (3.32)

with:

αe =
σ2

o

βE ′ ; (3.33)

where :

w = εLµoΩ p =σoΠ λ= LµoΛ

Lµo
and ε have the same definitions than the ones introduced in section 3.4 for a Carreau fluid.

3.10.4 Scaling for the zero lag / large κ case

Making use of the elasticity equation (3.4), the lubrication equation on the entire length of the

fracture (equations (3.6), (3.28), or (3.31) for λ= 0), and the propagation condition (equation

(3.3)), we find the corresponding expression for the characteristic scales (see table 3.2 for

the Carreau/ Ellis model (same expression based on the low shear rate viscosity) and the

power-law rheology).

The resulting dimensionless system of equations are: the elasticity equation (equation (3.7)),

the fluid flow (equations (3.11) for the Carreau model, (3.29) for power-law, or (3.32) for an

Ellis model) and the propagation condition (equation (3.34)). These equations are solved for

the new unknowns (Ω̄, Π̄) using a scheme similar to the non-zero lag case. The only difference

Ω̄=
√
ξ̄ for ξ̄→ 0 (3.34)

The new dimensionless viscosity for the Carreau rheology Γ̄

(
Ω̄

2

∣∣∣∣∂Π̄
∂ξ̄

∣∣∣∣ , n, µ∞/µo , ᾱ

)
depends

on four parameters: the shear stress
Ω̄

2

∣∣∣∣∂Π̄
∂ξ̄

∣∣∣∣, the fluid index n, the viscosity ratio µ∞/µo ,

and the dimensionless transition shear stress ᾱ characterizing the transitional shear stress

from Newtonian plateau to the shear thinning behaviour. Due to the change of scales, the

dimensionless transition shear stress ratio has now the following expression for the Carreau

model:

ᾱ=
(

3π

8

)2 µoE ′3V 2

γ̇c K 4
I c

(3.35)

In the case of the Ellis model, the dimensionless apparent viscosity depends on a different

dimensionless transition shear rate (see equation (3.32)) which we defined for the zero lag

case as:

ᾱe = 9π2

26

E ′3µ2
oV 2

βK 4
I c

. (3.36)
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It is worthwhile to note that we can switch from the power-law scaling to the low shear

rate viscosity scaling for the three dimensionless parameters (ξ̄, Ω̄, and Π̄) via the following

relations:

`mn k

`mo k
=

(
2n +1

6n

)n µ∞/µo +1(p
2−2/(n−1) −1

)n−1


2/(n−2)

ᾱ
2(n−1)

n−2

wmn k

wmo k
=

√
`mn k

`mo k

pmn k

pmo k
=

√
`mo k

`mn k
.

where the superscript n denotes the characteristic scale for the power-law scaling listed in

table 3.2.
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4 Planar hydraulic fracture growth in
transversely isotropic materials per-
pendicular to the isotropy plane

This chapter is a modified version of a scientific article currently accepted in Journal of the

Mechanics and Physics and Solids (JMPS):

F-E. Moukhtari, B. Lecampion, H. Zia "Planar hydraulic fracture growth in transversely

isotropic materials perpendicular to the isotropy plane", 2020.

Contributions:

F-E. Moukhtari has formulated the problem, performed the scaling analysis and implement

numerically the constitutive equations of the problem. F-E. Moukhtari and Lecampion devel-

oped the analytical solution of the elliptical hydraulic fracture growth in toughness regime.

F-E. Moukhtari solved the near-tip hydraulic fracture asymptotes for transverse isotropic (TI)

case. H. Zia have developed the open source code PyFrac using ILSA scheme (Implicit level

set) for the isotropic case and helped in implementing the governing equations for the TI case.

F-E. Moukhtari and B. Lecampion have written the manuscript. B. Lecampion have guided

the discussion of the numerical results.
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perpendicular to the isotropy plane

4.1 Abstract

The configuration of a hydraulic fracture (HF) propagating perpendicular to the isotropy

plane of a transversely isotropic (TI) material is encountered in most sedimentary basins. We

account for both elastic and fracture toughness anisotropy, and investigate fracture growth

driven by the injection of a Newtonian fluid at a constant rate from a point source. In addition

to the usual dimensionless parameters governing HF growth in isotropy, four dimensionless

elastic parameters enter the problem for a TI material: the ratio β of elastic plane-strain

modulus in the two orthogonal directions of the material frame, two Thomsen parameters

ε, δ and the stiffness ratio C13/C11. Moreover, the ratio κ of fracture toughness in the two

orthogonal directions as well as the details of the toughness anisotropy also plays a role

on the development of the fracture geometry. We quantify HF growth numerically without

any a-priori assumptions on the fracture shape. In doing so, we derive the exact expression

for the near-tip elastic modulus as a function of propagation direction and extend to TI an

implicit level set algorithm coupling a finite discretization with the near-tip solution for a

steadily moving HF. A solution for a toughness dominated elliptical HF in a TI material is

derived and used to verify our numerical solver. Importantly, the fracture shape is strictly

elliptical only for a very peculiar form of toughness anisotropy. The evolution of the HF from

the viscosity dominated regime (early time) to the toughness dominated regime (late time)

results in an increase of the fracture elongation. The elongation of the fracture in the viscosity

dominated regime scales as 0.76β−1/3 and increases as the propagation transition to the

toughness dominated regime. We confirm the expressions for the transition time-scales in the

two orthogonal directions of the material frame obtained from scaling considerations. The

exact form of the toughness anisotropy plays a crucial role on the final fracture elongation in

the toughness regime, which scales as β−2 for the case of an isotropic toughness, β−1 for an

isotropic fracture energy and as (κ/β)2 for the peculiar case of an ’elliptical’ fracture anisotropy.

Our results also indicate that i) simplified approximations for the near-tip modulus previously

derived are only valid for weak anisotropy (β< 1.2) and that ii) the other elastic parameters

have a second order effect on HF growth (at most 10 percent).

4.2 Introduction

Transverse isotropy (TI) is an ubiquitous feature of sedimentary rocks. It is a direct result of

the sedimentation process and occurs over a wide range of scales. In particular, shales and

mudstones are the results of fine layers deposit of micro-meters to centimeters thickness

whose constituents may also be intrinsically anisotropic (Bobko and Ulm, 2008; Sone and

Zoback, 2013). Placing ourselves at the continuum level, we model these rocks as transversely

isotropic and study in details the growth of a planar three-dimensional fluid-driven fracture

perpendicular to the isotropy plane. Such a configuration notably corresponds to the case

where the intrinsic rock layering is horizontal and the fracture grows vertically (see figure 4.1).

This is notably the case in a large number of sedimentary basins which exhibit a normal or a

strike-slip in-situ stress regime where the minimum principal stress direction is horizontal.
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Minimizing energy spent, the fracture thus grows in the vertical plane perpendicular to the

material isotropy plane (Hubbert and Willis, 1957). In the presence of weak bedding planes

(isotropy plane), the fracture may possibly deviates from the vertical direction resulting in

T-shape like geometies, or exhibit several jogs/horizontal offset (Bunger, 2017). We do not

account for this possibility here and strictly restrict our investigation to cases where the

fracture grows in a single plane perpendicular to the material isotropy plane. This corresponds

to the limit of either i) very strong isotropy / bedding planes or ii) very large in-situ compressive

stress normal to the isotropy / bedding plane (i.e. σv Àσh in the configuration of figure 4.1).

In that limit, how a fluid driven fracture originating from a point source develops as function

of the material anisotropy and injection parameters (fluid viscosity, injection rate) remains

only partly understood. One of the main questions relates to the elongation of the fracture

in the horizontal direction when transverse elastic isotropy is accounted for (Zia et al., 2018).

Laubie and Ulm (2014) have investigated the problem of a strictly elliptical fracture in the

so-called toughness dominated regime where dissipation associated with viscous fluid flow

in the fracture is negligible. Using a simplified approach based on Hoenig (1978) solution

for an elliptical crack, they have notably obtained a relationship between the aspect ratio

of the equilibrium fracture and the ratio of the plane-strain elastic modulus in the 1 and 3

directions. Followed by Bessmertnykh and Dontsov (2018), the fracture elongation was also

approximated in the case of a fracture driven by Herschel-Bulkley fluid in both viscosity and

toughness regimes. Assuming the same ideal elliptical fracture geometry, scaling laws and

approximated growth solutions were recently obtained (Dontsov, 2019).

In this contribution, we investigate the problem numerically in combination with a scaling

analysis. We do not impose any a-priori constraint on the fracture shape and do not make any

simplifications in our handling of elastic transverse isotropy. This will notably allow to quantify

some of the approximations previously put forward (Laubie and Ulm, 2014; Bessmertnykh

and Dontsov, 2018). We extend a fully-coupled implicit level set algorithm for hydraulic

fracture growth (Peirce and Detournay, 2008) to account for material transverse isotropy both

in terms of elasticity and possibly fracture energy. We restrict to the case of low permeability

materials and neglect fluid leak-off in the surrounding rock for clarity. Following the classical

hydraulic fracture mechanics model, we account for viscous fluid flow in the fracture coupled

to mechanical deformation and a linear elastic fracture mechanics criteria for quasi-static

growth. One of the peculiarity of hydraulic fractures lie in the competition between the energy

dissipation associated with viscous flow and the one associated with the creation of new

fracture surfaces. This competition is well understood for an isotropic material and results

in very different propagation regimes: either viscosity or toughness dominated (Detournay,

2004, 2016). Moreover, this competition between viscosity and toughness dissipation results

in a multi-scale structure of the near-tip region (Garagash et al., 2011) which is extremely

difficult to resolve accurately using naive discretization techniques (Lecampion et al., 2013,

2018). Such a near-tip solution for a steadily moving hydraulic fracture can be combined with

a finite scale discretization of the fracture, yielding very efficient numerical schemes (Peirce,

2015, 2016).
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In the following, we first briefly recall the ingredients of the planar hydraulic fracture (HF)

model highlighting the differences brought by transverse isotropy (TI). We then obtain an

exact expression for the near-tip elastic operator as a function of propagation direction in

a TI material. More precisely, we obtain the near-tip plane-strain elastic modulus entering

the so-called Irwin matrix relating co-planar energy release rate and stress intensity factors

(Barnett and Asaro, 1972). This enables the extension of the near-tip fluid-driven asymptotic

solution to transverse isotropy (TI), and its use in a fully coupled numerical scheme as a result.

We also obtain an exact analytical solution for an elliptical hydraulic fracture propagating

in the toughness dominated regime. This notably allows to benchmark our simulator for a

peculiar case of toughness anisotropy (leading to an elliptical fracture shape). Combining a

scaling analysis and numerical simulations, we quantify the growth of a hydraulic fracture

in both toughness dominated and viscosity dominated growth in a TI elastic medium under

different assumptions on the anisotropy of fracture toughness (isotropic toughness versus

isotropic fracture energy vs elliptical toughness anisotropy). We finally explore numerically

the transition between the viscosity and toughness dominated regimes and confirm the

expressions based on scaling arguments of the transition time-scales in the two different

directions.

4.3 Problem formulation

We focus our study on the case of a hydraulic fracture growing in a plane perpendicular to both

the direction of the minimum horizontal in-situ stress σh and the material isotropy plane (see

figure 4.1). We re-use the same notation as in chapter 2: (e1e1e1,e2e2e2,e3e3e3) is the material canonical

orthonormal basis where (e1e1e1,e2e2e2) defines the plane of material isotropy and e3e3e3 is the axis of

rotational symmetry.

Predictions of HF growth requires to couple linear elastic fracture mechanics with lubrication

flow inside the fracture (Detournay, 2016). The solution of such a moving boundary problem

consists in the time-evolution of the fracture contour, fracture width and fluid pressure inside

the fracture. Numerical modeling of this calls of hydro-mechanical problem is particularly

challenging even in the isotropic case - see Lecampion et al. (2018) for a review on recent

developments. In the following, we extend the classical hydraulic fracture model to the case of

transverse isotropy.

4.3.1 Elastic deformation

In the section 2.2.4, we showed that the Somigliana representation for the elastic traction

induced over the planar fracture surface is expressed function of the fundamental solution

of the stress at point yyy due to a unit point force at xxx in a TI material Σk
i j (yyy ,xxx). In the case of

a planar hydraulic fracture (pure mode I fracture) with a normal coinciding with the axis e2e2e2

of the material frame (ni = δi 2e2e2e2 with δi j is the Kronecker delta) also being a direction of the

in-situ principal stress, the quasi-static elastic problem reduces to a single boundary integral
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C

B

A

(divider)

(arrester)

B

A

C

Figure 4.1 – Schematic of a planar three dimensional hydraulic fracture growing perpendicular
to the isotropy plane. Different configurations of the near-tip region along the fracture front
are also depicted: A) a semi- infinite fracture propagating along the plane of isotropy (divider
direction), B) a semi-infinite fracture propagating within the plane (e1e1e1,e3e3e3) at angle α from e1e1e1

and C) a semi-infinite fracture propagating along the direction perpendicular to the isotropy
plane (arrester direction).
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equation for the opening mode (sections 2.2.4 and 2.3.2):

p(yyy) = p f
(
yyy
)−σh = c22kl

∫
∂Ω
Σk

2 j (yyy ,xxx)
(
δ2l

∂w

∂x j
(xxx)−δ2 j

∂w

∂xl
(xxx)

)
dx1dx3 (4.1)

where ci j kl is the stiffness matrix in the frame basis and p(yyy) = p f
(
yyy
)−σh is the net pressure

controlling the opening of the fracture w . p f
(
yyy
)

is the fluid pressure inside the fracture-

which is neither uniform nor constant during propagation - and σh is the in-situ minimum

compressive horizontal stress (see figure 4.1).

4.3.2 Fluid flow inside the fracture

The flow of fluid inside a fracture follows lubrication theory (Batchelor, 1967). For an incom-

pressible fluid and an impermeable surrounding rock, the width averaged mass conservation

of the fluid inside the fracture reduces to

∂w

∂t
+ ∂qi

∂xi
=Qoδ(x1, x3) i = 1&3 (4.2)

where Qo denotes the constant fluid injection rate located at the origin. The width-averaged

balance of momentum of the fluid inside the fracture reduces to Poiseuille’s law, which relates

the fluid flux qi = w vi (where vi is the 2D fluid velocity in the fracture plane - i = 1&3 as per

figure 4.1) to the fluid pressure gradient:

qi (xi ) =−w3

µ′ × ∂p f

∂xi
i = 1&3 (4.3)

where µ′ = 12µ is an effective viscosity used here to shorten notation.

4.3.3 Boundary conditions

For a hydraulic fracture propagating in an isotropic material, it can be shown that the fluid

and fracture front coalesces when
σhK 2

Ic

µ′V E ′
i so

À 1 where V is the local front velocity, K I c the

rock fracture toughness and E ′
i so is the isotropic plane-strain modulus of the rock (Garagash

and Detournay, 2000). An in-situ confining stress σh of the order of few O(MPa) is sufficient

to satisfy such a condition under most practical configurations. As a result, for fracture

propagating at depth, any lag between the fracture and fluid front can be neglected. The

boundary conditions at the fracture front then reduce to (Detournay and Peirce, 2014)

w(xxxC , t ) = 0, qi (xxxC , t )ni (xxxC , t ) = 0, xxxC ∈C (t ).
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4.3.4 Fracture Propagation condition

We will investigate the case where in addition to elastic transverse isotropy, the fracture

toughness (or alternatively the critical fracture energy Gc ) may also be anisotropic. In other

words, the fracture toughness of the material may vary depending on the local fracture front

propagation direction, i.e. as function of the angle α (figure 4.1). As a result, the propagation

condition for a hydraulic fracture propagating under quasi-static equilibrium can be written

as

K I (xxxC , t ) = K I c (α) , xxxC ∈C (t ),

for all point xxxC along the fracture front C with a local propagation direction defined by the

angle α.

In order to quantify the degree of anisotropy of fracture toughness, we will use κ= K I c,1/K I c,3

as the ratio between the fracture toughness in the divider (e1e1e1) and arrester (e3e3e3) directions. The

evolution of the material toughness can therefore be schematically expressed as:

K I c (α) = K I c,3 f (α,κ, ...) (4.4)

where the dimensionless function f is obviously material dependent and must be character-

ized experimentally. In the following, for discussion, we restrict to following three limiting

cases.

1. The case of a particular form of toughness anisotropy leading to an elliptical fracture

shape under uniform loading (see section 4.11.1). Such a type of anisotropy will notably

allow to verify our numerical model.

2. The case of an isotropic fracture toughness: K I c (α) = K I c (i.e. κ = 1, f = 1) such that

Gc (α) = K 2
I c /E ′

α.

3. The case of an isotropic fracture energy: Gc (α) =Gc , which gives K I c (α) =
√

Gc E ′
α.

4.4 Near-tip HF asymptotes for a TI material

For a steadily moving hydraulic fracture at velocity V , we showed in section 2.4 that the linear

elastic fracture mechanics (lefm) asymptote prevails in the near-field. The lefm asymptote for

the fracture width can be written as

w =
p

32/π
K I c (α)

E ′
α

√
x ′

1, x ′
1 ¿ `∞mk . (4.5)

where the explicit formula for the near-tip TI elastic modulus E ′
α is given in sections 2.3.2

and 2.3.3 and K I c (α) is the corresponding value of toughness. We should remind that the
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near-tip elastic modulus E ′
α has the following form:

E ′
α = < E ′ >×F (β= E ′

1/E ′
3, ε, δ, C13/C11,α) (4.6)

< E ′ > = (
E ′

1 +E ′
3

)
/2 (4.7)

with Thomsen parameters ε and δ are function of the stiffness coefficients in the Voigt notation

Ci j and β is the ratio between the near-tip elastic modulus along the divider and the arrester

directions E ′
1 and E ′

3 respectively.

