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As an academic, I wish I could tell you that the tendency to

fall in love with our own ideas never happens in the clean,

objective world of science. After all, we like to think that

scientists care most about evidence and data and that they

all work collectively, without pride or prejudice, toward a joint

goal of advancing knowledge. This would be nice, but the

reality is that science is carried out by human beings. As such,

scientists are constrained by the same 20-watts-per-hour

computing device (the brain) and the same biases

(such as a preference for our own creations) as other

mortals. In the scientific world, the Not-Invented-Here

bias is fondly called the "toothbrush theory".

The idea is that everyone wants a toothbrush,

everyone needs one, everyone has one,

but no one wants to use anyone else’s.

— Dan Ariely

To all those people that stood by my side in the good and especially in the not so good times.
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Abstract

Recent advances in signal processing, machine learning and deep learning with sparse intrinsic

structure of data have paved the path for solving inverse problems in acoustics and audio. The

main task of this thesis was to bridge the gap between the powerful mathematical tools and

challenging problems in acoustics and audio. This thesis consists out of two main parts.

The first part of the thesis focuses on the questions related to acoustic simulations that comply

with the “real world” constraints and the acoustic data acquisition inside of closed spaces.

The simulated and measured data is used to solve various types of inverse problems with

underlying sparsity. By using the technique of compressed sensing, we estimate the room

modes, localize sound sources in a room and also estimate room’s geometry. The Finite

Rate of Innovation technique is coupled with non-convex optimization for the task of blind

deconvolution in the context of echo retrieval. We also invent a new statistical measure

for the echo density for the purpose of detecting the type of acoustic environment from its

acoustic impulse response, even beyond fully closed spaces. These types solutions can have

an application in the blooming domain of virtual, augmented and mixed reality for sound

compression and rendering.

The second part of the thesis focuses on the recent trends in machine learning that are centered

around deep learning. Large scale data acquisition of acoustic impulse responses is still a

challenging and very expensive task. Also, the existing databases tend to be too heterogeneous

to be merged, due to the lack of the standardization of the acquisition procedure, and also the

available metadata tends to be incomplete. In order to keep up with the recent trends and

avoid the difficulties that come from the lack of large scale acoustical data, the last part of

research in this thesis has diverged from the rest and is devoted to deep learning applied to

classification problems in audio with the focus on speech and environmental sounds. The

learning procedure is parametrized, which results in an off-grid learning procedure for audio

classification. Learned trends align with perceptual trends, which helps the interpretation of

the achieved results.

Keywords: Acoustics, audio, classification, compressed sensing, deep learning, finite rate of in-

novation, inverse problems, localization, optimization, parametric models, perceptual models,

room acoustics, sensing matrix design, signal processing, simulations, sparsity.
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Résumé

Les progrès récents en traitement du signal et en apprentissage automatique profond sur

des données parcimonieuses ont ouvert la voie à la résolution des problèmes inverses dans

les domaines de l’acoustique et de l’audio. Le sujet principal de cette thèse est d’utiliser ces

puissants outils mathématiques pour résoudre des problèmes complexes de ces domaines.

La première partie se concentre sur des questions liées à des simulations acoustiques physi-

quement réalistes et l’acquisition de données dans les espaces fermés. Les données simulées

et mesurées sont utilisées pour résoudre plusieurs types de problèmes inverses faisant ap-

pel à la parcimonie sous-jacente. En utilisant des méthodes d’acquisition comprimée, il est

possible d’estimer les modes d’une salle, de localiser les sources sonores dans celle-ci, ou

encore d’en estimer la géométrie. Les techniques liées aux signaux à taux d’innovation finie et

l’optimisation non-convexe sont couplées pour estimer les échos par déconvolution "aveugle".

Une nouvelle mesure statistique de la densité des échos est introduite pour détecter le type

d’environnement à partir de la réponse impulsionnelle acoustique. Ces techniques ont des

applications prometteuses dans les domaines de la réalité virtuelle, augmentée et mélangée,

notamment pour la compression des sons et leur rendu.

La deuxième partie de cette étude porte sur les récentes avancées dans le domaine de l’ap-

prentissage automatique, et plus spécifiquement de l’apprentissage profond. L’acquisition à

grande échelle de données de réponses impulsionnelles acoustiques reste une tâche coûteuse

et complexe. Les différentes bases de données existantes sont trop hétérogènes pour être

fusionnées, du fait du manque de standardisation des procédures d’acquisition et des méta-

données incomplètes. Pour pouvoir suivre les récents développements et éviter les difficultés

provoquées par ce manque de données acoustiques à grande échelle, la dernière partie de ce

travail est dédiée à l’apprentissage prodond appliqué à des problèmes de classification audio,

plus précisément sur des données de bruits environnementaux et de parole. La procédure

d’apprentissage est paramétrisée de manière continue. Les résultats de l’apprentissage suivent

certaines caractéristiques psychoacoustiques, ce qui simplifie leur interprétation.

Mots clés : Acquisition comprimée, acoustique, acoustique des salles, apprentissage profond,

audio, classification, localisation, matrice d’acquisition, modèles perceptuels, modèle para-

métrique, optimisation, parcimonie, problème inverse, simulation, taux d’innovation finie,

traitement du signal
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Introduction

In the recent years there have been different solutions to tackle high-dimensional problems in

a lower dimensional domain. Most of the challenges in engineering lay within the need for

reducing the costs. On one hand, we want to reduce the amount of data we need to collect and

still arrive to a meaningful conclusion and on the other hand, we want to reduce the number

of steps when processing the data, in order to arrive to conclusions faster and keep them up to

date. In the spirit of Occam’s razor principle, we want to design and build solutions that have

minimal complexity, but still serve the original purpose.

The content of this thesis will be evolving around sound, which is just a variation of air density.

In a very interesting experiment called Schlieren experiment1, we are able to visualize a

varying density of a medium. Some experimenters have used this experimental setting to

show how sound propagates in a visual manner, as can be seen in Figures 1, 2 and 3. In all

three examples we have a point source: a gun shot, a firecracker and a book falling onto a table.

As can be seen, the sound propagates in a bubble-like formation uniformly in all directions.

We will be processing the sound in two contexts: in the context of its propagation inside an

environment (acoustics) and also in the context of its characteristics (audio), for example -

sound classification.

When observing the intensely blooming domain of acoustics and audio engineering, we can

see a lot of changes in the recent years. After focusing on efficient sound reproduction for many

decades, acoustic engineering became omnipresent in the consumer electronics industry. A

need for having the ability to interact with devices in a more human-like manner has emerged,

1by Mike Hargather https://www.youtube.com/watch?v=px3oVGXr4mo

Figure 1 – Schlieren:
gun shot.

Figure 2 – Schlieren:
firecracker.

Figure 3 – Schlieren:
book on a table.
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so corporations had to push their devices towards a speech-based interaction mode. Recent

trends also include: audio surveillance of the house, generation of music and human speech,

audio event and genre tagging etc. Therefore, Spike Jonze’s movie Her from 2013 might need

to update its genre tag from science-fiction to something more appropriate, because the line

that separated the possible from impossible keeps moving further and further on a daily basis.

There is a strong competition on the market in the domain of the creation of conversational

bots and lucrative competitions such as Alexa Prize 2 indicate a strong need of the market for

such solutions.

So one may ask: why are we trying to focus on the recent trends in industry instead of science?

The main motivating fact is that within every product in the consumer electronics device,

there lay numerous algorithms to make the device fully functional. As an example, we will

take the Amazon’s device - Alexa. Some user might want to ask Alexa what is the weather going

to be like tomorrow and would like to get a response in the audio form.

This thesis will be addressing the problems of acoustic signal processing and audio through

the evolution of the available techniques in the last four years. Over the course of this thesis,

the general trend has moved from griddy and greedy approaches to continuous and efficient

approaches, but with potentially high number of tunable parameters and non-convex problem

formulations. So the focus of this thesis will be on marrying parsimonious methods with the

high-dimensional acoustical data, with an evolutionary perspective of these methods.

Therefore there is a need to give an introduction to the problem formulation and the state of

the art of both sides - acoustical and mathematical. In order to motivate the application of

such techniques to this type of data, we will start with an acoustical introduction, followed

up by the identification of intrinsic sources of sparsity that exist within, together with the

description of the plethora of available methods that have emerged for tackling such problems.

The main goal of this research is to increase the efficiency of existing methods for acoustical

and audio data processing (by reducing the number of required measurements or improving

the computational cost) and also to investigate new methods for inverse problems in acoustics

and audio with underlying sparsity, such as sound source localization, room mode decom-

position of room transfer function, detection of early reflections in room impulse response

etc.

This thesis consists out of six main parts:

Part I : Gives an introduction to the problems that will be addressed throughout the thesis.

Part II : Establishes the background on the physical properties of acoustical data that lead to

highly accurate simulators and gives examples of underlying sparsity hidden in the acous-

tical data that pave the path for parsimonious data processing. Once the sparsity has been

recognized, we give an overview of various approaches that deal with data whose underlying

2https://developer.amazon.com/alexaprize
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structure is approximately sparse.

Part III : Focuses on the acoustical behavior of rooms in the low frequency domain, below

the Schroeder frequency where resonator type of behavior prevails. Here we use the sparse

representation of room transfer function in the terms of room modes in order to localize sound

sources inside rooms and also to estimate the dimensions of rectangular rooms along each

one of the axis.

Part IV : Focuses on the acoustical behavior of rooms in mid-high frequency domain, above

the Schroeder frequency where a room shows diffuse behavior. In this domain reflections

from the walls behave like a billiard table. Here we model the room impulse response as an

array of noisy Dirac pulses. We will be focusing on the estimation of the location and weight of

early reflections and also on the estimation of the evolution of echo density within acoustic

impulse responses, for the characterization of the acoustic environments even beyond rooms.

Part V : Focuses on the exploration of the recent deep learning techniques and their application

on the audio classification task. Due to the fact that large room impulse response databases

that could be used for these types of approaches are still unavailable3[60], we will be making a

slight shift from parametric data exploration for acoustics to parametric data exploration for

audio.

Part VI : Gives concluding remarks and discusses the potential future work.

3most of the available audio/acoustic datasets are listed here: http://www.cs.tut.fi/~heittolt/datasets.html
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1 Acoustic background

Acoustics is a branch of physics that deals with the study of all the mechanical waves in gases,

liquids and solids, including topics such as vibration, sound, ultrasound and infrasound.

Therefore, it focuses on modeling and processing of sound from a physical point of view.

On the other hand, audio engineering is focused on the sound itself and uses techniques to

recognize type of sound (classification), mix sound to create music or generate new sounds.

In this thesis we will be applying parsimonious methods to both of these domains.

1.1 Acoustic waves

Sound is a physical phenomenon of change of the pressure inside of the medium of prop-

agation. Propagation of sound through the means of mechanical waves has been studied

in classic texts on theoretical acoustics [114], room acoustics [91] and partial differential

equations [56, 72].

As can be seen in Figure 1.1.1 waves are described by many properties. Within the scope of the

thesis we will encounter:

• f (linear frequency) - number of oscillations/samples per second,

• ω (angular frequency) - number of radians per second,

• T (linear period) - length of periodicity in time,

• λ (linear wavelength) - length of periodicity in space, and

• k (angular wave number) - number of oscillations/samples per unit length.

Other types of wave properties include: amplitude and phase.

1Source: https://commons.wikimedia.org/wiki/File:Commutative_diagram_of_harmonic_wave_properties.
svg.
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Chapter 1. Acoustic background

Figure 1.1 – Wave properties, τ= 2π.

1.2 Room acoustics

1.2.1 The Plenacoustic Function

The behavior of waves is defined by the acoustic-wave equation. It is a second order partial

differential equation [91]:

∇2p(t ,r )− 1

c2

∂2p(t ,r )

∂t 2 =
0, if no source at the location r

s(t ,r ), if source at the location r
(1.1)

where p(t ,r ) is sound pressure at observed location r , c is celerity (speed) of sound and the

right hand side represents the contribution to the sound pressure field. s(t ,r ) represents a

distribution of sources located in space. Sometimes this relationship is expressed by using the

d’Alembert operator: �= 1
c2

∂2

∂t 2 −∇2 = 1
c2

∂2

∂t 2 − ∂2

∂x2 − ∂2

∂y2 − ∂2

∂z2 . The speed of sound depends on

the type of the environment where the sound propagates and also its temperature. The speed

of sound in air is given by the following expression: c(T ) = (331.4+0.6T [C o]) m
s .

The solution of the wave equation is called the plenacoustic function (PAF). For a specific

case where the input signal is a Dirac pulse, we have a Green function case. The plenacoustic

function is a set of all the impulse responses for all the possible (source position, receiver

12



1.2. Room acoustics

Figure 1.2 – The plenacoustic function against 2 spatial (x and y direction) and one temporal
frequency. Note that this is a case for 2D spatial coordinates. For the real 3D case our data lays
on a surface of a hypercone in 4D . Images from the right hand side are from [112].

position) pairs inside a given room. It was defined in [9] and confirmed by measurements in

[112], as shown in Figure 1.2.

When sampling sound we need to take into account two types of possible sources of aliasing:

temporal and spatial. Therefore, we need to decide on the values for the temporal and spatial

sampling frequencies: ω= 2π
∆t

= 2π fs , ϕx = 2π
∆x

, ϕy = 2π
∆y

and ϕz = 2π
∆z

, where ∆t is the temporal

sampling step and ∆x ,∆y ,∆z are spatial sampling steps. Depending on the highest frequency

that we want to capture fmax, we define our temporal sampling step ∆t in such a way that

the sampling frequency satisfies fs = 1
∆t

≥ 2 fmax, which is a constraint given by Nyquist

[120]. Once the temporal sampling step is fixed, we determine the appropriate sampling

step in space either by the limits imposed by the Courant–Friedrichs–Lewy condition [97] for

Finite Difference Time Domain (FDTD) schemes, or by a contemporary view of the problem

observed through the sampling of the PAF [9]. In order to have an even more precise model for

sound propagation, recent studies increase the dimensionality of this function by taking into

account the direction of arrival for sound. One of the approaches is called DiRaC (Directional

Audio Coding) [92], which offers parameterization similar to the high parameterization of the

plenoptic function [5].

The support of the spectrum of the PAF p̂(ωs ,ϕx ,ϕy ,ϕz ), where ω= 2π
∆t = 2π fs is the temporal

angular sampling frequency [rad.s−1] and ϕi = 2π
∆i

is the spatial angular frequency [rad.m−1]

over each of the i th observed axis, lays inside a hypercone [9]:

ϕ2
x +ϕ2

y +ϕ2
z ≤

ω2

c2 , (1.2)
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where c is the celerity of sound. In case of 1D sampling, we have the following condition

for the sampling step over the axis of interest: ∆i > πc
ωmax

, i ∈ {x, y, z} and ωmax is the maximal

frequency we want to capture (ω ≥ 2ωmax) [112]. As the Figure 1.2 shows, the set of the

possible spectrums lays within a butterfly-like formation, for all the possible temporal and

spatial sampling frequencies.

If we go back to the CFL conditions [97], we can state the following: if a wave travels across

a discrete spatial grid and we want to compute its amplitude at discrete time steps of equal

duration, then this duration must be less than the time for the wave to travel to adjacent grid

points:

∆t

D∑
i=1

c

∆i
≤Cmax, (1.3)

where D is the number of observed dimensions, D ∈ {1,2,3} and Cmax is usually equal to 1.

Therefore we have: c∆t
∆i

≤ 1
D . This is in agreement with the PAF theory.

Spatial resolution is always more costly than the temporal resolution, since for taking more

samples in space we either have to have a moving sensor or expensive sensor arrays, and

the temporal resolution is usually not a problem, since even cheap microphones have high

sampling frequencies. This is where the sparse models come into play. In order to fully exploit

the potential of sparse models, we need to rely on the underlying structure of our data.

1.2.2 Room acoustics of a rectangular room

If we observe the room in a time independent form, its Helmholtz equation [91] reads:

∆p +κ2p = 0, (1.4)

where κ= ω
c is the wave number, that is - the eigenvalue of the Laplacian, which is coupled

with an eigenfunction called a room mode.

For a rectangular room of dimensions Lx ×Ly ×Lz , the eigenvalues and eigenfunctions of the

Laplace operator have a closed form expression. So for eigenvalues we define the resonant

frequencies:

ωnx ny nz = cπ

√(nx

Lx

)2 +
(ny

Ly

)2 +
(nz

Lz

)2
(1.5)

where {nx ,ny ,nz } ∈N0.

In a rectangular room, each eigenfunction (eigenmode of the Laplacian) represents a sum of

8 plane waves that share a wave number. The (nx ,ny ,nz ) room mode that represents a 3D

14
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standing wave, and at a position r = [x, y, z]T is given by:

Ξ(kn ,r) =
8∑

i=1
ai e j (S(:,i )¯kn )·rm , (1.6)

where ¯ is a Hadamard product, S3×8 is a sign matrix whose columns alternate from [1,1,1]T

to [−1,−1,−1]T (that is - [±1,±1,±1]T ), kn = [ nxπ
Lx

,
nyπ

Ly
, nzπ

Lz
]T , (nx ,ny ,nz ) ∈N3

0 \ (0,0,0), is the

eigenvalue of the wave equation for the i th room mode (wave vector), and r is a position inside

the room.

As can be seen in Figures 1.3 and 1.4, these wave vectors are just corners of a parallelepiped,

k = [±kx ,±ky ,±kz ]T . We can also notice the periodicity of the wave vector grid: π
Lx

, π
Ly

, π
Lz

,

along each of the axes.

Figure 1.3 – Plane waves inside a rectangular room. From left to right: x-axial mode, x y-
tangential mode and oblique mode. Wave vector is perpendicular to the plane wave.

Figure 1.4 – Eigenvalue space of a rectangular room with rigid walls. The left-hand side shows
just one octant because of the symmetry that exists (there are 8 plane waves for each wave
number, or 4 for a tangential mode and 2 for an axial mode). The length of the wave vector is
proportional to the eigenvalue of the Laplacian.

In a case of rigid walls in a rectangular room, where the damping can be neglected (ξ≈ 0, since

ξ¿ω), we have:

Ξ(k ,r ) =C cos
(nxπ

Lx
x
)

cos
(nyπ

Ly
y
)

cos
(nzπ

Lz
z
)
=C cos(kx x)cos(ky y)cos(kz z), (1.7)

where C is an arbitrary constant and k = [kx ky kz ]T are the coordinates of the wave vectors.
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1.2.3 Plane wave decomposition of sound pressure in a room

In order to introduce schemes for more efficient sampling of the sound field, we will be observ-

ing structured representations of sound field in a room. We will observe the decomposition

of sound pressure into N room modes with W plane waves per room mode (where W = 8

in a rectangular room). A more general discussion of plane waves will be included, covering

cases with damping, ξ[n] < 0. Therefore, we will be holding our wave numbers in a vector

κ[n] = ω[n]+ jξ[n]
c , κ ∈CN and the corresponding wave vectors in a matrix K ∈RN×W ×3.

For a given position of the microphone r mic and position of the sound source r ss, we can

define the behavior of the room in the frequency domain with the Room Transfer Function

(RTF) [91]:

H(ω,r mic,r ss) = ρc2ωQ
∑
n

Ξ(K[n,1, :],rmic)Ξ(K[n,1, :],rss)

g [n]
(
2ξ[n]ω̃+ j (ω2 − ω̃[n]2)

) (1.8)

where ρ is the density of the propagating medium (air), c is the sound celerity, Q is the volume

flow velocity of the sound source,Ξn(·) are the eigenfunctions, g is the gain, ξn is the damping

coefficient and ω̃ are the resonant frequencies.

We can notice an interesting underlying symmetry that exists in this equation: position

of the microphone rmic and position of the sound source rss are interchangeable (acoustic

reciprocity), meaning that if we exchange these positions, the expression will remain the

same [91]. In the literature this is know as the reciprocity principle. This is sometimes used

to decrease the computational costs of some acoustic renderings [149]. For example, inside

games usually the player’s head stays always at the same height or takes just a few values -

when the player is standing or crawling, so player’s head becomes a source. With reciprocity

we transform the problem from a multiple-source single-listener into multiple-listener single-

sources case which introduces savings due to the limited freedom of listener’s position along

z-axis.

Solution of the wave equation can be approximated in the low-frequency domain as a discrete

sum of damped complex harmonics [113]:

p(t ,r ) = ∑
n∈W

AnΞn(r )gn(t ) =∑
n

∑
w

A[n, w]e j(κ[n]ct+K[n,w,:]·r ) (1.9)

whereW⊂Z, A contains expansion coefficients, Ξn(r ) represents the spatial dependency of

mode shape (illustrated in Figure 3.3) and gn(t) = e jκ[n]ct is corresponding time evolution

of the mode [91], due to the damping from the air over the course of propagation. Tempo-

ral functions are orthogonal. This expression emphasizes the separability of the analysis

and the estimation of the temporal and spatial parameters, which can greatly reduce the

computational complexity of the parameter retrieval [112].

Although the modal behavior is obvious for the case of rectangular rooms, the plane wave and
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room mode decompositions holds also for other convex room shapes. This approximation

holds sufficiently far from the walls, where evanescent waves can be neglected and gives good

result within the region where the measurements were performed [112, 11].

1.2.4 Image-source model

When observing the behavior of a room in temporal domain, we usually employ the image-

source model [10, 21]. The concept is illustrated in Figure 1.5: once a sound is emitted by the

real source (black) next to a wall, it first reaches the microphone directly, and slightly later

microphone receives the reflection from the wall. The time that it takes the sound to travel

on a sourcereal-wall-microphone path is the same as on the sourceimage-microphone, that is

the same as if the sound was emitted by an image source (grey) that we get by mirroring the

real source against the wall. We need to pay attention to the attenuations that happen to the

sound due to the propagation and due to the losses at the wall.

If we keep mirroring the true and all the image sources, we will get the image-source model

illustrated in Figure 1.6. Therefore, if the sound source emits a Dirac pulse inside a room, at

the microphone position we will have:

p(t ,r ) =
S∑

i=0
ci
δ (t −‖si − r‖)

4π‖si − r‖ , (1.10)

where r is the position of the microphone, si are positions of real and image-sources and S is

the number of image-sources. So we will be receiving a train of attenuated Dirac pulses. ci

model the losses from walls and the denominator models the losses related to propagation.

As can be seen, the higher the order of an image-source, the higher the number of such sources.

For example, in a 2D case we have four 1st order image-sources (corresponding to first order

reflections), eight 2nd order image-sources etc. In the early part of the impulse response these

reflections are sparse, but they get denser and as soon as the impulse response reaches the

mixing time [103], starting from where reflections can not be distinguished any more (since the

room transits to diffuse behavior), as can be seen in Figure 1.16. When the sound is rendered

for a virtual environment, the part of impulse response after the mixing time tmix is usually

modeled as Gaussian noise [149].

1.3 Acoustic modeling

As was previously introduced, the Room Impulse Response (RIR) is a response of a room to

a Dirac pulse emitted at a sound source position r ss and received at a microphone position

r m inside a given room. RIR describes the behavior of the room over the temporal axis. For

characterization of the room in the frequency domain we use Room Transfer Function (RTF)

that is just a Fourier transform of RIR. When a certain room exists, we can bring our equipment

and measure its acoustic behavior. On the other hand, for room that do not exist or might be
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Chapter 1. Acoustic background

Figure 1.5 – Image-source model:
true and virtual source. Figure 1.6 – Image-source model: repetitions.

built in the future, we need to prepare simulations that given perceptually relevant models of

acoustical behavior of such spaces.

Back in 1954, Schroeder referred to the frequency at which a room goes from being a resonator

to being a reflector/diffusor as the crossover frequency. We now call it the Schroeder frequency:

fsch = 2000

√
t60

V
(1.11)

where: t60 - reverberation time (time until the signal drops by 60dB) and V - room volume.

Acoustics of a space is modelled in two different ways: below the Schroeder frequency (around

200Hz) we usually use Finite Element Method (FEM) [93] or Finite Difference Time Domain

(FDTD) method [66, 81], and for the medium and high frequency range, acoustics is usually

modeled with image-source [10, 21] method or ray-tracing [90]. FDTD is just a discretization

scheme for the wave equation. The most common discretization scheme is leap-frog scheme

[81], which for a 2D case reads:

∂2p(t ,r (i , j ))

∂x2 + ∂2p(t ,r (i , j ))

∂y2 − 1

c2

∂2p(t ,r (i , j ))

∂t 2 = p(t ,r (i −1, j ))−2p(t ,r (i , j ))+p(t ,r (i +1, j ))

∆2
x

+

+p(t ,r (i , j −1))−2p(t ,r (i , j ))+p(t ,r (i , j +1))

∆2
y

− 1

c2

p(t −1,r (i , j ))−2p(t ,r (i , j ))+p(t +1,r (i , j ))

∆2
t

(1.12)

where r (i , j ) = [i∆x , j∆y ]T therefore, the sound pressure at temporal-spatial point (t ,r (i , j ))

depends only on the sound pressure values of the direct neighbors in time and in space. In a

usual setting, RTFs are used for low frequency modeling and RIRs are used for medium and

high frequency range.

On an example of a room transfer function and its room mode decomposition, we see that be-
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1.3. Acoustic modeling

Figure 1.7 – Room modes below Schroeder
frequency.

Figure 1.8 – Room modes above Schroeder
frequency.

low the Schroeder frequency (Figure 1.7) the room modes are sparse and above the Schroeder

frequency (Figure 1.8), room modes become very dense. This all follows from (eq. 1.9).

1.3.1 Acoustic simulators

There are different types of acoustic simulators. For accurate acoustic simulations in the

low-frequency domain we rely on computational acoustics and in the mid-high-frequency

domain on geometrical acoustics. It is not possible to say what kind of acoustic simulator

provides the best performance and what kind of errors that simulators introduce when relying

on assumptions about behavior of sound would not prevent some algorithm’s deployment in

the real world after the evaluation on the data produced by simulators. Figure 1.9. shows an

example of sound propagation inside a fortress scene in a simulated environment. The main

advantage of the simulator is high level of control of the environment where data is acquired,

but it also comes with a drawback - simulations can be cumbersome and could potentially

take long time to execute and finally, they usually give bandlimited results. There are two types

of acoustic simulators that were used for the creation of this thesis:

1. pyroomacoustics [163], and

2. Triton [151].

pyroomacoustics (shown in Figure 1.10) is a simulator that relies on an image-source model

[10, 21] when generating room impulse responses and is mainly limited to rooms where the

walls are orthogonal to the floor. This simulator is open-source and the new versions of the

software might include ray-tracing [90]. Blue points correspond to the position of image-

sources that we get in a recursive manner: by reflecting the real and the image sources against

the walls.

