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ABSTRACT

We propose a new viewport-based multi-metric fusion (MMF)
approach for visual quality assessment of 360-degree (om-
nidirectional) videos. Our method is based on computing
multiple spatio-temporal objective quality metrics (features)
on viewports extracted from 360-degree videos, and learning
a model that combines these features into a metric that closely
matches subjective quality scores. The main motivations for
the proposed method are that: 1) quality metrics computed
on viewports better captures the user experience than metrics
computed on the projection domain; 2) no individual objec-
tive image quality metric always performs the best for all
types of visual distortions, while a learned combination of
them is able to adapt to different conditions. Experimental
results, based on the largest available 360-degree videos qual-
ity dataset, demonstrate that the proposed metric outperforms
state-of-the-art 360-degree and 2D video quality metrics.

Index Terms— visual quality assessment, omnidirec-
tional video, 360-degree video, multi-metric fusion

1. INTRODUCTION

Omnidirectional (or 360-degree) visual content are spherical
signals captured by cameras with a full 360-degree field-of-
view (FoV). In particular, when consumed via head-mounted
displays (HMDs), 360-degree content supports immersive ex-
periences. At each time instant, the portion of the sphere in
the user’s field of view, i.e., the viewport, is rendered and pre-
sented to the user. The viewports (one per eye) are seam-
lessly updated following the user’s head movements, which
provides an increased sense of presence. Similarly to tradi-
tional audiovisual multimedia content, quality assessment of
omnidirectional content plays a central role in shaping pro-
cessing algorithms and systems, as well as their implementa-
tion, optimization, and testing.

Quality assessment of processed 360-degree visual con-
tent consumed through HMDs brings its own specificities
compared to the assessment of 2D or stereoscopic 3D vi-
sual content. For instance, to reuse existing image and video
processing technologies, the 360-degree visual content is
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generally to a 2D plane (the projection domain) and stored as
a rectangular image [, 2]. Examples of projections include:
equirectangular (ERP), cube map (CMP), and equiangular
cube map (EAC) [3l]. The coupled interaction between pro-
jection and compression of the resulting rectangular images,
however, brings new types of visual distortions [1]. Also, the
magnification of the content, the supported increased field-
of-view, the fact that the user is completely immersed, and
the new interactive dimension, all contribute to changing the
end user perceived quality of experience (QoE) [1]. Such
new features call for the development of new methods and
good practices related to the quality and QoE assessment of
360-degree visual content.

New subjective evaluation methodologies and objective
quality metrics specifically developed for 360-degree video
have been proposed recently [} 2]]. Subjective VQA methods
collect quality judgments from human viewers through psy-
chophysical experiments. They have the advantage of being
more reliable (since humans are the ultimate receiver of the
multimedia content) but they are expensive, time-consuming,
and not suitable for real-time deployment. Thus, objective
quality assessment algorithms are required to estimate quality
automatically. PSNR-based objective image quality assess-
ment (IQA) metrics that take into account the properties of
360-degree images have been recently proposed in the litera-
ture, such as S-PSNR [4] and WS-PSNR [5]. Such methods
are easy to implement and can be efficiently integrated into
video coders, but their correlation with subjective judgements
are far from satisfactory. Moreover, when used for video qual-
ity assessment they lack a proper modelling of the temporal
characteristics of the human-visual system (HVS). Therefore,
more perceptual-oriented IQA metrics are still required for
the objective evaluation of 360-degree video quality.

Differently from current proposals, this paper proposes
a viewport-based multi-metric fusion (MMF) approach for
360-VQA. The proposed approach is based on extracting
spatio-temporal quality features (i.e., computing objective
IQA metrics) from viewports, temporally pooling them tak-
ing the characteristics of the human-visual system (HVS) into
consideration, and then training a random forest regression
model to predict the 360-degree video quality. On the one
hand, working with viewports allow us to better account for
the final viewed content and naturally supports different pro-
jections [6l [7]. On the other hand, the use of multiple objec-



tive metrics computed on these viewports allow our method
to have a good performance for the complex and diversifying
nature of visual distortions appearing in 360-degree videos.
Indeed, previous work in both traditional 2D [8} |9, [10] and
360-degree [7] VQA have recognized that even with the mul-
titude of available objective IQA metrics, there is no single
one that always performs best for all distortions. The combi-
nation of multiple metrics is thus a promising approach that
can take advantages of the power of individual metrics to cor-
relate with subjective scores on different distortions [[11}[10].
Experimental results, based on the largest publicly available
360-degree video quality dataset, VQA-ODV [12], show the
viability of our proposal, which outperforms state-of-the-art
methods for 360-degree quality assessment.

