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Parameter Estimation of Three-Phase Untransposed
Short Transmission Lines from Synchrophasor

Measurements
Antoine Wehenkel, Arpan Mukhopadhyay, Jean-Yves Le Boudec and Mario Paolone

Abstract—We present a new approach for estimating the
parameters of three-phase untransposed electrically short trans-
mission lines using voltage/current synchrophasor measurements
obtained from phasor measurement units. The parameters to
be estimated are the entries of the longitudinal impedance
matrix and the shunt admittance matrix at the rated system
frequency. Conventional approaches relying on the admittance
matrix of the line cannot accurately estimate these parameters
for short lines, due to their high sensitivity to measurement
noise. Our approach differs from the conventional ones in the
following ways: First, we model the line by the three-phase
transmittance matrix that is observed to be less sensitive to
measurement noise than the admittance matrix. Second, we
compute an accurate noise covariance matrix using the realistic
specifications of noise introduced by instrument transformers
and phasor measurement units. This noise covariance matrix is
then used in least-squares-based estimation methods. Third, we
derive different least-squares-based estimation methods based on
a statistical model of estimation and show that the weighted least-
squares and the maximum likelihood methods, which make use
of the noise covariance matrix produce the best estimates of the
line parameters. Finally, we apply the proposed methods to a real
dataset and show that our approach significantly outperforms
existing ones.

I. INTRODUCTION

Fundamental functionalities used in the operation of power
grids, e.g., state estimation (SE) [1], [2], [3], optimal power
flow (OPF)-based control [4], [5], [6], [7], , Model Predictive
Control [8], [9] and optimal relay tuning [10], [11], require the
knowledge of transmission line (TL) parameters at the rated
system frequency. Conventionally, TL parameters are obtained
either by using the physical properties of the line (such as con-
ductor dimensions, types of wires, tower geometries, ground
electrical parameters) [12], [13] or by making measurements
on the line when it is off-grid [14]. The first method is
applicable only when accurate conductor characteristics are
known, whereas the second method, although reliable, is time
consuming and difficult to implement in practice.

With the availability of highly accurate measurement de-
vices, e.g., phasor measurement units (PMUs), instrument
transformers (ITs), estimation methods based on measure-
ments from these devices have gained significant research
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attention [15], [16], [17], [18], [19], [20]. PMUs, along with
ITs, are used to obtain time-synchronous phasor measurements
of nodal phase-to-ground voltages and terminal currents at
both ends of a TL. These measurements can be used to
estimate the parameters of the TL.

The use of the total least-squares (TLS) technique for
estimating TL parameters is proposed in [17]. [21] and [22]
propose methods for eliminating systematic errors introduced
by ITs into the measurements. However, these methods as-
sume the TLs to be fully transposed and symmetric. For
untransposed, non-symmetric TLs, [23] proposes an estimation
method based on ordinary least-squares (OLS). However, as
reported in [24], the method requires prior knowledge of
the ranges of the parameters to have an acceptable accuracy
of estimation and to avoid the presence of outliers in the
data. A robust method for estimating three-phase parameters
of untransposed lines is proposed in [25], where the main
focus is to reduce the effect bad-data or outliers without the
need for separate bad-data detection algorithms. Recently, a
method based on trimmed least squares techniques has been
proposed for parameters estimation of TLs from data measured
in single pole open conditions. Concurrently, PMU based
parameters estimations have been proposed for distribution
networks [16], the estimation problem in this context can
be considered as easier due to the higher variability in the
data of an operating distribution network compared to the one
observed in the operating transmission networks. The use of
Kalman filtering is proposed in [26]. It improves the estimation
accuracy in comparison to the least-squares based methods.
All works mentioned above use line models that are highly
sensitive to measurement noise. Consequently, the accuracy of
these methods deteriorates significantly when applied to short
transmission lines that have smaller parameter values and are
therefore more sensitive to noise. Furthermore, all prior works
lack a realistic noise model (that captures the characteristics
of real PMUs and ITs) and do not account for the effects of
realistic loading condition of the grid on parameter estimation.
Hence, their results are of limited use.

Contributions: Our main contributions are (i) the use of a
new line model for estimation, (ii) the derivation of an accurate
noise covariance matrix from realistic specifications of the
measurement devices, (iii) derivation of different estimation
methods from a statistical model of estimation, and (iv)
application of these methods to a real dataset that captures the
effect of different loading conditions of the grid to show the
efficacy of the methods. The detailed contributions are given
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below:
(1) Line modeling: All existing methods for TL param-

eter estimation fail for short lines, due to their high noise
sensitivity. To overcome this difficulty, we propose a model
based on the transmittance matrix of the line. We compare the
proposed model with other line models that use the impedance
and admittance matrices. The comparison is achieved both
by directly estimating the line parameters under different line
models and by comparing the Cramer-Rao bounds (CRBs) that
correspond to these models. We observe that the proposed
model has the least noise sensitivity among all models for
short lines.

(2) Noise modeling: We use an accurate statistical model
for measurement noise. The model is based on realistic
specifications of ITs and PMUs. Since the specifications are
made in polar coordinates, we transform them to rectangular
coordinates to compute the noise covariance matrix which
is then used by different estimation methods. This accurate
characterization of the measurement noise makes our results
more practicable than existing ones. Furthermore, we observe
that including the noise covariance matrix in our estimation
methods results in reduced estimation errors.

(3) Estimation methods: We evaluate the performance of
several estimation methods that differ in their likelihood func-
tions. The likelihood functions are derived from our statistical
model and give rise to different least-squares based estimation
methods. We compare the performance of OLS, weighted
least-squares (WLS), TLS, and maximum likelihood (ML)
estimators. We show that the WLS and the ML estimators
are the most accurate ones among all as they make use of the
noise covariance matrices discussed above.

(4) Use of realistic data: We evaluate all our methods by
estimating the parameters of short transmission lines used in
a real high voltage (HV) sub-transmission grid. The values
of voltages and currents are also taken from a real data-set
containing the values of these quantities for an entire day of
operation of the above mentioned grid. Thus, unlike previous
works, our results incorporate the effect of different loading
conditions of the grid. We observe that with our proposed
approach the line parameters are estimated with high accuracy.