On the other hand, Triton 2 (shown in Figure 1.11.) is an acoustic simulator developed by

2https://www.microsoft.com/en-us/research/project/project-triton/
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Chapter 1. Acoustic background

Figure 1.9 – Sound propagation at t1, t2 and t3 (t3 > t2 > t1) in a simulated environment (Triton
simulator owned by Microsoft. This is an example of a simulation in Citadel scene).

Figure 1.10 – Acoustic simulation:
pyroomacoustics.

Figure 1.11 – Acoustic simulation:
Triton.

Microsoft [146]. The domain of interest is first decomposed into rectangular domains (these

domains are visualized with different colors). In each one of them the FDTD [66] technique

was applied and sound propagation is modeled with wave propagation in rectangular do-

mains. The latter simulator covers complex acoustic behavior that are a result of physics of the

environment, such as: obstruction (sound is weakened when it diffracts around obstruction),

portaling (doors funnel sounds and it should not be heard through the walls), occlusion (total

reduction in loudness from geometry, including complex propagation and diffraction), rever-

berance (high reverberance is usually correlated with low clarity) and large rooms reverberate

longer (therefore have a longer decay time). This type of simulator allows easy simulation

within a space of an arbitrary shape, as long as we have a graphic model available for it.

Both simulators still need to be further developed to fully cover the potentially frequency

dependent behavior of surfaces in different scenes. Once these optimizations are achieved,

we can have an idea of the acoustic sound rendering in non-existing rooms (rooms that have

been designed, but not built yet).

If for any reason someone finds it difficult to imagine sound propagation, a brilliant Schlieren

experiment was performed to film how the density of air changes with sound propagation

[35]. Since the sound travels at high speed, cameras that can capture a couple of thousands of
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Figure 1.12 – Acoustic measurements:
The measurement setting.

Figure 1.13 – Acoustic measurements:
The microphone positions.

frames per second are needed for such a system to work.

1.3.2 Acoustic measurements

In order to evaluate the performance of our algorithms within the scope of this thesis on

real data, we have recorded room impulse responses in a simple rectangular room of size

3.0m×6.6m×3.5m at École Polytechnique Fédérale de Lausanne, Switzerland. This is a simple

rectangular room with concrete walls and wooden floor. Impulse responses were measured

at 132 random locations and all the recorded data, together with the source and receiver

locations is released on: Zenodo platform. This release contains detailed information about

the data acquisition and data preprocessing. Figure 1.12 shows the measurement setting and

Figure 1.13 shows the placement of the microphones (blue) and the sound source (black).

The room transfer functions are usually measured with freqsweeps [116] or white noise, in

order to ensure the full coverage of the frequency range. We can conceptually illustrate this

trade-off using extreme cases of two Fourier transform pairs involving Dirac delta functions:

δ(t )
F−→ 1 and 1

F−→ 2πδ(ω). Therefore, in order to compute the impulse response of the system,

we can excite it with broadband white noise in frequency and use the inverse Fourier transform

to get the impulse response in time.

1.4 Inverse problems in acoustics with underlying sparsity

Modeling data in acoustics involves many challenging tasks: appropriate quantization of data,

appropriate sampling in time and space (over all three spatial coordinates), selection of the

best subset of recorded data for processing and real-time or near-real-time acquisition and

processing. In order to build efficient algorithms with suitable approximations, we turn to

sparse representations.
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Figure 1.14 – Sparsity: Room modes. Figure 1.15 – Sparsity: Speech spectrogram.

Figure 1.16 – Sparsity: RIR. Figure 1.17 – Sparsity: Direction of Arrival.

The idea behind this thesis is to decrease the number of measurements required for different

acoustical tasks and also to improve the computational complexity to reach a good speed-

accuracy trade-off. Acoustical data is high-dimensional - data is measured in time at a certain

position in 3D space at frequencies that are usually equal to a couple of tens of thousands of

Hz.

In order to be able to apply the tools for sparse signal processing, optimization and machine

learning with sparse priors, we need to identify the sources of sparsity in acoustics. Main types

of sparsity (colored in red in the following Figures) in acoustics are:

1. room transfer function (RTF) has a sparse representation in the low-frequency domain

(below Schroeder frequency, around 200Hz) in the terms of room modes (Figure 1.14),

2. speech spectrogram3 has a sparse representation in the terms of the non-zero compo-

nents in the time-frequency plane (this is usually used for speech enhancement and

dereverberation [86]) (Figure 1.15) - spectral sparsity,

3. room impulse response (RIR) is sparse in the part with early reflections (Figure 1.16) -

temporal sparsity, and

4. in the sound source locatization problem, we have the sparsity in the terms of spatial

Fourier transform - usually only one or a few angles/pixels/voxels are occupied by sound

sources (Figure 1.17) - spatial sparsity.

3https://github.com/drammock/spectrogram-tutorial
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Spectrograms are time-frequency representations that show the evolution of the frequency

components over time (having the time as the x-axis and frequency as the y-axis). It is usually

computed over a sliding window with overlaps, over which Short Time Fourier Transform

(STFT) is applied.

There is another interpretation of sparsity in room acoustics, given in a recent paper by

Antonello et al. [11]. While working on the RIR interpolation, he uses the following sources of

sparsity as the regularizers to his optimization problem:

1. spatial sparsity - because there are just a few sound sources,

2. spatio-spectral sparsity - for the case when the spatial sparsity is coupled with the Plane

Wave Decomposition Method (PWDM), and

3. spatio-temporal sparsity - for the case when the spatial sparsity is coupled with the Time

Equivalent Source Model (TESM).

Note that spatio-temporal sparsity is more applicable for a broadband case and the spatio-

spectral sparsity holds only in the low-frequency domain, as was previously explained through

the type of the acoustic simulators.

In this thesis we will tackle problems with different origins of sparsity.

The third part of the thesis will be devoted to exploiting the spatio-spectral sparsity inside

of a room for the tasks of sound source localization, room mode detection and room shape

estimation. Here we use the classical approaches of the compressed sensing with encoding

information on a grid.

The forth part of the thesis will be devoted to exploiting the spatio-temporal sparsity inside

the room and beyond for the tasks of the early reflection estimation and detection of the type

of the space through the echo density trend estimation. In this part we avoid the grid and we

process the information in the continuous domain by building appropriate sparse parametric

models.

The fifth part of the thesis uses parametric learning for the problems of audio classification.

Here we have a case of sparse parametric modeling. A small number of parametric filters is

sufficient for classification of sounds of different types, as will be explained in detail later.
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2 Mathematical Background

2.1 Inverse problems with underlying sparsity

An inverse problem is a type of a mathematical problem where we start with the observations

and we want to estimate model parameters that produced them. The dual problems are direct

problems. For clarification, we give an example: a direct problem is an estimation of the

room impulse response starting from the known room and conditions within and the inverse

problem would be the estimation of the room shape and properties starting from the room

impulse response.

When solving an inverse problem, we need to understand what is recoverable and what is

forever lost in the forward problem. Sometimes the solution can be found up to a certain set

of ambiguities, for example translation, rotation and scaling.

A problem can be solved only when it is well-posed and well-conditioned. We say that a

problem is well-posed when we know how many degrees of freedom there are (how many

parameters are supposed to be identified) and in the term of what parameters is our problem

defined, and a problem is well-conditioned if small errors in the initial data impose only small

errors in the solutions.

By introducing a sparse regularization into our problems, not only do we ensure the well-

posedness of our problems, but we also reduce the number of required measurements and

reduce the computational time (by reducing the dimensionality of the search space for the

solution). Sparse priors and parsimonious processing are so powerful that they can enable

sub-Niquist sampling frequencies, as we will see later.

Our parsimonious processing will be governed by the Ockham’s (Occam’s) razor principle (the

law of parsimony) that states: “Numquam ponenda est pluralitas sine necessitate” (Plurality

must never be posited without necessity, that is: "Of two equivalent theories or explanations,

all other things being equal, the simpler one is to be preferred"). This can be interpreted as

“the underlying model should not be more complicated than necessary to accurately represent
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Figure 2.1 – `p norms inR2 [190]. Figure 2.2 – An illustration of `0 against `1 norm.

the observations”.

Within the context of this thesis we will recognize two types of sparse data retrieval: on-grid

sparsity and off-grid sparsity. This type of method classification was chosen according to the

nature of the search space where our sparsity is defined - on a discrete grid or on a continuous

line.

2.1.1 Sparse regularizers

In order to ensure well-posedness of the problem at hand, we introduce regularizers which add

information to our problem. Usually regularizers impose some constraints on the structure or

the nature of data at hand. In the formulation of optimization problems we can find norms of

signals of interest.

We can define `p -norms of a discrete signal x ∈RN in the following way [190]:

‖x‖p =
(∑

n
|xn |p

) 1
p

(2.1)

A few examples of `p norms for a R2 case are shown in Figure 2.1. Every norm is a context

dependent metric of the given signal. When we deal with sparse signals, we usually use the

`0 norm which is the norm that counts signal’s non-zero elements. Unfortunately, this norm

comes with a major drawback - it is not convex.

Norm relaxation for regularization of sparse problems is used to enable the convexity of the

problem [32], as has been illustrated in the Figure 2.2. The red line illustrates a linear objective

function. As we can see, the solution to the problem with an `0 and `1 norm regularization

are equivalent. Norms that are usually used for enforcing sparsity:

1. `0-norm = ‖x‖0 = |supp(x)| = | j : x[ j ] 6= 0|,
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2. `1-norm: ‖x‖1 =∑N
i=1 |x[i ]| =∑K

i=1 |c[i ]|, where c[i ] are non-zero coefficients,

3. atomic norm: ‖x‖A = inf{t > 0 | x ∈ t conv(A )} [18]; here we make an assumption

that the continuous signal x os a sparse non-negative combination of points from an

arbitrary, possibly infinite set A ⊂Cn , so conv(A ) is the convex hull of points in A , and

4. (generalized) total variation norm (`1 norm of the gradient): ‖x‖TV = ‖∇x‖1; although it

induces piecewise constant solutions, it can also be used as a sparse regularizer.

2.1.2 Sparse problems’ framework

Although many people relate the beginning of sparse processing to the methods emerging in

21st century with the Finite Innovation Theory from 2002 [191] and compressed sensing from

2006 [27, 52], the notion of sparse signal processing is a lot older. For example, in a paper from

1995 [196] about blind channel identification, we can read:

"The number of modes p, which is often referred to as the linear complexity, is a measurement

of diversity of finite sequence."

There are various classes of computational techniques for solving sparse approximation

problems [183]. All the algorithms available for handling sparse data can be classified in one

of these groups:

1. Convex relaxation [180, 24] (the Basis Pursuit [182]): This type of approach uses `1

instead of `0 norm as the structure-inducing (sparsity promoting) function, replacing

combinatorial problem with a convex optimization problem which enables the usage

of the gradient or the interior point methods. The equivalency of these approaches is

guaranteed by the Restricted Isometry Property [20] (Figure 2.2.). `0-norm minimization

problem is equal to `1-norm minimization problem as long as the signals are sufficiently

sparse and the sensing matrices have sufficiently incoherent columns [53, 57]. This

type of relaxation comes with a cost of requiring higher number of measurements

[29]. Convex relaxation techniques also include matrix-lifting [33] and semi-definite

programming [194]. On the other hand, convex relaxation is cumbersome in higher

dimensions and therefore is not used in practice for such cases.

2. Greedy algorithms [182, 119, 124]: These types of algorithms iteratively refine a sparse

solution by successively identifying one or more components that yield the greatest

improvement in quality of the approximation. These methods are time consuming,

since they involve iterative projection and computation of the residual of the signal in

every iteration.

3. Parametric models: In this group of algorithms, one of the most famous methods is

Finite Rate of Innovation (FRI) [191] (with extended version for noisy observations [19]
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incorporating Cadzow denoising [25]). These methods provide an off-grid approach

for sparse problems where the sparsity level is known upfront. Although the initial

requirements imposed having the access to uniform measurements, newer approaches

relaxed the sampling constraint by enabling random at uniform sampling schemes [125].

They are based on annihilating filter and rooting of polynomials with unit norm zeros

- a method from spectral analysis [175] and error-correction coding. These methods

involve matrix enhancement [70] or partition-and-stack technique - stacking windowed

version of the original vector into a Toeplitz or Hankel matrix.

There also exist other approaches, but they will not be explored in detail within the context of

this thesis. These approaches include: Bayesian framework - It assumes a prior distribution

for the unknown coefficients that favor sparsity; Nonconvex optimization - This approach

relaxes the `0 problem to a related non-convex problem and attempts to identify a stationary

point; Brute force - Rarely used in practice, this approach searches through all possible

support sets, possibly using cutting-plane methods to reduce the number of possibilities.
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2.2 On-grid modeling of sparsity

The most famous method for processing sparsity on a grid is compressed sensing. The main

idea of compressed sensing is capturing the information that would survive compression,

instead of capturing all the information and following up with a compression.

2.2.1 Synthesis vs analysis approach

Here we will define the two basic terms that will be used through this section: sparsity and

cosparsity. Although the definitions will be established for matrices with entries in R, the

extension for a case of entries in C is straightforward.

Sparsity (synthesis approach): A sparse signal y ∈Rd can be constructed by a linear combina-

tion of a few column vectors (atoms) taken from a large matrix called the dictionary D ∈Rn×d

denoted:

y = Dx . (2.2)

Therefore, signal x ∈ Rn contains only k ¿ n non-zero elements, so although its ambient

dimension is n, its intrinsic dimension is k if the appropriate representation basis is chosen.

The indices of non-zero elements of x are called the support.

Cosparsity (analysis approach): Given a matrix A ∈ Rp×n , a signal x ∈ Rn is l-cosparse if the

product Ax contains only p − l non-zero components. In this case the ambient dimension of

x is again n, but the intrinsic dimension is typically n − l . Or in other words, we assume that

there exists an analysis operator A, such that the following analysis representation:

x = Ay (2.3)

of the signal y is sparse. A signal whose analysis representation contains l zero elements is

said to be l -cosparse. The index set of the zero entries in x , corresponding to the rows of A that

are orthogonal to y , is called its cosupport.

These models are equivalent only for a special case where: A = D−1 that is - only if the analysis

matrix and the dictionary are non-singular matrices (and therefore invertible). Both, the

synthesis and the analysis operators, can be learned or carefully chosen according to the

application and the nature of the data at hand.

2.2.2 (On-grid) Compressed (Compressive) sensing

Beginning from 2006, a group of scientists (Donoho, Candes, Romberg and Tao) have estab-

lished a new direction in signal processing called compressed sensing [52, 27, 28, 14] that relies

on sparse data. A representation of a certain phenomenon is recognized as being sparse if it

can be faithfully represented as a linear combination of a small number of elements of certain

29



Chapter 2. Mathematical Background

Figure 2.3 – Compressed sensing y =ΨΦx .

representation basis or frame. Before compressed sensing has emerged, data was captured

and then compressed before being stored. The key paradigm of compressed sensing is to

capture only the data that would survive the compression step. Its main strengths are that it

speeds up the acquisition process, but is also robust to noise. The data that was cumbersome

to capture before now can be easily handled with the compressed sensing approach. For

example, with the application of compressed sensing to magnetic resonance imaging (MRI)

[75] has drastically reduced the amount of time patients have to spend inside a scanner.

The compressed sensing is illustrated in Figure 2.3. The sensing matrix (matrix that maps

the signal to the observations) D =ΨΦ is the product of the matrixΦ, which transforms the

signal from one domain to another (e.g., the inverse discrete Fourier transform (IDFT)), and

the matrixΨ, which represents the measurement process (e.g., time sampling). The sampling

matrix Ψ can have a random or deterministic form. In the case of deterministic form, it is

equal to an identity matrix I subsampled over rows. This matrix is usually called a mask.

While the transform matricesΦ are determined by the class of signals, sensing matrices D are

determined by the specific application [26].

The representation x of signals y in a given dictionary D is usually not exactly sparse, but has

a fast decay of the ordered absolute value of the expansion coefficients. In this case we usually

say that the signal is compressible rather than sparse.

Although many theoretical results emerged in the domain, the application side was mostly

focusing on image processing and the state of the art on compressed sensing in acoustics at

the start of this thesis was coarse. At first compressed sensing was based on random matrices.

Later on, the better exploration of the phenomenon that we model or want to capture, together

with the improvement of the sampling strategies, have lead to more advanced techniques for
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measurement matrix design. Recognizing the structure of the sparsity in the given problem

(e.g. block, tree, graph) or introducing some assumptions can further improve the efficiency

and therefore the robustness of the algorithm, because additional constraints usually reduce

the search space. When defining a data model for the phenomenon we want to capture, we

define a set of mathematical properties that the data is believed to satisfy. Therefore, we can

tailor the sensing matrices according to the application to get the most of it. A thorough list of

the solutions for compressed sensing in acoustics is given in [61, 16].

The atoms (columns) of dictionaries are usually unit norm (for dictionary D each column:

‖d j‖2 = 1), but they are not orthogonal, since d 6= n. So the sparse signals are just a linear

combination of small number of elements of such a dictionary that is tailored or learned

according to the nature of the data or the application. Due to the lack of orthogonality, we

need to project the residual onto the space spanned by the columns of the dictionary through

an iterative process instead of computing a fast projection with the information available in

the signal.

Despite the fact that we have to deal with an underdetermined system of equations y = Dx ,

since we know that the underlying signal is sparse, we can recover almost as many coefficients

as there are equations available. The guarantee that we will be able to reconstruct the signal is

given by the RIP (Restricted Isometry Property) [20]:

(1−δ)‖x‖2
2 ≤ ‖Dx‖2

2 ≤ (1+δ)‖x‖2
2 (2.4)

where D is the measurement (sensing) matrix and for some small δ. x is a vector whose sparsity

level is K (‖x‖0 ≤ K ). This matrix has to preserve angles and distances (lengths) when moving

from one space to another. Since it is a fat rectangular matrix, it has a non-trivial nullspace.

It must provide an injective mapping for K -sparse vectors: if x1 6= x2 then Dx1 6= Dx2. Therefore:

spark(D) > 2K . (2.5)

Spark is the smallest number of linearly dependent columns of a matrix, where K is the

number of non-zero elements in the vectors x1 and x2 (they are K -sparse). To achieve an

injective mapping we need to make sure that there are no two K -sparse vectors that map to

the same measurements. This implies that the rank of our sensing matrix has to be at least 2K

which is tightly related to the restriction on the coherence of the dictionary.

Our dictionary must also have an appropriate coherence statistic (to avoid ill-posedness) -

µ = max
i 6= j

〈d i ,d j 〉 = max
i 6= j

(d T
i d j /(‖d i‖2‖d j‖2)). The coherence is just the cosine of the acute

angle between the closest pair of atoms in a given dictionary. The idea is to avoid having

atoms that are almost "parallel", that is - that have high correlation. It can also be defined as
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normalized absolute inner product between any two columns of the sensing matrix. Usually:

µ(d i ,d j ) < 1

2K −1
. (2.6)

In the early stages of the development of compressed sensing, it has mostly relied on random

dictionaries, since they have proven to have a low coherence.

Therefore, we want our sensing matrix to have a large spark and low coherence.

In acoustics our measurements for T time moments (t ∈ [1,T ]), m microphones and n sound

sources are of the form:

p =Φa+ε (2.7)

where:

p - measurements from the microphones, p ∈RmT ,

Φ - measurement matrix, Φ ∈RmT×nT - usually represents the Green’s function of the room,

inverse or direct spatial or temporal Fourier transform of sound captured by microphones,

a - expansion coefficients, a ∈RnT , and

ε - noise (usually white Gaussian noise).

The usual formulation of the sparse problem is in the form of constrained LASSO (Least

Absolute Shrinkage and Selection Operator):

aestim = argmin
a

‖a‖0 (2.8)

subject to ‖p−ΨΦa‖2 ≤ ε, (2.9)

whereΨ is the subsampling matrix andΦ is usually associated with the Green’s function [91].

The objective function is usually relaxed to: argmin
a

‖a‖1, as was previously discussed.

As will be shown, in the domain of acoustics the high dimensional data can not be fitted

into such formulation with the relaxation of `0 norm, because it becomes extremely compu-

tationally demanding, so usually the greedy methods are used, such as: Basis Pursuit (BP),

Orthogonal Matching Pursuit (OMP) [182], Compressive Sampling Matching Pursuit (CoSaMP)

[119] and Orthogonal Matching Pursuit with Replacement (OMPR) [74]. For example OMP

selects the top K atoms that are correlated with the residual the most, and the OMPR finds

2K vectors that are aligned with the residual the most and then selects K ones that give the

smallest residual in the orthogonal space (the nullspace of our selected-atom-dictionary

matrix).
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2.2. On-grid modeling of sparsity

2.2.3 Cosparsity

A complementary approach to sparsity is cosparsity [117]. In this approach there is no need

to compute the measurement matrix (related to the Green’s function of the room’s behavior)

which can be cumbersome in the non-trivial room shape case and can be of a high dimension,

which leads to high computational cost. Usually the entries of the analysis operator A for this

case contains the Finite Difference Time Domain entries with special entries that model the

absorption of the boundaries. Within the acoustic application, the complexity of analysis

formulation of the algorithms for 2D and 3D case is usually lower than for the synthesis

approach, as shown in [83, 118].

In acoustics the cosparse formulation would be of the following form:

pestim = argmin
p

‖Ωp‖0 (2.10)

subject to ‖pmes −Ψp‖2 ≤ ε (2.11)

whereΩ is the analysis operator the usually represents the Finite Difference Time Domain

(FDTD) discretization scheme (potentially with initial and boundary conditions inside) and

pestim is the estimated sound pressure. Ω is very sparse and has 7 or less non-zero elements

per row. The objective function is usually relaxed to: pestim = argmin
p

‖Ωp‖1, as was previously

discussed. This type of formulation focuses directly on the estimation of the pressure rather

than on the estimation of the expansion coefficients. Here the estimation of the Green’s

function is avoided. This approach is more intuitive, since it relies on the well known laws of

physics [118] that govern the phenomenon that we model. The cosparse model focuses on the

zeros rather that on the non-zeros in the sparse signal’s representation.

An application of cosparsity to acoustics was investigated by Kitić et al. [83]. They investigate

the cosparsity that lives inside the Helmholtz equation, given that only at the several places

across the room where the sources are located, this equation is not homogeneous. The

location of the sources is described as a point on a finite grid. Together with the discretization

of the d’Alembertian operator with FDTD [66] discretization through leapfrog scheme, authors

develop a theory for the localization of sound sources behind an obstacle [83, 82] and also for

joint estimation of source location and boundary impedance [17].

2.2.4 A comparison of sparse and cosparse model

As has been shown in [117], the analysis (cosparsity) model contains many more low-dimensional

subspaces than the synthesis (sparsity) model, but the situation reverses for high-dimensional

subspaces. Reducing the size of the space of potential solutions reduces the computational

complexity of the algorithm. For a k-sparse n-dimensional signal we have: for the synthesis

operatorΦ ∈Rn×q (usually a redundant dictionary), there are
(q

k

)
potential subspaces and, on

the other hand, for the analysis operatorΩ ∈Rp×n , there are
( p

n−l

)
potential subspaces. So the
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Chapter 2. Mathematical Background

cosparsity is defined as: c = n − l = n −‖Ωx‖0. In cosparse approach we find a representation

in the orthogonal complement of the nullspace of the operator,ΩT .

In Table 2.1 we see an overview of the properties of the sparse and cosparse approach. As

has been indicated earlier, sparse approach is more favorable for lower dimensions and the

cosparse approach should be used for high-dimensional subspaces.

Table 2.1 – Properties of the sparse (synthesis) and cosparse (analysis) approach.

Model Subspace Number of subspaces Subspace dimension
synthesis VT := span

{
v j , j ∈ T

} (q
k

)
k

analysis WΛ := span
{
ω j , j ∈Λ}⊥ (p

`

)
n −`

Well-defined cosparse models have a faster rate of convergence than the sparse models,

because the number of possible subspaces is lower. There is space for improvement in

the proposed approach by building fast algorithms for dense grids. In the case of cosparse

processing, by increasing the amount of available data we can reduce the temporal cost of

the reconstructions, since it introduces more constraints into the search space. This is the

opposite from the synthesis approach, which implies that the cosparse approach scales better.

2.2.5 Basis mismatch - How the on-grid models became deprecated

Figure 2.4 – Basis mismatch problem:
Ground truth from [34].

Figure 2.5 – Basis mismatch problem:
Compressed sensing estimation from [34].

In a paper from 2011 Chi et al. [34] discussed the failure cases of processing on a grid in order to

underline the main problems that happen in the case if a certain signal does not have a sparse

representation in the terms of a certain dictionary. Even in the case of just a slight mismatch

of the search grid and the ground truth grid on which the signal has a sparse representation,

signals can appear to be incompressible and there would be a slow decay of their expansion

coefficients in the perturbed version of the dictionary. Although the initial strength of the

34



2.2. On-grid modeling of sparsity

compressed sensing theory was robustness to noise, the basis mismatch problem was never

alleviated.

As has been shown and proved in [34] and illustrated in Figures 2.4 and 2.5 on an example of a

mode recovery through compressed sensing (the z axis is for mode’s amplitude and x and y

axis are for frequency and damping), the decay of the expansion coefficients in the perturbed

dictionary comes for Fourier imaging with a slow trend that has a shape of a Dirichlet as

shown in [34]. Here we see an example of the frequency grid mismatch which means that the

true frequency grid does not coincide with the grid of the search space. Therefore, there is a

discrepancy between the ground truth grid and the grid on which the data is retrieved, which

causes a slow decay of the amplitudes of the retrieved data due to the spectral spillage.

Therefore, there was a need for building methods that will alleviate the constraints of on-grid

processing. By removing the regularity of the captured or retrieved data, we should be able to

asses the measurements for moving sources whose trajectory does not have to coincide with a

grid of any granularity.
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Chapter 2. Mathematical Background

2.3 Off-grid modeling of sparsity

2.3.1 How to be less greedy and less griddy?

Although the processing on a grid has enabled fast acquisition of data and also the solutions

that rely on a grid are usually redundant to noise, processing on a grid can cause basis mis-

match problems that lead to spectral leakage and other types of loss or misinterpretation of

data. Therefore, we need to create models that are able to alleviate these types of constraints.

