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Abstract
Solidi�cation is a phase transformation of utmost importance in material science for it largely
controls materials’ microstructure on which a wide range of mechanical properties depends.
Almost every human artifact undergoes a transformation that leads to a solid phase, be it via well-
established manufacturing processes as casting or forging, or more recent technological advances
such as 3D printing. This thesis aims to study some fundamental aspects of solidi�cation,
focussing in particular on metals and alloys.

Despite being a phenomenon investigated for a long time with both experiments and the-
oretical models, solidi�cation still involves a very complex set of phenomena that requires a
multi-scale approach in order to provide useful insights. For example, properties relating to the
thermodynamics and kinetics of solid-liquid interfaces play a crucial role in micro-scale model-
ing of solidi�cation, yet are particularly challenging to assess with experimental techniques.
Our main instrument of investigation has been a set of well-established computer simulation
techniques at the atomic scale, and we applied and extended some of these methods, with the
primary goal of improving the reliability of some results related to the properties of solid-liquid
interfaces and being able to study systems whose level of complexity comes closer to that of
interest to some real manufacturing processes.

The approach of atomistic simulations involves several technical and theoretical problems. A
�rst issue is related to the size of the systems that it is necessary to simulate in order to obtain
results of some relevance despite an inherent statistical error that is often substantial. Moreover,
some theoretical subtleties — such as the arbitrariness in the de�nition of the concept of interface
— inevitably emerge from an approach at the atomic scale and lead to problems whose solution is
anything but univocal; often, in fact, di�erent formulations of these problems provide di�erent
results. The �rst contribution of this thesis focused on extending a computational method that
serves to calculate a fundamental quantity known as interface free energy, and in particular to
decrease its computational cost by reducing the number of particles the simulations contain.
The second contribution addressed the study of crystal-melt interface properties of a particular
metallic binary alloy. The idea behind this part of the work was to combine di�erent techniques
of atomistic simulations whose outcomes make it possible to obtain an exhaustive description of
both the thermodynamics and the dynamics of the interfaces. We have based this approach on
a precise de�nition of dividing surface, and we have derived all our results in a consistent way
which allowed us to avoid some arbitrary choices that similar kinds of simulations usually entail.
A part of the results obtained con�rmed the reliability of our approach, showing satisfactory
agreement with some other established results. However, challenges remain associated with
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Abstract

the accuracy of the interatomic potential, the presence of signi�cant �nite-size e�ects, and the
di�culty in converging to satisfactory statistical accuracy the thermodynamic and dynamical
properties of solid-liquid interfaces.

Keywords Molecular dynamics, Monte Carlo, enhanced sampling, solid-liquid interfaces,
thermodynamics, solidi�cation, binary alloys, Additive Manufacturing.
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Sommario
La solidi�cazione è una transizione di fase di primaria importanza nella scienza dei materiali,
in quanto controlla in larga misura la microstruttura dei materiali da cui dipende un’ampia
gamma di proprietà meccaniche. Pressoché ogni manufatto prodotto dall’uomo subisce una
trasformazione che porta a una fase solida, sia attraverso processi produttivi consolidati come la
fusione o la forgiatura, sia attraverso i più recenti progressi tecnologici come la stampa 3D. Que-
sta tesi si propone di studiare alcuni aspetti fondamentali della solidi�cazione, concentrandosi
in particolare su metalli e leghe.

Pur essendo un fenomeno studiato da tempo sia con esperimenti che con modelli teorici, la
solidi�cazione comporta un insieme di problemi molto complesso; un approccio multi-scala
rappresenta l’unica via possibile per ottenere soluzioni, spesso approssimate, ad alcuni di questi
problemi. Ad esempio, le proprietà relative alla termodinamica e alla cinetica delle interfacce
solido-liquido giocano un ruolo cruciale per descrivere la solidi�cazione su scala atomica,
ma sono particolarmente di�cili da misurare con tecniche sperimentali. Il nostro principale
strumento di indagine è stato un insieme di tecniche di simulazione atomistica ben consolidate.
Abbiamo adoperato ed esteso alcuni di questi metodi con l’obiettivo principale di migliorare
l’a�dabilità dei risultati di certe proprietà delle interfacce solido-liquido e studiare dei sistemi il
cui livello di complessità si avvicinasse maggiormente a quello dei materiali impiegati in alcuni
processi produttivi reali.

L’approccio delle simulazioni atomistiche comporta diverse problematiche sia tecniche che
teoriche. Un primo problema è legato alle dimensioni dei sistemi che è necessario simulare per
ottenere risultati a�dabili, nonostante l’errore statistico associato a queste grandezze sia spesso
considerevole. Inoltre, alcune sottigliezze teoriche — ad esempio, l’arbitrarietà nella de�nizione
di un’interfaccia — emergono inevitabilmente da un approccio atomistico e generano problemi
la cui soluzione è tutt’altro che univoca; spesso, infatti, formulazioni diverse di questi problemi
forniscono risultati che possono essere molto diversi fra loro. Il primo contributo del lavoro di
questa tesi è stato di estendere un metodo computazionale che serve a calcolare una quantità
fondamentale nota come energia libera di interfaccia, e in particolare a diminuire il suo costo
computazionale riducendo il numero di particelle che le simulazioni richiedono. Il secondo
contributo ha riguardato lo studio delle proprietà di interfaccia solido-liquido di una particolare
lega binaria metallica. L’idea alla base di questa parte del lavoro è stata quella di combinare
diverse tecniche di simulazione atomistica i cui risultati permettono di ottenere una descrizione
esaustiva sia della termodinamica che della dinamica delle interfacce. Abbiamo basato questo
approccio su una precisa de�nizione di interfaccia, derivando tutti i nostri risultati all’interno
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di un framework consistente ed evitando alcune assunzioni arbitrarie che simulazioni di questo
tipo solitamente comportano. Una parte dei risultati ottenuti ha confermato l’a�dabilità
del nostro approccio, mostrando un soddisfacente accordo con dei risultati della letteratura
scienti�ca. Tuttavia, rimangono ancora molte problematiche associate all’accuratezza del
potenziale interatomico, alla presenza di signi�cativi e�etti di scala, e alla di�coltà di convergere
con soddisfacente precisione statistica i risultati delle proprietà termodinamiche e dinamiche
delle interfacce solido-liquido.

Parole chiave Dinamica molecolare, metodi Monte Carlo, metodi di campionamento accelera-
to, interfacce solido-liquido, termodinamica, solidi�cazione, leghe binarie, stampa 3D.
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1 Introduction

1.1 Solidi�cation phenomena

The solid-state of matter is the one with which everyone is most familiar. Solidi�cation,
therefore, is a transformation of matter ubiquitous and well known to all, even if only for a
natural phenomenon such as the formation of ice crystals that make up the snow. It is therefore
of fundamental importance in material science since almost every human artifact undergoes a
transformation that leads to a solid phase. Solidi�cation as a manufacturing step could occur via
either well–established methods like casting and forging, or more recent technological processes
such as Additive Manufacturing, also known as 3D printing. It should not also be overlooked
the recent proliferation of new and advanced numerical simulation methods. Thanks to the
availability of computers with extremely e�cient parallel architectures, it is now realistic to
model portions of condensed matter containing up to billions of atoms on time scales of several
nanoseconds [1–3]. The work discussed in this thesis focused on the application and, in small
part, the extension of atomistic simulation methods to study the phenomenon of solidi�cation.

The family of processes going under the name of casting gathers the most widely adopted
methods by the metalworking industry to produce metallic objects. If the precursor materials
do not have prohibitively high melting points, casting methods are often a better choice of
manufacturing object with respect to forging. For example, the production rate of casting is
usually higher once the mould — the object representing the negative of the desired shape —
is ready. Furthermore, casting usually requires very few secondary machining processes and
allows more freedom and higher level of detail in the �nal shape. On the other hand, detailed
reports1 on the comparison between casting and forging measured a ultimate tensile strength
that is about 25% higher in forged parts than in cast parts, and showed that forging leads to
objects that are going to last longer due to a higher fatigue strength.

Even though casting would be a better manufacturing choice when it could meet the desired
�nal product’s quality and mechanical properties, it poses multiple challenging problems
which pertain to solidi�cation process’s conditions. These, in turn, in�uence the material
microstructure on which mechanical properties of the �nal object strongly depend. For example,
the tensile strength is strongly hindered by the average distance between microstructure features
such as dendritic branches. Being able to control this kind of properties which are results of the
solidi�cation process is key to obtain a �nished product with desired characteristics.
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The oldest known object produced by casting with a technique known as investment casting
(or lost-wax casting) is dated to be roughly 6000 years old. This technique was probably born
as a natural consequence of clay processing used to produce mainly decorative artifacts. The
possibility of manufacturing metal objects — copper, initially, followed by bronze of the �rst
objects found in China and dated around 5000 BCE, and then iron around 500 BCE — has
ushered the use of casting techniques in areas such as agriculture, architecture and warfare.

As Kurz states in his Fundamentals of solidi�cation, it is interesting to note how little the
technological importance of the solidi�cation process is appreciated. There are many examples
of modern technological applications where nothing would have been possible if the problems
of understanding solidi�cation had not been addressed with the same analytical approach
that science has dedicated to many other fundamental problems. Prominent examples are
microelectronic and solid-state technologies, where solidi�cation of highly pure crystalline
materials is of utmost importance. The well-established integrated circuits industry requires
the preparation of large amounts of single crystals of silicon without impurities, except those
purposely introduced to modify the material’s electronic properties necessary for the operation
of devices such as the transistor. For this reason, the need to understand solidi�cation in
depth has led the knowledge of this phenomenon from being a collection of rather empirical
procedures and observations to the status of an independent branch of modern material science.

1.2 Additive manufacturing

Until recently, being able to make objects with varying shapes without going through an
excessively long preparation phase pertained mostly to rapid prototyping. However, the latest
technological developments on techniques such as AM opened a whole new realm of possibilities.

Several industrial sectors, ranging from the energy one to high precision watchmaking,
have for some time shown increasing interest in the possibility of introducing AM in their
manufacturing processes. The foremost reason for such interest is the possibility to design the
�nal object employing a three-dimensional modeling software and then fabricate it directly
with almost no need of any other intermediate design stage. Other manufacturing processes
would require a detailed analysis of the �nal object to determine, for example, the order in
which each part has to be built and later assembled.

AM technologies are considered as a step-change revolution in product development and
manufacturing, and they could rede�ne what is meant today by a “manufacturing process.” The
optimism of these forecasts underscores the two main advantages of AM technologies. First,
the rapid character of the whole process: it is not just in terms of overall time needed to build
an object, but all the development process experiences a speedup, primarily because computer’s
aid is used throughout.

The second advantage is the reduction in the number of process’s steps despite the possible
complexity of the �nal object. AM usually involves one single step, while standard manufactur-
ing processes would require a particular sequence of multiple and iterative stages to be carried
out. Even a relatively simple change in the project may require signi�cant modi�cation in
the fabrication process, which, in turn, increases the time required to obtain the �nal product.
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Other drawbacks are the often high processing costs due to the amount of waste material and
that required to build components necessary to the entire process — e.g., molds in the speci�c
case of casting.

Current research e�orts at both the academic and industrial level focused on a more in-
depth understanding and improvement of the three fundamental laser-based processing that
developed in parallel as AM matured. These are laser melting (LM), laser sintering (LS), and
laser metal deposition (LMD). Although the doctoral project focused on the phenomenon of
complete solidi�cation which occurs only in the case of laser melting, these three variants of
the manufacturing process allow working with di�erent classes of materials, of which the next
section will give a brief overview.

1.3 Materials

All the Additive Manufacturing techniques mentioned previously can be in theory applied
to any metallic material, be it a pure metal or an alloy (see �g. 1.1). After a brief discussion
about the usage of both pure metals and alloys in AM processing — with a particular focus
to the selective laser melting technique — we give a more detailed description of nickel-based
superalloys that are particularly relevant for several high-performance applications.

Figure 1.1 – A pie chart illustrating the research interests of Laser Melting Additive Manufac-
turing applied to di�erent classes of materials. Data are based on publications indexed by Web
Of Science and ScienceDirect from 1999 to 2014 [4].

1.3.1 General considerations on pure and alloyed metals

Pure metals have been applied for various AM processes since the beginning. However, they
are no more the focus of future development of AM technology mainly because of two reasons:
�rstly, pure metals are known to have relatively poor mechanical properties and, from a chemical
point of view, they are more prone to corrosion and oxidation. Secondly, early attempts to
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processing pure metals with the laser sintering technique have been largely unsuccessful (i.e.
poor overall quality of �nal products) and a real improvement has been possible only with �rst
successful applications of LM. For example [5], LS processing of pure Ti samples showed that
�nal products typically have an heterogeneous microstructure, in which powder grains had cores
showing incomplete melting, melted surfaces and voids; this means that the density of parts so
obtained can be quite far from the level required to ensure good mechanical properties. For these
reasons, currently industrial applications moved from LS to LM or LMD to build nonferrous
pure metals components. However, recent studies [6, 7] on samples of pure metals such as Ti
and Ta that underwent only partial melting have demonstrated the possibility of producing
porous structures with complex shapes and controlled porosity that could be interesting for
biomedical applications.

The majority of the actual research (and subsequent applications) has been focused on powder
alloys based on metals such as Ti, Ni and Fe. The next research step might focus on aluminum-
base alloys since they pose well–known di�culties related to their high re�ectivity to laser
energy. LS and LMD are the most widely adopted AM techniques to process almost all the
alloys powder where complete melting is required. Therefore, it is necessary to utilize high
power laser sources in order to obtain parts with the desired density, except in cases where
the porosity of the �nal material is a required characteristic. Examples of lasers used for this
purpose are powered lasers, Nd:YAG and �ber lasers. Besides the setup of the processing
parameters, residual stresses and microstructure are two important aspects to pay attention to,
as they are largely a�ected by the substantial undercooling during rapid solidi�cation after the
laser melting step. As proposed by Abe et al. [8], a possible way to solve these issues is the use
of a dual laser scanning system; essentially, in this way one of the two laser can be used during
a preheating phase before the actual melting or afterwards in a reheating phase.

1.3.2 Nickel alloys

The fundamental solutes in nickel based superalloys are aluminium and titanium, with a total
concentration which is typically less than 10 atomic percent. This generates a two–phase
equilibrium microstructure, consisting of a γ and a γ ′ phase. It is the γ ′ which is largely
responsible for the elevated temperature strength of the material and its incredible resistance to
creep deformation. The amount of γ ′ depends on the chemical composition and temperature.

The γ phase is a solid solution with a Face Centered Cubic lattice where di�erent chemical
species are randomly distributed. By contrast, γ ′ is an intermetallic phase with composition
Ni3(Al, Ti) and has a simple cubic Bravais lattice where one nickel atom lies at the center of
each face of the cube, while aluminium or titanium atoms are at the cube corners.

The following �g. 1.2 shows a portion of the ternary NiAlTi phase diagram at 1423 K. The
(γ+γ ′)/γ ′ phase boundary suggests that the phase is not strictly stoichiometric: sub–lattice
vacancies or substitutional defects might lead to deviations from stoichiometry.

One of the most important properties of these alloys is their strength up to very high
temperatures. More precisely, these alloys show high yield strengths and at �rst these values
are independent on temperature. An explanation of this peculiar property lies in the structure
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Figure 1.2 – Portion of the NiAlTi ternary phase diagram at 1423 K where the regions of the γ
and γ ′ phases have been labeled. The full phase diagram of this system has been calculated
with the calphad software using proprietary thermodynamic data [9].

of the two phases: both have a cubic crystal structure with similar lattice parameters, and the γ
phase forms the matrix in which the γ ′ precipitates. This transition preserves the symmetry of
the cubic lattice, and thus the unit cell edges of the γ ′ remains parallel to the corresponding
edges of the γ phase. Moreover, when the precipitate’s size is small, the lattice mis�t between
the two structures is also small. Dislocations that form in the γ phase do not penetrate easily
into the γ ′, partly because the latter is an intermetallic crystalline phase. The mechanism of
propagation of the dislocations is therefore partially prevented by the crystalline order of the
precipitated phase and this contributes considerably to strengthening the alloy.

The lattice mismatch between theγ and theγ ′ phase plays quite an important role: it promotes
the stability of the microstructure at high temperature. This is mainly due to the fact that the γ
and the γ ′ belong to almost equal crystal structure and thus the γ/γ ′ interface energy is quite
low. The mechanism of precipitate coarsening (i.e. the Oswald ripening) is thermodynamically
driven by the minimization of the interface energy, and thus the more coherent is the interface
— the smaller its surface free energy — the more stable is the microstructure, especially because,
at high temperatures, it does not happen that a precipitate of a solid phase grows at the expense
of another one.

Nickel superalloys of some industrial interest contain more than just Ni, Al or Ti. Essential
resistance to oxidation is promoted also by the presence of chromium and aluminum, while small
quantities of yttrium help the oxide layer to be commensurate with the substrate. Furthermore,
when dealing with polycrystalline superalloys, the addition of boron and zirconium results in
reducing the grain boundary energy, which in turn improve overall creep strength.
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1.4 Numerical modeling of solidi�cation

Solidi�cation phenomena o�er an excellent example of a rather complex set of problems both
from a physical and a mathematical standpoint. Despite knowing precisely the fundamental
equations behind them, for the results to be of some practical utility, the only hope is to rely on
numerical modeling methods.

There are several reasons why this is the case, but the underlying one is that an analytical
solution to the fundamentals equations of solidi�cation is bounded by very restrictive conditions
that rarely apply for real systems. To give a few examples:

• Exact solutions often assume overly simpli�ed geometries, or they may be obtained only
for one-dimensional systems.

• Material properties — e.g., density, heat conductivity, or di�usion coe�cients — cannot
be taken as uniform quantities even for the case of elemental systems.

• Phenomena such as heat transfer or mass transport may be decoupled only in very few
and simple cases.

A numerical solution lies at the heart of the fundamental technique of molecular dynamics,
that has been extensively used to produce all the results discussed in this thesis. The main
interest of many numerical approaches to solve complicated problems is to understand how the
parameters of the simulation a�ect the accuracy of the solution. Analytical solutions that exist
for model systems can serve as benchmarks against the results obtained by the chosen numerical
approximation, thus giving precisely a measure of how accurate the numerical approach could
be when applied to real systems of interest.

An essential task of whichever approach is chosen to model solidi�cation is to �nd a suitable
description of the problem that allows following the phase separation front in both time and
space as the material solidi�es, as it provides fundamental insights on the microstructure of the
resulting phase. Numerical methods of this kind belong to two categories, which di�erentiate
by the type of grid employed to discretize both time and spatial dependence. These two classes
are �xed grid methods and front tracking methods.

1.4.1 Finite di�erence, volume and element methods

The most direct approach belonging to �xed grid methods is the �nite di�erence method. The
idea behind does not restrict to model solidi�cation problems, but it is far more general: it
decomposes both the time and spatial domain upon which some variable of interest depends,
and it chooses two discrete units of time and space: the evolution of the variable can then be
followed through a sequence of time-steps.

As an example, consider the one-dimensional equation of heat conduction

∂T

∂t
= α
∂2T

∂x2 , (1.1)
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where the spatial variable x is bounded in the interval [0, L] and t > 0. One can de�ne the
discrete evolution of T as follows

T n
i = T ((i − 1)∆x, (n − 1)∆t),

where i runs over all the points in the spatial dimension of the grid, while n is a positive integer.
One can then write explicitly the expressions for T at di�erent positions, and expand these as
Taylor series about the value of temperature at the current point. The expansions are truncated
at a certain order in ∆x , which tells about how the approximate solution will converge (diverge)
when the grid spacing decreases (increases). With this procedure, one obtains an expression for
the second-order spatial derivative of T

∂2T

∂x2 =
Ti−1 − 2Ti +Ti+1

∆x2 + O(∆x2).

By following an identical procedure to discretize also the time dependence, one arrives to an
equation that relates the dependence ofT in the time domain to that in the spatial domain. This
relation is the central result of any �nite di�erence method, and it is usually called a stencil
because successive applications lead to the full2 — yet approximate — dependence of the variable
on time and space.

The intrinsic limit of the �nite di�erence method is that, although both ∆x and ∆t need not
be constant, it is not evident how the accuracy changes for an irregular grid, because ∆x and
∆t would depend explicitly on time and space.

An alternative method to obtain time and spatial dependence ofT that guarantees an accuracy
equal to that of the Taylor expansions even with irregular grids is the �nite volume method. The
idea of this method is to split the spatial domain into control volumes, which may not well be
constant, and retain a �nite di�erence scheme for the time domain. The fundamental equation
underlying this method is a balance equation as the following∫

V
ρcp
∂T

∂t
dV = −

∫
A
q · n̂dA, (1.2)

where q is the heat �ux vector and n̂ is the normal to the surface enclosing a control volume;
ρ and cp represent the density and the speci�c heat at constant pressure, respectively. The
Fourier’s law of heat conduction for an isotropic medium reads

q = −κ∇T ,

so the ∂T /∂x term on the right-hand side of eq. (1.2) can be expressed, at time tn , via the �nite
di�erence approximations explained previously, as well as the time derivative on the left-hand
side. Although �nite volume method does not constrain control volumes to be mapped onto a
structured grid, it can be shown3 that for a two–dimensional Cartesian grid the �nite volume
method leads to the same time and spatial evolution equations as the �nite di�erence method.
The real advantage over the latter is that the accuracy is still O(∆x2) regardless of whether the
grid is regular or not.
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A third widely used strategy to approach this kind of modeling problems is known as �nite
element method and it is closely related to �nite volume. Both these two methods start by
decomposing the spatial domain in volumes that are de�ned by the points connecting one
element to its neighbors. In the �nite element method the variable of interest is de�ned for
every point in each control volume using some interpolation scheme, usually a polynomial one.
This strategy allows avoiding the use of �nite di�erence approximations, except for the term
expressing the time derivative.

The �nite volume method can be considered a special case of the �nite element method, in
which the interpolating functions are just piecewise, constant functions, and the value of the
variable on one grid point represents the entire volume to which the point belongs. A clear
advantage of the �nite volume method over its parent one is that it deals directly with �uxes
and quantities integrated over every volume of the grid — expressed by relation similar to
eq. (1.2). This approach bears a clearer physical signi�cance, while the mathematics behind
�nite element methods may become a little cumbersome, especially for very complex domain
geometries. On the other hand, �nite element methods can be generalized to higher orders of
approximation in a straightforward manner, since the polynomial interpolation provides an
easier way to estimate accuracy.

1.4.2 Zooming in on the system: phase �eld and atomistic modeling

As mentioned previously, the number of real–world technological advances in which modern
material science has an impact is uncountable. In almost all these �elds of application, the
importance of solidi�cation is that it ultimately controls the underlying microstructure of
materials.

Given the nature of solidi�cation phenomena, it should not be surprising that in both pure
science and computational modeling the best approach to the study of this class of problems is
a hierarchy of simulations techniques that operate on multiple scales. Figure 1.3 is a typical
plot of this interplay between di�erent methods. It does not only restate that each method has
its intrinsic limitations, but, more importantly, that any information obtained by, say, atomistic
modeling is a valuable input for one technique whose target is to simulate the behavior of
materials at the micro–scale.

A prominent example of a method that has emerged in both engineering and material science
is the so–called phase �eld method. The features of this method are better discussed with an
example. In the previous section, we outlined the most common numerical methods starting
from the interest in solving the fundamental heat conduction equation. To study even the
apparently simple problem of solidi�cation of a pure material, that equation is coupled with
two other conditions to form what is known as the Stephan problem. One of these conditions is
of particular interest since it expresses the correction that one should introduce in describing
the temperature �eld away from the solidi�cation front — that is, the interphase boundary. This
is the so–called Gibbs–Thomson equation4, which speci�es the interface temperature. It reads

Tint = Tm − Tm
Lf
γκ − Vn

µ
, (1.3)
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Figure 1.3 – Schematic plot showing time and length scales of several modeling techniques that
should be combined to study solidi�cation.

whereTm is the melting temperature, γ is the solid–liquid interface free energy and κ is interface
local curvature and Lf the latent heat of fusion. Vn is the velocity of the interface along its
normal direction and µ the atomic mobility, sometimes also referred to as kinetic coe�cient. It
is necessary to note that eq. (1.3) has been greatly simpli�ed by omitting the dependency of
γand µ from the speci�c orientation of the interface normal. This aspect will be extensively
discussed later on since it is essential to include the anisotropy of these two quantities to be
able to model accurately real solidi�cation phenomena.

The above equation contains several parameters that are both crucial and usually unac-
cessible by modeling methods at the macroscopic scale. However, the real di�culty is that
the formulation of this problem if far from universal, and there are numerous examples of
solidi�cation–related problems for which the Stephan problem is unknown [10]. Moreover,
searching for a solution to eq. (1.1) or eq. (1.3) by means of approximate methods as those
described in the previous section usually involves numerical simulations with not so straight-
forward mathematics and rather complex algorithmic implementations.

Phase �eld modeling methods choose as their key quantity a continuous �eld analogous to
the temperature term that appears in every macroscopic model. The phase �eld can be seen as a
quantity that, from the standpoint of solid state physics, describes the degree of order in a certain
phase; as such, it assumes constant values in the bulk and interpolates in a continuous fashion
across the interface between di�erent phases. A fundamental advantage over other continuum
models is that it can be directly related to a description of the interface as a di�use region
between two portions of matter that are uniform on the atomic scale. Yet, the most interesting
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feature of phase �elds quantities is that they are connected to fundamental thermodynamics
quantities known as free energy functionals5, from which the order parameter dynamics,
heat and mass transfer can be derived by solving a set of partial di�erential equation. The
parameters governing these equations are closely related to those appearing in a macroscopic
model, and sometimes even adjusted so as to match their counterparts in the equations of the
aforementioned Stephan problem.

However, nothing comes for free: the advantage of having a �rst–hand connection with
atomistic methods — on which this thesis is entirely based — brings with it several limitations and
challenges. For example, phase �eld methods are not capable of rendering interfaces that extend
to the mesoscopic scale, which are necessary to describe real solidi�cation microstructures.
Moreover, as phase �eld models can be interpreted as the next step from atomistic simulations,
they also have the intrinsic limit of the time scales they can cover. Interface kinetics strongly
in�uences phase �eld models, which therefore cannot hope to transfer their results on time-
scales that describe real phenomena.

Thesis outline

The rest of the thesis is grouped in two parts. Part 1 deals with all the established theoretical
background. It covers a few fundamental concepts of statistical mechanics (chapter 2). It then
describes the key ingredients of computer simulations (chapter 3), trying to balance theoretical
and practical aspects. The third chapter deals with both equilibrium thermodynamics of binary
systems (section 4.2) and fundamental thermodynamics of interfaces (section 4.3), with an
outlook to out–of–equilibrium conditions.

Part 2 contains the original contributions of the thesis: the �rst chapter (chapter 5) describes
the adaptation of a well–known method to compute interface free energies to instantaneous
�uctuating dividing surfaces, while the second chapter (chapter 6) presents a versatile framework
to determine interface and solidi�cation related properties of binary alloys.

Notes

1. See, for example, Williams and Fatemi [11].

2. A stencil represents a discretize version of the solution to a second-order partial di�erential equation, which require
two boundary conditions to be speci�ed.

3. For a more detailed discussion see, for example, chapter 6 (section 2.2) of Dantzig and Rappaz [12].

4. The Gibbs–Thomson equation relates a change in pressure, temperature, or chemical potential across the interface
between two phases. A �rst approach to describe phase transitions with textbook thermodynamics neglects any
additional contribution to the free energy due to the presence of an interface, but this approximation becomes
insu�cient if the surface free energy is comparable to the bulk energy. A justi�cation of the Gibbs–Thomson
equation can be given considering a simple system where a crystalline phase with chemical potential µs is a sphere
of radius R surrounded by a liquid phase with chemical potential µl . If γ is the speci�c free energy of the surface,
then the total surface energy of the system is simply 4πR2γ . Assuming that the solid is thermodynamically more
stable than the liquid, if dn moles of particles (atoms or molecules) transfer from the liquid phase to the solid, then
the free energy of the system will be reduced by (µl − µs )dn. As a consequence, the radius of the spherical crystalline
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1.4. Numerical modeling of solidi�cation

phase will change by an amount given by dR = Vmdn/4πR2, whereVm is the molar volume of the solid. An increase
in the solid phase will also change the surface energy by γdA = γ 8πR2dR. These two contributions are opposite in
sign, therefore thermodynamic equilibrium corresponds to the condition where the two free energy terms are equal.
By comparing the two equations, one gets

(µl − µs )dn = 8πRγ Vm
4πR2 dn,

that is equivalent to
µl − µs =

2γVm
R
,

and this is precisely the Gibbs–Thomson equation. Even though we assumed a spherical crystalline phase, the
reasoning holds also for a non-uniform distribution of the particles that undergo the phase transition, and it is always
possible to express the di�erence in chemical potential between the two phases in terms of a shift in temperature,
pressure, or concentration from their corresponding equilibrium values. The additional term on the left–hand side
of eq. (1.3), Vn/µ, is a kinetic term which is needed to account for the fact that the interface does not respond
instantaneously to a change in temperature or concentration. For rough interfaces, it can be shown [13] that a linear
term in the interface velocity corresponds to an exponential relaxation of the interface due to a perturbation, and
this is usually the approximation that leads to form of the Gibbs–Thomson equation discussed in this thesis.

5. We used the term “functional” on purpose because phase �eld models depend on quantities which in turn depend on
functions on a entire domain and not just on individual points. For example, a quantity written as F =

∫
f (ϕ(x))dx

de�nes a functional of ϕ(x), and it is usually denoted with F [ϕ(x)]. Functionals are well known to the physics of
condensed matter and have a fundamental role in density functional theory, a keystone of modern computational
physics. It is perhaps interesting to note that a certain type of phase �eld models can be shown to derive from special
cases of the so–called classical density functional theory. This link has the appealing notion to draw parameters
of phase �eld models directly from atomistic properties. References [14, 15] are examples of the applicability of
classical density functional theory to solidi�cation problems.
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2 Statistical mechanics1

2.1 Phase space and esembles

When studying a portion of condensed matter, most common questions we are often interested
in answering are, for example, what is the value of that property (e.g., the di�usion coe�cient)
at a given pressure and temperature? How the structural ordering — which could be captured by a
quantity like the structure factor — would change if an external perturbation is turned on? These
examples are trivial, but answers to all this kind of questions generally depend on the state of
the system which is de�ned by a certain number of parameters — such as the temperature T ,
the pressure p, and the number of particles N 1 — that can be more or less controlled at will.
At the microscopic (yet not subatomic) level, each particle composing the system is uniquely
identi�ed once its position and momentum are de�ned. However, any macroscopic quantity we
might want to study, even those providing information at smaller scales, is not dictated by the
astronomically large number of positions and momenta that de�ne the mechanical state of the
system. The connecting bridge between the over-detailed realm of positions and momenta — a
multidimensional coordinate space that is called the phase space — and the macroscopic world
was built by statistical mechanics.

With a system being in a particular state, given by a particular point in phase space Γ, the
instantaneous value of any property A will depend on Γ. Since Γ ≡ Γ(t), A is also going
to change over time. The natural de�nition of a measured value of A would be obtained by
collecting multiple observations of A in a given time interval and computing the average. In
the limit of an in�nite number of observations, an average so calculated would match the true
average. With a limited number of measurements,

Aobs = 〈A〉time =
1

Nobs

Nobs∑
i=1

A(Γ(t)).

From this de�nition, one could determine the average value of A by letting the system evolve
in time-steps of �xed length, thus obtaining a discrete time evolution of A.

Instead of calculating 〈A〉 with a time average of A(Γ(t)), another potential way relies on the
concept of ensemble average, which has been originally coined by Gibbs. In this context, the

1Additional readings for some of the topics of this chapter: Ruelle [16], Allen and Tildesley [17], and Ruelle [18].
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Chapter 2. Statistical mechanics

term ensemble indicates a set of points, or con�gurations, in phase space. These con�gurations
are not distributed randomly, but they are so according to some probability distribution function,
P(Γ), which strictly depends on the set of macroscopic quantities that de�ne the state of the
system. For example, we may choose to study a system whose temperature and pressure are held
constant, thereby de�ning the so–called NPT ensemble. A di�erent thermodynamic state of the
system changes the type of ensemble we are working with; hence, the probability distribution
may be labeled accordingly as Pens. More importantly, since every point in phase space evolves
in time, P will change with time as well.

Thermodynamics (chapter 4) deals with systems attaining equilibrium. These particular
states of the system are particularly relevant for the probability distribution: by de�nition,
equilibrium means not changing with time; hence ∂P(Γ)/∂t must vanish. Among the in�nitely
many ways in which a system may evolve over time, there is a kind of such processions that
is peculiar: the one that allows the system to explore all the region of phase space. These
evolutions are termed ergodic, and we shall return to the importance of this concept. For the
moment, this picture of the system as a point in phase space that jumps from one con�guration
to another suggests a way to de�ne the ensemble average: since the likelihood that the system
visits a particular con�guration is determined by the probability distribution function, which in
turn depends on the ensemble, we may compute the average value of A as

Aobs = 〈A〉ens =
∑
Γ

A(Γ)Pens(Γ).

Since in general not all the con�gurations are equally likely, the probability distribution
function is often replaced with an unnormalized function that expresses the absolute weight
wens(Γ) of that particular con�guration. To make this change consistent, the weights must sum
to a quantity de�ned in such a way to guarantee that

∑
Γ P(Γ) = 1. This fundamental quantity

is called partition function and it clearly depends on the kind of ensemble as well. A formal
de�nition of ensemble average is then

〈A〉ens =

∑
Γ wens(Γ)A(Γ)

Zens
, (2.1)

where Zens =
∑

Γ wens is the partition function. From the partition function, one may build
the connection with classical thermodynamics by introducing a thermodynamic potential of
particular importance for one ensemble,

Ψens = − lnZens.