ε = C11 −C33

2C33
(4.8)

δ = (C13 +C44)2 − (C33 −C44)2

2C33 (C33 −C44)
(4.9)

We report the evolution of E ′
α and its approximation E ′

app function of the dimensionless

parameters in figure 4.2.
1

E ′
app

= cos2(α)

E ′
1

+ sin2(α)

E ′
3

(4.10)

On the other hand, in the far-field, the solution is dominated by viscous flow. The so-called

viscous dominated asymptote for fracture width is given by (Desroches et al., 1994):

w = 21/335/6
(
µ′

E ′
α

V

)1/3

x ′
1

2/3, x ′
1 À `∞mk . (4.11)

The transition between the near-tip lefm and the far-field viscosity asymptotes is governed by

a lengthscale `∞mk defined as the distance where the width given by two asymptotes are of the

same order of magnitude (Garagash et al., 2011):

`∞mk = K I c

E ′
α

4V 2µ′2 . (4.12)

The solution for the complete transition between the toughness and viscous asymptote can be

found in Garagash et al. (2011), and an accurate approximation has been proposed by Dontsov

and Peirce (2015).

4.5 Numerical solution

We use the implicit level set algorithm (ILSA) to simulate the growth of a planar 3D hydraulic

fracture (Zia et al., 2018; Zia and Lecampion, 2019) in elastic media exhibiting a transverse

isotropic behavior. We refer to Peirce and Detournay (2008); Dontsov and Peirce (2017); Peirce

(2015) for details of the scheme originally developed for the isotropic case. We discuss here

briefly the modifications required to account for transverse isotropy.

The fracture plane is discretized using a Cartesian grid consisting of uniform rectangular
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E�ect of E�ect of

E�ect ofE�ect of

(a) (b)

(c) (d)

Figure 4.2 – Near-tip elastic modulus as function of α using the exact solution obtained
analytically (solid line) and its approximation (Laubie and Ulm, 2014) (dashed line). Reference
values: β = 1.5, C13/C11 = 0.5, ε = 0.3 and δ = 0.2 displayed in dark grey. (a) Effect of β =
(1.2,1.5,2), (b) effect of C13/C11 = (0.4,0.5,0.7), (c) effect of ε= (0.2,0.3,0.5), and (d) effect of
δ= (0.1,0.2,0.3).

elements. We discretize the elasticity equation (4.1) using a collocation method based on

rectangular displacement discontinuity elements. The solution for a rectangular displacement

discontinuity in a TI medium can be found in Pan et al. (2014). The fracture width is thus

constant over an element and the fluid pressure is evaluated at the element center. The

lubrication flow is discretized spatially with a five-point stencils finite difference scheme

and with a backward Euler (implicit) scheme for time integration. The resulting non-linear

hydro-mechanical system (elasticity and lubrication) is solved using fixed point iterations for

a given position of the fracture front.

A level set function is used to represent the fracture front. The propagation algorithm relies

on the coupling of the finite discretization with the near-tip solution of a steadily moving

HF (see section 4.4) in the rim of elements near the front. The fracture front is advanced

over a time-step through an iterative procedure (until subsequent estimations of the level

set falls below a fixed tolerance, set to 10−3 here). For a given position of the front, the

non-linear hydro-mechanical system is solved. The new trial width in the elements located

just before the tip elements (ribbon elements) are used to invert the near-tip solution and

obtain the new shortest distance to the fracture front (from the ribbon elements centers). The

Eikonal equation is then solved to update the level set function from the tip region outward

to the rest of the yet unfractured domain using the fast marching method. The front is then

reconstructed in a piece-wise manner and the asymptotic solution enforced in a weak sense
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in the tip elements (see Peirce (2015) for more details). In the case of a transversely isotropic

material, the difference with the isotropic case stems from the fact that the complete near-tip

HF solution (spanning the transition from the toughness to the viscosity asymptote) depends

on the local propagation direction (via the dependence of E ′
α and K I c on the angle α) beside

the local front velocity. This introduces another non-linearity which is solved by iterating on

the local propagation direction: by repeatably inverting the tip asymptote and reconstructing

new estimate of the front until convergence (Zia et al., 2018). It is worth noting that the local

propagation direction (local normal to the front) can be directly obtained from the gradient

of the level set function ni = φ,i /‖φ,i‖ in the ribbon element. It is then straightforward to

estimate its angle α with the eee1 axis and the corresponding near-tip elastic modulus (4.6)

and toughness (4.4). A tolerance of 10−3 has been used to check the convergence of the local

propagation direction in all simulations reported here.

4.6 Scaling and structure of the solution

Our aim is to study how the geometry of the HF may deviate from a radial shape due to

material isotropy. We thus follow the scaling first introduced by Savitski and Detournay (2002)

for the case of a radial hydraulic fracture driven by a Newtonian fluid in an isotropic medium.

A characteristic length scale L(t) scales all distances, while the fracture width and pressure

are scaled by W (t ) and P (t ) respectively. We define a normalized fracture contour γ, fracture

openingΩ and net pressureΠ as:

C (t ) = L(t )γ
(
P (t ),β,ε,δ,C13/C11,κ, f (α,κ)

)
(4.13)

w(x1, x3, t ) =W (t )Ω
(
x1/L(t ), x3/L(t ),P (t ),β,ε,δ,C13/C11,κ, f (α,κ)

)
(4.14)

p(x1, x3, t ) = P (t )Π
(
x1/L(t ), x3/L(t ),P (t ),β,ε,δ,C13/C11,κ, f (α,κ)

)
(4.15)

where for transverse isotropy in addition to a the evolution parameter P (t ), the solution also

depends on the dimensionless elastic parameters previously defined and the ratio of toughness

and its evolution function. Following the isotropic case for a radial fracture (Savitski and

Detournay, 2002), two different scalings can be obtained either emphasizing the importance

of energy dissipation in viscous flow (so-called M/viscosity scaling) or in the creation of new

fracture surfaces (K/toughness scaling). The corresponding lengthscales and the associated

dimensionless parameter P governing the solution in both scaling are recalled in table 4.1.

We have written them here as function of a characteristic elastic modulus and a characteristic

toughness (E∗,K∗). The viscosity dominated propagation regime (M-scaling) is valid at early

time of growth. This can be grasped from table 4.1 where one can see that the dimensionless

toughness K increases with time (and is directly related to the dimensionless viscosity in the

viscosity scaling M =K −18/5 which decreases with time). At very early, fracture toughness

is irrelevant (K ∼ 0) and fracture growth is propagating in the so-called viscosity dominated
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4.6. Scaling and structure of the solution

Viscosity (M) Toughness (K) Viscosity to toughness (M-K)

L(t ) Lm =
(

E∗Q3
o t 4

µ′

)1/9

Lk =
(

E∗Qo t

K∗

)2/5

Lmk = µ′QoE 3∗
K 4∗

W (t ) Wm =
(

Q3
oµ

′2t

E 2∗

)1/9

WK =
(

QoK 4∗t

E 4∗

)1/5

Wmk =
(
µ′QoE∗

K 2∗

)1/2

P (t ) Pm =
(
µ′E 2∗

t

)1/3

Pk =
(

K 6∗
QoE∗t

)1/5

Pmk =
(

K 18∗
Q3

oE 9∗µ′

)1/6

P (t ) K = K∗
(

t 2

µ′5Q3
oE 13∗

)1/18

K = 1 K =
(

t

tmk

)1/9

P (t ) M = 1 M =µ′
(

Q3
oE 13∗

K 18∗ t 2

)1/5

M =
(

tmk

t

)2/5

Table 4.1 – Characteristic scales and dimensionless parameters in the viscosity (M), toughness
(K) and the transition from viscosity to toughness (M-K). Note that M =K −18/5.

regime where the solution is self-similar for radial growth (given by the characteristic scales

and solution for the dimensionless length, pressure and opening in viscosity scaling all of order

1). At large time, on the contrary, fracture toughness dominates the energy dissipation and

viscous flow becomes irrelevant. The fracture propagates in the viscosity dominated regime

where the solution is also self-similar. The transition between these two regimes (viscosity to

toughness) is captured by the characteristic timescale tmk :

tmk =
(
µ′5E∗13Q3

o

K 18∗

)1/2

. (4.16)

at which K (tmk ) = M (tmk ) (or alternatively Lm(tmk ) = Lk (tmk )). A corresponding (M-K)

scaling can then be used where the characteristic scales are not independent of time, and

the solution only depends on t/tmk . For the case of a transversely isotropic material, several

choices can be made for the characteristic modulus and toughness. In view of the configura-

tion investigated here, we take values along the divider direction (e1) and the arrester direction

(e3). The solution will now be function, in addition to a dimensionless time (e.g. t/tmk,∗), on

the ratio between the dimensionless toughness (or viscosity) between the arrester and the

divider directions. This is similar to taking the ratio of the transition time-scales between

the arrester and divider directions. Such a ratio is solely function of the ratio of toughness

κ= K I c,1/K I c,3 and plane strain elastic modulus β= E ′
1/E ′

3:

tmk,3

tmk,1
=

(
K1

K3

)9

=β−13/2κ9 (4.17)

We see that a small anisotropy of toughness and elasticity (e.g. β= κ−1 = 1.2) induces a strong

anisotropy in the transition from viscosity to toughness between the divider and the arrester

direction
(
tmk,1/tmk,3 ' 17

)
. The fracture front will likely reaches the toughness propagation

regime earlier in the arrester direction for these particular values of β and κ.

91



Chapter 4. Planar hydraulic fracture growth in transversely isotropic materials
perpendicular to the isotropy plane

The ratio of timescales tmk,3/tmk,1 likely captures the main effect of transverse anisotropy

on HF growth, but the Thomsen parameters ε, δ as well as C13/C11 and the details of the

toughness evolution function f (α,κ) also affect the solution. The fracture shape will also

evolve between the early time (viscous dominated) and toughness dominated regime. We

quantify these effects numerically in what follows.

Unless otherwise specified, we scale the numerical results with the average value of the plane

strain elastic modulus E∗ =
〈

E ′〉= (
E ′

1 +E ′
3

)
/2 and the average toughness K ′

∗ =
〈

K ′〉= (
K ′

1 +K ′
3

)
/2.

We will also refer the half-lengths in the divider (eee1) and arrester (eee3) directions as a and b

respectively, and denote abusively the fracture aspect ratio as b/a although the fracture shape

is not necessarily elliptical.

4.7 Viscosity dominated regime

We first focus on propagation in the viscosity dominated regime corresponding to early time

(e.g. t < tmk in the tougher direction). In such a regime, the solution is not affected by fracture

toughness (see the scaling in table 4.1). The interest therefore lies in the effect of TI elasticity

on the potential deviation of the fracture from the radial geometry obtained for isotropic

material. We investigate the effect of the dimensionless elastic parameters β, ε, δ and C13/C11

by varying them around the set of base values already used to illustrate the variation of the

near-tip modulus (see figure 4.2).

In all the simulations, the fracture plane is discretized with 100×100 rectangular element

(∆x1 = 2∆x3). Initially the fracture is set as a small circle (compared to the total grid- i.e. with

∼ 20 elements) and a fluid pressure slightly above the minimum stress.

The evolution of the dimensionless major and minor semi-axis a(t ) and b(t ) and the dimen-

sionless width at the injection with time are displayed in figure 4.3 for different values of

β= E ′
1/E ′

3. The other dimensionless elastic parameters ε, δ and C13/C11 have almost no effect

on the solution (see figures4.3-4.5). The time in these plots is scaled using an timescale tm

corresponding to the time taken to reach a fracture lengthscale of 1m: Lm(tm) = 1. Similarly,

the width w(t ), the semi-axis a(t ) and b(t ) are scaled by Wm(tm) and Lm(tm) respectively. The

results for an isotropic material are also displayed (in dot-dashed line) for reference.

figure 4.3 clearly shows the self similarity of the solution in the viscosity dominated regime.

It follows the same power law of time as in the isotropic case: 4/9 for the radius, and 1/9 for

width. The difference of the fracture semi-axes with the isotropic radial case (b(t )/a(t ) = 1) is

barely visible in such log-log plots, similarly for the width at the injection point - except for

β= 2 (figure 4.3.b)).

As the solution is self-similar in this viscosity dominated regime, we can plot the dimensionless

fracture footprint (removing the time-dependence contained in Lm(t)) γm for different set

of parameters in figure 4.4 (we plot a quarter of the fracture due to symmetry), while the
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Figure 4.3 – Viscosity dominated propagation: Time evolution of the dimensionless major
a(t )/Lm(tm) and minor b(t )/Lm(tm) semi axis in (a), and of the dimensionless width at the
injection point w(0,0)/Wm(tm) in (b). The numerical simulations are performed for different
values of β= (1.2,1.5,2) with: ε= 0.3, δ= 0.2, and C13/C11 = 0.5.

corresponding dimensionless profiles of widthΩm and pressureΠm along the major axis e1e1e1

are exhibited in figures 4.5 and 4.6 respectively.

An elongation of the fracture in the divider direction (e1e1e1) for increasing β can be observed

from the dimensionless self-similar footprint (figure4.4). The other elastic constants do not

appear to influence the solution. A difference of 18% between the fracture height and length

is obtained for β = 2 (β−1 = 0.5). The evolution of the fracture aspect ratio as function of β

can be well approximated as b/a ≈ 0.53β−1/2 (see figure 4.4.a-inset). Such a proportionality

of b/a with β can be actually be easily recovered analytically from the near-tip solution.

Matching the width given by the viscosity asymptote equation (4.11) in both the arrester

and divider directions gives a2/3/E ′1/3
1

(
da

dt

)1/3

∝ b2/3/E ′1/3
3

(
db

dt

)1/3

, where
da

dt
and

db

dt
are the

propagation velocities of the crack tips at the major and the minor axes respectively. Assuming

a self-similar growth, the ratio of the these tip velocities should be constant as shown in

Bessmertnykh and Dontsov (2018):
db

da
= b

a
(4.18)

As a result, we recover the evolution of the aspect ratio with β: b/a ∝ (E ′
3/E ′

1)1/3 =β−1/3. The

fracture width and pressure have similar evolution along the minor and major axis (e3e3e3 and

e1e1e1) actually very close to the isotropic solution. Figures 4.5 and 4.6 display the dimensionless

width and net pressure profile along the major axis. The fracture width increases slightly with

β, while it does not appear to be influenced by ε, δ and C13/C11.
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Figure 4.4 – Viscosity dominated propagation: Self similar fracture footprint γm for the ref-
erence values: β = 1.5, C13/C11 = 0.5, ε = 0.3, and δ = 0.2. The effect of the dimension-
less elastic parameters is also depicted: (a) variations of β = (1.2,1.5,2), (b) variations of
C13/C11 = (0.4,0.5,0.7), (c) variations of ε= (0.2,0.3,0.5), and (d) variations of δ= (0.1,0.2,0.3).
The inset figure in (a) show the evolution of the fracture aspect ratio b/a function of β.
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Figure 4.5 – Viscosity dominated regime: Self similar width profilesΩm = w/Wm(t ) along the
major axis e1e1e1 for the reference values: β= 1.5, C13/C11 = 0.5, ε= 0.3, and δ= 0.2. The effect
of the dimensionless elastic parameters is also depicted: (a) variations of β= (1.2,1.5,2), (b)
variations of C13/C11 = (0.4,0.5,0.7), (c) variations of ε = (0.2,0.3,0.5), and (d) variations of
δ= (0.1,0.2,0.3).
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Figure 4.6 – Viscosity dominated regime: Self similar pressure profilesΠm = p/Pm(t ) along the
major axis e1e1e1 for the reference values: β= 1.5, C13/C11 = 0.5, ε= 0.3, and δ= 0.2. The effect
of the dimensionless elastic parameters is also depicted: (a) variations of β= (1.2,1.5,2), (b)
variations of C13/C11 = (0.4,0.5,0.7), (c) variations of ε = (0.2,0.3,0.5), and (d) variations of
δ= (0.1,0.2,0.3).
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4.8. Toughness dominated regime

4.8 Toughness dominated regime

We now turn to the toughness dominated propagation regime, valid at large time compared to

tmk (t À tmk ). In this regime, viscous flow is negligible and has no effect on the solution: the

pressure is uniform (but not constant) inside the fracture. We study here the combined effect

of the anisotropy of elasticity and fracture toughness.

4.8.1 Elliptical hydraulic fracture

We first investigate the case of a peculiar form of toughness anisotropy ensuring an exact

elliptical shape under uniform loading:

K I c = K I c,3

(
E ′
α

E ′
3

)(
sin2θ+

(
b

a

)2

cos2θ

)1/4

(4.19)

θ = arctan

(
b tanα

a

)
(4.20)

Such a toughness evolution directly comes from the solution of the mode I stress intensity

factor along the front of an uniformly pressurized elliptical crack in TI medium (section 2.5.2).

From such an elastic solution, it is then possible to obtain a solution for the propagation of

such an elliptical hydraulic fracture in the toughness dominated regime. The details of such

an analytical (and self-similar) HF propagation solution are given in section 4.11.1. It is worth

noting that the HF propagates in a self similar manner with the same power law of time as in

the isotropic case: 2/5 for the radius, 1/5 for width and −1/5 for the pressure.

Making use of equation (4.19) at α = θ = 0 (the divider direction) where K I c = K I c,1 and at

α= θ =π/2 (the arrester direction) where K I c = K I c,3, we obtain the following relation for the

ellipse aspect ratio:

b

a
=

(
K I c,1

K I c,3

E ′
3

E ′
1

)2

=
(
κ

β

)2

. (4.21)

We use the fracture toughness function (4.19) in our numerical solver for the case κ−1 =β= 1.2.

The resulting effect of anisotropy of elasticity and toughness are cumulative in that case (see

equation (4.21) for κ< 1 and β> 1) and the exact aspect ratio is b(t )/a(t ) = 0.47. We set the

other elastic parameters to: ε= 0.3, δ= 0.2, and C13/C11 = 0.5. The fracture is initialized with

the analytical (isotropic) solution of a radial fracture propagating in toughness dominated

regime. The rectangular domain is divided into 150 cells along e1e1e1 and 100 along e3e3e3.

The numerical (black dots) and the analytical elliptical (green solid line) HF toughness domi-

nated solutions are both displayed on figure 4.7. We scale the time in figures 4.7.c, d, e and f by

tk , where: Lk (tk ) = 1, the pressure by Pk (tk ), the width by Wk (tk ) and semi-axis by Lk (tk )(=1).