The less greedy paradigm assumes reduction of requirements for an execution of an algorithm

and data acquisition in the terms of computational resources and memory requirements. The

less griddy paradigm assumes reduction of requirements to process data on a grid, always

outputting data that can be accurate up to ε, where ε is the precision of the grid on which the

data was acquired. Increasing the resolution of the equispaced grid by decreasing ε increases

the coherence of the dictionary and becomes cumbersome to handle with compressed sensing

technique. This type of approach would potentially resolve the basis mismatch problem [34].

On the other hand, the grid-free approach will open the door to arbitrary placement of sources

as well as to the moving sources, which are important constraints for a dynamic system. So the

questions that follow naturally are: If we want to avoid sampling or retrieval on a grid, what

kind of constraints do we need to relax? What is the trade-off?

As can be seen in the literature, most of the off-grid methods establish their theory for the

recovery of band-limited signals. They can be found under the following lines of work: spectral

estimation on a line [177, 67], off-grid compressed sensing [178, 194] and sampling signals with

Finite Rate of Innovation (FRI) [191, 19, 125]. FRI proposes sub-Nyquist sampling schemes

for signals that have finite number of parameters that fully define them (for example: train

of Diracs, splines, piece-wise polynomials etc.). All of the methods have roots in the spectral

analysis by Prony from 1795 [141]. Also a thorough list of spectral methods has been made

by Stoica [174]. Although these methods do not require uniform subsequent samples, they

require random at uniform sampling and still are a step away from true random sampling.

We define atoms a( f ,φ) ∈C|J |, where f ∈ [0,1] is the normalized frequency and φ ∈ [0,2π) is

the phase, as:

[a( f ,φ)]i = e j (2π f i+φ), i ∈ J (2.12)

or in matrix-vector form:

x̂ =
K∑

k=1

|c[k]|a
(

f [k],φ[k]
)

. (2.13)

In most formulations the phase gets absorbed into the expansion coefficient. So the recovery
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2.3. Off-grid modeling of sparsity

procedure focuses on the recovery of 2K coefficients - {(c[k], f [k])}K
k=1 pairs.

2.3.2 Off-grid Compressed Sensing

The off-grid compressed sensing has appeared in 2012 and 2013 [178]. In this case the sparsity

is defined on a continuous domain, so x is a continuous variable:

‖x‖A = inf{t > 0 : x ∈ t conv(A )} = inf
c [k]≥0, f [k]∈[0,1],φ[k]∈[0,2π)

{∑
k

c[k] : x =∑
k

c[k]a
(

f [k],φ[k]
)}

(2.14)

where we follow the earlier established definition of the atomic norm from 2.1.1.

In the original formulation, this type of problem is defined in the following way:

minimizex ‖x‖A (2.15)

subject to x( j ) = x( j )?, j ∈T (2.16)

where T⊂ J is the index set of the observed entries and J is the index set of all the entries. In

this case the optimization variable is continuous, so we need to reformulate the problem in

order to enable its implementation.

Sparse recovery in the continuous domain is redefined in the dual problem formulation [24].

In order to arrive to a discrete optimization variable and countable number of constrains,

the authors of [178, 194] use the theory for bounded trigonometric polynomials, unit norm

polynomial rooting and Schur complement in order to finally arrive to semidefinite program

formulation.

Therefore, the equivalent semidefinite program formulation of the dual problem [24] is given

by:

minimizeu ,x ,t
1

2|J| trace(Toep(u))+ 1

2
t (2.17a)

subject to

[
Toep(u) x

x∗ t

]
º 0 (2.17b)

x[ j ] = x[ j ]?, j ∈T (2.17c)

where u, x , t are discrete optimization variables.

This type of formulation has shown to be successful [194], although the parametric dictionary

does not satisfy the Restricted Isometry Property.

In the case of reconstruction of a sparse spectrum with sparse components on f -axis, the
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reconstruction bounds are given with: ∆ f = mink 6= j
∣∣ f [k]− f [ j ]

∣∣ ≥ 1
b(n−1)/4c , where this is a

circular distance in a periodic sequence (a wrap-around distance on a circle) and n is the

number of samples.

This technique was observed in order to connect all the pieces of the state of the art and will

not be further investigated within the scope of this thesis.
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2.3. Off-grid modeling of sparsity

2.3.3 Finite Rate of Innovation

Figure 2.6 – FRI: Samples in time. Figure 2.7 – FRI: Annihilating filter.

While defining the Finite Rate of Innovation theory (FRI) [191, 19], authors go back to the

basics of signal processing [190]. Assuming that we are dealing with a bandlimited signal x

(bandlimited to [−B/2,B/2]) in a continuous time domain, sampling of the signal encapuslates

convolution with a bandlimited kernel defined as sinc(t ) = sinπt
πt :

x(t ) = ∑
k∈Z

x[k]sinc(B t −k), (2.18)

where x[k] = 〈Bsinc(B t −k), x(t)〉 = x(k/B). According to Nyquist sampling rate [120], we

would need to sample such a signal at a sampling rate of sampling period T = 1/B .

In order to relax this requirements, two assumptions are introduced: we are dealing with

shift-invariant signals that have a period T, and our signal consists only out of K Dirac pulses

per period T which is its rate of innovation:

x(t ) = ∑
k∈Z

x[k]δ(t − t [k]). (2.19)

Therefore this signal is completely defined by a set of K pairs of (x[k], t [k]) values, therefore

{x , t } ∈ RK , so it can be sampled at its rate of innovation. So we can rewrite the signal for a

τ-periodic case t [k] ∈ [0,τ[:

x(t ) =
K∑

k=1

∑
k ′∈Z

x[k]δ
(
t − t [k]−k ′τ

)
. (2.20)

Our measurements take the following form:

y[n] = 〈x(t ),sinc(B(nT − t ))〉 =
K∑

k=1
x[k]ϕ (nT − t [k]) . (2.21)

where: ϕ(t) = ∑
k ′∈Z sinc

(
B

(
t −k ′τ

)) = sin(πB t )
Bτsin(πt/τ) is the sampling kernel. If we look at Fig-

ure 2.6, the red shows the ground truth Diracs and when sampled, we obtain the blue samples.
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Figure 2.8 – Annihilating filters of different degrees (from left to right: first to fourth order).

A periodized stream of Diracs can be modeled through the Fourier transform as:

x(t ) =
K−1∑
k=0

x[k]
∑

n∈Z
δ (t − t [k]−nτ) =

K−1∑
k=0

x[k]
1

τ

∑
m∈Z

e j(2πm(t−t [k])/τ) (2.22)

From Poisson’s summation formula [190], we have:

x(t ) = ∑
m∈Z

1

τ

(
K−1∑
k=0

x[k]e− j(2πmt [k]/τ)
)

︸ ︷︷ ︸
x̂ [m]

e i (2πmt/τ), (2.23)

so we arrive to the Fourier series representation. In the original formulation of FRI [191], the

frequency grid is sampled uniformly and m ∈ [−K
2 +n, ..., K

2 +n[, where n ∈Z is an arbitrary

constant.

Annihilating filter technique: The original requirement for establishing a uniform grid comes

from the annihilating filter requirement. When using an arithmetic progression of numbers

inside exponents (the indices m of the Fourier series coefficients), they transform the expres-

sion into a geometric progression of the form e−i(2πmt [k]/τ) that enables annihilation. The

annihilating filter technique dates back in 1997 [175]. Although the original version of the

FRI theory [191, 19] required consecutive 2K +1 uniform frequencies for the noiseless recov-

ery, newer extensions relax the requirement to non-uniform frequencies [125], by requiring

random at uniform samples.

As has been illustrated in Figure 2.8, for any set of Diracs we can design an annihilating filter

that can annihilate it, regardless of the height of the Dirac. Therefore, the annihilating filter

has to be of the form:

A(z) =
K−1∏
k=0

(
1−e− j(2πt [k]/τ)z−1

)
, (2.24)

with the zeros at the positions of the Diracs in the exponential context: e−i(2πt [k]/τ). Also in

Figure 2.7 we see an example of the annihilating filter for the sequence in Figure 2.6.

This all follows from:[
1,−e− j(2πt [k]/τ)

]
?

[
. . . ,e j(2πt [k]/τ),1,e− j(2πt [k]/τ),e− j(4πt [k]/τ), . . .

]
= 0 (2.25)
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The coefficients of the annihilating filter can be determined from the system of linear equa-

tions. This Yule-Walker system follows from the Vandermonde definition of all the convolu-

tions and choosing â[0] = 1, since the set of roots of Pa is invariant to global scaling of the

coefficients (in vector a):
x̂[0] x̂[−1] · · · x̂[−K +1]

x̂[1] x̂[0] · · · x̂[−K ]
. . .

x̂[K −1] x̂[K −2] · · · x̂[0]

 ·


â[1]

â[2]
...

â[K ]

=−


x̂[1]

x̂[2]
...

x̂[K ]

 (2.26)

or with the least squares approach. The recovery of the coefficients x[k] is straightforward,

once the t [k]’s have been retrieved from this system of equation and the previously introduces

parametric model in (eq. 2.24).

Reconstruction bounds: The Finite Rate of Innovation theory gives bounds on the possibility

of recovery of Diracs related to the bandwidth of the available frequencies and the distance

between Diracs. Also there are Cramer-Rao bounds given for the amount of noise in the

observed signal [19].

This theory is applicable to the following families of signals: stream of Diracs, nonuniform

splines, derivative of Diracs and piecewise polynomials. The key property of all of these

families is a finite number of parameters that fully define signal over their period τ or over

their length, in the case of finite length signals. In this thesis we will be focusing on the stream

of Diracs case. Although we were focusing mostly on the retrieval of Diracs in time domain,

we can also retrieve Diracs in spatial domain [126] as long as the sources are monochromatic.

2.4 Relationship between compressed sensing and Finite Rate of In-

novation

In this thesis we will focus on the application of compressed sensing and Finite Rate of

Innovation to the problems in acoustics.

Figure 2.9 – Temporal evolution of sparse methods.

To get the idea of the history of described methods, we have put their initial papers on a

timeline in Figure 2.9 together with their key properties summarized in Table 2.2.
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Table 2.2 – Overview of the sensing methods.

Method Sampling (Sensing) Search space

On-grid compressed sensing random grid

Off-grid compressed sensing (random at) uniform continuous

Uniform Finite Rate of Innovation uniform grid continuous

Non-uniform Finite Rate of Innovation (random at) uniform continuous

Authors of Finite Rate of Innovation compare their method to compressed sensing in [19], and

the other authors do it the other way round in [27], finally reaching a common conclusion:

compressed sensing needs slightly more samples C ·Nt logN versus C ·Nt (where Nt is the

level of sparsity). On the other hand, the original version of compressed sensing is limited to

uniform (consecutive) samples and compressed sensing allows random sampling schemes.

The compressed sensing technique also comes with an advantage of being robust to noise.
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Part IIISparse models for room acoustics:
Compressed sensing and

room modes
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3 Localization of Sound Sources in a
Room with One Microphone

In the last decade the theory of compressed sensing [52, 27] has arised in the domain of acous-

tic signal processing. There was always a need for finding a structure in the high dimensional

acoustical data that was cumbersome to handle. In 2015 Boche et al. [20] provided a detailed

state of the art for the application of compressed sensing in the domains of image and acoustic

signal processing.

Estimation of the location of sound sources is usually done using microphone arrays [195, 126].

Settings with multiple microphones provide an environment where we know the difference

between the received signals among different microphones in the terms of phase or attenua-

tion, which enables localization of the sound sources. In our solution we exploit the properties

of the room transfer function in order to localize a sound source inside a room with only one

microphone. The shape of the room and the position of the microphone are assumed to be

known. The design guidelines and limitations of the sensing matrix are given. Implementation

is based on the sparsity in the terms of voxels in a room that are occupied by a source. What is

especially interesting about our solution is that we provide localization of the sound sources

not only in the horizontal plane, but in the terms of the 3D coordinates inside the room.

Instead of estimating the position of the sound sources from time difference of arrival between

different microphones in an array [109, 110], we aim to rely only on one microphone and

combine the sparsity that exists in the term of the voxels of a room occupied by the sound

sources and the low-frequency room modes in the room transfer function (RTF) toward

successful localization. As has been discussed earlier, the sparsity of the room modes may

be exploited in the low-frequency range of the RTFs [112], as shown in Figure 1.7. By RTF

we denote the relationship between the received and emitted signal inside a given room in

the Fourier domain. To this end, we will analyze the transfer functions below the so called

Schroeder frequency, which is defined as: fsch = 2000
√

t60
V , where V is the volume of the room

and t60 is the reverberation time [91], which is usually around 200Hz for a typical room. Details

around this specific frequecy have been previously given in section 1.3.

The combination of sparsity in the term of locations occupied by sound sources and the
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Chapter 3. Localization of Sound Sources in a Room with One Microphone

room mode sparsity in the low-frequency domain should result in a fast localization of sound

sources by only one microphone as will be further explained.

We start by discussing the sparsity that exists in the low frequency domain of room transfer

functions. An overview of the available techniques for coupling the compressed sensing and

the localization of sound sources is given. We design the sensing matrix for such a particular

setting and discuss its limitations. Since the search space is defined on a regular grid, we

discuss a technique for subsampling the regular grid as the means of lowering the coherence of

the sensing matrix at hand. At the end we conclude and give a some remarks on the potential

future work.

3.1 Modal representation of the sound pressure and its low-frequency

properties

In the further development of our approach, we are going to rely on two facts: the room shape

is known and the microphone position is known. These assumptions imply that we know the

resonant frequencies of the room and the room modes related to the microphone’s positions.

This chapter will rely on the formulation of the acoustic behavior of a rectangular room

developed in Section 1.2.2, and the decomposition of the Room Transfer Function (eq. 1.8).

In Figure 3.1 we can see a segment of RTF for an arbitrary set of positions rmi c and rss below

Schroeder frequency and its decomposition into the room modes. This has been previously

discussed and observed in Figure 1.7. The sharpness of the peaks of room modes is dependent

on the damping properties of walls of the room. Peaks of the room modes are aligned with the

resonant frequencies of the room.

3.1.1 Room Transfer Function at different positions across the room

Each RTF is characterized by a set of parameters: resonant frequencies (eigenfrequencies)ω[n],

which are aligned with the position of the peaks of room modes, damping ξ[n], attenuation

and phase. For different positions of the microphones/sound sources across the room, some

parameters stay the same - common parameters: eigenfrequencies which depend on the

room shape, and the room mode damping, which depends on the damping of the walls. The

attenuation and the phase of the room modes are position dependent parameters - specific

parameters.

Figure 3.2 illustrates the difference between the attenuation and the phase of the RTFs across

the room at the resonant frequencies. White point shows the fixed and known position of the

microphone and colorful points are the positions of sound sources that should be estimated.

As can be observed, although all the positions of the sound sources result in the peaks at the

same set of frequencies (the resonant frequencies of the room), the set of the heights of these
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Figure 3.1 – Individual components of the RTF are called room modes. As illustrated, room
modes can be simply modeled as second order bandpass filters.

peaks seems unique, as will be further observed in the next section. This means that each pair

of the positions of a sound source and a microphone could potentially result in a unique set of

attenuation factors at the resonant frequencies. An example of room mode for a room with

rigid walls is given in Figure 3.3 [91].

Although there exists a uniqueness of phase for each room mode, since we plan to use only

one microphone and white noise sources, this is irrelevant for our case but has a potential

for some other type of room characterization. We have decided to investigate the potential

of unique representation of a (position of the sound source, position of a microphone) pair,

within the room with the set of attenuations of RTF at resonant frequencies. Therefore we

have established a valuable reasoning for the design of our sensing matrix.

3.1.2 Ambiguities that exist in the terms of uniqueness of the attenuation across
the room

We will observe the basic axial modes in Figure 3.4 in order to illustrate that relying only on

them would not be sufficient to have a unique position representation. First row shows the x-

and y-axial modes (everything that will be said applies analogously to z-axial modes as well).

We can see that these two modes form pairs of points that result in a unique location identifier.

But, since we have decided to explore the special case with only one microphone, we need

to neglect the phase of the RTF. As seen in the second row of the same figure, this introduces

ambiguity - there exists a unique representation, but only in 1
8 of the room.
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Figure 3.2 – Values of the RTF across the room vary in the terms of attenuation and phase
value at the resonant frequencies. We exploit only the difference in the attenuation because in
our target experimental setting there exists only one microphone and the sources will emit
white noise.

3.2 Compressed sensing and sound source localization

3.2.1 Sparse representation of the position of sources

In sound source localization problems the domain of interest is usually divided into an angular

grid such that the sources occupy just a few of these angles. Since our sources are positioned

inside a room, we will divide the room into voxels and assume that the number of voxels

occupied by a source is small. We recognize that this is a problem with underlying sparsity.

These problems are usually solved by using the theory of compressed sensing.

3.2.2 Problem formulation within compressed sensing approach

We will be following the reasoning established with the Figure 2.3. Therefore, we have:

ŷ =ΨΦx (3.1)
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3.2. Compressed sensing and sound source localization

Figure 3.3 – An example of (nx ,ny ,nz ) ∈ {(2,2,0), (3,3,0)} room modes in a 5m×5m×3m room
with rigid walls. We can notice that the isolines of different modes intersect in just a few
locations, which supports our assumption of different height of sets of peaks in the RTF.

where ŷ is the measurement of sound pressure at a known location inside a known room,Ψ

is the row-wise subsampled identity matrix (used for pruning),Φ is a representational basis

with the RTFs as columns and x are the sparse expansion coefficients. The product A =ΨΦ is

usually referred to as the sensing matrix. x is K -sparse, which means that it contains at most

K non-zero elements. We are facing an underdetermined system of equations with a sparse

regularization.

3.2.3 A sensing matrix for sound source localization in a room

The following question rises: How to tailor a simple incoherent dictionary (along the defini-

tions from Section 2.2.2) for fast localization of sources inside the room? In order to have a

well-posed problem we introduce the following assumptions:

1. the shape of the room and the reverberation time are known,

2. the position of the microphone is known, and

3. all the sound sources have a flat spectrum in the observed frequency range.

For each of the potential positions of sound sources and a fixed position of the microphone

we have one atom in the dictionary which consists out of the heights of the peaks in the RTFs

at the resonant frequencies. The height of the dictionary is proportional to the number of the

resonant frequencies in the observed frequency range. The number of resonant frequencies
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Figure 3.4 – Basic modes and their attenuation values.

below a given frequency f [91] can be computed by: N ( f ) = 4
3πV

( f
c

)3+ 1
4πS

( f
c

)2+ 1
2 L f

c , where

V = Lx Ly Lz , S = 2(Lx Ly +Ly Lz +Lz Lx ) and L = Lx +Ly +Lz . The width of the dictionary is

proportional to the number of observation points on the predefined grid.

In order to localize the sources, we search for a subset of atoms that give the best fitting for

the signal recorded by the microphone. Once we discover which atoms of our sensing matrix

have the highest expansion coefficients in the sparse representation, we can easily recover

the position of the sound sources in the room, because we know which atom corresponds to

which position, since we have tailored the dictionary ourselves.

3.3 Designing an efficient sensing matrix

3.3.1 Coherence

Coherence of a dictionary can be seen from the maximum off-diagonal element of the coher-

ence Gram matrix µ= maxi 6= j Gi j . In our case whereΨ is the row-wise subsampled identity

matrix (used for pruning),Φ is a representational basis with the RTFs as columns, the Gram

matrix has the following form:

G = |AH A| = |(ΨΦ)H
ΨΦ| = |ΦHΨHΨΦ|. (3.2)

From the definition of the matrices we have: ΨHΨ= I, so the Gram matrix has a simple form:

G =ΦHΦ.
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3.3. Designing an efficient sensing matrix

Therefore we observe the coherence of the sensing matrix by focusing on the discretization of

the room transfer function. Since our exponentials in the plane wave representation are not

equidistant, we can not apply the Dirichlet kernel sum to our case to simplify the expression

(an approach common for many solutions [19, 195, 34]).

For a uniform case, the off-diagonal elements of our Gram matrix at position r = [rx ,ry ,rz ]T

and for wave vector k = [kx ,ky ,kz ]T are proportional to:

Gi j ∼ cos(kx rx )cos(kx (rx±m∆x ))+cos(ky ry )cos(ky (ry±n∆y ))+cos(kz rz )cos(kz (rz±o∆z )),

(3.3)

where (m,n,o) ∈R3 and [rx ±m∆x ,ry ±n∆y ,rz ±o∆z ]T are potential positions on the grid in

the room.

It results in a complex form of the elements of Gram matrix. Some observations have shown

that we are dealing with highly correlated atoms. Therefore we need to find a workaround in

order to have a successful source localization. Due to the smoothness of cosine function, the

points on the potential sound source position grid that lay close, result in similar heights of

the peaks in RIR.

3.3.2 Battle of the grids

Our problem has two degrees of freedom and both of them represent a selection process of

the nodes on a uniform grid. We have a grid of wave vectors - features and a grid of potential

positions of sound sources - samples. In Figure 3.5 the grid on the left-hand side repeats in

all 6 directions and the one on the right-hand side repeats in 3 directions. For wave vectors

we will use the matrix form as defined earlier: K ∈RN×W ×3, where N is the number of room

modes and W is the number of plane waves per wave number.

Figure 3.5 – Two grids that represent two degrees of freedom that we have for designing the
sensing matrix.

We will observe the room transfer function in a matrix form at the resonant frequencies. If

we go back to equation (1.8) and introduce ω= ω̃[n], we get that each of the entries of our
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Chapter 3. Localization of Sound Sources in a Room with One Microphone

sensing matrixΦ is of the following form:

Φ(n,m) = ρc2Qm

2g [n]ξ[n]
Ξ(K[n,1, :],r mic)Ξ(K[n,1, :], ,r m) (3.4)

which corresponds to nth wave vector and mth potential sound source position. The only coef-

ficients that differ among the atoms of the dictionary are represented in blue. The difference

due to the volume velocity of the sound source Qm will not affect our approach, since we

assume that we are observing our sound sources in a linear regime. This parameter has an

effect only on the expansion coefficients of the sparse representation. Therefore we focus on

the sound sources’ positions that produces different attenuation of room modes.

So the RTF matrix has the following decomposition:

Φ= ρc2

2


Ξ(K[1,1,:],rmic)

g [1]ξ[1] . . . Ξ(K[1,1,:],rmic)
g [1]ξ[1]

...
. . .

...
Ξ(K[N ,1,:],rmic)

g [N ]ξ[N ] . . . Ξ(K[N ,1,:],rmic)
g [N ]ξ[N ]

¯


Q1Ξ(K[1,1, :],r1) . . . QMΞ(K[1,1, :],rM)
...

. . .
...

Q1Ξ(K[N ,1, :],r1) . . . QMΞ(K[N ,1, :],rM)

 .

(3.5)

As we have seen earlier, our rigid wall room modes are of the form (eq. 1.6), where K[n,1, :]

belongs to the positive octant of the left-hand side grid from Figure 3.5.

3.4 Results

In our solution we will rely on the greedy approaches such as Orthogonal Matching Pursuit

(OMP) [182] and Compressive Sampling Matching Pursuit (CoSaMP) [119]. These methods

select up to K atoms of a dictionary that give the smallest approximation error. CoSaMP is a

faster contemporary method which works by selecting multiple atoms at every iteration. The

main drawback of these methods is that the sparsity of the signal has to be known upfront.

3.4.1 The recovery of signal’s support in a highly coherent dictionary

Candès et al. [30] discuss the potential of recovery of data that has a sparse representation in a

coherent dictionary. Coherent dictionaries can give guarantees only on the recovery of the

sparse signal, but not on the recovery of the set of indices of atoms in sparse representation.

That is because if we have pairs of atoms that are extremely coherent (almost collinear), e.i.

we are far away from satisfying µ ≤ 1
2K−1 , where K is the level of sparsity, therefore we can

not tell which one of them will be used for our sparse representation when projecting to a

lower-dimension space. Schnass et al. have approached this problem by introducing a com-

plementary dictionary of the same size, but with low coherence, which maintains the sparse

support of the measurements [167]. Our approach will be in the spirit of random subdictionary
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3.4. Results

selection [181]. There have been some approaches with subsampling of dictionaries over rows

and columns in order to increase the speed of the convergence of greedy methods [130, 124],

but using such subsampling methods for coherent dictionaries is still unexplored. Authors of

these papers named one of these methods as StoCoSaMP (Stochastic CoSaMP) [124].

We restate our problem in the following manner: Recover sparse signal x from the following:

Sr f ŷ = Sr f (ΦSsp )x (3.6)

where y is the measured signal in frequency domain, Sr f is a resonant frequency selector that

defines which points on the wave vector grid we observe and Ssp is a sound source position

selector that defines which points on the potential source position grid we observe. Both

matrices, Sr f and Ssp , are just submatrices of an identity matrix. The first one is constructed

from selected rows and the second one is constructed from selected columns. We could

characterize our case as a highly sparse case, since the number of sources to be localized is

going to be small. Only one or a few voxels in the room will be having a source inside.

Support of x shows which of the positions on the grid are the most probable positions of the

sources. Without subsampling of the coherent dictionary, this support is usually wrongly

estimated due to the ill-conditioness of the problem coming form the high coherence of the

dictionary.

Here is the description of the algorithm (I is the identity matrix):

Algorithm 1 Localization of sound sources in a room with one microphone

Input: Measurements in frequency domain ŷ , highly coherent room mode dictionaryΦ and
the number of sources K .
Output: Reconstructed positions of the sound sources.
do

Generate random subsampling matrices Sr f ⊂
r ow

I and Ssp ⊂
column

I.

Subsample the dictionary: Φss = Sr f (ΦSsp ) and the measured signal ŷ ss = Sr f ŷ .
Try to estimate the positions of the sound sources by estimating the support of x onΦss

using CoSaMP for the given measured signal ŷ ss knowing the level of sparsity K .
while CoSaMP [119] sparse representation does not converge (has norm of the residual
significantly greater than zero)

Figure 3.6. shows a reconstruction example for a case with 3 sound sources. Grey circles are

the potential positions taken into account in the current iteration, blue circles are the true

positions and light blue points are the reconstructed positions. The red point represents the

known position of the microphone. This algorithm has no problems with identifying position

of sources that are close, as can be seen from the right hand side of the Figure 3.6.

