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Abstract. This study evaluates the impact of urban planning decisions regarding building stock 
on energy system design and operation. Three urban planning scenarios  are considered for an 
archetype neighbourhood in Nablus in Palestine. The distinguishing difference is that they have 
different albedo values for the building stock. A computational platform that combines building 
simulation, urban climate and energy system optimization (considering Net Present Value (NPV) 
and Grid Integration Level) is used to assess the scenarios. The study reveals that the annual or 
peak energy demand is not sufficient to compare two scenarios; it is important to consider energy 
demand pattern and the renewable energy potential, where an energy system design tool is 
important. Therefore, it can be concluded that the energy system design tools will play a major 
role in sustainable urban planning processes. 

1.  Introduction 
Rapid depletion of fossil fuel resources, climate change and escalating urban populations make it 
essential to improve the energy efficiency and sustainability of urban energy infrastructure. However, 
this is a challenging task which requires the support of multiple parties with different expertise [1]. 
When considering the demand side, people are often interested in the energy efficiency at building scale. 
The thermal impact of buildings on the neighbouring buildings and the urban microclimate are often 
neglected resulting in decreased opportunities to improve the energy efficiency of the urban 
configuration [2]. Furthermore, improvements in energy demand and generation are conducted 
separately without much coordination. This makes it important to develop a holistic framework to design 
energy infrastructure considering different aspects in order to improve the efficiency and sustainability 
of urban energy infrastructure [3]. 

Towards achieving this goal, it is important to develop a holistic urban energy model combining 
building simulation, urban climate simulation and energy system optimization [4]. Such a holistic 
approach can help to quantify the importance of each factor and subsequently optimize the energy 
efficiency and sustainability. This study tries to demonstrate the importance of such a holistic approach 
in an urban context. It specifically focuses on evaluating the impact of albedo values of the building 
stock on the energy infrastructure. The impact of the albedo values of external surfaces has been 
considered in a number of studies for a single building from the perspective of energy demand. For 
example, the impact of albedo values on the peak and annual energy demands has been studied in 
References [5–9]. Integrating materials with higher external reflectivity has been recommended as a 
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method to mitigate adverse effects due to the urban heat islanding effect [5]. However, the influences of 
the albedo values on urban climate, energy demand and more importantly the energy system have not 
been studied. Building energy demand and urban climate are closely coupled together due to the notable 
impact of the building stock on the urban climate [10]. Subsequently, energy demand of building stock 
is linked with energy system designing process. Hence, it is important to consider the close relationship 
between energy demand, urban climate and energy system sizing. Towards achieving this objective this 
study uses a holistic platform combining building simulation, urban climate and energy system 
optimization. The research paper is arranged in the following manner; Section 2 of this paper presents 
the methodology used in this study. A brief overview of the building simulation model, urban simulation 
model and energy system optimization is presented in this section. Section 3 presents the results of the 
study and the discussion.  

2.  Methodology 
A computational platform is developed in this study to consider the influences of building energy 
demand, urban climate and energy system design. When considering these three, building energy 
demand and urban climate conditions are closely coupled with each other. The surface temperature of 
the building stock influences both the energy demand of the building and the temperature and wind 
speed in the urban canopy layer. Magnitude and the fluctuations in the energy demand influence the 
energy system design process. This makes it important to have a holistic platform considering urban 
climate, building simulation and energy system optimization. 

Considering urban climate and energy demand in the urban building stock is a challenging task due 
to the strong coupling between them. Currently, the combination of macro-scale meteorological models 
with building simulation models fails to present the drag force effect and generated turbulence [10]. 
Furthermore, most of the building simulation models neglect the influence of shadowing and boundary 
layers. Hence, these models fail to represent the urban heat islanding and cooling pool effect [2,11]. 
Failure to present such phenomena will lead to a significant performance gap in energy system operation 
[4].  Although computational fluid dynamic (CFD) models are a better way to improve the accuracy, 
such models take much more computational time, especially when simulating results, and it is thus 
computationally challenging to conduct yearly time series simulations. The Canopy Interface Model 
(CIM) [12] becomes an attractive solution in such instances to reduce the computational burden while 
accounting for local scale urban phenomena. Hence, this study combines CIM with CitySIM [13] a 
building energy model. CitySim can model the energy demand of a building stock (representing each 
building through a single zone) while considering the radiation heat transfer among the buildings. The 
influence of the urban climate is introduced to the CityCim model through a coupling with CIM. 