The analytical toughness dominated solution for isotropic toughness (κ = 1) and elasticity

(β = 1) is also reported in figure 4.7 (dash-dotted lines) taking E∗ = 〈
E ′〉, and K∗ = 〈

K ′〉 as
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corresponding isotropic parameters. One clearly see that our numerical solution closely

matches the analytical elliptical HF solution for both width profiles, major and minor axis

as well as net pressure evolution. The relative error between the numerical results and the

analytical solution of the major and minor axis always remain under five percent for about

four decades of time - with only small oscillations associated with remeshing. It is worth to

recall that the fracture is initialized as a radial following the isotropic solution. Interestingly,

the width at the center w/Wk (tk ) and the net pressure p/Pk (tk ) takes slightly more time to

converge toward the elliptical HF toughness solution (figures 4.7.e and f) compared to the

fracture shape (figures 4.7.c).

This comparison verify our numerical solver, and has proven useful to test its robustness as

anisotropy increases. It is also important to re-emphasize than the fracture has exactly an

elliptical shape only for the evolution of fracture toughness given by equation 4.19.

4.8.2 Isotropic toughness

We now investigate the case of an isotropic fracture toughness: K I c (α) = K I c (κ= 1). We vary

the different elastic parameters around the same set of reference values as before: β = 1.5,

ε= 0.3, δ= 0.2, and C13/C11 = 0.5.

The numerical results for the self similar footprint γk and width profilesΩk = w/Wk along the

major and the minor axis e1e1e1 and e3e3e3 are displayed in figures 4.8 and 4.9 respectively, whereas

the pressure at the injection function of time is performed in figure 4.10. We use the toughness

scaling defined in table 4.1.

The fracture elongates more in the stiffer direction (e1e1e1) as can be seen from figure 4.8a. More

importantly, the fracture is not elliptical. The fracture aspect ratio is proportional to β−2

as shown in figure 4.8.a-inset. This is also the case for the elliptical fracture (b/a = β−2

when K I c,1 = K I c,3 in equation (4.21)). However, for isotropic toughness the slope is slightly

different: b/a ≈ 0.9β−2. This implies that assuming an elliptical shape for the case of an

isotropic toughness will underestimate the fracture aspect ratio by about 10%. Similarly than

for the viscosity dominated regime, the relation between the fracture aspect ratio and β can

be recovered from the toughness near-tip asymptote (4.5). Similarly to Bessmertnykh and

Dontsov (2018), matching the width along the minor and major axis direction from the near-tip

asymptote gives
p

b/a ∝ E ′
3

E ′
1

, in other words b/a ∝β−2.

We also report in figure 4.8 the numerical results obtained using E ′
app (α) as the near-tip

elastic modulus. As previously discussed, for large value of β, the approximate solution E ′
app

underestimates the elastic near-tip modulus compared to the exact expression E ′
α (figure 4.2-

a). As a result, the computed fracture aspect ratio is also underestimated. As an illustration

for β= 2, the ratio of the minor to major axis obtained using E ′
app is equal to 0.32, whereas

it is of 0.59 when using the exact near-tip elastic modulus E ′
α. The difference between the
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Figure 4.7 – Toughness dominated regime - Elliptical toughness anisotropy: (a,b) dimension-
less self-similar width profileΩk along e1e1e1 and e3e3e3 respectively, (c) exhibit the dimensionless
length of the major a(t )/Lk (tk ) and minor b(t )/Lk (tk ) semi-axis in semi-log scale as well as the
relative error with respect to the analytical solution (section 4.11.1) in (d), and (e,f) exhibit the
dimensionless width w(0,0)/Wk (tk ) and pressure p(0,0)/Pk (tk ) respectively at the injection
versus the dimensionless time t/tk for: κ−1 = 1.2, β= 1.2, ε= 0.3, δ= 0.2, and C13/C11 = 0.5.
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fracture footprint obtained using either the exact E ′
α and E ′

app is however not very significant

for β≤ 1.5. In other words, E ′
app provides a good approximation only for weak anisotropy.

figures 4.8.b and c display the fracture footprint for different C13/C11 and ε respectively. These

two elastic dimensionless parameters have the same effect on the behavior of the fracture foot-

print, i.e the aspect ratio increases from b/a ≈ 0.48 for small value of C13/C11 (C13/C11 = 0.4) or

ε (ε= 0.2) to b/a ≈ 0.52 for larger value of C13/C11 (C13/C11 = 0.7) or ε (ε= 0.5). This indicates

that a faster transition of the near-tip E ′
α from E ′

1 to E ′
3 (see figure 4.2), results in smaller

elongation of the fracture footprint (i.e. larger b/a). The effect of the Thomsen parameter δ

on the fracture footprint appears relatively small (less than 4% of relative difference) as can be

observed from figure 4.8.d.

The corresponding self similar width profiles along the major and the minor axisΩk = w/Wk

are shown in figure 4.9. We observe that the fracture width profile appears to be mostly

sensitive to β, with little effect of the other dimensionless elastic parameters (C13/C11, and the

Thomsen parameters ε and δ).

figure 4.10 reports the time-evolution of the dimensionless net pressure p(t )/Pk (tk ) for dif-

ferent values of β, C13/C11, Thomsen parameters ε and δ (see figures 4.10a, b, c and d respec-

tively). It evolves with −1/5 power law of time, similarly than in the case of isotropic material

as anticipated by the scaling analysis. We also directly observe that the dimensionless elastic

parameters have no effect on the net pressure. The net pressure corresponds to the solution of

the radial isotropic toughness dominated HF.

4.8.3 Isotropic fracture energy

Another possible limiting anisotropic behavior is the case of an isotropic fracture energy

Gc (α) = Gc . As a result, the fracture toughness K I c (α) =
√

Gc E ′
α decreases with α in this

case, following the variation of the elastic modulus E ′
α (see figure 4.2). The toughness ratio,

κ= K I c,1/K I c,3 =
√
β is thus greater than 1 such that it somehow compensates the effect of

elastic anisotropy (Chandler et al., 2016). Using a similar procedure than before, i.e. matching

the width of the toughness dominated near-tip asymptote in the divider and arrester directions

(K I c,1/E ′
1

p
a ∝ K I c,3/E ′

3

p
b, we now obtain that b/a should be proportional to β−1, compared

to β−2 for isotropic toughness (Bessmertnykh and Dontsov, 2018; Laubie and Ulm, 2014). A

series of simulation for different values of β recover exactly such an estimate as can be seen

from figure 4.11.a. Here again, the time-evolution of fracture shape (figure 4.11.b), width and

net pressure follows the same power-law of time than the isotropic case as predicted by the

scaling analysis. It is worth noting that the effect of the other elastic parameters (besides β) is,

similarly than for the isotropic toughness case, rather small and thus not shown here.
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Figure 4.8 – Toughness dominated propagation - Isotropic toughness case: self similar
footprint γk obtained using the exact expression for E ′

α (solid line) and the approxima-
tion function E ′

app (dashed line) as the near-tip elastic modulus. Reference parameters:
β = 1.5, C13/C11 = 0.5, ε = 0.3, and δ = 0.2. (a) variations of β = (1.2,1.5,2), (b) variations of
C13/C11 = (0.4,0.5,0.7), (c) variations of ε= (0.2,0.3,0.5), and (d) variations of δ= (0.1,0.2,0.3).
The insets display the corresponding evolution of the fracture aspect ratio b/a.
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Figure 4.9 – Toughness dominated propagation - Isotropic toughness case: self similar width
profilesΩk along e1e1e1 and e3e3e3. Reference parameters: β= 1.5, C13/C11 = 0.5, ε= 0.3, and δ= 0.2.
(a, b) variations of β= (1.2,1.5,2), (c, d) variations of C13/C11 = (0.4,0.5,0.7), (e, f) variations of
ε= (0.2,0.3,0.5), and (g, h) variations of δ= (0.1,0.2,0.3).
102



4.8. Toughness dominated regime
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Figure 4.10 – Toughness dominated propagation - Isotropic toughness case: Dimensionless
pressure evolution at the injection point p(0,0)/Pk (tk ) with time t/tk . Reference parameters:
β = 1.5, C13/C11 = 0.5, ε = 0.3, and δ = 0.2. (a) variations of β = (1.2,1.5,2), (b) variations of
C13/C11 = (0.4,0.5,0.7), (c) variations of ε= (0.2,0.3,0.5), and (d) variations of δ= (0.1,0.2,0.3).
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Figure 4.11 – Toughness dominated propagation - Isotropic fracture energy case: (a) Self
similar footprint γk , and (b) dimensionless major a(t )/Lk (tk ) and minor b(t )/Lk (tk ) semi axis
with time t/tk for different values of β = (1.2,1.5,2) with ε = 0.3, δ = 0.2, and C13/C11 = 0.5.
The inset figure in (a) shows the evolution of the fracture aspect ratio b/a function of β.

4.8.4 Self-similar fracture shape: planar 3D numerical versus approximated el-
liptical solution

It is interesting to compare our numerical results obtained without any assumptions on

the fracture shape and a previous analysis based on the assumption of an elliptical fracture

shape (Laubie and Ulm, 2014). In the toughness dominated regime, where the pressure is

uniform, one can uses the analytical solution for an elliptical fracture in TI medium (see e.g.

section 4.11.1) and either for the assumption of isotropic K I or G obtain the aspect ratio b/a

by minimizing the variations of K I , respectively G along the front. Using the approximation

E ′
app (4.10) in lieu of the exact E ′

α (4.6), Laubie and Ulm (2014); Bessmertnykh and Dontsov

(2018) obtained that b/a ∝β−1 under the assumption of isotropic fracture energy (for weak

elastic anisotropy).

Using a similar method (for both E ′
app or the exact E ′

α), we can compare the self-similar frac-

ture aspect ratio in the toughness dominated regime using such an approximated "elliptical"

fracture approach with our fully coupled numerical solution. We minimize the variations of

either K I or G along the front using a L1 norm and twenty sample points in a quadrant of the

elliptical fracture front.

The evolution of the aspect ratio as function of β are displayed in figure 4.12 for both the

fully coupled numerical results (not assuming an elliptical shape) and the minimization

assuming an elliptical shape. The complete numerical results (with the exact E ′
α) and elliptical

approximation follows the trend b/a ∝ β−2 as expected but with different pre-factors. The

discrepancy increases significantly for large anisotropy. For β > 1.25 (i.e. β−1 < 0.8), the

aspect ratio given by the elliptical fracture assumption is overestimated by more than 30%
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4.9. Transition from viscosity to toughness dominated growth
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Figure 4.12 – Toughness dominated regime - Isotropic toughness: Comparison of the fracture
aspect ratios b/a obtained from the SIF minimization using E ′

α (black square) or the approxi-
mation E ′

app (black diamond) for the near-tip elastic modulus and results of the numerical
solution using E ′

α (black dot) or E ′
app (black triangles). ε= 0.3, δ= 0.2, and C13/C11 = 0.5 for

all cases.

compared to the exact numerical results. For weaker anisotropy (β< 1.25, i.e. β−1 > 0.8), the

two estimations agree well. The numerical results obtained using E ′
app (black triangles) as the

near-tip modulus for the fully HF coupled problem diverge from the ones obtained using E ′
α

(black dots) for β−1 < 0.6 (β> 1.66). They underestimate fracture elongation by up to 45%. The

variation of the stress intensity factor along the front of an elliptical fracture obviously never

exactly disappear (even after minimization) as only a peculiar form of toughness evolution

can ensure a exact elliptical shape. Figure 4.13 displays the residual variations obtained after

minimization. They are smaller for weak elastic anisotropy, and reaches about 7% in relative

term for β= 2.

The results for the hypothesis of an isotropic fracture energy are summarized in figure 4.14.

The difference between the elliptical assumption and the complete numerical solution is

smaller than for the case of isotropic toughness. All results follow a trend b/a ∝ β−1. The

approximated solutions tends to slightly over-estimate the fracture elongation (especially for

stronger elastic anisotropy - β−1 < 0.7). According to figure 4.15, the residuals variations of the

stress intensity factor along the elliptical crack are smaller than for the hypothesis of isotropic

toughness (at most 4% percent for the largest anisotropy).

4.9 Transition from viscosity to toughness dominated growth

After investigating the hydraulic fracture growth in each of the toughness and viscosity dom-

inated regime, now we focus on the evolution from toughness to viscosity and the time of

its occurrence. We compare the numerical results given by the three different toughness

functions defined above (elliptical fracture toughness function, isotropic toughness and

isotropic fracture energy). The simulations are performed with an initial rectangular do-
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Figure 4.13 – Toughness dominated regime - Isotropic toughness: Residual of the variation

of the scaled stress intensity factor K I /K I ,1 after minimization as function of θ = arctan

(
b

a
α

)
with ε= 0.3, δ= 0.2, and C13/C11 = 0.5 for all cases.
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Figure 4.14 – Toughness dominated regime - Isotropic fracture energy: Comparison of the
fracture aspect ratios b/a obtained from the numerical solution (black dot), the fracture energy
minimization criterion using E ′

α (black square) or the approximation E ′
app (black diamond)

for the near-tip elastic modulus as function of β−1. ε= 0.3, δ= 0.2, and C13/C11 = 0.5 for all
cases.
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4.9. Transition from viscosity to toughness dominated growth

Figure 4.15 – Toughness dominated regime - Isotropic fracture energy: Residual of the variation

of the scaled fracture energy G/G1 after minimization as function of θ = arctan

(
b

a
α

)
with

ε= 0.3, δ= 0.2, and C13/C11 = 0.5 for all cases.

main of 100 cells along e1e1e1 and 80 cells along e3e3e3. The fracture is initiated with the solution of

a radial fracture propagating in viscosity regime. We set the elastic parameters to the values:

(β= 1.5,C13/C11 = 0.5,ε= 0.3,δ= 0.2). We present the numerical results using the viscosity-to-

toughness scaling given in table 4.1 where E∗ and K∗ are chosen to be inline with the arrester

direction (E∗ = E ′
1,K∗ = K ′

1). We focus here on the evolution of the semi-major and minor

axes function of the dimensionless time t/tmk,1 (figures 4.16, 4.17 and 4.18) as the fracture

shape, width and pressure profiles are already grasped in the two sections 4.7 and 4.8. We

compare our numerical results with the approximated solution M+K (green dot-dashed lines)

of Dontsov (2019) obtained by combining the near-tip HF asymptote and the global volume

balance assuming an elliptical fracture. This solution depends only on the elasticity ratio β

and the toughness ratio κ. It does not account for the proper evolution of the elastic modulus

E ′
α. It may be applicable in the transitional part when the semi-major axis propagates in the

viscosity regime whereas the minor axis has reached the toughness regime (Dontsov, 2019).

We should also note that the solution of Dontsov (2019) is valid only for high toughness ratio:

κ−1 = 10, however we reported in the figures 4.16, 4.17 and 4.18 for more comparison with the

numerical results (despite the significant error that is expected).

We also plot the radial viscosity solution for the isotropic case in blue dot-dashed lines with〈
E ′〉 is the value of the elastic modulus and

〈
K ′〉 is the value of the fracture toughness (M-

regime in figures 4.16, 4.17 and 4.18). The analytical solution of the elliptical fracture in

toughness dominated regime (equations (4.21) and (4.27)) is presented in red dotted-dashed

lines. The purple line present the limit where the numerical results for the major (in dashed)

and the minor (in dot-dashed) axis are within 7% of the elliptical toughness solution.

107



Chapter 4. Planar hydraulic fracture growth in transversely isotropic materials
perpendicular to the isotropy plane

10−3 10−2 10−1 100 101 102 103 104 105

10−1

100

101

102

M-regime

Toughness elliptical 

solution

         M+K 

(Dontsov 2019)

Minor a
xis

Major a
xis

Figure 4.16 – Elliptical toughness - Viscosity to toughness regime: Dimensionless major
a(t )/Lmk,1 and minor b(t )/Lmk,1 semi axis in log-log scale function of the dimensionless
time t/tmk,1 for toughness ratio κ−1 = 1.2 with β = 1.5, ε = 0.3, δ = 0.2, and C13/C11 = 0.5.
Comparison with the approximated solution of Dontsov (2019) in green-dashed lines.

4.9.1 Elliptical toughness

Figure 4.16 displays the fracture semi-axis with time for the elliptical toughness anisotropy

(4.19) for a toughness ratio κ−1 = 1.2. The ratio of the transition time scales of the arrester

and divider direction is (see equation (4.17)) tmk,3/tmk,1 = β−13/2κ9 = 0.014. At early time

(t/tmk,1 < 1), the fracture radius follow closely the isotropic solution of a radial fracture as

discussed in section 4.7. In the intermediate regime 102 < t/tmk,1 < 104, the approximated

M+K solution for the major axis a(t) (Dontsov, 2019) is close to the numerical solution but

deviates as soon as the fracture radius reaches the elliptical solution for the toughness regime,

while for the minor axis, the two solutions (M+K solution and the numerical solution) are

obviously different.

The numerical results matches well the exact elliptical HF toughness dominated solution at

times larger than 1.3×105 tmk,1 . Notably, The numerical fracture shape evolves in the tough-

ness dominated regime with a constant aspect ratio exactly as predicted by equation (4.21):

b/a =β−2κ2 = 3.24. In terms of dimensionless toughness K1 = (t/tmk,1)1/9 (see table 4.1), the

major axis reaches the toughness regime at K1appr ox3.7 (t ≈ 1.3105tmk,1), which is consis-

tent with the estimation obtained for the case of isotropy (Savitski and Detournay, 2002). The

minor axis reaches the toughness regime when K3 =K1×
(
tmk,3/tmk,1

)−1/9 ≈ 4.5 according to

figure 4.16 - which corresponds to an earlier time (t ≈ 1.06×104 tmk,1 = 75.105tmk,3).
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Figure 4.17 – Isotropic toughness (κ= 1) - viscosity to toughness transition: time evolution
of the dimensionless major a(t )/Lmk,1 and minor b(t )/Lmk,1 semi axis for β = 1.5, ε = 0.3,
δ= 0.2, and C13/C11 = 0.5. The approximated M+K solution of Dontsov (2019) is displayed in
green-dashed lines.