Although our main focus in the paper is on estimating pa-
rameters of short lines, we observe that our approach produces
accurate estimates of line parameters for all line lengths. In
fact, estimating the parameters for longer lines turns out to be
significantly easier than estimating parameters for short lines
due to the reduced effect of measurement noise in the former
case. In case of long lines, we observe that models based on
either the impedance or the admittance matrix representations
of the lines, in conjunction with the proposed methods, can
accurately recover the line parameters.

The rest of the paper is organized as follows. In Section
II, we formulate the problem of line-parameter estimation by
using different line models and introduce the noise model
used in the paper. In Section III, we describe the proposed
estimation methods. In Section IV, we numerically evaluate
the performance of the proposed methods. We conclude the
paper in Section V.

Some Notations: We use C and R to denote the set of

complex and real numbers, respectively; matrices are written
using bold symbols; for a matrix M the (i, j)th entry is
denoted by (M)ij ; vectors are column vectors unless specified
otherwise; ′ denotes transpose; R(w) and I(w) denote the
real and imaginary parts of a complex vector w, respectively;
diag(X1, . . . ,Xn) denotes the the block-diagonal matrix with
Xi, i = 1 : n, as its blocks. We use the generic notation θ
for an unknown parameter vector of dimension Sθ and θ̂ to
denote its estimate.

II. PROBLEM FORMULATION

We are interested in identifying the entries of the longitudi-
nal impedance and shunt admittance matrices at the rated sys-
tem frequency of an untransposed three-phase line modelled
via its π equivalent circuit (see Figure 1). Let the three-phase
longitudinal impedance and shunt admittance matrices of a line
between the two nodes s and r be denoted by Zl ∈ C3×3 and
Yl ∈ C3×3, respectively. Let vx, ix ∈ C3 denote the complex
nodal phase-to-ground voltage and terminal current at node
x ∈ {s, r}, respectively. The objective is to estimate the entries
of Yl and Zl from noisy measurements of ix and vx obtained
from PMUs. To do so, we first need to express the relationship
among the phasors and the line parameters by using a line
model. Below, we discuss several line models, each of which
leads to a different estimation problem. A comparison of these
models, in terms of estimation accuracy, is provided later.

Fig. 1. Equivalent π-model of a three-phase TL

A. Transmittance Matrix Model

With the transmittance matrix, the relationship between the
phasors and line parameters can be expressed as follows [27]:

[
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]
=

[
I + ZlYl
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(
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−
(
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2
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]
, (1)

≈
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I −Zl

Yl −I

][
vr

ir

]
, (2)

where I ∈ C3×3 denotes the complex identity matrix. The
approximation in (2) is obtained by using the fact that the
product matrix ZlYl is usually very close to the null matrix
0 ∈ C3×3 for lines that are electrically short (i.e. < 80km,
e.g. [28]), i.e., ZlYl ≈ 0. We refer to this approximation
as the ’short-line approximation’ and have verified that the
approximation is accurate for short lines and some medium



3

length lines(< 200km), operating at very high rated voltages
(e.g., 380 kV). We refer to the line model expressed by (2)
as the T-line model.

To obtain a linear estimation model, we need to express the
T-line model as a linear function of the unknown parameters.
The most generic parameterization using an unknown vector
θT = [θT1 , ..., θ

T
24]′ ∈ R24 in 24 dimensions is given below

Yl(θ
T) =

θT19 θT22 θT23θT22 θ
T
20 θ

T
24

θT23 θ
T
24 θ

T
21

+ j

θT1 θT16 θ
T
17

θT16 θ
T
2 θT18

θT17 θ
T
18 θ

T
3

 , (3)

Zl(θ
T) =

θT4 θT6 θT8
θT6 θT10 θ

T
12

θT8 θT12 θ
T
14

+ j

θT5 θT7 θT9
θT7 θT11 θ

T
13

θT9 θT13 θ
T
15

 , (4)

where the T in the superscript of θT indicates that it is a
parameterization of the T-line model. Using the parameteriza-
tion above, we can rewrite (2) after separating the real and
imaginary parts as follows:

lsT = T̄(θT)lrT = HT(lrT)θT + γT(lrT), (5)

where for x ∈ {r, s}

lxT =


R(vx)

R(ix)

I(vx)

I(ix)

 ∈ R12, γT(lxT) =


I 0 0 0

0−I 0 0

0 0 I 0

0 0 0−I

 lxT, (6)

T̄ : R24 → R12×12 and HT : R12 → R12×24 are linear maps
that are derived in Appendix A. Thus, we have transformed
the complex model (2) into a real model (5) that is linear with
respect to the parameter vector θT.

Remark. Although line model (5) assumes a 24-dimensional
unknown parameter vector θT, in most practical estimation
scenarios, more structural information regarding the parameter
vector is available a-priori. For example, the real part and the
non-diagonal entries of the shunt admittance matrix Yl have
negligible values for short lines. If such additional information
is available, then the dimension of the parameter vector θT can
be reduced. This reduction generally leads to more accurate
estimates of the remaining unknown parameters. It is easy to
see that formulation (5) can be generalized to any dimension
Sθ of the parameter vector θT and the linear maps T̄ and
HT can be recomputed according to the new dimension by
repeating the method discussed in Appendix A.