Ψens is not a new quantity introduced with no purpose, but it is the function that attains its
minimum value when the system is at thermodynamic equilibrium. For an ensemble in which
the total energy is constant, Ψens might be de�ned as the entropy taken with opposite sign, or, as
the chapter on thermodynamics will show, it might coincide with a free energy function. These
functions are particularly relevant for ensembles most relevant for typical laboratory conditions,
where thermodynamic variables such as the pressure and the temperature are usually held
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constant.

2.2 Common ensembles

The de�nition of the partition function given by eq. (2.1) suggests a possible approach to
computing thermodynamics properties of a system: it would involve a way to determine
directly Zens. However, the system contains too many particles, and therefore there are too
many states (i.e., con�gurations in phase space) that will have a negligible weight. Ideally, we
would discard those con�gurations if only we could know beforehand which are those states.
Unfortunately, this direct way of approaching the problem is unfeasible. Therefore, a computer
simulation experiment consists of a time-evolution equation that takes potentially any initial
con�guration of the system and, given su�ciently long sampling time, allows computing an
ensemble average that converges to the average one would obtain if it were possible to pick
initial con�gurations with the right statistical weight.

The choice of the ensemble should be dictated mostly by convenience — that is, it should
be the most suitable choice for the kind of system the performed simulation should reproduce.
However, a further question to address is whether the average of property A calculated in
one ensemble is equal, in some circumstances, to the average of the same property in another
ensemble. Assuming that the conditions for a positive answer to this question are satis�ed,
the rest of the section summarizes four of the most common ensembles adopted for computer
simulations. One should bear in mind that, once some thermodynamic properties are �xed by
de�nition in one ensemble, all the other quantities that depend of the con�gurations in phase
space will deviate from their average.

2.3 The NVE ensemble

A system composed by classical particles obeys Newton’s equations of motion, which conserve
the total energy, the total linear and angular momentum. If the initial total energy is E, then
the probability distribution function should represent all those con�gurations that have that
particular value of E. WithH (Γ) being the Hamiltonian, the partition function is given by

ZNVE =
∑
Γ

δ [H (Γ) − E] , (2.2)

where δ is a function that picks only those con�gurations of the system with the given value of
the total energy E. Dealing with macroscopic systems means having an almost in�nite number
of possible states, and the six-dimensional coordinates in phase space vary in a continuous
fashion2. The partition function of any ensemble is thus better expressed with an integral

ZNVE =
C

N !

∫
δ [H (r ,p) − E] drdp, (2.3)

where C is a constant required to make the partition function dimensionless, and 1/N ! takes
into account the indistinguishability of the N particles3.
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A straightforward implementation of molecular dynamics (section 3.2) will sample exactly
this ensemble — also called microcanonical ensemble — and the thermodynamic potential that
tells whether the system is evolving towards equilibrium is the negative entropy, −S/kBT , where
kB is the Boltzmann constant.

2.4 The NVT ensemble

A more common ensemble is that in which the temperature is held constant, instead of the total
energy. This is the canonical ensemble and its probability distribution function is proportional
to

exp [−H (r ,p)/kBT ].
The partition function is, then

ZNVT =
C

N !

∫
exp [−H (r ,p)/kBT ] drdp. (2.4)

Newton equations of motion evolve in time initial con�gurations in such a way that they will
explore only those regions of phase space with total energies close to their initial values, and
the temperature will then �uctuate. A di�erent strategy to evolve con�gurations from the NVT
ensemble is needed, one that takes into account the possibility for any of these con�gurations to
exchange energy. A couple of approaches to devise such integration schemes will be discussed
in the section on thermostats and barostats.

The �nal important detail about this ensemble is which thermodynamic potential is more
naturally to consider. Being V and T �xed, the thermodynamic function is the Helmholtz free
energy, A

A

kBT
= − lnZNVT.

2.5 The NPT and µVT ensembles

The ensemble in which pressure and temperature are �xed is usually called isobaric–isothermal
ensemble. Avoiding for the moment any technical discussion on how this ensemble is im-
plemented in a molecular simulation, the substantial di�erence with NVT is in the partition
function. Since now the total volume may vary, an additional integration over all the possi-
bile volumes must be added, introducing a normalizing constant volume V0 needed to have a
dimensionless partition function.

ZNPT =
C

N !
1
V0

∫
dV

∫
exp [−(H (r ,p) − pV )/kBT ]drdp. (2.5)

The fundamental thermodynamic function associated with this ensemble will return many
times in the following since it is of great importance in chemical thermodynamics. It is the
Gibbs free energy, which is the equivalent to Helmholtz free energy when pressure is constant
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instead of volume:
G

kBT
= − lnZNPT.

It always a good choice to �x at least one extensive variable to avoid pathological ensembles
in which the system could grow without limit. The extensive variable to constrain could be the
volume, while the number of particles can change. The grand canonical — or µVT — ensemble
allows the total number of particles to change and �x the total chemical potential µ. The
partition function is very similar to that of the NPT ensemble with an additional summation
over N :

ZµVT =
∑
N

C

N ! exp(µN /kBT )
∫

exp(−H (r ,p)/kBT drdp. (2.6)

In a similar way in which in the NVT and NPT ensembles the total energy — or the total energy
and the volume — can vary, the scheme adopted to generate and evolve con�gurations from the
µVT ensemble must allow the system to exchange particles with a reservoir, and it must keep
the overall chemical potential constant during these exchanges.

Although the discussion was limited to a system composed by only one type of atoms,
extending the grand canonical ensemble to a system containingC components, each comprising
a set of Ni particles, is rather straightforward: the single summation over N of eq. (2.6) is
replaced by a multiple summation over the atoms of all the possible kinds, and the exponential
term outside the integral becomes

C∏
i=1

exp(µiNi/kBT )
Ni !

.

A slightly modi�ed alternative to the grand canonical is the semi-grand canonical ensemble.
This ensemble is particularly useful to study systems which contains both multiple chemical
species and several phases, each with a given composition. Such a system could be well
represented by a semi-grand ensemble in which the total number of particles N =

∑
i Ni is

�xed, but the chemical species of each particles can change. In this case, an arbitrary reference
for chemical potentials must be de�ned — say µ1, the chemical potential of species 1 — while
the di�erences µi − µ1 with the potentials of all the N − 1 remaining species are held constant.

2.6 The ergodic hypothesis

As described at the beginning of this chapter, in statistical mechanics physical observables are
obtained by ensemble averages, that is, averages calculated on all the states accessible to the
system. However, when dealing with real experiments, quantities are usually the outcome
of an average of a series of measurements collected over a given time interval. As it will be
shown in the following sections, the aim of well–established computational techniques such as
molecular dynamics (MD) is precisely that of providing a reliable numerical approximation of
the time evolution of a many-particle system. The question is more about whether there is a
link between ensemble averages and those averages obtained when running real experiments.
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It turns out that a link exists, even though it cannot be proven right for any arbitrary system
under study. The idea, known as the ergodic hypothesis, is due to Ludwig Boltzmann, one of
the physicists who gave birth to modern statistical mechanics. Boltzmann thought that, for an
isolated system that cannot exchange neither energy nor particles with the surroundings, the
system would visit, over the course of time, all the possible energy con�gurations. This means
that each particle in the system would have to assume all the values of position and velocity
that are compatible with a given total energy and, waiting long enough, these con�gurations
would all be visited. In other words, saying that a system’s evolution is ergodic means that the
system will return to an arbitrarily small distance from any permitted energy con�guration.

Since a point in the phase space represents a particular state of the system, its time evolution
is simply the motion of that point in the phase space. The physical content of the ergodic
hypothesis is that, while moving in the phase space, the point representing our system spends
in any region of the space a time proportional to the volume of that region.

In practice, if the time evolution of the system is ergodic, an ensemble average of any
dynamical property A is equivalent to its time average taken over the system trajectory, if the
latter is available for a su�ciently long time:

〈A〉ens = lim
t→∞

1
t

∫ t

0
A(X (t ′))dt ′.

2.7 Statistical errors

The previous section underscored the importance of the ergodic hypothesis: if it is applicable
to the time evolution of our system, then it provides a practical way to estimate averages out
of trajectories obtained with MD or MC. If calculating an average quantity seems now to be
straightforward, estimating the statistical errors is a more delicate topic.

If a simulation runs for a total time length T , for a ergodic time evolution

〈A〉 = AT =
1
T

∫ T

0
A(t)dt

where the subscript distinguishes the time-averaged A from its ensemble average. The variance
is given by

σ 2(A) = 〈A2
T 〉 − 〈AT 〉2

=
1
T 2

∫ T

0

∫ T

0
〈[A(t) − 〈A〉][A(t ′) − 〈A〉]〉 dt dt ′

(2.7)

where the integrand is the correlation function of time �uctuations in the quantity A,CA(t − t ′).
Assuming that T represents a much greater time scale than that characterizing the decay of
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�uctuations, then the integral of eq. (2.7) can be approximated as

σ 2(A) ≈ 1
T

∫ +∞

−∞
CA(t)

=
2τC
T

CA(0),
(2.8)

in which the usual de�nition of the decay time τC as half the integral of the normalized
correlation function CA(t)/CA(0) has been used. Therefore, the variance relative to the mean is
given by

σ 2(A)
〈A〉2 ≈

2τC
T

〈A2〉 − 〈A〉2
〈A〉2 . (2.9)

The meaning of eq. (2.9) restates the known result that the error in the mean decreases as
the number of measurements taken long after the typical decay time of the �uctuations of A
increases. This number is given by the ratio T /τC , and it gives a precise meaning to the vague
concept of “running a simulation long enough.” A practical problem arises when the sampled
quantity involves �uctuations decaying over a long wavelength limit, which require to perform
simulations of systems with a box size much larger than all the characteristic length scales of
such �uctuations. This fact reformulates the problem in terms of the computational cost of the
simulation: since the computational cost scales with the number of particles at best, the time
required by such a calculation rapidly increases as a power law of the simulation box length.
It is therefore not a problem of being able to reach prohibitive time scales, but rather that of
having su�cient computational resources to study a system large enough to sample all the
relevant �uctuations of the observable of interest. If a too small system size suppresses some of
these �uctuations, then the observable will be a�ected by �nite–size e�ects.

The relation given by eq. (2.9) suggests a way of verifying the ergodicity of a time evolution
of the system: by measuring both the correlation time4 and the time average of the observable
A as the simulation proceeds, the error in the mean would get smaller and smaller for a ergodic
evolution of A. There are sampling techniques that go beyond simple MD or MC that aim at
minimizing τC for the observables under study. However, there are a few subtle problems worth
mentioning.

1. First of all, computing the auto-correlation time from simulations is not trivial. A reason
for this is that τC is usually estimated from the integral of the auto-correlation function,
and the latter is determined without knowing exactly the value of 〈A〉, which is inferred
from the simulation trajectory itself. This is true for the majority of real cases, therefore
the resulting auto-correlation time will be underestimated.

2. If several observables are monitored at the same time, it often happens that the two
quantities have very di�erent auto-correlation times: running a simulation for a time
much greater than the shortest τ does not guarantee that the simulation has already lost
memory of the �uctuations of the observable with a longer auto-correlation time.

3. An observable might be the sum of many contributions that exhibit di�erent time scales.
Therefore, care must be taken in judging the simulation to be long enough just because
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the auto-correlation function shows a rapid, initial decay: integrating only this �rst
portion of CA(t) might give a wrong estimate of τ because the long-time tail of CA(t) is
discarded.

2.7.1 Block averages

Since it is not possible to run simulations for an in�nitely long time, the concerns related to the
estimation of errors are all but irrelevant: when reporting a measured quantity by means of a
computer simulation, a quantitative estimation of its uncertainty must be given. It is easy to
show that, if eq. (2.9) involves a quantityA for which time correlation plays no role, then 〈A〉 and
its error are readily computed with standard formulas of statistics, and thus it is expected that
the statistical error is inversely proportional to

√
N , where N is the number of measurements5.

When samples of A drawn from an ensemble distribution are instead correlated, a natural
question arises: is there an alternative method to estimate the average and a correct uncertainty
of 〈A〉, given that it is far more easier to compute from a simulation mean values rather than
auto-correlation times? A smart way of obtaining reliable error estimates of time-correlated
quantities has been proposed by Flyvbjerg and Petersen [19], and is known as block average. As
its authors put it, the idea “combines maximum rigor with minimum computation,” because
it involves an iterative algorithm that only requires a series of values of A drawn from a
simulation’s trajectory. In fact, obtaining the ensemble average of an observable and its error
through block averaging is equivalent to estimate the observable’s auto-correlation time.

Notes

1. For the present discussion, we are considering only one-component systems.

2. A macroscopic portion of matter can be considered as a molecular or atomic system in the so–called thermodynamic
limit, that is, when the extensive variables such as the number of particles and the volume are brought to in�nity
while still having a well–de�ned, �nite ratio. Thus, a system whose phase space contains an almost in�nite number
of states does not represent the thermodynamic limit of a system with a countable number of accessible states.

3. The integral
∫
drdp is a shorthand notation to indicate that the integration variables are the full set of spatial

coordinates and momenta.

4. In this context, since we are studying correlations over time of an observable with itself, τC is also known as
auto-correlation time.

5. This is true even when dealing with correlated samples. The only requirement is that one must suitably choose the
time span that should separate consecutive samples of the observable. As showed by eq. (2.9) this spacing is given
by T /τC .
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In most of this thesis, the simulations run to study the systems of interest belonged essentially
to the �eld of classical methods. In this context, the term classic means that the motion of
the particles making up the system obey the laws of Newtonian mechanics: once the initial
conditions of the system are set and the law describing the interactions between particles is
known, it is possible to determine the temporal evolution of the positions and momenta of
each particle. Although the laws of quantum mechanics are necessary to explain the behavior
of matter at the atomic scale, a simple argument entirely justi�es the classical approximation
made above: atoms are made up of nuclei which are much more massive than electrons. It is
thus possible to decouple the dynamics of the former from that of the latter, and describe the
dynamics of the system as a function of the positions and momenta of the nuclei only1. The
electrons with a much faster dynamics are assumed to follow instantaneously any displacement
of the nuclei and to be always in their ground state.

These two assumptions lead to a description of the system in terms of its HamiltonianH , a
function of 6N degrees of freedom that depends on the set of coordinates q and momenta p2

H (q,p) = K (p) +V(q). (3.1)

The set of generalized coordinates q and momenta p depend on the kind of particles we are
studying. If they are molecules that can be treated as rigid bodies, then the coordinates may
be more suitably expressed as the positions of the centres of mass together with a number of
variables describing the orientation of each molecule in space — for example, a set of Euler
angles. When dealing with a simple atomic system, the kinetic term in the Hamiltonian is the
simplest one, since it is just a sum over single-particle kinetic energies

K =

N∑
i=1

∑
α=x ,y,z

p2
i ,α

2mi
.

Since K depends only on coordinates and mass of each particle, it does not contain any
interesting information about the interactions between di�erent particles, which is instead
captured by the potential energy term,V . Assuming thatV can be expressed in some form —
which will almost always include a series of approximations more or less drastic depending on
the problem — then it will be possible to write the full form ofH , from which we derive not
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only the temporal evolution of the system, but also the equilibrium distribution of coordinates
and momenta.

It is evident the the potential energy term is the key ingredient for any kind of computer
experiments one wants to perform. Before diving into the details of the two standard techniques
of molecular dynamics and Monte Carlo methods, the following section explores more in depth
the available possibilities to construct interatomic potentials. It focusses more on the class of
functions known as empirical potentials: these descriptions of the interactions between atoms
or molecules are built as su�ciently �exible interpolations of experimental data or calculations
obtained via ab initio methods3. To this latter class belong all those computational schemes
that choose to avoid an e�ective interatomic potential, but they rather attempt to solve4 the
associated many-body Schrödinger equation5.

It is worth mentioning another set of versatile methods that, even more recently than ab initio
ones, have seen an incredible growth in the number of applications to the �eld of computational
science: it is the broad class of machine learning methods6.

3.1 Interatomic potentials

Recent years have witnessed a spectacular growth in both the number and the capabilities of
computational methods that allow investigating more deeply complex phenomena of condensed
matter. One reason is undoubtedly the very rapid evolution of the available computational
resources and power. At the same time, computer science has developed models — such as very
speci�c programming languages — and increasingly e�cient tools to make the most of all those
resources.

However, in the scienti�c �eld, a motivation is undoubtedly linked to the more and more
precise strategies for modeling the interactions between the constituents of a generic many-
particle system. As mentioned earlier, the term indicated withV contains all the interesting
information about this aspect. Models like the embedded atom method (EAM) — described in
detail the following section and most suited for systems showing metallic bonding — were
developed less than thirty years ago [20–22], but have been continuously improved and extended
in order to reduce the discrepancy between their predicted results and those obtained with
much more consolidated experimental measurements.

Despite all this progress, many systems of interest for a variety of scienti�c �elds are still too
complex and demand reliable but approximate methods. A uni�ed framework to explain all
these possible interactions is both impossible and useless, because one would have to deal with
an enormous quantity of information. Yet, any attempt to construct an interatomic potential
should start by considering which terms play a relevant role in describing the properties of our
system. For an atomic system of N particles, a general form forV may be written as

V =
∑
i

v1 (ri ) +
∑
i

∑
j>i

v2
(
ri , r j

)
+

∑
i

∑
j>i

∑
k>j

v3
(
ri , r j , rk

)
+ . . . .

In such expression one can identify: a �rst term representing an external �eld, which may be
just the �xed walls of the constant-volume vessel where the system is contained. A second,
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pairwise term that, albeit written as a function of individual atoms’ positions ri and r j , depends
only on the distance ri j =

��ri j �� = ��ri − r j �� between two particles. The third term captures the
interactions between triplets, and it is essential when modeling molecular or even more complex
systems (e.g., polymers or proteins), where bonds between atoms stretch and bend. One could
also include higher-order terms, but both for a lesser physical importance and computational
e�ciency, most empirical schemes of interatomic potentials do not go beyond the third term.

Since already the three-body term usually needs time-consuming algorithms when imple-
mented in some computer simulation program, the two-body term is often replaced by an
e�ective term that collects all the many-body e�ects including those of v3. The obvious trade-
o� is how many approximations (and at what extent) this “e�ective” term introduces. The
expression forV then becomes

V ≈
∑
i

v1 (ri ) +
∑
i

∑
j>i

ve�
2

(
ri j

)
.

The next section describes in more detail a scheme that has proved very e�ective in reproduc-
ing the metallic bond. Given the importance of simple metals and alloys in this thesis’ scope, the
section will give a brief review of the fundamentals and discuss some examples where the model
obtained results with excellent agreement with experimental or �rst-principles calculations.

3.1.1 The embedded atom method

The question that sparked the idea on which the EAM model is based was: how could we
formulate a scheme that allows avoiding both the need to solve the many-electron Schrödinger
equation and the assumption of the cohesive energy of a solid as a pairwise sum?

The problem in considering the cohesive energy as a sum of pairwise terms is that it treats
every bond between a pair of particles as independent from all the others. This assumption
has been disproved in many ways by comparing the predicted and expected trends of some
fundamental properties of solids. Daw, Foiles and Baskes [23] bring the example of the elastic
constants of solids with a cubic crystal structure: if it were true that the cohesive energy could
be well approximated as a sum of independent two-body terms, then the ratio between two
elastics constants C12/C44 would be approximately 1, the value it takes for a purely pairwise
interaction. It is the case for rare gases, but when turning to simple metals such as palladium,
silver and gold, that ratio lies more often between 2 and 4.

Once veri�ed the reasonable guess that many-body interactions have a decisive contribution
already for systems as simple as pure metals, it was necessary to �nd an approximate but
accurate way to represent these interactions, a choice that did not require to solve explicitly the
Schrödinger equation. In 1984, Daw and Baskes [20] proposed the following expression for the
cohesive energy of a metal

Ecoh =
∑
i

[
Gi

(∑
j,i

ρaj
(
ri j

) )
+

1
2
∑
j,i

Ui j
(
ri j

) ]
, (3.2)

where G is the embedding energy de�ned as the interaction of atom i with the background
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electron density originating from all the remaining atoms’ electrons, ρaj is an average atomic
electron density, and Ui j is a two-body electrostatic interaction.

The derivation of eq. (3.2) will be only summarized, since many extensive works [21, 24]
contain an integral discussion on its justi�cation and veri�cation. The starting point is the
expression of the cohesive energy according to the density-functional formalism [25]

Ecoh = G[ρ] + 1
2
∑
i , j
j,i

ZiZ j

Ri j
−

∑
i

∫
dr

Ziρ

|r − Ri | +
1
2

∫
dr1

∫
dr2

ρ (r1) ρ (r2)
r12

− Eatoms. (3.3)

This expression contains: the repulsive interaction energy of the nuclei (2nd term), the interac-
tion between the electron density and the positive nuclei (3rd term), and the Hartree energy.
Everything else, that is, kinetic, exchange and correlations energies, are grouped in the G[ρ].

The �rst assumption to obtain an expression easier to evaluate from eq. (3.3) is to write the
electron density as a sum over atomic densities only7. With this assumption, the �rst term of
eq. (3.3) splits into a di�erence between the energy of the solid and that of the single atom

G

[∑
i

ρai

]
−

∑
i

G
[
ρai

]
,

where it is made explicit that the embedding energy G is a functional of the electron density.
A way to approximate this expression is to assume that the background density of the atom i ,
ρbI (r ) ≡

∑
j,i ρ

a
j (r − R j ), can be replaced by some constant value ρi . By de�ning the energy of

an atom embedded in a constant electron density �eld ρi as

Gi
(
ρi

) ≡ G [
ρai + ρi

] −G [
ρai

] −G [
ρi

]
, (3.4)

one introduces an error Eerr into eq. (3.3); the optimal value for ρi is that which sets Eerr = 0. If
the system contains atoms of a single chemical species and no defects, then only one value of ρ
is needed. However, in the most general case the constant density term depends on the local
environment of atom i . The considerable advantage of this approximation is that, instead of
having to evaluate the functional G[ρ], only the embedding function G(ρi ) is necessary. The
latter depends solely on how complicated the relationship between ρi and ρbi is. Although many
technical and relevant details have been skipped here, this justi�cation of eq. (3.2) underscores
at least two scenarios in which the approximations behind EAM would manifest immediately:
one is when it is not possibile to replace the total electron density with a linear combination
of atomic densities8, and the second would be if there is no plausible form of the background
density that is straightforward enough to evaluate.

In more recent years, there have been numerous works that extended and improved the
method, and have made it possible to describe those interactions in metal systems that were
not correctly captured by the original model. For example, Finnis and Sinclair [22] derived a
di�erent expression for the embedding energy term as a second moment9 approximation within
the well–known tight binding framework. It can be proven that the bond energy term — i.e., the
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embedding energy term — is proportional to −
√
ϕi , where ϕi is proportional to

ϕi = Ai

∑
j

βi j (ri j ),

where the su�xes ij accounts for the types of the atoms, leading to contributions to the
bond energy that depend on the chemical nature of each atom, but without considering any
orientational dependence of the bonds.

A second well–known example EAM extensions is the modi�ed embedded atom method [26],
where the term of the background density is not calculated as an isotropic average, but takes
into account the possible angular dependencies of the electronic density [27, 28] — and therefore
also that of the chemical bonds.

EAM applied to alloys

Interatomic potentials developed within the EAM method have been applied to study various
properties of alloyed metals. Among the advantages of EAM over other semi–empirical ap-
proaches there is that the atomic interaction can capture the chemical nature of the atoms.
In the Finnis–Sinclair model, the embedding energy is a function of electron density terms
that explicitly depend on the atom types: changing the chemical identity of the neighbors will
a�ect the electron densities. In principle, the EAM framework allows modeling an alloy once
known the embedding functions that are able to describe correctly the metallic bond of the pure
elements composing the alloy. However, even though in the original work of Daw and Baskes
were given mixing rules to obtain ρα β and ϕα β for any alloy once known the corresponding
functions for the elemental systems, it was soon made clear that this approximation was not
enough to produce reliable and transferable potentials with the desired accuracy, and the EAM
was then revisited to �t explicitly properties of the complex system of interest.

One should also be aware of possible errors when applying EAM potentials to complex
systems like alloys. For example, EAM is not capable of modeling system with large charge
transfers, as well as any e�ect arising from particular features of the Fermi surface.

This section will present some useful and recent applications of the EAM to study di�erent
properties of metal alloys, with a particular focus on nickel and gold alloys.

Nickel ternary alloys As described previously, Ni–based superalloys are subject of many
studies for their high performance applications as structural materials with excellent strength
and creep resistance. These alloys are generally made of Ni, Ti and Al and the precipitation
of the γ ′ ordered phase within the Ni FCC matrix is mainly responsible for the high strength.
Also, plasticity response is thought to be due to formations of defects such as vacancies and
impurities that a�ect dislocations motion [29, 30]. There is therefore an extensive literature
that investigates the applicability of EAM to reproduce crucial properties of Ni–based alloys.

The study of nickel ternary alloys typically requires reliable potentials to model the interac-
tions between Ni–Al, Ni–Ti and Al–Ti. The Ni–Al system has been already thoroughly studied,
and several EAM potentials have been developed [31] for both the Ni3Al system [32, 33] and
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Table 3.1 – Lattice properties of Ni and Al calculated with the potential developed by Mishin [37]
in comparison with experimental data [40, 41]. The perfect match between the predicted and
experimental equilibrium energy and lattice parameter is due to the inclusion of these quantities
in the dataset used to �t the EAM parameters.

Property Ni Al
Experiment EAM Experiment EAM

a0 (nm) 0.352 0.352 0.405 0.405
E0 (eV) −4.45 −4.45 −3.36 −3.36

Elastic constants (GPa):
B 181.0 181.0 79.0 79.0
c11 246.5 241.3 114.0 116.8
c12 147.3 150.8 61.9 60.1
c44 124.7 127.3 31.6 31.7

the NiAl system [34, 35]. Farkas [36] has developed and compared interatomic potentials for
the Ti-Al system that included the non–central forces and the best potential available that did
non include any angular term. In that work, Farkas demonstrated that “the strongest e�ect of
the angular forces are seen in the values of the elastic constants,”10 and that both cohesive and
stacking faults energies were much less a�ected by the addition of angle–dependent terms.

In the work of Mishin [37], a new EAM potential has been developed for the NiAl system by
�tting to both experimental data and ab initio calculations. A series of recent works, aimed also
at understanding the role of defects formation in plasticity response of Ni ternary alloys [38],
have considered this new potential to be among the most reliable ones for modeling γ and γ ′

phases of Ni superalloys, showing a good accuracy in predicting γ/γ ′ interface energy.
Lastly, a ternary potential for the system Ni–Al–W has been constructed [39] for the Ni–based

single crystal superalloys to model the doping of Ni–Al system with tungsten, also comparing
results with other calculations when the doping elements were Re or Co11. The potential
predicts that tungsten solute atoms do not form clusters within the γ phase, which is consistent
with experiments. Furthermore, it correctly predicts that increasing the amount of W reduces
the lattice mismatch between γ and γ ′ phase.

Gold alloys Literature on EAM potential on gold and related alloys is less abundant than
nickel (or titanium), especially when going beyond the simple metal system. Nevertheless,
as we explained previously, the EAM framework allows to combine di�erent single–element
potentials that reproduce with the desired accuracy the interested properties, and build from
these an e�ective potential for the alloy system.

The table below summarizes the accuracy of a new EAM potential for gold developed by
Grochola, Russo, and Snook [42], in which the authors report to have used “an improved
methodology to �t to lattice parameters of the solid at high temperatures as well as liquid
densities.” This potential showed a better agreement with several experimental data if compared
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Table 3.2 – Comparison table between predicted values of EAM potentials for gold discussed in
this section. The table is partially reproduced from Grochola, Russo, and Snook [42]. Elastic
constants are in GPa, energies in eV and lattice parameters in Å.

Property Potential developed by
Grochola Ercolessi Johnson Foiles Exp.

Cohesive energy −3.924 −3.78 −3.930 −3.927 −3.93
Lattice constant 4.0701 4.0704 4.0806 4.0805 4.07
Bulk modulus 1.8026 1.8037 1.6987 1.6673 1.803
c11 − c12 0.3207 0.5998 0.2687 0.2454 0.319
c44 0.4594 0.5998 0.4069 0.4524 0.454
Melting point (K) 1159 1338 1053 1121 1337

with previous potentials of Foiles, Baskes, and Daw [43], Johnson [44] and that obtained by
Ercolessi, Parrinello, and Tosatti [45] within the so–called glue model. Grochola and coworkers
emphasize how attempting a �t to all the properties for which an experimental data is available
is by far unsuccessful. However, their results suggest that other metallic elements may gain an
overall improvements by employing a di�erent �tting methodology.

3.2 Molecular dynamics1

Molecular dynamics (MD) is a computational technique that makes it possible to determine the
equilibrium and dynamical properties of many-body classical systems.

The accuracy of the outcomes of MD simulations, the size of the systems and the typical
time-scale on which the simulation can be performed all strongly depend of the kind of method
employed to model the interaction between particles in the system. For example, an empirical
potential allows the simulation of millions of particles on a time-scale of microseconds.

Evaluating the forces acting on every particle in a system from the knowledge of the in-
teratomic potential is straightforward on paper, but it is, at the same time, the portion of a
molecular simulation that represent the majority of its computational cost. Therefore, it must
require a time that is orders of magnitude lower than that necessary to determine the potential of
interaction by explicitly dealing with the electronic problem (i.e., solving Schrödinger equation).
On the other hand, the accuracy and reliability of a classical MD simulation strictly depend on
the goodness of the function chosen to represent the interatomic potential.

A simulation of MD can be thought as a computer version of a real experiment: initially a
model of the system is prepared consisting of N particles; we determine the temporal evolution
of the system, that is, we calculate positions and momenta for every particle as a function of
time by solving Newton’s equations of motion; �nally we determine the properties of interest
of the system.

1More extensive discussions on the topics of this section can be found in Allen and Tildesley [17], Tuckerman
[46], and Frenkel and Smit [47].
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3.2.1 Equations of motion

There are many equivalent formulations of equations of motion that describe Newtonian
dynamics of a system of particles whose interaction is expressed by a potentialV . Sticking to
the formalism of generalized coordinates q and p, one may start from Hamilton’s equations

Ûq = ∂H /∂p
Ûp = −∂H /∂q (3.5)

whereH is the Hamiltonian. In eq. (3.1), the two contributions to theH are explicit, while a
more formal derivation is obtained from the Lagrangian L = K −V

H (q,p) =
∑
k

Ûqk
∂L

∂ Ûqk
− L(q, Ûq). (3.6)

From the above equation it is easy to show that, if there are no time-dependent forces acting on
the system, the Hamiltonian is a constant of motion. SinceH represents the total energy of a
closed system, it means that total energy is conserved12.

Before showing the most common strategy to obtain an approximate solution to equations
of motion, it is useful to point out that issues may arise if the potential energy term is not a
su�ciently smooth function of particles’ positions. This is because ∂H /∂q appears explicitly
in Hamilton’s equations, therefore at least the �rst derivative ofV(q) needs to be continuous.

3.2.2 The Verlet algorithm

As mentioned in the introduction (section 1.4), �nite di�erences methods are among the most
employed techniques to obtain an approximate solution to problems described by several
di�erential equations. Molecular dynamics belongs to this group.

A key quantity of any algorithm that implements �nite di�erences is the timestep, ∆t . Its
choice depends on the details of the algorithm’s implementation, but generally one would like
to be able to use a timestep long enough to avoid excessively expensive simulations to study the
evolution of the system on the time scale of interest. Moreover, in the speci�c case of MD, one
would be able to choose an algorithm that, although the error introduced by a �nite di�erence
approximation will produce trajectories that di�er considerably from the exact ones, does not
violate the conservation of total energy. Lastly, the algorithm should be time-reversible and
reasonably easy to implement in a computer code13.

No algorithm, however sophisticated, can provide a precise solution for an inde�nite simula-
tion time. The error made in the approximation will accumulate with each iteration, so it is
necessary that the algorithm does not depend at least linearly on the timestep. Moreover, with
MD we do not care at all to obtain an in�nitely long trajectory, but rather a su�ciently long
one with respect to the characteristic �uctuations of the process that we want to simulate14. If
energy is not well conserved, for example because of a too large timestep, than the trajectory
describing the system moving in phase space would not be sampling the NVE ensemble, and
therefore any ensemble averaged property would bring no information at all.
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An algorithm that satis�es all the aforementioned features and has been by far the most
widely used in MD implementations is the Verlet algorithm [48] in the so–called velocity form.

v

(
t +

1
2∆t

)
= v(t) + 1

2∆ta(t)

r (t + ∆t) = r (t) + ∆tv
(
t +

1
2∆t

)
v(t + ∆t) = v

(
t +

1
2∆t

)
+

1
2∆ta(t + ∆t)

(3.7)

This algorithm operates in three steps: after evaluating the forces to obtain accelerations at
time t , velocities are calculated at time t + ∆t/2. Then, positions are updated up to time t + ∆t .
Lastly, a second evaluation of forces allow to update also the velocities at time t + ∆t . The
velocity–Verlet algorithm is known to accurately conserve energy with a root mean-square
error proportional to ∆t2.

In the case of the microcanonical ensemble, it is worth repeating one last time that it is
of fundamental importance to check that the algorithm chosen conserves the total energy,
even if in fact small �uctuations of the energy are an inevitable consequence of the method
of �nite di�erences on which all the algorithms are based. For the velocity–Verlet algorithm,
for example, it is known that the error should be proportional to ∆t2, so a good strategy to
check that everything is working as expected is to monitor the root mean square error on the
total energy,

√
〈H 2〉 − 〈H 〉2, versus ∆t2; as the timestep increases, the relationship should be

linear. If that is not the case, a closer inspection to the trend of the total energy as a function of
time could reveal a suspicious drift. One may then assess the nature of this drift by running a
couple of short simulations of the same total time but with a smaller timestep: if energy drifts
in the same way regardless of the timestep, then the problem probably lies in the particular
con�guration in which the system was prepared. On the other hand, a energy drift that changed
substantially15 could indicate a problem in the implementation of the integration algorithm.