4.9.2 Isotropic toughness

Figure 4.17 presents the numerical solution for the semi-major and minor axes assuming an

isotropic toughness function. The analytical solution for the toughness dominated elliptical

HF is here plotted for the case κ = 1. The ratio of timescales is now only function of β:

tmk,3/tmk,1 =β−13/2 = (0.07 for the chosen β= 1.5). The viscosity dominated regime extends

further squeezing the transition to a narrow region. The M+K approximated solution captures

the order of magnitude of the evolution of the major respectively minor axis in a narrow range

of times 70 < t/tmk,1 < 3.102 (major), respectively 102 < t/tmk,1 < 8.103. The slope (power-law)

of this approximated solution in both cases clearly do not follow the numerical results.

In this case, our numerical solution indicates that the major and minor axis reach the tough-

ness dominated regime for K1 ≈ 4.3 (t ≈ 5×105 /tmk,1 and K3 ≈ 3.7 (t ≈ 104 tmk,1) respectively.

The relative difference between the numerical solution and the toughness dominated ellip-

tical HF solution is larger in that case. This is directly related to the fact that the fracture

does not have strictly an elliptical shape in the toughness dominated regime as discussed in

section 4.8.4.

4.9.3 Isotropic fracture energy

The results for the isotropic fracture energy case is given in figure 4.18. The toughness ratio

is here a function of the elasticity κ−1 =
√

E ′
3/E ′

1 =β−1/2(= 0.8 for β = 1.5) which we use for
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Figure 4.18 – Isotropic fracture energy viscosity to toughness transition: time evolution of the
dimensionless major a(t )/Lmk,1 and minor b(t )/Lmk,1 semi axis for β= 1.5, ε= 0.3, δ= 0.2,
and C13/C11 = 0.5. The approximated M+K solution of Dontsov (2019) is displayed in green-
dashed lines.

the toughness dominated HF elliptical solution. The ratio of the characteristic timescales

now reduces to: tmk,3/tmk,1 = κ9β−13/2 =β−2(= 0.44). The effect of anisotropy of toughness

and elasticity are not compounded in this case. As a result, the fracture propagates with a

smaller aspect ratio (b/a = β−1) in the toughness dominated regime. The transition to the

toughness regime occurs earlier for such an isotropic fracture energy assumption: at K1 ≈ 2.9

(t ≈ 1.4×104 tmk,1 ) for the major axis, and K3 ≈ 1.13 (t ≈ 1.3×104 tmk,1) for the minor axis. The

numerical results at large time follows the elliptical HF toughness dominated solution (with a

slight deviation that is barely visible in log-log scale). The fracture shape is not far from being

elliptical in that case as discussed in section 4.8.4. The approximated M+K solution (possibly

viable in the transition between viscosity and toughness regime) exhibit different power-law of

time for the minor and major axis evolution compared to the fully coupled numerical results.

4.10 Conclusions

Propagation of a planar HF perpendicular to the isotropy plane is arguably the most common

configuration encountered during the stimulation of unconventional hydrocarbon reservoirs.

Using a fully coupled HF solver, we have quantified the impact of transverse isotropy on the

growth of a hydraulic fracture, notably the elongation of the fracture in the divider direction

and its shortening in the arrester direction.

Using a change of reference frame and the solution for a edge dislocation in an orthotropic
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4.10. Conclusions

medium, we have obtained an exact expression of the elastic modulus controlling the near-tip

elastic operator (4.6) as function of the angle between the local fracture propagation direction

and the isotropy plane (see figure 4.1). This near-tip elastic modulus enters both in the local

near-tip elastic operator and the Irwin matrix relating the energy release rate and the stress

intensity factor. This exact expression of the near-tip elastic modulus quantifies the validity of

an approximated expression put forward previously (Laubie and Ulm, 2014) which appears

to be valid only for weak elastic anisotropy (β ≤ 1.2). As a result, approximated solutions

for the growth of a finite HF in a TI material using this approximation in combination with

the assumption of an elliptical fracture do compare reasonably well with our fully coupled

numerical results only for weak anisotropy (β ≤ 1.2). Assuming the fracture shape to be

elliptical overestimates the exact fracture aspect ratio by more than 30% for larger elastic

anisotropy (β> 1.5) and isotropic toughness.

It is important to recall that the fracture has strictly an elliptical shape only for a very peculiar

case of toughness anisotropy that can be deduced from the elliptical crack elastic solution

(4.11.1). We have derived from the TI elliptical fracture solution, a solution for HF growth in

the toughness dominated regime (for such a form of elliptical toughness anisotropy). Our

numerical solver perfectly reproduces this toughness dominated solution.

In the viscous dominated regime, toughness does not affect HF growth. Our results show that

elastic anisotropy leads to a slight elongation of the fracture in the divider direction in this

viscous regime, with aspect ratio scaling as b/a ≈ 0.76β−1/3. The other dimensionless elastic

parameters have a relatively small effect.

In the toughness dominated regime, the fracture is more elongated than in the viscosity

dominated regime both for the hypothesis of elliptical toughness, isotropic toughness or

isotropic fracture energy. The intensity of the elongation strongly depends on the type of

toughness anisotropy. As already mentioned, the fracture is elliptical only when toughness

evolves according to equation (4.19) where b/a = (κ/β)2. For an isotropic toughness (κ= 1),

the aspect ratio evolves as b/a ≈ 0.9β−2, consistent with the ratio of the LEFM asymptote

between the orthogonal directions (eee1 and eee3). The other elastic parameters have a second

order effect (at most about 10% of variation). The elongation is less pronounced for the case of

an isotropic critical fracture energy, where b/a ≈β−1. Here again the other elastic parameters

do not impact fracture growth significantly.

We have explored numerically (for a given set of elastic coefficients), the transition between

the viscosity and toughness dominated regimes. Our results confirm the expression of the

transition time-scales tmk,1 and tmk,3 obtained from scaling considerations. The ratio of these

time-scales tmk,3/tmk,1 =β−13/2κ9 govern how early fracture elongation start to increase from

its initial value in the viscosity dominated regime. The exact time at which the toughness

regime is reached depends on the type of toughness evolution. However, to first order it is

consistent with the limit obtained for isotropy (Savitski and Detournay, 2002): i.e K > 3.5 for

toughness dominated growth. The approximated transitional (M+K) solution (Dontsov, 2019)
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based on an elliptical fracture and applicable for large toughness ratio (κ−1 > 10) was used for

comparison with the numerical results in the case of small toughness ratio κ−1 = 1.2. The two

solutions have the same order of magnitude for the fracture dimensions (with different power

law of time) in the transition regime between viscosity and toughness dominated growth.

The extension of the implicit level set algorithm to account for transverse isotropy has proven

robust for all realistic values of material properties investigated here. It provides a robust

solution for planar 3D HF growth in TI. Of course, extreme anisotropy β> 2 causes numer-

ical difficulties as the fracture curvature becomes extreme in the divider direction (eee1) thus

requiring finer discretization.

For practical applications, the variation of fracture toughness as function of the local propa-

gation direction (angle α) is clearly of first importance, as already pointed out for the elastic

isotropy / toughness anisotropic case (Zia et al., 2018). Our results reinforce the need for better

experimental characterization of the mode I fracture toughness of TI material in different

directions. Unfortunately, such laboratory measurements are rare and often focus mostly on

the plane-strain case of a planar crack propagating at angle with the isotropy plane, and not for

different value of α as per the configuration of figure 4.1. Our results indicate a positive effect

of anisotropy on vertical containment of hydraulic fractures propagating in finely layered

sedimentary formation: a possible explanation for the small vertical extent of HFs in finely

layered sedimentary rock even in the absence of in-situ stress contrast. Ultimately, laboratory

experiments of HF growth in TI materials with proper measurements of the evolution of the

fracture shape are required to further test the theoretical results presented here.

4.11 Supplemental material

4.11.1 Elliptical hydraulic fracture - toughness dominated solution

From the solution of the elliptical fracture under uniform pressure developed in section 2.5.2,

the stress intensity factor along the elliptical front is obtained function of elastic constant Bo

as:

K I = Bo

4

p
πaE ′

αp

(
sin2θ+

(
b

a

)2

cos2θ

)1/4

. (4.22)

Bo = 16

(
b

a

)1/2 1∫ 2π
0 E ′

α(α(θ))× (
(b/a)2 cos2θ+ sin2θ

)1/2
dθ

. (4.23)

with: tanα= a

b
tanθ.

It is rather simple to obtain a growth solution for a hydraulic fracture in the toughness domi-

nated regime. We write K I c,3 as the material toughness in the divider direction e3e3e3 and E ′
3 the

corresponding near-tip elastic modulus. First, to ensure a self similar growth of an elliptical

fracture, the toughness must be equal to the stress intensity factor at all points along the
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fracture front. The toughness variation must therefore has exactly the following form:

K I c (α(θ)) = K I c,3
E ′
α

E ′
3

(
sin2θ+

(
b

a

)2

cos2θ

)1/4

(4.24)

From the previous equation, we directly obtain the relation between the ellipse aspect ratio

(at θ = 0, π/2) and the ratios β= E ′
1/E ′

3 and κ= K I c,1/K I c,3:

b

a
=

(
K I c,1

K I c,3

E ′
3

E ′
1

)2

=
(
κ

β

)2

. (4.25)

Under quasi-static propagation, K I = K I c at all times such that equations (4.22) and (4.24)

provide the following expression for the net pressure:

p(t ) = 4K I c,3
p

a/b

BoE ′
3

p
πb(t )

, (4.26)

The evolution of the semi- minor and major axis can then be obtained by enforcing the fact

that for an impermeable medium the volume of the fracture must be equal to injected volume:

V f r ac =Qo t . One then obtains:

b(t ) =
(

3tQoE ′
3(b/a)

8K I c,3
p
π

)2/5

, a(t ) =
(

K I c,3

K I c,1

E ′
1

E ′
3

)2

b(t ) (4.27)

which complete the solution.
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5 Laboratory experiments: Materials
and Hydraulic Fracture Tests

The experimental program is driven by the desire to explore hydraulic fracture behaviour

in different propagation regimes (viscosity vs toughness). We have seen in the previous

chapter that the fracture shape is more elongated in the divider direction, but that its exact

geometry is not strictly elliptical unless the fracture toughness follows a particular form

(chapter 4). In this chapter, we restrict our experimental survey to one material: a slate Del

Carmen. This material’s elastic properties vary significantly between static and dynamic

measurements. Both elastic parameters and fracture toughness are anisotropic and are

measured in this chapter. We present preliminary results of two distinct hydraulic fracture

tests, in the toughness viscosity dominated regimes. A special consideration is given to the

roughness of the fracture surface created during the test.

5.1 Experimental hydraulic fracturing setup

5.1.1 Hydraulic fracturing frame

The experimental setup is restricted to cubic blocks. A true triaxial confinement is applied

via six flat-jacks (figure 5.1). The triaxial cell providing this confinement went through a

qualification test (see appendix B1). The poly-axial confinement is necessary in order to

control the plane of fracture propagation. The fluid is injected using a constant displacement

stepping motor pump and therefore tests are considered to be in volume control provided that

the system is stiff enough that the fluid compressibility effects dominate only the early stage

of the tests. Fractures are initiated from a manufactured flaw and fluid injection proceeds

until the fracture interacts strongly with one or more specimen boundaries. The pressure

measurements used are transducers which straddle needle-type control valves. The pressure

downstream of the valve is corrected for viscous losses in order to give an estimate of the

injection pressure at the fracture inlet. The flow control valve serves to dissipate the elastic

energy that is stored in the fluid during the pressurization phase.

An active acoustic monitoring system consisting of 64 piezoelectric transducer has been de-
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veloped in the Geo-Energy Laboratory. Half of the transducers are connected to a function

generator and amplifier to be used as excitation sources, while the other 32, acting as receivers,

are wired to a high-speed acquisition system to record acoustic data at 50 MHz. The trans-

ducers can be placed on all sides of the sample (figure 5.2), with most transducers on the

sides parallel to the fracture plane in order to estimate the fracture thickness with transmitted

waves. The duration of a full acquisition is approximatively 2.5 seconds, allowing us to track

the fracture growth during the fluid injection.

A well is drilled in a cubic block of Del Carmen slate along the minimum horizontal axis as

depicted in figure 5.1. The block is notched at mid-distance to enhance the planarity of the

fracture. In order to reduce the compressibility effect, a needle valve was placed near the

wellbore with a pressure gauge for measuring the upstream and downstream pressure. The

maximum confinement is along the vertical direction e3e3e3 to clamp the bedding planes as much

as possible and promote HF normal to the bedding plane. More details about the procedure

of the experiments and the acquisition system are given in appendix B1.

Figure 5.1 – A cubic block of Del Carmen slate in place in the polyaxial cell (without connection
of the wellbore).

116



5.1. Experimental hydraulic fracturing setup

Figure 5.2 – 3D drawing of the reaction frame with top of the cell open. The platens for the
acoustic transducers are also displayed in the frame.

5.1.2 Experimental design

Early time-compressibility effect

There are three important phases during a HF test: the pressurization phase (no HF growth),

the initiation phase and the propagation phase. The propagation phase is when the fracture is

driven by a constant flow rate Qo , whereas the initiation phase occurs at an early time when

the fluid is stored by the compressibility of the system (injection line, wellbore). This effect is

mostly governed by the fluid and the injection system and is characterized by the compliance

U where (Lecampion et al., 2017; Lhomme, 2005):

U = c f Vi n j

where Vi n j is the volume of the injection system and c f is the fluid compressibility c f (= 10−5

MPa−1 for glycerol and 2.1×10−4 MPa−1 for silicone) . After breakdown, the amount of fluid

stored in the system will be released such that the flow rate entering the fracture temporarily

exceeds the pump rate Qo . The fluid flux Qi n entering the fracture at any given time is derived

as the following:

Qi n =Qo −U
∂P

∂t

Prior to initiation, Qi n is negligible and U is obtained from the slope of the pressurisation

phase. Thus, we can estimate the compliance downstream and upstream the valve with the

given system of equations: Ud = c f Vd ,i n j

Uu = U −Ud
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Scaling analysis

In order to properly design the experiments that are relevant with respect to the field con-

ditions, we use dimensional analysis to better determine the most important problem pa-

rameters among the injection rate Qo , the fluid viscosity µ′ = 12µ, the system compliance U ,

the minimum confining stress σh , the near-tip elastic modulus along the divider (or arrester)

direction E ′
1 (or E ′

3 or
〈

E ′〉= E ′
1 +E ′

3

2
) and the corresponding fracture toughness K ′

1 =
√

32
π K I c,1

(or K ′
3 or

〈
K ′〉= K ′

1 +K ′
3

2
).

In each phase (early time/initiation phase and large time/constant injection phase), three lim-

iting regimes govern the HF propagation in impermeable elastic isotropic media (Lecampion

et al., 2017) which are also valid for transverse isotropic media (see section 4.4). The fracture

begins in a regime where a fluid lag is present (called Ô in figure 5.3 in the early time and O in

the large time propagation), transitions to a viscosity regime (called M̂ in the early time and M

in the large time propagation), and then to a to toughness regime (called K̂ in the early time

and K in the large time propagation). These transitions depend on the problem parameters

and are characterized by the timescales defined in table 5.1.

The field experiments are performed with a large injection rate that enhances the propagation

along the viscosity dominated regime (blue trajectory in figure 5.3). In order to reproduce the

field experiments at the laboratory scale, we can compensate for the effect of the injection rate

(∼ 104ml /s in the field versus ∼ 0.1ml /s in the lab) using a very viscous fluid (see table (5.1)).

First, it is interesting to investigate the most probable trajectory regarding the lab facilities

which corresponds to the toughness trajectory (red trajectory in figure 5.3). In the following

we aim to investigate these two limiting cases by varying the fluid viscosity µ′, the flow rate Qo ,

and confining stress σh .

Six tests were performed in the toughness regime referred as SLATE_K_# and two in the

viscosity dominated regime referred as SLATE_M_#. The SLATE_K_# is driven by a solution

of glycerine, water and blue dye whose viscosity was measured using a rotating viscosimeter,

whereas for SLATE_M_#, we used a silicone oil. Table 5.2 presents the parameters and the

initial condition of each test. We qualify a test in table 5.2 as successful when a horizontal

hydraulic fracture is visibly observed. Only two tests out of six in the toughness regime were

successful, whereas in the viscosity case one out of two was successful. The remaining tests

mostly propagated in the bedding plane parallel to the wellbore or even by debonding the

epoxy of the wellbore.

The tests parameters of the three successful tests (two in the toughness and one in the viscosity

regime) are relisted in table 5.3 whereas the values of the corresponding timescales are given

in table 5.4. The system compliance U was computed from the slope of the pressurization

phase. From table 5.4, comparing the test duration for both SLATE_K_3 and SLATE_K_4 tests

with the large time/constant injection time scale tk̂k , the fracture propagation has taken place

in the toughness K̂ K transition (red trajectory in figure 5.3). For SLATE_M_1 test, it takes place
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5.2. Material characterization

Figure 5.3 – Schematic evolution of the initiation and propagation of radial fracture in isotropic
impermeable media (taken from Lecampion et al. (2017)).

more in the lag-viscosity transition with tôo and tom larger than the test duration. We report in

section 5.3 the experimental results of these HF tests.

5.2 Material characterization

5.2.1 Mineralogy

Slate is a fine-grained, foliated metamorphic rock which has issued from a sedimentary type

of shale composed of clay or volcanic ash. The foliation is caused by a strong metamorphic

compression. The Del Carmen slate is originally from the Cabrera Mountains of North-West

Spain. It has a low water absorption, and a bulk density of ρ = 2.77 g /cm3.