 
2.1 Coupling between CitySim and CIM models 
CIM is a 1D urban canopy model which can be used in an offline mode. It resolves the flow in the 
vertical direction and computes values for the wind speed in the x and y direction as well as the air 
temperature. For each calculation, the column module can be forced with values for the top most column 
and with the surface temperature for the ground and for the obstacles present. The obstacles are 
represented as occupied surfaces and volumes and their dimensions can be specified for each level of 
the module, giving an improved representation of the surface in the mixing length and drag force 
calculation. 

CIM has been coupled with CitySim to improve the boundary conditions in both models [11]. In the 
first iteration, CitySim is run with standard meteorological data (such as given by Meteonorm [14]) to 
obtain the surface temperatures. The surface temperatures obtained as well as the wind speed and air 
temperatures are then used as boundary conditions for CIM. The output from CIM including the “urban 
effect” is then used as input for CitySim to calculate the energy demand. 
 
2.2 Simulation case study 
The case study is conducted for Nablus, a city in Palestine. The city of Nablus (32°13’ N, 35°16’ E) is 
situated in the northern part of the West Bank and it presents a Csa climate (C: temperate; s: dry summer; 
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a: hot summer). The city is located at 550 m above the sea level and it presents a particular topography, 
as it is positioned in a narrow valley, between the Mount Ebal and Mount Gerizim. In this paper, the 
study focuses on the Al-Habaleh district, within the old city, characterized by dense constructions and 
narrow streets. The physical and geometrical data required for setting up the model were previously 
defined [15]. The meteorological data are provided by the tool Meteonorm [14], representing a Typical 
Meteorological Year (TMY). In order to understand and to quantify the impact of the radiative 
environment on the CIM model, as well as on the energy demand (for heating and cooling) of buildings, 
the global albedo of the site was varied from 0.1 to 0.8. Figure 1 shows the 3D model of the city, as 
designed according to the proposed methodology, where the geometrical properties of the city are 
redesigned as a function of its density. 
 

 
Figure 1. 3D model of the city of Nablus. Current city design and proposed geometrical model 

2.3 Computational model for energy system optimization 
Multi-energy hubs catering electricity, heating and cooling demand of the location are considered in this 
study [16–18]. The energy hub consists of renewable energy technologies such as solar PV (SPV) and 
wind turbines. An internal combustion generator (ICG) and a battery bank are considered as dispatchable 
source and storage.  Heat-pumps and air-conditioners are used to cater the heating and cooling demand 
of the building stock respectively, which converts the heating and cooling load to an electricity demand. 
The energy hub interacts with the medium voltage grid when catering the demand of the energy hub. 
Curtailments are introduced for both selling and purchasing electricity to and from the grid in order to 
maintain the stability of the grid. A computational model is developed to model the energy and cash 
flow of the system. The computational model is assisted by hourly simulation to map the decision space 
variables into the objective space.  Hourly wind speed, solar irradiation, as well as energy demands for 
cooling, heating and electricity are taken for the simulation of the energy system considering a time 
period of one year. Power generation from the wind turbines ( ) and SPV panels are computed using 
Eq. (1-2) for time step t. 
 

         (1) 

         (2) 

In Eq. 1, , ,  ,  and denote the global solar irradiation on the tilted PV panel, the 
efficiency of the SPV panel, the number of PV panels obtained using the optimization algorithm. In Eq. 
2,  and denote the number of wind turbines in the system (which is obtained using the 
optimization algorithm) and the power losses. The Durisch model [19] is used to consider the SPV panel 
efficiency considering the global solar irradiation on the tilted SPV panel, cell temperature, and air-mass 
is used to compute the efficiency of the SPV panels. 

Grid integration level (GI) and net present value (NPV) of the system are considered as the objective 
functions for the optimization problem. Grid integration level presents the autonomy level of the energy 
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system and often used as an objective function in the multi-objective optimization of energy system 
along with the cost [16]. Grid integration level is formulated according to Eq. 3.  

  
        (3) 

In this equation,  and present the energy imported from the grid and the demand of the energy 
hub. The net present value (NPV) of the system is modelled in a similar way after considering initial 
investment and present value of all the operation and maintenance costs. A bi-level dispatch strategy 
based on fuzzy automata theory is used to consider the operation of the internal combustion generator, 
energy interactions with the battery bank and the grid. A detailed description of the dispatch strategy 
can be found in Ref. [16]. A Pareto multi objective optimization is conducted using evolutionary 
algorithms. A comprehensive explanation of the demand profiles, renewable energy potential and its 
impact on the energy system via microclimate was previously presented in Ref. [4] 

3.  Results and discussion 
The energy demand of the archetype building stock is computed considering three albedo values. 
Subsequently, the demand profile for heating and cooling is assessed in Section 3.1 and the impact of 
the demand profile is assessed in Section 3.2.  