3.2.3 Isothermal molecular dynamics

We have seen that solutions to Newton’s equations at the heart of standard molecular dynamics
let the system explore constant energy surfaces in phase space. However, it is often more inter-
esting to perform simulation by keeping constant other intensive variables, such as temperature
or pressure. The reason for this is simple: many interesting phenomena, including solidi�cation,
actually happen in these conditions. The question is then how a MD algorithm can be modi�ed
in order to produce a system evolution in a di�erent ensemble. We will brie�y discuss some
possibilities to obtain simulations at constant temperature and/or pressure in this section.

Before describing approaches that modify Hamilton equations and allow energy �uctuations,
it is important to clarify what is meant by constant temperature. From the point of view of
thermodynamics, the answer is contained in the Zeroth principle: one body can be brought at
the same temperature of a second one simply by putting them in contact. In other words, we
bring our system in contact with a much larger thermal bath whose temperature is the target
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value we want our system to reach at equilibrium. In the context of atomistic simulations, on
the other hand, it is straightforward to de�ne a “kinetic” temperature from the equipartition
theorem

2〈K 〉 = 3NkBT ,

where N particles are assumed to have only 3 translational degrees of freedom. In such case,
the average kinetic energy per particle is given by

kBT =m〈vα 〉,

where α indicates the Cartesian component of the particle’s velocity and m its mass. One
might therefore be tempted to conclude that keeping the kinetic energy per particle constant
also forces the temperature to remain constant. It is not di�cult to prove that this is not the
case at all [47]: one can easily calculate the relative variance of kinetic energy for a system
in contact with a thermal bath at a �xed temperature and note that it is nonzero. This means
that directly manipulating particles’ velocities (and therefore their momenta) does not mean to
sample the canonical ensemble. All these approaches are instead called isokinetic or velocity–
rescaling schemes, and in general they only deviate negligibly from a true constant temperature
simulation.

There are many properly designed velocity–rescaling schemes that let the system sample
correctly the canonical ensemble: two examples are the scheme proposed by Evans and Mor-
riss [49] and, more recently, a stochastic version of velocity–rescaling developed by Bussi,
Donadio and Parrinello [50].

Andersen thermostat The Andersen thermostat [51] couples the system with a heat bath at
a �xed, target temperature. This is achieved by alternating standard Hamiltonian dynamics for
a certain number of timesteps with new assignments of momenta of a randomly chosen set of
particles. The new momenta of these particles are sampled from the corresponding distribution
at the target temperature, that is, Maxwell—Boltzmann distribution. The system’s dynamics
di�ers from that of the microcanonical ensemble in that the system periodically receive a “kick”
from the heat bath that makes it shift to a di�erent constant energy surface.

Besides the target temperature, a key parameter of any implementation of Andersen ther-
mostat is the collision frequency of the system with the heat bath. It is important to note that
whichever frequency is chosen, the perturbation to the system’s dynamic introduced by these
collisions are clearly unphysical, because every time the momenta of some particles are sampled
anew, a sudden decorrelation a�ects the velocities of those particles. As a consequence, if the
constant temperature MD simulation aims at determining some kind of dynamical properties —
e.g., the self–di�usion coe�cient — Andersen thermostat can lead to very di�erent results for
di�erent values of its intervention frequency. An average of such dynamical properties would
be close enough to the correct value only in the limit of very small collision frequency.

Nosé–Hoover thermostat The approach introduced by Nosé [52], whose most known for-
mulation is that proposed by Hoover [53], provides a deterministic way — as opposed to the
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stochastic approach by Andersen — to sample the canonical ensemble.
The idea is more convoluted than Andersen’s in that there is no evident physical interpretation.

Nosé–Hoover thermostat involves modifying the Hamiltonian and introducing two virtual
quantities representing the position and momentum of an additional degree of freedom: the
coupling of the system with the dynamics of this �ctitious degree of freedom is what guarantees
a canonical sampling of the phase space. As a determinist approach, the advantage of Nosé–
Hoover scheme over Andersen thermostat is that a conserved quantity can be associated to the
former, in the same way we showed that trajectories that follow Hamilton equations conserve
the total energy.

The detailed derivation of Nosé Hamiltonian can be found in many standard textbooks [46,
47], but here it is more relevant to highlight the well-known issues of a deterministic thermostat
like Nosé–Hoover’s. First of all, the integration of equations of motion is not as straightforward
as for original Hamilton equations, and it might even be the case that the integrator used is the
most computationally expensive step in during the simulation. Moreover, it can be shown [54]
that, in some circumstances, energy is not the only conserved quantity if the system evolves
according to Nosé–Hoover’s equations of motion. This in turn means that the partition function
of the actual ensemble will not be the canonical one; additional degrees of freedom must be
introduced to recover the correct ensemble, and therefore time integration schemes become
more complex.

3.2.4 Isobaric molecular dynamics

If the system is supposed to simulate a process happening at constant pressure, then it is evident
that the volume must �uctuate. Moreover, there are generally two kinds of volume �uctuations
that may be more suitable for di�erent simulations: isotropic, where the simulation box changes
only in shape, and anisotropic. In the latter case, each dimension is usually uncoupled from
the others, but sometimes one might want to hold the cross–sectional area of the simulation
cell �xed, while letting the third dimension �uctuate. This could be the case for a multi–phase
system, where a solid–liquid coexistence simulation is studied with a planar, slab–like geometry.

The very �rst proposition on how to perform constant pressure MD simulations is again due
to Andersen [51]. His idea was to make volume a dynamic variable — to which to associate a
mass that simulates the existence of a piston with its own inertia — and add a term PV term to the
potential energy. An extended Hamiltonian can be derived in very similar way to Nosé–Hoover
approach to the isothermal ensemble, and trajectories obtained from the associated equations
of motion would sample the isobaric–isoenthalpic ensemble (NPH). The NPT ensemble is in
practice the combination of this ensemble with a thermostat of choice.
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3.3 Monte Carlo methods2

Monte Carlo methods are based on a smart intuition that Metropolis, Ulam and von Neumann
had to solve complex problems of mathematical physics. The gist of their idea is that the
solution to certain problems may be obtained in a more practical way by �nding a probabilistic
analogue, and then solving those problems with stochastic sampling.

A very simple example, that is nonetheless relevant to the calculation of quantities like the
partition function, is to exploit Monte Carlo to evaluate complex integrals. The idea is to take
the following prototype integral

F =

∫ b

a
f (x)dx,

and rewrite it in a way that highlights how the points of the integration domain are distributed

F =

∫ b

a

(
f (x)
ρ(x)

)
ρ(x)dx .

One may then approximate the value of the integral by extracting Ntrials random numbers from
the probability distribution ρ(x) and evaluating the function on this set of points. The simplest
choice of a probability distribution function is a uniform distribution, that is ρ(x) = (b − a)−1

with a ≤ x ≤ b. The integral would be then approximated by

F ≈ b − a
Ntrials

Ntrials∑
i=1

f (xi ). (3.8)

It is not hard to convince oneself that this is the only feasible way to estimate averages such
as that of eq. (2.1). For example, the con�gurational part16 of ZNVT can be written in a similar
fashion to eq. (3.8)

ZNVT ≈ V N

Ntrials

Ntrials∑
i=1

exp (−Vi/kBT ) , (3.9)

where i indicates one among the Ntrials randomly chosen con�gurations. The more trial con�gu-
rations we use, the better the approximation of the integral. Unfortunately, this idea is doomed
to fail for a simple reason that we have already pointed out: there is no guarantee that many of
the randomly chosen con�gurations have a not negligible exponential factor.

3.3.1 Importance sampling and the Metropolis scheme

The only viable way to estimate ensemble averages of the kind

〈A〉NVT =

∫
A exp(−V/kBT )dr∫
exp(−V/kBT )dr

2Further discussion about this topic can be found in Tuckerman [46] (chapter 7) and Frenkel and Smit [47]
(chapter 3, 5, and 13).
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is to sample con�gurations directly from the distribution of interest: this method is called
importance sampling. The integrand of the above equation is just ρNVT(Γ)A(Γ), and it will be
signi�cant only for those con�gurations where ρ is far from zero. The initial problem has not
disappeared, it has only been reformulated in the following question: how can we generate
con�gurations that follow a speci�c probability distribution? In general, we are looking for a
iterative procedure that takes a initial con�guration q to q′ with the requirement that

ρ(q)
ρ(q′) = exp [− (V(q) −V(q′)) /kBT ] .

The prescription to generate any next con�guration is in essence a transition rule which tells
the probability P that the initial state qi = q transforms into the state qi+1 = q′. A necessary
requirement of such rule is that it leaves invariant the underlying probability distribution. An
alternative prescription, which is often the choice for many practical Monte Carlo schemes,
is the so–called detailed balance. This rule simply asserts that the probability of forward and
backward transitions between any pair of con�gurations is the same

ρ(q)P(q → q′) = ρ(q′)P(q′→ q).

A physical justi�cation of the requirement of detailed balance is that, since the goal is to
sample an equilibrium distribution, the transition rule must not destroy such equilibrium once
reached. The strategy proposed by Metropolis [55] splits the transition rule in two steps: the �rst
is a trial move, which could mean any attempt to change the initial con�guration of the system,
not only by displacing spatial coordinates; the second step is the acceptance–rejection of the
attempted move. In this way, the overall transition probability is the product of the probability
of each step: P(q → q′) = T (q → q′) ×A(q → q′), where T and A stand for the transition
and acceptance probabilities. In practice, T is taken to be symmetric, T (q → q′) = T (q′→ q),
and the acceptance probability according to the Metropolis scheme is

A(q → q′) = min(1, ρ(q
′)

ρ(q) ). (3.10)

In each case, P(q → q′) satis�es detailed balance. An important remark is that eq. (3.10) never
requires to evaluate the full probability distribution, which would imply knowing the partition
function, but only the ratio ρ(q′)/ρ(q) = exp [− (V(q′) −V(q)) /kBT ], whose calculation only
depends on the cost of determining the potential energy of a given con�guration.

3.4 Enhanced sampling

Under the term enhanced sampling we may gather all those advanced simulation techniques that
allow either going beyond the standard Metropolis prescription (section 3.3.1) — in which the
states that the system explores during the simulation have Boltzmann–like probabilities — and
extracting information on the free energy of the system, or sampling the so–called rare events,
that is, those particular evolutions of the system usually characterized by energy barriers: the
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system would naturally reside in a small number of points in phase space, while transitions
from one point to an adjacent one cannot typically be observed with standard MD or MC.

Broadly speaking, the computational methods developed to tackle the problem of studying
rare events can be grouped into three categories: methods that study the system in equilibrium,
non–equilibrium techniques [56], and a third one which gathers those methods that choose a
particularly suited set of reaction coordinates — also referred to as collective variables — and
calculate the free energy as a function of those coordinates17.

Restricting the discussion to the �rst class, that is, methods that sample the system in
equilibrium, to allow the system to overcome an energy barrier one can either alter its energy to
reduce the barrier, or constrain the system to sample the phase space only along those degrees
of freedom that do not characterize the transition over the barrier.

The latter method is the so-called thermodynamic integration [57–59], which we only brie�y
comment here. Recalling that free energy functions are the thermodynamic potentials associated
with di�erent ensembles, it is clear Helmholtz free energy, for example, cannot be determined as
a simple ensemble average. Instead, one could determine the derivative of the free energy with
respect to some thermodynamic variable such as the volume or temperature: these are quantities
that can be obtained readily from a numerical simulation. Then, once these quantities are known,
the free energy can be evaluated by integration over a given path where the thermodynamic
variables of choice were allowed to change. When dealing with computer experiments, one
is free to choose any parameter, not only those characterizing a physical transformation that
could be studied with a real experiment. The only requirement is that, for a given value of the
chosen parameter, the system should correspond to one for which the free energy is known
either analytically or numerically with reasonable accuracy.

Changing the potential energy surface that characterizes the system is the main ingredient
of biased sampling techniques. A well–established method of this kind is the so-called umbrella
sampling developed by Torrie and Valleau [60, 61]. Their idea was to estimate free energy
di�erences by altering the way the system explores the phase space; this is done by adding an
external bias potential on top of that describing the physical interaction between particles of
the system. The name of this technique comes precisely from the presence of the external bias,
which connects regions of the phase space that are separated by energy barriers.

A crucial step of this method is to de�ne the appropriate bias potential in terms of some
reaction coordinate, which could be de�ned either on geometrical considerations — as when
dealing with a chemical reaction in which products and reactants di�er in conformation or
con�guration — or according to an order parameter that distinguishes clearly between the two
states among which one wants to calculate the free energy di�erence. Moreover, it must be
possible to subsequently remove the e�ect of the external bias on the probability distribution
function and to calculate the free energy of the system as a function of the reaction coordinate.

If ξ is the chosen reaction coordinate, then the probability distribution function for the
canonical ensemble depends on ξ according to

ρ(ξ ) =
∫
δ [ξ ′(r ) − ξ ] exp [−βV]dr∫

exp [−βV]dr , (3.11)
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where the integration is carried out over all degrees of freedom except ξ , and the Boltzmann
factor β = 1/kBT has been introduced. The free energy — the Helmholtz free energy, but the
argument that follows is valid even for a constant pressure ensemble in which the thermo-
dynamic potential is the Gibbs free energy — will also depend on ξ . The bias potential term
W (ξ ) is, by de�nition, the di�erence between the potential energy of the biased system and the
unbiased one

V(r )B −V(r )U =W (ξ ),
where the superscripts U and B indicate a quantity in the unbiased or biased system, respectively,
and a term with no superscript always represents an unbiased quantity. The probability
distribution function of the biased system is, analogously to eq. (3.11),

ρB(ξ ) =
∫
δ [ξ ′(r ) − ξ ] exp {− [βV(r ) +W (ξ ′(r ))]} dr∫

exp {−β [V(r ) +W (ξ ′(r ))]} dr , (3.12)

Since the bias potential depends only on ξ , one has

ρB(ξ ) = exp [−βW (ξ )] ×
∫

exp [−βV(r )]δ [ξ ′(r ) − ξ ] dr∫
exp {−β [V(r ) +W (ξ ′(r ))]} dr . (3.13)

Combining eqs. (3.11) and (3.13), one may write the unbiased probability distribution function
as

ρU(ξ ) = ρB(ξ ) exp [−βW (ξ )] ×
∫

exp [−βV(r )] exp [−βW (ξ ′(r ))] dr∫
exp [−βV(r )] dr , (3.14)

in which the fractional term is the ensemble average of exp [−βW (ξ )]. Hence, �nally

ρU(ξ ) = ρB(ξ ) exp [−βW (ξ )] 〈exp [−βW (ξ )]〉, (3.15)

from which the free energy as a function of ξ may be written as

A(ξ ) = −1/β ln ρ(ξ )B −W (ξ ) − 1/β ln {〈exp [βW (ξ )]〉} . (3.16)

The previous relation allows determining the free energy function from the knowledge of the
probability distribution function in the presence of the bias and the value of the bias itself.

Notes

1. This is the so–called Born–Oppenheimer approximation.

2. A comment on notation: wherever a symbol q or p appears, it means the set of N vector coordinates or momenta,
that is, q (or equivalently p) stands for (q1,q2, . . .qN ).

3. More often than not, empirical potentials are built on a joint dataset, where many interesting physical properties
that the potential should be able to reproduce have been assessed with either experimental measurements or
�rst-principles simulations, or sometimes even both of them.
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4. We used the word “attempt” to underscore that in almost all the practical cases of interest a solution to the many–body
Schrödinger equation is an approximate solution.

5. Many of these methods rely on density functional theory. See for example Martin [62] for a theoretical discussion
with a focus on computational aspects, or the reference textbook by Marx and Hutter on ab initio molecular
dynamics [63].

6. This �eld has grown so vast recently that it is almost impossible to give an exhaustive selection of introductory
references. Therefore, I will point the interested reader to the recent review of Ceriotti [64] on some of the possibilities
of machine learning techniques applied to atomistic simulations data.

7. This assumption can be relaxed (see Daw [24]) without invalidating the expression of eq. (3.2).

8. This would be the case of all transition metals, except those at the very beginning and end of the series.

9. The second moment of the the local density of states, Di (ϵ), which contains the contributions from all the orbitals
of an atom at site I . The second moment is then: µI2 =

∫ +∞
−∞ ϵ2Di (ϵ)dϵ . See Finnis [65] for a complete discussion on

second moment models.

10. See again Farkas [36].

11. W, Re, Co, Mo and Va are common additives for Ni superalloys since they behave as solid–solution strengtheners
both for γ and γ ′ phases.

12. This can be readily seen by writing the total derivative of any function F (q,p) as

dF

dt
=

∑
i

(
∂F

∂qi
Ûqi + ∂F
∂pi
Ûpi
)
+
∂F

∂t
.

In our case, F ≡ H , and if H has no explicit time dependence, ∂H /∂t = 0. Using eq. (3.5) one gets dH /dt = 0,
which means that the Hamiltonian is a constant of motion.

13. It should be easy to translate in any procedural programming language. Besides, it should be fast and require the
storage of as little memory as possible.

14. The important concept to stress here is that the purpose of molecular dynamics is not that of providing exact
trajectories of the system, but those that are statistically meaningful, for we are only interested in quantities
calculated as ensemble averages.

15. A smaller timestep would generally reduce such energy drift.

16. For the canonical ensemble, it is always possible to factorize the energy in a kinetic plus a potential energy term.
Hence, the partition function of eq. (2.4) is the product of one integral over the momenta and one over the positions.
The latter is usually referred to as con�gurational integral.

17. A well–known example of this family of methods is metadynamics [66], whose application to the calculation of
interface properties will be discussed later (section 4.3.2).
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4 Thermodynamics1

4.1 Fundamentals

In 1824 the French physicist Sadi Carnot published his only one book, some hundred pages
collected under the name of Ré�exions sur la puissance motrice du feu. He was the son of the
eminent military engineer Lazare Carnot, and was fascinated by the possibility of transforming
a rather useless form of energy, heat, into one that could be exploited for a purpose, mechanical
work. Like Nicolaus Copernicus, with his treatise on heat as a workforce Carnot laid the
foundations for a new science that later took the name of thermodynamics.

Although Carnot drew several of his conclusions from completely wrong concepts — such as
the idea that heat was some sort of a �uid that was literally �owing from one body to another —
it is noteworthy how he was still able to arrive to the fundamental law that states the limitations
of the transformation of heat into work; a law that, after many rephrasing, has been given the
name of Second Law of thermodynamics.

In the days of Carnot and the scientists who followed, the atomic theory had not yet been
fully accepted. Today we know with certainty that matter is made up of atoms, which are
in turn “divisible” into elementary particles — so quantities such as temperature or pressure
can be explained by knowing at any time the positions and velocities of a set of atoms in
their continuous, disordered motion. But neglecting the di�culty of having to consider the
mechanics of a system with an incalculable number of independent particles, well before the
counterintuitive theories of the 20th century, Maxwell, Gibbs and Boltzmann formulated the
laws of a branch of physics, called statistical mechanics (chapter 2), which made it possible to
link the postulates of thermodynamics, assumed on the basis of experimental evidence, to the
idea that any portion of matter is nothing more than a practically in�nite set of atoms.

The results achieved by following the principles of thermodynamics may seem astonishing if
one considers that the laws on which it is based completely ignore the origin of the phenomena
for which an explanation is being sought. Yet, through the concepts of functions and variables
of state, spontaneity or reversibility of a transformation, thermodynamics results are in general
highly accurate in predicting in which state a system should be found, once set some external
and internal constraints.

1A more in-depth discussion of some aspects covered in this chapter can be found in the textbooks by Fermi
[67], Gordon [68], and Atkins and Paula [69].
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4.1.1 State quantities

Thermodynamics aims at describing the transformations that a system undergoes when subject
to some interaction with its surroundings. Even without knowing the details of such transforma-
tions, they are described in terms of changes of state variables, quantities that can be manipulated
almost directly by altering the condition (or the state) of the system. Temperature and pressure
are two of these variables, but in other situations, also mechanical or electro-magnetic potentials
may be relevant.

The important concept is that state variables are not independent of one another, but there is
always a relation — an equation of state — constraining some of them once the others are set.
Moreover, some quantities play a more prominent role since they are only a function of state
variables. No matter which kind of transformation the systems undergoes: these quantities
depend exclusively on the values of state variables before and after the transformation. Alongside
these simple de�nitions, there are two laws which, although they can be expressed in di�erent
forms, assert the following:

1. If a system that cannot exchange particles with its surroundings in internal equilibrium
undergoes a transformation, the di�erence between the heat absorbed by the system, Q ,
and the workW it performs1 is equal to the change in a state function called internal
energy, E:

dE = dQ − dW . (4.1)

This statement, known as the First Law of thermodynamics, is nothing but the fundamental
principle of the conservation of energy.

2. There exists another state function, the entropy, S , whose variation during a transforma-
tion taking place in an isolated system2 is always positive: dS ≥ 0. Although entropy
is only partially de�ned by classical thermodynamics, this statement links the concept
of reversible transformation to its spontaneity: an irreversible process is a spontaneous
change. Such a fundamental concept deserved the name of Second Law of thermodynamics

As seen from the equation expressing the Second Law, to understand whether a process
occurs as a natural change, one must calculate the total change in entropy, that of the system
and the surroundings. However, it is possible to introduce another fundamental quantity that
gives the same information but only in terms of state variables of the system. This quantity is
called Gibbs free energy, G, and it is de�ned as

G ≡ H + pV ,

where H is enthalpy. The Second Law recast in term of Gibbs free energy reads

dGp,T ≤ 0, (4.2)

if the transformation is carried out at constant temperature and pressure, which are the most
common conditions in real laboratories and computer experiments. Thus, combining the
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4.1. Fundamentals

First and the Second Laws, it is clear that a process at constant temperature and pressure is
spontaneous if associated to a decrease in Gibbs free energy, and also that the equilibrium state
is the one where G reaches its minimum.

4.1.2 Phases and components

The seemingly elementary conclusion summarized by eq. (4.2) happens to be the fundamental
rule to explain the behavior of more complex systems, even if it was derived assuming the
system to be closed and of �xed composition. To see why this is the case, it is useful to recall the
de�nitions of phase and component.

In his seminal work that laid the foundations of chemical thermodynamics, Gibbs de�ned
a phase as a state of matter uniform in both chemical composition and physical state3. For
example, a solid in a given crystal structure, a mixture of gases or two perfectly miscible liquids
form a single phase. A subtle example of a system comprising two phases is a dispersion.
Although the term brings to mind the liquid state of matter, the concept of dispersion is also
crucial in metallurgy, where the controlled precipitation of a particular crystalline phase in a
matrix having another structure is of fundamental importance for some advanced applications.

A component is de�ned as a chemically independent species of a system. Thus, the number of
components is the minimum number of chemical constituents needed to de�ne the composition
of all the phases present in the system. As an example, the reaction of decomposition of calcium
carbonate

CaCO3(s) −−−⇀↽−−− CaO(s) + CO2(g)
where the number of phases P is 3, while the number of components C is 2: although there are
3 chemical species, only the amounts of two of them are needed because the last is always �xed
by the stoichiometry of the reaction.

Even if a transformation as simple as that of the example above may take place in a laboratory
vessel not allowing for any exchange of mass, the system may be subject to variations in the
relative compositions of its constituents. It may therefore be useful to focus for a moment on
a particular phase in the system and consider it as an open system that can exchange matter
with the environment, that is, the other phases. To each transfer of matter can be associated a
variation of the internal energy; therefore, for a system with C components we have

dE =
C∑
i=1

∂E

∂ni
dni =

C∑
i=1

µi dni ,

where µi is called the chemical potential of the component i , and dni is the in�nitesimal change
in the amount — be it in kilograms, number of moles or atoms — of that component.

A useful combination of the First and Second Principle can be written as dE = TdS − pdV 4,
to which must be added the contributions to internal energy due to changes in the components
that occur in an open system such as the one considered now. It then becomes

dE = TdS − pdV +
∑
i

µidni , (4.3)
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in which the chemical potentials are at constant S ,V and the amounts of all the other components.
Therefore, the quantity µi shows how the internal energy changes when the composition
changes: it is the partial molar internal energy at constant entropy, volume and amounts of
other components.

By writing the total di�erential of Gibbs free energy and comparing it with eq. (4.3), one
arrives at

dG = Vdp − SdT +
∑

µidni . (4.4)

Moreover, since Gibbs free energy is a state function, this relationship is valid for any type
of transformation, reversible or irreversible. This is why eq. (4.4) is usually referred to as the
fundamental equation of chemical thermodynamics.

One of the simple consequences of thermodynamic equilibrium is that the temperature is
constant at every point of the system. This principle extends to pressure as well. Therefore,
several phases of a multicomponent system will necessarily have to have the same temperature
and pressure. The fundamental equation we have just arrived at introduces a third, important
principle on which depends an indispensable tool in the study of multi-component systems:
the phase diagram. This principle states that, at equilibrium, the chemical potential of each
component of a system will be the same in all phases.

To see why this is the case, consider two phases α and β within a system at equilibrium. If
dni moles of a component transform from α phase into β , holding the temperature, the pressure
and the amounts of any other component constant, the total change in Gibbs free energy is

dG = µαi dni − µβi dni = (µαi − µ
β
i )dni .

Since the composition and mass of the system as a whole have not changed, at equilibrium
dG = 0, which implies that

µαi = µ
β
i . (4.5)

This argument directly applies to any other couple of phases in the system, thus proving the
above statement that at equilibrium each component’s chemical potential is the same throughout
all the phases present.

One of the most elegantly simple arguments proved by Gibbs is the well-known phase rule.
This relation ties the variance of a system, F — that is, the number of intensive variables that
can be changed independently from one another — to the number of components,C , and phases,
P , at equilibrium:

F = C − P + 2. (4.6)

A justi�cation of the phase rule goes as follows. For a one-component system (C = 1) with
two phases in equilibrium, since the chemical potentials are functions of the temperature and
pressure, eq. (4.5) reads µα (p,T ) = µβ (p,T ). That is, only one variable among temperature and
pressure is independent. If the system consists of three phases in equilibrium,

µα (p,T ) = µβ (p,T ) = µγ (p,T ).
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Since the latter is a system of two equations with two unknowns, only a single value of T and
p can be a solution to that system. Should there be a system with three equations and two
unknowns, no solution would exist, and this is consistent with the fact that a single component
system cannot have four phases in mutual equilibrium.

Consider now the general case. Pressure and temperature count as 2. Each phase’s composi-
tion is fully determined onceC − 1 variables for the amounts of the components are given. Thus,
with P phases, the total number of composition variables is P(C − 1). At equilibrium, the chemi-
cal potential of a component is equal in every phase, and this accounts for P − 1 equations of
the kind of eq. (4.5). WithC components, there areC(P − 1) constraints �xed by such equations.
Eventually, the number of independent intensive variables left is F = 2 + P(C − 1) −C(P − 1),
which is exactly Gibbs’ phase rule.

The phase rule is of primary importance in the study of phase diagrams, of which a more
in-depth discussion will be the subject of the next section. However, the phase rule already
shows some interesting scenarios in the case of a two-component system. For example, unlike
a single-component system, it is possible that two phases coexist in a range of temperatures
and compositions, or that at a �xed pressure three phases coexist in equilibrium5.

4.2 Binary systems

As brie�y discussed in the previous section, binary systems have an additional state variable,
the total composition, on which the Gibbs free energy function depends. A phase diagram of a
two-components system will therefore depend on three variables, that is, it is represented by a
three-dimensional surface. Since many interesting phase transformations of the solid matter
occur at a �xed pressure, it is customary to describe how the Gibbs free energy changes upon a
change in temperature and/or compositions.

The simplest binary system is the one in which the two constituents are present in the solid
phase either as pure elements or as a solution of the two in each other. Moreover, if each solid
shows only one crystalline structure, a solid solution will form at any composition.

If xA and xB represent the mole fractions of the two components, the total Gibbs free energy
is simply G = xAGA + xBGB . The formation of a solid solution brings about a contribution to
the total Gibbs free energy due to mixing. Since G can be always written as an enthalpy minus
an entropy term (G = H −TS), before the mixing

G1 = xAHA + xBHB −T (xASA + xBSB),

while after the formation of the solid solution

G2 = xAH̄A + xBH̄B −T (xAS̄A + xBS̄B) −T∆confS,

where Y indicates a molar property of a pure component and Ȳ the same property when it is
in solution. The term labelled as “conf” expresses the con�gurational contribution to entropy
and distinguishes between entropy due to atomic thermal vibrations. ∆confS arises from a
purely statistical argument: when there are two, distinguishable species, the number of ways of
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arranging them is far greater than one — the trivial case of the pure substances before mixing.

4.2.1 Ideal solutions

The concept of ideal solution is closely related to that of ideal gas: it is a rather extreme
approximation which never holds for real systems, though ideality is approached in certain
conditions. An ideal solution results by de�nition from the assumption that there is no change
between both the enthalpy and entropy of a pure component and its solution with the other
one. Hence

H̄A − HA = H̄B − HB = 0,

and
S̄A − SA = S̄B − SB = 0.

This means that the species of the two components behave as two identical entities both chemi-
cally and physically, yet they can be treated as distinguishable particles. The �rst assumption
requires that ∆mixH = 0, that is, there is no change in enthalpy upon mixing. However, even if
the second assumption requires a zero net change in entropy between the pure component and
its solution, ∆confS , 0. Since an ideal solutions is analogous to a mixture of perfect gases —
although the interactions between species cannot be simply neglected as in a mixture of ideal
gases — the entropy of mixing is exactly equal to the con�gurational term. To obtain the entropy
of mixing of an ideal mixture, one may start from its de�nition in terms of chemical potential:
an ideal mixture is one for which Raoult’s law — that is pA = xA p

?
A, where the asterisk denotes

the pure component and pA the partial pressure — is valid throughout the composition range
from pure A to pure B. The chemical potential is then

µA = µ
?
A + RT lnxA.

Consider now the Gibbs free energy of two ideal components before mixing. This is

Gi = nAµ
?
A + nBµ

?
B ,

while after they have mixed

Gf = nA(µ?A + RT lnxA) + nB(µ?B + RT lnxB).

It follows that the Gibbs free energy of mixing is

∆mixG = nRT (xA lnxA + xB lnxB),

and that the ideal entropy of mixing, since ∂G/∂T = −S ,

∆mixS = −nR(xA lnxA + xB lnxB) ≡ ∆confS,

where n here stands for the total number of moles, and R is the universal gas constant.
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It is easy to see why an ideal solution is more stable than any mixture of solutions with
di�erent compositions. If an ideal solid solution with overall composition x1 exists as a mixture
of two solutions with compositions xα and x β , recalling eq. (4.4)

dGα = V αdp − SαdT + µαAdxαA + µαBdxαB .

Since dxαA = −dxαB , at constant temperature and pressure(
dG

dxB

)α
= µαB − µαA,

and similarly for the second phase β (
dG

dxB

)β
= µ

β
B − µ

β
A.

At equilibrium the chemical potentials of each component must be equal in every phase, hence(
dG

dxB

)α
=

(
dG

dxB

)β
, (4.7)

that is, the slopes of the curve of the Gibbs free energy as a function of xB must be the same at
the two compositions xα and x β . Since the free energy of an ideal solution will resemble the
curve labeledG2 �g. 4.1, we are led to conclude that eq. (4.7), which is known as common tangent
condition, is true only if xα = x β = x1. This relation implies that a single ideal solution, no
matter of which total composition, will be the equilibrium state of any mixture of two solutions
with di�erent compositions.

Figure 4.1 – Gibbs free energies of mixture (G1), of the ideal solution (G2), and the con�gurational
contribution to entropy due to mixing. The Gibbs free energy of the pure component A can be
taken equal to zero, while GB > GA.

If it were not already evident, the concept of the ideal solution has to be loosened if one wants
to be able to describe real binary systems, where multiple phases with di�erent compositions
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may well coexist.

4.2.2 Equilibrium phase diagrams of ideal systems

Before describing a more sophisticated model than that of ideal solutions — one that is at least
able to approximate the complex behavior of real systems — it is useful to review how one can
obtain an equilibrium phase diagram for an ideal solution. The procedure to construct such
a phase diagram is entirely based on the determination of those compositions which, on the
free energy curve as a function of the total composition, correspond to points with the same
tangent line — the already mentioned method of the common tangent.

Consider a system in which both the liquid and the solid state may exist as ideal solutions.
For each phase, the molar Gibbs free energy is given by

Gm = xAGA,m + xBGB,m + ∆mixGm,

and it has been shown that for an ideal solution ∆mixGm = −RT∆mixSm . Plotting such free
energy curves as a function of either xA or xB results in a straight line at zero temperature,
while at T > 0 they will be more and more sharply concave due to the increasing entropic term.
Moreover, since at �xed composition and pressure(

∂G

∂T

)
p
= −S,

the rate of increase of Gm will be greater for the liquid phase than for the solid, and eventually
the two curves will intersect. The intersection may happen as in �g. 4.2: in this case, the free
energy of the pure solid A and pure liquid A are equal, that is, the temperature is the melting
temperature of A as a pure substance.

Figure 4.2 – Example of free energy curves in an ideal system. At this temperature, the solid and
the liquid phase have the same free energy only for xB = 0, that is, pure A. The temperature
therefore indicates the equilibrium melting temperature for the pure component A.

If the intersection happens at some intermediate composition, then it can be shown that
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within a certain range of compositions the equilibrium is a two-phase system constituted by a
solid and a liquid solutions. This is consistent with the phase rule, for the variance F of such
a region of the phase diagram is 1: one intensive variable can be change arbitrarily without
altering the phases at equilibrium.

Figure 4.3 – Free energy curves for an ideal system as a function of the fraction of B. M is the
lowest free energy for the alloy with composition x .