Section [2] presents the related work. Section [3] describes
our proposal. Section ] presents the experimental setup used
to validate the proposed approach and the experimental re-
sults. Finally, Section 5] brings our conclusions.

2. RELATED WORK

The use of standard 2D image/video objective metrics for
quality assessment in the projection domain is straightfor-
ward, but it does not properly model the perceived quality
of the 360-degree visual content. The main issues with such
an approach are that: (1) it gives the same importance to the
different parts of the spherical signal, which besides being
sampled very differently from classical images, also have dif-
ferent viewing probabilities; (2) even for traditional images,
these metrics are known to have limitations for different vi-
sual distortion types; hence, none is universally satisfactory.
To cope with the sampling issue of the projection do-
main, recent proposals have been developed to tackle the
specific geometry of 360-degree images: S-PSNR [4], CPP-
PSNR [13], and WS-PSNR [5]. In S-PSNR (Spherical
PSNR), sampling points uniformly distributed on a spher-
ical surface are re-projected to the original and distorted im-
ages respectively to find the corresponding pixels, followed
by the PSNR calculation. In CPP-PSNR (Craster Parabolic
Projection PSNR), PSNR is computed between samples in
the Craster Parabolic Projection (CPP) domain, in which
pixel distribution is close to a uniform one in the spherical
domain. In WS-PSNR (Weighted-to-Spherical PSNR), the
PSNR computation at each sample is performed directly in
the planar domain, but its value is weighted by the area cov-
ered by that sample on the sphere. The use of viewports [6, 7]
and voronoi patches [[14] for computing individual IQA met-
rics have also been discussed, which we acknowledge as
more perceptually-correct ways of assessing 360 visual qual-
ity. These methods, however, simply compute the quality of
the 360 image as the average of the viewports (or patches).
Recent works have also proposed deep learning architec-
tures to estimate 360-degree video quality [12} 15, [16]. One
of the main issues with such approaches is that the current
360-VQA datasets are not big enough to satisfactorily train

deep learning methods. Thus, they need to perform data aug-
mentation, such as splitting the original image into patches or
rotating the original 360-degree images. In both cases, how-
ever, it is not clear if the new generated patches or rotated
images share the same quality scores of the original content.

Finally, all the metrics proposed for 360-VQA mentioned
above do not explicitly model the temporal dimension of 360-
degree videos. They usually compute the overall quality sim-
ply as the average of the quality of each individual frame. Dif-
ferent from IQA, however, VQA metrics shall ideally take the
temporal dimension into consideration and properly integrate
the temporal properties of the HVS. VQM [17]], MOVIE [18],
and Vis3 [19] are examples of metrics developed for 2D VQA
that take the temporal dimension into consideration. How-
ever, these methods does not consider 360 videos specifically.

We address the above mentioned issues by computing
IQA-based objective metrics in the viewport domain, tem-
porally pooling them taking into account the HVS, and em-
ploying a multi-metric fusion approach that closely match
subjective scores. Being a multi-metric fusion approach, our
proposal shares some of the principles of such approaches,
e.g., VMAF [9]], one of the most successful metrics for tra-
ditional videos, but it takes into account the specific features
of 360-degree videos. Moreover, compared to VMAF, our
method uses a different set of individual spatial and temporal
features and a temporal pooling method which support a bet-
ter correlation to subjective tests. Finally, our proposal uses a
random forest regression model whereas VMAF uses support
vector regression, since our preliminary tests indicated that
the random forest regression provide more robust results.

3. VIEWPORTS-BASED MMF FOR 360-VQA

Fig. (1| shows our proposed 360-VQA approach. The possible
space of visible viewports is represented by using N view-
ports from different viewing directions. Both the original and
the distorted content are rendered for each viewport and 2D
objective metrics are computed individually within the view-
port and then temporally pooled using an HVS-based method
that considers the temporal quality variation. Finally, based
on the per-viewport pooled scores, we train a random forest
model that is able to learn a combination of the individual
objective metrics into a new objective metric that closely re-
lates to subjective scores. In what follows, let R = {R;, f =
0,1,..,F—1}and D = {Dy, f = 0,1,..., F — 1} respec-
tively be the reference and distorted sequences of the same
360-degree video content in the projection domain. Ry and
Dy denote the f’th frame of R and D, respectively, and F' the
total number of frames in both R and D.