B. Impedance and Admittance Matrix Models
There are two other line models that are typically used in

the literature to link the phasors with the line parameters.
(1) The Y-line model: The admittance matrix can be used

to express the relationship between the voltage phasors v =
[(vr)′, (vs)′]′ and the current phasors i = [(ir)′, (is)′]′ as
follows:

i =

[
Zl
−1 + Yl

2 −Zl
−1

−Zl
−1 Zl

−1 + Yl

2

]
v (7)

(2) The Z-line model: The same relation (7) can be rewritten
using the impedance matrix as follows:

v =

[
Zl
2 + Yl

−1 Yl
−1

Yl
−1 Zl

2 + Yl
−1

]
i (8)

Clearly the Y-line model and the Z-line model are not
linear if expressed in terms of the parameter vector θT due
to the presence of the inverse terms Z−1l and Y−1l . Thus, we
introduce parameter vectors θY ∈ R24 and θZ ∈ R24 to pa-
rameterize the Y-line model and the Z-line model, respectively.
We define θY such that it differs from θT only in components
4 through 15 for which we define

Z−1l =

θY4 θY6 θY8
θY6 θY10 θ

Y
12

θY8 θY12 θ
Y
14

+ j

θY5 θY7 θY9
θY7 θY11 θ

Y
13

θY9 θY13 θ
Y
15

 (9)

The parameter vector θZ is also defined similarly.
Similar to (5), (7) and (8) can be rewritten as follows:

lsY = Ȳ(θY)lrY = HY(lrY)θY + γY(lrY), (10)

lsZ = Z̄(θZ)lrZ = HZ(lrZ)θZ + γZ(lrZ), (11)

where γY(lrY) = γZ(lrZ) = 0, lsY = lrZ =
[R(ir)′,R(is)′, I(ir)′, I(is)′]′, lrY = lsZ =
[R(vr)′,R(vs)′, I(vr)′, I(vs)′]′, and HY, Ȳ, Z̄,HZ are
linear maps that can be computed using a method similar to
the one described in Appendix A.

C. Noise Model

The noise in the measurements are introduced at two
sources: (1) at the instrument transformers (ITs), i.e., the
voltage transformers for voltage measurements and the current
transformers for current measurements, (2) at the PMUs.
Hence, the total noise is the sum of the noises at the ITs and
the PMUs. To statistically characterize the noise introduced by
a measuring device, we make use of the standard specifications
of the device.

The manufacturers of instrument transformers specify the
maximum errors - as percentages (α) in case of magnitudes
and as absolute values (β) in case of phases - introduced by
such devices. The values of α and β for different classes of
instrument transformers are given in Table I [29]. For, PMUs
the maximum errors are specified similarly. In this paper, we
consider class 0.1 PMUs that are characterized by α = 0.1%
and β = 10−4 (e.g. [30]). Note that the maximum errors are
the same for voltage and current transformers.

We assume that the measurement noise is Gaussian, unbi-
ased, and that it lies within the specified maximum bound with
probability 0.9973. Hence, to find the standard deviation, we
divide the value of the maximum error by 3. More specifically,
let ρ and φ, respectively, denote the magnitude and phase of a
complex phasor w, i.e., w = ρejφ. Then the noise ∆ρ and ∆φ

on ρ and φ are assumed to be distributed as ∆ρ ∼ N (0, αρ3 ),
and ∆φ ∼ N (0, β/3), respectively, where α and β are as
defined before (see Table I for values).
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TABLE I
MAXIMUM ERRORS FOR DIFFERENT CLASSES OF INSTRUMENT

TRANSFORMERS

Transformer
Class

Max. magnitude
error (α) [%]

Max. phase
error (β) [rad]

0.1 0.1 1.5× 10−3

0.2 0.2 3× 10−3

0.5 0.5 9× 10−3

1 1 18× 10−3

The noise is Gaussian in polar coordinates, whereas we
use rectangular coordinates in our estimation procedures. The
noise transformation from polar to rectangular coordinates is
non-linear and hence it does not preserve Gaussianity of the
noise. However, for the parameters of Table I, we observe
numerically that the distribution of the noise transformed
in the rectangular coordinates is very close to the Gaussian
distribution. This is shown by the quantile-quantile (QQ) plots
in Figures 2 and 3 for Class 1 ITs, which have the highest error
among all classes of ITs. We observe that the quantiles of the
transformed noise (scaled by its standard deviation) match very
closely with those of a standard normal random variable. For
this reason, we treat the noise in the rectangular coordinates
as Gaussian random variables.
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Fig. 2. QQ plots for noise on voltages measured by a Class 1 IT
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Fig. 3. QQ plots for noise on currents measured by a Class 1 IT.

To find the mean and covariances of the transformed noise,
we first denote the noisy measurement of the phasor w = ρejφ

as w̃ = ρ̃ejφ̃. If ∆re and ∆im, respectively, denote the noise
in the real and imaginary parts, then it can be shown using
moment generating functions [31] that

∆re = ρ̃ cos(φ̃)− ρ cos(φ) (12)

E[∆re] =
(
e−

1
2σ

2
φ − 1

)
cos(φ)ρ (13)

E[∆2
re] =

1

2
(1 +

α2

9
)ρ2(1 + e−2σ

2
φ cos(2φ))

+ ρ2 cos2(φ)(1− 2e(−
1
2σ

2
φ)) (14)

∆im = ρ̃ sin(φ̃)− ρ sin(φ) (15)

E[∆im] =
(
e−

1
2σ

2
φ − 1

)
sin(φ)ρ (16)

E[∆2
im] =

1

2

(
1 +

α2

9

)
ρ2
(

1 + e−2σ
2
φ cos(2φ)

)
+ ρ2 sin2(φ)

(
1− 2e−

1
2σ

2
φ

)
(17)

E[∆re∆im] =
1

2
sin(2φ)

[(
1 +

α2

9

)
ρ2e−2σ

2
φ

−2ρ2e(−
1
2σ

2
φ) + ρ2

]
, (18)

where E[·] is the expectation operator and σφ = β/3. We note
from (13) and (16) that the noise in the rectangular coordinates
is biased in general. However, for the parameters of Table I, we
observe that the bias is negligible. We further observe that, for
the parameters of interest, the correlation between the real and
imaginary parts of the noise is not negligible, as is routinely
assumed in the existing literature.

We note from (13)-(18) that covariances of noise in rect-
angular coordinates depend on the true value of the mea-
surements that are unknown in practice. In our estimation
procedures, these covariances are computed by replacing the
true values by the measured values. We have numerically
observed that doing so has a negligible effect on the estimation
procedures proposed in this paper.