We will observe how different subsampling schemes effect the success and speed of our sparse

support estimation.

53



Chapter 3. Localization of Sound Sources in a Room with One Microphone

Figure 3.6 – These are the results for localization of 3 sound sources inside a 4m×7m×3m
room for a uniformly undersampled 10×15×10 grid.

We have performed 100 Monte Carlo simulations for each set of parameters and for the

estimation of the position of two sound sources. Experiments were performed on a single core

of Intel Xeon processor at 2.8GHz of a computer with 16GB of RAM. If the algorithm did not

converge within 300 iterations, we would consider that to be a failure. If we do not bound the

number of iterations, the algorithm always converges but sometimes it needs a few thousands

of iterations. Reconstruction time does not include the time needed for constructing the

dictionary.

We have applied two types of subsampling schemes: subsampling over the spatial grid and

also subsampling over the feature grid (resonant frequencies). The purpose of the spatial

subsampling is to decrease the coherence of the dictionary by reducing the number of atoms.

The second type of subsampling has the goal of decreasing the computational costs and

increasing the speed of convergence of the algorithm.

In Figure 3.7a we can see results for no subsampling over resonant frequencies (first 63

resonant frequencies were taken into account - room modes between (1,0,0) and (3,3,3)) and

different subsamplings over the potential sound source positions. There were no successful

reconstruction attempts when the whole grid was taken into account. Subsampling two or

three times showed the best performance with the convergence within the predefined 300

iterations. Average number of iterations and average reconstruction time were computed only

for the successful quick reconstructions.

In Figure 3.7b we can see results for subsampling level of 2 over the potential positions of

sound sources and different subsets of resonant frequencies have been taken into account

(from 11 up to 63 out of 63). If we choose a subset of below 17 resonant frequencies, the

algorithm never converges. If we had average results over more than 100 simulations, the

curves in the results would have been smoother. We see that we can not subsample a lot such

a small set of resonant frequencies.

Therefore, we have to subsample the sound source position grid since we are dealing with

a highly coherent dictionary. By increasing the level of subsampling over columns of the
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3.4. Results

(a) Potential sound source position grid subsam-
pling (from no subsampling up to subsampling 15
times).

(b) Resonant frequency grid subsampling (from
selecting 11 up to selecting all 63 resonant fre-
quencies)

Figure 3.7 – Spatial and feature grid subsampling for sound source localization.

dictionary, we decrease the probability that the atoms that we are searching for are present in

the subset. On the other hand, the resonant frequency grid should not be too oversampled in

order to achieve a quick convergence (below predefined 300 iterations or similar).

3.4.2 Precision and basis mismatch

Due to the smoothness of the room mode functions, there is a small variation in the value

between the close points. This supports the idea of similarity of the atoms of the dictionary of

the spatially close positions.

Compressed sensing usually assumes the existence of a grid with finite density and our signals

of interests can fail to coincide with the nodes of the predefined grid, especially in the case of

moving sources. As shown in [34] this can cause that sparse signals appear incompressible.
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Chapter 3. Localization of Sound Sources in a Room with One Microphone

The work we have observed before [195] has an extension to a continuous case [194] by

applying the semi-definite programming [189]. In our observations we have assumed that our

grid of the potential positions of the sources is dense enough to avoid the spectral leakage.

Continuous approaches are left for future work.

3.4.3 Requirements and limitations

In a setting where we have multiple sound sources and a microphone, the sound received is

equal to the linear combination of the convolution of sounds emitted by the sound sources

and the transfer functions that correspond to their positions. Therefore we need the following

assumption: we can efficiently localize sources that are wide-band, such that we target the

resonant frequencies where the room modes are.

In order to avoid ill-conditioness the microphone and the sound sources should lie off the

planes of symmetry.

3.5 Conclusion

By observing the sound source localization problem through the theory of compressed sensing,

we have enabled localization of multiple sound sources in a room using only one microphone.

Unlike most of the localization algorithms, this approach guaranties the localization in 3D,

without neglecting the elevation angle, which is rarely estimated. The simplicity of our solution

lays in the low required prior knowledge about the room - only the height of the peaks in

the RTF at the resonant frequencies should be know. matlab code used for generating each

of the figures in this paper as well as the acoustical room mode framework is available for

download1.

Our solution has the potential of being applied to the optimization of the quality of the hearing

aids - once the location of source is estimated we can introduce weighting on the reception

side, as well as in robotics for monoaural localization. The emerging field of virtual reality

would be just another domain of potential application.

Future work will include estimation off the grid in order to avoid the basis mismatch and the

challenging computational costs. Removal of the assumption on the level of sparsity should

also be investigated further.

Another possible extension would be encoding the position in the room in the term of relative

transfer function (RTF) [100] after adding another microphone into the room. This would

remove the requirements for white noise sound sources, since RTF is invariant to the input

signal.

1https://github.com/epfl-lts2/room_transfer_function_toolkit
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4 Joint Estimation of Room Geometry
and Modes with Compressed Sensing
*
Acoustical behavior of a room for a given position of microphone and sound source is usually

described using the room impulse response. If we rely on the standard uniform sampling,

the estimation of room impulse response for arbitrary positions in the room requires a large

number of measurements, because we can not know upfront which microphones might be

set at the nodal lines of room modes (where room mode value is zero). In order to lower the

required sampling rate, some solutions have emerged that exploit the sparse representation

of the room’s wave field in the terms of plane waves in the low-frequency domain. The plane

wave representation has a simple form in rectangular rooms. We will observe the basic axial

modes of the wave vector grid for extraction of the room geometry and then we propagate the

knowledge to higher order modes out of the low-pass version of the measurements.

In 2006 Ajdler et al. [9] have defined the Plenacoustic function (PAF) as the function that

contains the room impulse responses (RIRs) for all the possible pairs of microphone and

source positions in a room with the given acoustical properties. Without having any prior

knowledge involved, it is extremely hard to estimate the PAF. As shown by Moiola et al. [113]

the acoustical behavior of the room can be described by a discrete sum of plane waves that

can exist inside a given room which are tightly related to the resonant frequencies as described

in Section 1.2.2. This plane wave approximation holds for any star-convex room and is

independent of boundary conditions, domain of propagation, type of the source or proximity

to the source or the walls [112].

Sparse plane wave approximation in the low frequency domain introduces an assumption

required for sparse analysis of room’s complex wave field which further opens the door to

compressed sensing [52, 27]. Mignot et al. [112] have started the trend of the sparse modal

analysis for room acoustics. They have designed a greedy approach which uses space decom-

position based on iterative alternating projections for the estimation of the wave number

and wave vectors that fully determine the acoustical behaviour of the given room. Due to the

high dimensionality of data acquired by microphones, greedy methods such as Simultaneous

1Work done with Thach Pham Vu at École polytechnique fédérale de Lausanne.
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Orthogonal Matching Pursuit (SOMP) [182] (simultaneous, since we are fitting measurements

from multiple microphones at once) have shown better performance than the relaxation of

the minimization of `0 norm [183].

Our solution focuses on the structured sparsity of the plane wave representation for the

reconstruction of parameters of the Room Transfer Function (RTF). In literature, sparse plane

wave representation has been used not only for the representation of the wave field in a

room in low frequency domain, but also for efficient storage of highly correlated recordings of

dense microphone arrays [88]. Besides sparse plane wave representation an interesting sparse

approach to the estimation of RTF is a recent approach with orthonormal basis functions based

on infinite impulse response filters (IIR) [185]. On the other hand, although not exploring

plane wave sparsity, the solution relying on the weighted spatio-temporal representation [11]

also gives promising room impulse response interpolations.

In general, the solutions for estimating the shape of the room usually rely on knowing the

location of early reflections [89, 50], but finding the true reflections within an echogram is not

a trivial problem and is still an open research question.

4.1 Problem Setup

The goal of this research will be an attempt to acquire data below the temporal and spatial

constraints of PAF and CFL conditions established earlier in Section 1.2.1 by exploiting the

plane wave sparsity in room acoustics. Also, we will be relying on the definition of structured

Room Transfer Function from (eq. 1.8) and will be focusing on its parameters estimation in a

lightly damped setting.

4.1.1 Spherical search space of plane wave approximation

In the case of a room with light damping (ξ[n] ¿ω[n]), the length of the wave vectors can be

approximated by the real part of the corresponding wave number: ‖K[n, w, :]‖ = |κ[n]|, since

in that case κ[n] ≈ ω[n]
c . This builds an intuition for the spherical vector search as can be seen

in Figure 4.1 which will be explained more in detail later. For a rectangular room the wave

vectors are on the vertices of a parallelepiped inscribed into the sphere with radius of ω[n]
c .

If we rely on the modal decomposition (eq. 1.9) and plane wave approximation, we need to

estimate the following parameters: resonant frequenciesω, damping factors ξ, wave vectors K

and expansion coefficients A. This will be done through an iterative procedure that relies on

alternating recovery of temporal and spatial parameters, as will be explained further.
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Figure 4.1 – Structured sparsity of wave vectors for different plane wave types. In theory
these wave vectors form a parallelepiped inscribed into a sphere with radius ω[n]

c , resulting in
structured sparsity. From left to right: x-axial mode, x y-tangential mode and oblique mode.
Tightly related to Figure 1.3.

4.1.2 Periodicity of the wave vector grid

In our solution we will be focusing only on the rectangular rooms with the regular wave vector

grid (regular eigenvalue lattices in the wave vector space) [91] as shown in Figure 4.2. The

k-space is an array of numbers representing spatial frequencies. According to the theory,

as long as we know the periodicity of the grid over each of the axes, it will provide us the

knowledge on the room geometry as well as the values of the wave vectors of higher order.

So the goal of our approach is the estimation of these three periods along each of the axes.

Under the assumptions that the room is lightly damped, the three fundamental axial modes

can be used as a basis to find all higher order modes. This will reduce the cutoff frequency of

the analyzed data, which further reduces the density of the required grid of microphones, due

to the dependencies between the temporal and spatial sampling as shown earlier.

4.2 Parameter estimation with partial compressed sensing for struc-

tured data

There are two key questions for our parameter estimation procedure: how many room modes

N do we expect up to a given cutoff frequency fc and what are their approximate resonant

frequencies ω[n]? These parameters are dependent on the room shape and size [91]. An

approximate number of modes up to the cutoff frequency fc is given by: Ñ fc ≈ 4π
3 V

( fc

c

)3 where

V = Lx Ly Lz . This is because most of the modes in a room are oblique modes and we follow

the formulation from [91].

In our solution we will be using the curve fitting algorithm2 from 1985 by Richardson et al. [154]

that allows the reconstruction of the RTF curve from discrete measurements using room mode

shaped functions as basic fitting elements. Since we will be evaluating our algorithm with real

measurements, the curve fitting algorithm will help us to retrieve some of the parameters and

2https://ch.mathworks.com/matlabcentral/fileexchange/3805-rational-fraction-polynomial-method?
focused=5049537&tab=function
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Figure 4.2 – The left hand side shows the periodicity of the wave vector grid with respect to
K[n, w, :] = [±kx ,±ky ,±kz ] with period over the axes equal to: π

Lx
, π

Ly
and π

Lz
. Here we see an

example of an oblique wave vector. The right hand side shows the structured search space on
our uniformly sampled sphere.

use them as the ground truth.

Of special interest will be the basic axial resonant frequencies: ω[kx ,ky ,kz ]=[1,0,0] = πc
Lx

,

ω[kx ,ky ,kz ]=[0,1,0] = πc
Ly

and ω[kx ,ky ,kz ]=[0,0,1] = πc
Lz

, because they will provide the data about the

shape of the room.

4.2.1 Reconstruction procedure

We will be relying on the acoustical properties of rectangular room as described in Section 1.2.2.

Our goal is to reconstruct spatial periods of the wave vector grid from low-pass room impulse

responses over each of the axes. The size of the room is assumed to be unknown and is

jointly estimated. All measured signals are separated into two components: low-pass Xl and

high-pass Xh . Analysis procedure is first applied to the low-pass component, which includes

the estimation of the wave numbers and corresponding wave vectors. The bandwidth of this

low-pass analysis is chosen in such a way that it covers reasonable sizes of rooms and removes

the false modes that can appear below the first mode in RTF. With f ∈ [20,70]Hz we cover room

dimensions Lx ,Ly ,Lz ∈ [2.45,8.575]m for c = 343 m
s . This can easily be adjusted for rooms of

unusual sizes.

Estimation ofω[il ], ξ[il ] and ξ[ih]

In the low part of the frequency domain observations we define a unit-norm temporal dictio-

nary with atoms of form: Θ[:, i ] = θ[i ]
‖θ[i ]‖ , where θ[i ] = eξ[i ]t e jω[i ]t and i is an index on a 2D grid
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Algorithm 2 ReSEMblE algorithm (Algorithm for the joint estimation of Room SizEs and
ModEs)

Input: A set of measurements at M known locations r = [x, y, z]T in space and T points in time.
X ∈CT×M are measurements in a matrix form and x ∈CT M are measurements in a vectorized
form. fp is frequency that separates data into 2 analysis procedures.
Output: Estimated room size (L̃x , L̃y , L̃z ) and estimated room transfer function parameters:

• expansion coefficients {A[n, w]}N ,W
n=1,w=1,

• resonant frequencies {ω[n]}N
n=1 and damping {ξ[n]}N

n=1, and

• wave vectors {K[n, w,1 : 3]}N ,W
n=1,w=1

N : number of modes, W : number of wave vectors per wave number.

1: Separate the measurements with fp : X = Xl +Xh and x = x l +xh .
2: for il ∈ {1, ..., Nl } do
3: step 1: estimate (ω[il ],ξ[il ]) from X(il )

l with Fast Fourier Transform;

4: step 2: estimate K[il , :, :] from x (il )
l with inscribed parallelepiped search;

5: step 3: compute new residuals: X(il+1)
l and x (il+1)

l ;
6: end for
7: Recover the room size L̃x , L̃y , L̃z from basic axial room modes.
8: for ih ∈ {Nl +1, ..., N } do
9: step 1: getω[ih] and K[ih , :, :] from the wave vector grid; // See Fig. 4.2

10: step 2: estimate ξ[ih] from X(ih )
h ;

11: step 3: compute new residuals: X(ih+1)
h and x (ih+1)

h ;
12: end for
13: Estimate the expansion coefficients {A[n, w]}N ,W

n=1,w=1 using least squares approach.

14: return (L̃x , L̃y , L̃z ), {ω[n]}N
n=1,{ξ[n]}N

n=1, {K[n, w,1 : 3]}N ,W
n=1,w=1 and {A[n, w]}N ,W

n=1,w=1.

of possible (ω[il ],ξ[il ]),ω[il ] ∈ [0,π fs] and ξ[il ] ∈ [10ξ0,0.1ξ0], ξ0 =−3 ln10
t60

. The reverberation

time can be computed through Sabine’s law t60 ≈ 0,163 V
A , where: A = ∑

i αi = ∑
i ai Si , ai is

the absorption coefficient of the i th wall and Si is its surface. The atoms with the highest

correlation contains the solution pair.

In the high part the frequency is known, so we have only a 1D grid of possible values for the

damping, which leads to a much simplified search.

Estimation of K[il , :, :]

The estimation of wave vectors is done with a structured group sparsity assumption - after

estimating the wave number, we construct a sphere with a radius ω[il ]
c which follows from the

assumption of lightly damped modes. We define a non-unit-norm spatio-temporal dictionary

with atoms of form: Σ[:, i ] = eξ[il ]t e jω[il ]t e j K̃[i ,:]·r , where K̃ are samples on this uniformly
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sampled sphere3 [169].

On the surface of this sphere we search for a group of 8 wave vectors [±kx ,±ky ,±kz ]T which

form a parallelepiped and which are aligned with the residual the most. In a case of tangential

modes, the parallelepiped collapses over 1 dimension and shrinks to 4 wave vectors (e.g.

[±kx ,±ky ,0]T ), and axial modes are defined by 2 wave vectors (e.g. [±kx ,0,0]T ).

In each iteration the best subgroup of 8 atoms has been estimated by applying a simultaneous

version of matching pursuit (MP) [108] and the new residual is estimated by an orthogonal

projection onto the space spanned by the union of all of the subgroups that were previously

selected.

4.3 Results

4.3.1 Reconstruction of the k-space of a rectangular room

In our solution we have relied on two types of structured sparsity expected in theory [91]: wave

vector sparsity as nodes of parallelepiped and wave vector periodicity in the wave vector grid.

How does this structured approach affect the data retrieval? As shown in [112, 11] efficient

interpolation of the sound field is expected only within the part of the room surrounded by

microphones used for training of the parameters.

We will present the performance of our approach on measurements made in a rectangular

room with an approximate size 3m×5.6m×3.53m. Properties of the chosen room are observed

in [23]. Microphones are distributed randomly inside a 1m side cube in one half of the room

and the sound source is in the other half of the room. Random placement serves the purpose

of reducing the coherence of the captured data. Since we were processing real measurements,

in order to have an idea about the approximate value of some of the parameters we want

to estimate, we have applied the rational fraction polynomial curve fitting [154] based on

the room mode shaped polynomials as basic fitting elements. In this way we have retrieved

approximate ground truth values of resonant frequencies and mode damping factors. During

the curve fitting process, our wave numbers κ[n] = ω[n]+ jξ[n]
c appear in the poles of the fitted

function [155] as in (eq. 1.8). The retrieved values of the axial room modes are in accordance

with the laser measurements for the room dimensions of the given room related through (eq.

1.5).

Figure 4.3. shows the results for the estimation of the room mode resonant frequencies and

their position in the k-space in the low part of the algorithm with 20 microphones. Here the

fp frequency was set to be 70Hz. The basic axial modes are easily recognized and they give a

fine approximation of the room size up to a few cm away from ground truth. We can notice

that the kx and ky component of the estimated wave vectors give a good approximation, but

3https://ch.mathworks.com/matlabcentral/fileexchange/37004-suite-of-functions-to-perform-uniform-
sampling-of-a-sphere?s_tid=prof_contriblnk
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4.4. Reconstruction of the room shape

Figure 4.3 – The estimation of wave vectors in k-space. The numbers next to the points
indicate the corresponding eigenfrequencies (in Hz). What we expect from theory in a case
with perfectly rigid walls is plotted against the values we get from the measurements.

there is a slight deviation in the kz direction. This is attributed to the fact that in the room

where the measurements were performed the floor is made from wood and ceiling is made

from concrete. Also the slight deviation of the eigenfrequencies can be attributed to the fact

that the search of the wave vectors was performed with a rigid wall model ‖K[n, w, :]‖ = |κ[n]|.

After applying the high part of the algorithm, the Pearson correlation coefficient showed that

the approximation is good (e.g. 82% for only 19-microphone setting and fc = 200Hz), but it

should be further improved once the nature of the deviation of the wave vectors in z direction

is efficiently characterized.

4.4 Reconstruction of the room shape

An important line of work on room shape estimation was done by Dokmanic et al. [50]. Al-

though originally the key weakness of this paper was estimation of the location of echoes from

a bandlimited noisy recording, this line of research was followed by a method for improved

echo detection and pruning [51]. This approach and the one we propose, operate in different

domains - their approach is in temporal and ours is in frequency domain. Despite the fact

that both methods offer recovery within up to a few centimeters, the main differences are that
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our method requires more microphones, but does not require any preprocessing in the term

of peak picking and echo pruning. Also, we are not limited to high quality equipment, since

the proposed algorithm operates in the low-frequency domain.

On the other hand, with the proposed method we have only covered the case of regular

rectangular room. Since plane waves exist also in non-rectangular rooms, our method could

be extended to more diverse cases with higher computational complexity when it comes to

the structured search of the wave vector space.

4.5 Conclusion

The proposed solution is suitable only for rectangular shaped rooms that are lightly damped,

which was confirmed by the experiments. Also, the sound source has to be put in a position

such that it excites all the axial modes. Although the solution requires the number of modes

N , the reverberation time t60 and the sound celerity c to be know, solution is not sensitive to

their slight perturbation. The estimation of approximate structure of the k-space has lead

to the reduction in the terms of number of required measurements and in the increase of

the speed of the reconstruction without great losses of quality, but not for a broad range of

frequencies. The higher we take the frequencies, the greater become the deviations. In the

spirit of reproducible research, we have decided to open our data on the Zenodo platform 4

and the code on github 5.

4.6 Future work

Relying on the regularity of the modes in the terms of parallelepipedic shape resulted in a

good approximation, but relying on the periodicity of the wave vector grid has shown medium

results, especially for higher order modes. Future work will include further investigation on

the characterization of the deviation of the periodic wave vector grid from its theoretically

projected values imposed by the rigid wall model. We have noticed a higher deviation of the

modes along the z-axis than along the x- and y-axis. This might be explained well by the

temperature gradient that exists along this dimension that can largely affect the efficiency of

the approximation, especially since the speed of sound is a function of temperature.

4https://zenodo.org/record/1169161
5https://github.com/epfl-lts2/joint_estimation_of_room_geometry_and_modes
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Part IVParametric models for echo
estimation: Location, weight and

density
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5 MULAN: A Blind and Off-Grid Method
for Multichannel Echo Retrieval1

When a wave propagates from a point source through a medium and is reflected on surfaces

before reaching sensors, the measured signals consist of mixtures of the direct path signal

with delayed and attenuated copies of itself. This physical phenomenon is commonly referred

to as echoes and has a wide range of applications in different areas of science, from sonars [84]

to seismology [162], from acoustics [50, 41, 40] to ultrasounds [4]. For instance, in acoustics,

it has been shown that precise knowledge of early echo timing enables the estimation of the

positions of reflective surfaces in a room [50, 41, 193]. In [50], the approximate 3D geometry

of Lausanne cathedral could be retrieved in this way. On the other hand, echoes’ attenuation

capture information about the acoustic impedance of surfaces, which is notoriously hard

to measure or estimate in practice [12, 17]. In [51] and [164], it is shown that knowing the

attenuation and timing of early echoes may improve beamforming and source separation

performance, respectively. Systems using echoes for beamforming are commonly referred to

as rake receivers in the wireless literature [140].

Retrieving echo properties when the emitted signal is known is referred to as active echoloca-

tion in biology, and is well exemplified by the sensory system of echoing bats. This principle is

for instance at the heart of active sonar technologies. In the signal processing literature, this

problem belongs to the category of system or channel identification, i.e., estimating the filters

from a known input to the observed output of a linear system. In the case of echoes, these

linear filters consist of streams of Diracs in the continuous-time domain and are hence sparse

in the discrete-time domain. The more challenging problem of estimating echoes/filters when

the emitted signal is unknown is referred to as passive echolocation or blind system identifica-

tion (BSI) [196, 71, 2, 8, 102, 77, 87, 40, 99, 96]. BSI is a long-standing and still active research

topic in signal processing, notably due to its fundamental ill-posedness. In the general setting

of arbitrary signals and filters, rigorous theoretical ambiguities under which the problem

is unsolvable have been identified [196]. A number of methods for multichannel BSI with

general signals and filters have been developed some time ago [196, 71, 2]. Some well-known

limitations of these approaches are their sensitivity to the chosen length of filters, and their

1Work done as research intern at INRIA, Rennes. A collaboration with Antoine Deleforge.
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intractability when the filters are too large. Following the compressed sensing wave [28], a

number of methods extending these BSI methods to the case of sparse [8, 102, 77, 87, 40] or

structured [96] filters have been developed. They generally extend classical methods using

regularizers such as the `1-norm for sparsity or a bilinear constraint as in [96]. Similarly to

classical filter estimation methods, they require knowledge of the filters’ length and they work

in the space of discrete-time filters which are typically thousands of samples long. Because

they work in the discrete-time domain, the accuracy at which these methods can recover

echo locations is fundamentally limited by the signal’s frequency of sampling: the recovered

echoes are on-grid. Moreover, the sparsity assumption on filters is invalid in practice due to

smoothing and sampling effects at sensors that comes from finite sampling frequency of the

device. Interestingly, [33] employs a continuous-time spike model for single-channel blind

deconvolution but relies on a strong linear prior on the signal.

We propose a drastically different approach to blind echo retrieval based on the framework of

Finite Rate of Innovation (FRI) sampling [191, 19, 197]. In stark contrast with existing methods,

the approach directly operates in the space of continuous-time echoes, and is hence able to

blindly recover their locations off-grid. The proposed method is shown to recover echo delays

and attenuation with an accuracy far higher than what the sampling rate would normally

allow, using noiseless multichannel discrete-time measurements of an unknown simulated

speech emitter in a room. The method does not assume that the filters are finite-length and

only requires the number of echoes.

In this chapter we will be addressing the general problem of blind echo retrieval, i.e., given

M sensors measuring in the discrete-time domain M mixtures of K delayed and attenuated

copies of an unknown source signal, can the echo locations and weights be recovered? This

problem has broad applications in fields such as sonars, seismology, ultrasounds or room

acoustics. It belongs to the broader class of blind channel identification problems, which have

been intensively studied in signal processing. Existing methods in the literature proceed in

two steps: (i) blind estimation of sparse discrete-time filters and (ii) echo information retrieval

by peak-picking on filters. The precision of these methods is fundamentally limited by the rate

at which the signals are sampled: estimated echo locations are necessary on-grid, and since

true locations never match the sampling grid, the weight estimation precision is impacted.

This comes from the basis mismatch problem, as was discussed earlier, because we retrieve

the weight at the retrieved location which causes both components of the (location, weight)

pair to be incorrect. We propose a radically different approach to the problem, building on

the framework of Finite Rate of Innovation sampling. The approach operates directly in the

parameter-space of echo locations and weights, and enables near-exact blind and off-grid

echo retrieval from discrete-time measurements. It is shown to outperform conventional

methods by several orders of magnitude in precision.
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5.1. The signal and measurement models

Figure 5.1 – (a) Continuous-time stream of Diracs h(t), (b) sinc kernel φ(t), (c) smoothed
stream (φ∗h)(t), (d) original stream h(t) (red) and its smoothed, sampled version h ∈ RL

(blue).