3.1. Viewports sampling

First, for each frame f, we compute a set of viewports V}Q =
{VfR’O, s VfR’N_l} and VP = {VJ?’O, ey VfD’N_l}, for the
respective reference and distorted frames. A viewport (Fig.[2)
is the gnomonic projection [20] of the omnidirectional signal
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Fig. 1: Overview of the proposed 360-VQA multi-metrics fusion approach.

to a plane tangent to the sphere. It is defined by: the viewing
direction (el,, az,), which specifies the center O’ where the
viewport is tangent to the sphere; its resolution [vp,,, vps];
and its horizontal and vertical field-of-view, FoV;, and FoV,,,
respectively. When considering a viewport-based metric for
360-degree videos, we need to define a process that given an
omnidirectional image, I, and the viewports parameters vp,,,
vpp, FoV,, and FoV},, generates N viewports from different
viewing directions (i.e., different O’s).

vp
viewport

viewing sphere

Fig. 2: Viewport parameters [21].

Fig.[3|shows three examples of the viewport sampling pro-
cess: uniform, tropical, and equatorial [6]], which sample re-
spectively 9, 16, and 25 viewports. For a specific sampling
procedure, larger FoVs might result in both larger overlapped
regions between the viewports and larger geometry distor-
tions. On the one hand, duplicated content can increase the
relative importance of such duplicated areas when computing
objective metrics on the viewports. On the other hand, smaller
FoVs might more viewports to completely cover the sphere
area, whichalso results in higher computational costs. Based
on preliminary experiments, we have found that the uniform
sampling with a FoV of 40-degree provides a good trade-off
between the number of viewports and the overlapped regions,
which is used in the experiments of Sectiond] The viewport
resolution [vp,,, vpy] should also ideally be the same as the
HMD resolution used to visualize the content.

3.2. Features

Based on the previously computed viewports, we compute for
each pair of reference and distorted viewports, V; '™ and Vjﬁi n

Fig. 3: Uniform (left), tropical (center), and equatorial (right)
viewports sampling for computing viewport-based objective
metrics.

0 < n < N, asetof M objective metrics, denotated as: Q;ﬁ =
{Qo(Vf’n, Vfd’fl)a ey Q1 (VT V;i”)} In particular, the
following metrics are computed for each viewport pair:

Spatial Activity. (SA) of a pair of frames is defined as the
root mean square (RMS) difference between the Sobel maps
of each of the frames [22]]. The Sobel operator, 5, is defined

as:

S(z) = \/(Gr* 22 + (GT *2)2, (1)
where z is the frame picture and * denotes the 2-dimensional
convolution operation, (G; is the vertical Sobel filter:

10 -1
Gi=12 0 -2 2)
1 0 -1

and G7 is the transpose of G; (horizontal Sobel filter).

Let v and v be same frame from SRC and PVS, respec-
tively. Then, we define the difference between the Sobel maps
of both frames as: s = S(u) — S(v) and compute SA as:

1
SA(v,u) = /m Z si;12,
i,

where i, 7 are the horizontal and vertical indices of s, and M
and N are the height and width of the frames, respectively.

PSNRHVS and PSNRHVSM. PSNR-HVS and PSNR-
HVS-M [23] are two models that have been designed to
improve the performance of PSNR taking into considera-
tion the HVS properties. PSNRHVS divides the image into
8x8 pixels non-overlapping blocks. Then the difference be-
tween the original and the distorted blocks is weighted for

3)



every 8x8 block by the coefficients of the Contrast Sensitiv-
ity Function (CSF). PSNR-HVS-M [23] is defined similarly,
but the difference between the DCT coefficients is further
multiplied by a contrast masking metric for every 8x8 block.

MS-SSIM. MultiScale-SSIM [24] is an extension of SSIM [25]]
for multiple scales. At every scale, from 1 to M, MS-SSIM
iteratively applies a low pass filter to the reference and dis-
torted images and downsample the filtered images by a factor
of two. At the mth scale, contrast and structural comparisons
are computed, respectively, ¢, (z, y) and s,,(x, y). The lumi-
nance comparison is performed only at scale M and denoted
as [ps(z,y). The overall, MS-SSIM is then computed as:

MS—SSIM(x,y) =

i

“

[lM X y aM : H Cm X y [Sm(x7y)}vm

m=1

where a7, B, and 7, adjust the relative importance of the
different components.