Remark. We have assumed that measurement noise in polar
coordinates is normally distributed, which is standard in the
literature [30], [21], [23]. Even if this assumption is only
approximately true, numerical simulations show that, for the
parameter values shown in Table I, the noise in the rectangular
coordinates is very close to Gaussian noise with covariances
given by (13)-(18).

D. Generalized Statistical Model

Here, we present a general statistical model that incorporates
the line models and the noise model discussed thus far.

Let (xi, yi) ∈ R12×R12 and (x̃i, ỹi) ∈ R12×R12 denote the
true and measured pairs of ith phasors with separated real and
imaginary parts, respectively. Furthermore, let θ ∈ RSθ be the
unknown parameter vector of dimension Sθ to be estimated.
Then the generalized model is given by

yi = B̄(θ)xi = H(xi)θ + γ(xi), (19)
ỹi = yi + ∆yi , ∆yi ∼ N (0,Qyi), (20)
x̃i = xi + ∆xi , ∆xi ∼ N (0,Qxi), (21)
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where the mapping between the different notations of the
general model to the previously discussed line models is given
in Table II, ∆yi ,∆xi ∈ R12 denote the noise on yi and
xi, respectively; and Qyi ,Qxi ∈ R12×12 denote the noise
covariance matrices of ∆yi ,∆xi , respectively. The entries of
the covariance matrices Qyi and Qxi can be computed using
the parameters of Table I and transformation equations (14),
(17) and (18).

If we have N measurements of the phasors, then combining
all the measurements gives us the following more compact
representation of the model:

y = B̄N (θ)x = HN (x)θ + γ(x) (22)
ỹ = y + ∆y ∆y ∼ N (0,Qy) (23)
x̃ = x+ ∆x ∆x ∼ N (0,Qx) (24)

where x = [x′1, . . . , x
′
N ]′, y = [y′1, . . . , y

′
N ]′ ∈ R12N ,

HN (x) = [H(x1)′, . . . ,H(xN )′]′ ∈ R12N×Sθ , γN (x) =
[γ(x1)′, . . . , γ(xN )′]′ ∈ R12N , Qx = diag(Qx1

, . . . ,QxN ),
Qy = diag(Qy1 , . . . ,QyN ) ∈ R12N×12N , B̄N (θ) =
diag(B̄(θ), . . . , B̄(θ)) ∈ R12N×12N .

TABLE II
MAPPING OF NOTATIONS BETWEEN THE GENERAL STATISTICAL MODEL

AND DIFFERENT LINE MODELS

Stat. Model T-line model Z-line model Y-line model

yi lsT(i) lsZ(i) lsY(i)

xi lrT(i) lrZ(i) lrY(i)

B̄ T̄ Z̄ Ȳ

γ(·) γT(·) γZ(·) γY(·)
θ θT θZ θY

H HT HZ HY

III. PROPOSED ESTIMATION METHODS

We now describe different estimation methods that use
the statistical model defined in the previous section. The
objective is to estimate the parameter vector θ from the noisy
measurement vectors x̃ and ỹ.

A. Maximum-Likelihood Estimator - Weighted Total Least-
Squares

The maximum-likelihood estimator, also referred to as the
weighted total least-squares (WTLS), uses the true statistical
model defined above to compute an estimator of θ. Clearly,
from (22)-(24), this estimator can be found by solving the
following minimization problem:

min
θ

min
x

(x̃− x)
T

Q−1x (x̃− x)

+
(
ỹ − B̄N (θ)x

)T
Q−1y

(
ỹ − B̄N (θ)x

)
(25)

Note that the inner minimization problem in x is convex and
can be solved in closed form as a function of θ. The solution
x̂(θ) is given as

x̂(θ) =
(
Q−1x + B̄T

N (θ)Q−1x B̄N (θ)
)−1

×
(
Q−1x x̃+ B̄T

N (θ)Q−1y ỹ
)
, (26)

Finally, to obtain θ, we solve the following problem:

θ̂ml = arg min
θ

(x̃− x̂(θ))
T

Q−1x (x̃− x̂(θ))

+ (ỹ −HN (x̂(θ))θ − γN (x̂(θ)))
T

Q−1y

× (ỹ −HN (x̂(θ))θ − γN (x̂(θ))) .

We note that the above optimization problem is non-convex.
Therefore, only local optimal solutions can be found using
numerical solvers.

B. Ordinary Total Least-Squares
The ordinary total least-squares (OTLS) method is typically

used in error-in-variables regression [32], [33]. Here, the
objective is to estimate a parameter matrix U ∈ Cp×q , which
satisfies the linear relationship

CU = D (27)

with C ∈ Cn×p and D ∈ Cn×q from noisy observations C̃ of
C and D̃ of D. Note that in ordinary least-squares regression,
errors are assumed to be present only in the matrix D. In the
special case where D and U are vectors (q = 1), we denote
them by lower cases d and u.

In general, (27) can be rewritten in the following form[
C D

] [ U

−Iq×q

]
= 0n×q. (28)

The above can be used to find denoised Ĉ and D̂ as follows:

Ĉ, D̂ = arg min
C,D

∥∥∥[C D
]
−
[
C̃ D̃

]∥∥∥
F

(29)

subject to rank
([

C D
])
≤ q. (30)

Note that the rank constraint in the above optimization is
equivalent to the existence of a parameter matrix U ∈ Rp×q
satisfying (28). The above optimization is an instance of
the low-rank approximation problem for the observed data
matrix [C̃ D̃] and can be solved using the singular value
decomposition (SVD) of [C̃ D̃]. Let the SVD of [C̃ D̃] be

[C̃ D̃] =
[
UC UD

] [ ΣC 0p×q

0q×p ΣD

][
VC,C VC,D

VD,C VD,D

]∗
where A∗ denotes the matrix conjugate of A ∈ Cn×n.