The mineralogy composition and organic content of Del Carmen slate are determined through

powder XRD analysis. The intensity of the diffraction presented as the peak height and as

the integrated intensity at peak angle 2θ is given in figure 5.4. We observe a concentration of

35.7% of laminated silicates, in particular chlorite and mica. Depending on the orientation of

the bedding, we count for 19 to 145 of layers of mica per millimeter moving from the cross

section parallel to the bedding to the cross-section normal to the bedding. Mineral of quartz is

also detected in high fractions estimated to be 43.61% of the total volume. Minor constituents

identified from the XRD analysis are feldspars (3.15%) and plagioclases (12.84%). Note that

neither carbonates nor clay components are found in the powder. Also, at the macroscopic

scale, we observe the presence of veins of calcites of centimeter size (figure 5.1).
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Time scales

tom
E ′2

1 µ
′

σ3
o

tmk
E ′

1
13/2Q3/2

o µ′5/2

K ′
1

9

tm̂k̂

E ′
1

5/2U 1/2µ′

K ′
1

3

tôo
E ′

1
1/2U 3/4µ′1/4

Q3/4
o

tm̂m tôo

tk̂k

K ′
1U 5/6

E ′
1

1/6Qo

Table 5.1 – Transition time scales between limiting propagation regimes (Lecampion et al.,
2017).

σv (MPa) σH (MPa) σh (MPa) µ′ (Pa.s) Qo (ml/s) status

SLATE_K_1 15 7 0 7.2 10−4 Failure
SLATE_K_2 15 5 0 7.2 10−4 Failure
SLATE_K_3 20 5 0.5 7.2 10−2 Success
SLATE_K_4 20 5 0.5 7.2 2.5×10−3 Success
SLATE_K_5 20 5 0.5 7.2 2.5×10−3 Failure
SLATE_K_6 20 20 1 7.2 10−2 Failure
SLATE_M_1 20 20 1 120 5×10−3 Success
SLATE_M_2 20 20 0.5 120 5×10−4 Failure

Table 5.2 – Sample configuration for laboratory tests in toughness and viscosity dominated
regime.

E ′
1 (GPa) K ′

1 (MPa.m1/2) σh (MPa) µ′ (Pa.s) Qo (ml/s) U (ml/GPa) Pressurization rate Qo/U (MPa/s)

SLATE_K_3
35.4 7.85

0.5 7.2 10−2 214 0.0467
SLATE_K_4 0.5 7.2 2.5×10−3 170.2 0.0146
SLATE_M_1 1 120 5×10−3 255.8 0.0195

Table 5.3 – Sample configuration and test parameters for the three successful lab experiments.
The elastic properties and fracture toughness are taken from the results of static tests (section
5.2.2) and SCB tests (section 5.2.4).

Propagation time tp (s) tk̂k (s) tôo (s) tom (s) tmk (s) Kend = (
tp /tmk

)1/9

SLATE_K_3 20 1.8×105 - - 5×10−4 3.24
SLATE_K_4 100 6×105 - - 7×10−5 4.83
SLATE_M_1 100 - 1.8×105 107 72 1.04

Table 5.4 – Experimental HF propagation time, transition time scales and dimensionless
parameters of the three successful lab experiments.
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Figure 5.4 – Mineralogical composition of Del Carmen slate in intensity using XRD method.
We thank Professor Thierry Adatte for the mineralogical analysis that was done in the institute
of Earth Sciences in University of Lausanne.

5.2.2 Static measurements

A transverse isotropic rock has a hexagonal symmetry with five independent elastic constants,

which can be determined from either ultrasonic velocity measurements or quasi-static me-

chanical tests. Three cores were cut in three different orientations with respect to the bedding:

parallel, normal and 45◦ to the symmetry axis (see figure 5.5). We denote θ as the angle be-

tween the cylindrical symmetry axis and the horizontal axis e1e1e1. We adopt the same notation

as before (chapters 2 and 4): eieiei refers to the basis in the material frame, whereas e ′ie ′ie ′i refers to

the local (rotated) basis, where: e3e3e3 is the normal to the bedding (or so-called "divider"), e2e2e2

is the minimum horizontal axis (normal to the fracture plane) and e1e1e1 is the horizontal axis

("arrester") (see figure 5.5).

Laboratory experiments were conducted in a servo-controlled displacement apparatus, in

which cylindrical samples of 55 mm diameter and 110 mm height were loaded under a uni-

axial loading. Besides the pressure sensors, the vertical deformation εz was measured by a

pair of LVDT displacement transducers and the lateral deformation εr was measured by a

circular strain gage extensometer. We are thankful to Laurent Gastaldo and the Laboratory of

Experimental Rock Mechanics (LEMR) for their time and their guidance in running these tests.

Figure 5.5 shows the three orientations of the cylindrical cores. The axis of the sample is either

along the arrester, the divider or titled at 45◦ with respect to the bedding planes. The elastic

moduli in the divider and the arrester directions (E1,E3) and the poisson ratios (ν12,ν13) are

determined from the horizontal and the vertical cores (using the elasticity equations in (figure

5.6). The remaining elastic parameter G13 is evaluated using the vertical loading-deformation

expression for the third sample (see figure 5.6).

Figures 5.7, 5.8 and 5.9 present the vertical compressive stress σz function of the vertical

deformation εz for the parallel, normal and tilted (45◦) orientations respectively. The samples

were loaded until 40 MPa, unloaded to 5 MPa and then reloaded until failure. The rupture
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Chapter 5. Laboratory experiments: Materials and Hydraulic Fracture Tests

Figure 5.5 – Schematic slate block showing the configuration of the three cores and the
mechanical properties measured from each orientation.

Figure 5.6 – Elastic equations governing the uniaxial compression test for a TI media (Cho
et al., 2012).
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Figure 5.7 – Uniaxial loading function of the vertical strain during a cycle of loading-unloading
on a cylindrical core of slate. The axial compression is applied parallel to the bedding.

occurred at a uniaxial compressive strength (UCS) of σz,max = 97.2 MPa along the bedding

and of σz,max = 172.6 MPa normal to the bedding. There is almost a ratio of 1.8 of anisotropy

of UCS between the two orthogonal directions. The elastic moduli are determined from the

second loading curve and are equal to E1 = 35.4 GPa and E3 = 26.4 GPa, with E1/E3 = 1.34.

During loading of the third sample (figure 5.9), the maximum load reached σz,max = 111.3

MPa with the highest elastic modulus of E45◦ = 36.06 GPa. This resulted in a shear coefficient

of G13 = 21.2 GPa.

The poisson ratios obtained from the σz −εr curves (figure 5.10) are very low in comparison to

typical values for rocks (∼ 0.2−0.3). This is may be due to errors in measurements:

ν12 = 0, ν13 = 0.029. (5.1)

In terms of the stiffness coefficients, we obtain the following elastic tensor (in GPa) for the Del

Carmen slate: 

C11 = 35.4

C33 = 26.4

C12 = 0.41

C13 = 1.03

C44 = 21.2

(5.2)

The aberrant values of C12 and C13 are again due to the (almost) zero values of the poisson

ratios (see chapter 2 for stiffness-poisson ratios and elastic moduli relation).
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Figure 5.8 – Uniaxial loading function of the vertical strain during a cycle of loading-unloading
on a cylindrical core of slate. The axial compression is applied normal to bedding.
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Figure 5.9 – Uniaxial loading function of the vertical strain during a cycle of loading-unloading
on cylindrical core of slate. The axial compression is inclined at 45◦ with respect to the bedding.

124



5.2. Material characterization

����� ����� ����� ����� ����� ����� �����

�

��

��

��

	�

���

������ ������ ������ ������ ������

�

��

���

���

Figure 5.10 – Uniaxial loading function of the radial strain during a cycle of loading-unloading
on a cylindrical core of slate. The axial compression is applied parallel to the bedding in the
left figure, whereas it is normal to the bedding in the right figure.

5.2.3 Ultrasonic measurements

VP and VS

In a vertical TI medium, the P-wave and S-wave velocities change with the wave incidence

angle θ (see figure 5.5), measured from the symmetry axis (e3e3e3), as in the Christoffel equation

(Tsvankin, 2012):

2ρV 2(θ) = (C11 +C55)sin2θ+ (C33 +C55)cos2θ

+
√(

(C11 −C55)sin2θ− (C33 −C55)cos2θ
)2 +4(C13 +C55)2 sin2θcos2θ (5.3)

Equation 5.3 is the solution of the differential wave equation emerging from Newton’s second

law of motion (with no body force) for a plane wave propagating in linearly elastic homogenous

TI media. In particular, the velocities of the P-wave and the two polarized S (SV and SH) waves

propagating along the axis of symmetry e3e3e3 (θ = 0◦) are given by (Blum et al., 2013):

VP0 =
√

C33

ρ
, VSV 0 =

√
C44

ρ
, VSH0 =

√
C44

ρ
. (5.4)

Similarly, for the vector of velocity along the direction parallel to the bedding (divider):

VP90 =
√

C11

ρ
, VSV 90 =

√
C44

ρ
, VSH90 =

√
C66

ρ
. (5.5)

We use acoustic sensors to measure velocities averaged over four sources-receivers pairs.

Figures 5.12 and 5.13 show an example of velocity data at a given pressure from the anisotropic

dataset conducted on a cubic sample of 250*250*250 mm3 of Del Carmen slate. We apply the

confining stresses in several steps (figure 5.11). The confining stress varied from 0 to 15 MPa

in the vertical and horizontal directions and from 0 to 0.5 MPa for the minimum horizontal
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Loading Unloading

Figure 5.11 – Confining stress (in MPa) function of time (in s) for a cycle of loading-unloading
of the cubic block.

stress (see figure 5.11-inset for stress configuration). The horizontal and vertical stress are

increase to simultaneously until reaching a pressure of σH =σv = 5 MPa. Then, the horizontal

stress is first increased to the target pressure of 15 MPa, to be followed by σv . This same

procedure was adopted for the unloading. Thus, the dynamic properties were measured for

both loading/unloading pressure steps at various stress levels.

We observe from the tops of figures 5.12 and 5.13 that σH has a small effect on the P-waves

and that those P-waves are mostly governed by the vertical stress (figures 5.12-bottom and

5.13-bottom). For a given stress, the velocity along the unloading path is greater than the one

measured during loading as expected. Under ambient conditions, the bedding planes are

microscopically open, the signal for the P-waves crossing the bedding is not even detected

up to a threshold stress of σv,m = 3.5 MPa for the loading path and to σv,m = 2.5 MPa for the

unloading path (bottom figure of 5.12). For σv >σv,m , the P-velocity along the slow direction

is uniform with 2% of relative error. Additionally, the P-waves parallel to the bedding are

measured without minimum confinement with less than 1% of relative error when increasing

σv (figure 5.13-bottom).

Ci j constants from ultrasonic wave velocities

Four of the elastic constants are given by the velocity measurements along the principal

material axis e1e1e1 and e3e3e3 as can be seen from equations (5.4) and (5.5). To determine the fifth

elastic parameter C13, we make use of the P-wave velocity in the direction of angle θ 6= {0,90◦}
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Figure 5.12 – Velocities of the P-waves propagating in the arrester direction of the horizontal
(top-figure) and vertical (bottom-figure) confining stress for the loading-unloading cycle
defined in figure 5.11.
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Figure 5.13 – Velocities of the P-waves propagating in the divider direction of the horizontal
(top-figure) and vertical (bottom-figure) confining stress for the loading-unloading cycle
defined in figure 5.11.
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Figure 5.14 – The dynamic stiffness coefficients Ci j in GPa for six slate Del Carmen samples.

(ideally 45◦) with respect to the symmetry axis e3e3e3. For most of our experimental measurements,

we had: θ = {20,68◦}. We used acoustic transducers of diameter less than the ratio of travel

distance H/20 which promotes measurement of group velocities instead of phase velocities

(Dellinger and Vernik, 1994). Tsvankin (2012) shows that the P-wave group velocity UP (θ) is

given as a function of the phase velocity VP (θ) (equation (5.3)):

UP (θ) =VP (θ)

√
1+

(
1

VP (θ)

dVP

dθ

)2

(5.6)

In the cases of fast and slow velocity directions: θ = 0◦ and 90◦, we have VP =UP . Thus, the set

of stiffness coefficients can be defined completely using at least VP0,VP90,VSV 0,VSH90,VP45

and is derived in figure 5.14 for six test samples. The values of C11, C33, and C44 are consistent

over the six measurements, as we can see from figure 5.14, with less than ±2 GPa of difference

(see table 5.5 for the average values). The error bar for the S-wave measurements is relatively

larger than for the P-wave measurements, which enlarges the confidence interval for the C66

measurements (±8.4 GPa). For C44, we use a combination of VSV 0,VSH0, and VSV 90 to reduce

the relative error. one explanation for the discrepancy in the C13 measurements for the six

samples (table 5.5) is the numerical solution of the nonlinear equation (5.6), in addition to the

error in measuring the angle θ. To determine C12, we use the expression C12 =C11 −2C66, so

that the error of measurement is systematic.

In order to characterize the anisotropy of the slate, we plot the stiffness ratios C11/C33, C66/C44

and C13/C12 in figure 5.15. For isotropic media, these ratios are equal to unity. The direct

compression coefficient is 68% higher along the divider than in the arrester direction C11/C33 ≈
1.68, whereas it is roughly isotropic for the indirect compression, C13/C12 ≈ 1 (except for the

fourth sample). The rock is 70% stiffer to direct shear in the isotropic plane than in the

symmetric plane, C66/C44 ≥ 1.7 (figure 5.15).

129



Chapter 5. Laboratory experiments: Materials and Hydraulic Fracture Tests

Ci j C11 C33 C12 C13 C44 C66

GPa 119.62±2 71.15±2.8 30.12±17.7 32.36±12.5 21.51±3.2 44.75±8.4

Table 5.5 – Ci j coefficients from six ultrasonic measurements: mean value and standard
deviation in GPa.
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Figure 5.15 – Stiffness ratios C11/C33, C13/C12 and C66/C44 for six Del Carmen slate ultrasonic
measurements.

Discussion

As we can observe from the static and ultrasonic measurements, the dynamic Ci j are greater

than the the static equivalents (table 5.5 and equation (5.2)). The magnitudes of strain involved

in the passage of ultrasonic waves are on the order of 10−7 (Mavko et al., 2009). Such a small

deformation causes a stress perturbation of 1 kPa magnitude, whereas the stiffness coefficients

are of order of ∼ 20−100 GPa (table 5.5). Only deformation due to elastic deformation of

minerals is measured using ultrasonic tests and not that which is due to deformation of the

pore structure. Alternately, static deformation captures (besides the pore pressure deformation

and the elastic deformation of minerals) some additional energy dissipation due to friction

and micro-cracks.

Another source of difference in measurement worth mentioning is the heterogeneity of the

sample. The calcite veins, for example, may weaken the material. Besides, the two tests were

performed on different scales: the static test was carried out on cylindrical cores of 110 mm,

whereas the ultrasonic one was carried out on cubic blocks of 250 mm.

Many fitting laws have been proposed to correlate between static and ultrasonic properties

depending on the type of rock and which elastic constants one can fit (engineering elastic

moduli, Thomsen’ s parameters, or stiffness constants) (Sone, 2012; Lu, 2016; Prioul et al., 2018).

Unfortunately, our static measurements are not reliable due to the errors in the measurement

of the poisson ratios (5.1) which prevent any further analysis.
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5.2. Material characterization

Figure 5.16 – A notched semi-circular specimen in bending (SCB specimen): front view (left-
figure) and side view (right-figure).

5.2.4 Fracture toughness tests

The fracture toughness is the critical value of the stress intensity factor (SIF), defined in the

framework of Linear Elastic Fracture Mechanics (lefm), at which the crack starts to propagate.

The mode I loading characterized by the fracture toughness referred to as K I c is the most

dominant loading in many applications.

To obtain consistent and precise values of K I c , the International Society for Rock mechanics

(ISRM) recommends four tests namely: Chevron-notched short rod in splitting (SR), Chevron-

notched round bar in bending (CB), Cracked Chevron-Notched Brazilian Disk in diametrical

compression (CCNBD) and Notched semi-circular specimen in bending (SCB). The guidelines

providing the requirements for sample preparation is given in Ulusay (2014) as well the explicit

formulas for the fracture toughness via finite element analysis.

A semi-circular bending test (see figure 5.16) is performed using a standard servo-control axial

compressive frame under a constant vertical displacement rate 0.2 mm/min. A series of SCB

tests were carried out for different orientations of the bedding plane with respect to the axial

load, in order to elaborate the complete evolution of the anisotropic K I c function of the angle

α (the angle between the propagation direction and the divider direction e1e1e1). The advantages

of using SCB are that the machining of the sample is simple and that its geometry is relatively

small (Kuruppu et al., 2014).

Experimental setup and specimen preparation

Circular disks of thickness B = 20±1 mm are sawed using a high-precision diamond tool and

cut into two symmetrical semi-circular cores of radius R = 37±1 mm. Each semi-circular

sample is notched at the center of the diameter through 10±0.5 mm of length (a = 10±0.5 mm
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Arrester Short-Transverse Divider Inclined

Figure 5.17 – Principal crack orientations with respect to the bedding planes, left to right:
Arrester, short-transverse, divider and 45◦ inclined configurations. The angle α characterizes
the fracture propagation direction with respect to the divider.

in figure 5.16) with a diamond saw of 1 mm of thickness. Four configurations of the bedding

are considered as can be seen in figure 5.17: bedding planes normal to the notch (Arrester

direction: α= 90◦), bedding planes parallel to the notch (short-transverse), bedding planes

parallel to the transversal plane (divider: α= 0◦), and bedding planes inclined with respect to

the transversal plane of α= 45◦. A minimum of three to four semi-circular specimens were

prepared for each configuration to obtain accurate repeatable results. We note that 30% of the

samples were not properly manufactured or broken during notching or cutting.

The specimen is placed on the two cylindrical rollers positioned symmetrically with respect to

the plane of the notch and distant from each roller by s = 42 mm (see figure 5.16). The axial

loading is applied by a cylindrical roller at the top of the sample. The vertical load should occur

symmetrically between the two bottom rollers. The frame is equipped with an acquisition

system for the axial load, time and the axial displacement through LVDT sensor.