GMSD. Gradient Magnitude Similarity Deviation (GMSD) [26]]
is based on the standard deviation of the gradient magnitude
similarity map, GMS, which is computed as:
2-m(u) -m(v) +c

m(u)? +m(v)? + ¢’
where u and v are respectively the SRC and PVS frame; c is
a positive constant that guarantees stability; and m(z) is:

m(z) = /(2% G2)? + (2 x G2, ©)
where * denotes the convolution operator, G2 represents the
vertical Prewitt filter:

GMS(u,v) =

&)

Gy = - (N

o O O

Lo =
[P

GQT is the transpose of G, i.e, the horizontal Prewitt filter.
The GMSD index is then computed as:

GMSD(u,v) =  |—— S™(GMS(u,v) — GMS(u,v))?
NM
4,7

®)

)

where 1

GMS(u,v) = TN Z GM S (u,v)
2,7

Relative change in temporal information. Temporal infor-

mation (TT) characterizes the amount of motion in a video and

is defined as the standard deviation of the difference between

two frames: TI[F, | = std(AF,), where AF, = F,,— F,,_1.

Here, we define the relative change in TI as:

|TIr6f [Fn] - TIdist[FnH

Tlrel[Fn]: TI f[F]

(10)

where T'1,..f[F,] and T'1 45 [F,] are respectively the TA for

the frame F;, in the reference and distorted videos.

3.3. HVS-based temporal pooling

The per-viewports metrics Q for each frame, f € {1,..., F'}
and viewport n € 1,..., N, are integrated to yield the over-
all quality of each viewport: Q. This integration is per-
formed by the temporal pooling method [27]] considering the
characteristics of the HVS, in particular: (i) the smooth ef-
fect, i.e., the subjective ratings of the whole video sequence
typically demonstrate far less variation than the frame-level
quality scores; (ii) the assymetric effect, i.e., HVS is more
sensitive to frame-level quality degradations than to improve-
ment; and (iii) recency effect, i.e, subjects tend to put a higher
weight on what they have seen most recently. More precisely,
for each viewport n, we compute:

Lp(f =1 +a-AQ(f),if AQ" <0
rp(f = 1)+ 8- AQ(f),if AQ™ >0
(1)

QZP(JC) :{

F
ol = Z @Q1p(f) - In(y-f+1) (12

where AQ" = ’J}mme(f) —Qp(f —1) and Q}p =
Q" rame(1), o and 3 controls the asymetric weights, and y
is a positive constant for adjusting the time-related weight.
Similar to [27], in our experiments we use a = 0.03, 5 = 0.2,
and v = 1000.

3.4. Random forest regression

After the temporal pooling, we end up with M features for
each viewport, which are then concatenated as a feature Vec-
tor, Q [an“'vQ?nfva(l)w >Qm 1 O ’ JQ ]
Such vector is used for learning a non-linear mapping be-
tween the computed per-viewport features and the subjective
DMOS scores of 360-degree videos. In our framework, we
have tested both Support Vector Regression (SVR) [28] and
Random forest regression (RFR) [29]], from which we have
chosen RFR because it significantly outperformed SVR in
our preliminary tests. Next we detail the hyper-parameter
tuning, training, and test processes of our experiments.

4. EXPERIMENTAL RESULTS AND ANALYSIS

We validate our proposal based on the VQA-ODYV dataset [12],
the largest available at this date. It is composed of 3 types
of projections and 3 levels of H.265 distortions, quantization
parameters (QP) = 27, 37, and 42. In total, there are 60
reference sequences (12 in raw format and others download
from YouTube VR channel) and 180 distorted sequences that
were rated by 221 participants. Both MOS (Mean Opinion
Scores) and DMOS (Differential Mean Opinion Scores) are
available. Without lack of generality, we focus only on the
ERP sequences of the dataset in the following experiments.
We compare our method to PSNR, S-PSNR, WS-PSNR
MS-SSIM, and VMAF, using common criteria for the eval-
uation of objective quality metrics: Pearson Linear Cor-
relation Coefficient (PLCC) Spearman Rank Order Corre-



lation Coefficient (SROCC), and Root Mean Squared Er-
ror (RMSE). SROCC measures the prediction monotonicity
while PLCC and RMSE measure the prediction accuracy.
Higher SROCC, PLCC and lower RMSE indicate good cor-
relation with subjective scores. Moreover, we compare the
performance of our method and the one of the other objective
metrics when the features are computed in: i) the projec-
tion domain (“Proj.”); ii) all viewports merged in a collage
frame (“VP-Collage”) (see Fig. E[); and iii) the viewports con-
sidered individually (“VP”), i.e., the metrics are computed
independently for each viewports (as discussed in Section 3).
Computing the objective metrics in the viewport collage
frame is similar to averaging the quality of all the viewports.
Based on the above 3 different modes, we performed two
experiments: 1) using the same fixed train/test subset of the
VQA-ODV dataset used in [[12}[16]]; and 2) a cross-validation
approach on the whole VQA-ODV dataset. In both exper-
iments, we use a uniform sampling with a 40-deg field of
view for the viewports, which resolution matches the HMD
resolution used in the dataset (an HTC Vive).