Then the parameter matrix U is estimated as (see [32]):

Ûtls = −VC,DV−1D,D. (31)

We note that Ĉ, D̂ are the maximum-likelihood estimates of
C,D only when the noise [∆C ∆D] on the data matrix
[C D] has independent and identically distributed (zero-
mean Gaussian) rows, which is an approximation of the true
statistical model.
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1) Structured OTLS: The structured OTLS (SOTLS) prob-
lem is obtained by replacing

C = HN (x), u = θ, d = y − γN (x), (32)

The estimate θ̂tls of θ can therefore be obtained using (31).
2) Unstructured OTLS: The unstructured OTLS (UOTLS)

problem in the context of the estimation problem of B̄ is
solved by putting

C =


x′1
...
x′N

 , U = B̄(θ)′, D =


y′1
...
y′N

 , (33)

C. Weighted and Ordinary Least-Squares (WLS and OLS)

In the method of ordinary or weighted least-squares, the
noise on the right-hand side of (22) is ignored, i.e., it is
assumed that x̃ = x. In this case, the well known least-squares
estimation formula for weighted least-squares (WLS) yields
the following estimate of θ:

θ̂wls =
(
HN (x̃)′Q−1y HN (x̃)

)−1
HN (x̃)′Q−1y (ỹ − γN (x)),

(34)
The ordinary least-squares (OLS) estimate of θ is obtained by
replacing Qy in the above by the identity matrix.

1) Enhanced WLS (EWLS): Note that in the WLS for the T-
line model the roles of the vectors y and x can be interchanged
since we have

ls = T̄(θT)lr and lr = T̄(θT)ls.

under the approximation that YlZl ≈ 0. In EWLS, we first
estimate θT by using the WLS method described above. Then
we switch the roles of x and y in (34) from lrT and lsT to
lsT and lrT, respectively, and re-estimate θT. We then take the
average of the two estimates.

IV. SIMULATIONS

We now evaluate the performance of the proposed esti-
mation methods by using a dataset containing PMU mea-
surements of voltage and current phasors of a 125kV sub-
transmission grid installed in Lausanne. The grid has 7 buses
that are connected by 10 lines as shown in Figure 4. All the
lines are short and have length less than 5km. The true values
of the line parameters are given in the dataset and are shown
in Table III (in per unit (p.u.)) for two different lines (lines
numbered 2 and 10 in Figure 4) of which one is coaxial (line
2) and the other is non-coaxial (line 10). We used 72.2 kV as
the base value for voltage and 10 MW as the base value of
power to obtain the values in per unit.

The dataset contains one day of PMU measurements of
current and voltage phasors at both ends of each line at a
frequency of 50 measurements per second. This results in a
maximum of N = 24 × 3600 × 50 ≈ 4.3 × 106 samples for
each line. To reliably evaluate the performance of different
estimation methods, we follow the procedure described below

TABLE III
TRUE PARAMETER VALUES OF LINES 2 AND 10 IN P.U.

Parameter
Values ×10−4 p.u.

Non-Coaxial Coaxial
(Zl)11 = (Zl)22 = (Zl)33 18 + j51 2.8 + j5.2

(Zl)12 = (Zl)13 = (Zl)23 6.3 + j21.0 1.2− j1.2
(Yl)11 = (Yl)22 = (Yl)33 j50 j530

(Yl)12 = (Yl)13 = (Yl)23 −j6.6 0

Line 8 - 3.8km

Line 10 - 3.8km

Line 7 - 2.8km

Line 9 - 4.7km

Line 1 - 4.7km

Line 4 - 1.8km

Line 5 - 4.2km

Line 6 - 4.3km

Line 3 - 1.9km

Line 2 - 1.6km

1 2 3

4 5 6

7

Fig. 4. 125kV sub-transmission grid at Lausanne, Switzerland.

to generate the voltage and current phasors for one end of each
line:

Step 1: We take the measurements from one end of the line
from the dataset. We treat them as the true phasor values.

Step 2: We generate the true phasor values at the other-end
of the line using the phasors of Step 1, the line parameters of
Table III, and equation (1).

Step 3: We add noise to the phasors in Step 1 and Step 2.

The detailed procedure for data generation is described as
Algorithm 1 below. Note that this procedure retains the effect
of different loading conditions present in the original data.

Using the samples generated by the above procedure and
different estimation methods, we estimate the line parameters.
The metrics used to evaluate the performance of an estimator θ̂
of the true parameter vector θ are the average relative error, the
average relative error per component, and the mean squared
error (MSE) defined as follows

eθ =
1

Sθ

Sθ∑
i=1

∣∣∣∣∣θi − θ̂iθi

∣∣∣∣∣× 100, (35)

eθi =

∣∣∣∣∣θi − θ̂iθi

∣∣∣∣∣× 100 ∀i ∈ [1,Sθ], (36)

MSE(θ) =
1

Sθ

Sθ∑
i=1

(θi − θ̂i)2 (37)

The results are obtained by repeating our experiments 10 times
(with different realizations of noise) and then averaging the
results. To simplify our notations, in the following, we use θ
without a superscript to denote the parameter vector θT of the
T-line model, unless specified otherwise.

Remark. From Table III, we observe that R(Yl) = 0 for
both lines. This is because these lines are short (< 5 km) and
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Algorithm 1 Data generation
1: procedure GENDATA

2: for each line do
3: Construct Zl,Yl from Table III

4: for n = 1 : N do
5: Obtain vrn, i

r
n from the dataset

6:

vsn
isn

←
 I + ZlYl

2 −Zl

Yl

(
I + ZlYl

4

)
−
(
I + ZlYl

2

)
vrn

irn


7: for x = [vrn, v

s
n, i

r
n, i

s
n] do

8: ∆ρ ← N (0, α3 |x|)
9: |x| ← |x|+ ∆ρ

10: ∆φ ← N (0, β3 )

11: arg(x)← arg(x) + ∆φ

12: x = |x| ej arg(x)

13: end for
14: end for
15: end for
16: end procedure

for short lines the resistive parts of the shunt elements have
negligible values. We use this side information to reduce the
size of the parameter vector θ from Sθ = 24 to Sθ = 18
by eliminating the last six components. Furthermore, for the
coaxial line, we have I((Yl)ij) = 0 for j 6= i, which leads to
a further reduction of the dimension of the parameter vector
of this line to Sθ = 15. We further note that the diagonal
and non-diagonal entries of Zl (and Yl) are equal. If we use
this information then the dimension of the parameter space
reduces to Sθ = 5 for the coaxial line and Sθ = 6 for the
non-coaxial line. However, we can only use this information
when it is known that the lines are fully transposed. We test our
estimation procedures both with and without this assumption.
The parameters of the lines under different line models is given
in Table IV and Table V using smaller parameter spaces and
the corresponding parameterization of different line models
are given in Appendix B.