To see why the two-phase system is more stable than either a solid or a liquid solution
alone, consider �g. 4.3: if the total composition is x , a solid solution at this composition would
have the free energy corresponding to point a, while point b would give the free energy of a
liquid solution. However, the lowest free energy attainable would be that of point M , which
corresponds to a mixture of two solutions, a solid one with composition given at point d and a
liquid one with composition given at point e .

Suppose that the alloy exists as a mixture of a solid solution and a liquid solutions with
composition xS and xL , respectively. By de�nition, the chemical potential is the molar free
energy of a component in solution,

Gm = µAxA + µBxB .

Given that dxA = −dxB ,
µA = Gm − xB ∂Gm

∂xB
, (4.8)
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and an analogous relation for the chemical potential of B:

µB = Gm + (1 − xB)∂Gm

∂xB
. (4.9)

These two relations are valid for both the solid and the liquid phase.
Comparing the relation for µA expressed for the liquid phase with the diagram,

µLA = HF + xLB
CH

xLB
= HF +CH = CF .

An analogous reasoning for the solid phase gives µSA = JF . Since at equilibrium the two
chemical potential must be the same, CF = JF , which means that C and J are the same point.
This condition, together with that of eq. (4.7), tells us that, at equilibrium, the free energy curves
must have the same slope at the points given by the two compositions xS and xL , and that
the two tangent lines must intersect the vertical axis at the same point: these conditions are
ful�lled only if the two tangent lines are the same straight line.

This equilibrium condition is valid for every value of the overall composition x lying in
the range between the points of common tangency — indicated by d and e in �g. 4.3: at this
temperature and for any composition in the range, the system will always tend to form a mixture
of two solutions with composition given by points d and e , regardless of the total composition.
If the total composition lies on the left of point d , then the system returns to a single-phase
region, in particular a single solid solution; the same goes for total compositions on the right of
point e , but in this case a single liquid solution is formed.

4.2.3 The lever rule

An equilibrium phase diagram tells us not only within which range of compositions, at a given
temperature, two or more phases may coexist. One can also extract quantitatively the amount of
each phase present. This is done by means of a relation known as lever rule. Consider a system
containing n moles and with two phases, α and β , at equilibrium; if xA is the total composition,
the total amount of A is given by

nxA = n
αxαA + n

βx
β
A .

Since the total number of moles n = nα + nβ is �xed,

nxA = n
αxA + n

βxA

from which it follows that
nα

nβ
=

xA − x βA
xαA − xA

. (4.10)

The practical importance of the lever rule is that both the numerator and the denominator of
eq. (4.10) can be readily obtained by inspection of a phase diagram.
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4.2.4 Regular solutions

Real solutions are obviously not ideal. A �rst, intuitive reason for this is that the interactions
between particles of species A and B are all di�erent and they can vary substantially across
di�erent phases. In contrast to ideal liquid or solid solutions where no enthalpy or volume
changes occur, mixing of real solutions may be accompanied by an additional contribution to
entropy, besides that arising from con�gurational freedom. For example, if the entropy change
is negative — because particles organize in an orderly mixture — and the enthalpy change is
large and positive, then the free energy of mixing may be positive: the two liquids or solid may
then be only partially miscible, that is, they will form a single phase only over a certain range
of compositions.

A more complex — albeit approximated — model which is suitable to explain departures from
ideality is that of regular solutions. This model rests on the two following assumptions:

1. The internal energy depends only on two-body interactions between nearest neighbor
particles. Hence, these interactions — whose energies are labelled εAA, εBB and εAB — are
independent of the composition of the mixture.

2. For a given crystal structure of the solid phase, the probability of occupation of a lattice
site by a particle A or B, as well as the probability that two adjacent sites have occupation
AA, BB or AB, depend only on the overall composition and not on the local environment
of a particle. In other words, this corresponds to a completely random distribution of
the two species on the available sites, which is equivalent to having an ideal solution:
therefore, the entropy of mixing is identical to that of ideal solutions.

With NA particles of species A and NB of species B, xA and xB being the usual atomic fractions,
the energies of a system made up of pure A is

EA =
1
2NAZεAA,

where Z stands for the coordination number of a site. An equivalent expression is valid for the
species B.

In the mixture, a particle on a site (either A or B) has on average ZxA �rst neighbors of type
A and ZxB �rst neighbors of type B. Therefore, the energy of the mixture will be equal to

EAB =
1
2NA (xAZεAA + xBZεAB) + 1

2NB (xBZεBB + xAZεAB)

=
1
2NZ

(
x2
AεAA + 2xAxBεAB + x2

BεBB
)
.

The energy of mixing is obtained by subtracting from the above expression the energies of the
pure substances, therefore

∆mixE = EAB − EA − EB = 1
2NZ (2εAB − εAA − εBB)xAxB

= NZεxAxB,
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where
ε = εAB − εAA + εBB2 .

For condensed phases, the term pV that has to be added to E to obtain enthalpy is usually
negligible at ordinary pressures, so assuming that ∆mixH = ∆mixE is a legitimate approximation.
The molar enthalpy of mixing is then

∆mixHm = NZεxAxB = BxAxB, (4.11)

where the Avogadro’s constant is denoted with N to avoid confusion.
Since the entropy of mixing is the same as an ideal solution, the Gibbs free energy of mixing

is given by

∆mixGm = ∆mixHm −T∆mixSm = BxAxB + RT (xa lnxA + xB lnxB), (4.12)

and the total Gibbs free energy of the regular mixture is then

Gm =xAGA,m + xBGB,m + ∆mixGm =

=GB,m + (GA,m −GB,m)xA + BxA(1 − xA) + RT [xA lnxA + (1 − xA) ln (1 − xA)] .

By applying eqs. (4.8) and (4.9), it is possibile to obtain the chemical potentials of the two
components of the regular mixture

µA = GA,m + B(1 − xA)2 + RT lnxA
µB = GB,m + B(1 − xB)2 + RT lnxB

(4.13)

As explained previously, there exists no combination of two solid (liquid) ideal solutions that
is more stable than a single solid (liquid) solution with some intermediate composition. This
was a direct consequence of neglecting the enthalpy of mixing. From eq. (4.11), the enthalpy
of mixing of a regular solution can be either negative or positive, depending on the sign of
B = NZε . In the �rst case (B < 0), the interaction between particles of di�erent species is
more favored than those between identical particles; hence, the enthalpy term lowers ∆mixGm

— the entropic term is always negative — further stabilizing the solution. In the second case
B > 0, which means that AB interactions are energetically less favored than AA or BB ones:
this can give rise to the transformation from a homogenous solid phase into two phases with
di�erent compositions, if the temperature is lower than a certain critical value, Tc . When B > 0
and T > Tc , the Gibbs free energy curve always shows upward concavity like the case of
B < 0. When, instead, B > 0 but T < Tc , the repulsive energy term generates an interval of
intermediate compositions in which the curve for ∆mixGm has downwards concavity, delimited
by two points of in�ection, and a wider interval delimited by the two points of minimum.

In these conditions, the curve Gm(xA) looks like �g. 4.4. There exists only one common
tangent line, whose abscissas are indicated by xA,β and xA,α . For all compositions between xA,β
and xA,α , the value of Gm of the mixture is greater than that of the heterogeneous aggregate of
two phases with compositions xA,β and xA,α , represented by the ordinate of the corresponding
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Figure 4.4 – Schematic plot of the molar Gibbs free energy of a regular solution as a function
of the fractional amount of component A. Without loss of generality, we set GA,m = 0 and
GB,m = 10. The dashed line is the common tangent line. The two black dots de�ne the
compositional range in which the Gibbs free energy of the solution is greater than that of a
two-phase aggregate with compositions xA,α and xA,β . Within this range of compositions, the
binary mixture separates into two mixtures: β , richer in B, and α , richer in A.

tangent segment. In this composition range, the mixture is separated to form a biphasic
aggregate of mixtures β , richer in B, and α , richer in A. Recalling that the intercepts of the
tangent line with the vertical axis at xA = 0 and xA = 1 give the chemical potentials µB and µA,
respectively, it follows that at the points of tangency the relations of biphasic thermodynamic
equilibrium are valid

µαA = µ
β
A (4.14)

µαB = µ
β
B . (4.15)

By imposing the condition of existence of an in�ection point, namely

∂2Gm/∂x2
A = 0, (4.16)

one �nds the composition range within which the two-phase decomposition appears, provided
that T < Tc . The solutions to eq. (4.16) are given by

xA =
1 ±

√
1 − 2RT

B

2 , (4.17)

that correspond to real solutions in the interval 0 < xA < 1 only if B > 2RT , thus setting the
value of the critical temperature:

Tc =
B

2R .

The two-phase states of the system are represented by all the points lying on the segment
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of the tangent line bounded by the pair of black dots of �g. 4.5 in which the Gm is plotted for
several values of T < Tc . The amounts of the two phases α and β are given by the lever rule.

Figure 4.5 – Gibbs free energy for a regular solution as a function of the fractional amount of
component A plotted for several temperatures. The lowest curve, labeled with Tc , is the graph
of Gm at precisely the critical temperature. The upper curve represent increasing temperatures.
For each curve, the two pairs of black and red dots represent the points of common tangency
and the in�ections points, respectively. At T = Tc , the compositional range for which phase
separation occurs completely disappear, and this is seen by the overlapping dots.

The phase separation curve is the one connecting all the points of common tangency at
di�erent temperatures (see again �g. 4.5); the equation of this curve, composed by two branches
T (xA,α ) andT (xA,β ), is obtained by solving equations eqs. (4.14) and (4.15) simultaneously after
substituting eqs. (4.8) and (4.9) as the expression for the chemical potentials of the regular
solutions. The solution of such a system, however, can only be obtained numerically.

The interval of compositions delimited by the red dots of �g. 4.5 — which correspond to
the in�ection points of Gm — gives the range of spinodal decomposition, and the spinodal
curve is obtained by connecting all those points at di�erent temperatures; its equation can
be derived from eq. (4.17) by writing T as a function of xA. This curve, which lies within the
phase separation curve, is of particular interest from a kinetic point of view. For its internal
compositions, the curve of Gm has downward concavity: the solid solution is therefore not only
unstable, but cannot be observed under metastable conditions either. Instead, for compositions
between the spinodal curve and the phase separation curve, Gm presents upward concavity,
and therefore the solid solution, though less stable than the mixture of the two phases, can be
metastable.

As a concluding remark, it is worth noting that a single curve is able to represent the Gibbs
free energy of the system in both single-phase and two-phase conditions. This is possible
because the crystalline structure of the two solid solutions α and β is the same. If we wanted to
compare two solid solutions with di�erent structures, it would be necessary to represent them
with two distinct Gα

m and G
β
m functions.
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4.2.5 Invariant reactions

So far, the discussion on binary systems only considered the coexistence of solid solution
phases with similar crystal structure. In practice, this circumstance is veri�ed only if the two
components are both chemically and physically very much alike. In turn, as several examples of
phase diagrams showed, very similar components will tend to form only terminal phases, that is,
a phase that can exist as a pure component. When the components start to show an appreciable
di�erence in chemical properties, it is possibile that, at �xed pressure, the free energy curves
look like those in �g. 4.6: here it is assumed that for a given temperature range, three solid
phases with di�erent crystal structure coexist. The phase β is called intermediate phase.

Figure 4.6 – Schematic plot of free energy curves as a function of the composition for two termi-
nal phases (α and γ ) and a β phase that indicates a large dissimilarity between the components.

In contrast to the case of isomorphous systems, that is, systems where no structural di�erence
between the solid phases is present, free energy curves of the kind depicted in �g. 4.6 will
never join smoothly because there must be a point, corresponding to a given temperature and
composition, where a phase change accompanied by a crystal structure change occurs.

An intermediate phase such as the β phase of �g. 4.6 has several interesting characteristics:
since it involves rather dissimilar atoms, interatomic forces are typically of the kind of ionic or
covalent bonds, thus leading to highly ordered arrangements of atoms. This implies that both
the enthalpy and entropy of mixing are large and negative, which results in a solid phase with
a very low free energy, i.e. highly stable. Moreover, ordered crystalline structures usually have
atomic fractions proportional to small integer numbers, which means that intermediate phases
will tend to have strictly �xed stoichiometric ratios of the species, such as A2B, AB2 or A2B3,
which are usually referred to as compound–like phases. Since the enthalpy depends strongly on
the composition, any deviation from the equilibrium stoichiometry corresponds to a steep rise
of the free energy.

An intermediate phase may also form when the atomic interactions between similar atoms
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are stronger than those between dissimilar ones. This case is even more likely when the crystal
structure of the pure components are very di�erent. Such intermediate phases may have lower
free energies than both the terminal phases and a mixture of those: this case is schematically
shown in �g. 4.7. Phases of this kind tend to be random solid solutions, therefore their negative
entropy of mixing stabilizes the mixture across a broad range of compositions; as a consequence,
the formation of solid–solution–like intermediate phases limits the solubility of the components,
although the e�ect is much more evident with a compound-like phase.

Figure 4.7 – Schematic plot of free energy curves as a function of the composition in which the
phase β represent an intermediate phase of a solid–solution type.

In this section, the phase diagrams discussed di�er from those of the previous sections because
they contain one or more invariant reactions, that is, transformations during which the system
goes through regions of the phase diagram where the number of coexisting phases exhausts the
number of degrees of freedom, as de�ned by Gibbs’ phase rule. This class of transformations is
particularly important as almost any real phase diagram of some interest presents at least one
of these phase transformations. It has been already noted that, for a two-component system at
constant pressure, the maximum number of phases that may coexist at equilibrium is 3; in fact

F ′ = C − P + 1⇒ 0 = 2 − P + 1⇒ P = 3, (4.18)

where F ′ emphasizes that the pressure has been already �xed.
There are not many kinds of invariant reactions that can occur in a two-component systems,

and those transformations that do take place fall in two general categories:

1. The invariant reaction proceeds through the cooling of a single liquid phase which
separates to form two solid phases. This is called eutectic reaction and it is by far the most
common.

2. The reaction consists on the transformation upon cooling between a solid and a liquid
phase to form a second solid phase. The invariant point the system goes through is called
peritectic.
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Given the importance of the �rst kind of invariant reactions, the remaining of this section
will detail the thermodynamics how the solidi�cation process occurs in binary systems that
exhibit eutectic transformations.

4.2.6 Eutectic systems

Eutectic systems are binary systems that contain generally two solid solutions with terminal
compositions and only one liquid phase. The regular solution model (section 4.2.4) is already
able to account for eutectic invariant reactions. Recalling that a regular solution is that in which
the ∆exG , 06 but ∆exS = 0 — i.e., entropy is that of an ideal solution — eutectic invariant
reactions happen when ∆Gex is positive, with the contribution from the solid much larger than
that of the liquid. All phase diagrams that are characterized by an eutectic transformation will
show three one–phase regions, three two–phase regions and one three–phase region. Since
all these phase diagrams represent the equilibrium of the system at constant pressure, the
three–phase region is one–dimensional: it is the tie line — the common tangent line — joining
the compositions of the three phases in mutual equilibrium.

Figure 4.8 – A schematic phase diagram of a binary system which exhibits a liquidus minimum
and a solid solubility gap.

Qualitatively, a eutectic phase diagram occurs when a two–solid region like the one depicted
in �g. 4.8 intersects the upper two–phase region which displays a point where the liquid phase
is in equilibrium with the solid at the same composition. The eutectic phase diagram of �g. 4.9b
is the only possible choice for a system in which there is such intersection, and this can be
elegantly seen by applying Gibb’s phase rule. Consider �g. 4.9a: at temperature T phase α at
composition a is in equilibrium with phase β at composition b ′, according to the equilibria
described by the solvus lines ca and b ′d . The line f h tells that phase α is also in equilibrium with
the liquid with composition e : that is, phase α , β and the liquid are all in mutual equilibrium at
temperature T . An identical argument can be applied for at temperature T ′, where the three
phases will be in equilibrium with compositions a′, e ′ and b, respectively. However, eq. (4.18)
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tells us that in a binary system at constant pressure a three–phase equilibrium must be an
invariant point, which means that no intensive variable is allowed to change without disrupting
the phases at equilibrium. The only possibile conclusion is that a = a′, b = b ′ and e = e ′, and of
course that T = T ′ = Te . Figure 4.9b results from appropriately redrawing �g. 4.9a according to
the just proven argument.

(a)

(b)

Figure 4.9 – (a) Hypothetical phase diagram when the two solid phase region of �g. 4.8 intersects
the upper part showing the liquidus minimum. (b) The phase diagram on the left correctly
redrawn according to Gibbs’ phase rule, as explained in the text.

4.2.7 Solidi�cation in eutectic systems

Eutectic invariant reactions are essentially a solidi�cation process. Yet the interesting aspects
of an eutectic system arise from the possibility to undergo di�erent types of solidi�cations.

The �rst kind is known as primary solidi�cation and occurs when, during the cooling of the
liquid phase, the latter crosses only one two–phase region. Once the solid has �nished precip-
itating, the system undergoes no further transformation and the system at that composition
exhibits complete solid solubility.

The second possibility involves solid–solid precipitation. This happens when the systems
with no more liquid content enters the second two–phase region, where two solid phases are

56



4.2. Binary systems

only partially miscible. Further cooling both the A and B solid solutions become richer in their
respective phases, αand β respectively.

If we consider a portion of phase β embedded in a environment of α , there are two possible
mechanisms by which expulsion of particles of type A may occur. The �rst is a di�usive process:
particles of type A will �rst have to “migrate” to the interface between α and β . The second
mechanism involves the nucleation of a small seed of α phase within the portion of β . Which
of the two processes is most likely depends on many factors, including the temperature that
controls the di�usive processes, the size of the β phase portion and, not least, the presence of
defects (e.g., grain boundaries and cracks). The latter are fundamental for a thermodynamic
reason: the nucleation of the seed of type A involves the formation of an interface to which is
associated a term of positive free energy, often very large, therefore preexisting interfaces due
to defects usually behave as preferential sites where nucleation is favored.

The third kind of solidi�cation process is eutectic solidi�cation and, as its name suggests, is
what happens when a liquid of the right composition — i.e. the composition labeled by e in
�g. 4.9b — is cooled until the eutectic temperature Te . Once reached this temperature, the alloy
will start its solidi�cation by forming some phase α or β . However, in many real alloys that
exhibit eutectic solidi�cation this is not the case, and a solidi�ed sample of the alloy will not
show randomly alternating region of primary α and β .

To understand the reason behind this experimental evidence, one should think once more
to Gibbs’ phase rule: since an eutectic is an invariant point, if solidi�cation occurs under
equilibrium condition, both temperature and phase compositions cannot change as far as
the three coexisting phases are present. Consider again �g. 4.9b and imagine extending the
equilibrium lines between the liquid and the two phase α and β down to a temperature T1 =

Te − dT . Then, referring to �g. 4.10 which zooms in on the region around the eutectic of
�g. 4.9b, if some amount of α forms, the liquid would have to shift its composition towards
the point m in the �gure. On the other hand, if some β starts forming somewhere else, the
liquid would have to match the composition given by point h. Since equilibrium solidi�cation
happens so slowly that di�usion of particles A and B may be considered instantaneous, these
two opposite shifts will keep the composition of the liquid around e and the temperature at Te 7.
Real solidi�cation only occurs when the degree of undercooling is �nite and measurable, and
and we could rightly de�ne the conditions in which the real solidi�cation of an eutectic takes
place as quasi–equilibrium solidi�cation.

Quasi and non–equilibrium solidi�cations are key to enable real manufacturing and engi-
neering processes obtaining so–called metastable phases, such as martensite in steel. In fact,
quasi–equilibrium solidi�cation is responsible of phenomena that simply cannot happen with an
equilibrium phase transformation. An example is constitutional undercooling, that is, an increase
in the degree of undercooling caused by a change in composition rather than temperature. At
T1 < Te (see again �g. 4.10) the alloy is represented by the point k , and when an amount of α
forms, it will have a composition very close to that of point a in �g. 4.9b. The undercooling
associated to the α phase, ∆Tα is given by the distance between the extension of liquidus line el
and the horizontal line indicating the temperature T1. In a similar way, the undercooling of β
(∆Tβ ) is de�ned by the distance to the liquidus line relative to B. The solidi�cation of particles
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Figure 4.10 – Enlarged portion of �g. 4.9b around the point e that explains what happens during
eutectic solidi�cation.

of α phase enriches the liquid of B and, as a consequence, ∆Tα decreases while ∆Tβ increases,
giving rise to constitutional undercooling. This e�ect make less and less favorable the growth
of α and, at the same time, the growth of β more conducive. At some point the α phase stops
growing completely because its driving force is zero. An analogous process takes place when β
particles start nucleating, and eventually the alternation of these two processes is responsible
of the typical growth patterns showing up in eutectic solidi�cation. Interestingly, this kind of
solidi�cation happens also with an undercooling so small that it can be mistakenly confused
with an equilibrium process. This would not be possible, however, because at equilibrium the
di�usion of atoms of either A or B is fast enough to prevent any amount of A or B to accumulate
in the liquid8. The result of equilibrium solidi�cation would be therefore very much like two
solid phases undergoing primary solidi�cation, and we would end up with a solid consisting
predominantly of a uniform mixture of primary phases.

4.3 Thermodynamics at interfaces

As seen when discussing eutectic solidi�cation, departure from equilibrium, albeit complicating
the picture, is crucial for many real–world applications. The case of AM is even more extreme,
one may say, because is characterized by several phenomena that are truly out–of–equilibrium.

A legitimate questions is then: what would be the use of all the fundamentals of thermo-
dynamics if applicable conditions are never really met? The answer is not as pessimistic as it
might seem because, under some circumstances, it is still possible to apply results obtained
under equilibrium conditions to those regions of the system that can be considered in local
equilibrium, that is, the interfaces. These regions are the most interesting and, at the same time,
elusive to study and describe, yet they can be still considered in equilibrium even if the bulk
phases they separate are characterized by gradients in both temperature and composition.

Gradients in the various phases present are evidently only an example of what “non–
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equilibrium” really involves. There are many circumstances in which even the interface deviates
remarkably away from local equilibrium. These situations may concern both static and moving
interfaces when a phase transition is underway, i.e., when the interface is not only subject to
�uctuations.

This section outlines some of the most relevant concepts to study interface thermodynamics
and their dynamical properties, with a particular outlook on atomistic modeling techniques
that can provide useful insights on these properties.

4.3.1 How to de�ne an interface?

Excess quantities and Gibbs dividing surface

A rigorous treatment of thermodynamics of solids can be very complex, especially for heteroge-
neous systems with many constituents. Should one be interested only in bulk properties, then a
�rst approximation may neglect the e�ects of the interfaces separating the phases present.

However, a more thorough approach which includes the e�ect of interfaces is to assume that
they behave like geometrical surfaces dividing two entirely homogeneous phases. Although
this remains an approximation, Gibbs already proved9 how this idea of replacing the physical
interface with a model system, in which the interface is only a geometric boundary, provides a
way to study several interface properties (i.e. surface tension, adsorption coe�cients), and that
the same equilibrium conditions of equal temperatures and chemical potentials in each species
must hold even when considering heterogeneous interfaces.

physical interface

α phase

β phase

Gibbs dividing surface

α phase
V α , cαi

β phase
V β , c

β
i

Figure 4.11 – Schematic representation of (a) a real, heterogeneous system comprising two
phases in contact, and (b) a model system in which a Gibbs dividing surface is de�ned by setting
zero surface excess of the molar volume.

If we assume that throughout the two phases α and β (see �g. 4.11) the concentration of the

59



Chapter 4. Thermodynamics

component ci is constant, then in the model system we have10

nαi = c
α
i V

α ,

n
β
i = c

β
i V

β .

If the real and the model system are to be equivalent chemically and physically, we have to
introduce a term that expresses the number of moles contained in the dividing surface, nSi .
Hence, the following requirement must always hold

ni = n
α
i + n

β
i + n

S
i ,

and the number of moles associated with the interface is then

nSi = ni − cαi V α − cβi V β ,

where nSi is usually written as ΓiA to emphasize its dependence on the interfacial area. The
prescription of Gibbs to de�ne a dividing surface is to explicitly set Γ = 0. In other words,
once an extensive reference quantity is chosen, a Gibbs dividing surface is assumed to have no
associated surface excess of that quantity.

Evidently, there is a great degree of arbitrariness in choosing which extensive quantity is
more suitable. With a similar argument one could de�ne a “Gibbs free energy excess,” as the
Gibbs free energies of the bulk phases α and β are not the same. Since at the interface there is
mismatch between structural orderings of the two phases in contact, the interface itself has an
intrinsic excess free energy. Thus, integrating the Gibbs free energy excess over the thickness
of the interface naturally de�nes a quantity known as solid–liquid interfacial free energy

γsl ∝
∫

∆Gex(z)dz, (4.19)

where z indicates an arbitrary direction along the normal to the interface, and the proportionality
constant has the dimension of a molar volume, which must take into account that the two
phases in contact may have di�erent values ofVm . The relevant point to remark is that all these
excess quantities will depend on the exact location of the dividing surface, thus making its
de�nition inevitably arbitrary.

Order parameters

Although there is no absolute choice of an extensive quantity to which a surface can be associated,
it should still be interesting to look for criteria that could guide that choice. A �rsthand possibility
is to pick some thermodynamic variable of bulk phases, such as the volumes of each phase
in the above example. However, these variables usually capture a global state of the system,
while during certain phase transformations condensed phases often show consistent changes in
rotational and translational degrees of freedom. The obvious example is a solid phase transition
involving a change in the crystalline structure.
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When studying solid–liquid phase transitions, changes in positional and/or rotational order
usually entails that a solid phase is invariant only to a subset of all the possible symmetry
operations, while a liquid phase is by de�nition isotropic, that is, it will be identical to itself
regardless which symmetry operation is carried out. It therefore seems quite natural to include
in the description of a phase transition a quantity that is capable of detecting such symmetry
di�erences. Quantities of this kind are known as order parameters: Landau theory of phase
transitions, for example, treat the Gibbs free energy as explicitly dependent on one or more
order parameters, which become state variables as pressure, temperature and volume are.

There are several phase transformations in which the geometrical ordering does not change
and those can be still faithfully described by, say, the di�erence in the density between the two
phases. However, especially in the context of atomistic simulations, there are many situations
where it is far more useful to describe the phase transition by means of order parameters that
are able not only to distinguish unlike crystalline structures, but also the same crystalline
lattice with di�erent spatial orientation — that is, a generic rotation of the lattice represents a
symmetry breaking.

In the �eld of molecular simulations, an order parameter is a more or less elaborate function of
all the atomic coordinates, and it usually gives a quantitative information of the structure of each
atom’s neighborhood. Many of these functions have been developed in order to face di�erent
problems; probably, the most known order parameters are the Steinhardt–Nelson functions of
di�erent orders: Q3, Q4 and Q6 [70]. Their choice was to exploit spherical harmonics to capture
the symmetry of an atomic environment. The order parameter is then a discrete function that
assigns a value to every particle in the system and is given by the following expression

qilm =
1
N i
n

N i
n∑

j=1
Ylm(ri j ), (4.20)

where N i
n represents the number of neighbors of the particle i . To be able to distinguish di�erent

crystalline structure, Steinhardt proposed to average the complex quantities of eq. (4.20) by
summing over di�erent the indexm

qim =

√√√
4π

2l + 1

l∑
m=−l

��qilm ��2, (4.21)

in which choosing di�erent values of l enables to distinguish di�erent lattices. There have been
many improvements of this kind of order parameters — for example, by introducing a locally
averaged order parameter [71] — but the common feature of these functions is that, since they
are built as appropriate combinations (eq. (4.21)) of spherical harmonics, they are all rotationally
invariant.

A particularly versatile choice of order parameter is that proposed by Angioletti-Uberti et al.
[72] and has been used in some subsequent works [73, 74] featuring the study of interfaces
between a liquid and a solid phase with a face–centered cubic symmetry. This order parameter
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(henceforth called FCCUBIC, Φ) is de�ned as

Φi =

∑
j
j,i

Cr (ri j )Cα (r j − ri )∑
j
j,i

Cr (ri j ) . (4.22)

In practice, Φ is a weighted average running over all pairs of atoms of an angular term (Cα )
and a weight (Cr ) that guarantees the continuity of Φ. The angular part depends on an Euler
rotation matrix R de�ned by the tuple of angles (φ,ψ , θ ) and can be written as

Cα (ri j ; φ,ψ , θ ) = Cα (R(φ,ψ , θ ) · ri j ). (4.23)

The angular part of Φ recognizes by construction the features of the FCC environment,
and its peaks point in the directions where the �rst nearest–neighbors lie. Moreover, it is
not rotationally invariant and thus it is ideally suited for identifying di�erent orientations of
the same crystal structure. To deal with arbitrary orientation it su�ces specifying a suitable
rotation matrix that transforms standard Cartesian axes into the desired set of orthonormal
vectors.

4.3.2 Interface thermodynamics

A surface separating two phases can be seen as an extended, two–dimensional defect. Atoms in
the vicinity of an interface must accommodate the structural order of both phases — if they are
not both liquids or amorphous.

As eq. (4.19) shows, the tendency to minimize the surface in contact follows from the free
energy cost associated with the formation of a surface with unit area. When a small crystalline
seed that in an undercooled liquid forms and grows, if the interface free energy is isotropic, it is
not surprising that the seed will increase its size as a growing sphere. In this case, γsl is usually
identi�ed with the surface tension, and the shape is given by the minimization of the surface
area with the constraint of a �xed volume.

However, when crystalline solids are involved, the interface free energy varies substantially
for di�erent crystal orientations, that is, γsl is an anisotropic quantity. Therefore, returning to
the example of the crystalline seed, one would soon observe perturbations in the growing shape
that express the preferred orientations of the underlying crystal structure and its symmetries.
The anisotropy of γsl is of fundamental importance when studying solidi�cation since, together
with the anisotropy of interfacial growth kinetics, it is at the origin of the so–called dendritic
growth mechanism that strongly in�uences the microstructure of the �nal solid.

Anisotropy

While the shape of a solid seed for a material with isotropic γ would be a sphere, real materials
show deviations of the seed’s shape from a perfect sphere that are due to anisotropic behavior
of γ , which is best written in terms of spherical harmonics, Ym

l (θ ,φ). A common expression
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is [75]

γsl(θ,φ) = γ 0
sl

[
1 + 1

2
∑
l ,m

δml Ym
l (θ ,φ)

]
, (4.24)

where θ ∈ [0, π ] and φ ∈ [0, 2π ] are the polar and azimuthal coordinates that identify a point
on the surface of a sphere with �xed radius, and δml represents the magnitude of the deviations
from constant γ .

Physical intuition could often simplify generic expressions as the one above. Since not
every symmetry operation of a spherical shape is compatible with a given crystal structure, a
symmetry–adapted basis set that is a linear combination of spherical harmonics may yield a
much more meaningful and usable expression. For the case of the face–centered cubic lattice,
Fehlner and Vosko [76] proposed a basis that would satisfy the symmetry of this crystal structure,
in particular its cubic symmetry operations. This basis is built on two terms that are function of
θ , φ and the Cartesian components of the unit normal vector11,n = (nx ,ny,nz ). These functions
are

Q = n4
x + n

4
y + n

4
z = sin4 θ

(
cos4 φ + sin4 φ

)
+ cos4 θ ,

S = n2
xn

2
yn

2
z = sin4 θ cos2 θ sin2 φ cos2 φ.

(4.25)

These functions can be shown to be equivalent to linear combinations of some spherical
harmonics. In particular, if one considers only the �rst three terms of the sum in eq. (4.24) —
those with l = 4, 6, 8 — these terms are linear and quadratic functions of Q and S . Therefore,
one may write a new expression for γsl as follows

γsl(®n) = γ 0
sl

[
1 + ε1

(
Q − 3

5

)
+ ε2

(
3Q + 66S − 17

7

)
+ ε3

(
65Q2 − 94Q − 208S + 33

) ]
, (4.26)

where the ε1, ε2 and ε3 are usually referred to as anisotropy parameters. The latter is a form
that describes the anisotropy of γsl which will prove to be particularly appropriate for our
atomistic simulations. It should be noted that eq. (4.26) represents an expansion on the chosen
symmetry–adapted basis up to the third order, but could easily include higher order terms.
However, in most of the cases, using a second–order expansion is already su�cient to fully
describe the anisotropy accurately12.

Curvature and sti�ness

The anisotropy parameters in eq. (4.26) are just mathematical coe�cients of a power expansion,
yet the anisotropy itself is a quantity that plays a central role during early stages of solidi�cation.
From a geometric standpoint, one may describe any deviation of an initially spherical shape in
term of the surface’s curvature radii13. The information provided by the mean curvature, for
example, directly enters the Gibbs–Thomson equation (see eq. (1.3)), therefore it is an essential
parameter to describe interface evolution.

There is a second key physical quantity that is usually considered when trying to justify the
preferred growth directions of a crystalline solid. This quantity is known as sti�ness and it is
strictly related to curvature. If one wanted to give the statement “preferred growth direction”
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a precise meaning, it would be that the most favored directions are those along which the
interface attains its maximum mean curvature; equivalently, one could say that those directions
correspond to the minima of the interfacial sti�ness. This statement is the only robust rule one
can adopt to determine the truly preferential growth directions: if one considers the expression
given by eq. (4.26), without knowing whether the anisotropy parameters will be positive or
negative, it is impossibile to predict whether the 〈100〉 directions are preferred over the 〈110〉.
It has been actually shown [77] that many FCC metals display a positive ε1, while ε2 is negative;
therefore, besides particular cases with very strong anisotropies, one is not able to say a priori
which direction tends to grow spontaneously because of the mixing of opposite weights in the
expansion of γsl.