5.1 The signal and measurement models

We start by defining the signal model in the continuous-time domain. Suppose a source

emits a band-limited signal s(t ) which is reflected and attenuated K times before reaching M

sensors. The continuous signal impinging at sensor m is

xm(t ) = (hm ∗ s)(t ) (5.1)

where hm(t) is a linear filter from the source to sensor m and ∗ denotes the continuous

convolution operator defined by

(x ∗ y)(t ) =
∫ +∞

−∞
x(u)y(t −u)du. (5.2)

The filter consists of the following stream of Diracs:

hm(t ) =
K∑

k=1
c m[k]δ(t −τm[k]), (5.3)

where δ denotes the Dirac delta function, {τm[k]}K
k=1 denote the K propagation times from the

source to sensor m in seconds, i.e. the echo delays or Dirac locations and {c m[k]}K
k=1 denote

the echo attenuations or Dirac weights. In practical applications, continuous time-domain

signals are not accessible. They are measured by sensors and discretized to be stored in a

computer’s memory. Let xm ∈RN denote N consecutive discrete samples collected by sensor

m. Most measurement models assume that the impinging signal undergoes an ideal low-pass

filter with frequency support [− fs/2, fs/2] before being regularly sampled at the rate fs in Hz.

This is expressed by

xm[n] = (φ∗xm)(n/ fs), n = 0, . . . , N −1 (5.4)

where φ= sin(πt )/πt is the classical sinc sampling Kernel. The continuous-time model (5.1)

can then be approximated in two different ways, described in the next two sub-sections.
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Discrete time-domain model

First, model (5.1) can be approximated in the discrete, finite-time domain. Let hm ∈RL and

s ∈ RN+L−1 denote discrete, sampled versions of the filter hm(t) and signal s(t) respectively.

We then have

xm[n] ≈ (hm ? s)[n] (5.5)

where the discrete finite convolution operator ? between two vectors u ∈ RL and v ∈ RD

(L ≤ D) is defined by

(u?v )[n] =
L−1∑
j=0

u[ j ]v[L−1+n − j ], n = 0, . . . ,D −L. (5.6)

The following convenient matrix notation will be used:

u?v = Toep0(u)v = Toep(v )u = (5.7)

uL . . . u1 0 . . . . . . 0

0 uL . . . u1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0
. . .

. . .
. . . 0

0 . . . . . . 0 uL . . . u1




v1

v2
...

vD

=


vL vL−1 . . . v1

vL+1 vL
. . . v2

...
. . .

. . .
...

vD vD−1 . . . vD−L+1




u1

u2
...

uL

 ,

where Toep0(u) ∈ R(D−L+1)×D and Toep(v) ∈ R(D−L+1)×L . The validity of approximation (5.5)

depends on the way hm(t) and s(t) are sampled. In [187](Proposition 2), it is showed that if

s(t) is band-limited with maximum frequency lower than fs/2 and if we let the number of

samples N and the filter length L grow to infinity, then model (5.5) is exact for the following

sampling schemes:

s[n] = s(n/ fs), n ∈Z (5.8)

hm[n] = (φ∗hm)(n/ fs), n ∈Z. (5.9)

Here, it is important to note that contrary to intuition, even in the idealized case where an

infinite number of samples are available, the discrete-time filters {hm}M
m=1 involved in the

measurement model are never streams of Diracs, but non-sparse, infinite-length filters con-

sisting of decimated combinations of sinc functions. This is illustrated in Fig. 5.1. Recovering

the original Dirac positions and coefficients from finitely many samples of such filters is a

challenging task in itself.
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Discrete frequency-domain model

Alternatively, one may approximate model (5.1) in the discrete finite-frequency domain. Let

x̂m ∈CF denote the discrete Fourier transform (DFT) of xm , defined by

x̂m( f ) = DFT(xm) =
N−1∑
n=0

xm[n]e−2π j f n/ fs (5.10)

where f belongs to a set of F regularly-spaced frequencies F = { f1, . . . , fF } ⊂]0, fs/2] in Hz,

therefore is a discrete variable. We then have the following approximate model:

x̂m[ f ] ≈ ĥm[ f ]ŝ[ f ] ≈
(

K∑
k=1

c m[k]e−2π j f τm [k]

)
s[ f ] (5.11)

where ĥm ∈CF and ŝ ∈CF denote the DFT of hm and s, respectively. Two approximations are

made in (5.11). First, the time-domain convolution between ĥm and ŝ has been transformed

into a multiplication through the DFT. This would be exact for a circular convolution, but the

actual model is a linear convolution between infinite and non periodic signals, resulting in an

approximation error. Second, the formula used for ĥm in the right hand side of (5.11) is the

one that would result from the discrete-time Fourier transform (DTFT) of hm which would

require infinitely many samples N to be calculated exactly, as opposed to the DFT. Note that

the smoothing sinc kernel φ(t) does not impact this formula, since only frequencies below

fs/2 are considered. Importantly, both approximations in (5.11) become arbitrarily precise as

the number of samples N grows to infinity.

While both the discrete-time model (5.5) and the discrete-frequency model (5.11) become

increasingly accurate when N becomes large, the latter directly incorporates the variables of

interest {c m[k],τm[k]}M ,K
m,k=1, as opposed to the former. In the remainder of this chapter, it will

be assumed that s(t) is bandlimited with maximum frequency less than fs/2 and that N is

sufficiently large such that both models hold very well. This is a reasonable assumption in

audio applications, where sensors typically acquire tens of thousands of samples per second.

Moreover, we focus on situations where sensor noise is negligible. Hence, the approximation

signs will be dropped for convenience.

5.2 Existing methods in channel identification

All existing methods in blind channel identification rely on the discrete-time model (5.5)

[196, 71, 2, 8, 102, 77, 87, 40, 99, 96]. The case of general emitted signals and finite filters

was studied both methodologically and theoretically in the 90s [196, 71, 2], where two main

categories of methods emerged, which we briefly review here, focusing on the two-channel

(M = 2) case for simplicity. First, the so-called subspace methods rely on the estimation of

a time-domain MP ×MP covariance matrix where P is a time-window length that must be

larger than the filters’ length L [2]. The filters are estimated by spectral decomposition of
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this matrix. Second, the more common cross-relation (CR) methods rely on the observation

that under noiseless conditions we have hm ?x l −hl ?xm = 0N−L+1 for l 6= m ∈ {1, . . . , M }, by

associativity of the convolution. A common approach is therefore to solve a minimization

problem of the form:

ĥ
∗
1 , ĥ

∗
2 = argmin

ĥ1[1]=1

∥∥Toep(x̂2)ĥ1 −Toep(x̂1)ĥ2
∥∥2

2 , (5.12)

which is a simple least-square problem. The constraint ĥ1(1) = 1 is used to avoid the trivial

solution ĥ1 = ĥ2 = 0L . Alternatively, the normalization ‖ĥ1‖2
2 +‖ĥ2‖2

2 = 1 can be used, leading

to a minimum eigenvalue problem.

In the case of interest where the goal is to retrieve echo information from the filters, both

subspace [77] and to a larger extent CR [8, 102, 87, 40] methods have been extended in order

to handle sparse filters. This approach requires two independent steps: first estimating sparse

filters, second retrieving echo locations and weights from them, typically using a peak-picking

technique. Following the compressed sensing idea [28], sparsity is usually promoted using

an `1-norm penalty term on the filters. For instance in [102], the following LASSO-type [179]

problem is considered:

ĥ
∗
1 , ĥ

∗
2 = argmin

ĥ1(1)=1

∥∥Toep(x̂2)ĥ1 −Toep(x̂1)ĥ2
∥∥2

2 +λ(‖ĥ1‖1 +‖ĥ2‖1) (5.13)

and a Bayesian-learning method for the automatic inference of λ is proposed. Several other

approaches relying on similar schemes [8, 87, 40] have been proposed.

Four important bottlenecks of discrete time methods for echo retrieval can be identified:

• Although they rely on sparsity-enforcing regularizers, the filters are strictly-speaking

non-sparse in practice, due to the sinc kernel (Fig. 5.1). This general bottleneck of

compressed sensing has been referred to as basis mismatch and was notably studied

in [34]. In particular, the true peaks of the filters do not correspond to the true echoes

(Fig. 5.1), even for N →∞. Though, most existing methods rely on peak-picking [87, 40].

• For the same reason, these methods are fundamentally on-grid, namely, they can only

output echo locations which are integer multiple of the sampling period 1/ fs . This

prevents subsample resolution, which may be important in applications such as room

shape reconstruction from audio signals [50].

• These methods strongly rely on the knowledge of the length L of the filters. However,

due to the sinc kernel (Sec. 5.1), the true filters are always infinite.

• The dimension of the search space is ML−1, which is much larger in practice than the

actual number 2MK of unknown variables. This makes the methods computationally

demanding and sometimes intractable for large filter lengths (typically in the tens of

thousands for acoustic applications).
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5.3 Off-grid echo retrieval by multichannel annihilation

In this section, we introduce a novel method for echo recovery that makes use of the discrete-

frequency model (5.11) and overcomes a number of shortcomings of existing approaches.

Namely, it works directly in the parameter space, it does not rely on the filters’ length but on

the number of echoes, and it enables exact off-grid recovery of echoes’ locations and weights

in the noiseless case. The approach relies on the FRI sampling paradigm introduced in [191].

This is the first time this paradigm is applied to blind channel identification.

5.3.1 The non-blind case

We start by considering the non-blind case where the emitted signal s ∈ CF in the discrete

frequency domain is known. We further assume throughout the chapter that this signal is

nonzero on the considered frequency grid F= { f1, . . . , fF }. We can then transform the discrete-

frequency model (5.11) by writing:

ĥm[ f ] = x̂m[ f ]z[ f ] =
K∑

k=1
c m[k]e−2π j f τm [k] (5.14)

where the Fourier-inverted signal z ∈CF is defined by z[ f ] = ŝ[ f ]−1. Our goal is to estimate

{c m[k],τm[k]}K
k=1 from ĥm = x̂m ¯ zm , where ¯ denotes the Hadamard product. If we take

our frequency indexes F to be in arithmetic progression with step ∆ f , then the exponential

sequence {e−2π j fiτm [k]}F
i=1 is a geometric progression with ratio r m[k] = e−2π j∆ f τm [k] for each

m,k. Hence, ĥm is a weighted sum of geometric progressions. This enables us to use the so

called annihilating filter technique [175]. This technique is based on the observation that

[1,−w]? [w0, w1, w2, . . . , wF−1] = 0F−1, (5.15)

for any w ∈C and F ∈N. We deduce that if we define the filter am = [am,0, . . . , am,K ] ∈CK+1 as

the following discrete convolution2 of K filters of size 2:

am = [1,−rm,1]? [1,−rm,2]? · · ·? [1,−rm,K−1]? [0K−1,1,−rm,K ,0K−1], (5.16)

then am is an annihilating filter for hm , i.e., am ?hm = 0F−K . Importantly, the number of

echoes K has to be known upfront in order to define am . Let us now define the polynomial

representation of filter am by:

Pam [y] =
K∑

k=0
am[k]yk . (5.17)

Because am is an annihilating filter for hm , it follows from the classical interpretation of

convolution as polynomial multiplication that Pam has exactly K roots, which are the ratios

{r m[k]}K
k=1. Hence, once an annihilating filter am for hm has been found, the Dirac locations

2The chained discrete convolutions in (5.16) have to be taken from right to left to be compatible with (5.6).
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{τm[k]}K
k=1 can be deduced by rooting Pam . Once the roots are known, reconstructing the

weights is a simple linear problem involving a Vandermonde matrix V(r m) ∈CF×K (type of a

matrix that contains geometric progression in each row), obtained by writing (5.14) in matrix

form: 
ĥm[ f1]

ĥm[ f2]
...

ĥm[ fF ]

=


1 1 . . . 1

(r m[1])1) (r m[2])1 . . . (r m[K ])1

...
...

. . .
...

(r m[1])F−1 (r m[2])F−1 . . . (r m[K ])F−1

Dm


c m[1]

c m[2]
...

c m[K ]

= V(r m)Dmc m .

(5.18)

where Dm = diag(e−2πi f1τm ) ∈ CK×K . The least-square solution of this system is given by

c m = D−1
m V(r m)†ĥm where {·}† denotes the Moore-Penrose pseudo inverse. For a rectangular

matrix M, its Moore-Penrose psaeudo inverse is given by M† = (MM)−1M, if M has linearly

independent columns, or M† = M(MM)−1, if M has linearly independent rows.

In practice, since positive weights are sought, the phases of this complex vector are discarded.

General FRI theory [191] tells us that F ≥ 2K +1 is enough to uniquely recover the exact K

Dirac locations and weights using this method in a noiseless setting. In other words, the

original echo retrieval problem has been reduced to that of finding an annihilating filter for

ĥm = x̂m ¯ z . In practice, this can be done by solving the following minimization problem for

m = 1, . . . , M :

a∗
m = argmin

‖am‖2
2=1

∥∥Toep(x̂m ¯ z)am
∥∥2

2 , (5.19)

where the unit norm constraint is used to avoid the trivial solution am = 0K+1. The solution

of this problem is the eigenvector associated to the lowest eigenvalue of Toep(x̂m ¯ z) (later

referenced as min_eig_vec solved through singular value decomposition (SVD)). Assuming

that the true z is given, that model (5.11) holds exactly and that F ≥ 2K +1, this eigenvalue will

be unique and equal to 0.

5.3.2 MULAN: an iterative scheme

In the blind echo retrieval problem of interest, the emitted signal s and hence z are unknown.

To solve for all unknown variables jointly, we introduce the following non-convex optimization

problem:

z∗, a∗
1 , . . . , a∗

M = argmin
‖z‖2

2=‖a1‖2
2=···=‖aM‖2

2=1

M∑
m=1

∥∥Toep(x̂m ¯ z)am
∥∥2

2 . (5.20)

Our strategy to tackle this problem is by alternated minimization with respect to each variable.

Minimization with respect to each am is already covered by the previous section. Minimization

with respect to z is also a minimum eigenvalue problem, since the cost function C (z , a) can
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Algorithm 3 MULAN (MULtichannel ANnihilation)

Input: Frequency-domain multichannel measurements {x̂1:M ( f ); f ∈ F} computed via DFT
(5.10); max_iter; conv_thresh.
Output: Echo locations and weights {τm[k],c m[k]}M ,K

m,k=1.

1: iter := 0; z := random(); // i.i.d. standard complex Gaussian in CF

2: repeat
3: iter := iter+1;
4: for m = 1 → M do: am := min_eig_vec(Toep(x̂m ¯ z)); end for
5: z := min_eig_vec(Q); // See eq. (5.22)
6: until iter=max_iter or C(z ,a) decreased by less than conv_thresh // See eq. (5.21)
7: for m = 1 → M do
8: r m := roots(Pam ); τm :=−arg(r m)/(2π∆ f ); c m := abs(D−1

m V(r m)†ĥm); // Sec. 5.3.1
9: end for

10: return shifted and scaled {τm[k],c m[k]}M ,K
m,k=1; // See Sec. 5.3.3

be rewritten:

C (z , a) =
M∑

m=1

∥∥Toep(x̂m ¯ z)am
∥∥2

2 =
M∑

m=1

∥∥Toep0(am)diag(x̂m)z
∥∥2

2 = ‖Qz‖2
2 , (5.21)

where Q = [Toep0(a1)diag(x̂1); . . . ;Toep0(aM )diag(x̂ M )] ∈CM(K+1)×F (5.22)

and [·; ·] denotes vertical concatenation. If the algorithm succeeds in bringing down the

cost function to zero, it means that appropriate annihilating filters have been found for all

channels for a given Fourier-inverted signal z , and the locations and weights of all Diracs can

be recovered up to a global shift of locations and global scaling of attenuations. We call this

method MULAN for MULtichannel ANnihilation. Pseudo-code for the algorithm is given in

Alg. 3. Since (5.20) is non-convex, the alternate minimization scheme is at best guaranteed to

converge to a stationary point of the cost-function C (z , a). To alleviate this issue, we propose

to initialize the method multiple times with random values of z and only keep the run with

lowest final C (z , a).

5.3.3 Identifiability and ambiguities

The identifiability of blind channel identification for general discrete filters and signals has

been studied some time ago [196]. It is known that the filters {hm}M
m=1 cannot be recovered

if their polynomial representations admit at least a common root or if the polynomial rep-

resentation of the emitted signal ŝ has less than 2L +1 roots. The latter is ruled out if the

emitted signal has a rich enough spectral content (enough nonzero frequencies) which is

usually the case for natural signals. The former has at least one consequence in our case:

the problem is unidentifiable if the observed signals are scaled and delayed versions of each

other, which may happen in practice. While other common roots may appear in the general

setting, it is important to note that MULAN restricts the search of filters to those which are
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linear combinations of geometrical series in the frequency domain. There is no complete

theoretical study on common roots in this case, to the best of our knowledge. The authors of

[38] theoretically studied blind deconvolution of sparse signals, but their results do not apply

here since our filters are not sparse (see Sec. 5.2). Another well-known ambiguity is that the

filters can only be recovered up to a global time-shift and scaling, because a converse shifting

and scaling of the emitted signal yields the same observations. We handle this by adopting the

convention τ1[1] = 0 and c 1[1] = 1. Additionally, we assume that all echoes are located in the

first half of temporal filters to avoid time-wrapping ambiguities. Finally, the proposed MULAN

algorithm has an extra specific ambiguity. It can be easily shown that multiplying the roots of

all polynomials {Pam }M
m=1 by a complex scalar γ while dividing the Fourier-inverted signal z

element-wise by a geometric series of ratio γ does not change the cost function C (z , a). This

can be handled by rescaling the roots of all annihilating filters to have unit modulus at each

iteration. However, since only the complex arguments of the roots are used in the end, this

appeared to be unnecessary in our experiments.

5.4 Experiments

5.4.1 On-grid vs. off-grid echo retrieval

We first emphasize the specific ability of the proposed method to recover echo locations off-

grid by comparing it to conventional on-grid methods on a simulated room-acoustic scenario

and on an artificial scenario with truly sparse discrete filters for reference. For the room-

acoustic scenario, there is a point source emitting speech from the TIMIT dataset [59], and

M = 2 microphones are randomly placed inside 100 random shoe-box rooms whose sizes vary

from 4m×6m×8m to 5m×7m×9m. Simulations were performed using the pyroomacoustics

library [163]. The absorption coefficient of each surface of the room is set to 0.2 to arrive to

moderately damped early reflections. Only first-order reflections on the 6 surfaces and the

direct path are simulated, resulting in K = 7 echoes per channel and filters shorter than 50 ms.

For each experiment, it was ensured that the minimum separation of echoes was 1ms. The

filters are simulated in the continuous-time domain using the image-source method [10]. They

are then smoothed, sampled and convolved with the source signal at fs = 16kHz according to

the measurement model described in Sec. 5.1. The ground-truth echo locations and weights

are saved in the time-domain before smoothing and are hence off-grid. The M-channel input

signals used are 0.25s long, i.e., N = 0.25 fs = 4000 samples. On the other hand, for the artificial

scenario, the speech source was discretely convolved with sparse filters of similar length with

K = 7 nonzero elements each resulting in N = 4000 samples of M-channel observations. The

ground-truth echo locations and weights are hence on-grid in this case. All weights take values

between 0 and 1.

For MULAN, the DFT (eq. 5.10) is applied to each input signal using a grid F of F = 401

regularly spaced frequencies between 200 Hz and 2000 Hz. Such a choice of the frequency

range avoids low-frequency bands which are often noisy in real scenario, while focusing on a
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typical spectral range for speech, but it can be easily adapted depending on the application.

An odd number of frequencies was chosen, since it has proven to be a good practice [19].

We use 20 random initializations as a good compromise between global convergence and

computing time, max_iter= 1000 and conv_thresh= 0.1%. The two baseline methods chosen

are CR [196] as described in (5.12) and its LASSO-type extension [102] as described in (5.13).

The filters’ lengths L were always set to the true lengths (which never exceed 0.05 fs) and the

sparsity parameter λ for LASSO was manually set to λ= 10−3, which empirically showed best

performance among the choices {10−6,10−5, . . . ,102}, although any value below 10−2 showed

similar performance.

We used two distinct metrics to evaluate Dirac location estimation and Dirac weight estimation.

For the first one, a test is counted as successful if the root mean squared error (RMSE) of the

7×2 = 14 Dirac locations is below 1 sample (1/ fs seconds), and the success rate out of 100

tests is provided. This metric only counts fully successful channel recovery and penalizes

tests where some Diracs are missed or completely off. For the second one, we provide the

weight RMSE of successful tests only. This is to avoid counting weights estimated at wrong

Dirac locations. These metrics for 100 on- and off-grid tests and all three methods are showed

in Table 5.1. We can see that for the on-grid case, both CR and MULAN perform well, CR

even achieving more location recoveries than MULAN. This is not too surprising since CR

is based on the on-grid artificial model, while MULAN uses an off-grid model. We observed

that LASSO struggles with the proximity of Diracs and did not perform as well. In terms of

weight estimation MULAN yields errors which are 2 to 3 orders of magnitudes smaller than

the two competing methods, which is very encouraging. In the more realistic off-grid scenario,

we observed that localization errors of CR and LASSO drastically degrades with almost no

successful channel estimation. Meanwhile, MULAN achieves near-exact full recovery of

locations and weights in 70 out of 100 tests.

5.4.2 Influence of K, M, F on recovery rate

We now conduct further experiments to check the influence of parameters K , M and F on the

ability of MULAN to fully recover Dirac locations and weights off-grid. We show results with 20

random initializations, F = 201 or F = 401 in the same frequency range as before, M ∈ {2, . . . ,7}

and K ∈ {2, . . . ,7}. The following RMSE thresholds were defined for success of recovery: 1

sample for locations as before and 10−2 for weights. 100 experiments were performed for

every parameter set. Results for F = 201 can be seen in Figures 5.2 and 5.3, and for F = 401

in Figures 5.4 and 5.5. As can be seen, a higher recovery rate is generally observed when

fewer echoes are present and more frequencies are used. On the other hand, the number

of sensors does not significantly affect recovery performance. This is expected since O (K M)

parameters are estimated from O (MF ) observations, so by increasing the number of sensors

we increase the search space. Increasing the number of random initializations also showed to

increase success by alleviating the non-convexity of the problem, at the cost of an increased

computational requirement.
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case method full location recovery weight RMSE

on-grid
CR [196] 92 % 0.0390
LASSO [102] 13 % 0.155
MULAN (proposed) 59 % 0.00016

off-grid
CR [196] 1% 0.0442
LASSO [102] 2% 0.0346
MULAN (proposed) 70 % 0.00048

Table 5.1 – Ratio of full Dirac location recovery (RMSE < 1 sample = 1/ fs seconds) and weight
RMSE (successful cases only) for three methods over 100 on-grid and 100 off-grid tests. Weights
take values between 0 and 1.

Figure 5.2 – Rate of location retrieval for
F = 201.

Figure 5.3 – Rate of weight retrieval for
F = 201.

5.4.3 A discussion on the minimum separation of Diracs

Due to the fact that the proposed algorithm highly relies on the finite rate of innovation theory,

the minimal separation of Diracs is determined by two key factors: the bandwidth and the

amount of noise. In [19] the limits on the recovery of a Dirac with parameters (c,τ) are given

with Cramér-Rao bound:

∆τ

T
≥ 1

π

√
3BT

N
(
B 2T 2 −1

) ·PSNR−1/2, (5.23)

where T is the periodicity of the signal (or length of the finite-length signal), B is the bandwidth

of the measuring device, P N SR is Peak Signal-to-Noise Ratio with PSN R = |c|2
σ2 , N is the

number of measurements and σ2 is the noise power. Within the scope of this chapter we have

taken ∆t to be 1ms. Further evaluation of the recovery of these bounds is left for future work.
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Figure 5.4 – Rate of location retrieval for
F = 401.

Figure 5.5 – Rate of weight retrieval for
nF = 401.

5.5 Conclusion

This chapter introduced the first method enabling blind and off-grid recovery of echo locations

and weights from discrete-time multichannel measurements. The code can be found on

github3. In the next chapter we develop the extension of this approach to a multichannel

noisy setting and also cover the case when the number of Diracs in our sparse representation

is underestimated.

3https://github.com/epfl-lts2/mulan
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6 Estimating Early Acoustic Echoes
from Noisy Speech with Multichannel
Structured Low-Rank Optimization1

In the previous chapter, our model has mostly relied on the clean data from a simulation with

a known true number of Diracs. As we have discussed earlier, models relying on the Finite

Rate of Innovation theory are known to show degraded performance in the presence of noise.

In this chapter we extend our approach to more realistic cases. The scenarios that we will be

focusing on include the case when the data is noisy and also the case when we want to retrieve

the top K reflections, which is in the literature mostly know as the case of underfitting [39]

(since we assume that our model is of a lower complexity than it truly is), which relaxes the

constraint of knowing the level of sparsity upfront.

The main premise for our observations will be the fact that when the data is recorded simulta-

neously by multiple microphones, all the channels are correlated by the common variable -

the input of the system [196], that is - the sound emitted by the source. This setting is common

for blind deconvolution problem. Although there has been some significant work in 2018 on

blind deconvolution with sparse priors [199, 101, 7, 6], most of the solutions are still relying on

the on-grid recovery.

As in the previous chapter, we will solve the Dirac train recovery problem off-grid in time

domain by moving to the on-grid problem definition in the frequency domain, which should

enable arbitrary positions of Dirac pulses in the temporal/spatial domain.

6.1 Cadzow denoising algorithm

The main contribution of this piece of research is including the Cadzow denoising algorithm

[25] into the story. This algorithm has been used when the Finite Rate of Innovation theory was

extended to noisy cases [19]. The main contribution of this algorithm is an alternating scheme

1Work done with Antoine Deleforge from INRIA.
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Algorithm 4 Cadzow denoising algorithm

Input: Noisy Toeplitz matrix T̃, tolerance, max_iter
Output: Denoised Toeplitz matrix T
*Note: here we use the K notation to denote the K -rank matrix

1: T(1) = T̃;
2: repeat
3: iter := iter+1;
4: UΣV∗ = T(i ter ); // singular value decomposition
5: T(i ter )

K = UΣK V∗; // will be noted as a projection PRK

6: [h, w] = size(T(i ter )
K );

7: for i =−h → w do // will be noted as a projection PT

8: diag(T(i ter+1), i ) = mean(diag(T(i ter ), i )); // Toeplitization
9: end for

10: until iter <max_iter and ‖T(i ter ) −T(i ter−1)‖ >tolerance
11: return T = T(i ter );

that can be used for removing the noise from data or data enhancement. We need to alternate

between the properties that our data is known or hypothesized to possess, which would in our

case be: rank K for the measurement matrix and its Toeplitz structure. The pseudocode of the

original formulation of the algorithm is given in Algorithm 4.