Fig. 4: Example of a collage frame used to compute the “VP-
collage” mode of the objective metrics.

Fixed train/test sets. Table[T]shows the results of our method
using the same (fixed) train/test data separation of VQA-ODV
as in [12, |16]. Such a test/train sets are composed of a pre-
defined subset of 80% of the sequences for training and 20%
for testing. Given such a pre-defined subsets, we first run
a group shuffle cross-validation only on the training set to
find the best random forest hyper-parameters. Based on the
found hyper-parameters, we then train the model with the
training set and test it with the test set. For the individual
objective metrics, the training phase is composed of fitting a
4-parameter logistic function with the train set and then com-
puting its performance with the test set. As an example of
the trained models for the different modes, Fig. E] shows the
average viewports features importance of our method (“VP”).

0.25

0.20

o015

@

2010
o . .
0.00

GMSD
PSNRHVSM
PSNRHVS
REL_TA
MSSSIM
SA_FR

Features

Fig. 5: Average features importance over viewports of our
“VP” model.

Cross-validation. To avoid bias on the specific train/test set
used above, we also performed a full cross-validation on the
VQA-ODV dataset. In the cross-validation experiments, we
performed a 1000x randomly group selection of 80%/20%
train/test splitting of the dataset, and then computed the aver-
age LCC, SROCC, and RMSE of the models. To avoid bias,
the group selection ensures that there is no overlap between
content in the training and test sets. Table[2]shows the average
PLCC, SROCC, and RMSE results for the cross-validation
experiments, and Fig. [6] depicts the distribution of the corre-
lation scores through a violin plot.

Discussion. In both fixed train/test set and group cross-
validation results, the best correlation is achieved by our
method using features computed separated for each view-
port (“VP”). Besides having a better average, Fig. [f] also
highlights the density of the group cross-validation dataset,
showing a better performance for such a method. The above
results can be explained by both viewports being closer to
what the users see and that the model can learn the most
important viewports, which is not the case when using the
“VP-Collage” mode. It is also interesting to note that our
method (on both “Proj.” and “VP-Collage”) also outperforms
VMATF, which can be explained by the choice of objective
metrics, the temporal pooling, and regression methods we are
using. Finally, our results also show that the use of viewports
(even when using the “VP-collage mode) improve the results
when compared to the projection domain.
Table 1: Fixed train/test set results.

Metric PLCC SROCC | RMSE

PSNR 0.72495 | 0.73797 | 8.17600

PSNR (VP-Collage) 0.76222 | 0.76345 | 7.58240
S-PSNR 0.75138 | 0.77040 | 7.75570
WS-PSNR 0.74328 | 0.56056 | 7.95010
MS-SSIM (Proj.) 0.76005 | 0.78867 | 7.87410
MS-SSIM (VP-Collage) | 0.81719 | 0.84144 | 7.00240
VMAF (Proj.) 0.79657 | 0.79382 | 7.24810
VMATF (VP-Collage) 0.84483 | 0.85637 | 6.27100
Ours (Proj.) 0.85629 | 0.86873 | 6.35880

Ours (VP-Collage) 0.89867 | 0.87439 | 5.72560
Ours (VP) 0.92575 | 0.91712 | 4.99540

Table 2: Average of GroupShuffle cross valida-
tion (80%/20%) performance on VQA-ODV.

Metric PLCC SROCC | RMSE
PSNR (Proj.) 0.57156 | 0.61873 | 9.8249
PSNR (VP-Collage) 0.64746 | 0.68579 | 9.1224
S-PSNR 0.62460 | 0.66731 | 9.3461
WS-PSNR 0.59803 | 0.64501 | 9.5983
MS-SSIM (Proj.) 0.75004 | 0.77535 | 7.9351
MS-SSIM (VP-Collage) | 0.76405 | 0.79113 | 7.758
VMAF 0.74692 | 0.76673 | 7.9631

VMAEF (VP-Collage) 0.78085 | 0.79802 | 7.5147
Ours (Proj.) 0.81728 | 0.82901 | 6.8716
Ours (VP-Collage) 0.82676 | 0.82647 | 6.7376
Ours (VP) 0.86778 | 0.86769 | 5.9367

5. CONCLUSION

We propose the use of viewport-based multi-metrics fusion
for 360-degree VQA. Computation of features in viewports
implies that our metric can be applied on a variety of projec-
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tions, and our experiments demonstrate that the multi-metrics
fusion is capable of achieving state-of-the-art results while re-
quiring much less training data than deep learning techniques.
As future work, we plan to consider color and visual attention
and test our method on different datasets.
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