The sti�ness may be de�ned as the free energy cost to bend away the interface from its local
equilibrium. A smaller sti�ness means that the surface can be more easily deformed along a
particular direction, which then turn out to be one of the preferential growth directions. In
mathematical terms, Herring [78] gave the �rst formal expression of the sti�ness — usually
indicated with σi j , where the two indexes stress the tensorial nature of the sti�ness for a three–
dimensional crystal — and related the sti�ness to the chemical potential di�erence between the
solid and the liquid phase. If one de�nes two angles, θi and θ j , that measure the deviations of
the interface normal vector n̂ with respect to two orthogonal directions in the tangent plane,
the sti�ness can be written as

σi j = γδi j +
∂2γ

∂θi∂θ j
, (4.27)

where δi j is the Kronecker delta. Once a suitable coordinate system is �xed, it is straightforward
to calculate the analytical expression of σi j for di�erent crystallographic orientations starting
from an expansion such as eq. (4.26). Symmetry arguments can simplify the derivation of these
expressions by imposing constraints. For example, for a crystal with the face–centered cubic
symmetry, the presence of at least a threefold rotational symmetry for interfaces such as (100)
and (111) reduces the sti�ness tensor to be diagonal (σi j = 0 if i , j) and requires that σii = σj j .
This means that the sti�ness is simply a scalar, that is, an isotropic quantity.

The capillary �uctuation method

The very �rst attempt to measure γsl for a solid–liquid interface by means of atomistic simu-
lations is due to Broughton and Gilmer [79]. They developed the so–called interface cleaving
method (CM) to estimate the surface excess free energy by determining the work needed to
cleave both a bulk liquid and bulk solid — the latter done in such a way to expose the desired
interface — and then joining these two halves back again. Calculating the total reversible work
per unit area along this pathway gives the value of γsl.

In a recent work, Davidchack and Laird [80] suggested several improvements to the way in
which it is possible to build a cleaving potential, but it remains the di�culty that, to ensure
a reversible transformation, such potentials are neither functions determinable a priori, nor
particularly simple. Moreover, even having a method to generate these potentials that do not
signi�cantly perturb the system, it is necessary to generate them for each crystalline orientation
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of the interface whose free energy is to be calculated.
An alternative route described for the �rst time by Hoyt, Asta, and Karma [81] allows to

overcome many of the limitations of the cleaving method and has quickly become one of
the reference methods for extracting information on free surface energy and anisotropy from
atomistic simulations.

If the solid has cubic symmetry, a commonly used expression for the interfacial free energy is

γsl = γ
0
sl(1 + ε4 cos 4θ ).

By simply applying eq. (4.27), since there is only one angle, θ , that de�nes the tilt of the
equilibrium interface’s normal, one can see that the sti�ness is

σ = γsl +
∂2γsl
∂θ 2 = γ

0
sl(1 − 15ε4 cos 4θ ).

The anisotropy of γsl is controlled by ε4, but it is evident that the sti�ness is 15 times more
anisotropic than the interfacial free energy. This argument is not restricted to the cases where
one could write such a simple expression of γsl, and it lies at the heart of the method introduced
by Hoyt and coworkers known as the capillary �uctuation method (CFM). It exploits atomistic
simulations to directly determine σ and, once the anisotropy parameters are known, obtain the
value of γsl for any particular interface. Capillary wave theory asserts [13, 82] that �uctuations
of an interface in thermodynamic equilibrium are directly related to the sti�ness via〈|A(k)|2〉 = kBTm

Sσk2 , (4.28)

where
〈|A(k)|2〉 are the mean square Fourier coe�cients of the expansion

h(x) =
∑
k

A(k) exp(ikx), (4.29)

where h(x) is the pro�le of the �uctuating interface. For eq. (4.28) to be applicable, the wave-
length λ = 2π/k associated to each Fourier mode with frequency k must be much larger than
the typical atomic spacing, in order to sample only �uctuations of the atomically rough interface
and not phonon vibrations.

The quantity on the left hand side of eq. (4.28) can be extracted from a standard MD simulation
provided that one has an appropriate way of locating the dividing surface during the simulation
trajectory. One possible strategy is that explained previously (section 5.1) and has been applied
to a standard Lennard–Jones system to extract its interface anisotropy. An alternative approach
that is based on the Gibbs dividing surface prescription will be showed in the next section. Once
the information of the location of the interface is available, applying a discrete Fourier transform
algorithm directly provides the Fourier amplitudes |A(k, t)|2. The static �uctuation spectrum is
computed by performing a standard ensemble (time) average. As it has been noted previously, a
simulation’s length should only be long enough to provide the temporal evolution of the system
for a time greater than the typical auto–correlation time of the process under study. A subtle
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detail of performing such averaging on an MD trajectory to extract 〈|A(k)|2〉 is that di�erent
Fourier modes typically have very di�erent auto–correlation times, therefore a simulation whose
goal is to obtain such �uctuation spectrum needs to last from about hundreds of picoseconds to
several nanoseconds. This requirement may pose a practical problem that cannot always be
avoided if, for example, a considerable portion of the simulation’s computational cost is due to
the particular choice of the interatomic potential used.

Remembering eq. (4.26), it is evident that to be able to fully determine the anisotropy param-
eters one needs at least three independent simulations from which to extract the sti�ness of the
corresponding interfaces. A viable alternative is to perform simulations with two–dimensional
cells where both the dimensions of the interface are comparable. In this way, the interface can
sustain �uctuations along two independent directions in the tangent plane14 and the sti�ness
tensor along these two directions can be determined from a single simulation. Although such
simulations require boxes with many more atoms than those where the interface has a ribbon–
like geometry — that is, where �uctuations are sampled along only one tangent direction — they
are particularly useful for determining the sti�ness tensor of anisotropic interfaces, that is, those
where σii , σj j . An expression equivalent to eq. (4.28) can be written for these two–dimensional
interfaces 〈|A(k)|2〉 = kBT

S
(
σ11k

2
x + σ22k

2
y + 2σ12kxky

) , (4.30)

where now k is a two–dimensional vector in Fourier space that represents a single mode in the
expansion

h(x,y) =
∑
kx ,ky

A(kx ,ky ) exp
[
i(kxx + kyy)

]
. (4.31)

The CFM has been applied successfully to several pure metals modeled by means of an EAM
potential, such as gold and silver [83], aluminum [84, 85], and nickel [81, 86]; yet predictions of
the interface sti�ness via the CFM are not limited to elemental systems [37] or those modeled
within the EAM framework [87, 88].

It is worth noting that results for the interface free energy and anisotropy of a Lennard–Jones
system [89] have shown excellent agreement with those obtained with the interface cleaving
method [79, 90], thus proving that the CFM is a reliable method for extracting solid–liquid
interfacial properties from atomistic simulations. It is interesting therefore to highlight few
advantages and drawbacks of both methods.

The main advantage of CM is the requirement of smaller simulations in terms of the number
of particles. The work by Davidchack and Laird [90] reports a system with 104 particles, while
applications of the CFM to the same system required roughly as many as 5 times the number
of atoms. Moreover, Davidchack and Laird [91] reports an higher statistical accuracy on the
results of the interface free energy.

On the other hand, since the CFM directly measures the sti�ness, it can be considered the
method of choice to assess the anisotropy with much higher precision. The same information
obtained with CM is inevitably associated with a larger error since it is the result of the di�erence
between two numbers — e.g., γ (100)

sl − γ (110)
sl /γ (100)

sl — that can be very close to each other. Lastly,
the CFM does not need the construction of any cleaving potentials, but relies only on the
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accuracy of the interatomic potentials employed. Therefore, the CFM is the preferable choice
for calculating interface free energies of alloys [92], although the large number of particles and
the more complex interatomic potential require more computationally demanding simulations.

Interface free energy from metadynamics simulations

It is worth brie�y discussing another computational method that exploits an enhanced sampling
technique known as metadynamics. Without entering the details of this technique15, it interest-
ing to see how the method by Angioletti-Uberti compares with the previously mentioned CFM
and CM methods. The central idea of the method aims at reconstructing the free energy surface
of the system under study and then to explore transitions from single-phase to two-phase
con�gurations: evaluating the free energy di�erence between such con�gurations is it possible
to obtain an estimate of γsl.

For a unary system at its equilibrium melting temperature, we may write the following
relation

Gex = Gsl(p,Tm) −Gs(p,Tm),
where the term denoted as “ex” represents the (free) energy cost of introducing a dividing
surface. The speci�c interface free energy is simply the excess term divided by the surface area,
that is, Gex = γslA.

A metadynamics simulation allows the system to explore its free energy landscape as a
function of one or more collective variables chosen beforehand that well discern between
di�erent con�gurations. Therefore, for the above relation to yield a correct result, one must
be able to unambiguously de�ne the free energy of a solid-liquid con�guration of the system.
Speci�c details and related issues of the method have been thoroughly discussed in the work by
Angioletti-Uberti et al. [72]; here we want to reiterate the gist: for a rather simple interatomic
potential such as a Lennard-Jones one, a qualitative representation of the free energy pro�le
along a suitable collective variable would be like �g. 4.12. The two wells correspond to the
single-phase con�gurations of the system, and their equal depths tells us that the system is
indeed at its equilibrium melting temperature. Thus Gsl can be taken as the value of the free
energy in an arbitrary point of the plateau region.

Neglecting for the time being some inherent computational subtleties of metadynamics
simulations, when compared to both CFM and CM, the method described has several advantages
worth mentioning. The �rst one, at least from a computational point of view, is the requirement
of simulations of a few thousands of atoms. Simulation cells of this size showed [93] to give
reliable estimates of γsl and are about two orders of magnitude smaller than those required
by CFM. With respect to CM, which still requires simulation cells containing roughly 1 × 104

atoms, the advantage is that, during the simulation, the system undergoes the phase transition
many times and, therefore, it mitigates any hysteresis e�ect that is instead a fundamental issue
of CM [80, 91, 94].

An additional advantage has to do with the accuracy of the results. All three methods
discussed so far can be an equally valid choice for obtaining a γsl estimate that somehow
mitigates the huge error associated with measuring this quantity experimentally. However,
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Figure 4.12 – Schematic plot of the Gibbs free energy of a unary system versus the value of a
suitably chosen collective variable (CV). The equal depth of the two minima, that correspond to
single–phase con�gurations of the system, implies that the chemical potential of the two phases
is the same, that is, the system is at equilibrium temperature and pressure. The energy cost
associated to a phase transition that brings the system from bulk solid to bulk liquid is precisely
γsl A, where A is the interface area. Moreover, being at equilibrium means that the value of
γsl obtained with this method is independent of the choice of the CV. The same statement is
not valid in out of equilibrium conditions, although it is still possible to employ metadynamics
simulations to extract γsl as a function of temperature [74].

this method based on metadynamics might even aim to provide results with an accuracy at
the level of ab initio methods. Molecular dynamics simulations of this type are feasible for
systems containing hundreds of atoms and for a duration of several hundred picoseconds.
These simulations would provide estimates of γsl with a statistical accuracy far better than that
achievable with CFM, mostly because of the more reliable description of atomic interactions.
On the other hand, such simulations are more a�ected by larger statistical errors, due to much
shorter simulation times, and �nite-size e�ects. An alternative approach could be to apply the
method starting from a simple interatomic potential and to obtain only a rough assessment of
the free energy. The next step would employ a more sophisticated potential that more accurately
reproduces the real system and use the �rst free energy estimate as a starting point. One may
repeat this procedure several times, including more and more complex potentials, but without
having to recalculate each time the free energy from scratch, which will only be re�ned at each
iteration.

In conclusion, it is interesting to note that this method allows to obtain γsl in out-of-
equilibrium conditions [74], even if in this case the value obtained will depend of the collective
variable (or order parameter) chosen, and it is necessary to introduce a corrective term that
depends on the di�erence in chemical potential between the two phases.

4.3.3 Interface dynamics

The solidi�cation process is not only controlled by thermodynamics. In fact, because it is a
phenomenon that can only begin in conditions of quasi–equilibrium — in the presence of a small
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undercooling — kinetics plays a predominant role. If we consider again the Gibbs-Thomson
equation, now that it is clear how relevant it is to take into account the anisotropy of the
interface properties, we can rewrite it as follows

Tint = Tm − Tm
Lf

∑
i=1,2

[
γ (n̂) + ∂

2γ (n̂)
∂θ 2

i

]
1
Ri
− Vn
µ(n̂) , (4.32)

where the dependence of both γ and µ appears explicitly. The term in square brackets represents
the sti�ness de�ned with respect to the angles θi between the normal n̂ and the two principal
directions of the interface — Ri are the associated radii of curvature. The last term expresses the
undercooling measured at the interface due to the kinetics of atoms attachment. It is evident
that interface mobility µ is the quantity that links the average velocity of a planar interface with
the undercooling, that is, V = µ∆T . Even if not written explicitly, it is reasonable to assume
that both the velocity and interface mobility will depend on temperature, therefore assuming
linear relationship is an approximation valid only in certain circumstances.

As already mentioned, the di�culty with quantities like γ and µ is twofold: they cannot be
neglected even if their anisotropies are small — which can still greatly a�ect solidi�cation in
real materials — and, at the same time, they are extremely elusive to be measured with enough
accuracy by experiments. This is an interesting premise to call into play atomistic modeling,
and the �rst attempt to apply molecular dynamics simulation to extract information on µ and
its dependence on orientation is due to Broughton, Gilmer, and Jackson [95]. In their work,
they proposed to modify an even earlier model of crystallization kinetics by Frenkel [96] and
Wilson [97] and wrote the dependence of the interface velocity on temperature as

Vn ∝
√

3kBT
m

e−∆S/kB
[
1 − e−∆µ/kBT

]
. (4.33)

In their model, Broughton, Gilmer and Jackson added a temperature–dependent prefactor —
the 3kBT /m term, withm being the mass of an atom — while in Frenkel–Wilson’s model that
term depended only on the di�usion coe�cient in the liquid phase. The physical justi�cation of
this change can be explained by considering which kind of chemical bonding better describes
the material under consideration [98]. This model has been veri�ed for a number of systems
modeled with the EAM potential [99], therefore it is interesting to brie�y discuss how several
methods that rely on molecular dynamics could provide information on interface dynamics.

Forced velocity simulations A �rst attempt to employ molecular dynamics simulations to
extract information about the solidi�cation rate has been done by Broughton, Gilmer, and
Jackson [95] and Burke, Broughton, and Gilmer [100]. The method they devised is known
as forced velocity simulations since an external constant velocity along the normal of the
solidi�cation front is added to the system at each timestep during its time evolution.

The simulation cell consists of three regions: two static ones whose temperature is controlled
by a thermostat — the top region is solid at T < Tm while the bottom one is liquid held at some
temperature above melting — and a dynamic region at the center containing the solid–liquid
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interface whose temperature was left uncontrolled. During the simulation, the dimensions of
the cell that are parallel to the interface are �xed to their values that guarantee the zero–pressure
crystalline lattice parameter, while the third dimension is free to �uctuate in order to keep the
pressure along the z direction equal to zero.

By monitoring the temperature close to the interface for di�erent values of the external
velocity, one is able to extract the relation between the undercooling and the crystal growth rate.
The di�culty is that there is no a priori rule to �nd the correct value of the imposed velocity,
which must be changed, by trial and error, until one �nds that value for which the solid–liquid
interface remains approximately in the center of the simulation box.

The principal result that Broughton, Gilmer, and Jackson [95] obtained by applying this
method to simulations with very di�erent undercooling contradicted with a previous model
of Frenkel [96] and Wilson [97], who suggested that crystal growth was a thermally activated
process. On the contrary, in their work Broughton, Gilmer and Jackson found that crystallization
rates were still signi�cant even for very low undercooling.

In a more recent work, Celestini and Debierre [101] proposed a slightly more versatile
alternative of the force velocity simulation method. The main advantage was the possibility to
specify an arbitrary value for the external velocity. The simulation cell was set up in such a
way to have four regions whose temperatures were controlled by four di�erent thermal baths,
and periodic boundary conditions guaranteed that solid atoms leaving the cell from its top
would appear immediately in the solid region at the bottom of the cell. In such con�guration of
the simulation cell, the steady state is reached once a constant temperature pro�le establishes
across the whole cell. At the steady state, one can obtain the relation between undercooling
and velocity by comparing the constant temperature pro�le and the �nal positions of the two
solid–liquid interfaces.

Free solidi�cationmethod The free solidi�cation method has the advantage of a much simpler
simulation’s setup, if compared with the previous forced velocity scheme. A typical simulation
involves preparing a box the majority of which consists of a liquid phase, while only a small
portion of the system is solid. After equilibrating such starting con�guration, the temperature
is lowered below the melting temperature and thus solidi�cation spontaneously occurs. Since
solidi�cation is an exothermic process, the latent heat released upon the phase transformation
must be constantly removed by coupling the system to some kind of thermostat.

The most direct way of estimating interface kinetic coe�cient is to track the position of
the interface versus the applied undercooling during the solidi�cation. This can be done by
monitoring either the total potential energy of the system as described by Hoyt et al. [102],
or the number of crystalline atoms Ns according to some kind of order parameter that clearly
distinguishes the solid from the liquid phase. In the latter case, an estimate of the crystal growth
rate is

R =
vs
2S

dNs

dt
,

where vs is the equilibrium molar volume of the solid and S the interface area. For the free
solidi�cation method to work, it is essential to employ the NPT ensemble, where there pressure
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is maintained at zero during throughout the simulation. This is required because of the usually
signi�cant di�erence between the densities of the solid and the liquid: a constant volume
simulation would lead to a steady increase of pressure which would eventually halt solidi�cation.

Two �nal remarks are useful to make regarding free solidi�cation simulations. The �rst is that
this method completely ignores the e�ect of temperature gradients on interface motion, that is,
the mobility estimate extracted from free solidi�cation simulations captures only the kinetics of
atoms in the liquid phase attaching to the growing solid interface. In real solidi�cation, however,
temperature varies across the interface because the latent heat released during solidi�cation
does not di�use instantaneously, and indeed may take longer than the time it takes for the
interface to thicken by some crystalline plane. Hoyt, Asta, and Karma [99] have veri�ed,
by considering the results of a phase �eld model on pure melt solidi�cation [103], that the
contribution to the kinetic coe�cient of temperature variation across the interface in free
solidi�cation simulations is about 2% at least for metallic systems, and it is therefore justi�ed to
ignore this small correction.

The second remark underscores one drawback of the free solidi�cation method which pertains
to statistical accuracy. At low undercooling, the solidi�cation front might move by only very
few lattice planes even in long MD simulations. This means that estimating the crystal growth
rate from the slope of Ns versus time leads to large uncertainties on R and, in turn, on the
kinetic coe�cient. Therefore, a method of obtaining information on interface kinetic from a
simulation at the melting temperature could be a viable alternative in the low undercooling
regime, which may be relevant in some experimental studies of solidi�cation.

Random walk technique A method that allows extracting the kinetic coe�cient from moni-
toring the interface �uctuations has been proposed by Briels and Tepper [104]. The authors
studied the �uctuations of the number of crystalline particle for the (100) interface of a solid–
liquid Lennard–Jones system at coexistence temperature. The key ingredient of this method is
that simulations are performed within the NVT ensemble which is required to keep the average
interface position �xed. In particular, this approach proposes that the instantaneous variation
of the number of solid atoms from its equilibrium value, ∆Ns , is described by the following
relation

∆Ns

t
=

1
τ
∆Ns ,

where the time constant τ represents the relaxation time that the interface takes to recover its
equilibrium position and it is explicitly linked to the kinetic coe�cient. The relaxation time can
be obtained from the auto-correlation function of ∆Ns (t), that is,

〈∆Ns (t)∆Ns (0)〉
〈∆Ns (0)2〉 = e−t/τ .

The assumption made by Briels and Tepper is that the relationship between the interface
velocity and the chemical potential di�erence is a linear one, therefore they wrote

V =
k

kBT
(µl − µs ), (4.34)
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where k is their de�nition of the kinetic coe�cient. An alternative approach which avoids
monitoring explicitly the interface position and exploits the central result of CFM will be
discussed in the Results.

Notes

1. The sign adopted for quantities such as work or heat transferred from and to the system is, of course, arbitrary.
We are thus choosing the convention by which any amount of energy that leaves the system is negative, while any
quantity entering the system is positive. Hence, the reason for the minus sign in front of the term dW of eq. (4.1).

2. That is, a system that cannot exchange both mass and energy (work or heat) with the surroundings. The isolated
system by de�nition is the Universe, which always comprises any particular system of interest and its environment.

3. «In considering the di�erent homogeneous bodies which can be formed out of any set of component substances, it
is convenient to have a term which shall refer solely to the composition and thermodynamics state of any such body
without regard to its size or form. The word phase has been chosen to this purpose.» [105]

4. This is readily seen by recalling that, for a reversible change in a closed system at constant composition, the First
Law reads dE = dQ + dW . If there is only expansion work, then dWrev = −pdV and from the de�nition of entropy
dQrev = TdS . Combining these two, one obtains dE = TdS − pdV , which must be valid regardless what kind of
transformation is considered, since the internal energy E is a function of state.

5. These are the so-called invariant points. In a single component system, invariant points are outside any external
control, for they occur at a de�nite temperature and pressure that depend only on the substance.

6. The superscript “ex” indicate an excess quantity. In this context it labels a di�erence between a quantity calculated
for a real system and an ideal one.

7. This conclusion perfectly makes sense with the de�nition of equilibrium temperature from a thermodynamic
standpoint: it is that temperature at which the driving force for solidi�cation vanishes.

8. This is because the degree of undercooling a�ects the velocity of the solid–liquid interface but not atomic di�usion
at a given temperature.

9. Gibbs formulated a thorough study of the thermodynamics of surfa[106]ces in multicomponent systems in his
famous paper entitled “On the Equilibrium of Heterogeneous Substances”[105, pag. 55].

10. For an extensive discussion on surface excess properties, see Lupis [107].

11. The unit normal vector associated to the mathematical surface that coincides with the solid–liquid interface.

12. There have been studies reporting the best agreement with experiments only when including the third–order
expansion. See Niederberger, Michler, and Jacot [108].

13. For every point on the surface, there is always a choice of a particular set of orthogonal vectors de�ning the principal
radii of curvature.

14. If n̂ is the interface normal, the tangent plane is the space of all the tangent vectors, each of which describes a
direction in which the interface is curved.

15. The interested reader may �nd all the core concepts and details comprehensively discussed in Refs. [109, 110].
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5 Anisotropy and free energy of a
smooth �uctuating dividing surface
This chapter presents and discusses the core results of the paper entitled “Extracting the
interfacial free energy and anisotropy from a smooth �uctuating dividing surface” [73]. Both
the relevance of interface properties and the related di�culties in determining them have been
previously discussed, together with several atomistic simulation approaches. In the research
article subject of this chapter, we present a generalization of the construction proposed initially
by Willard and Chandler [111]. This method allows one to obtain a smooth dividing surface
that follows the ever-changing shape of interfaces that are present in a system with multiple
phases, such as solid-liquid systems. The work shows how this construction can be used to
study the surface that separates a solid material from its melt in terms of interface’s capillary
�uctuations. By analyzing the Fourier transform of this instantaneous dividing surface, one can
extract the speci�c free energy excess of the interface and its dependence on the orientation
relative to the bulk phases. The e�ciency of this approach is discussed in terms of system size
and statistical sampling.

The �rst section explains the theoretical background behind the idea of a coarse–grained
order parameter �eld and how it naturally de�nes an instantaneous solid–liquid dividing surface.

The second section presents the system chosen as a benchmark against which to test the
framework and how in practice the simulations of solid-liquid interfaces were prepared and
run with all the relevant computational details.

The fundamental di�erences with the original method of Willard and Chandler are discussed
in the third section, investigating the sensitivity of the procedure described in the �rst section
in terms of the two main ingredients of the Gaussian kernel density estimation. A detailed
presentation of the results for the interface free energy obtained from �tting the capillary
�uctuation spectrum follows, together with a comparison with literature works that already
investigated the same properties for an identical system.

The last section describes the implementation of the framework we developed into the
widely-used simulation package PLUMED [112], that constituted a substantial part of this work.

5.1 Theoretical background

Picking the right order parameter may well be a di�cult task, for one choice may end up
correctly distinguishing two phases that one would want to ignore. A typical situation could
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be the spontaneous formation of defects, or the appearance of an unexpected phase that is
identi�ed as di�erent by the order parameter. For example, since the FCCUBIC order parameter
is not invariant with respect to rotations or re�exions, it will immediately detect defects such
as stacking faults or twin boundaries that can emerge rather easily when studying planar
interfaces.

On the other hand, their great �exibility makes them the most convenient choice in atomistic
simulations, precisely because they are atom–centered quantities that are, in most cases, very
easy and cheap to compute. A Gibbs dividing surface approach is then straightforward: once
known the mean values of the order parameter in the bulk phases — e.g., with ϕl and ϕs
indicating a liquid and solid phase — then, for a system of N particles one could de�ne

Φ =
N∑
i=1

ϕi = Nsϕs + (N − Ns )ϕl , (5.1)

where Ns stands for the number of solid atoms. This de�nition implicitly determines the location
of the dividing surface between the solid and liquid by requiring a vanishing surface excess for
this particular choice of ϕ. It also implies that any other macroscopic observable X will have a
non–zero surface excess quantity, since in general X , NsX s + (N − Ns )X l .

Gibbs’ approach is undoubtedly elegant and simple, but many other approaches1 have been
proposed to de�ne a surface in a way that is sometimes more convenient — yet always arbitrary.
Here we want to discuss the idea that Willard and Chandler [111] introduced and that has
some analogy with phase �eld methods mentioned in the introduction. Their approach was
the starting point for the method used to extract interfacial free energies from �uctuating
surfaces [73], whose results will be discussed in the next part of the thesis.

The basic ingredient of Willard and Chandler’s idea is a continuous density �eld de�ned as
follows

ρ(r , t) =
∑
i

δ (r − ri (t)), (5.2)

where the summation runs over the number of particles in the system, and δ is simply a Dirac
delta. A coarse–grained version of this �eld is obtained by a convolution with normalized
kernel functions, which are taken to be Gaussians of the form

K(r; ξ ) = (
2πξ 2)−3/2 exp

(−r 2/2ξ 2) ,
where ξ is the coarse–graining parameter that should be chosen appropriately based on the
physical system under study. The convolution yields

ρ(r, t) =
∑
i

K (|r − ri (t)| ; ξ ) . (5.3)

One may employ a slightly di�erent �eld that we may de�ne as an order parameter density �eld

ρϕ (r , t) =
∑
i

ϕiδ (r − ri (r )), (5.4)
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whereΦ can be the FCCUBIC or any other choice of a suitable order parameter for the description
of the system under consideration. Once the coarse–grained �eld has been normalized,

ρϕ (r , t) =
∑

i ϕiK(|r − ri | ; ξ )∑
i K(|r − ri | ; ξ )

, (5.5)

then the interface between the phases that Φ discriminates is de�ned by the two–dimensional
surface satisfying

I ≡ {(x,y) | ρϕ (r , t) = ϕc }, (5.6)

where ϕc is a constant value to be �xed. In other words, the instantaneous dividing surface
is the locus of points in space where the order parameter density �eld assumes the value Φc .
It is clear that the choice of this constant is arbitrary, but it should rely on some meaningful
physical consideration. Since the coarse–grained �eld depends explicitly on time through atoms’
coordinates, the interface will also be a function of time: I ≡ I (x,y, t).

This approach is particularly well suited for molecular dynamics which naturally provides
the time evolution of a system by means of positions and velocities of all its particles. In practice,
eq. (5.6) can be solved on the �y during a molecular dynamics simulation by employing one
among many root �nding algorithms.

5.2 System and simulation details

The simulations presented in this paper were of an interface between the solid and liquid phases
of Lennard-Jones atoms. A truncated form of the Lennard–Jones potential [113] was used
throughout, and thus the pair potential was given by the following expression:

V (r ) =


4ϵ
[ ( σ

r

)12 − ( σ
r

)6
]
+C1 r ≤ 2.3σ

C2
( σ
r

)12
+C3

( σ
r

)6
+C4

( r
σ

)2
+C5 2.3σ < r < 2.5σ

0 r ≥ 2.5σ

, (5.7)

where C1 = 0.016132ϵ , C2 = 3136.6ϵ , C3 = −68.069ϵ , C4 = −0.083312ϵ and C5 = 0.74689ϵ . As it
is customary when employing an interatomic potential of this kind, all the relevant units are
expressed in term of quantities derived from ϵ , the unit of energy, and σ , the unit of distance.

All molecular dynamics simulations were performed using LAMMPS [114] at the equilibrium
melting temperature of 0.6185 Lennard–Jones units. In the simulations the temperature and
pressure were kept constant using a Nosé–Hoover thermostat and barostat. To monitor which
atoms were in the solid parts of the simulation box and which atoms were liquid we used a
cubic harmonic symmetry function already described previously (section 4.3.1) and that has
been used in a number of other recent works [72, 74, 93].

To generate an initial con�guration containing a solid–liquid interface we took a perfect
crystalline FCC unit cell with a lattice parameter that was consistent with the density at
the chosen temperature (i.e. the melting temperature Tm = 0.6185). Since we wanted to
simulate solid–liquid interfaces with multiple di�erent orientations, we aligned the z axis of
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Table 5.1 – Dimensions of the simulations and the number of atoms in each of the cells. The
fourth column gives the dimension along the z axis, perpendicular to the interface normal. All
lengths are in units of σ .

Orientation Lx Ly Lz N

(100) 32.354 32.354 80.886 80 000
(110) large 45.756 32.354 68.634 96 000
(110) small 22.878 19.413 54.907 23 040

the coordinate system for our cell with the normal to the desired surface. We then replicated
the unit cell in the xy plane and along the z direction. When doing this we used a large number
of replicas in the z direction to ensure that we would have reasonably thick solid and liquid
regions. This reduces the severity of �nite-size e�ects and prevents the system from melting or
freezing in its entirety.

The initial stages of our molecular dynamics simulations were used to generate the solid–
liquid interface. In these early simulations the atoms with z positions in a particular range were
held �xed. The size of this �xed region depended on the length of the supercell in the z direction
but in general it was set between Lz/3 and 2Lz/3, where Lz is the total length of the box in the
z-direction. These constraints were kept in place during an MD simulation of approximately
100 LJ time units, with a timestep of 0.004 time units, that was run in NVT ensemble with
the temperature �xed well above Tm . During this simulation the unconstrained portion of the
supercell was observed to melt completely so that two solid-liquid interfaces were formed. With
these interfaces in place, the system was then equilibrated at the melting temperature, Tm , for a
further 100 time units in the NPT ensemble with the constraints on the atoms in the solid parts
of the system still in place. Lastly, the constraints on the solid atoms were removed entirely
and a �nal 100 time units of NVT equilibration of the system were performed. Once this �nal
equilibration had completed a 10 000 time-units run, NPT production run was performed.

Interfaces between the (100) and the (110) surfaces and the melt were generated using the
procedure outlined in the previous paragraph. For the simulations of the (100) interface a
supercell of of 20 × 20 × 50 unit cells along the standard x , y and z crystallographic axes was
generated.

For the simulations of the (110) interface supercells with the x , y and z axes aligned with
the [1̄10], [002̄] and [110] crystallographic directions respectively were generated. There were
thus 80 000 atoms in our simulations of the (100) interface and 96 000 and atoms in the �rst of
our simulations of the (110) interface. In order to assess the validity of our proposed model
for �tting the Fourier spectrum we also prepared a cell with a (110) interface that contained
roughly a quarter of the atoms that were in this large cell. Table 5.1 provides a summary of the
various simulation cells that were used in this work.
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5.3 Results and discussion

We began our analysis by investigating the sensitivity of the procedure outlined in the previous
section to the two main parameters in the recipe; namely, the bandwidth of the Gaussian kernel
functions in eq. (5.5), ξ , and the spacing between the grid points at which this function is
evaluated. These initial tests were performed on trajectories in which the (100) interface was
simulated. We found that the ensemble average for the Fourier transform of the phase �eld
was almost identical for grid spacings of 0.25 and 0.5 Lennard–Jones units and thus opted to
use the larger spacing in order to lower the total number of grid points and to thus reduce the
computational cost.
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Figure 5.1 – Fitted Fourier spectra along the kx direction for a range of values of the Gaussian
kernel coarse–graining length ξ (see eq. (5.4)).

Figure 5.1 shows how the x-component of the ensemble average for the Fourier transform
changes as the bandwidth, ξ , is adjusted. According to the capillary �uctuation relation eq. (4.30),
A(k) should decay following A(k) ∝ 1/k2. We �nd that this rule is followed for small k , but
that there are clear deviations from this behavior at large k . These deviations at large k are
unsurprising, however, as the capillary �uctuation dispersion is known to be a�ected by artifacts
that depend on how the interface pro�le is constructed. These e�ects are dramatic at wave-
vectors that describe �uctuations over length-scales of individual atoms, but deviations from
linearity can also be apparent at much smaller values of k and can thus a�ect any estimate of the
interface sti�ness coe�cients. When it comes to these deviations there is a clear advantage in
de�ning the position of the interface from the isocontour points of a smooth kernel density as we
have some indication as to the form these artifacts should take. The de�nition of coarse–grained
density �eld given by eq. (5.3) describes a convolution of the atomic density with the chosen
kernel function; so the Fourier transform of the smoothed density ρ(r , t) is the point–wise
product of the Fourier transform of the density �eld and the Fourier transform of the kernel
function. The onset of the deviations from linearity induced by the smoothing should therefore
depend on the value of the bandwidth ξ . In particular, as ξ increases, the onset of the deviation
should move to smaller k-vectors.

To account and correct for the impact of the density smoothing on the capillary �uctuation
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dispersion, we introduced a di�erent form of eq. (4.30)

〈|A(k)|2〉 = kBT exp (−k2
x/2λ2

x − k2
y/2λ2

y )
S

(
σ11k

2
x + σ22k

2
y + 2σ12kxky

) . (5.8)

This is the form that would result from convoluting the “ideal” interface pro�le with a Gaussian
function. However, this argument is evidently an oversimpli�cation of the matter as the
expression for the phase �eld equation (eq. (5.3)) is not a simple convolution of the atomic order
parameters. In fact, we are �nding the location of the dividing surface from an isocontour of
a smoothed order parameter density �eld and are not smoothening the isocontour. For this
reason, we considered the two parameters λx and λy as �tting parameters. We also found
that the best �t values typically di�er by less than 25% from the value of 1/ξ that would be
expected if the Gaussian convolution argument could be considered strictly valid. Better still,
we observed that when eq. (5.8) rather than eq. (4.30) is used as the model to �t the data, and
λx and λy are just two additional �tting parameters, the artifacts due to the smoothening are
taken into account, and the �nal values obtained for the sti�ness tensor components, σ11, σ22
and σ12, do not depend signi�cantly on the value chosen as the Gaussian kernel bandwidth.