The level of sparsity, K , is usually assumed to be known upfront and [19] also discusses what

happens in cases when the number of Diracs is over- or underestimated. In an overestimated

case, some spurious Diracs are retrieved which can be alleviated by introducing the minimum

threshold for Diracs’ weight. On the other hand, for the underestimated case, usually the

Diracs with the K highest weights are retrieved.

This chapter is an extension of the previous, so we keep the definition of the data model for

the continuous and observation (discrete) case.

6.2 Data model and Cadzow denoising

The original formulation of Cadzow denoising is non-convex and has no guarantees on the

convergence of the algorithm. In a paper from 2014, Condat et al. [39] redefine this denoising

into a convex formulation by denoising a weighted `2-norm of a Toeplitz structured matrix

that has number of columns greater than the level of sparsity.

As was previously defined in (eq. 5.14), in the context of acoustic echoes retrieval, M filters that

correspond to the room impulse response at the positions of our sensors have the following

form in the frequency domain representation:

ĥm[ f ] =
K∑

k=1
c m[k]e−2π j f τm [k] (6.1)
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where {c m[k],τm[k]}M
m=1 are the variables of interest. Following [39], this form can be equiva-

lently enforced by the following constraint on ĥm :

rank(ToepP (ĥm)) ≤ K , (6.2)

where for any K ≤ P < D/2, the ToepP operator maps a vector v ∈CD to a matrix inC(D−P )×(P+1)

as follows:

ToepP (v ) =


vP+1 vP . . . v1

vP+2 vP+1
. . . v2

...
. . .

. . .
...

vD vD−1 . . . vD−P

 . (6.3)

6.3 Weighted cross-relation for a multichannel case

6.3.1 Binaural (2-channel) case

Although built as an extension of MULAN, MUSHU will strongly rely on a cross-relation for-

mulation of the problem. To make the algorithm more robust to both model and observation

noise, a natural idea is to use the cross-relation cost function. We focus for now on the M = 2

(2-channel) case. In discrete time domain, cross-relation methods aim at minimizing the

following cost function:

‖h1?x2 −h2?x1‖2
2 (6.4)

where hm ∈RL and xm ∈RN (m = 1,2) are the discrete time-domain filters and signals, respec-

tively. In the frequency domain, the following analog cost-function can be defined:

‖ĥ1 ¯ x̂2 − ĥ2 ¯ x̂1‖2
2 (6.5)

where ¯ denotes the Hadamard product (element-wise multiplication), ĥm ∈CF and x̂m ∈CF

(m = 1,2) are the discrete Fourier transform (DFT) of ĥm and x̂m , respectively. Note that

minimizing (6.4) or (6.5) is not equivalent. Indeed, (6.4) implicitly includes a strong constraint:

the filters are of size L. This constraint is released in (6.5), making the latter highly ill-posed

(for instance, ĥ1 = 1 and ĥ2 = x̂2 ® x̂1 is always a solution, where ® denotes element-wise

division).

We hence consider the following minimization problem:

argmin
ĥ1,ĥ2∈CF

‖ĥ1 ¯ x̂2 − ĥ2 ¯ x̂1‖2
2

such that rank(ToepP (ĥm)) ≤ K , m = 1,2

ĥ1[1] = 1,

(6.6)
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where ĥ1[1] = 1 is here to avoid the trivial solution ĥ1 = ĥ2 = 0. Again following [39], (6.6) can

be equivalently rewritten in matrix form as follows:

argmin
H1,H2∈C(F−P )×(P+1)

‖H1 ¯X2 −H2 ¯X1‖2
W

such that Hm = ToepP (ĥm),

rank(Hm) ≤ K , m = 1,2

Hm ∈TF,P , m = 1,2

H1[1,P +1] = 1

(6.7)

where TF,P denotes the set of (F −P )× (P +1) Toeplitz matrices (F is the cardinality of the

frequency set where the data was observed: F = |F|), Xm = ToepP (x̂m) for m = {1,2} (we avoid

using the hat sign above matrices for convenience). The weighted Frobenius norm ‖ ·‖W of a

matrix A ∈C(F−P )×(P+1) is defined by:

‖A‖2
W =

F−P∑
i=1

P+1∑
j=1

W[i , j ]|A[i , j ]|2 (6.8)

and the following weights W ∈C(F−P )×(P+1) are used [39]:

W[i , j ] =


1/(i − j +P +1) if i − j ≤ 0,

1/(P +1) if 1 ≤ i − j ≤ F −2P −1,

1/( j − i +F −P ) if i − j ≥ F −2P.

(6.9)

We propose to alternately minimize (6.7) with respect to H1 and H2 using Cadzow denoising.

For a fixed H2, minimization with respect to H1 can be written as follows:

argmin
H1∈C(F−P )×(P+1)

‖H1 −H2 ¯X1 ®X2‖2
W¯|X2|¯2

such that rank(H1) ≤ K

H1 ∈TF,P .

(6.10)

Note that the third constraint has been dropped because it suffices to have H2 6= 0 to avoid

the trivial solution. A proof of the equivalence between (eq. 6.7) and (eq. 6.10) is given in

Appendix A. (6.10) has the form of a structured low-rank approximation (SLRA) problem with

target H2¯X1®X2 for which Cadzow denoising or the method proposed in [39] can be applied.

Given an appropriate initialization of H2, we propose to alternate between one Cadzow

iteration to update H1 and one Cadzow iteration to update H2 (analogously) until convergence.

We terminate the algorithm when almost no progress is made between consecutive iterations.

6.3.2 Multichannel case

Let’s define the set of channel indices asM= {1,2, ..., M }. In order to explore the potential of

the multichannel setting, we expand the definition of the algorithm (eq. 6.10) to a case in
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which we have M microphones:

argmin
H1∈C(F−P )×(P+1)

‖H1 −V¯−1
M/1 ¯X1 ¯∑M

m=2 Hm ¯X∗
m‖2

W¯VM/1

such that rank(H1) ≤ K

H1 ∈TF,P .

(6.11)

where VM/1 = ∑M
m=2 |Xm |¯2. The definition of VM/m where m ∈M follows naturally. With an

appropriate initialization with GCC-PHAT, the algorithm converges to the true filters Hm by

alternatively solving the problem for all of the different m’s.

Generalization of Cadzow denoising upgraded to multi-channel case: In a multichannel case

we need to minimize a cross-relation objective function for all the possible pairs of M micro-

phones. In order to avoid the central part of the equation, the global objective function will

consist of the concatenation of all the cross-relation objective functions of all the microphone

pairs:

‖[A | B]‖2
F = ‖A‖2

F +‖B‖2
F , (6.12)

where | is used for matrix concatenation.

We will have one optimization problem to solve for every microphone. Therefore, the Cadzow

formulation generalized for M microphone case gives the following objective function for

each microphone (here we give the definition for the first channel and all the definition for all

the other channels follows analogously):

O(m = 1) =
M∑

m=2
‖H1‖2

W¯|Xm |¯2 −2 ℜ
(∑∑

H∗
1 ¯X1 ¯W¯

M∑
m=2

Hm ®Xm ¯|Xm |¯2
)
+

+
M∑

m=2
‖Hm ®Xm ¯X1‖2

W¯|Xm |¯2 .

(6.13)

We introduce the following sum: Vi =∑
j∈M\i |X j |¯2. Finally, for m ∈Mwe have:

O(m) = ‖Hm − Xm

Vm

∑
i∈M\m

Hi ®Xi ¯|Xi |¯2‖2
W¯Vm

=

= ‖Hm − Xm

Vm
¯ ∑

i∈M\m
Hi ¯X∗

i ‖2
W¯Vm

.
(6.14)

Definition of the algorithm updates: As explained beforehand, we solve one optimization

problem per filter Hm , m ∈M. Unlike in the [39], we change the updates in our algorithm by

taking into account the previous estimation of the filter Hm :

H(l+1)
m =PRK

(
S(l )

m +γ(H(l )
m −S(l ))−µVM/m ¯W¯ (H(l )

m − H̃m)
)

(6.15)
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S(l+1)
m = S(l )

m −H(l+1)
m +PT (2H(l+1)

m −S(l )
m ) (6.16)

where PRK is a projection to the space of rank-K matrices, PT is a projection to the space

of Toeplitz matrices, l is the iteration index, Hm are estimated filter Toeplitz matrices and Sm

are helper matrices. The initial values are: H(1)
m gets computed from the Generalized Cross

Correlation with Phase Transform (GCC-PHAT) [85], H̃m = V¯−1
M/m ¯Xm ¯∑

j∈M, j 6=m H j ¯X∗
j (the

minimizer of eq. 6.11) and S(1)
m = H̃m . All the Toeplitz matrices are of width P .

To ensure the convexity of the optimization problem, inspired by the indications from authors

of [39] that the convergence of denoising can be ensured by decreasing the size of γ and µ, we

halve the gradient descent step size µ every time the objective function tends to increase.

6.4 An alternating projections algorithm: MUSHU

Although not a particular acronym, the name of the algorithm MUSHU is given according to

the Disney movie character that accompanies Mulan on her journeys, since this is an extension

of the Mulan algorithm.

For this implementation we have changed our initialization scheme to GCC-PHAT [85] for the

estimation of the Direction of Arrival of the initial Dirac in all the channels. We have used the

implementation of GCC-PHAT available in the pyroomacoustics software package [163].

Outer iterations are related to the indexing of the repetitions of the whole algorithm and

the inner iterations are related to the iterations of the upgraded Cadzow algorithm with the

algorithm updates defined in 6.15 and 6.16.

The global cost function of our problem is defined in the following way:

C (H1, ...,HM ) = ∑
m∈M

∑
m∈M,n 6=m

‖Hn ¯Xm −Hm ¯Xn‖2
W . (6.17)

Finally, for each one of the estimated and denoised matrices Hm , m ∈Mwe find a correspond-

ing annihilating filter am . All this will lead to the retrieval of the locations and weights of the

Diracs as shown in the pseudocode of the Algorithm 5.

6.5 Discussion on results and data collection

Since the idea behind this algorithm was to extend the original MULAN algorithm and apply

it to real data, we have started to explore available databases of room impulse responses with
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Algorithm 5 MUSHU algorithm

Input: Frequency-domain multichannel measurements {x̂1:M [ f ]; f ∈ F} computed via DFT
(5.10); max_iter_outer; max_iter_inner; conv_thresh.
Output: Echo locations and weights {τm[k],c m[k]}M ,K

m,k=1.

iter_outer := 0;
for m = 1 → M do

H(1)
m := gccphat(x̂1:M );

end for
repeat

iter_outer := iter_outer+1;
for m = 1 → M do

iter_inner := 0;
repeat

Update H(iter_outer)
m with Cadzow denoising upgraded (eq. 6.15) and (eq. 6.16)

until iter_inner=max_iter_inner
end for
C (iter_outer) =C (H(iter_outer)

1 , ...,H(iter_outer)
M );

until iter_outer=max_iter_outer or |C (iter_outer) −C (iter_outer−1)| < conv_thresh
for m = 1 → M do

am := min_eig_vec(Hm);
r m := roots(Pam ); τm :=−arg(r m)/(2π∆ f ); c m := abs(D−1

m V(r m)†ĥm); // Sec. 5.3.1
end for
return shifted and scaled {τm[k],c m[k]}M ,K

m,k=1; // See Sec. 5.3.3

labelled echoes. This data exploration has resulted in a jupyter notebook2.

Table 6.1 – Room impulse response databases with and without labels for early reflections.

Project name Annotated # rooms # source pos # mic pos Link

Acoustic Echoes Reveal
Room Shape

yes 3 1 5 link3

modo_db yes 1 3 256 link4

3D Room Reconstruction
with Sound

no 1 17 12 link5

FIT Reverb Database no 9 X 31 link6

2https://github.com/epfl-lts2/early_echo_estimation/blob/master/visualize_measured_rirs.ipynb
3https://infoscience.epfl.ch/record/186657?ln=en
4https://github.com/Chutlhu/modo_db
5https://vgm.iit.it/tutorials/3d-room-reconstruction-with-sound
6https://speech.fit.vutbr.cz/software/but-speech-fit-reverb-database
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6.6 Conclusion

The proposed solution can find applications in the following problems: dereverberation,

acoustical scene analysis and room shape estimations, inside home assistants. In the spirit of

reproducible research, we have made our implementation available on github7. Due to the

lack of time, extensive experiments with the newly proposed method are left for future work.

Initial anchor experiments have shown that the method has potential for off-grid retrieval

of echoes in a noisy blind deconvolution setting. It has also shown potential in the case of

underfitting (when the level of sparsity is underestimated). In this case the proposed methods

detects the highest K peaks.

7https://github.com/epfl-lts2/early_echo_estimation
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7 A Sparsity Measure for Echo Density
Growth in General Environments1

Statistical parameters that characterize impulse responses in enclosures, such as the reverber-

ation time, have been extensively studied in room acoustics [91], along with fairly standard

estimation algorithms [58]. These parametric models provide insight into impulse responses

and enable efficient, natural sounding artificial reverberation [186, 165] and efficient acousti-

cal encoding [151] for interactive auralization. However, parameters characterizing enclosures

are insufficient for convincing spatial audio rendering in augmented and virtual reality appli-

cations which increasingly feature a rich variety of spaces that are partially or fully outdoors

[147, 150, 151], such as courtyards, forests, and urban street canyons.

We investigate how acoustic impulse responses in these transient spaces might differ from

enclosures, whether obtained through measurement or simulation [172, 173, 111]. In par-

ticular, motivated by the common observation that outdoor scenes are sparsely reflecting

[173], we study the temporal growth of echo density in the impulse response. Our goal is to

characterize how this growth might differ - if at all - between indoor and outdoor acoustic

impulse responses, using a parametric power-law model. To the best of our knowledge, such

an investigation has not be done before. Prior techniques, compared in [103], study echo

density primarily for classifying the first moment when the impulse response is sufficiently

diffuse, called the mixing time [138]. This is in contrast to our goal, which is to quantify

and analyze the detailed echo density evolution before the mixing time. Part of the impulse

response after the mixing time is usually modeled as white Gaussian noise, since the diffuse

behavior prevails.

Our main contribution is a sorted density (SD) measure of echo density that enables such an

investigation. We show SD to be theoretically meaningful while being robust to complex 3D

scenes. In contrast to simple scenes such as a cuboid (shoebox), echo density in complex

scenes cannot be defined as number density of non-zero values in the impulse response.

Firstly, surface details and irregularities cause wave scattering so that strong reflections do

not appear as exact copies of the source pulse in the impulse response, but rather contain

1Work done as research intern at Microsoft Research, Redmond.
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Figure 7.1 – The acoustic impulse response (left) is converted to an echogram (middle). A local
energy normalization factors out the energy decay envelope (right).

Figure 7.2 – Normalized echogram is analyzed (left) with a rectangular sliding window (shaded)
centered at each sample (red line). The sorted density is computed, as a fraction of window
width (middle, blue line). The processing for each sample and normalizing with expected
value for Gaussian noise yields echo density (right).

substantial linear distortion. Secondly, the distorted strong arrivals are intermixed with

numerous weak arrivals from diffuse scattering caused by geometric clutter. This makes it

challenging to define and separate out “salient” peaks to measure their temporal density,

such as in [47] to estimate mixing time, as compared in [103]. Our sorted density function

(illustrated in Figures 7.1 and 7.2) is an aggregate measure that avoids peak separation or

detection, obviating such difficulties.

We validate our SD measure against the theoretical notion of echo density on simple enclosures

and observe good agreement. We then apply our technique to measured and simulated

impulse responses on complex scenes and observe that the echo density growth with time

which can be modeled well as t n , where the growth power behaves like n ≈ 2 indoors and

n ≈ 1 outdoors, with intermediate values in mixed cases. Based on these results, we observe

that the growth power of echo density during early reflections is a promising new statistical

parameter that discriminates indoor and outdoor acoustics.

7.1 Echo density measure

Given an input band-limited impulse response hi (t ) we find the first-arrival delay of the direct

sound, τ0, when the acoustic impulse response is modeled like in (eq. 5.14). This can be

estimated by manual inspection to locate the signal onset, or using a detection algorithm [151].

Direct sound is removed by setting: hi (t ) = 0, t < τ0 +10 ms. This yields the input response to

the echo density estimation, h(t) ≡ hi (t +τ0), t ≥ 0. Echo density is then computed using a
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two-pass procedure, illustrated in Figures 7.1 and 7.2 respectively, as will be formally discussed

further.

7.1.1 Local energy normalization

The input response is converted to an echogram, e(t ) ≡ h2(t ). The first pass performs a local

energy normalization which factors out the energy decay in the response thus ensuring that

the number density estimates are not biased by the overall energy envelope of the response,

making the measure fairly insensitive to the reverberation time. This ensures that the energy

decay trend does not affect our results. We normalize each sample value with the local mean

of surrounding samples weighted with a Tukey window w :

ẽ(t ) = e(t )∫
e(t +τ) w(τ) dτ

, (7.1)

where the Tukey window (tapered cosine) is given by:

w(t ) =


1
2

{
1+cos

(2π
r [t − r /2]

)}
, 0 ≤ t < r

2

1, r
2 ≤ t < 1− r

2
1
2

{
1+cos

(2π
r [t −1+ r /2]

)}
, 1− r

2 ≤ t ≤ 1

(7.2)

Window has length L and r is the ration of the cosine-tapered section length to full window’s

length, r ∈ [0,1].

We have used a continuous time notation for brevity, the integrals are to be understood as

discrete summation. The width of the window defines the temporal locality for normalization.

A half-width of Tn = 10 ms corresponds to the interval of perceptual echo fusion [104] and

was found to work well in practice. The Tukey window is normalized so that
∫

w(τ) dτ= 1.

The symmetric cosine tapering segments have width of 5ms each with a 10ms long constant

segment in the middle. As the example in Figure 7.1 shows, the resulting signal is much

more amenable for sparsity analysis, emphasizing peaks without explicit detection. This is

important for two reasons: if we explore simulated data, then we are usually dealing with

perfect resoponses generated by image source model [10, 21] or with bandlimited simulation

as a result of FDTD based approaches [147]; on the other hand, real measurements suffer from

noise. This universality of application of our method emphasizes need for a robust solution.

The main advantages of the proposed peak enhancement technique is that it does not require

any kind of assumption on the exponential decay of the amplitudes in the impulse response,

and also there is no hard threshold for deciding if a certain sample is a peak or not.

7.1.2 Sorted Density (SD)

We employ a simple measure of sparsity in a discrete positive signal s. Our main idea is to sort

the signal to yield a monotonically decreasing signal ŝ. The sparser s is, the faster ŝ will fall off
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as a function of number of samples. Any smooth measure of the width of ŝ normalized with

number of samples should then yield a notion of fractional energy density in the signal. An

example is shown in Figure 7.2. We assume that the highest level of sparsity happens when

there is only one peak and the lowest level of sparsity is manifested in the part of the impulse

response that exhibits reverberant behavior (here peaks usually observe trends of Gaussian

noise).

A natural way to compute width is via first-moment of sample index i with ŝ serving as weight.

This is the sorted density functional,

D(s) ≡ 1

L

∑L
i=1 i ŝ[i ]∑L
i=1 ŝ[i ]

(7.3)

where L is the number of samples in the observed window. The sorted density is a unitless

measure with values ranging between 0 and 0.5 corresponding respectively to minimal echo

density when s contains a single non-zero sample, to maximum when all values are non-zero

and equal. Gaussian noise g has an intermediate (expected) value of D(g ) = 0.18. This is

ensured with the 1
L normalization.

We then estimate the echo density function for the input response, h(t), by employing a

sliding rectangular time window on the normalized echogram, en(t ) and computing the sorted

density in each window:

N ′
sd (t ) = D(ẽ (t ∈ (t −Tl , t +Tl ))

D(g )
, (7.4)

where any samples en(t ) for t < 0 are discarded from the analysis. Note the normalization with

D(g ), so that an echo density of N ′
sd = 1 indicates Gaussian noise. Tl is the half-width of the

rectangular window and we empirically found Tl = 100 ms to work well. As shown in Figure 7.2

this yields an intuitive trend of echo density that initially increases and then settles near some

maximum value (close to 1 indoors) as the response transitions to late reverberation.

7.2 Statistical model

We describe our general model for echo density growth, analytical motivation and fitting

procedure.

7.2.1 Analytical motivation

For simple geometries such as a shoebox (rectangular) room where geometric acoustics is

accurate the echo density may be defined rigorously by counting the number N (t ) of geometric

paths that arrive at the listener within time t after the source emits an impulse. For any source

location, the corresponding image sources form a periodic, discrete sampling of 3D space.
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Figure 7.3 – Echo density trends for various types of space. From left to right: in case of parallel
walls, the echo density trend is constant and n ≈ 0 (there is no echo build up), for a room
without a ceiling we have n ≈ 1 and for a room with all six walls we have n ≈ 2.

Observing that the maximum propagation path length until time t is ct where c is the speed

of sound, we have: N (t ) ∝ (ct )3 by counting all image sources in the spherical ball with radius

ct . Taking the time derivative to convert echo count to echo density, the full expression is [91,

p. 110],

N ′(t )i ndoor =αt 2, (7.5)

where α is a geometry-dependent parameter, given by α= 4πc3/V for room volume V . This

result also holds under theoretically ideal diffuse field conditions. Note that this model de-

scribes the behaviour only up to the mixing time τmix where the impulse response approaches

noise so that N ′(t ) approaches a constant.

Removing the roof of the shoebox yields a courtyard-like geometry with 4 surrounding walls

and a ground. This represents a reverberant outdoor scene where most reflectors surround

the source and listener horizontally. Ignoring edge diffraction from the top wall edges where

each point becomes a new source of a wave, the image sources occupy a periodic sampling

of 2D (rather than 3D) space, so that number of echoes N (t) ∝ (ct )2 and the echo density,

N ′(t)outdoor ∝ t . All this can be observed in Figure 7.3. Based on these observations, we

hypothesize the general model for any acoustical environment:

N ′(t ; N ′
0,α,n,τmix) =

N ′
0 +αt n , t < τmix

N ′∞, t ≥ τmix

, (7.6)
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Figure 7.4 – Log-domain parametric model that is fitted to extracted echo density trend.

where N ′∞ ≡ N ′
0 +ατn

mix to ensure continuity, and {N ′
0,α,n,τmix} are the model parameters.

The analytical results above do not apply near t = 0 or t = τmix. Near t = 0 one must have

some non-zero echo density, N ′
0, due to initial reflections, followed by power-law growth that

remains continuous and then stabilizes near some maximum value, N ′∞ at the mixing time,

τmix. The continuous parameter n is the focus of our experiments, with the hypothesis that

it should be ∼ 1 outdoors and ∼ 2 indoors based on analytical considerations above. Some

geometric information about the scene size is also contained in α, although its interpretation

has a dependence on n, whose study we leave for future work.

7.2.2 Model fitting

To robustly estimate the growth power n, we first separately estimate N ′
0. We then perform

fitting on log(N ′− N ′
0). As illustrated in Figure 7.4, this simplifies the model in Eq. 7.6 to

two linear segments respectively that meet at t = τmix: log(α)+n log(t ) and log(N ′∞−N ′
0). In

Figure 7.5 we can see example of types of spaces and their models in the logarithmic time

domain. To reduce sensitivity in fitting due to non-smooth model at t = τmix, we cross-fade

between the two linear segments via a sigmoid window:

W (t ;τmix,σ) = 1

2

(
1− tanh

( t −τmix

σ

))
. (7.7)

The parameter σ controls width of the cross-fade, which we set to σ= 20 ms, as this length

has empirically shown to give good results. The resulting smoothed parametric model is

log(N ′(t ;α,n,τmix)−N ′
0) =W · (logα+n log t )+ (1−W ) · log(N ′

∞−N ′
0). (7.8)
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Figure 7.5 – Echo density model for various types of space. From left to right: in case of parallel
walls, the echo density trend is constant and n ≈ 0 (there is no echo build up), for a room
without a ceiling we have n ≈ 1 and for a room with all six walls we have n ≈ 2.

Given the observed echo density profile N ′
sd from Eq. 7.4, we estimate N ′

0 as the minimum

value of the echo density, min{N ′
sd (t)} and then fit the above model to log(N ′

sd −N ′
0) using

non-linear least squares. We constrain the search space to accelerate convergence. The search

for α is unbounded, but for n is bounded by [0,5] and for (N ′∞− N ′
0) is bounded by [0,2].

With this choice of bounds we have avoided manual tuning in the fitting procedure, since the

observations have implied that the sufficient upper bounds would be 2.5 and 0.5, respectively.

7.3 Results

Our experiments have two goals. First, we compare against theory on enclosures to validate

our technique. Second, we compare the echo density growth power, n, between indoor and

outdoor cases.

7.3.1 Experimental data

Experiments are performed on impulse responses acquired from both measurements and

3D wave simulations. Simulations allow tests with tightly controlled 3D geometry, but are

necessarily band-limited due to computational cost restrictions. We use the time-domain

spectral wave solver [148] inside the Triton simulator that was introduced earlier in Section

1.3.1. All simulations are band-limited to 1kHz with sampling frequency of 6kHz with the

source and microphone placed close to the center of the room, but off the axes of symmetry

and more than 1m apart. With these constraints, the results were not found to be sensitive

to exact placement. Surface absorption coefficient was set to 0.05 for all frequencies in all

simulations in order to have lightly damped conditions. While measured responses necessarily

contain more noise, we have noticed that a higher sample rate improves the reliability of our

technique, presumably because there is a larger number of samples within each analysis
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Figure 7.6 – Validation of method on shoebox scenes. Impulse responses are on left top. Three
rooms are tested with volumes increasing by factor of two. Fitted models are plotted in grey
color. Our echo density measure shows a growth power n > 1 as expected for indoors (right
column).

window for statistical estimation.

7.3.2 Validation on simple enclosures

If our sorted density measure (Eq. 7.4) is a valid generalization of the theoretical notion of echo

density (Eq. 7.5), we expect n ≈ 2 on simple enclosures where geometric acoustics underlying

Eq. 7.5 is reasonably accurate. We test this hypothesis with simulations on two types of such

geometries: shoebox and convex polyhedron.