Load-displacement curves

We plot in figures 5.18, 5.19, 5.20, and 5.21 an example of the vertical load function of the

vertical displacement for the four configurations presented in figure 5.17. A non linear behavior

is observed during loading especially over the range of small displacements. The rock is much

stiffer compared to typical rocks (Kuruppu et al., 2014). The maximal critical load Fmax of

11.92 kN is shown in figure 5.18 for a fracture propagating in the arrester direction, while the

minimal peak load is in the short-transverse direction, Fmax = 2.38 kN (figure 5.19). Local

peaks are also detected (see figure 5.18) due to the propagation of secondary fractures (figures

5.20-inset and 5.21-inset) or to roughness of the fracture plane (see figure 5.18-inset). The

fracture propagates along the vertical plane only when the propagation is occurring along

the bedding planes (see figure 5.19-inset). Besides the orientation of the bedding planes with

respect to the initial notch, the presence of calcite veins (figure 5.19-inset) has a secondary

effect on the fracture propagation. For the case of crack propagation in the divider or in the

tilted direction of α= 45◦ (figures 5.20-inset and 5.21-inset), a splitting of the bedding planes

is produced simultaneously with the propagation of the main fracture in the all test samples

(three samples for the configuration of the parallel notch to the divider direction and four

samples for the configuration of the notch inclined at 45◦ to the bedding). This is expected

since the fracture tends to propagate along the weaker plane, reducing the fracture energy.
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5.2. Material characterization

Figure 5.18 – Example of load in kN versus vertical displacement in mm for the arrester
configuration (figure 5.17). The critical load is Fmax = 11.92 kN.

Figure 5.19 – Example of load in kN versus vertical displacement in mm for the short-transverse
configuration (figure 5.17). The critical load is Fmax = 2.38 kN.
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Figure 5.20 – Example of load in kN versus vertical displacement in mm for the divider config-
uration (figure 5.17). The critical load is Fmax = 8.5 kN.

Figure 5.21 – Example of load in kN versus vertical displacement in mm for the 45◦ inclined
configuration (figure 5.17). The critical load is Fmax = 7.04 kN.
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5.2. Material characterization

Arrester (α= 90◦) Short-transverse Divider (α= 0◦) Inclined (α= 45◦)
K I c (MPa.m0.5) 3.97 0.83 2.46 3.15

Table 5.6 – Mean value of K I c for the four configurations: arrester, short-transverse, divider
and 45◦ inclined.

Figure 5.22 – Mean value and standard deviation of K I c as function of α.

Fracture toughness K I c

Mode I fracture toughness is determined using the peak load Fmax , such that (Kuruppu et al.,

2014):

K I c = Y ′ Fmax
p
πa

2RB
,

Y ′ =−1.297+9.516
s

2R
− a

R

(
0.47+16.457

s

2R

)
+

( a

R

)2 (
1.071+34.401

s

2R

)
,

where Y ′ is a dimensionless factor depending on the test dimensions and derived using the

finite element method under plane-strain conditions. This formula is given for the isotropic

media. However it has been shown that the influence of anisotropy on Y ′ is negligible, in

particular for the fracture toughness along the divider and the short transverse (less than 2%)

(Nejati et al., 2019).

Table 5.6 shows the mean value of the fracture toughness in the arrester, short-transverse, di-

vider and the tilted direction with respect to the bedding. The fracture toughness is lower along

the short-transverse and higher along the arrester e3e3e3. The ratio of the fracture toughnesses

between the arrester and divider direction is: κ−1 = (
K I c,I /K I c,3

)−1 = 1.6. The evolution of the

fracture toughness function of α is illustrated in figure 5.22, where the fracture toughness is an

increasing function of α. The accuracy of the results is calculated via the standard deviation

with respect to the mean value and is below ±0.23 MPa.m0.5.

135



Chapter 5. Laboratory experiments: Materials and Hydraulic Fracture Tests

Figure 5.23 – SLATE_K_3 test: A planar hydraulic fracture crossing all sides of the block. The
black arrow indicates the orientation of the bedding plane.

5.3 Hydraulic fracturing tests: Preliminary results

5.3.1 Toughness tests

SLATE_K_3 test

A hydraulic fracture test was performed with the configuration given in table 5.2. The test was

relatively fast: 25 min of injection with 20s of propagation (table 5.4). To better characterize the

propagation regime of this test, we calculate a dimensionless toughness Kend = (
tp /tmk

)1/9 = 3.24

(table 5.4) which indicates that above Kend = 3.5, we reach the toughness dominated regime

(Savitski and Detournay, 2002).

The hydraulic fracture propagates planarly as we can observe from figure 5.23. Figure 5.24a

represents the pressure at the well as a function of time given by pressure gauges upstream

and downstream of the needle valve, whereas figure 5.24b represents the flux entering the

fracture as a function of time. At 10 MPa, we adjusted the needle valve in order to decrease the

compressibility effect (figure 5.24a). It is hard to differentiate between the initiation pressure

and the breakdown pressure, which is estimated to be Pd ,m = 34.6 MPa. We observe from

figure 5.24b that there is a sudden jump in the flow rate entering the fracture which exceeds

eight times the pump rate Qo . Unfortunately, we could not proceed further in our analysis due

to the bad quality of the acoustic data.
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Figure 5.24 – SLATE_K_3 test: Experimental data for the pressure at the well upstream and
downstream of the valve in (a), and the flux entering the fracture in (b).

SLATE_K_4 test

The test lasted for 2 hours with 100 seconds of propagation corresponding to a dimensionless

toughness Kend = 4.83 (table 5.4). The fracture propagated asymmetrically with respect to

the well. It was located in the upper-left quarter of the block (the red quadrant in figure

5.25-left). Despite the high ratio between the normal confinement to the bedding plane and

the minimum stress σv /σh = 100, the fracture deviated from the (e1e1e1, e3e3e3) plane and opened

the bedding planes. After cutting the block in half at mid-height and then at mid-distance

along the vertical direction, we extracted the fractured quarter section (the red quadrant in

figure 5.25-left) and sliced it in the direction of the minimum stress into a piece of length 5

cm. A sketch of the sliced part of dimensions 10*5*10 cm is presented in figure 5.25-right. We

observe that the fracture exhibited a complex patterns. It initiated at the notch and split into

two fractures. One fracture followed a bedding plane across the whole block at one centimeter

from the well, whereas the main horizontal fracture propagated further and stopped at a

bedding plane just before the end of the block. We note that not all the bedding planes are

opened (in fact, around 10% are opened). The fracture has not emerged from the right side of

the well.

Figure 5.26a displays the pressure at the well with a zoom into the propagation in figure

5.26b. The non linear behavior at the beginning of the pressurization is due to leaks at

the tubing connections. As soon as the leaks were fixed, the pressure increases linearly

with a pressurization rate of 0.0146 MPa/s. The initiation occurred a few minutes before

the breakdown as we can see from figure 5.26a. The breakdown pressure was measured as

Pd ,m = 31.5 MPa downstream. During the short propagation time (100s), the pressure decays

as a power law function of time, characterizing the toughness dominated regime (1/5) as

shown in figure 5.26b.

In figure 5.27a, there is a very significant entery flux overshoot into the fracture (ratio of four

between the nominal injection rate and the maximum flux) followed by a stable fracture

propagation of a constant rate close to the end of injection. With respect to the propagation

duration (100s), we can conclude that the fracture propagation did not reach the steady-state
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large time regime.

A sudden decrease in the volume of the flat jacks (see appendix B1 for details of the frame) is

observed at the moment of initiation as we can see in figure 5.27b. This is expected since the

fracture propagated in all three directions (see figure 5.25-right). However, along the plane

normal to the minimum stress e2e2e2, the flat jacks are more compressed (twice the volume of

the flat-jacks normal to the horizontal and vertical directions) compensating for increase of

volume of the block in the main horizontal fracture.

Figure 5.28 shows snapshots of the fracture width at eight source-receiver pairs located in the

central line in the e3e3e3 direction (red-dashed line in figure 5.25-left). The opening profile is a

function of the distance from the wellbore at different time of propagation. Only one source-

transducer pair notably captured a visible change in signal with an estimated opening of a

small magnitude of 80 µm. We observe again that the opening is not evolving symmetrically.

Details on the opening analysis is in appendix B1.

Figure 5.29 exhibits the relative change of the acoustic data with respect to the direct diffracted

wave before propagation (see appendix B1 for details). The combination of source-receivers

considered for the diffraction is presented in purple dots in figure 5.25-left. The vertical axis

denotes the recorded time in microseconds whereas the horizontal axis is the experiment

time. We focus on the acoustic data corresponding to the period of time of the breakdown

and the propagation of HF (see the corresponding downstream pressure plot in black solid

line). We observe a change in the arrival time of the diffracted events related to a change in

the fracture-tip location. The first arrival of the diffracted signals is delayed by a few seconds

from the breakdown time. These events become stationary in time as soon as the fracture tip

intersects with the end of the block. The magnitude of the diffracted events is low and it is

thus difficult to construct a proper fracture front.

Fracture surface roughness characterization

It is interesting to analyze the postmoterm geometry of the fracture surfaces, in particular in

the case of rough surfaces, can be seen from figure 5.30 in the top and bottom faces of the

fracture. One common approach is scaling invariance analysis via the concept of self-affine

symmetry. A surface is called self-affine when it is statically invariant under the transformation

r →λr and h →λξh, where r characterizes the spatial location in the fracture surface, h is the

surface height and ξ is the self-affine exponent (Ponson et al., 2006). A number of methods

have been developed for measuring the self-affine exponent (Schmittbuhl et al., 1995). We

adopt the variable bandwidth method for one dimensional profiles. Two relevant directions

are considered: parallel to bedding (e1e1e1) and normal to bedding (e3e3e3). We divide the profile of

length L into windows of width δ= δr0 indexed by the first point r0. The standard deviation

of the height σ= 〈h(δ)〉r0 and the difference in height between the maximum and minimum
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5.3. Hydraulic fracturing tests: Preliminary results

Figure 5.25 – SLATE_K_4 test: Left- Loading configuration of SLATE_K_4 test with the exact
block size. Right- Schematic of the fracture patterns (black lines) for the upper-left quarter of
the block (red dashed quadrant in left figure).
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Figure 5.26 – SLATE_K_4 test: Experimental data for the pressure at the well upstream and
downstream of the valve in (a), with a zoom at the propagation in log-log scale in (b).
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Figure 5.27 – SLATE_K_4 test: (a) Experimental data for the flux entering the fracture with time
and (b) Experimental data for the flat-jack volumes with time.
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Figure 5.28 – SLATE_K_4 test: Snapshots of the width profiles along the vertical axis e3e3e3 of the
main horizontal fracture obtained from ultrasonic measurements.
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Figure 5.29 – SLATE_K_4 test: Record time function of the experiment time for compressional-
diffraction data for a set of source-receiver presented in purple-dashed line in figure 5.25-left.
The corresponding interval of the downstream pressure (in MPa) is plotted in the black solid
line.
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5.3. Hydraulic fracturing tests: Preliminary results

Figure 5.30 – SLATE_K_3: Image corresponding to the upper (left-figure) and lower (right-
figure) quarter part of the surface of the fracture resulting from the toughness dominated
regime test. The red arrows refer to the wellbore location.

∆hr0 =∆h should follow a power law in δ:

σ∝ δξ, ∆h ∝ δξ

with: 0 ≤ ξ≤ 1 (Pelliccione and Lu, 2008).

SLATE_K_3 test

We focus on the SLATE_K_3 test for the toughness dominated regime case where the fracture

was more planar. We used the optical profilometer Keyence VR-3200 provided by the FLEX

Laboratory-EPFL, and are very thankful to professor Pedro M. Reis for his help. We scanned the

fracture surface using 0.1 µm vertical and 47 µm horizontal resolution. The repeatability of the

measurement was verified by multiple scans as being 0.5 µm. The maps contain 1230×1942

points while the fields of view are 58×91 millimeters. Figure 5.31 shows an example of a 3D

map that displays troughs and bumps of quarter of the fracture surface. The fracture plane is

tilted as we observe from figure 5.31 (−2 ≤ h ≤ 10 mm). In figure 5.32a we plot a surface profile

parallel to the bedding at a given distance x3 = cst (after the correction of the tilt) located far

from the initiation. The amplitude of the largest bumps is of the order of 0.8 millimeters, a

typical amplitude for rocks (Ponson et al., 2007).

Figure 5.32b represents in log-log scale the variation of ∆h and σ as function of δ averaged
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Figure 5.31 – SLATE_K_3: Topographic image corresponding to the upper quarter part of the
surface of the fracture. The 3D scan corresponds to the sample in figure 5.30.

over different profiles at given distances x3. Three distinct behaviors are observed: for small

(< 1 mm) and intermediate (< 10 mm) horizontal distance, ∆h (or σ) varies as a power of δ

with the distinct exponents 1 and 0.9 respectively, whereas for large spatial distance (> 20 mm)

the behavior remains roughly constant. For small δ, where: ∆h ∝ δ (ξ= 1) the surface is said

to exhibit a self-similar scaling (Pelliccione and Lu, 2008). In other words, the scaling factors

in the horizontal and vertical directions are equal. Over the large scale, the surface is flat and

is characterized by a correlation length Lc indicating the beginning of the plateau (Lc ∼ 6 mm)

(Schmittbuhl et al., 1995).

Different behavior is depicted in the surface profile in the direction normal in the bedding. The

surface is much rougher with a greater amplitude of 1.5 millimeter of maximum magnitude

(figure 5.32c). The peaks in the height plot describe the distribution of the bedding planes.

The log-log plot of height-height correlation (figure 5.32d) shows a stationary behavior over

intervals of distance. We can conclude from figure 5.32d that the distribution of bedding is

locally independent of the elevation with a global increase in large scales.

5.3.2 Viscosity test: SLATE_M_1

We now consider fractures which propagate in the the viscosity regime (with a possible sig-

nificant lag). We report the results of the SLATE_M_1 test for which we applied a deviatoric

stress into the cubic block of σv =σH = 20σh = 20 MPa as depicted in figure 5.33. We plot in

figure 5.34a the pressure at the wellbore downstream and upstream of the valve with a zoom
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Figure 5.32 – SLATE_K_3: (a,c): Height profile along e1e1e1 and along e3e3e3 respectively. (b,d): ∆h and
σ representation in log-log scale averaged over profiles at different x3 as function of δ=∆x1 in
(b) and at different x1 as function of δ=∆x3 in (d).

into the breakdown and propagation period in figure 5.34b. The entery flux Qi n , the width

profiles along the vertical direction e3e3e3 at different points in time and the diffraction signals are

presented in figure 5.35, 5.36 and 5.37 respectively.

The sample is pressurized linearly up to the breakdown pressure of Pd ,m = 46.7 (see figure

5.34a) which is 30% higher than the breakdown pressure in the toughness regime (figure 5.26).

A steeper decay in the pressure during propagation is observed in this case. In figure 5.34b,

we zoom in to the propagation time, where the pressure at the well follows a power law in

time (starting from the breakdown time) of exponent -1/3, the same as for the M scaling

(Lecampion et al., 2017).

Similarly to the toughness tests, the instantaneous flux entering the fracture at the breakdown

is much higher than the nominal flow rate (see figure 5.35). The propagation of the HF thus

occurred in the transient/early time regime. The hydraulic fracture propagated symmetrically

in this case with respect to the e3e3e3 direction as we can see from the width profiles in figure 5.36.

The width magnitude is of the order of 20 µm at 100 seconds of propagation.

The diffracted signal is illustrated in figure 5.37 for the only transducer pair that provided

relevant data (see figure 5.33 for the location of the sensors). The magnitude of the signal is

much stronger in this case (see figure 5.37).

143



Chapter 5. Laboratory experiments: Materials and Hydraulic Fracture Tests

Figure 5.33 – SLATE_M_1 test: Loading configuration of SLATE_M_1 test with the exact block
size. The purple dots represent the positions of the acoustic sensors for the diffracted signal.
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Figure 5.34 – SLATE_M_1 test: Experimental data for the pressure at the well upstream and
downstream of the valve in (a), with a zoom at the propagation in log-log scale in (b).
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Figure 5.35 – SLATE_M_1 test: Experimental data for flux into the fracture as a function of
time.
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Figure 5.36 – SLATE_M_1 test: Snapshots of the width profiles along the vertical axis e3e3e3 of the
main horizontal fracture obtained from ultrasonic measurements.
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Figure 5.37 – SLATE_M_1 test: Record time function of the experiment time for compressional-
diffraction data for a set of source-receiver presented in purple-dashed line in figure 5.33. The
corresponding interval of the downstream pressure (in MPa) is plotted in the black solid line.

Fracture surface roughness characterization

Here again we scanned a quarter of the fracture surface of 90×75 mm dimension (1915×1579

sampling points) created during the HF experiment. We analyze, as before, the 1D profiles

along the two normal directions: e1e1e1 and e3e3e3, both located sufficiently far from the initiation

point (figures 5.38a and 5.38c). Parallel to the bedding (figure 5.38a), three domains of variation

are visible and correspond to: two power laws of exponents 1 and 0.7 as δ increases, and cutoff

at large δ. In the intermediate range of δ, the roughness is smaller than in the toughness

case: ξ= 0.7 vs ξ= 0.9 for toughness case (figure 5.32b). The correlation length for this case is

relatively larger, Lc = 10 mm.

Figure 5.38c shows the elevation h in millimeters along the normal to the bedding (e3e3e3), whereas

figure 5.38d shows the standard deviation σ and the average relative elevation ∆h for the

different height profiles at given x1. The height profile is rougher along this axis. A power

law correlation of exponent 1.1 is observed over the small interval of distance 1 < δ< 5 cm of

exponent 1.1. However, the overall behavior corresponds to stationary cutoffs by stepping,

similarly to figure 5.32d.