The fact that results of the �t based on the model given by eq. (5.8) ended up being relatively
insensitive to the manner in which the dividing surface is constructed lead to signi�cant
computational advantages. For example, as discussed in the previous paragraph, eq. (4.30)
is only valid in long wavelength limit of the capillary wave spectrum since the amplitude of
large k depends more strongly on the way in which the height pro�le is obtained. In previous
simulation works on CFM [115], very large simulations cell have been used and 〈|A(kx ,ky )|2〉
has been calculated for as many small k values as possible. The fact that we can correct for the
artifacts induced by the smoothening of the phase �eld ensures that, by contrast, we are able to
extract meaningful information from larger values of k , and thus allows us to reduce the size
of the simulation. Figures 5.2 and 5.3 show that we can get values for the sti�ness tensor that
are consistent with those in previous works even though we used a much smaller simulation
cell, and that we can extend the �tting to wave–vectors with larger moduli, as long as we use
eq. (5.8) when performing the �tting. In fact, �gs. 5.2 and 5.3 show the values of the sti�ness
that we extracted as a function of the radius of the region in k–space, kmax, from which we took
the data. It is evident that when this radius is made larger, we include more data points in the
�tting, thereby reducing the statistical uncertainty in the sti�ness.

A further bene�t of using the information on 〈|A(kx ,ky )|2〉 for large values of kx and ky is
that it allows reducing the amount of time for which simulations have to be run to achieve
statistical convergence. It has been already shown (section 4.3.3) that the dynamics of A(kx ,ky )
can be seen as that of a harmonic oscillator of frequency ω ∝ k undergoing over–damped
Langevin dynamics. The auto-correlation time for such processes is proportional to 1/ω2 [116],
so longer simulation times are required to converge the averages associated with the modes with
long wavelengths. Furthermore, di�culties associated with converging the Fourier amplitude
�uctuations for the longer wavelength modes might also be the cause of the non–Gaussian
behavior that was observed for these modes in simulations of the interface between solid and
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Figure 5.2 – Fitted values for the sti�ness tensor for the (100) interface as a function of the radius
of the cuto� in k–space. The points on the lines labeled orig were obtained by performing �ts
using eq. (4.30), which is the model that has been used in many other works on CFM. The points
on the lines labeled aniso were calculated by �tting using our model (eq. (5.8)) and the points
on the lines labeled iso were �tted using a modi�ed version of the eq. (5.8) in which λx = λy .
The horizontal, grey dashed line indicates the value of the sti�ness obtained by Becker et al.
[115]. It is clear from this �gure that, when the �t is performed using the Gaussian–corrected
equation, sti�ness values the are consistent with the known values of this quantity can be
obtained for a range of kmax values. By contrast, when the �t is performed using the original
model of eq. (4.30) the value of the sti�ness di�ers substantially from the known values for all
but the smallest values of kmax. This is unfortunate as the results in the region close to k = 0
are a�ected by substantial errors as only a small number of points are included in the �t. For
this interface, the anisotropic and isotropic version of eq. (5.8) give very similar values for the
sti�ness tensor as it should be, given that the (100) interface has only one independent value
for the sti�ness tensor.

liquid sodium chloride [88]. Figure 5.4 shows that these statements agree with the observations
we made for our system. We found that the auto-correlation time for the modes increases
with 1/k2 when k is small. In conclusion, the fact that we were able to use the information on
〈|A(kx ,ky )|2〉 at relatively large values of kx and ky when �tting using eq. (5.8) ensures that we
can extract information from simulations with both shorter timescales and fewer particles as
compared to those required when using the “original“ model given by eq. (4.30).

Figure 5.3 illustrated why we chose an anisotropic kernel, that is, two independent values of
λ treated as �tting parameters. Our experience here is that for an isotropic surface such as the
(100) the inclusion of the additional parameter makes very little di�erence. We get very similar
values for σ11 and σ22 if we use an isotropic kernel and enforce λx and λy to be equal in the �t.
However, for an anisotropic surface such as the (110) we see a weaker dependence on kmax and
much closer agreement between our results and the results in the literature when we include
separate λx and λy parameters in the �t. Furthermore, the �tted values for σ11 and σ22 are more
consistent across the range of kmax values when the λx and λy parameters are allowed to vary
independently during the �t.
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Figure 5.3 – Fitted values for the sti�ness tensor of the (110) interface as a function of the radius
of the cuto� in k–space. The labels used in legend that describe each of the lines are explained
in the caption to �g. 5.2. This �gure once again demonstrates that �tting using eq. (4.30) only
gives values for the sti�ness that are consistent with the literature values when kmax is set equal
to a small value. If, however, the data is �t using eq. (5.8) values for the components of the
sti�ness tensor are consistent with the known literature values even for a wider range of values
of kmax. It is interesting to note that the (110) has two independent values in its sti�ness. It
would seem that �tting using the anisotropic version of eq. (5.8) gives values that agree more
closely with those from Becker et al. [115]. When the isotropic version of this model is used,
the values obtained for the sti�ness tensor are pulled closer together than they should be.
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Figure 5.4 – Plot illustrating the auto-correlation time τ for A(kx ,ky ) in Lennard–Jones reduced
units of

√
mσ 2/ϵ as a function of kx (red circles) and ky (blue diamonds) for the (100) interface.

The values of the sti�ness presented in �g. 5.3 were obtained by analyzing the smaller of the
two simulations that were run on this particular interface. Figure 5.5 shows the values for the
sti�ness that were obtained from this simulation together with the values obtained by analyzing
the larger of the two simulation cells. The size of the cell in this larger simulation is comparable
with the size used in the work by Becker et al. [115] from which we took the values we have

82



5.3. Results and discussion

σ11,small

σ11,large

σ22,small

σ22,large

σ11,ref σ22,ref

0.5 1 1.5 2 2.5 3

kmax

0.3

0.4

0.5

0.6

0.7

S
ti
ff
n
e
s
s
te
n
s
o
r

Figure 5.5 – Fitted values for the sti�ness tensor for the (110) interface as a function of the radius
of the cuto� in k–space. All the values on this �gure were obtained by performing �ts using
eq. (5.8). The dashed lines give the values that were obtained from a simulation cell containing
96 000 atoms, while the solid lined are the values obtained from simulations cells with only
24 000 atoms.

used as a reference. From �g. 5.5 it is indeed evident that we can use much smaller simulation
cells when we �t using eq. (5.8). The values for the components of the sti�ness tensor that
we obtained from these smaller simulations are within 0.02 (ϵ/σ 2) of the reference values and
are in some cases closer to these reference values than the values we obtain from the larger
simulations.

The �nal sti�ness values that we obtain are reported in table 5.2. Error bars were calculated
using a block averaging technique (section 2.7.1), with a block length that was determined
based on the auto-correlation times for the (2π jx/Lx , 0) and (0, 2π jy/Ly ) components of the
Fourier transform A(kx ,ky ). The values that we obtain for the sti�ness values are consistent
with those from the the previous work of Becker and co–workers [115]. However, as discussed
in the previous paragraphs, we were able to use much smaller simulation cells because we use
a �uctuating dividing surface construction and because we perform the �t using an expression
like eq. (5.8) that models the short wavelength modes of the dividing surface using a Gaussian
convolution.

The values obtained for the sti�ness can be used to get information on the interface free
energy exploiting an expansion such as that of eq. (4.26), where one should �rst substitute the
components of the interface normal vector. The second step is to derive analytic expressions
for the interfacial free energy for each interface. For example, for the (110) interface, eq. (4.26)
up to the second order yields

γ(110) = γ0

(
1 + 7

5ϵ1 +
25
7 ϵ2

)
, (5.9)
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Table 5.2 – Sti�ness values for the (100) and (110) interfaces calculated using our method at
a reduced temperature of 0.6185. The values of the sti�ness are given in units of ϵ/σ 2. For
comparison, the values in parenthesis are those obtained by Becker et al. [115] at the same
temperature.

σ11 σ22

Orientation Our work Becker et al. Our work Becker et al.

(100) 0.2897 ± 0.0008 0.2866 0.2871 ± 0.0007 0.2866
(110) 0.429 ± 0.004 0.431 0.271 ± 0.003 0.305

while by exploiting eq. (4.27) the sti�ness tensor is given by

σ(110) = γ0

(
1 − 21

10ϵ1 +
365
14 ϵ2 0

0 1 + 39
10ϵ1 +

155
14 ϵ2

)
. (5.10)

We have extracted three values for the component of the sti�ness tensors of the (100) and (110)
surfaces by analyzing the Fourier spectra of the capillary �uctuations in our MD simulations.
We can thus extract the three anisotropy parameters for a system modeled with the chosen
Lennard–Jones potential by solving simultaneously the corresponding equations that relate
the sti�ness to γ0, ϵ1 and ϵ2. The solutions of this system of equations are γ0 = 0.355 58 ϵ/σ 2,
ϵ1 = 0.064 and ϵ2 = −0.0039. Obviously, in this context, ϵ and σ refer to the fundamental
Lennard–Jones units of energy and distance, and not to anisotropy parameters or sti�ness.
The coincident name is unfortunate, yet it should not give rise to any ambiguity. Plugging
these values into eq. (4.26) leads to the values for the interfacial free energy for high–symmetry
directions. These values are shown in a spherical contour plot of �g. 5.6 and reported in table 5.3
where they are also compared with the values obtained using CFM [115] and metadynamics [66]
in the work of Cheng, Tribello, and Ceriotti [117]. Despite the noticeable discrepancies in the
values of the sti�ness, the �tted values of γ are in near-perfect agreement with previous results
based on CFM calculations. There is a more signi�cant discrepancy between the values we
obtained and the values that were not calculated by performing a �t based on sti�ness, but
which were instead computed directly using metadynamics simulations (section 4.3.2).

In conclusion, it is interesting to note that all these methods can capture the anisotropy
between di�erent directions, given the di�culties associated with measuring and computing
solid–liquid interfacial properties and also given that the Lennard–Jones potential is known to
exhibit a very isotropic interfacial free energy. Being able to compute this quantity is critical as
small anisotropies underlay important phenomena such as the formation of dendrites during
the solidi�cation of metals and alloys.
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Figure 5.6 – Graphical representation that illustrated the dependence of the free energy of the
interface on its orientation. The high symmetry directions are highlighted and it is clear that
the (100) has a higher interface free energy than the (111). A perfect sphere would indicate a
fully isotropic interface free energy.

5.4 Details about the order parameter for FCC symmetry

The symmetry function that has been used in this work to distinguish atoms in the solid phase
has been already introduced previously (section 4.3.1). Here we discuss few technical details of
the FCCUBIC order parameter.

The angular part denoted as Cα (ri j ; φ,ψ , θ ) in eq. (4.22), when expressed in terms of the
Cartesian components of the distance vector ri j reads

Cα (ri j ; φ,ψ , θ ) =
x4y4 + x4z4 + y4z4

r 8
i j

− ζx
4y4z4

r 1
i j2

,

where ζ is a parameter that is set equal to 27, which is the value that allows the function to best
resolve between solid and liquid con�gurations. The radial term Cr (ri j ) is a switching function
that acts on the length of the distance vector ri j and has the following form

Cr (x) =


1 x ≤ d0

0 x ≥ d1

(y − 1)2(1 + 2y) d0 < x < d1 wherey = (x − d0)/(d1 − d0)

where the parameters d0 and d1 should be suitably tuned for the system under consideration.
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Table 5.3 – Speci�c free energy for the solid–liquid interface in a Lennard–Jones system at the
melting temperature of 0.6185. The results obtained here are compared with those in previous
work of Becker et al. [115] and Cheng, Tribello, and Ceriotti [117]. The free energy is in units
of ϵ/σ 2.

γhkl γ(100) γ(110) γ(111)

Our work 0.364 0.355 0.348
Becker et al. 0.363 0.354 0.350
Cheng et al. 0.373 0.360 0.352

For the case of the Lennard–Jones simulations whose results have been discussed in this chapter,
we set d0 = 1.2 and d1 = 1.5.

It is possible to show that the value of Φi is equal to 1/16 when the atoms in the �rst
coordination sphere around atom i sit in their ideal FCC lattice sites. Since the FCCUBIC order
parameter is not rotationally invariant, Φi = 1/16 for an atom in an ideal FCC lattice site
only if the simulations cells vector are aligned with the vectors of the FCC structure. For the
simulations set up to analyze the (110) interface, one should employ the correct values for the
three Euler angles (φ,ψ , θ ) so as to ensure that, for example, the z direction runs parallel to the
[110] direction and the (110) interface coincides with the xy plane.

If the atomic environment around atom i is uniform — i.e., perfectly isotropic as it would be
for a liquid — then Φ =

143−ζ
5005 . Therefore, to ensure that Φ = 1 corresponds to a perfect FCC

lattice, while its average value for bulk liquid is zero, a simple linear scaling

Φ′i =
Φi − 〈Φ〉l
〈Φ〉s − 〈Φ〉l

is applied, where the symbol 〈·〉p denotes an average in the p phase. Figure 5.7 shows the
distributions for the values of the resulting quantities for the atoms in a bulk solid and a bulk
liquid. One can see that there is very little overlap between the distribution of the values
in bulk solid and bulk liquid. To make these distributions even more strongly peaked and
the distinction between atoms in the liquid and solid parts even clearer, Φ is transformed by
applying a non–linear switching function of the kind

s(Φ′) =
[
1 + (2a/b − 1)

(
Φ′ − d0

r0

)a ]−b/a
, (5.11)

where r0 and d0 are tunable parameters. For r ≤ d0 then s(Φ′) smoothly converges to 1.0, while
for r > d0 the function decays to 0.0. a and b are two parameters that control the shape of
the switching function. The choice of these parameters is arbitrary, but one could use as a
visual guide the plot of the distribution function for the chosen order parameter — that of the
FCCUBIC is shown in �g. 5.7. One can then tune the values of a and b in such a way that the
sigmoid function of eq. (5.11) better �lters out the overlapping regions and thus enhances the
separation of the solid phase from the liquid one.
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Figure 5.7 – Probability density distribution function for the order parameter that is described
in this section. The histograms shown in red and blue in this �gure were calculated from a
snapshot of the (110) simulation. The dashed line shows the switching function of eq. (5.11),
that was used to convert the order parameter values into a continuous quantity that better
distinguished the solid from the liquid.

5.5 Implementation

This section illustrates in detail the implementation of the �uctuating dividing surface method
in the molecular dynamics package PLUMED [112] and presents commented input �les used to
analyze a CFM simulation.

Once the order parameter Φ has been calculated for every atom in the simulation, the �rst
step is to build the density �eld, a scalar �eld that allows evaluating the value of Φ in every point
in space. By averaging such density �eld along two directions — say, x and y — it is possible to
obtain a density pro�le along the direction perpendicular to interface. In this way, one could
verify that the chosen order parameter is capable to distinguish the solid from the liquid phase.
An input like the following would allow calculating one such pro�le with PLUMED:

UNITS NATURAL 1

2

FCCUBIC ... 3

LABEL=fcc 4

SPECIES=1-20736 SWITCH={CUBIC D_0=1.2 D_MAX=1.5} 5

ALPHA=27 PHI=0.0 THETA=-1.5708 PSI=-2.35619 6

... FCCUBIC 7

8

center: CENTER_OF_MULTICOLVAR DATA=fcc 9

10

MULTICOLVARDENS ... 11

LABEL=dens 12

DATA=fcc ORIGIN=center DIR=z 13
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NBINS=100 BANDWIDTH=1.0 STRIDE=1 CLEAR=25 14

... MULTICOLVARDENS 15

16

DUMPGRID GRID=dens FILE=profile.dat STRIDE=25 17

Lines 3 to 7 of this input �le tells PLUMED that we would like to calculate the Φ order
parameter of eq. (4.22) for all the 20 736 atoms in the system. These Φi values are then inserted
in the expression below

〈φ(z)〉 =
〈∑N

i=1 siK
( z−zi

λ

)∑N
i=1 K

( z−zi
λ

) 〉
, (5.12)

which is done in lines 11 to 15 of the input �le. In this expression K is a normalized kernel
function (in this work a Gaussian with bandwidth set equal to 1.0σ , where σ stands for the unit
of length in Lennard–Jones reduced scheme) and zi is the z coordinate of the ith atom relative
to a reference position. In this work this reference position is located in the centre of the solid
region of the system and is found by taking the following weighted sum

zref =
Lz
2π tan−1 ©­­«

∑N
i=1 Φi sin

(
2πzi
Lz

)
∑N

i=1 Φi cos
(

2πzi
Lz

) ª®®¬ .
In this expression Lz is the length of the simulation cell in the z direction, Φi is the value
of eq. (4.22) evaluate from the positions of the atoms around atom i , whose z coordinate is
zi . This quantity is calculated by the CENTER_OF_MULTICOLVAR, which also calculates similar
weighted-averages from the x and y positions of the input atoms.

The ensemble average of the order parameter is calculated by computing the function inside
the angle brackets in eq. (5.12) every step and by averaging over 25 trajectory snapshots.
The �nal ensemble average that is calculated in this way is shown in �g. 5.8. This result is
unsurprising: there is a region in the center of the box where the average value of Φi is large
and where the structure is a solid. In the remainder of the box, however, where the structure is
liquid, the average value of Φi is small.
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Figure 5.8 – Average value of the FCCUBIC symmetry function de�ned in eqs. (4.22) and (5.11)
as a function of x , the direction parallel to the interface normal.
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It is easy to adjust the PLUMED input that was used to generate �g. 5.8 to calculate two or
three dimensional pro�les. Furthermore, by taking advantage of the STRIDE parameter in the
DUMPGRID command and the CLEAR parameter in the MULTICOLVARDENS command we can easily
adjust the number of frames over which we calculate the ensemble average. Finally, we can ob-
viously change the quantity we are averaging by using some action besides FCCUBIC to calculate
the symmetry functions that are used to calculate the average �eld in MULTICOLVARDENS.

Figure 5.9 – A snapshot from one of molecular dynamics simulations of a solid–liquid interface
in a Lennard–Jones system. In this �gure the atoms are colored according to the value they
have for the symmetry function de�ned in eqs. (4.22) and (5.11). Those colored blue have a high
value for Φi and are thus in a solid–like environment. Those colored in red have a low value for
this quantity. The structure surrounding these atoms is thus more liquid–like.

Within the CFM framework, our aim is not to simply calculate the average value of some
symmetry function. Instead we would like to calculate the surface that separates the liquid
phase from the solid phase and to investigate how this surface �uctuates as the simulation
progresses. Figure 5.9 shows that this objective is not unreasonable. The atoms in a single
snapshot of the trajectory are shown colored according to their scaled Φi parameter. The atoms
with a high Φi value that therefore have an environment that resembles that found in the solid
are colored in blue, while those with a low, liquid-like value are colored in red. This �gure
shows clearly that the box can be partitioned into liquid and solid parts and that there is clear,
albeit non–�at, dividing surface between these regions. The following input to PLUMED uses
our implementation of the Willard–Chandler surface to �nd the location of this dividing surface.

UNITS NATURAL 1

FCCUBIC ... 2

LABEL=fcc 3

SPECIES=1-20736 SWITCH={CUBIC D_0=1.2 D_MAX=1.5} 4

ALPHA=27 5

... FCCUBIC 6
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7

smapfcc: MTRANSFORM_MORE DATA=fcc SWITCH={SMAP R_0=0.5 A=8 B=8} 8

center: CENTER_OF_MULTICOLVAR DATA=smapfcc 9

10

MULTICOLVARDENS ... 11

LABEL=dens 12

DATA=smapfcc ORIGIN=center DIR=xyz 13

NBINS=50,80,80 BANDWIDTH=1.0,1.0,1.0 14

STRIDE=1 CLEAR=1 15

... MULTICOLVARDENS 16

17

FIND_CONTOUR GRID=dens CONTOUR=0.5 FILE=mycontour.dat STRIDE=1 18

This input instructs PLUMED to calculate the scaled value of Φi using eq. (4.22) for each of
the atoms in the system. These quantities are then transformed using equation eq. (5.11) and a
spatial average for the resulting quantity is evaluated on a three dimensional grid that covers
the whole simulation cell using equation eq. (5.4). The two-dimensional manifold of points for
which the resulting spatial average of the transformed and scaled Φi values equals 0.5 is then
found using a variant on the marching cubes algorithm. This algorithm searches over all the
grid points at which the spatial average is evaluated. At each grid point the di�erence between
the value of the spatial average at that point and the target value of 0.5 is evaluated. The sign of
this quantity is then compared with the sign of the same quantity evaluated at the adjacent grid
points in the x , y and z directions. If the sign of this quantity on adjacent grid points in any
of these directions do not match, then the manifold separating the solid from the liquid must
pass through the vector connecting these two grid points. We thus �nd points on the manifold
separating the solid from the liquid by searching between pairs of grid points with opposing
signs for φ(x,y, z) − φ0 using Brent’s root–�nding algorithm [118] and splines that interpolate
the value of the spatial average between grid points from the values that are evaluated at the
grid points. The positions of the resulting points are then output to a �le. A surface passing
through the set of points on the manifold that were found when we analyzed the con�guration
shown in �g. 5.9 is shown in �g. 5.10.

It is important to note that in the PLUMED input that we used for this calculation the
CLEAR and STRIDE parameters in the MULTICOLVARDENS action are set equal. Setting these two
parameters to be equal ensures that the grid accumulators are reset after each calculation of
the contour. The contour found thus provides information on the instantaneous location of
the interface between the solid and liquid parts of the cell. If the CLEAR parameter is set larger
than the STRIDE parameter, then an ensemble average for the spatial average of Φi is computed
over a number of trajectory frames. One can then use FIND_CONTOUR to �nd the location of the
dividing surface for this averaged pro�le.

The marching cubes algorithm that was used to �nd points on the manifold separating the
solid from the liquid in the previous section is useful as information on the expected geometry
of the contour is not required by this algorithm. It can thus �nd the manifold separating the
phases regardless of whether the phase has a slab geometry, a spherical geometry or even a
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Figure 5.10 – A snapshot from one of molecular dynamics simulations of a solid–liquid interface
in a Lennard–Jones system with the atoms colored as described in the caption of �g. 5.9. The
Willard–Chandler surface that separates the solid and liquid phases is shown in yellow in this
�gure.

toroidal geometry. Although this �exibility is useful in general, it is often unnecessary and
can in fact make subsequent analysis more complicated. For this reason we provide a second
method for �nding the location of the dividing surface. In this second method we only search
for points on the dividing surface in the direction perpendicular to the interface between the
two phases. Furthermore, in this second method we do not calculate the value of the spatial
average on a grid that encompasses the whole simulation cell. Instead, we only calculate the
value of the spatial average in the parts of the box that we suppose are close to one of the
dividing surfaces. The advantage of changing the manner in which the location of the surface is
found in these two ways is illustrated in �gure �g. 5.11. As this �gure shows this new method
�nds one value for the height, z, of the dividing surface for each pair of x and y values in our
three dimensional grid. We can thus use a contour plot to display z(x,y) and we can interpolate
and integrate this interfacial-height-pro�le function.

The PLUMED input that was used to generate the contour plot in �g. 5.11 is given below:

UNITS NATURAL 1

FCCUBIC ... 2

LABEL=fcc 3

SPECIES=1-20736 SWITCH={CUBIC D_0=1.2 D_MAX=1.5} 4

ALPHA=27 5

... FCCUBIC 6

7

smapfcc: MTRANSFORM_MORE DATA=fcc SWITCH={SMAP R_0=0.5 A=8 B=8} 8

center: CENTER_OF_MULTICOLVAR DATA=smapfcc 9

10
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Figure 5.11 – A contour plot showing the height of the interface between the solid and liquid
phases of Lennard–Jones versus x and y for the snapshot of the trajectory shown in �g. 5.9.

MULTICOLVARDENS ... 11

LABEL=dens 12

DATA=smapfcc ORIGIN=center DIR=xyz 13

NBINS=50,80,80 BANDWIDTH=1.0,1.0,1.0 14

XREDUCED XLOWER=0.0 XUPPER=20.0 15

STRIDE=1 CLEAR=1 16

... MULTICOLVARDENS 17

18

FIND_CONTOUR_SURFACE ... 19

LABEL=contour 20

GRID=dens CONTOUR=0.5 SEARCHDIR=x 21

STRIDE=1 CLEAR=1 22

... FIND_CONTOUR_SURFACE 23

24

DUMPGRID GRID=contour FILE=contour.dat 25

The keyword CONTOUR is the same as for the action FIND_CONTOUR, while the keyword
SEARCHDIR tells PLUMED in which directions to search for the dividing surface. It is worth
noting that the output from the contour surface found by the FIND_CONTOUR_SURFACE action
is stored as a function on a grid within PLUMED. In other words, the object output by this
action has the same type as the object output by MULTICOLVARDENS. Everything we can do
to the output from MULTICOLVARDENS – be that printing it to a �le, interpolating the function,
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integrating it or even �nding contours within it — can thus also be done to the output of
FIND_CONTOUR_SURFACE.

In this work we took the output from FIND_CONTOUR_SURFACE and performed a discrete
Fourier transform of z(x,y) using the FFTW library [119]. To do this within PLUMED the
following lines need to be added to the input above:

FOURIER_TRANSFORM ... 1

LABEL=ft 2

GRID=contour 3

STRIDE=10 CLEAR=25 4

FT_TYPE=norm FOURIER_PARAMETERS=-1,1 5

... FOURIER_TRANSFORM 6

7

DUMPGRID GRID=ft FILE=fourier.dat STRIDE=10 8

The keyword FT_TYPE here tells PLUMED the kind of data that is required in the Fourier
transformed function that is output. The possible values control what operations are performed
after the discrete Fourier transform is computed: ”abs” tells PLUMED that only the complex
moduli of the Fourier coe�cients are required, while ”norm” tells PLUMED that the norm of
the complex modulus is required. The full, complex Fourier coe�cients are only returned from
FFTW to PLUMED when the keyword FT_TYPE is set to “complex” or left out. Furthermore,
when this is done the user must think of these complex numbers on a grid as if they are vectors.

An additional keyword is implemented in the FOURIER_TRANSFORM action to control how
the output should be normalized. The keyword FOURIER_PARAMETERS takes two numerical
values (a,b) that de�ne the normalization and the type of the Fourier transform, forward or
backward, that is to be applied to the data. The role these parameters play in the operation can
be understood by considering the following one-dimensional example, in which an array X of
size N is transformed:

Yk =
1

N (1−a)/2

N−1∑
j=0

X j exp (2πi bjk/N ).

Notice once again that the output from the FOURIER_TRANSFORM command is a function
evaluated at points on a grid and that within PLUMED the output from this action can thus
be treated as such. Further note that in the example above the CLEAR parameter in the line
de�ning the Fourier transform is set much larger than the STRIDE parameter. This command is
thus calculating an ensemble average for the Fourier transform. In other words, the location of
the dividing surface is updated based on the positions of the atoms in each of the trajectory
frames and Fourier transformed. The above command thus calculates the ensemble average of
this Fourier transform over multiple trajectory frames.
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Notes

1. A well–known example is that proposed by Cahn and Hilliard [120].
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6 Solid–liquid properties of binary al-
loys from atomistic simulations
The aim of this chapter is to present and discuss the results obtained from the study of solid–
liquid properties of a binary alloy, speci�cally the silver–copper binary system. The goal of
this work was to establish a work�ow employing well–known atomistic simulation techniques
with a twofold purpose. Firstly, to investigate relevant properties of solid–liquid systems in
equilibrium, and secondly to provide a way to get reliable estimates of those properties which
could be particularly useful in those contexts where modeling of solidi�cation takes place at
time and length scales other than the atomic scale.

The �rst section covers an additional theoretical background: it �rst illustrates how one can
exploit the umbrella sampling technique (section 3.4) to determine the phase diagram of a unary
system. It follows a description of what changes when studying a binary system, and how the
method can be used in conjunction to the CFM (section 4.3.2) to extract interfacial anisotropies
and free energies of such systems. Lastly, it presents a way of extracting the information on
interface dynamics from an over-damped Langevin model of interface �uctuations and how
this model is related to the central result of CFM.

The second section explains how MD and MC techniques have been used to study solid–liquid
interfaces of the silver–copper system, and illustrates the details of the simulations carried
out both to determine the equilibrium thermodynamic properties — whose results are then
presented in the third section (section 6.3) of this chapter — and to study the �uctuation spectra
from which to obtain information on interfacial sti�ness and free energy (section 6.4) and,
subsequently, mobility.

6.1 Theoretical background

6.1.1 The interface pinning method

Studying phase equilibria inevitably requires the information of the free energy as a function
of temperature and, for multi–component systems, composition. As discussed in detail in
the chapter on thermodynamics (section 4.2), this particular information is provided by the
phase diagram, which gives an overview of the thermodynamic equilibrium conditions of a
multi-component system. In other words, determining the bulk thermodynamics of the phases
implies knowing their coexistence temperatures and compositions.
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In particular, if the interest is the study of interface properties, methods such as the capil-
lary �uctuation method (section 4.3.2) require simulations of planar interfaces in equilibrium
conditions for a time long enough to estimate accurate ensemble averages of the interface’s
�uctuation spectrum. The umbrella sampling technique explained previously (section 3.4)
o�ers a possible solution to both the determination of bulk thermodynamics and to stabilize
simulations that are both close and far to coexistence conditions.

The application of umbrella sampling to the speci�c problem of a �at interface separating two
coexisting phases is known as interface pinning (IP). Pedersen et al. [121] devised a procedure
to estimate free energy di�erences between two phases by determining the external force to
apply to the system in order to keep the interface in place. This external force is linked to a
harmonic bias potential built upon some order parameter apt to distinguish clearly the two
phases. If the system is brought in out–of–equilibrium conditions, the bias will prevent any
interface’s displacement due to, say, the solid phase growing at the expense of the liquid one,
and remaps the original problem into a (quasi) equilibrium scenario.

For example, one may choose an order parameter that allows a clear-cut distinction between
solid and liquid, and de�ne consistently the fraction of solid phase f in the system. In the
presence of the external potential, the total Gibbs free energy of the system will be

G(f )/N = µs f + (1 − f )µl +
κ

2 (f − f0)2 + Sγsl/N , (6.1)

where µs and µl are the chemical potentials of the solid and the liquid phase, and γsl is the
interfacial free energy. N and S are the number of atoms and the interface area, respectively.

Pedersen showed [122] how one can determine the thermodynamic drive to solidi�cation (or
melting) — that is, the di�erence (µs − µl ) — by simply running di�erent simulations at di�erent
temperatures equilibrated at zero pressure along the direction perpendicular to the interface.
At equilibrium, the following relation always holds for a biased system

∆µ = −κ〈f − f0〉. (6.2)

Moreover, one could employ the IP method to sample the full phase diagram of a one–component
system: given that the coexistence points are those for which, at �xed pressure and temperature,
∆µ(p,T ) = 0, the only information needed are the derivative of the chemical potential with
respect to pressure and temperature, that is(

∂∆µ

∂p

)
T
= ∆Vm(

∂∆µ

∂T

)
p
= −∆Sm,

where ∆Sm and ∆Vm are the di�erences in molar entropy and volume, respectively. Since ∆µ is
obtained through eq. (6.2), the molar entropy di�erence is simply (∆Um +p∆Vm −∆µ)/T , where
∆Um is the molar internal energy.

It has been shown [123] that since the bias of eq. (6.1) only acts on the average value of
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the collective variable chosen to represent the bulk phases, it only a�ects the k = 0 mode of
interface �uctuations, and the IP method could also be used to stabilize planar interfaces in
weakly out–of–equilibrium conditions from which, employing the already described CFM, one
could extract the temperature dependence of the interfacial free energy.

The discussion this far has assumed that the solid and liquid phases in coexistence had a
single component. Most materials of technological signi�cance include multiple atomic or
molecular components, and the chemical potential of the di�erent phases varies depending on
the composition.

Let us consider the case of a binary mixture of two constituents A and B. While many
simulations of multi-component systems have been performed at constant chemical potential,
here we focus on simulations performed at �xed total composition, say x = xA, since they can
be run without knowing the equilibrium composition of the solid and liquid phase beforehand.
They can also be implemented very easily by combining molecular dynamics with a Monte
Carlo algorithm in which the position of two atoms of di�erent species is exchanged, and the
move is accepted or rejected based on a Metropolis criterion.

The constant total composition constraint a�ects the free-energetic description of the model,
resulting in a trivial, yet somewhat cumbersome, extension to the textbook treatment of the
coexistence region between the solid and the liquid phases of a binary alloy. Assuming one
knows the dependence on the composition of the chemical potentials of the solid and the liquid
phase, µs (xs ) and µl (xl ), the Gibbs free energy function to minimize is

G(xs , xl , f ) = f µs (xs ) + (1 − f )µl (xl ) +
κ

2 (f − f0)2,

subject to the composition constraint given by the well-known “lever rule” (section 4.2.3)

x − f xs − (1 − f )xl = 0.