TABLE IV
TRUE VALUE OF THE PARAMETERS OF COAXIAL LINE (Sθ = 5)

θT1 2.8×10−4

θT2 5.2×10−4

θT3 1.2×10−4

θT4 −1.2×10−4

θT5 5.3×10−2

θY1 7.3×102

θY2 3.7×102

θY3 −1.3×103

θY4 2.2×102

θY5 5.3×10−2

θZ1 2.8×10−4

θZ2 5.2×10−4

θZ3 1.2×10−4

θZ4 −1.2×10−4

θZ5 1.9×101

A. Comparison of Different Line Models
We first compare different line models in terms of their

noise sensitivities. Noise sensitivity can be measured by the
Fisher Information Matrix (FIM), that quantifies the informa-
tion that measurements carry about an unknown parameter

TABLE V
TRUE VALUE OF THE PARAMETERS OF OVERHEAD LINE (Sθ = 6)

θT1 1.8×10−3

θ2T 5.1×10−3

θT3 6.3×10−4

θT4 2.1×10−3

θT5 5.0×10−3

θT6 −6.6×10−4

θY1 86

θY2 −27

θY3 −2.3×102

θY4 64

θY5 5.0×10−3

θY6 −6.6×10−4

θZ1 1.8×10−3

θZ2 5.1×10−3

θZ3 6.3×10−4

θZ4 2.1×10−3

θZ5 2.1×102

θZ6 3.2×101

vector. According to the Cramer-Rao theorem, the trace of the
inverse of the FIM gives a lower bound on the MSE of any
unbiased estimator. Hence, a way of comparing different line
models is to compare their corresponding Cramer-Rao bounds
(CRBs) that give the lowest achievable MSEs (by an unbiased
estimator) for different line models.

Using the log-likelihood function in (25), we derive the FIM
for the general statistical model, described by (22)-(24). The
FIM is given by

I(x, θ) =

[
Q−1x + B̄N (θ)Q−1y B̄N (θ)′ B̄N (θ)Q−1y HN (x)

HN (x)′Q−1y B̄N (θ)′ HN (x)′Q−1y HN (x)′

]
In Table VI, we compare the CRBs of different line models for
two extreme classes of ITs assuming Sθ = 18 and N = 1000.
It is clear from the comparison, that the T-line model has the
lowest MSE achievable by any unbiased estimator.

TABLE VI
COMPARISON BETWEEN T-LINE MODEL, Y-LINE MODEL AND Y-LINE

MODEL IN TERMS OF CRB FOR Sθ = 18 AND N = 1000

T-line model Z-line model Y-line model

0.1 IT 1 IT 0.1 IT 1 IT 0.1 IT 1 IT

2.0×10−4 0.022 8.2× 105 9.2× 107 8500 9.6× 105

As the MSE is an absolute measure of error, we now
present a comparison of the line models based on the relative
errors. Using the WLS method, we estimate the parameters
of the non-coaxial line for each line model and for two
extreme classes of ITs. From Table III and Table V, we note
that although we have an 18-dimensional parameter space,
we are actually measuring 6 different parameters. Hence, to
compactly represent our results, we take the average of those
components of the (18 dimensional) parameter vector which
measure the same quantity. Finally, to have a fair comparison
we report all the errors in the parameter space of the Y-line
model. This is done in Table VII, from where it is clear that
the relative errors are the least when T-line model is used.

To study the effect of variation of the length of the line on
the quality of estimates produced by the three line models we
scale the parameters by different line lengths and repeat our
experiments. In Figure 5, we plot the relative error (measured
by the 2-norm) in estimating the matrix Ȳ(θY) as a function
of the length of the line. It is clear that for short lines
(with length less than 80km) the T-line model results in the
least relative error; whereas for longer lines, either the Z-
line model (for line lengths between 80km and 180km) or
the Y-line model (for line lengths above 180km) produces the
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TABLE VII
COMPARISON BETWEEN T, Z AND Y LINE MODELS WITH Sθ = 18 AND

N = 3× 106

Relative errors
T-line model Z-line model Y-line model

0.1 IT 1 IT 0.1 IT 1 IT 0.1 IT 1 IT

e
θY1

4.0 7.2 34 150 80 99

e
θY2

14 21 36 320 67 99

e
θY3

1.8 2.8 12 97 80 99

e
θY4

5.5 7.7 43 120 69 99

e
θY5

24 25 1800 400 460 130

e
θY6

180 190 13000 3100 2900 160

0 100 200 300 400 500
-2.5

-2

-1.5

-1

-0.5

0

0.5

Fig. 5. Evolution of estimation error with the length of the line for different
line models.

most accurate estimates. The accuracy of the T-line model
deteriorates with the increase in the line length because the
accuracy of the ‘short-line approximation’ reduces as the line
length increases. However, in this case, the accuracy of the
Y-line model improves since the effect of noise on the line
parameters reduces.

There are several reasons for the T-line model to be the
most accurate one in estimating parameters for short lines.
One prominent factor is that the line parameters have similar
order of magnitude under the T-line model, whereas they are
very different under other line models. This is evident from
the true values listed in Tables IV and Table V. Another reason
is that in the T-line model the estimation of Yl and Zl can be
done independently of each other as is evident from (2). This
is not true in the other models.

B. Comparison among Different Estimation Methods

In this subsection, we compare different estimation methods
in terms of computing time and accuracy. We choose the T-line
model for all experiments since this provides the best accuracy
among all the line models.

In Table VIII, we compare the MSEs of OLS, UOTLS,
and SOTLS for both lines and for N = 3 × 106. It can be
observed form the table that the OLS significantly outperforms
the UOTLS and SOTLS methods. In fact the SOTLS and

UOTLS completely fail at recovering the parameters in the
presence of noise. This is mainly due to the fact that both
methods assume the measurement noise to be homoscedastic
(with diagonal covariance matrix), which is not true for the
generated samples.