5.4 Conclusions

The semi-circular bending test performed on Del Carmen slate results in a high anisotropy

of toughness between the divider and the arrester directions: κ−1 = (
K I c,I /K I c,3

)−1 = 1.6. The

discrepancy between the dynamic and the static measurements of the stiffness constants

may be due to open beddings and to micro-cracks inside the sample. From the uniaxial static

tests, we can compute the ratio β from the near tip elastic modulus in the divider and the
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Figure 5.38 – SLATE_M_1: (a,c): Height profile along e1e1e1 and along e3e3e3 respectively. (b,d): ∆h
and σ representation in log-log scale averaged over profiles at different x3 as a function of
δ=∆x1 in (b) and at different x1 as a function of δ=∆x3 in (d).

arrester directions: β= E ′
1/E ′

3 = 1.03 (chapter 2). Assuming an elliptically shaped fracture in a

toughness dominated regime, we can estimate a-priori the fracture ratio as b/a =β−2κ2 = 0.36

(chapter 4). We were not able to measure the development of the fracture shape. More tests

are required to investigate the elongation of the fracture in the divider direction.

In the toughness dominated regime, the hydraulic fracture in most cases propagates through

the bedding planes even for a ratio of 20 between the minimum horizontal stress and the

maximum vertical stress. The fracture width is very small, causing strong attenuation of the

diffracted waves. As for the roughness, the asperities of the fracture surface are of the order

of millimeters and follow a self-affine behaviour of exponent 0.9 parallel to bedding and 0

normal to bedding.

In the viscosity regime, the penetration of more viscous fluid into the initial defect is more

difficult, resulting in a larger breakdown pressure. The resulting hydraulic fracture is symmetric

with respect to the wellbore with more visible diffracted waves than in the toughness case.

Similarly to the toughness regime, the fracture surface roughness is stationary in the direction

of the arrester and is self-affine in the divider.
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6 Conclusions

6.1 Main contributions

In the framework of this thesis we have aimed to understand how a fluid driven fracture

propagates in transverse isotropic media and understand the impact of both elastic anisotropy

and fracture energy/toughness anisotropy on the shape of the fracture.

A numerical solver has been developed for a planar hydraulic fracture embedded in imper-

meable transversely isotropic elastic media. The hydraulic fracture is assumed to propagate

normal to the isotropy plane and to the minimum horizontal in-situ stress. The fluid is injected

from a point source. The presence of fluid lag at the fracture tip is neglected, by assuming a

sufficiently deep fracture. We also investigated the small scale region near the fracture front.

The elastic integral representation for a pure tensile configuration is similar to that in the

isotropic case depending on the use of an anisotropic plane-strain elastic modulus E ′
α, a

function of the local propagation direction. The aspect ratio of the finite hydraulic fracture is

to the first order a function of: i) the ratio β of the near tip elastic modulus along the major axis

(divider) with respect to the minor axis (arrester), and ii) the ratio κ of the fracture toughnesses

in these two directions. The fracture elongation in the toughness dominated regime exhibiting

strong anisotropy is underestimated by about 70% when using the isotropic radial solution and

overestimated by about 30% when using the TI elliptical solution. The shape of the fracture

is strongly dependent on the toughness anisotropy. The hypotheses of isotropic toughness

and isotropic fracture energy result in elongation scaling with β2 and β respectively. In the

viscosity dominated regime, the effect of anisotropy is less pronounced (elongation scales

as β1/3). The deviation of the numerical solution from the radial geometry is visible only for

strong anisotropy. The transition from the viscosity to the toughness dominated regime is

quantified by two timescales: one related to the arrester direction (faster transition) and the

other to the divider direction (slower transition).

In the course of this work, we have also compared with the existing elastic fundamental

solutions in TI media and discrepancies have been noticed in a number of them. An exact

solution for the uniformly pressurized elliptical static fracture normal to the isotropic plane
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Chapter 6. Conclusions

is re-derived analytically and benchmarked against a finite element solution. This has then

been used to derive the self-similar toughness dominated hydraulic fracture growth solution.

We must keep in mind that to generate an elliptical hydraulic fracture, the fracture toughness

must depend on the local propagation in a very special form that is highly unlikely for any real

rock.

Hydraulic fracturing block tests have been performed using Del Carmen slate under true triax-

ial confinement. Acoustic monitoring was used to estimate the fluid thickness/fracture width

in time lapse during the experiment. Three experiments: two in the toughness dominated

regime and one in the viscosity dominated regime were successful. A minimum ratio of 20

between the minimum horizontal in-situ stress and the maximum – normal to bedding – stress

is required in order to promote a planar fracture growing normal to bedding. The roughness

of the resulting fracture surfaces has been measured. The roughness is self affine along the di-

vider direction (parallel to the bedding) and stationary in the arrester direction (perpendicular

to the bedding). A bump in height is observed when the hydraulic fracture crosses the bedding

planes. The self-affine roughness exponent is lower in the viscosity dominated fracture.

The effect of shear-thinning fluid on the region near the tip of a steady state hydraulic fracture

growth is another problem tackled in this thesis. This fracture was driven by a Carreau fluid

in impermeable linearly elastic material. Up to four asymptotic regions may arise as we

move away from the tip. Besides the linear elastic fracture mechanics asymptote in the

region adjacent to the tip, the additional three viscosity asymptotic solutions follow the

evolution of the Carreau rheology: two Newtonian plateaus for low and large shear rate and

a power law region for the intermediate values of shear rate. A mapping of the extent of

the asymptotic regions has been obtained analytically as a function of the dimensionless

parameters. Depending on the dimensionless transition shear stress, we have quantified if

one of the alternative rheological models (Ellis, power law and Newtonian) can reproduce the

results of the Carreau rheology in the zero fluid lag case. In the zero confining stress limit, the

size of the fluid lag is orders of magnitude smaller for the same dimensionless toughness if the

fluid is shear-thinning compared to Newtonian.

6.2 Recommendations for future work

• In this thesis, we have focused on the growth of perpendicular fractures perpendicular

to bedding. Our experiments have confirmed that even for large in-situ stress normal to

the bedding, a deviation into the bedding planes and offsetting occurs. Even for macro-

scopic planar fracture, the fracture roughness is highly anisotropic. More experimental

and theoretical work is required to further decipher the combined effects of in-situ

stress, rock properties and injection parameters on deviation into the bedding planes.

• The numerical solver should be extended to include the effect of system compliance

and the presence of a finite notch to initiate the fracture. Both are important at early

time. This is essential for a good comparison with experiments. In the present work we
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6.2. Recommendations for future work

assume a constant injection rate from a point source. In addition, the solution should

also account for the fluid leak-off in permeable media. An approximation solution for

the linear diffusion equation perpendicular to the fracture face known as the Carter’s

leak-off model in the case of tight rocks could be relatively easy to implement.

• Experiments with different level of anisotropy (elasticity and fracture toughness) and

different fluid viscosity are needed to further compare with theoretical modelling.

• Lack of clear acoustic diffraction data have prevented us to reconstruct the fracture

front. The short injection duration, the small opening magnitudes and the low data

quality could be the reasons for the poor diffraction results. Passive microseismic mea-

surements are another possible technique for monitoring fracture growth. Combining

both active and passive measurements has potential for improving fracture.

• The strong fracture roughness observed experimentally questions the validity of the

Poiseuille law used in the modeling of HF growth. It also questions the use of the flat

fluid-filled layer model to analyse the acoustic transmission data. More work is needed

to quantify the effect of roughness and include it in the theoretical model.

• An accurate characterisation of the elastic properties, fracture toughness and perme-

ability is essential for comparison between theory and experiments.

• In order to account for shear-thinning rheology in the simulation of planar 3D hydraulic

fractures, the semi-infinite solution developed here would need to be approximated/tab-

ulated for numerical efficiency.
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A1 Relation between the different set of
elastic constants in TI

The relationships between the different set of constants are given in the material basis

(e1e1e1,e2e2e2,e3e3e3).

A1.1 Compliance tensor Si j

We rewrite the elastic stress-strain relation function of the tensor Si j as:

ε11

ε22

ε33

2ε23

2ε13

2ε12


=



S11 S12 S13 0 0 0

S12 S11 S13 0 0 0

S13 S13 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S44 0

0 0 0 0 0 2(S11 −S12)





σ11

σ22

σ33

σ23

σ13

σ12


(A1.1)

where:

S11 =
C11C33 −C 2

13

(C11 −C12)
(
C33 (C11 +C12)−2C 2

13

)
S33 = C11 +C12

C33 (C11 +C12)−2C 2
13

S12 =
C 2

13 −C12C33

(C11 −C12)
(
C33 (C11 +C12)−2C 2

13

) (A1.2)

S13 = −C13

C33 (C11 +C12)−2C 2
13

S44 = 1

C44

The compliance tensor is also expressed function of the Young’s moduli and Poisson’s ratios

155



Appendix A1. Relation between the different set of elastic constants in TI

as:

S11 = 1

E1

S33 = 1

E3

S12 =− ν12

E1
(A1.3)

S13 =−ν13

E3

S44 = 1

G23

A1.2 Elastic constants Ei , νi j and G13

We rewrite the elastic stress-strain relation function of the transversal and vertical elastic

moduli {E1,E3} as:

ε11

ε22

ε33

2ε23

2ε13

2ε12


=



1/E1 −ν12/E1 −ν13/E3 0 0 0

−ν12/E1 1/E1 −ν12/E1 0 0 0

−ν13/E3 −ν12/E1 1/E3 0 0 0

0 0 0 1/G13 0 0

0 0 0 0 1/G13 0

0 0 0 0 0 2(1/E1 +ν12/E1)





σ11

σ22

σ33

σ23

σ13

σ12


(A1.4)

and function of the compliance parameters we have:

E1 = 1

S11

E3 = 1

S33

ν12 =− S12

S11
(A1.5)

ν13 =−S13

S33

G13 = 1

S44
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A1.3. Stiffness tensor Ci j

The elastic parameters can be also determined from the stiffness tensor as:

E1 =
(C11 −C12)

(
C33 (C11 +C12)−2C 2

13

)
C11C33 −C 2

13

E3 =
C33 (C11 +C12)−2C 2

13

C11 +C12

ν12 =
C 2

13 −C12C33

C 2
13 −C11C33

(A1.6)

ν13 = C13

C11 +C12

G13 =C44

We report in table A1.1 the elastic constants {E1,3,G13} in GPa and the poisson’s ratios for the

same set of TI rocks.

A1.3 Stiffness tensor Ci j

Inverting the system of equations (A1.3) and (A1.7), one can reformulate the stiffness tensor

function of tensor Si j and the set of elastic constants {E1,E3,ν12,ν13,G13} respectively.

C11 =
S11S33 −S2

13

(S11 −S12)
(
S33 (S11 +S12)−2S2

13

)
C33 = S11 +S12

S33 (S11 +S12)−2S2
13

C12 =
S2

13 −S12S33

(S11 −S12)
(
S33 (S11 +S12)−2S2

13

) (A1.7)

C13 = −S13

S33 (S11 +S12)−2S2
13

C44 = 1

S44
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C11 =
E1

(
E1ν

2
13 −E3

)
(1+ν12)

(
2E1ν

2
13 −E3 (1−ν12)

)
C33 =

E 2
3 (1−ν12)

E3 (1−ν12)−2E1ν
2
13

C12 =
E1

(
E3ν12 +E1ν

2
13

)
(1+ν12)

(−2E1ν
2
13 +E3 (1−ν12)

) (A1.8)

C13 = E1E3ν13

E3 (1−ν12)−2E1ν
2
13

C44 =G13

For a generally anisotropic elastic solid characterized by the Voigt stiffness tensor Ci j , or its

inverse the compliance tensor Si j , the requirement imposed by thermodynamics that the

elastic energy must be positive, can be expressed as follows (Theocaris and Philippidis, 1992):

ψ= 1

2
σσσ.εεε= 1

2
σσσ.S.σσσ> 0 (A1.9)

Since the relation (A1.9) must be valid for anyσσσ or εεε, the elastic tensor must be positive definite.

In terms of the elastic Young’s moduli and Poisson’s ratios, the following system of inequalities

must hold for a TI material:

|ν12| <1 (A1.10)

|ν13| <
(

E1

E3

)1/2

(A1.11)

2ν2
13ν12

E3

E1
<1−ν2

12 −2ν2
13

E3

E1
(A1.12)

E1,E3,G13 > 0 (A1.13)

We can derive from the inequalities (A1.10)-(A1.13), the following constraints on the stiffness

coefficients:

−C44 <C13 <
√

C33C11

and:

C11 > 0, C33 > 0, C44 > 0, C66 = 1

2
(C11 −C12) > 0.
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A1.3. Stiffness tensor Ci j

Material E1 (GPa) E3 (GPa) G13 (GPa) ν12(−) ν13(−)

Isotropy-Stripa granite (Alm et al., 1985) 65 65 26.9 0.21 0.21
Olkiluoto mica gneiss (Hakala et al., 2007) 79 56 24 0.17 0.21

Gas-saturated Shaly Coal (Wang, 2002) 18.86 10.81 3.71 0.37 0.041
Woodford53 shale (Laubie, 2013) 23.5 13.42 5.6 0.14 0.23

Opalinius Clay (Thöny, 2014) 3.8 1.3 0.9 0.25 0.35
Yeocheon schist (Cho et al., 2012) 72.1 21.2 13.7 0.25 0.16

Calcareous mudstone (Chertov, 2012) 44.66 12.82 6.49 0.14 0.28
Callovo-Oxfordian (David et al., 2007) 16.53 11.46 5.22 0.34 0.17

Jurassic shale (Hornby, 1998) 28.29 17.18 6.9 0.19 0.3
Slate Del Carmen (this study) 35.4 26.4 21.2 0 0.029

Table A1.1 – Example of elastic moduli {E1,E3,G13} and Poisson ratios νi j for TI rocks.
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B1 A polyaxial frame for hydraulic stim-
ulation experiments with acoustic
monitoring

This chapter is a modified version of a scientific article currently under preparation:

T. Blum, B. Lecampion, F-E Moukhtari, "A polyaxial frame for hydraulic stimulation experi-

ments with acoustic monitoring ".

Contributions:

B. Lecampion and T. Blum have developed the triaxial frame and the protocol of the HF tests.

T. Blum run the qualification tests of the frame and developed the acoustic acquisition system.

F-E. Moukhtari has analysed the stress distribution inside the block under confining using

finite element Abaqus software.

161



Appendix B1. A polyaxial frame for hydraulic stimulation experiments with acoustic
monitoring

B1.1 Abstract

Laboratory investigation of hydraulic fracture propagation allow to bridge the gap between

field data and numerical models, by providing a close representation of propagation condi-

tions in the field while accounting for extensive monitoring of the fractured material before,

during and after propagation of the fracture. In particular, scaled-down hydraulic fractur-

ing experiments can be used to investigate fracture-tip asymptote and fracture propagation

regimes. The goal of this chapter is to present the true-triaxial frame used for performing

hydraulic fracturing growth experiment with acoustic active monitoring.

B1.2 Polyaxial frame & injection system

B1.2.1 Description of the frame

High-pressure cell

The main component of the hydraulic fracturing experimental setup is a polyaxial pressure

cell, with inner dimensions of 450 x 450 x 500 mm (L x W x H). It is made of four sides of

AS 3678 Grade 350 steel plate (Standards Australia, 2011), 50 mm thick, welded using Gas-

Metal Arc Welding (GMAW) and machined afterwards to ensure parallelism of the inside faces.

Three reinforcing “ribs” also made out of 50 mm thick steel plates surround the four sides for

added stiffness. A total of 16 bores, 40 mm in diameter, located at the top and bottom of each

lateral sides, allow passage for sensor and actuator cables as well as high pressure lines (see

figure B1.1). Water tightness can be obtained by placing cable feed-through with rubber cores

inside the side bores, as well as cylindrical steel pieces with fittings for the high pressure lines.

The top and bottom of the pressure cell are 120 mm thick steel covers that are held together

with four 80 mm diameter steel rods (see figures B1.1 and B1.2). The steel rods are threaded at

each end, and the steel nuts tightly close the covers against the top and bottom edges of the

square cell. Finally, a watertight rubber seal is placed between the covers and the cell edges in

order to apply pore pressure inside the cell.

Attached to one side of the pressure cell is a table with rails fitted to the sides. A motorized

gantry crane slides along theses rails in order to lift or drop both the vertical stack containing

the bottom spacer plates, flat-jack, platen and sample block, as well as drop or lift the steel lid,

before or after an experiment is done (figure B1.3).

Sample pressure loading

Inside the high-pressure cell, we use a system of flat-jacks and spacers to apply compressional

stresses to cubic samples with dimensions 250 x 250 x 250 mm. The sample is placed at the

center of the cell, with a stack of 250 x 250 mm plates on each of the six sides (see figure B1.2),

to position the sample and transfer stresses. From the inside wall to the center of the cell, each
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B1.2. Polyaxial frame & injection system

Figure B1.1 – 3D drawing of the reaction frame with top of the cell open. The four steel rods
used to tighten the top and bottom covers are clearly apparent, threads are not shown here.

Figure B1.2 – Top view of the reaction frame, loaded with sample, platen and flat-jacks on the
side, and top platen.

stack consist several steel spacer plates, followed by a flat jack, another steel space plate, and

finally an aluminum platen with a specially designed layout to place piezoelectric transducers

(see section B1.3.3 for more details).

Our flat-jacks are made from 1 mm thick, 250 x 250 mm square steel plates welded together at
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Appendix B1. A polyaxial frame for hydraulic stimulation experiments with acoustic
monitoring

Figure B1.3 – Polyaxial frame from the side view with the configuration of the frame axis.

the edges, with two high-pressure line fittings welded on one side. By filling them through one

fitting with water, and connecting an open valve to the other fitting, we are able to fill them

with water and purge the air. We then connect them by pairs to GDS pressure controllers, as

shown in figure B1.4. With three pressure controllers we are therefore able to independently

apply stresses up to 20 MPa along the three axes defined by the geometry of the cell. We

describe the qualification test we performed to test the high-pressure cell combined with

flat-jacks in the next subsection.

B1.2.2 Stiffness qualification tests

The objective of the tests is to validate the specifications of the triaxial cell before its first use.

For this we pressurize the cell along the three axes consecutively, and finally we apply a pore

pressure inside the watertight closed cell. Load is provided using an ISCO Model 260D pump

connected to flat-jacks applying pressure against the cell walls. We use the pump pressure

transducer for pressure readings. The cell strain is measured with a pair of RDP Linear Variable

Differential Transformers (LVDTs) mounted along the axis being loaded (figure B1.5).