Here xs and xl are the compositions of the solid and the liquid phase, respectively.
The derivation involves solving the constraint for xs or, equivalently, xl . The requirement

that the composition of the system is at equilibrium, that is

∂G(xs (xl , f ), xl , f )
∂xl

= 0,

implies that ∂µs (xs )/∂xs = ∂µl (xl )/∂xl , and can be used together with the implicit function
theorem to determine ∂xl/∂ f and ∂2xl/∂ f 2, subject to this requirement. After some algebra,
one �nds that (

∂G

∂ f

)
p,T ,x

= (f − f0)κ − (µl (xl ) − µs (xs )) + (xl − xs )µ ′s (xs ), (6.3)

and (
∂2G

∂ f 2

)
p,T ,x

= κ +
(xs − xl )3µ ′′l (xl )µ ′′s (xs )

(xs − x)µ ′′s (xs ) + (x − xl )µ ′′l (xl )
, (6.4)
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where xs and xl depend implicitly on f .
One can then see that if f = f0, eq. (6.3) corresponds to the common tangent construction,

and the compositions of the solid and the liquid phase make it possible to determine the liquidus
and the solidus at the simulation temperature. By varying f0 one can also probe the derivatives
of the chemical potentials of the two phases away from the equilibrium composition.

If the composition of the liquid and the solid phase di�er, then eq. (6.4) predicts that the
curvature of the free energy is not solely given by the force constant associated to the umbrella
potential, but contains a correction that depends on the compositions of the two coexisting
phases and on the curvature of µs and µl . In practice, one can just run a pinned-interface
calculation and estimate the e�ective umbrella potential from the distribution of interface
positions.

6.1.2 Capillary �uctuations of a Gibbs dividing surface

The key ingredient needed by the CFM (section 4.3.2) to extract interface energies and their
anisotropy is in essence the information of the interface position as a function of time, h(x,y, t).
As we have seen, de�ning the position of the interface is a problem that does not have a single
solution. The approach in terms of excess quantities, albeit elegantly providing a simple physical
interpretation, will result in as many h(x,y, t) functions as the number of possibile extensive
variables taken as reference. In other words, there is no right choice for the extensive variable,
although some will be more suitable than others depending on the problem. However, it should
be kept in mind that the �nal results for γsl will only be consistent if the same reference quantity
has been used throughout.

A method to determine directly 〈|A(k)|2〉 which is fully consistent with a Gibbs dividing
surface framework has been proposed by Cheng and Ceriotti [123]. It begins with de�ning a con-
tinuous �eld based on the order parameter as a density estimation with a suitable (normalized)
kernel K , e.g. a three-dimensional Gaussian. The density �eld has the form

φ(x,y, z) =
N∑
i

ϕiK(x − xi ,y − yi , z − zi ),

where (xi ,yi , zi ) and ϕi indicate the position and the local order parameter for atom i . Imposing
the zero–excess condition for Φ =

∑
i ϕi that de�nes the Gibbs dividing surface means writing

Φ as

Φ =

∫ Lx

0
dx

∫ Ly

0
dy

∫ Lz

0
φ(x,y, z)dz =

∫ h(x ,y)

0
φs (x,y, z)dz +

∫ Lz

h(x ,y)
φl (x,y, z)dz.

Here Lz is the extent of the simulation cell in the z–direction and h(x,y) is the position of the
dividing surface. φs and φl are the density �elds of reference calculations that only contain the
solid and liquid phase, respectively.

It is then possible to write a simple expression for the average �uctuation amplitude that
does not require an explicit determination of the position of the dividing surface between the
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solid and liquid phase1

(φ̄s − φ̄l )2
〈|A(k)|2〉 +

+
〈��Φs(h̄;k)

��2〉 + 〈��Φl(Lz − h̄;k)
��2〉 =〈[

1
S

N∑
i

ϕi exp [−i(kxxi + kyyi )]
]2〉
,

(6.5)

where 〈·〉 denotes the usual ensemble average. It is important to stress here that the validity
eq. (6.5) is assured only if one can assume that:

1. bulk �uctuations are independent from each other;

2. bulk �uctuations correlate only on a length scale λ much smaller than the cell’s extent in
the z-direction;

3. one takes the δ–distribution limit of the kernel function on the atoms.

The factors φ̄s = ϕ̄s/vs and φ̄l = ϕ̄l/vl stand for the average value of the bulk �elds (vs and vl
are the molar volumes of the solid and the liquid), and h̄ indicates the average thickness of the
solid slab, that can be obtained in a consistent way from the Gibbs estimate of the solid fraction.
The thickness of the solid slab can be obtained consistently within the Gibbs dividing surface
framework as follows: from eq. (5.1) one de�nes the fraction of solid as

f =
Φ/N − ϕs
ϕs − ϕl

. (6.6)

By the same argument, one may de�ne

Φ =
S

vs
hϕs +

S

vl
(Lz − h)ϕl , (6.7)

where S is the interface area and vs (vl ) is the molar volume of the solid (liquid). From such
relation one can easily determine the thickness of the solid slab, h. Provided that Φ has been
rescaled and normalized such that ϕs = 1 and ϕl = 0, then by comparing eqs. (6.6) and (6.7) one
obtains

h =
Nvs
S

[
f

(
ϕs − ϕl

)
+ ϕl

]
=

Nvs
S

f . (6.8)

The terms Φs(h;k) and Φl(h;k) that appear in eq. (6.5) indicate the Fourier coe�cients of
a bulk section of thickness h, and can be obtained — under the assumption made above of
short-ranged correlations along z — from a separate simulation box of thickness λ, using the
scaling relations

Φ?(x ;k) =
√

x

λ
Φ?(λ;k),

where term Φ?(λ;k) is evaluated identically to that on the right-hand side of eq. (6.5), with the
correct normalization factors already taken into account.
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Chapter 6. Solid–liquid properties of binary alloys from atomistic simulations

Given a coexistence simulation with su�ciently large Lz in which the solid fraction does not
vary much, it is always possible to de�ne clear–cut solid and liquid regions, from which all of
the bulk quantities can be estimated.

Note that eq. (6.5) refers to a single dividing surface: in an MD simulation where the cell
has periodic boundary conditions, the system always contains two interface boundaries, and
accounting for this is as simple as multiplying by two the �rst term of eq. (6.5).

The left–hand side of eq. (6.5) clearly expresses a quantity evaluated for a coexistence
simulation as a sum of bulk terms and an interface excess, that describes the behavior of the
interface in a way that is conceptually and operationally consistent with a Gibbs dividing
surface construction.

6.1.3 A Langevin model for interface kinetic coe�cient

Instead of monitoring the position of a �uctuating interface, one may exploit the central
result of CFM (section 4.3.2) and extract the interface kinetic coe�cient by analyzing the full
�uctuation spectrum [99, 124]. This approach relies on �uctuation–dissipation relations and can
be understood as resulting from the assumption that a degree of freedom x(t) of the interface
obeys an over–damped Langevin equation of the kind

Ûx = − Dx

2kBT
∂G

∂x
+

√
Dxξ (6.9)

where ξ is the derivative of a Wiener process and Dx is the di�usion coe�cient. When the
system reaches a stationary state, the probability of observing a given value of x is proportional
to exp [−G(x)/kBT ]. A few additional results for Brownian motion are useful in this context:

1. if Fx = − ∂G
∂x = 0, then x performs a random walk with ∂〈x2〉/∂t = Dx ;

2. if Fx = − ∂G
∂x is constant, then ∂ 〈x(t)〉 /∂t = DxFx/2kBT ;

3. if Fx = −κxx , an harmonic restraint, the auto-correlation function of x has an exponential
decay 〈x(t)x(0)〉 = e−t/τx with the auto-correlation time τx = 2kBT /κxDx .

If x represents the interface position, in the absence of a pinning potential and in out–of–
equilibrium conditions,

∂G

∂x
= −Fx =

S∆µ

vs
.

Hence, the steady-state interface velocity is given by

〈v〉 = −SDh∆µ

2kBTvs
,

and the kinetic coe�cient is
M =

DhS

2kBTvs
. (6.10)

This relation re�ects the link between the interface velocity in the presence of a thermodynamic
drive and the di�usion coe�cient of the interface at coexistence conditions [125].
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6.1. Theoretical background

In the presence of a pinning potential, the interface �uctuates around the equilibrium position,
and the dynamics is that of an over–damped harmonic oscillator, whose force constant is
determined by eq. (6.1). The auto-correlation function of h is then described by a damped
exponential with time constant

τh =
2kBT
Dhκh

,

leading to
M =

S

τhκhvs
. (6.11)

Fitting of the exponential decay of the correlation function (or, equivalently, �tting its Fourier
transform to a Lorentzian) has been proposed as another way of estimating the interface
mobility [126].

This approach based on the description of interface �uctuations as a Langevin dynamics
applies as well within the Gibbs dividing surface framework described previously (section 4.3.1).
It su�ces considering the link between the solid fraction as de�ned in eq. (6.6) and the thickness
of the solid slab, h, which is given by

h =
Nvs
S

f ,

where vs is the usual molar volume of the solid, N the total number of atoms and S the area of
the interface. One may then apply eq. (6.11) which leads to the estimate of M in terms of the
�uctuations of the solid fraction2

M =
N 2vs

2Sτf κf
=

vs
2SkBTτf

N 2〈(f − f̄ )2〉.
(6.12)

From eqs. (4.29) and (4.31) it is easy to see that the k = 0 mode represents the average position
of the dividing surface and provides the most direct route to access the interface mobility.
However, it is also known [13, 124] that all the other capillary modes carry the footprint of
interface dynamics. Capillary �uctuations are constrained by the energy cost associated to
any deformation of the interface, that is, its sti�ness. Therefore, the relaxation time of a mode
with wave-vector k , 0 is related to the amplitude of the �uctuation by a quantity that is
proportional to the mobility according to

M =
S 〈A(k)2〉
vskBTτ (k) =

1
vsτ (k)kTσk

, (6.13)

where τ (k) is the time constant of the auto-correlation function of this particular mode. The
second equality exploits the main result of CFM that links the average Fourier amplitude of a
mode with the interface’s sti�ness, and it correctly takes into account the possibility that some
interfaces have an anisotropic sti�ness tensor.

Given that �uctuations of the order parameter in the bulk phases also contribute to the
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Chapter 6. Solid–liquid properties of binary alloys from atomistic simulations

auto-correlation functions of the interface �uctuations, one should use an expression analogous
to eq. (6.5) to obtain the correlation function of the interface without the terms representing
the bulk phases, that is

(φ̄s − φ̄l )2 〈A(t,k)A(0,k)?〉+
+ 〈Φs(h̄; t,k)Φs(h̄; 0,k)〉 + 〈Φl(Lz − h̄; t,k)Φl(Lz − h̄; 0,k)〉 =

〈 1
S2

[
N∑
i

ϕi (t) exp [−i(kxxi (t) + kyyi (t))]
] [

N∑
i

ϕi (0) exp [−i(kxxi (0) + kyyi (0))]
]
〉.

(6.14)

The use of a Gibbs construction to eliminate the spurious contributions from the bulk makes it
possible to use a simpler model to determine the interface di�usivity, compared to those used
in recent works [121, 123] that used a model with two coupled Langevin equations to describe
explicitly the �uctuations of the bulk.

6.2 Systems and computational details

In order to study both static and dynamical properties of solid-liquid interfaces, we chose two
systems: the silver-coppery binary alloy and the same Lennard-Jones model employed in the
previous chapter. We can give three reasons to justify the choice of the AgCu system. Firstly,
the experimental phase diagram shows a signi�cant di�erence in the compositions of the liquid
and the solid phase at every temperature above the eutectic point. As explained in the previous
section (see eq. (6.4)), a large di�erence between the compositions of the two phases gives rise to
an appreciable contribution to the Gibbs free energy curvature due to the constant composition
constraint. Secondly, from a computational point of view, the available interatomic potential
developed by Williams, Mishin, and Hamilton [127] within the EAM framework showed a
satisfactory agreement with experimental data. This agreement suggests reliability of the results
on properties such as the interface free energy since the interatomic potential proved to be able
to reproduce quite accurately some thermodynamic properties, although the latter are known
to depend strongly on the kind of the interatomic potential employed. Finally, in a recent work
Frolov and Mishin [128] studied the properties of the (110) solid–liquid interface of this binary
system employing the same EAM potential, and that provided us a direct way to compare their
results with ours.

The choice of Lennard-Jones potential as the second system was guided by the need to
test both the CFM within the Gibbs dividing surface framework — in which, compared to
the original implementation [123], we introduced the idea that the contributions of the bulk
phases to the �uctuation spectrum can be obtained directly from a solid-liquid simulation —
and the overdamped Langevin model we proposed that explains the interface dynamics, from
which one can extract the kinetic coe�cient of the interface. Lastly, in addition to the lower
computational cost of a Lennard-Jones potential when compared to EAM, this system has been
already extensively studied, and thus our results could be more easily compared with those
found in scienti�c literature.

The simulation protocol to generate the solid-liquid supercells for both the Lennard-Jones and
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silver-copper simulations is much alike the one described in a section of the previous chapter.
Here we thus only highlight those additional steps required to prepare the simulations for the
binary system.

We performed all MD and MC simulations with the LAMMPS software together with the
PLUMED package. Plumed served both to apply the harmonic restraint to the coexistence
simulations and to calculate the FCCUBIC order parameter, which is particularly suited for a
crystalline solid with FCC symmetry.

The protocol to prepare the initial con�guration of the supercells for the AgCu system
was the following: the lattice parameter’s dependence on the composition follows, with good
approximation, Vegard’s law, therefore we interpolated experimental data available [129] to
de�ne the lattice constant of a perfect FCC unit cell. The unit cell was then replicated along the
x , y and z directions, paying attention to have enough number of replicas along z to avoid a solid
slab to be sensitive to statistical �uctuations that, during an unbiased simulation, could melt or
solidify the system completely. An initial, equilibration run in the NPT ensemble of about 10
thousand steps was performed at the desired temperature, using a Nosé–Hoover thermostat
and barostat. Throughout the simulations, the timestep was set to 0.002 ps.

To generate a solid-liquid interface we proceeded as follows: all the atoms within the central
third of the supercell were held �xed, while the remaining part of the cell was heated way above
the melting temperature of both silver and copper. This part of the simulation run for about 50
thousand MD steps.

After the two outermost sections of the supercell melted completely, the constraint on the
atoms in the solid phase was released, and two independent NVT runs of about 2 thousand steps
equilibrated the solid and the liquid portions of the supercell. We then equilibrated the whole
system at the target temperature using a stochastic thermostat instead of Nose–Hoover’s, while
a fully anisotropic barostat kept the pressure close to zero. During these setup and equilibration
runs, a Monte Carlo algorithm was attempting ten chemical species exchanges every MD step.
As explained in the following sections, the bulk properties of both the solid and liquid phase
were calculated from these equilibration runs.

A similar protocol has also been used to prepare and run all the simulations needed for the
capillary �uctuations analysis. The main di�erences were the number of unit cells along the x
or y — and consequently the total number of atoms — and that the ensemble of the production
runs was NPzT instead of a fully anisotropic NPT. The simulation box’s dimensions along x

and y have been �xed to their average values calculated from a previous equilibration run of
about 10 thousand MD steps in which the ensemble was still NPT where all the sides of the
simulation cell were allowed to �uctuate with no constraints. As for the simulations to sample
the phase diagram, the production runs employed a stochastic velocity rescaling thermostat.

6.3 Equilibrium thermodynamic properties

To illustrate how we calculated the equilibrium properties of the binary system, �g. 6.1 shows a
snapshot during the production run of one of the AgCu simulations. In this particular simulation,
the total fraction of silver was x = 0.86 and the temperature was 1150 K.
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Chapter 6. Solid–liquid properties of binary alloys from atomistic simulations

Figure 6.1 – The upper part of panel (a) shows a plot of the average order parameter as a function
of the coordinate along z perpendicular to the interface. The average has been calculated with
a Gaussian kernel density estimation. The colored areas show the bulk regions: solid (blue) and
liquid (red). The dividing surfaces’ locations, which are found to be around −40 Å and 40 Å,
are determined according to the Gibbs construction (see eq. (6.8)). The lower part of panel (a)
shows a snapshot of the solid-liquid simulation from which the upper plot has been calculated.
Panel (b) shows a histogram of the distribution of the order parameters colored according to
the degree of crystallinity.

From a coexistence simulation such as that of �g. 6.1, we obtained an estimate of bulk
properties (molar volumes, averaged order parameter, ϕ̄s ,l , concentration of the two species in
each phase) as follows: for each frame of an equilibrated simulation in the NPT ensemble, we
had to de�ne the solid and the two liquid slabs. To this end, the very �rst step of the analysis
has been calculating the coordinates of a center of mass based on the order parameter and
re-centering the whole simulation box. Estimating the averages ϕ̄l and ϕ̄l has been done by
counting the number of atoms within a thin slab of width dz lying in the solid and liquid regions
and computing the average order parameters in these regions. The composition of the solid
(liquid) phase can be estimated as the number density of atoms of a given species, computed in
the same region of ϕ̄s (ϕ̄l ), divided by the density of the solid (liquid).

We then obtained an average of the order parameter which depended only on z by performing
a Gaussian kernel density estimation along this direction. The result is the continuous pro�le
shown in panel (a) of �g. 6.1. With the same procedure but considering only atoms of a given
species, it is possible to estimate the concentration pro�le of that species across the interface.
Figure 6.2 show the concentrations pro�les averaged over the production simulations for both
copper and silver at di�erent temperatures. The origin of the z axis corresponds to the location
of the dividing surface. Although periodic boundary conditions imply the presence of two
interfaces, the pro�les shown here refer to a single interface for clarity. The region of negative
z corresponds to the solid phase, while the liquid phase is located in the region of positive z.
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6.3. Equilibrium thermodynamic properties

The di�use nature of the dividing surface is clearly evident from these plots, and away from the
interface, the plateaus of the concentrations pro�le indicate the bulk values of the compositions
of the corresponding phases.
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Figure 6.2 – Concentration pro�les across the interface obtained as described in the text for (a)
silver and (b) copper at three di�erent temperatures. The zero of the z coordinate coincides
with the location of the Gibbs dividing surface. In both �gures, the solid phase lies in the
z < 0 region, while the liquid phase lies in the z > 0 portion of the plot. The values of the
concentrations where the pro�les plateau o� correspond to the equilibrium compositions of
the bulk phases. From these pro�les, it is evident that the solid solubility limits are both very
similar at all temperatures and close to 0.1 and 0.9, suggesting that the corresponding solid
solutions are primarily composed by copper and silver, respectively.

A quantity that can be estimated with numerical integration from concentration pro�les
such as those of �g. 6.2 is the surface excess — also known as adsorption coe�cient — which
expresses the absolute depletion or enrichment of one species at the interface. In particular, the
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surface excess of silver can be de�ned as

2S ΓAg = NAg − N l
Ag − N s

Ag, (6.15)

where S is the dividing surface area; an equivalent expression can be written for the absolute
surface excess of copper. In our framework based on a Gibbs dividing surface construction, an
estimate of the surface excess can be obtained from the constraint of constant total composition,
that is

2S ΓAg/N = x − f xs + (1 − f )xl . (6.16)

The above de�nition of surface excess depends on the location of the dividing surface since
moving the dividing surface would change the compositions of the two phases. However, it is
possible to de�ne a surface excess of the solute relative to the solvent according to [115, 130]

Γ(2)1 = Γ1 − Γ2
ρl1 − ρs1
ρl2 − ρs2

, (6.17)

where ραi stands for the atom density of the species i in the phase α . Relative adsorption
coe�cients are key quantities in Gibbs’ thermodynamic description of planar interfaces, for
they account for variations of γsl due to changes in chemical potential according to Gibbs’
adsorption equation3

dγ = −S (2)ex dT − Γ(2)1 dµ1, (6.18)

where the labels 1 and 2 refer to the solute and the solvent4, respectively. S (2)ex is the relative
excess entropy which, at least for metals, is responsible of the largest contribution to changes
in γ due to temperature [131, 132]. It is important to remind that, in a binary system at constant
pressure, there is only one independent intensive variable in accordance to Gibbs’ phase rule,
and thus the two contributions of eq. (6.18) are mutually dependent. In order to apply eq. (6.18),
the knowledge of the temperature dependence of Γ is a necessary ingredient, and it has been
already investigated through Monte Carlo simulations for several model systems [106, 130, 133].

Once the average bulk properties were known, we ran production simulations for a total
length of about 2 ns. During these simulations, a harmonic bias was applied to maintain the
fraction of solid particles around its average value obtained from the unbiased simulations at
the previous stage. As explained, these simulations were needed to compute the correct values
of ϕ̄s and ϕ̄l which in turn yielded a consistent value of the solid fraction.

Determining the phase diagram of the system is only a matter of running multiple simulations
within a given range of total compositions and at di�erent temperatures. Since the silver-copper
alloy is a simple eutectic system and the miscibility gap extends across almost the whole
range of compositions, we used our simulation framework to reproduce the phase diagram
above the eutectic temperature. Figure 6.4 reports a comparison between our simulations, the
Grand–Canonical Monte Carlo simulations of Williams, Mishin, and Hamilton [127], and the
experimental phase diagram [134, 135]. Since this binary system could be modeled with a regular
solution model (section 4.2.4), a possible explanation of the deviation of the calculated phase
diagram from the experimental one is suggested by Williams and coworkers: they reported
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Figure 6.3 – Relative surface excesses a function of temperature. The blue curve shows the
adsorption coe�cient of copper relative to silver, thus it has been computed for total concentra-
tions of silver xAg > 0.5 where it is reasonable to assume that copper is the solute. The orange
curve instead shows the adsorption coe�cient of silver relative to copper when xAg < 0.5.

a large discrepancy between the predicted and experimental enthalpies of mixing of liquid
solutions at 1423 K. The largest value of this discrepancy was about 0.02 eV/atom, whose order
of magnitude is comparable to that of the error between energies predicted with EAM and ab
initio methods, suggesting that it could be due to an intrinsic limitation of the EAM framework.
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Figure 6.4 – Phase diagram of the silver-copper binary alloy above the eutectic. The red circles
are the equilibrium compositions of the solid and liquid phase as obtained using the simulation
framework described in the text. The blue, dashed lines are the results obtained by Williams,
Mishin, and Hamilton [127] with Gran–Canonical Monte Carlo (GC–MC) simulations. The
black, dotted lines are the experimental phase diagram [134, 135]. The comparison shows that
the EAM potential predicts satisfactorily the melting temperatures of the pure elements within
about 30 K of the experimental values, while the estimated eutectic composition (0.458) and
temperature (935 K) deviate more from the experimentally measured values of 0.601 and 1053 K.
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6.4 Interface properties

In this section, we are going to discuss the results related to interface properties — that is,
interface sti�ness, free energy, and kinetic coe�cient — of the binary system. To determine
sti�ness for the (100) and (110) interfaces we employed the CFM based on the Gibbs dividing
surface construction described in the �rst section of this chapter, which avoids the need to
determine explicitly the location of the dividing surface.

6.4.1 Sti�ness and free energy

Figure 6.5 shows the plots of kBT /S/〈|A(kx ,ky )|2〉 versusk along both ky and ky for pure copper
and silver. The simulations were run at the corresponding melting temperatures predicted by
the EAM potential. A �t of these plots with the model σ (k2

x + k
2
y ) = σk2 provides the value of

the interface sti�ness. As it is evident from the plots, the (100) is an isotropic interface, and
thus the sti�ness is a scalar. An alternative way of estimating σ is to compute the average of

kBT /S
〈|A(kx ,ky )|〉k2 , (6.19)

which corresponds again to the sti�ness. If statistical errors on |A(kx ,ky )|2 have been estimated,
a weighted average will correctly account for more signi�cant errors in the Fourier amplitudes
of k points close to zero. The error bars in the plots of �g. 6.5 have been computed from the cor-
responding simulation using the block averaging procedure explained previously (section 2.7.1).
Since auto-correlation times of those k points closer to zero are larger than those of k points
further away, the error bars associated with their Fourier amplitudes |A(kx ,ky )|2 are larger, as
it is expected and has been discussed for similar results in the previous chapter (section 5.3).

Although it is known that di�erent interatomic potentials can signi�cantly in�uence sti�ness
values, we can compare our results with those of some previous works. According to the work
by Hoyt and Asta [83], where the authors employed the potential developed by Voter and
Chen [136], the sti�ness of silver is about (112 ± 5)mJ/m2, while the result we obtained is
(88.4 ± 0.4)mJ/m2. For copper, we obtained the results of (110.7 ± 0.5)mJ/m2, which we may
compare with (105 ± 14)mJ/m2 [137] and 203.5 mJ/m2 [138]. In the latter case, the authors
utilized an empirical potential developed within the MEAM [26] framework and for which
they modi�ed the existing parameters for elemental copper. Even though they report a melting
temperature of 1320 K, which is very close to that predicted by the EAM potential we adopted,
our result is almost a factor two smaller than theirs, and a reason to explain such a discrepancy
could be the comparison between two very di�erent descriptions of the atomic interactions.

The same analysis has been applied to simulations at di�erent temperatures and with a total
fraction of silver between 0 and 1, in particular for values of xAg (T ) equal to 0.165 (1100 K),
0.805 (1100 K), and 0.458 (935 K). These temperature–composition points have been chosen by
looking at the phase diagram of �g. 6.4 in such a way to have roughly the same amount of
liquid an solid phase.

The procedure to analyze the simulations of the (110) interface di�ered from that for the

108



6.4. Interface properties

0.05 0.10 0.20

0.1

0.5

1

5

10

(a)

0.05 0.10 0.20

0.1

0.5

1

5

10

(b)

Figure 6.5 – Plot of the quantity kBT /S/〈|A(kx ,ky )|2〉 versus k for the (100) interface of (a) pure
silver and (b) pure copper. The simulations were run at the melting temperatures predicted by
the EAM potential employed. The blue curve is along kx (ky = 0), while the orange curve is
along ky (kx = 0). The isotropy of the (100) interface can be seen from the two lines of each
plot having roughly the same intercept with the y axes.

simulations of the (100) only by the �tting model employed. As explained previously (sec-
tion 4.3.2), to capture the anisotropy of the sti�ness tensor of interfaces such as the (110), there
are two possible choices: the �rst is to run two independent one-dimensional simulations in
which the longest direction in the interface plane is, in each simulation, parallel to one of two
orthogonal directions to the [110]. To make a clarifying example, one would have to run the
two independent simulations with the x , y, and z axes oriented along the [11̄0], [001], and [110],
with Lx � Ly in one simulation and Ly � Lx in the other one. Two �tting models similar to
eq. (4.28) are thus employed, each of which will provide the value of the sti�ness tensor of the
(110) along the longest direction parallel to the interface — that is, either the [11̄0] or the [001].
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Table 6.1 – Composition (and temperature) dependence of γsl (mJ/m2)
of the (100), (110), and (111) interfaces as as function of the total
fractional amount of silver, xAg. The results obtained for pure silver
and pure copper are also shown. The reported errors have been
estimated from the standard errors in the �tting parameters of the
models σ (k2

x + k
2
y ), used for the (100), and σ11k

2
x + σ22k

2
y , used for the

(110).

xAg T (K) γ(100) γ(110) γ(111)

0.0 1327 K 129.4 ± 0.7 127.0 ± 0.6 126.5 ± 0.6
0.165 1100 K 147.1 ± 3.3 146.5 ± 3.2 145.5 ± 3.2
0.458a 935 K 88.6 ± 1.2 89.8 ± 1.2 89.3 ± 1.2
0.805 1100 K 99.5 ± 1.5 98.1 ± 1.5 97.8 ± 1.5
1.0 1267 K 104.5 ± 0.6 102.5 ± 0.6 101.9 ± 0.6

a Simulation at the eutectic with a silver-rich solid phase (xs = 0.933).

The second choice is a two-dimensional simulation, where both the axes lying in the interface
plane are about the same length. In such con�guration, we are able to extract the information
on the interface �uctuation spectrum along both directions simultaneously and, provided
that the directions parallel to the interface are orthogonal to each other, obtain both the non-
zero components of the sti�ness tensor by employing a �tting model similar to eq. (4.30). A
manifest drawback of this choice is the larger number of particles the system will contain.
Since evaluating the ensemble average 〈|A(kx ,ky )|2〉 requires collecting a considerable number
of “snapshots” of the �uctuation spectrum during the simulation, one has to consider the
computational cost of a two-dimensional simulation and compare it to that of two smaller,
one-dimensional simulations5.

Once the sti�ness tensor for the (110) interface is known, solving the system of three equations
given by eqs. (5.9) and (5.10) yields the set of anisotropy parameters, (γ0, ϵ1, ϵ2). The value of
γsl for a given crystallographic orientation are then obtained by employing an expansion such
as eq. (4.26). The above procedure is applied to the same temperature–composition points for
which we already computed the sti�ness of the (100); in this way it is possible to obtain an
estimate of the dependence of free energy on the total fraction of silver and, therefore, on the
temperature. The results for three of the most common interfaces when studying solids with
an FCC symmetry are reported in table 6.1.

When studying solidi�cation in alloys, and in particular dendritic solidi�cation which is
essentially driven by the anisotropy of γsl, an important parameter to consider is

γ(100) − γ(110)
2γ0

, (6.20)

which provides a quantitative estimate of the magnitude of the anisotropy. For simple metals
such as Cu, Ni [81], Ag [83], and Au [83], it is known that anisotropy is positive and approxi-
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Figure 6.6 – Plot of the results of γsl (mJ/m2) of the silver-copper alloy as a function of the total
fraction of silver, xAg. Both the values calculated for pure copper and pure silver are comparable
with results found in the literature [83, 138]. The two sets of results at the eutectic composition
refer to independent simulations in which the concentrations of the solid phases were set to
the solubility limits at the eutectic; in particular, in the lower set of points xs was equal to 0.933
(silver-rich solid-solution), whereas in the upper set xs = 0.03 (copper-rich solid-solution). As
discussed in the text, Gibbs adsorption coe�cients provide us with only one of the ingredients
required to justify the observed dependence of γsl on composition, yet the two sets of results at
the eutectic composition suggest that this dependence is not an artifact of our simulations.

mately in the same range — between 1% and 2% — meaning that γ(100) > γ(110) > γ(111), which
is also consistent with experimental evidences of the preferred growth directions in dendritic
patterns during solidi�cation. Figure 6.7 shows the estimated anisotropy as a function of com-
position. The values of pure copper (0.9 ± 0.4 %) and pure silver (1.0 ± 0.4 %) are also shown,
with the latter being in excellent agreement with a previous work by Hoyt and Asta [83], where
they reported a value of anisotropy magnitude of silver of 1.0 ± 0.3 %.

The statistical accuracy of our results presented in �g. 6.6 deserves a comment that relates to
both the size of our simulations and the CFM consistent with Gibbs dividing surface construction.
Equation (6.5), which states that one could determine the �uctuation spectrum of the interface
〈|A(kx ,ky )|2〉 by �rst subtracting the contributions of the bulk phases, only holds if there are
no correlations between the �uctuations in the bulk phases, and that the correlations in each
bulk phase have a characteristic length scale that is much smaller than the simulation cell’s
size in the dimension perpendicular to the interface. Since our starting simulations were of
one-dimensional cells, another assumption that we had to verify was the absence of �nite-
size e�ects that in�uenced the bulk contributions. While, according to capillary wave theory,
〈|A(kx ,ky )|2〉 of the interface follows a 1/k2 trend at least for small wavevectors, it can be
assumed that the Fourier spectra of the bulk phases should not show a substantial dependence
on k , precisely because they do not represent the �uctuations of any interface. This hypothesis
had already been veri�ed in the work of Cheng and Ceriotti [123], whose results showed that
the bulk contributions were almost constant over the whole range of k-points used for the
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Figure 6.7 – Anisotropy magnitude as de�ned by eq. (6.20) as a function of the total fractional
amount of silver, xAg. The results for pure copper and pure silver are also shown. The latter
value is in good agreement with that predicted by Hoyt and Asta [83], in which they employed
a di�erent interatomic potential. Within their statistical uncertainty, these results suggest that
for alloyed compositions γsl is almost isotropic with an anisotropy magnitude very close to zero.
Analogously to �g. 6.6, the two points at the eutectic composition refer to two independent
simulations where the solid phase was either a copper-rich or silver-rich solid-solution.

�tting of 〈|A(kx ,ky )|2〉 from which the sti�ness was extracted. However, our results suggested
not only that there were apparent �nite-size e�ects in the bulk phase contributions estimated
from one-dimensional simulations, but also that their dependence on k could not be ignored
entirely. When adding these two e�ects together, the estimate of sti�ness we obtained did
not agree with the results of other previous works. This led us to conclude that, in order to
use this method that undoubtedly elegantly combines the Gibbs construction with the CFM,
it is not possible to obtain reliable results by determining the contributions to the �uctuation
spectrum of the bulk phases from a single simulation, and that it is thus necessary to perform
independent simulations of su�cient size that do not exhibit any �nite-size e�ect. A property
like the interface sti�ness should not in any way depend on the size of a system that should be
macroscopic — that is, precisely, where all the spatial dimensions are periodic.

A last comment has to be made regarding the comparison of our results with those obtained
by Frolov and Mishin [128]. Since the interatomic potential employed is identical, it is not
surprising that we are able to predict the phase diagram and the concentration pro�les in
both the solid and the liquid with an almost perfect agreement. However, if we compare our
results on γsl for the three interfaces considered (�g. 6.6), the di�erence is more striking and
not so straightforward to explain. In particular, Frolov and Mishin found that γsl increases
with decreasing temperature, while the opposite trend that our results show has recently been
found only for the CuZr binary alloy [139] and it is considered an unusual behavior for this
property. Even though Frolov and Mishin aimed at determining interface and related excess
properties (e.g., adsorption coe�cients) within Gibbs dividing surface framework and they
try to devise a computational method that tries to solve the di�culties of Gibbs’ approach to
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multi-component alloys6, they adopted a thermodynamic integration scheme to determine γsl
along a solid-liquid coexistence path. Besides the inherent issues of de�ning a Gibbs dividing
surface when studying binary alloys, we calculated the temperature dependence of γsl with the
CFM, therefore, without further investigations, we can only attribute to the di�erence in the
computational methods used to determine γsl the origin of the signi�cant discrepancy between
the results.