Figure 7.6 shows experiments on three shoebox rooms with volume increasing by a factor of

two. Input responses are on left top. Here we compare our echo density measure (left middle)

to [3] (left bottom), with the latter using the same window half-width Tl as our method. Both

techniques are normalized so a value of 1 indicates late reverberation. Both techniques show

an increasing trend, reaching around 1 at similar mixing times, τmix. However, our measure is

designed to also model echo density growth before τmix, as shown on the right. This can be

clearly confirmed by observing Figure 7.6. All cases show a growth power n > 1 as expected for

indoors, with the two larger rooms agreeing well with theory with n ≈ 2. For the smallest room

however, n is smaller. We observe this systematic bias for smaller spaces with our technique.

Echo density buildup is quick in small rooms, leaving a short span for model fitting. Our

sorted density analysis window is also quite wide with Tl = 100 ms which is a contributing
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Figure 7.7 – Echo density on simulated convex polyhedral rooms with flat ground and ceiling.

factor, but we found this width necessary to build reliable statistics.

Figure 7.7 tests three general convex polyhedral room geometries with large flat reflectors.

The polyboxes were randomly generated such that their volume is within [10000,20000]m3.

The echo density shows a close to quadratic growth in the first two cases with more irregular

geometry, agreeing well with theory. In some cases, like “Room 3,” we observe a decrease in n,

perhaps because of flutter echoes between the two large near-parallel faces. Such periodicity

in the response also motivated avoidance of symmetry axes in the shoebox tests.

7.3.3 Indoor to outdoor scene modification

As discussed in Section 7.2.1 if we remove the roof of a shoebox to turn it into a “courtyard”,

we theoretically expect n = 1, with some deviations caused by edge diffraction. We performed

simulations in a shoebox room with a ceiling that gradually opens, as shown in Figure 7.8.

This case reminds of a box for a domino game. As the roof is removed, the value of n smoothly

decreases from near 2 towards 1, with intermediate values in the middle. This fits with theoret-

ical expectations on the closed and open extremes, and also illustrates that the technique is

resilient to mixed cases somewhere between indoors and outdoors.

7.3.4 Varying volume with fixed reverberation time

Figure 7.9 compares measured impulse responses on three enclosures with large variation in

scene volume but differing absorption coefficient so that the reverberation times are similar.

The three measurements were taken from the Reverb Challenge corpus (“Room 2”, 106 m3) [80],
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Figure 7.8 – A simulated shoebox room that gradually transforms to a courtyard (the domino
game box setting). Echo density growth power, n, decreases smoothly as the scene progresses
towards outdoors.

and from the Open AIR database (“Dixon Studio, York University Theatre”, 1058 m3, “Central

Hall, York University”, 8000 m3) [115]. The energy decay curves are nearly identical (left

column, middle). All of the measurements have a sampling frequency of 16kHz. In all cases

the echo density trend is plausible, increasing and settling near 1. For the two larger rooms,

we observe values of n ≈ 1.7 and 2.4, corresponding well to indoors, with the smaller of the

two rooms producing smaller value, a bias we noted earlier. Regression fails on the smallest

room with volume similar to a small office (≈ 100m3) indicating that our regression could

be improved to handle small rooms better. This could be achieved in the following way: by

decreasing the size of the analysis window and increasing the sampling frequency for rooms

of smaller volume.

7.3.5 Indoor versus outdoor location in urban area

We measured impulse responses in urban office building at two locations inside and outside,

shown on a 3D cutaway top view in Figure 7.10. Sampling frequency was 48kHz. We find

values of n in good agreement with expectations, 1.80 indoors and 0.87 outdoors, showing a

clear difference between indoor and outdoor acoustics in a highly complex scene.
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Figure 7.9 – Comparison on measured responses in three rooms with different volumes,
but same reverberation time. For the two larger rooms, n is around 2, agreeing well with
expectations.

7.4 Conclusion and future work

We study the detailed temporal evolution of echo density in impulse responses for applications

in acoustic analysis and rendering on general environments. For this purpose, we propose a

smooth sorted density measure that yields an intuitive trend of echo density growth with time.

This is fitted with a general power-law model motivated from theoretical considerations.We

validate the framework against theory on simple room geometries and present experiments

on measured and numerically simulated impulse responses in complex scenes. The method

is found to agree well with theory. Our results show that the growth power of echo density is a

promising statistical parameter that shows noticeable, consistent differences between indoor

and outdoor responses, meriting further study.

We wish to improve the robustness of the method in the future, especially for small rooms.

The size parameter, α, and mixing time, τmix, contain geometric information about the scene.

But in outdoor cases (n ≈ 1) they no longer admit interpretation in terms of “room” volume. A

study on the geometric interpretation of these parameters in general scenes could prove to be

a fruitful future direction.
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Figure 7.10 – Measurements were performed in the two locations shown in the 3D cutaway
top view, indoors (red) and outdoors (blue). The two locations are clearly differentiated by
n = 1.8 and 0.87 respectively.
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8 Audio Representations for Deep
Learning

Since the recent trends in audio have been evolving around deep learning, we will give an

introduction about the representations of audio within this framework and also give an

overview of the recent trends in this domain. The origin of deep learning is still under question,

although many authors such as Goodfellow and Bengio [65], Schmidhuber [166] and LeCun

[94] tend to share the contribution to the launch of this exciting field.

Because the deep learning technique can be applied only when a sufficient size dataset is

available for the training, we will slightly diverge from the main focus of the thesis, that is

from acoustics to audio. Due to the fact that large scale room impulse response databases that

could be used for these types of approaches are still unavailable1 we will be making a slight

shift from parametric data exploration for acoustics to parametric data exploration for audio.

To have a better idea how hard it is to prepare a sufficient acoustic database for deep learning,

[60] gives an example of making an acoustic dataset, augmentation and comments on the

heterogeneity of the available recordings that is a result of lack of standardized procedure for

recording and storing such data.

Regardless of the type of the data, the goal of deep learning and machine learning research in

general is not to seek a universal learning algorithm, but to rather understand what kinds of

distributions are relevant to the "real world". The aim is to build algorithms that will perform

well on data generating distributions that are close to what can be manifested in the world

around us. In most cases the solutions that are available are not easily generalizable and tend

to be application or data specific. This has already been manifested in the classical signal

processing: We know that wavelet functions are good for a sparse representation of images,

and some audio signals have a sparse representation in the domain of Short Time Fourier

Transform (STFT), for example speech.

Due to the fact that the initial deep neural networks were built for processing of images

expecting a 2D input, in the early solutions audio would be converted into spectrograms and

fed in that format to the network.

1most of the available audio/acoustic datasets are listed here: http://www.cs.tut.fi/~heittolt/datasets.html
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8.1 Audio representations with fixed parameters

In audio signal processing, time-frequency representations such as spectrograms are central

tools. They have an intuitive interpretation and reveal insightful information to the human

expert. It is not a surprise that many deep learning approaches to audio signals use such

representations as well [36, 142]. It is also convenient as most of the deep network architectures

have been initially developed for image processing and require 2D arrays of values as inputs.

The network learns to detect time-frequency patterns, similarly to what is done on images.

Depending on the task, it may then output a classification of a sound [137, 159], a denoised

signal [106] or separated sources [31]. The most recent trends include preprocessing the

spectrograms [105], before they are fed to the network.

However, natural images and spectrograms do not possess the same properties and turning an

audio file into an image has some limitations. Among them, spectrogram representations can

be defined in many different ways, with different time window shapes and sizes or different

frequency spacing. Also, images are 2D spatial representations and the spacing on the axis

is usually the same, but when it comes to spectrograms we have axis of different nature

whose spacing can be variable. [36] and [142] give a review of the different time-frequency

representations used in deep learning. In addition, patterns in the time-frequency plane

are different from those that can be found in images: the former are usually less complex,

with smoother edges and limited textures. Furthermore, the axes are not equivalent in the

spectrogram as frequency is different from time. For example a frequency-shifted pattern may

result in a different sound classification [95], while a temporal shift does not (though similar

problems can also emerge in the classification task of images). Moreover, the spectrogram is

the magnitude of the Short-Time Fourier Transform (STFT) and the information contained in

the phase is not taken into account. Lastly, computing a spectrogram, and possibly inverting it

for synthesis, adds a computational burden which can be important for large audio datasets.

Next to spectrogram2 as shown in Figure 8.1a, some other visual representations have emerged.

These include: pyknogram3, which is an audio representation from 1995 [139] as shown in

Figure 8.1b that represents a modified version of STFT that emphasizes more the harmonic

structure of speech (co-channel speech analysis), and also rainbowgram4 which is an audio

representation from 2017 [54] as shown in Figure 8.1c that puts emphasis on the derivative of

the phase of the signal. The rainbowgram is a modified version of the Constant Q Transform

(CQT) with the intensity of the lines proportional to the log magnitude of the power spectrum

and the color given by the derivative of the phase. Although the spectrograms tend to have a

general purpose, the pyknograms are mostly applied for speech enhancement and analysis,

and the rainbowgrams are used for music synthesis [54, 46].

There are also approaches that combine multiple features and feed it to the network in a

2https://github.com/drammock/spectrogram-tutorial
3https://github.com/idnavid/pyknograms
4https://github.com/tarepan/rainbowgram
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(a) Spectrogram (b) Pyknogram (c) Rainbowgram

Figure 8.1 – Audio representations with fixed parameters for deep learning.

multi-channel manner [171], for example by coupling four major groups of audio features:

the Mel-Frequency Cepstral Coefficients (MFCC) [45], the Gammatone Frequency Cepstral

Coefficients (GFCC), CQT and Chroma features. This results in an increase of the accuracy of

the network, but does not contribute to potentially better understanding of network’s behavior

and also requires a large preprocessing footprint.

All of these representations have fixed parameters, which makes them rigid and invariant to ap-

plication and data type. The same as in the case of images, not all sounds should be processed

equally, so this imposes a requirement for an adaptable representation. Although the fixed rep-

resentations can perform well for tasks such as audio classifications, they have only a moderate

performance for speech separation [55] and are not an appropriate intermediate representa-

tion for a task of speech synthesis, for example. This suggests that audio representations have

to have an adaptive form, since in an optimal case they are task dependent.

8.1.1 The most common parameters of fixed representations

The most common parameters that are needed for these types of fixed representations are:

window size, window type, overlap (stride), frequency spacing and number of filters. The

window size is usually around 25ms, but is tends to be application dependent and could go as

low as 10ms in hearing aids application. Typical window types are shown in Table 8.1 where

the time index n satisfies: 0 ≤ n ≤ N and L = N +1.

Table 8.1 – Typical window types for fixed audio representations.

Window type expression

Rectangular window w[n] = 1

Hanning window w[n] = 1
2

[
1−cos

(
2πn

L

)]
Hamming window w[n] = 0.54−0.46cos

(
2πn

N

)

The overlap is usually chosen from the set: {25%,50%,75%} and the filter number, that will

105



Chapter 8. Audio Representations for Deep Learning

define the height of the representational image, is usually 40. The frequency spacing is usually

chosen according to the log-Mel perceptual scale.

8.2 Learning without an intermediate representation: End-to-end

approaches in audio

In order to overcome the limitations of fixed representations, an alternative direction has been

chosen consisting of taking an end-to-end approach where the raw audio file is the input of

the network. The recent success of Wavenet [121, 123, 122] demonstrates the efficiency of

this approach for audio synthesis of speech. Raw audio input is also beneficial for speech

separation tasks - Tasnet [107] as well as Wave-U-Net [176] show better performances for

speech separation and faster processing compared to spectrogram-masking approaches.

In end-to-end approaches, one-dimensional convolutions are applied to raw audio signals.

However, kernel size needs to be much larger than the one used for image applications. Indeed,

at a sampling rate of 44kHz, 44 samples represent 1 ms of audio signal. To capture audio

patterns that have duration of 10, 100 ms or more, in particular low frequency patterns, either

large kernels are needed or deeper convolutional architectures (to allow for combinations

of kernels at many different positions in time). Both solutions lead to a large increase in the

number of parameters to be learned and hence require more training time and more data. The

"atrous" convolution have been introduced in Wavenet in order to increase the time length

of the kernel without increasing the number of weights to learn. Finding alternative ways for

unlocking the time-length limit is an important challenge for raw audio processing in deep

learning.

8.3 Audio representations with learnable parameters

We propose and investigate the design of a new convolutional layer where kernels are parame-

terized functions, in order to provide an audio representation with learnable parameters. This

layer is an input layer of a convolutional neural network for audio applications. The kernels

within are defined as functions having a band-pass filter shape, with a limited number of

trainable parameters. So we will be learning the sets of parameters of filters in a certain filter

bank. This will enable us to learn only a few parameters instead of learning the full length

filter that can be a few hundreds of parametrs long.

The concept of learning filters has been first introduced in three recent works by [168], [153]

and [78]. The first one introduces Gaussian filters in the input layer. Parameters are the

amplitude, the Gaussian width and the modulation frequency. An increase of the classification

accuracy is reported with the learned parameters. However, the filter learning is seen as a

fine-tuning of the network after the first training pass with fixed Gaussian parameters. The

authors report and discuss the evolution of the filters’ amplitude during the fine tuning. The
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filter frequencies tend to keep their initial values although they are learnable. The possible

adaptation of the temporal width of the filters is not given.

Building such a type of layer is motivated by several end-to-end learning studies that investi-

gate convolution kernels learned from the raw audio signal [48, 184, 64, 157]. They all show

that the input kernel’s focus in frequency is similar to the one of the Mel or auditory scale. The

kernel shapes in the spectral domain are similar to band-pass filters, with more narrow-band

kernels localized on the low frequency spectrum than in the high frequency. This behavior

does not depend on the network architecture nor on the application such as speech recogni-

tion [69, 198] or audio tagging [48]. All of these results suggest that the logarithmic spacing of

frequencies and bandwidth properties first established in the psycho-acoustics studies with

the Mel/Bark scales are somewhat universal in audio analysis tasks. These works point out the

tendency of the input convolution kernels to adopt band-pass filter shapes.

Hence, we hypothesize that designing kernels with a band-pass property results in an inductive

bias that helps the network to converge more rapidly and possibly reduces overfitting. Our

first motivation is to confirm this hypothesis. On the other hand, the studies cited above

remain experimental without, yet, precise spectral and temporal properties of the kernels. In

addition, most of them initialize the kernels as band-pass filters with a Mel scale frequency

spacing. So the influence of the kernel initialization remains unclear. Our second motivation

is to investigate more precisely these filters’ properties.

8.4 Audio datasets for audio classification tasks

In the audio domain, the distribution of energy in sound depends on the dataset, as can be

seen in Figure 8.2. Here we observe the energy distribution for different classes over various

datasets: AudioMNIST [15], GoogleSpeechCommands v2 [192], UrbanSound8K [160] and

BirdVox [158]. The BirdVox database differs from the other databases by a specific energy

distribution having most of the energy in the high-frequency domain.

This thesis will focus on the problem of sound classification for the following databases:

AudioMNIST, GoogleSpeechCommands v2 and UrbanSound8K, whose statistics are given in

Table 8.2.

Table 8.2 – Class statistics over different datasets.

Database # of samples # of classes largest class size smallest class size

AudioMNIST 30000 10 3000 3000
GoogleSpeechCommands v2 105829 35 4052 1557
UrbanSound8K 9732 10 1000 374
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(a) AudioMNIST - digit label (b) AudioMNIST - gender label

(c) GoogleSpeechCommands v2 (d) UrbanSound8K

(e) BirdVox (f) BirdVox - one class example

Figure 8.2 – Dataset energy distribution per class and corresponding labels.
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Adopting a hybrid approach, half way between the raw audio and the spectrogram, we propose

to learn particular filters’ shapes having a limited number of parameters that fully define them.

These filters are the kernels of the first convolutional input layer of the network. This set of

kernels may be seen as a filter bank. Consequently, the new input layer acts on the raw audio

and outputs a learned time-frequency representation, adapted to the task. The functions we

propose are modulated Gaussian windows, Gammatone and Gammachirp functions. Their

performance will be compared with wavelets, that are present in literature.

The goal of these filters is two-fold. Firstly, it reduces the number of parameters to learn.

Unlike in the end-to-end approach, it makes the size of the kernel independent of the number

of weights to learn and enables the usage of large temporal inputs. We show that this approach

speeds up the learning process and improves the accuracy on several audio classification tasks.

In addition, our experiments show that the number of filters required to obtain the best results

is small, around 20-30. We also demonstrate that the performances of different functions

proposed in audio signal processing (modulated Gaussian, Gammatone and Gammachirp

functions) give close results and are better than wavelets at classifying sounds. Secondly,

this layer of parameterized functions helps understanding the filtering process done within

the first layer of deep networks. This opens the way to a better interpretation of the neural

networks and beyond, of the intricate relationship and the shape of audio patterns in the

time-frequency space. In our experiments, a relationship between the central frequency of

the filter and its temporal width emerges with the learning. This is in agreement with the

Equivalent Rectangular Bandwidth (ERB) and Bark scales found in psycho-acoustic studies.

In our solution the filter layer is fully integrated in the learning process, the parameters

are learned from the beginning. The filter amplitude is not a parameter in our case as the

weights of the following layers enable weighted combination of filters. With our approach, the

evolution of the frequency and width of the different filters is more visible. In [153], the authors

introduce a layer, called SincNet, made of sine modulated functions that approximate band-

1Work done with Benjamin Ricaud and Nicolas Aspert at École polytechnique fédérale de Lausanne.
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pass rectangular windows in the frequency domain. The learned parameters are the minimal

and maximal cut-off frequencies of each band-pass filter. One of the main results is given by

the cumulative frequency response of the SincNet filters. The network tends to focus more on

particular regions of the frequency space, where formants are localized. This is interesting

as it shows how the parameterized filters enable a precise interpretation of the learning and

underline particular spectral properties of the data. The present work goes further in this

direction. Eventually, [78] introduce wavelet filter banks learned for speech recognition. Each

kernel is a wavelet defined by a single parameter, its scale. It shows evidences both of the

efficiency of this approach and of the possibility to interpret the shape of the learned kernels.

We compare the efficiency of the wavelet filters with several other modulated windows and

show that the former under-performs on audio signals.

9.1 Learnable filter banks (SpectroBank)

We design a new convolutional neural network layer, called SpectroBank. In this layer the

kernels are functions defined by a few parameters that are learned. We call these functions

filters, making a parallel with filters in signal processing. Indeed, these functions have the

property of being band-pass filters and are well known in audio signal processing. One of the

trainable parameters of each filter is the central frequency of the band-pass filter. The second

parameter is the bandwidth of the filter (or a quantity closely related to it). Hence this set of

filters forms a filter bank where the frequency and bandwidth of the filters may be adapted to

the data and to the learning task. Note that the learned filterbank may not cover the entire

spectrum but should focus on important spectral regions that are the most discriminative for

classification.

The input of the SpectroBank layer is a 1D audio signal and the output is a 2D representation.

The output representation axes are time and filter number. Since each filter is associated

to a particular frequency band, this 2D representation can be seen as a time-frequency one

(or time-scale in the case of wavelets). Initializing the filters by increasing frequencies (or

scales), we can influence the frequency ordering to follow the filter number. Filter functions

and their parameters are recalled on Table 9.1. Their shape in time is illustrated on Fig. 9.1

and in frequency on Fig. 9.2 , with increasing oscillating frequency (or scale for wavelet) from

blue to purple (starting from f = 0).

Table 9.1 – Description of the filter bank types and the parameters used during training. In
most of our experiments, γ is fixed to 4.

Filter Type # of parameters Parameters

wavelet 1 s - scaling
Gaussian 2 f - frequency σ - width
Gammatone 3 f - frequency, b - bandwidth, γ - order
Gammachirp 3 f - frequency, b - bandwidth, c - chirp trend
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Figure 9.1 – Examples of filter banks in time domain. From left to right: wavelet filters, Gaussian
filters (cosine modulation), Gammatone filters (envelope, cosine and sine modulations) and
Gammachirp filters, for fixed bandwidth and different frequencies.

Figure 9.2 – Examples of filter banks in frequency domain. From left to right: wavelet fil-
ters, Gaussian filters (cosine modulation), Gammatone filters (envelope, cosine and sine
modulations) and Gammachirp filters, for fixed bandwidth and different frequencies.

In all the definitions, N denotes the filter length and n is the variable (sample number). The

time in seconds can be expressed using the sampling frequency fs with t = n/ fs and the

frequency in Hertz with f × fs , where f ∈ [0,0.5] is the normalized frequency in the formulas.
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Mexican hat wavelet. In order to compare to the state-of-the-art, we use the Mexican hat

wavelet introduced in the paper by [78]:

w [n] = 2

π1/4
p

3s

(
n2

s2 −1

)
e−

n2

s2 , (9.1)

with n ∈ [−N /2,(N −1)/2] and s > 0 being the scale parameter.

Gaussian filter. Here, n ∈ [−N /2,(N −1)/2]. The Gaussian filter g is defined as follows:

g [n] =
√

2p
πσ

e−
n2

2σ2
(
cos(2π f n)+ j sin(2π f n)

)
. (9.2)

The parameter σ> 0 is the variance of the Gaussian (temporal window width) and f is the

oscillating frequency. It is a complex-valued function that we split into its real and imaginary

parts. For each f and σ two kernels are created, one with the cosine modulation and one with

the sine one.

Gammatone filter. The Gammatone filter [43, 129, 68] is another example of kernel. It is

defined on the interval n ∈ [0, N −1] as :

h[n] = A(γ,b)nγ−1e−2πbn (
cos(2π f n)+ j sin(2π f n)

)
, (9.3)

where A is the normalization, A(γ,b) =
√

2(4πb)(2γ+1)/Γ(2γ+1). The parameter γ is the order

of the Gammatone. It can be learned or fixed to 2 or 4. These two orders are the best suited

ones for modeling the human hearing related filter bank [128]. In the experiments, we will fix

γ= 2 or γ= 4. The other learnable parameters are b, related to the width of the function, and

f the frequency. The symbol Γ denotes the Gamma function. The bandwidth B of h depends

linearly on b and is given by the following formula [43]:

B(γ,b) = 2(21/γ−1)1/2b. (9.4)

Gammachirp filter. This function is similar to the Gammatone family ones but possesses an

oscillating frequency that may evolve with time. The Gammachirp function [73] is defined on

the interval n ∈ [0, N −1] as follows:

k[n] = A(γ,b)nγ−1e−2πbn [
cos(2π f n + c ln(n +ε))+ j sin(2π f n + c ln(n +ε))

]
, (9.5)

where A is defined above. In the present work, γ is fixed to γ = 4. This filter possesses 3

parameters, b related to the width of the window, f to the frequency and c to the chirp value.

To avoid the logarithmic singularity at the origin, we add a small positive value ε= 10−4 to the

expression.

The kernel shapes proposed in the present work are based on specific signal processing func-

tions. They are used for performing short-time Fourier transforms or more generally for
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designing filterbanks. Modulated (truncated) Gaussian are emblematic examples. Gamma-

tones and Gammachirp functions are used in cochlear models [161]. They provide interesting

results when combined with deep learning models for speech enhancement [13].

Remark 1: All the functions are defined and normalized in the continuous domain. In our

application, the filters are discretized and truncated in order to be implemented in the convo-

lution layer. Since they all vanish away from zero, it remains a good approximation, provided

that the function’s width does not exceed the fixed filter length N .

Remark 2: The modulated window functions are defined with a cosine (real part) and a sine

(imaginary part) term, relating them to the Fourier transform, the spectral domain and the

standard definition of filters in signal processing. For the sake of simplicity, in our experiments,

we have chosen to use only the cosine term. The absence of the sine term did not affect the

accuracy of our classification results. The network is able to adapt and detect discriminative

patterns with a shifted cosine modulation.

Remark 3: It is important to distinguish the filter length N from the filter temporal width σ or

b (or s for the scale). The filter length is fixed, can not be learned and is the size of the vector

on which the filter is defined. The temporal width is learned and specifies the spread of the

function over the vector of size N . Therefore, the filter temporal width is always smaller than

the filter’s length.

9.2 Experiments and results

We apply SpectroBank to several classification tasks described in the following sections. We

want to assess it on standard tasks found in the literature presented in the introduction. We

have chosen 2 freely available speech datasets: AudioMNIST [15] and GoogleSpeechCommands

v2 [192]. Both datasets contain words pronounced by different speakers. These datasets are

dedicated to limited-vocabulary speech recognition tasks and the goal is to train the network

to correctly recognize the word present in each audio sequence. We also investigate the

performances of SpectroBank on an environmental sound dataset in order to cover more

diverse audio patterns. We have chosen the UrbanSound8K dataset [160]. This dataset has

been used recently for end-to-end learning [42, 1]. The overall statistics for all the datasets

used in the experiments is given in Table 8.2. In addition the distribution of spectral energy per

class is provided on Fig. 8.2. Most of the speech energy is located in the 0-1.5kHz frequency

band.

In order to compare the impact of the SpectroBank layer on the learning and classification

results, we use existing network architectures and modify the first layer. For networks with raw

audio input, the first convolutional layer (performing a standard 1D convolution) is replaced

by our proposed parameterized convolution layer. Our layer is then followed by a non-linear

ReLU activation function, y = max(0, x) where x is the input and y is the output. A stride

parameter is available allowing to define the overlap in time of consecutive convolutions.
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Since our focus is on learning from audio, we decided to compare our approach only to

similar techniques, despite the fact that image-based network achieve sometimes higher

accuracy than the purely audio-based ones. All the models used for the experiments were

implemented using the Keras framework [37]. Detailed architectures of all networks can be

found in Appendix B. Training was performed using a NVidia GTX1080Ti having 11 GB of RAM.

Input layer initialization. When initializing a filter bank for learning, most of the avail-

able solutions start from a filter bank with a Mel-scale (or log-scale) frequency spacing

[156, 198, 153, 78]. This frequency distribution is supposed to be optimal for audio pro-

cessing and learning. However, in the present work, we want to check this assumption. Hence

in all the experiments (except when comparing with SincNet where we retain the mel-based

initialization from [153]), we use linearly spaced frequencies (or scales), distributed over the

entire spectrum and a constant initialization value for the bandwidth (σ or b).

9.2.1 The impact of SpectroBank parameters

The learnable parameters of the SpectroBank filters are not the only values that may influence

the network accuracy. The choice of the filter type is important as well as the filter length and

the layer stride (filter overlap). We have tested different configurations and the results are

shown on Fig. 9.3. On the left, the accuracy increases with the number of filters up to around

30. Beyond this, no improvement is reported. This number is hence a good compromise

between accuracy and network complexity. When it comes to observing accuracy on the test

set, a similar trend holds for all filter types. These results highlight the better performance

of the modulated windows compared to the wavelets. On Fig. 9.3b, the impact of the filter
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Figure 9.3 – Influence of several SpectroBank layer properties on the network accuracy.
(Dataset: GoogleSpeechCommands)

overlap (or kernel stride) is shown, exhibiting two different behaviors. First, for large windows

(beyond 5ms), a large stride lead to a drop in accuracy. Indeed, the filter width (spread
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of the modulated window or wavelet) may be much smaller than the filter total length N .