Inside the cell we place a 250 x 250 x 250 mm block of 6061 T651 aluminum alloy, substituting

for the rock samples that will be used in future experiments. As described in the subsection

above, steel spacer plates are used to fill the space on the sides of the sample, and sandwich

the flat jacks positioned on each side, so that there is contact between all the elements inside

the cell and the walls of the cell (see figure B1.7). Here we only use spacer plates and not platen

against the sample faces. For each axis, we test the frame by applying up to 25 MPa with the

flat-jack pair in steps of 5 MPa, then maintaining 25 MPa for at least one hour, before releasing

the confining pressure in multiple stages. We then measure the cell strain by positioning two

LVDTs against the outside of the cell. For each axis, we very carefully attach the LVDTs to the

supporting frame (blue legs in figure B1.5 and B1.6) so that the load cell can move freely with

respect to the sensors. The LVDT signals are digitized at 10 Hz by an acquisition module and

recorded on a laptop, as well as the voltage output of the pressure gauge mounted on the

pump. These signals are synchronized and thus provide the cell strain as a function of the

load.
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T/B flat-jack
pressure controller

Injection pump
(ISCO D160)

Fluid interface vessel

Needle valve

Flat jack

Spring

Piezoelectric
transducer 

Couplant

Specimen

Spacer

Distilled water

Rubber bladder

Fracturing fluid

Aluminium plate

Top

Bottom

EastWest

E/W flat-jack
pressure controller

P P

N/S flat-jack
pressure controller

D

R

T

Figure B1.4 – Schematic of the reaction frame.

Figure B1.5 – Photo of the setup with main features highlighted. Green: ISCO pump, Blue:
LVDTs, Red: LVDT power supply and acquisition board, Purple: high-pressure lines and valves
connecting the flat jacks.
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Figure B1.6 – Close up of LVDT positioned
in the center of the middle rib, along the
xxx−axis, with mounting bracket.

Figure B1.7 – Top view of the cell with alu-
minum block, steel spacer plates and flat-
jacks sandwiched between steel plates on
each side of the aluminum block.

Rib position bottom middle top
Max pressure (MPa) 24.15 24.15 24.09

Max displ. (µm) 265 319 308

Table B1.1 – Maximum pressure and maximum displacement for stiffness test along xxx−axis.

Results

For the remaining of this document we set the axis of the rails and gantry apparatus at the

xxx−axis, the normal horizontal axis as the yyy−axis and the vertical axis as the zzz−axis (figure

B1.3).

x−x−x−axis: For both horizontal axes, we pressurize and measure the cell deformation on each

of the three reinforcement “ribs”. The total cell deformation is given by adding the displace-

ments measured by the two LVDTs opposite each other. The table B1.1 shows the maximum

displacement measured at the maximum pressure for each rib.

Figure B1.8 shows the evolution of the pressure and displacement during the cell load. We

see that the increases (resp. decreases) in displacement track closely with the increases (resp.

decreases) in pressure. There is a small hysteresis that seems to disappear after a few minutes

when the load drops, but otherwise the cell response is very linear.

y−y−y−axis: The measurements along the yyy−axis are very similar to the previous ones. Unfortu-

nately, a crash of the logging during the acquisition of the bottom rib response means that

there is no data for this measurement. The other two measurements are summarized in

table B1.2 with the evolution of displacement function of pressure in time is displayed in

figure B1.9. Similarly to xxx−axis, the maximum displacement is about 304 µm in average.

z−z−z−axis: Along the zzz−axis, we only do one displacement measurement at the center of the top

and bottom plates closing the cell, since they are of constant thickness, we expect the strongest
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Figure B1.8 – Results for the bottom rib along the xxx−axis. The total displacement is plotted
in blue and the flat-jack pressure in red. The measured displacement follows increases and
decreases in pressure.

Rib position middle top
Max pressure (MPa) 23.86 24.13

Max displ. (µm) 309 298

Table B1.2 – Maximum pressure and maximum displacement for stiffness test along yyy−axis.
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Figure B1.9 – Results for the top rib along the yyy−axis. The total displacement is plotted in blue
and the flat-jack pressure in red. The measured displacement follows increases and decreases
in pressure.

deformation at the center. As before, the LVDTs are fixed to the supporting frame, as shown

in figure B1.10. The results, in figure B1.11, show a maximum displacement of ∼ 450 µm at

24 MPa.

Pore pressure: Finally, we fill the cell with water in order to verify the water tightness for a
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Figure B1.10 – Photo of the LVDT setup for loading along the zzz−axis.
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Figure B1.11 – Results for the zzz−axis at the center of the top and bottom plates. The total
displacement is plotted in blue and the flat-jack pressure in red. Due to a leaky flat-jack, we
had to refill the pump which caused a drop in pressure at T = 36 min. During that time, the
pump sensor records the refill (room) pressure, and not the flat-jack (confining) pressure. At
the end (T = 110 min, we let the pressure decrease from the leak only, and again we see that
the displacement matches the pressure drop.

pore pressure of 4 MPa. For this test, the aluminum block is left inside with the bottom space

plates and flat-jack, leaving a bigger volume of water than would otherwise be in a triaxial use.

The holes for the cable pass-through are in this case plugged with solid pieces of steel with

two rubber o-rings each to ensure water tightness, except for one piece that has a fitting for

the high-pressure line. After the lid is closed and tightened, the pressure is increased with the

ISCO pump. Some volume of air is trapped inside, therefore a lot of water must be pumped

inside before the pressure rises noticeably. We had to refill the pump several times, the last

refill is visible on the graph in figure B1.12. Once the maximum pore pressure of 4.8 MPa is
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reached, the flow required to maintain the pressure is less than 0.02 mL/min, showing that

the leaking is minimal. The deformation of the cell in the center of the top and bottom plate

comes to a total of ∼ 350 µm.

This series of validation tests show that the triaxial cell is performing as expected with a

small deformation when a load or pore pressure is applied. In general, the strain in roughly

proportional to the load, stays almost constant at constant load, and returns to zero when the

cell is unloaded.
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Figure B1.12 – Results for the pore pressure test. Ramping up the pressure requires a lot of
fluid volume, thus we have to refill the pump at T = 25 min. As for the previous measurement,
during that time the measured pressure is not the pore pressure.

B1.2.3 Numerical model of the applied stresses

We used the finite element Abaqus software to analyze the stress distribution inside the block

sample of slate Del Carmen. We consider only the quarter of the assembly of the rock and

platens (see figure B1.13). The platens are made from 7075 aluminium alloy with the given

properties: E ′ = 75 GPa , ν′ = 0.33. The contact is maintained using Teflon sheet which we

model as hard contact with tangential behaviour of friction coefficient: µ= 0.15.

We set a symmetry condition for both sides defined by the normal xxx and yyy . The vertical

displacements at two symmetrical nodes at the middle of the lateral platens are set to zero.

Two state of stresses are considered in this study: hydrostatic stress where σx =σy =σz = 20

MPa and deviatoric stress where σx =σy = 4σz = 20 MPa.

Results

We focus in particular on the horizontal plane where the hydraulic fracture should evolve.

Figures B1.14 and B1.15 display the normal stress σ33 and the shear stress σ13 at the mid-
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ZY

X

Figure B1.13 – The assembly of the quarter of cubic block with the aluminium platens. The
axis zzz is along the vertical top-bottom direction.
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Figure B1.14 – Hydrostatic loading: σ33 in MPa for the eighth of the block (at the mid-height of
the frame-figure B1.13). Each color represents a surface of iso-stress in linear scale of 0.5 MPa
gradient. Here negative values of stress refer to compression tensor.

height of the block for the isotropic loading case (σi = 20 MPa). The normal stress is gradually

increasing from the edge to the center of the sample. It varies between 17.5 and 17 MPa in a

radius of 60 mm from the center which is less than 15% of relative error with respect to the

in-situ stress. Note that the stress tensor is homogeneous and the effect of the holes in the

platens starts to dissipate at a distance of 15 mm from them. We observe from figure B1.15 that

the shear stress is less than 0.2 MPa for the entire fracture plane. Also, it is worth mentioning

that the total displacement of the frame is less than 0.1 mm.

Figure B1.16 presents stress σ33 normal to the surface plane for the deviatoric loading case

(σx = σy = 4σz = 20 MPa). Similarly to first case (figure B1.15), the stress increases linearly

from the corners to the center of the block. The stress interval is within [4,4.5] MPa for 1/3

of the block (starting from the center), which is less than 20% of the minimum stress. The

same results as for the isotropic loading case are observed for the shear stress σ13 and the

displacement.

B1.2.4 Sample preparation and injection system

We carefully prepare all rock samples used for injection experiments. We first ensure that the

sample dimensions are 250 x 250 x 250 mm, with adjacent faces perpendicular to each other. If
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Figure B1.15 – Hydrostatic loading: σ13 in MPa for the eighth of the block (at the mid-height of
the frame-figure B1.13). The linear scale varies from -1 MPa to 1 MPa. Here negative values of
stress refer to compression tensor.

necessary, we can saw or rectify sample faces to achieve the proper dimensions. It is possible

to use samples with up to a few extra millimiters in length along any direction. We cannot

however use smaller samples, as adjacent side platen, while chamfered on the edges, risk

touching each other after stresses are applied and therefore do not allow margin for smaller

dimensions.

We then drill the sample with a 16 mm coring tool in order to get a through borehole. We

use a customized diamond-coated, disk shaped bit mounted to a surface router in order to

create a notch in the middle of the borehole (see figure B1.4). At the notch depth, we place a

completion tool consisting in two metal cylinders screwed together, with rubber O-rings at

the top and bottom, side holes in the middle allowing the injection fluid to exit horizontally

and pressurize the notch. A piece of steel tubing welded to the completion tool plays the role

of the well and is the final section of the injection line; a connection at the wellhead on the top

face of the sample links it to the rest of the line.

The injection system consist in an ISCO syringe pump rated for 51.7 MPa. The pump is filled

with water and connected to a high-pressure interface vessel. This vessel is a steel cylinder

filled with the fluid used for the injection. A rubber bladder is placed at the center of the

cylinder, inside along its longitudinal axis. The bladder is filled with water and connected

to the injection pump. When the water pressure increases, it is transmitted to the injection

fluid, and this fluid is then pushed into the injection line connected to the outside wall of
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Figure B1.16 – Deviatoric loading: σ33 in MPa for the eighth of the block (at the mid-height of
the frame-figure B1.13). Each color represents a surface of iso-stress in linear scale of 0.5 MPa
gradient. Here negative values of stress refer to compression tensor.
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the cylinder. We then place a needle valve along the injection line in order to limit fluid flow

during the fracture initiation. Finally, we place two pressure gauges, respectively just upstream

and downstream of the needle valve, right before the injection line is finally connected to the

wellhead (see figure B1.4).

B1.3 Measurement system

In order to control and record as many experimental parameters as possible, we use a PC-

based controller, connected to all sensors and actuators in the experimental setup. This

section describes the measurement system step-by-step.

B1.3.1 General experimental control system

The general experimental control system is build out of the following components:

• Main National Instruments (NI) PXI chassis with a PC-based controller unit,

• Single channel, 14 bit, 100 MS/s function generator used to create the elastic excitation

signal,

• Multiplexer board with 32 channels, capable of up to 140 cycles/s, used to sequentially

excite all acoustic sources,

• High-frequency 32 channel acquisition board digitizing over 12 bits at 50 Mega Samples

per second (MS/s) for active acoustic monitoring,

• High-frequency 16 channel acquisition board digitizing over 14 bits at 50 MS/s for

passive acoustic monitoring,

• Low-frequency, 16 channel acquisition board digitizing over 16 bits at 250 kS/s for

injection flow, pressure, and volume monitoring.

We also use a 55 dB high-voltage amplifier from Electronics & Innovation (E&I) in order to

amplify the excitation signal from the volt range out of the function generator into hundreds

of volts to excite piezoelectric transducers.

Moreover, the controller unit is connected to the ISCO injection pump, as well as the GDS

pressure controller through USB connections, in order to handle all communications with

control and measurement devices included in the experimental system. Therefore, it allows

us to set all relevant experimental parameters digitally and record them, follow the evolution

of recorded data in real-time, and finally to store all these recorded data and parameters in a

filesystem for further processing and analysis.

This is achieved through a LabVIEW program that interfaces with all components listed above,

as well as with the GDS and ISCO equipment.
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B1.3.2 Pressure and volume control and recording

The main virtual instrument (VI) interfaces with both GDS and ISCO equipments through

USB connections are used in the following ways:

• For the GDS pressure controllers, we set the target pressure for each controller, which

is then applied to an axis of the sample with the flat-jack pairs. We record the pressure

and volume of each controller every second, and use this information to estimate

deformation of the sample, as well leakage for flat jack pairs.

• On the ISCO pump we can choose between requesting constant flow or constant pres-

sure targets. Typically we perform injection experiments in a constant flow configura-

tion, while recording the volume, pressure and flow rate every second.

Both type of equipments provide pressure readings from pressure gauges at the outlet of the

cylinder.

We also use two pressure gauges in order to monitor the pressure on the injection line just

upstream and downstream of the needle valve (figure B1.4). These gauges are factory calibrated

and have a range of 0 to 60 MPa, covering the maximum possible injection pressure with the

ISCO pump. We connect the analog output of the gauges to the low-frequency acquisition

board, and sample the corresponding signals at 1 kHz, before averaging over 1000 values,

leading to saved data at 1 Hz.

B1.3.3 Active elastic wave monitoring

The active elastic wave monitoring system consists in 64 piezoelectric transducers arranged in

32 sources and 32 receivers. The transducers are custom-made units from Olympus NDT, with

disk-shaped active elements, 9.5 mm in diameter and with a frequency response centred on

800 kHz. We use a mix of 54 compression transducers and 10 shear transducers in order to use

both P- and S-waves for the fracture growth monitoring.

In practice, we generate an excitation signal with the single-channel function generator

board included in the NI control system. This low-voltage signal is then amplified by the

55 dB high-voltage amplifier, in order to get a final amplitude of approximately 350 Vpp. The

high-voltage signal is then routed through the multiplexer in order to excite sequentially all

source transducers. The function generator sends excitation signals at 2 kHz repetition rate,

and simultaneously generates a trigger pulse that starts the recording over all 32 receiver

transducers on the 50 MHz, 32-channel acquisition board. For each channel 8000 points are

recorded, resulting in 160 µs of recording time.

For each individual source transducer, we stack the recorded signals of 50 consecutive excita-

tions in order to improve the signal-to-noise ration (SNR) of the active elastic wave recordings.
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A complete sequence of excitation and recording over all sources and receivers including

stacking typically takes on the order of 2.5 s.

In order to optimise monitoring of changes in the fractured sample, we can change the

acquisition period between consecutive excitation sequences. Typically we start with a long

period (on the order of a few minutes) when first pressurizing the injection line. Once the fluid

pressure reaches a predetermined level, defined from the experimental conditions, we reduce

the acquisition period down to 4 s in order to capture fast changes in the sample properties

after the fracture initiates. Once the fracture grows, the propagation of the fracture front slows

down and we increase the period between acquisition sequences again.

B1.3.4 Data recording and storage

The recorded data are stored in a folder containing all the information related to an experiment,

with each individual file named after the start time of the experiment, and starting with a

header section describing all the experimental parameters and configuration for the specific

experiment. This header contains its length in the first byte, and is easily readable in a JSON-

style format.

For each experiment, one file contains the low rate pressure and volume recordings as a

function of experimental time. Another file contains the active elastic wave data stored in

binary format. For each acquisition sequence, we combine the stacked recorded signals

of one specific source for all receivers end-to-end, and then append the signals from the

next source, and so forth. We then append the signals from the following sequence to the

same file. Therefore, the size of the file grows predictably after each acquisition sequence,

by 32 (sources) × 32 (receivers) × 8000 (number of data points) × 8 (12-bit data rescaled to

double precision) = 62.5 MB per sequence.

B1.4 Signal processing and analysis sequence

B1.4.1 Transmitted waves: fluid thickness estimation

The fluid thickness is given by the change in transmission coefficient between a reference

signal before the start of the injection, and the signal of interest at time t . The normal trans-

mission coefficient through a planar fluid layer of thickness h is given by (Groenenboom and

Fokkema, 1998):

T (ω,h) =
(1− r 2

f f )exp(iα)

1− r 2
f f exp(2iα)

(B1.1)

where ω is the signal frequency; r f f = zr +1
zr −1 , zr = ρ f c f

ρs cs
; ρs ,ρ f are the densities of the solid and

fracturing fluid, respectively; and cs ,c f the P-wave velocities of the solid and fracturing fluid,

respectively. In practice we use the inversion procedure described in Kovalyshen et al. (2014)
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in order to estimate the fluid thickness for a given transmitted ray at a given time.

To calculate the fracture width (see example in figure B1.17), we minimise the following

objective function in the frequency domain:

f (h) =∑
ν

∣∣û f (ν)−T (ν,h)ûr (ν)
∣∣2 (B1.2)

where ûr (ν) and û f (ν) are the Fourier transforms of the reference signal (without the fracture)

ur (t ) and the signal that passed through the fracture u f (t ) respectively.
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Figure B1.17 – Estimation of the fracture opening using the technique described in Groenen-
boom and Fokkema (1998).

B1.4.2 Diffracted waves

Thin, planar fractures diffract incident elastic waves (Blum et al., 2011). Diffraction of the

incident wave by the fracture tip is sketched in figure B1.18. The difference between the signals

received after the fracture started to propagate and the direct signal is translated in delay in

arrival time. The diffraction travel-time depends on the position of the tip with respect to the

source and receiver locations.

In practise we remove the incident wave obtained before the fracture What remains is scattered

energy related to the fracture growth (see example in section 5.3.1). Besides, the change of the

arrival time of the diffracted events is related to a change in the fracture-tip location.
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Figure B1.18 – Schematic of elastic propagation modes inside a cubic sample with transducers
on the sides. D: wave diffracted at the fracture tip, T: transmitted wave, R: direct wave.
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