Abstract

Novel electrochromic glazing technology has been identified as an emerging option for reducing cooling and lighting electricity demand. As this technology is particularly promising for office building we assess the related technical energy saving potential in case of nation-wide implementation in Swiss office buildings. A Monte Carlo model of Swiss office building stock using distributions of empirical building characteristics was coupled with a statistical model of energy savings of electrochromic glazing. The building stock model for Swiss office buildings was shown to produce cooling and lighting electricity demand estimates in agreement with the existing case study literature. Total yearly electricity demand for lighting and cooling was calculated to be 1152 ± 32 GWh. Electrochromic glazed saved 125 ± 6 GWh or on average 11% of lighting and cooling electricity demand. Electrochromic glazing was found to be particularly effective in highly cooled office buildings, where cooling accounted for 20 kWh/m2 and total electricity saving potential was estimated at 5.5 kWh/m2 or 5.2% of today’s typical total electricity demand of an office building across all uses. Areas where electrochromic glazing would have particularly high potential are highlighted.

Details

Actions