3.1.   Demand profile for the three scenarios 
The hourly heating and cooling demand profiles are presented in Figure 2. When analyzing the heating 
and cooling demand profiles it is clear that a higher albedo ratio will result in a significant reduction in 
cooling demand as reported in the literature [5–9]. However, it will also increase the heating demand, 
especially during the winter period. The influence of the albedo value on the cooling demand is visible 
when analysing both peak and annual cooling demands (Table 1). A significant reduction in both peak 
and annual cooling demands has taken place due to the changes in the building external surface. The 
peak cooling demand has decreased from 870 kWhs to 247 kWhs while the annual cooling demand has 
decreased from 886 MWh to 72 MWH when moving from Scenario A (albedo of 0.1) to C (albedo of 
0.8). However, the influence of albedo values on the peak and annual electricity demand behaves in a 
different manner since it considers catering both heating and cooling demands using heat pumps and 
air-conditioners. A notable reduction in both peak and annual electricity demand can be observed when 
moving from Scenario A to C. However, the lowest peak and annual demand can be observed in Scenario 
B (albedo of 0.58). This can be explained by considering the heating demand. Although higher albedo 
values can help to minimize the cooling demand it will increase the heating demand during the winter 
since it minimizes the solar heat gain during the winter. A moderate albedo will balance both heating 
and cooling requirements such as in scenario B, reducing both annual and peak electricity demands 
(such as Scenario B).  
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Figure 2. Hourly variation of electricity demand after converting heating and cooling demands into 
electricity 

Table 1. Peak and annual electricity and cooling demands for the three scenarios     

 

3.2.  Pareto fronts for the three scenarios 
Pareto fronts obtained using multi-objective optimization for the three scenarios are presented in Figure 
3(a). When analyzing the three Pareto fronts it is observed that Scenario B represents the lowest cost 
although it is not the one having the highest albedo ratio. However, the comparison of the Pareto fronts 
for Scenario A and C brings quite an interesting observation. Pareto solutions of Scenario C outperform 
Scenario A for a part in the Pareto front when the grid integration levels are low (as marked in Box E). 
However, the conditions totally change when increasing the grid interaction levels further. Pareto 
solutions of Scenario A outperform Scenario C with a notable cost margin especially in the sections 
within Box F. Scenario A has a peak and annual electricity demand respectively 20% and 8.5% higher 
than Scenario C. Even after catering such a high energy demand, the Pareto solutions for Scenario A 
can maintain a lower cost compared to Scenario C except for the part marked in Box E. To understand 
the situation further, installed SPV capacities are plotted for the three scenarios (Figure 3 (b)). Figure 
3b clearly shows that installed PV capacity for Scenario A is notably higher when compared to Scenario 
C (highlighted in Box G). As a result, there will be higher PV generation during the summer period 
which will be relatively cheaper (due to the abundant solar energy potential). The excess SPV generation 
will compensate the higher cooling demand due to lower albedo value. Therefore, the net present value 
of the design solution for Scenario A becomes cheaper when compared to Scenario C. When considering 
Scenario A and C it can be concluded that a minimum demand scenario might not be the optimum for 
the energy system; especially when considering the seasonal variation of the renewable energy potential. 
Hence, it is important to consider the urban planning scenarios along with energy system designs besides 
being limited to minimizing the energy demand. This will make it important to have holistic design 
platforms that consider building simulation, urban climate and energy system design.  
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(a)      (b) 

Figure 3. (a) Pareto fronts for the three scenarios and (b) installed SPV capacity for the Pareto 
solutions 

4.  Conclusion and outlook 
The study reveals that changing albedo values of the building stock can help to reduce the cooling 
demand. When considering the annual energy demand having a moderate albedo value will be helpful 
when considering both heating and cooling energy demands. When comparing the Pareto fronts obtained 
for Scenarios A and C it is revealed that reduction in annual or peak demand itself will not guarantee a 
cost reduction for the energy system. It is important to consider the demand pattern as well as the 
potential for renewable energy sources. This makes it important to have an energy design tool embedded 
into the urban planning process.       
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