TABLE VIII
MSE’S FOR OLS, UOTLS, AND SOTLS WITH IT OF CLASS 1 AND

N = 3× 106

Coaxial line (Sθ = 15) Non-coaxial line (Sθ = 18)
OLS 1.0092× 10−7 6.6537× 10−7

UOTLS 5.7140× 10−4 3.8823× 103

SOTLS 1.2709× 106 1.9371× 105

Table IX presents the MSE’s of OLS, WLS and EWLS
methods for N = 3 × 106 . It can be observed from this
table that both WLS and EWLS methods outperform the OLS.
Moreover, EWLS slightly improves the quality of the results.

TABLE IX
MSE OF ESTIMATED θ FOR OLS, WLS AND EWLS WITH IT OF CLASS 1

AND N = 3× 106

Line Coaxial Non coaxial
Sθ 15 18

OLS 1.0092× 10−7 6.6537× 10−7

WLS 6.2253× 10−8 6.4033× 10−7

EWLS 5.2181× 10−8 6.2626× 10−7

In Figure 6, we show the evolution of the average relative
error as a function of the number of samples, N , for OLS,
WLS, and WTLS (ML) methods. It can be observed from this
figure that (1) all the estimation methods improve the quality
of the estimation with the number of samples and (2) all the
estimation methods tend to have similar accuracy with a large
number of samples. This shows that the proposed estimation
methods are consistent. Furthermore, to show the robustness
of these estimation methods, we analyzed the variance of the
estimation methods as a function of the number of samples.
The variance of each component of the parameter vector is
different. Therefore, in each case, we choose the component
with the maximum variance which is representative of the
worst-case performance of the estimation method. In Fig. 7,
we plot this maximum standard deviation as a function of the
number of samples. It can be observed from this figure that (1)
variances decrease with the increase in the number of samples
for all estimation methods and (2) all the estimation methods
have similar performance in terms of variance.

We expect the WTLS method to outperform the other
methods in terms of estimation accuracy, as the likelihood
function of WTLS corresponds to the true statistical model
for data generation. However, from the plots, we observe that
this is not always the case. This can be due to multiple factors
including (1) the fact that there is no guarantee that the solution
to a non-convex optimization problem returned by a numerical
solver is the global optimum of the problem, (2) for a finite
number of samples, there is no guarantee of the superiority of
the ML estimate over other estimates, and (3) in the EIV model



9

the effective parameter space increases at the same rate as
the number of samples; unlike with the standard least-squares
models.

In Table X, we compare the estimation methods in terms of
computation time for different sample sizes. It can be observed
that although the complexity of each method increases linearly
with the number of samples, the OLS outperforms the other
estimation methods in terms of computation time. This is
because the both the WLS and WTLS methods require compu-
tation of noise covariance matrices and the WTLS also requires
solving a non-convex optimization problem. In the rest of this
section, we only show results obtained from the WLS method
as this method provides the most accurate estimates of the
parameters within reasonable computation time.

TABLE X
AVERAGE COMPUTING TIME (IN SECONDS) OF ESTIMATION METHODS

Number of samples WLS OLS WTLS
102 0.02 0.008 1.38

103 0.21 0.013 15.9

104 1.9 0.021 165

105 19 0.15 −
106 267 2.7 −
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Fig. 6. Average relative error evolution as a function of the number of samples
N .
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Fig. 7. Evolution of standard deviation of the relative error as a function of
the number of samples N .

A more detailed evaluation of the performance of the WLS
method with N = 3 × 106 is presented in Table XI for

both the non-coaxial and coaxial HV lines with Sθ = 18
and Sθ = 15, respectively. As described previously, since the
actual number of different quantities to estimate is 6 or 5, we
average the errors corresponding those components of the (18
or 15 dimensional) parameter vector which measure the same
quantity. This helps us to present the results more compactly.
We note that the errors are less for the non-coaxial line. This
is again due to the fact that the parameters for the non-coaxial
line have homogeneous magnitude, whereas for the coaxial
line the parameter values are more heterogeneous.

TABLE XI
RELATIVE ERROR FOR EACH COMPONENT OF θ FOR TWO DIFFERENT

LINES AND TWO EXTREME CLASSES OF IT.

Relative errors
Coaxial (Sθ = 15) Non-coaxial (Sθ = 18)
0.1 IT 1 IT 0.1 IT 1 IT

eθ1 28 59 2.8 12

eθ2 17 38 1.1 7.9

eθ3 58 120 8.1 25

eθ4 64 160 2.8 19

eθ5 0.004 0.01 24 25

eθ6 − − 180 190

We now use the fact that the lines are fully transposed,
which enables us to model them with parameter vectors of
size Sθ = 5 or Sθ = 6. Using this smaller parameter space,
we evaluate the accuracy of the WLS method in Table XII. We
observe that the errors reduce significantly in comparison to
the previous case (with larger parameter space). This implies
that it is always better to use side information, if available, as
it reduces the parameter space and considerably improves the
accuracy of the estimates.

TABLE XII
RELATIVE ERROR FOR EACH COMPONENT OF θ FOR TWO DIFFERENT

LINES WITH REDUCED Sθ AND TWO EXTREME CLASSES OF IT.

Relative errors
Coaxial (Sθ = 5) Non-coaxial (Sθ = 6)
0.1 IT 1 IT 0.1 IT 1 IT

eθ1 1.4 16 0.19 2.4

eθ2 2.2 6.3 0.17 0.87

eθ3 13 48 1.9 7.7

eθ4 18 54 0.73 3.1

eθ5 0.0033 0.01 17 25

eθ6 − − 130 190

C. Comparison with existing approaches

We compare our method with existing approaches in [23]
and [24]. In [23], OLS estimation using equations derived from
an admittance matrix model of the line is proposed. In [24], the
same objective function is used, as in [23], but with additional
constraints on the ranges of the parameters. Table XIII presents
a comparison of the relative errors obtained by the method
proposed in [23] and our method. We observe that the method
proposed in [23] has significantly higher relative errors. Even
for the IT class with the smallest error, the results approach
100% of relative error. Indeed, the results of Table XIII are
very similar to those obtained by the Y-line model. Di shi et
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al in their work also noticed the poor performance of their
methods for short TLs.