Nevertheless, the overlap is measured on the total length. Narrow windows may not overlap at

all and information is lost during the convolution process. Secondly, short kernels (less than

4ms) with large overlap (or small stride), can render the network short-sighted in time. In that

case, long temporal patterns require the combination of a large amount of successive output

values. The convolutional layers following the SpectroBank layer, deeper inside the network,

may not be able to capture these long patterns. This results as well in a drop of the accuracy

observed on Fig. 9.3b.

9.2.2 AudioMNIST Results

The original AudioMNIST paper [15] performs digit classification using raw audio as input to

a network called AudioNet. The code2 supplied with the paper has been re-used to perform

5-fold validation on the data. AudioNet is made of six convolutional layers, each convolution

being followed by a max-pooling layer, and two dense layers, connected to an output layer. In

all tests performed using this dataset, the models were trained using the Adam optimizer with

default parameters during 50 epochs. Batch size used was set to 256 and loss function used

was the categorical cross-entropy. Test accuracy was then computed after this training phase

and the same process was repeated for each fold.

On the AudioMNIST dataset sampled at 8 kHz, AudioNet has ca. 17 million trainable pa-

rameters. The original paper from [15] claims an accuracy of 92.53%±2.04%, whereas our

implementation of AudioNet using Keras and Adam optimizer (instead of SGD in the origi-

nal paper, since using the Adam optimizer gave better results) yields an average accuracy of

94.9%±1.54%, which is already a significant improvement. We performed the same 5-fold

validation using a modified version of AudioNet where the first convolutional layer is replaced

by a SpectroBank layer. This layer consists in 32 4th-order Gammatone filters of length 80

(corresponding to 10 ms at 8 kHz). The stride has been set such that the overlap between

two consecutive convolution steps is equal to 75%. In this modified network, the number of

trainable parameters drops to ca. 3.5 million trainable parameters, i.e. a reduction in size

by a factor 5. Using the SpectroBank-enabled AudioNet the average accuracy increases to

96.8%±1.22%.

Another SpectroBank-enabled network was used to perform the classification task on AudioM-

NIST. The architecture, loosely adapted from the one used in the paper by [1], is described in

Appendix (Table B.1). Despite its much smaller number of trainable parameters (ca. 300’000),

its average accuracy improves to 98.0%±0.41%. For the sake of completeness, we also trained

this network, replacing the Gammatone filters by the learned wavelets as in [78], and the

learned SincNet filters from [153]. A summary of all results achieved using AudioMNIST can

be found in Table 9.2.

Although that we have shown a reduced number of learnable parameters, number of param-

2https://github.com/soerenab/AudioMNIST
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eters does not necessarily reflect on the complexity of learning. The gradients for all of the

learnable parameters in our Spectrobank layer can be computed similar to [78]. All the filter

types are differentiable over their parameters that the network learns.

Table 9.2 – AudioMNIST mean test accuracy

Network # Trainable parameters Avg. accuracy

AudioNet 17 M 94.9%±1.54%
SpectroBank-AudioNet 3.5 M 96.8%±1.22%
SpectroBank-custom (Gammatone) 300 k 98.0%±0.41%
SpectroBank-custom (SincNet) 300 k 97.2%±1.0%
SpectroBank-custom (wavelet) 300 k 89.9%±1.18%

9.2.3 GoogleSpeechCommands Results

The GoogleSpeechCommands dataset provides similar data to the AudioMNIST one, with a

larger number of classes (35) to distinguish. In the original setting, the goal was to classify

15 unwanted words together as unknown. However, in the experiments we performed, we

classify each word independently. This dataset does not have pre-defined folds, but train, test

and validation data are specified explicitly. We focus on the "Basic" network of the SampleCNN

group described in [79]. Using an input signal resampled to 22.05 kHz, the Basic network

has 8 identical blocks, each block being made of a 1D convolution (size 3), followed by a

batch normalization, ReLU activation and max pooling. In our experiments, we adapted the

proposed setting in order to keep the original 16 kHz sampling of the dataset and ended up

with a 7 blocks (vs. 8) network in order to avoid empty dimensions. The code3 provided by [79]

was used as basis for our experiments. Reducing the number of blocks to 7 and keeping the

original 16 kHz sampling rate yields networks having similar number of trainable parameters

(ca. 2.3 million vs ca. 2.5 million respectively for 7 blocks/16 kHz and 8 blocks/22.05 kHz).

Given that GoogleSpeechcCommands does not possess pre-defined folds for n-fold validation,

the experiments were repeated 5 times in order to compute the mean accuracy. The original

results from [79] give an average accuracy of 92.5%±0.7% (averaged over 3 training runs).

When reproducing a similar experiment (training performed with SGD optimizer, with early

stopping), with the simplified SampleCNN using 16 kHz data, we found the average accuracy

to be 93.34%±1.26%.

We created a SpectroBank-enabled version of SampleCNN, replacing the first block by a

spectrobank layer and modifying the other basic blocks introduced by [79], as described in

Appendix B, Table B.5. The SpectroBank layer is made of 80 4th order Gammatone filters,

overlapping by 80% and having a length representing 10 ms. As our initial layer contains less

3https://github.com/tae-jun/sampleaudio
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filters than the initial implementation (80 vs. 128), the basic block modifications allow to keep

non-empty sizes when the number of basic blocks increases. The number of basic blocks is

identical (7), reducing the number of trainable parameters to 1 million. Unlike the original

paper, this network was trained using the Adam optimizer, while keeping the same learning

rate reduction strategy. The early stopping is usually activated after less than 20 epochs. The

mean accuracy achieved using this network improves slightly to 93.45%±1.35%. All these

results are summarized in Table 9.3.

Table 9.3 – GoogleSpeechCommands mean test accuracy

Network # Trainable parameters Avg. accuracy

SampleCNN-8Blocks (@22.05kHz) 2.5 M 92.5%±0.7%
SampleCNN-7Blocks (@16kHz) 2.3 M 93.34%±1.26%
SpectroBank-SampleCNN (@16kHz) 1 M 93.45%±1.35%

9.2.4 UrbanSound8K Results

One of the main interests of this dataset resides in the fact that the environmental sounds

exhibit spectral characteristics that are quite different from speech datasets studied in the

previous sections. It is however a more challenging dataset, firstly because its size is almost

an order of magnitude smaller, and secondly because of the longer input data (each sample

being 4 seconds long).

We base our experiments on the works from [42] and more recently [1], that also perform

classification task using convolutional networks on raw audio input. [42] define several net-

work architectures, with numbers of trainable parameters ranging from 200’000 to 4 millions.

We will focus on the two smallest networks, referred to as M3 and M5 in the original paper.

Despite dataset being split into 10 folds for training and validation, only one test (using the 10th

fold for validation) has been done in [42]. We tested those networks using an existing Keras

implementation4 and performed 10-fold validation to get the mean accuracy over all folds,

using data resampled to 8 kHz. The average accuracy for M3 was found to be 58.94%±3.83%

(vs. 56.12% in the original paper) and the one for M5 66.98%±6.37% (vs. 63.4% initially).

SpectroBank-enabled versions of M3 and M5 have been created for comparison. The first

layer consists in 24 4th-order Gammatone filters, overlapping by 75% and having a length rep-

resenting 10ms. All networks were trained for 100 epochs using the Adam optimizer, reducing

the learning rate by a factor of 2 after 10 epochs without improvement of the validation loss.

Type of the optimizer was chosen according to the setting that has given best performance.

SpectroBank-enabled M3 accuracy is very close to the one achieved with initial M3, namely

59.17%±5.33%. However, the SpectroBank-M3 has ca. 22’000 parameters, i.e. close to ten

4https://github.com/philipperemy/very-deep-convnets-raw-waveforms

117

https://github.com/philipperemy/very-deep-convnets-raw-waveforms


Chapter 9. SpectroBank: A Filter-bank Convolutional Layer for CNN-based Audio
Applications

times less than initial M3. In the case of SpectroBank-M5, mean accuracy is improved to

67.45%±5.48% (with a number of trainable parameters very close to initial M5, i.e. slightly

more than 500’000). We also tested the SpectroBank-SampleCNN architecture described

in section 9.2.3, and achieved a mean accuracy of 69.16%±5.95%. When comparing more

specifically the 10th fold best accuracy achieved by [42] is 71% using M18 model (3.7 million

parameters), while our approach reaches an accuracy of 75.8%. Higher accuracy has been

achieved on this dataset using raw audio [98]. However, they resort to data augmentation,

which was not used in our experiments. All results are summarized in Table 9.4.

Table 9.4 – UrbanSound8K mean test accuracy

Network # Trainable parameters Avg. accuracy

M3 222 k 58.94%±3.83%
SpectroBank-M3 22.5 k 59.17%±5.33%
M5 561 k 66.98%±6.37%
SpectroBank-M5 513 k 67.45%±5.48%
SpectroBank-SampleCNN 1 M 69.16%±5.95%

The approach taken by [1] is to perform classification on overlapping splits of initial audio data

(usually having a length of 1 second). They also compare to a network taking a single block of

data (having a length of ca. 3 seconds). While the code was supposed to be made available

after final publication, the repository5 was still empty at the date of submission of the thesis.

The model was then reimplemented and trained according to the description found in the

paper, using all 4 seconds of input data instead of trimming it to 3 seconds. Instead of the

mean accuracy claimed (83%±1.3%, from Table 2 in original paper), our tests only achieved

63.8%±5.68%, which is a significant difference. We have been unable so far to explain this

discrepancy.

9.2.5 Properties of learned filters

The learned parameters of the SpectroBank filters can reveal insights about the data and

the learning process. As stated in the introduction, several studies have shown a tendency

governing the spacing in frequency of their learned kernels, approximations of band-pass

filters. The spacing becomes exponentially large as the frequency increases, following what is

called a Mel scale. This is in agreement with psycho-acoustics tests on the human cochlear

system. In order to go further in this direction, we investigate 1) the frequency spacing and 2)

we test the relationship between the temporal width of the filters and their central frequency.

Indeed, psycho-acoustic models (the Equivalent Rectangular Bandwidth (ERB) model [62]

and the Bark model [200]) provide such a relationship. This is made possible by our approach

5https://github.com/sajabdoli/Environmental_sound_classification, last accessed Oct 27th 2019
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where the temporal width as well as the filter central frequency are well defined for each filter.

Frequency spacing. The SpectroBank layer is initialized with a linear frequency spacing from

0 to the Nyquist frequency. After the learning phase, the filter frequencies have evolved and

moved away from their initial value as can be seen on Fig. 9.4a. The frequency distribution

is not exponential but we can point out several interesting facts. Firstly, the final curve is

flatter than the initialization in the range 0-2kHz (more filters in this range). It shows that the

network tends to favour filters with a band-pass in this range for its discriminative process.

Secondly, beyond 4kHz, the filters stay close to their original value. This suggests that there

is not enough meaningful information in this frequency range for a correct learning. This is

indeed the case for speech where the main information resides below 4kHz (see Figure 8.2).

(a) Frequency distribution of the filters before
(straight line) and after training (green curve)
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(b) Bandwidth and frequency of the learned filters
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Figure 9.4 – Bandwidth and frequency of the learned Gammatone filters (B of Eq. (9.4) and f
parameters) using the GoogleSpeechCommands dataset

Bandwidth and frequency. The learned filter banks can be compared to filter banks model-

ing the human auditory system. Two main models can be found in the literature, the ERB

model [62], and the Bark model [200]. In these models the bandwidth B of the filter is related

to its central frequency f by explicit formulas given in Appendix C. The ERB and Bark curves

are plotted on Fig. 9.4b, together with the learned parameters of the Gammatone filters (black

dots). We observe a very good agreement between the ERB curve and the learned filters for

frequencies below 2kHz. Ravanelli et al. [153] show that for a neural network applied to a

speech dataset, the focus of the learning is situated around the pitch frequency located at

130Hz (male) and 230Hz (female), and the first and second formants, which are around 500Hz

and 1kHz respectively. A formant is a concentration of acoustic energy around a particular fre-

quency in a speech wave. This is exactly the frequency region where our learned filters match

the ERB scale. Although that the patterns are apparent, we can also notice some apparent

outliers in the low frequency domain. The interpretation can be twofold: either the amount

of data in certain frequency ranges is insignificant for a successful training of the network or
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Figure 9.5 – Cumulative frequency energy distribution for learned filters on AudioMNIST
dataset, SpectroBank-XS network trained with Gammatone (order 4) and SincNet first layer,
with 32 filters.

there are some additional features, beyond the ERB scale, that would complete the picture

(such as in [171] that combines multiple fixed audio representations for increased precision of

classification).

Cumulative distribution. In Figure 9.5 we can see the cumulative energy distribution, in the

frequency domain, of the learned filters for Gammatone and Sinc filters. We have used 32

filters during the training. From the Gammatone distribution, we can observe that filters focus

on at least some of the frequencies relevant for speech, as discussed earlier, in the range 100Hz

- 1kHz. The sinc distribution has the same global shape as in [153], but is less conclusive about

the formants. We also note a difference in the low-frequency region below 100Hz, where the

distribution drops in our case. We point out that both our dataset and classification task are

different, which could explain the discrepancies. It still shows the high focus of the filters on

the range 100Hz - 1kHz, where the distribution curve is the highest.

9.3 Interpretation of network’s decision making

On the other hand, researchers have been interested in tackling the questions of what con-

tributes to network’s decision and how does information propagate over the layers of the

network? In [15] authors observe the relevance propagation inside spectrogram and raw audio

representations for an audio classification task. As can be seen in the paper, the highest weights

are given to some sort of local extremes. In order to illustrate the behavior of the SpectroBank

layer, in Figure 9.6 we have decided to visualize the evolution of the f parameter for a case

with synthetic data where the key frequencies are at the red dashed lines, i.e. {0.1,0.2,0.4}× fs .

Although the frequencies were initialized on a uniform regular grid, throughout the epochs

they converge towards the frequencies where the key information is contained. In the case

when there are too many filters, some of the filters stay where they were initialized because all

the required information was covered by the rest of the filters from the filter bank.
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Figure 9.6 – Filter convergence illustration on synthetic data

9.4 Conclusion

Decades of research in audio signal processing have brought important knowledge about

sounds, speech and audio information. This knowledge may be inserted within neural net-

works as a priori information and turned into efficient inductive biases. This is what we show

with the example of the SpectroBank layer. This is a layer of parameterized filters adapted

to the extraction of audio information. Moreover, the trained network possesses properties

than can, in turn, bring new insights about audio data back to the audio signal processing

community.

We show that networks having such an input layer can achieve state-of-the-art accuracy on

several audio classification tasks. This approach, while reducing the number of weights to be

trained along with network training time, enables larger kernel sizes, an advantage for audio

applications. Furthermore, the learned filters bring additional interpretability and a better

understanding of the data properties exploited by the network.

Future work in this direction and further developments of convolutions with parameterized

functions may lead to important progress both in deep learning and audio signal processing.

The reduction of the number of trainable parameters decreases the network complexity, along

with the training time. It also enables a better interpretation of the network adaptation to the

data. The future work will also include the expansion of our method for the application to

source separation [127, 49] problem and also to the problem of voice synthesis. The goal of

our learnable representation is to have a simple model that would give perceptually accurate

results.

On the other hand, the most recent solutions available are able to do speech-to-speech
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translation without any intermediate text representation, as presented by the solution called

Translatotron [76]. Such approaches might also affect the future steps for SpectroBank with

further optimizations in the direction of more efficient learning procedures with smaller data

and training footprints.

All the results shown in this chapter are reproducible. The code can be found on github6.

6https://github.com/epfl-lts2/spectrobank
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Conclusion

All the topics that were discussed within the scope of this thesis can be divided into two parts.

The first part addresses problems in acoustics with underlying sparsity. We cover the low-

frequency and the mid-high-frequency range processing with the application of the on-grid

and off-grid parsimonious methods. The second part of the thesis focuses on the recent trends

in machine learning and discusses the potential of learning parametric audio representations.

At the starting point of this thesis, the compressed sensing techniques have been applied

to various types of problems: principal component analysis on graphs [170], redundant dic-

tionary design [152], variable density compressive sampling [145], Fourier imaging [144],

hyperspectral Imaging [63], image reconstruction from multiview measurements [143], mag-

netic resonance fingerprinting [44] and many more. However, applications to problems in

acoustics were quite coarse.

Over the course of this PhD thesis compressed sensing was used for the estimation of the

sound pressure in a room from a limited number of microphones. It has also been used for the

estimation of the room geometry as well as for sound source localization inside of the room.

The takeaway message: we can apply a robust technique for the modal characterization of the

acoustic behavior of the room. The identified parameters of modes can be further used for the

sound source localization of a wideband source inside of the room.

On the other hand, the theory of Finite Rate of Innovation was used to estimate the properties

of Diracs within a Room Impulse Response in an off-grid manner for the problem of blind

deconvolution. Some initial exploration was done for the case of expansion of this algorithm

to the application in a real world setting.

The takeaway message: The locations of early reflections within a Room Impulse Response

can be estimated in an off-grid manner which enables maintaining higher accuracy even with

cheaper sensors, that sample data at low rates.

We have also built a new statistical echo density measure that characterizes the type of the

Acoustic Impulse Response that can be used for better encoding of audio in the domain of

Virtual, Augmented or Mixed Reality.

The takeaway message: By using a simple statistical measure that relies on the first moment,

we can determine the type of the acoustic environment where the Acoustic Impulse Response
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was recorded. This solution can find an application in audio rendering for games or for Virtual

reality, in cases where the user is in spaces that are not fully enclosed or fully open, such as:

caves, outdoor corridors, courtyards etc.

In the last part of the thesis we have improved the classification of audio for the cases of

speech and environmental sounds. We propose a new type of parametric layer for deep neural

networks that can be incorporated into different types of deep learning frameworks and can

also potentially find an application in the sound synthesis.

The takeaway message: The parametric learning for audio classification has shown tendencies to

rely on well established perceptual models, but at the same time has shown slight discrepancies

which indicated that there is a need for multi-feature exploration. These types of solutions can

be applied in classification of sounds for audio surveillance.

By observing the mathematical background and the structure of acoustical data, we can easily

expand the application of proposed methods to other scientific domains. For example, echo

detection and estimation has an application not only in acoustics [22, 188] for room shape

estimation [50, 41, 40] or beamforming [51, 164, 140], but also in submarine navigation in

sonars [84], in seismology [162], in ultrasound imaging [4] and in radioastronomy [125].
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A Proof: Binaural weighted norm as an
objective function

Here we will prove the equivalence between (eq. 6.7) and (eq. 6.10). We observe the Frobenius

norm of the sum of two matrices:

‖A+B‖2
F = ‖A‖2

F +2 ℜ(trace(A∗B))+‖B‖2
F =

‖A‖2
F +2 ℜ

(∑
i

∑
j

(A∗¯B)[i , j ]
)
+‖B‖2

F ,
(A.1)

where ℜ denotes the real part of a complex number. This equivalence will be used on parts of

proofs with
ms= (ms - matrix sum).

In the following M will denote the number of microphones (channels).

Case M = 2: Starting from the cross-relation ‖H1 ¯X2 −H2 ¯X1‖2
F (eq. 6.7) and going to the

Cadzow upgraded weighted matrix norm algorithm from (eq. 6.7) as in [39], we have:

‖H1 −H2 ¯X1 ®X2‖2
W¯|X2|¯2

ms= ‖H1‖2
W¯|X2|¯2−

−2ℜ
(∑

i

∑
j

(H∗
1 ¯H2 ¯X1 ®X2 ¯W¯|X2|¯2)[i , j ]

)
+

+‖H2 ¯X1 ®X2‖2
W¯|X2|¯2 .

(A.2)

So if we optimize over H1, we can neglect the last part of the sum. This is finally equivalent to

(eq. 6.10):

‖H1 −H2 ¯X1 ®X2‖2
W¯|X2|¯2 . (A.3)

Case M > 2: In a multi-channel setting, we need to include all the available measurements in

the retrieval of information. Therefore, for every m ∈Mwe want to minimize:

‖H1 −Hm ¯X1 ®Xm‖2
W¯|Xm |¯2 . (A.4)

This we will denote as: C (H1,Hm). When solving the multi-channel optimization problem
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Appendix A. Proof: Binaural weighted norm as an objective function

over H1 as the variable, we have:

O(m = 1) = ∑
m∈M\1

C (H1,Hm) = ∑
m∈M\1

‖H1 −Hm ¯X1 ®Xm‖2
W¯|Xm |¯2 =

= ∑
m∈M\1

(
‖H1‖2

W¯|Xm |¯2 −2ℜ
(∑∑

(H∗
1 ¯Hm ¯X1 ®Xm ¯W¯|Xm |¯2)

)
+‖Hm ¯X1 ®Xm‖2

W¯|Xm |¯2

)
=

= ‖H1‖2
W¯∑

m∈M\1 |Xm |¯2 −2ℜ
(∑∑

(W¯H∗
1 ¯X1 ¯

∑
m∈M\1

Hm ¯X∗
m)

)
+ ∑

m∈M\1
‖Hm ¯X1 ®Xm‖2

W¯|Xm |¯2 .

(A.5)

After introducing Vi =∑
j∈M\i |X j |¯2, this is finally equivalent to (eq. 6.11):

‖H1 −V¯−1
M/1 ¯X1 ¯

M∑
m=2

Hm ¯X∗
m‖2

W¯VM/1
(A.6)
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B Network architectures

Detailed architecture for SpectroBank-enabled networks used in the experiments are given

in this section. All convolutional and dense layers use ReLU activation, except for the output

layer using softmax.

Table B.1 – SpectroBank custom architecture for AudioMNIST.

Layer Output size

Input 8000×1
SpectroBank (32 filters, size 80, stride 20) 400×32
Convolution (32 filters, size 32, stride 2) 200×32
MaxPooling (stride 4) 50×32
Convolution (64 filters, size 16, stride 2) 25×64
Convolution (128 filters, size 8, stride 2) 13×128
Convolution (256 filters, size 4, stride 2) 7×256
MaxPooling (stride 4) 1×256
Dense (128) 128
Dropout 0.5 128
Dense (64) 64
Dropout 0.5 64
Dense 10 10
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Table B.2 – SpectroBank-XS custom architecture for AudioMNIST.

Layer Output size

Input 8000×1
SpectroBank (32 filters, size 80, stride 20) 400×32
MaxPooling (stride 4) 100×32
Dense (16) 16
Dropout 0.5 16
Dense 10 10

Table B.3 – M3-SpectroBank custom architecture for UrbanSound8K.

Layer Output size

Input 32000×1
SpectroBank (24 filters, size 80, stride 20) 1600×24
Batch Normalization 1600×24
MaxPooling (stride 4) 400×24
Convolution (256 filters, size 3, stride 1) 400×256
MaxPooling (stride 4) 100×256
Global Average Pooling 256
Dense 10 10
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Table B.4 – M5-SpectroBank custom architecture for UrbanSound8K.

Layer Output size

Input 32000×1
SpectroBank (24 filters, size 80, stride 20) 1600×24
Batch Normalization 1600×24
MaxPooling (stride 4) 400×24
Convolution (128 filters, size 3, stride 1) 400×128
Batch Normalization 400×128
MaxPooling (stride 4) 100×128
Convolution (256 filters, size 3, stride 1) 100×256
Batch Normalization 100×256
MaxPooling (stride 4) 25×256
Convolution (512 filters, size 3, stride 1) 25×512
Batch Normalization 25×512
MaxPooling (stride 4) 6×512
Global Average Pooling 512
Dense 10 10

Table B.5 – SampleCNN-SpectroBank basic block. Choice of k is detailed in [79]

Layer Output size

Input N ×d
Convolution (k filters, size 4, stride 1) N ×k
Batch Normalization N ×k
MaxPooling (stride 2) N

2 ×k
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Table B.6 – SampleCNN-SpectroBank architecture for GoogleSpeechCommands (n = 35) or
Urbansound8K (n = 10). BB stands for ’Basic Block’, and GMP for ’Global Max Pooling’

Layer Output size

Input 16000×1
SpectroBank (80 filters, size 160, stride 40) 200×80
Batch Normalization 200×80
BB 0 (k = 80) 100×80
BB 1 (k = 80) 50×80
BB 2 (k = 160) 25×160
BB 3 (k = 160) 12×160
BB 4 (k = 160) 6×160
BB 5 (k = 160) 3×160
BB 6 (k = 320) 1×320
Concatenate (GMP(BB 4), GMP(BB 5), GMP(BB 6)) 640
Dense 640
Batch Normalization 640
Dropout (0.25) 640
Dense n n
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C Perceptually motivated models: ERB
and Bark scales

Two main models of auditory filter bank system provide the expression of a filter bandwidth B

with respect to its frequency f . In the Bark model [200] the expression is the following:

Bb( f ) = 25+75[1+1.4

(
f

1000

)2

]0.69, (C.1)

and in the ERB (Equivalent Rectangular Bandwidth) scale [62]:

BERB ( f ) = 24.7(4.37 f +1). (C.2)

These expression are the ones used in the present work.

In addition, these auditory models provide expressions for the frequency spacing between

consecutive filters, that follow a logarithmic law. For a given filter number k in the set of filters,

its frequency can be obtained by using the following formula: f = 228.846
(
ekERB /9.265 −1

)
. This

relationship is more often expressed in terms of k as a function of the frequency:

kERB = 9.265log

(
1+ f

228.846

)
, (C.3)

The Bark model has a similar expression:

kb = 13arctan

(
0.76

f

1000

)
+3.5arctan

(
f

7500

)2

. (C.4)

One can also compare with the Mel-scale. Sampling linearly on the Mel-scale m leads to

logarithmic frequency sampling:

m = 1127ln

(
1+ f

700

)
. (C.5)
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[82] KITIĆ, S., ALBERA, L., BERTIN, N., AND GRIBONVAL, R. Physics-driven inverse problems

made tractable with cosparse regularization. IEEE Transactions on Signal Processing 64,

2 (Jan. 2016), 335–348.
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