TABLE XIII
RELATIVE ERRORS OBTAINED WITH THE ESTIMATION METHOD USED IN

[23] FOR N = 3× 106

Relative errors
Our Method Method of [23]

0.1 IT 1 IT 0.1 IT 1 IT
eθY1

4.0 7.2 76 99

eθY2
14 21 62 99

eθY3
1.8 2.8 77 99

eθY4
5.5 7.7 61 99

eθY5
24 25 240 590

eθY6
180 190 6900 2700

D. Supplementary test system: Medium Voltage Transmission
Lines

In order to further validate the WLS estimation method
presented in this paper, we perform experiments on another
test system which line parameters are chosen to coincide with
realistic values of an overhead transposed Medium Voltage
(MV) transmission lines. The table XIV provides the T-
line model parameters values of the two lines. It can be
observed from Table XV that our method performs well on
MV lines. As expected the line impedance parameters are
better approximated than the shunt parameters because of the
bigger energy loss associated to these quantity. Moreover we
observe that for these parameters, the estimation method is
able to perform quiet well even when there is no explicit
hypothesis on the transposition of the line.

TABLE XIV
TRUE VALUE OF THE PARAMETERS OF THE OVERHEAD TRANSPOSED MV

TRANSMISSION LINE.

θT1 4.3× 10−1

θ2T 3.5

θT3 0

θT4 1.4× 10−1

θT5 1.3× 10−5

θT6 −3.7× 10−6

TABLE XV
RELATIVE ERROR FOR EACH COMPONENT OF θ OF A MV TL WITH

REDUCED AND UNREDUCED Sθ AND TWO EXTREME CLASSES OF IT.

Relative errors
Sθ = 6 Sθ = 18

0.1 IT 1 IT 0.1 IT 1 IT
eθ1 1.4× 10−2 7.7× 10−2 1.9× 10−1 15

eθ2 5.0× 10−4 2.1× 10−1 5.1× 10−2 6

eθ3 − − − −
eθ4 1.2× 10−1 5.4 1.3 150

eθ5 95 93 150 135

eθ6 150 140 373 367

V. CONCLUSION

We have presented methods for estimating parameters of
three-phase untransposed short transmission lines at the rated
system frequency. We have observed that the selection of the
line model plays a crucial role in the accuracy of estimation.
In particular for short lines, the proposed T-line model is less
sensitive to measurement noise and contains more information
about the true line parameters than the Y-line model and the
Z-line model typically used to estimate parameters of longer
lines. We have proposed an accurate noise model based on the
specifications of the instrument transformers and the PMUs.
The noise covariance matrices, computed by using the pro-
posed model, enable the estimation of the line parameters with
high accuracy. We have evaluated the performance of several
least-squares based estimation methods on a real data set
obtained from a high voltage sub-transmission grid. We have
observed that the WLS method and the ML method, which
use the noise covariance matrices, yield the most accurate
estimates of the line parameters. In terms of computational
complexity, however, the OLS method outperforms the WLS
method that in turn outperforms the ML method. We observe
that the estimates produced by our proposed approach are
significantly more accurate than those produced by existing
approaches for line parameter estimation.

There are several interesting avenues for future research. We
believe that combinations of different line models could give
rise to even better and more stable estimates of line parameters.
Furthermore, the selection of the proper line model can be
automated using machine-learning techniques.

APPENDIX A
DERIVATION OF T̄ AND HT IN T-LINE MODEL

We first express (2) in rectangular coordinates as follows:

lsT = T̄(θT)lrT, (38)

where

T̄(θT) =


I −R(Zl(θ

T)) 0 I(Zl(θ
T))

R(Yl(θ
T) −I −I(Yl(θ

T)) 0

0 −I(Zl(θ
T)) I −R(Zl(θ

T))

I(Yl(θ
T)) 0 R(Yl(θ

T) −I


(39)

Since HT : R12 → R12×24 is linear map, we must have for
any l ∈ R12

HT(l) = [Ω1l Ω2l . . .Ω24l],

where each Ωi, i = 1 : 24, is in R12×12. Now to obtain Ωi , for
i = 1 : 24, we note that we must have HT(l)θ = T̄(θ)l−γT(l)
for any l ∈ R12 and θ ∈ R24. Hence, Ωi, i = 1 : 24, can be
computed as follows: the jth column of Ωi is given by

Ωi(:, j) =
[
T̄(θ)l − γ(l)

]
θ=e

(24)
i ,l=e

(12)
j

.

with e(r)k denoting the kth unit vector in Rr.
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APPENDIX B
PARAMETERIZATION OF DIFFERENT LINE MODELS IN

SMALLER PARAMETER SPACE

We parameterization used for the T-line model in dimension
Sθ = 6 is given by

Yl(θ
T) = j

θT5 θT6 θT6
θT6 θT5 θT6
θT6 θT6 θT5

 (40)

Zl(θ
T) =

θT1 θT3 θT3
θT3 θT1 θT3
θT3 θT3 θT1

+ j

θT2 θT4 θT4
θT4 θT2 θT4
θT4 θT4 θT2

 (41)

For the Y-line model, the parameterization changes from T-
line model only in the first four components of the parameter
vector and is given as follows:

Zl
−1(θY) =

θY1 θY3 θY3
θY3 θY1 θY3
θY3 θY3 θY1

+ j

θY2 θY4 θY4
θY4 θY2 θY4
θY4 θY4 θY2

 (42)

For the Z-line model, the parameterization changes from T-
line model only in the last two components of the parameter
vector and is given as follows:

Yl
−1(θZ) = j

θZ5 θZ6 θZ6θZ6 θ
Z
5 θ

Z
6

θZ6 θ
Z
6 θ

Z
5

 (43)
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