The trend of the relative adsorption coe�cient Γ(Ag)
Cu cannot fully explain the dependency

of γsl on the composition. There are two reasons for this: �rstly, according to eq. (6.18), γsl
depends also on temperature, and we did not estimate the excess entropy term that captures this
dependency. Secondly, if one wanted to apply eq. (6.18), for example to estimate or verify the
temperature dependence of γsl, one would need to evaluate two integrals between a temperature
T and a reference temperature that could be taken to be the melting (or coexistence) temperature,
Tref:

γsl(T ) − γsl(Tref) = −
∫ T

Tref

S (2)ex (T ′)dT ′ −
∫ T

Tref

Γ(2)1
dµ1(T ′)
dT ′

dT ′. (6.21)

The previous relation makes clear that, even with the information on the (relative) excess
entropy, one would still need (1) a dense sampling of Γ(2)1 (T ) to be able to estimate the second
term on the right-hand side of eq. (6.21), and (2) a valid approximation of µ1(x1(T )) as the
chemical potential depends on temperature only through the compositional variable x1 — for
this particular case, “1” refers to copper, so x1(T ) = 1 − xAg(T ). For example, if the solution
thermodynamics appears to be close to ideal, one could model µ1(T ) as

µ1(T ) = µ?1 + kBT ln [x1(T )],

where µ?1 is the molar Gibbs free energy of the pure component 1, either in the solid or in the
liquid phase since at equilibrium the two must be equal. In this case, since the silver-copper
phase diagram is far from ideal — yet it can be represented within the regular solution model
— we cannot assume such a simple form for the dependence of the chemical potential on the
composition.

6.4.2 Kinetic coe�cient

To be able to model solidi�cation microstructure it is necessary to have information on the
solid–liquid interface dynamics, that is, its kinetic coe�cient, or mobility, M . Mobility is
usually de�ned as the proportionality constant between the interfacial average velocity and
the undercooling, but an equally valid de�nition involves the ratio between interface velocity
and the di�erence in chemical potential. The latter is particularly suited for multi–component
systems where a change of one phase’s composition implies a change in chemical potential.

In the theory chapter (section 4.3.2) we outlined some of the already established computational
methods to determine M , while in a previous section of this chapter (section 6.1.3) we described
how from a Langevin model for interface �uctuations one can extract the information on
interface mobility. In particular, eq. (6.12) predicts that the kinetic coe�cient, de�ned as
〈Vn〉 = M∆µ, where Vn is the velocity normal to the interface boundary, can be obtained from
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the �uctuations and the relaxation time of the auto–correlation function of the solid fraction, f .
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Figure 6.8 – Kinetic coe�cient M (Å ps−1 eV−1) of the (100) interface estimated from eq. (6.12)
as a function of the total fractional amount of silver, xAg. The values for the pure elements are
of the right order of magnitudes we expect when comparing them to similar results found in
the literature [83, 102].

Figure 6.8 shows the obtained kinetic coe�cients for the (100) interface as a function of the
total composition. As with the sti�ness, we �rst veri�ed how our results compared with those
of other works in the literature. In particular, we compared the value of the kinetic coe�cient of
pure silver with the results of a work by Hoyt and Asta [83]. In that work, the authors calculated
the kinetic coe�cient for the (100), (110), and (111) interfaces by monitoring the velocity of the
solid-liquid boundary as a function of the undercooling; a linear �t of such a curve yields the
kinetic coe�cient. Our de�nition of M is in terms of the the di�erence in chemical potential,
thus to be able to compare directly the results we had to estimate the entropy of fusion of silver.
Since at melting the Gibbs free energies of the solid and the liquid must be equal, we may
estimate the molar entropy of fusion as

∆fusSm =
∆fusHm

Tfus
,

where ∆fusHm is the molar latent heat of melting. This number has been calculated by Williams
et al. [127], and its value of 12.45 kJ/mol is very close to the experimental value of 11.30 kJ/mol.

Our results for the kinetic coe�cient of the (100) interface are shown in �g. 6.8 and were
obtained by using eq. (6.12) that links the kinetic coe�cient to the �uctuations of the solid
fraction. We could verify that our results for silver (48 cm s−1 K−1) and copper (61 cm s−1 K−1)
agree reasonably well with those obtained by Hoyt and Asta [83] and Hoyt et al. [102]. However,
there are still some doubts on the values calculated at intermediate compositions which are found
to be between 2 and 3 times smaller. To investigate this discrepancy further and understand
if those results indicate either an error in the method or a problem in our simulations, we
veri�ed that we could actually describe the decay of the �uctuations of the solid fraction with a
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simple exponential model. Figure 6.9 shows the plots of the auto-correlation functions of the
�uctuations of the solid fraction for simulations with di�erent compositions, including those
of pure copper and silver. Particularly for the simulations at xAg = 0.165 and xAg = 0.805, it is
rather evident that the single-exponential model is not able to correctly describe the behavior
of the �uctuations of f .
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Figure 6.9 – Plot of the auto-correlation functions of f for the simulations both at intermediate
compositions and for the pure elements.

A look at the �g. 6.10, which shows the value of f monitored after an initial transient during
the three simulations at intermediate compositions, suggests that the problem is related to the
solid-liquid interface that does not �uctuate around its equilibrium position, and this is more
prominent for those two simulations in which the auto-correlation functions of f did not follow
a single exponential behavior. Therefore, determining the relaxation time τf assuming that
these �uctuations follow a simple exponential is not correct, and the need to use a �tting model
that is the sum of two decaying exponentials with two di�erent relaxation times indicates the
presence of another phenomenon that signi�cantly a�ects the dynamics of the interface. A
factor that undoubtedly di�erentiates the simulations of the binary alloy from those of the
pure elements is that, within the framework of pinned interface simulations, the constraint of
total composition introduces an additional term that adds up to the external harmonic bias and
explicitly depends on the di�erence between the compositions of the two coexisting phases
(see eq. (6.4)). The sum of these two terms corresponds to the total pinning potential felt by
the system. A possible cause that may explain why the interface is not �uctuating around its
equilibrium position could be due to a di�erent strength in the total pinning potential. The
phase diagram (�g. 6.4) shows that the di�erence in composition between the solid and liquid
phase at the eutectic concentration is about 0.4, while for a total concentration of silver equal
to 0.805 the di�erence is about 0.2. Since a term (xs − xl )3 appears in eq. (6.4), the e�ect of
the interface pinning potential is much more pronounced for the eutectic, thus preventing the
interface from drifting too much o� its equilibrium position during the simulation.

The second problem we had to face was to estimate the kinetic coe�cient from equilibrium
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Figure 6.10 – Solid fraction as monitored during the simulations at the total compositions of
0.165, 0.805, and 0.458 (eutectic). The drift in the solid fraction, in particular for the simulation
with xAg = 0.805, makes it clear why it was not possible to �t the corresponding auto-correlation
function with a simple exponential model.

�uctuations of di�erent Fourier modes and their relaxation times. Always assuming that the
dynamic of the interface follows an over-damped Langevin model, eq. (6.13) predicts that the
relationship between the relaxation times of di�erent Fourier modes and the wavevector k is of
the kind 1/Mk2. Bearing in mind that the analysis of our simulations through the eq. (6.12) had
given us results in agreement with others in the literature, we expected to be able to directly
compare the values of M obtained through the eqs. (6.12) and (6.13). Unfortunately, we found
an inconsistency between the values predicted by the two relations, and we are not yet in a
position to justify that discrepancy objectively. However, it is appropriate to brie�y discuss
two sensitive issues related to the use of eq. (6.13) to estimate M . A �rst di�culty is the need
to have extremely long simulations during which the trajectory must collect snapshots of the
system with a very high frequency. In the high k limit, the relaxation times get smaller and
smaller, eventually approaching the time-scale of bulk �uctuations and moving further and
further away from the 1/k2 trend.

The second issue is related to the reliability of the results in the regime of small k . Although
Monk et al. [124] have shown that the auto-correlation times of these �uctuation modes follow
the expected trend of τk ∝ k−2, the values of the kinetic coe�cient systematically underestimate
those obtained through other techniques, for example via non-equilibrium free solidi�cation
simulations. This particular problem is related to thermal conductivity which, in the case of an
EAM potential, is considerably underestimated, when instead it is of fundamental importance.
An incorrect thermal conductivity implies that the latent heat released during solidi�cation
is not dissipated quickly enough and ends up in�uencing the decay behavior of the interface
�uctuations. This phenomenon had already been studied some time ago, and the proposed
solution [13] modi�es the proportionality relationship between M and k into τk ∝ k−3, in
which the proportionality constant explicitly contains the thermal di�usivity. The two di�erent
power-law behaviors of M versus k explain why it should be still justi�ed to use the 1/k2
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dependence of τk when performing MD simulations of appropriate size, even though the small
wavevectors will always be harder to converge and have thus larger uncertainties, preventing
one from excluding even a small contribution due to the aforementioned heat �ow issue.

Notes

1. The detailed derivation of eq. (6.5) can be found in the Supporting Information of the work by Cheng and Ceriotti
[123].

2. Assuming τh = τf — a reasonable assumption since �uctuations of both h and f describe essentially the same
phenomenon — we know that

κf =
kBT

〈(f − f̄ )2〉 .

Using the relation between f and h one may write

1
2κf (f − f0)2 = 1

2κf
(

S

Nvs

)2
(h − h0)2,

where κh = κf (S/Nvs )2. Substituting the expressions for κh and κf into eq. (6.11) yields the result of eq. (6.12). The
additional factor 1/2 comes from the presence of two interfaces �uctuating independently.

3. See, for example, chapter 3 of Chattoraj and Birdi [140].

4. There is no univocal de�nition of “solute” and “solvent.” For example, in a binary system, a species that has a total
fractional composition less than a certain threshold could be considered the solute, yet some ambiguity remains. It
is then more appropriate to study the temperature dependence of both the relative adsorption coe�cients.

5. For an elemental system such as a pure metal, the choice depends almost entirely on the computational cost of the
interatomic potential used. With a binary or even a multi-component system, one has not to forget that the additional
Monte Carlo steps are another factor that increases the per-step simulation cost. Although we are studying a binary
system, our choice was to run two-dimensional simulations, given that an EAM potential can still be considered a
cheap potential if compared to more sophisticated interatomic potentials such as those based of machine learning,
which aim to be almost as accurate but much faster than an ab initio approach.

6. A thorough analysis of this problem and a possible solution to it have been discussed by Cammarata [141].
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7 Conclusions

Solidi�cation is a phase transition of primary importance in materials science. In several
industrial processes, solidi�cation is directly responsible for the microstructure of the �nal
material, on which a wide range of properties of most modern engineered materials depends.
An example mentioned previously is that of dendritic solidi�cation, which is particularly
predominant in the determination of the microstructure of metallic materials — which are in
the vast majority of actual cases with some technological signi�cance multi-component alloys.

Solidi�cation, however, is a very complex problem because it necessarily includes a series of
phenomena that occur on very di�erent time scales and lengths; therefore, the experimental
investigations are accompanied by a series of modeling techniques that must be able to describe
this phenomenon in its entirety accurately. A fruitful strategy is the one that manages to
combine the results of di�erent approaches; in this way, the information obtained through one
of these techniques can guide another technique in the right direction, with the �nal objective
of providing more and more precise indications to the actual industrial production phase in
order to obtain a �nal product with characteristics suitable for its application.

This thesis has had as the main instrument of investigation various simulation techniques on
the atomic scale. The objective was to study some fundamental aspects of solidi�cation, with a
particular interest in binary metal alloys. Although real applications rarely make use of binary
alloys, these remain useful prototypes to be studied, in particular when part of the research
interest concerns the development of new computational techniques or the re�nement of others
already well established that need to investigate in more detail an intricate phenomenon such
as solidi�cation.

Solidi�cation is a phenomenon whose study has already been addressed in-depth and for a
long time, both from an experimental and theoretical point of view. For this reason, a signi�cant
part of this thesis was dedicated to reviewing the “toolbox” of a computational material scientist:
the bases of statistical mechanics that allow atomistic simulations to provide relevant results
and the salient aspects — those most connected to the results presented later on — of the
computational methods used. A substantial portion of this overview illustrated those essential
concepts of thermodynamics that explain, even with some approximations, some fundamental
aspects of solidi�cation, particularly in binary systems and how to deal with the study of
interfaces and their properties at the atomic scale.

Chapter 5, “Anisotropy and free energy of a smooth �uctuating dividing surface,” discusses
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the development — and the implementation in the open-source package PLUMED [112] — of
a framework for �nding the location of the interface between two phases that di�er either
because they have a di�erent molar volume or a di�erent local symmetry. This framework
extends the Willard–Chandler construction [111] for the liquid-vapor �uctuating interface
and takes the positions of all the atoms in the system as input. It returns a two-dimensional
pro�le that gives the height of the interface as a function of the two coordinates in the plane
perpendicular to the surface normal. We showed how we could examine local �uctuations in
the height of this interface using the tools of capillary wave theory and thus extract information
on surface properties such as interfacial sti�ness and the interfacial free energy.

We have shown that de�ning the height pro�le of the interface using a smooth density �eld
o�ers signi�cant advantages in terms of computational e�ciency when it comes to determining
interface free-energies and anisotropies using the capillary-�uctuation method. In particular,
the form of the �eld suggests that a Gaussian convolution ansatz should be used to describe the
deviation of 〈|A(kx ,ky )|2〉 from the asymptotic 1/k2 behavior that occurs at short wavelengths.
This ansatz makes it possible to extract meaningful information from larger values of the wave-
vector. Consequently, a reasonable number of usable Fourier components can be extracted from
a relatively small simulation box, thus lowering the computational cost of the CFM method.
What is more, since shorter wavelength �uctuations have faster auto-correlation times, it is
also possible to use shorter overall simulation times.

The fact that we can calculate sti�ness values from shorter simulations containing fewer
atoms combined with the availability of a robust implementation of this technique in a widely-
used simulation package ensures that we are now in a position to apply these techniques
when investigating more complicated and more realistic interatomic potentials. Furthermore,
the fact that we can investigate the �uctuating dividing surface between stable — and even
metastable — phases, using an arbitrary order parameter that is capable of distinguishing
between their local atomic environments, opens up new opportunities for studying the structure
and thermodynamics of interfaces.

There is considerable interest in improving the understanding of the phenomenon of solidi�-
cation; in the speci�c context this thesis’ work, the interest has focused mainly on metal alloys
for applications in the �eld of additive manufacturing, in particular the silver-copper binary
alloy. The use of atomistic simulations to investigate the problems related to the solidi�cation of
alloys like this, as well as a wide range of pure metals, has already been the subject of numerous
research works, often providing results in accordance with experimental data or more accurate
predictions of quantities such as interface free energy or its anisotropy, which are quantities
notoriously very complicated to estimate experimentally with a reliable error.

The idea that initially motivated our work was to combine some of these standard modeling
techniques and thus develop a framework that would allow to study properties related to both
the thermodynamics of equilibrium (phase diagram and surface adsorption coe�cients) and the
interfaces between solid and liquid (interface free energy and kinetic coe�cient). In order to
minimize the impact of the rather arbitrary choices that one has to make in analyzing atomistic
simulations (order parameters, thresholds, etc...) we decided to use a Gibbs construction of the
interface as the foundation for our analyses. To study thermodynamic properties at equilibrium,
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once we de�ned a suitable order parameter to distinguish a solid from a liquid phase, the
Gibbs framework allowed us to calculate the concentrations of the two chemical species in the
coexisting phases in a range of temperatures and total compositions, expressed as the amount
of silver. From these results, one can obtain two extremely important pieces of information: the
phase diagram (�g. 6.4) and the surface excesses (�g. 6.3), the latter being a necessary ingredient
to describe how the interfacial free energy varies with the composition of the phases present,
whose equilibrium intervals are given precisely by the phase diagram. Determining these
equilibrium properties would not be possible using only a technique like molecular dynamics, as
the time scale of di�usions far exceeds that which can be simulated. Therefore, our simulations
have combined molecular dynamics and Monte Carlo and allowed studying these properties
on systems of modest size (only several thousands of atoms) and for simulation’s times easily
accessible with modern high-performance computing facilities. In principle, the combination of
these techniques is not limited to the study of binary alloys, but it could also be extended to
ternary systems that are much more interesting for practical applications.

As far as interface properties are concerned, a revision of the method known as capillary
�uctuation method (CFM) has allowed us to determine the interface free energy in an entirely
consistent way with the Gibbs construction, avoiding the problem — which was discussed
extensively in the �rst chapter of the results (chapter 5) — of �nding a reliable operational
de�nition of the dividing surface. In the simulations we conducted to determine the interface
free energy and its anisotropy of the silver-copper binary system, we combined a method
known as interface pinning [121, 122] that belongs to enhanced sampling techniques. Since
we wanted to study planar interfaces, this technique was essential to be able to capture the
dynamics of an interface that remained stable for a su�ciently long time to determine its
interface free energy through the CFM. Moreover, since we have seen that the interface statics
is not su�cient to describe the phenomenon of solidi�cation exhaustively, we proposed a model
based on Langevin’s equations of damped dynamical phenomena to describe the �uctuations of
the interface between solid and liquid and from which to extract information on the dynamics
of the interface. This last approach is not new, but we have reformulated it in the context of
Gibbs’ dividing surface construction.

Sti�ness, free energy and anisotropy Although both the static and dynamic properties of
the interface can be considered in the context of quasi-equilibrium conditions, our results have
revealed several problems that have forced us to revise much of the original idea of this uni�ed
approach.

We have already pointed out how, in the framework of the CFM within Gibbs’ dividing surface
construction, it is not necessary to explicitly de�ne a method to locate the position of the inter-
face because, before determining the �uctuation spectrum of the interface, the contributions of
the two bulk phases present are appropriately subtracted from the full �uctuation spectrum (see
eq. (6.5)). We have also discussed how the use of CFM does not require two-dimensional simu-
lations: one-dimensional simulations can provide the same information about the �uctuation
spectrum, and the issue is thus only related to the computational cost of the simulations to run.
Although our simulations used a semi-empirical interatomic potential developed within the
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EAM — therefore a relatively inexpensive potential — the initial setups of our simulations were
of one-dimensional cells, one for each direction along which we wanted to extract the sti�ness
tensor. Furthermore, our initial idea suggested the possibility of estimating the contributions of
the liquid and solid bulk phases from the simulation of the interface itself, thus reducing the
number of independent simulations for each interface and greatly simplifying the work�ow to
obtain the results from these analyses. However, we found out that one-dimensional simulations
were introducing unexpected �nite-size e�ects that eventually led to an underestimation of
the sti�ness. Therefore, in order to have simulations whose results could be compared with
those in the literature, we had to perform simulations with two-dimensional cells and thus
hundreds of thousands of atoms. The �rst consequence of this choice is the real-time cost of
such simulations. In order to obtain results with a statistical relevance from which one can
estimate a reliable error, these simulations must be at least of the order of several nanoseconds.
Moreover, to avoid underestimating the statistical error of a single simulation, it is necessary
that the ensemble averages calculated from the simulations cover a time span that is at least
comparable to the auto-correlation time of the observed quantity, that is, the square amplitudes
of the �uctuation spectrum. Given that Fourier modes have auto-correlation times that grow as
the associated wave-vector approaches zero, one faces the additional di�culty that the modes
that most closely approach the thermodynamic limit are the hardest to converge in terms of
statistical accuracy. The results we obtained on the interface free energy and its anisotropy
shown in �gs. 6.6 and 6.7 clearly indicate the limit of having simulations that are too short,
although they are of the correct order of magnitude and, at least those of pure metals, in good
agreement with the results of other works. We must stress again that the interatomic potential
may have a sizable e�ect: when using di�erent potentials, a property such as the interface
free energy may vary by a factor of two or three1, even because, for example, the melting
temperature is underestimated by a few tens of kelvins.

By looking at �g. 6.6 and table 6.1, we should comment on two aspects. Firstly, we are
con�dent that longer simulations — or performing multiple independent simulations for the
same temperature-composition point — may better estimate the errors. Secondly, we can still
say that the magnitude of the anisotropy of γsl predicted by our calculations falls in a meaningful
interval over the whole compositional range since when a solid phase with a crystalline FCC
structure is involved, the energy trend should be γ(100) > γ(110) > γ(111), and this has already
been veri�ed by simulations and experiments for several pure metals. Although the results
obtained at the eutectic composition predict a slightly negative anisotropy of γsl — between
−0.2% and 2% — they lead us to believe that the dependence on the temperature of the range is
not an unphysical artifact of our simulations, but seems to grasp a fundamental aspect of an
invariant equilibrium such as the eutectic, that is the coexistence of three phases with three
very di�erent compositions.

Kinetic coe�cient Gibbs-Thomson’s equation (eq. (4.32)) highlights how the thermal gradient
that develops across the solid-liquid interface between depends as much on the interface free
energy as on the propensity to solidify in a particular direction. This second contribution is thus
fundamental for the accurate description of the phenomenon. We have shown that di�erent
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computational methods allow estimating the kinetic coe�cient of the interface, each with its
advantages and disadvantages. As part of our approach based on Gibbs’ construction, the model
based on an over-damped dynamics that follow Langevin’s equations states that the kinetic
coe�cient can be obtained from two ingredients that one can get directly from a simulation of
a pinned solid-liquid interface. Consider again the eq. (6.12): the �rst term at the numerator
measures the �uctuations of the solid fraction — in practice, it is the variance of f . The second
term, τf , is the relaxation time of these �uctuations, and it can easily be obtained provided
that one has a simulation long enough during which a su�ciently �ne-grained sampling of the
quantity f has been made.

We have shown how the above equation can correctly predict the kinetic coe�cient of the
elemental metals (silver and copper) whose values are in good agreement with those presented
in some previous works of the scienti�c literature. However, we faced the �rst problem when
it has been evident that we could not use a model with a single exponential to describe the
�uctuations of the interface in terms of the fraction of solid estimated and monitored during the
simulation. In particular, we noticed that in some simulations with a speci�c value of the total
concentration of silver were evident a drift of the interface that should instead �uctuate around
its position of equilibrium — the latter controlled continuously by an external potential applied
for this purpose. The origin of this drift is not yet entirely clear, but we suspect it may be related
either to the need to add a Monte Carlo algorithm that serves to equilibrate the concentrations
in the two phases or to the formation near the interface of another ordered solid phase.

The capillary �uctuation method (CFM) is undoubtedly a consolidated method well-suited to
study both simple systems and more complex alloys as it only implies local re-equilibration of
solute atoms, yet it requires simulations of considerable size and long sampling time.

We �rst tried to reduce the impact of �nite-size e�ects by smoothing the interface. This
approach worked but, at the same time, entailed a few arbitrary choices, such as the value of a
threshold to locate the dividing surface and the extent of the smoothening procedure, which
are only partly amendable. We then attempted to use a more coherent approach based on
a de�nition of dividing surface proposed originally by Gibbs and to streamline the complex
sequence of calculations that are needed to determine both equilibrium and dynamical properties
of solid-liquid interfaces in alloyed systems.

While this approach showed to work well for bulk and thermodynamic interfacial properties,
it su�ers from the same size and time convergence issues that trouble conventional CFM studies,
which are exacerbated by the need for sampling compositional �uctuations. When it comes to
dynamical properties of the interface, we observed signi�cant artifacts that arguably suggest
that the cause is a combination of statistical errors, latent heat, and solute repartition among
the solid and the liquid phase; all these factors eventually render the estimation of interface
mobility a particularly endeavoring computational task.

When one also considers that current embedded atom method (EAM) potentials, which
represent the most e�ective choice to model metallic systems, are often not su�ciently reliable
to estimate interfacial properties — with published results that may well di�er by a factor of
2 or 3 between di�erent semi-empirical �ts — one sees that more work should be devoted
to the study of this problem. The surge of machine learning potentials applied to numerous
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Chapter 7. Conclusions

investigations of materials properties o�ers an alternative approach to the de�nition of a more
accurate interatomic potential, but the much higher cost compared to EAM makes the sampling
and system size challenges even more severe. Combining the insights that computational
methods as the CFM have so far provided with more recent approaches based on accelerated
sampling techniques might be the most promising alley to solve this puzzle.
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A Interface properties of a Lennard-
Jones model
The purpose of this appendix is to present and discuss some additional results related to interface
properties of a Lennard–Jones system. Besides choosing a Lennard–Jones model because of its
cheap computational cost, the main reason was to benchmark our framework and be able to
compare results on interface sti�ness, free energy and kinetic coe�cient with previous works
of the literature that already investigated these properties in detail.

A.1 Interface sti�ness and free energy

As we discussed both in the theory and result part, the main advantage of a Gibbs approach in
analyzing interface �uctuations to extract the sti�ness and free energy is that it sidesteps the
inevitably arbitrary choice of a way to locate the dividing surface. On the other hand, it relies
on two approximations that we restate here to justify the additional results discussed in the
following.

The �rst assumption is that bulk �uctuations in the liquid are independent of those in the
solid; this suggests that we could estimate the bulk contributions to the �uctuation spectrum of
the interface from one simulation of a solid-liquid system. The second assumption is that, with a
planar interface perpendicular to the z dimension, the characteristic length of spatial correlations
of bulk �uctuations is much smaller than the extent of the simulation cell along z. This second
assumption implies that we can evaluate the contributions from bulk slabs of suitably chosen
widths, and there should not be any signi�cant dependence of such contributions on the values
of the slab widths, provided that the thickness of bulk regions in the supercell is large enough
to consider a slab as a true bulk phase.

We have therefore veri�ed both these two approximations. We prepared two one-dimensional
simulation cells with sizes 28×4×28 (12 544 atoms) and 40×7×40 (44 800 atoms) and we calculated
the contributions to 〈|A(kx ,ky )|2〉 according to the eq. (6.5) in two ways: (1) considering two
slabs, one in the solid phase and one in the liquid phase, with a thickness of about 0.2Lz , where
Lz was the total size of the periodic cell along z; (2) running two independent simulations for
each bulk phase, each with the same dimensions of the simulation cell containing the interface.
The results are shown in �g. A.1. We can immediately notice two things: in the smaller cell
(�g. A.1a), the contributions of both bulk phases show a marked dependence on k , and the fact
that the solid bulk is comparable with the liquid bulk suggests that this system’s size is not at
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Figure A.1 – Plots of 〈|A(kx ,ky )|2〉 versus kx (ky = 0) for two di�erent cells with a one-
dimensional geometry: (a) 28 × 4 × 28 cell and (b) 40 × 7 × 40 cell. Both these plots show
a k-dependence of the solid bulk contributions when they are calculated from bulk slabs instead
of full cells.

all su�cient to correctly sample capillary �uctuations. Although we cannot exclude a priori
that the contributions of the bulk phases depend on k , we would expect an almost constant
trend precisely because the terms of the eq. (6.5) that correspond to the bulk phases do not
represent the �uctuations of any interface, but only those of the order parameter �eld, which in
turn re�ect density �uctuations. In �g. A.1b, it is evident that a larger cell does not show these
artifacts, although there remains a k-dependency when bulk phase contributions are calculated
from slabs and not from full bulk cells. The presence of such “slab e�ect” led us to conclude
that it is not possible to estimate the contributions of the bulk phases correctly from the same
simulation cell that contains the solid-liquid interface. Since a 1/k2 model to �t the �uctuation
spectrum and extract the sti�ness is suitable to reproduce the behavior of the spectrum only
for small k , the k-dependency, more prominent for the solid bulk contribution, leads to a wrong
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estimation of the interface �uctuation spectrum when subtracting the bulk terms evaluated
from slabs from the “full spectrum,” that is, the right-hand side of eq. (6.5).

Finally, to rule out that this e�ect due to evaluating bulk contributions from slabs did not
depend on the one-dimensional geometry of the simulation cells, we performed a third set of
simulations with a two-dimensional cell with size 40 × 40 × 24 (153 600 atoms) and veri�ed (see
�g. A.2) that the k-dependence appears whenever one considers bulk slabs instead of full cells.
This conclusion is rather undesirable because it does not only force the use of simulations cells
of considerable size, whose computational cost increases rapidly even for a semi-empirical and
relatively cheap potential such as the EAM, but it also requires to perform three independent
simulations for each interface whose sti�ness is to be calculated: a simulation of the solid-liquid
interface and two from which to determine correctly the contributions of the bulk phases.

Solid (full) Solid (slab)

Liquid (full) Liquid (slab)

0.2 0.4 0.6 0.8

2. × 10-4

5. × 10-4

0.001

0.002

0.005

Figure A.2 – Plot of 〈|A(kx ,ky )|2〉 versus kx (ky = 0) for a simulation cell with two-dimensional
geometry with size 40 × 40 × 24. Although the bulk contributions of the liquid phase are now
independent of whether they are evaluated from a slab section or a full cell, the solid bulk
contributions still show a remarkable di�erence especially at small k , suggesting that this “slab
e�ect“ is a�ecting more prominently the solid phase.

One last piece of evidence that convinced us that the only way to obtain a reliable estimate of
the sti�ness — and therefore of the interfacial free energy — was to perform two-dimensional
simulations containing at least one hundred thousand atoms was the presence of �nite-size
e�ects. From �g. A.1 it is clear that there is a substantial di�erence in the magnitude of
〈|A(kx ,ky )|2〉. Figure A.3 illustrates this e�ect much more clearly by plotting together bulk
phases contributions to the �uctuation spectrum as calculated from full bulk cells only. As the
cell size increases, not only do the contributions of liquid and solid separate more clearly, but
also the absolute value of 〈|A(kx ,ky )|2〉 is reduced by about two orders of magnitude in the case
of bulk solid due to a scaling e�ect.

Although we did these tests on a model system such as the Lennard–Jones that is much
simpler than that investigated in the second part of the results of this thesis — the silver-copper
binary alloy — we can reasonably conclude that this revisited CFM that avoids, thanks to Gibbs
dividing surface construction, the need to �nd a method to de�ne the crystal-melt boundary,
forces us to simulate extensive systems with two-dimensional geometries, the latter a limit that

129



Appendix A. Interface properties of a Lennard-Jones model
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Figure A.3 – Plot of the liquid and solid bulk contributions to 〈|A(kx ,ky )|2〉 as a function of k for
di�erent simulation cells sizes, with both one and two-dimensional geometries. As the cell size
increases, the di�erence between the contributions of liquid and solid in the same simulation
and between the same bulk phase in two di�erent simulations increases. In particular, this
e�ect is particularly pronounced for the solid phase, where there is a di�erence of about two
orders of magnitude in the absolute value of 〈|A(kx ,ky )|2〉 between the smallest cell, 28× 4× 28,
and the largest 40 × 40 × 24.

the original CFM had not shown2. Furthermore, there is the challenge of converging this type
of calculations that need a long simulation time to be able to estimate an error on the measured
quantities of interface sti�ness and free energy that is statistically acceptable. In conclusion,
it is worth noting that the need to run simulations that have to be both overly long in time
and large are well recognized inherent limitations of the CFM itself that some computational
trick cannot always circumvent. Nevertheless, the method continues to be a solid choice for
investigating interface properties, and although it involves studying systems containing many
particles that might render the method prohibitively costly, it can still provide relevant insights
even on complex systems of considerable practical interest1.

A.2 Interface dynamics

In section “Interface dynamics (section 4.3.3),” we outlined some well-established computational
methods particularly suited to determine the kinetic coe�cient of a crystal-melt interface from
molecular dynamics simulations. These methods include both equilibrium and non–equilibrium
techniques; for example, the analysis of interface �uctuations through its Fourier spectrum
belongs to the former class, while free solidi�cation simulations are an example of the latter.

1A good example of such application of CFM is the work by Mishin [37], a comprehensive study of interface
properties of the γ–γ ′ phase boundary in the Ni3Al system of fundamental technological importance for high–
performance alloys.
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An issue that a�ects both equilibrium and non-equilibrium methods di�erently is related to the
latent heat absorbed or released during melting or solidi�cation. The direct consequence of
latent heat generation is a temperature gradient across the interface, and thus the choice of the
thermostat used to keep the simulation’s temperature constant is a very crucial one. In practice,
the less e�cient the thermostat is in removing the heat generated during crystallization, the
more interface dynamics will show the footprint of how quickly the heat �ows away from the
interface. In more precise words, this would mean that crystal growth could not be considered
anymore a di�usion-limited process dominated only by the kinetics of atoms of the liquid phase
attaching to the growing crystalline boundary.

The problem of the separation of atoms’ di�usion and heat �ow time-scales has been already
investigated extensively in the literature [83, 142–145]. When simulating real systems, especially
metals and alloys, this problem can have an even more pronounced e�ect if the interatomic
potential used does not correctly describe the thermal di�usion. For metals, this is particularly
true in the case of EAM potentials, which can underestimate up to 100 times the thermal
di�usivity [146]. Although Briels and Tepper [104] have shown that the thermostatting strategy
can have an e�ect on crystallization in a Lennard-Jones system, the latter is not a�ected by
the problem of the underestimation of thermal conductivity, and it is thus possible to compare
results of the kinetic coe�cient obtained with di�erent methods.

To this end, we prepared and ran two sets of simulations of a Lennard–Jones system modeled
with the same potential employed for the results showed previously (section 5.3). The �rst set
was of equilibrium simulations of a solid-liquid interface from which we extracted the kinetic
coe�cient by analyzing the �uctuations of the solid fraction as we did for the silver-copper
system (section 6.4.2). We also investigated the e�ect of two di�erent values of the strength of
the harmonic bias applied to pin the solid-liquid interface. These simulations were prepared
with a protocol similar to that we followed for the simulations on the silver-copper system.
The supercells for these Lennard–Jones contained 134 400 atoms and where run for about 2000
Lennard–Jones time-units, and solid fraction �uctuations were analyzed on a time span of
roughly 1200 time-units. Both simulations were run in the NPzT ensemble with a stochastic
velocity-rescaling thermostat [50] controlling the temperature.

The plot of �g. A.4 shows the monitored value of the solid fraction in two pinned-interface
simulations with di�erent values of κ, the harmonic spring constant. By looking at that plot
and remembering eq. (6.12),

M =
vs

2SkBTτf
N 2〈(f − f̄ )2〉,

we expect the auto-correlation time τf associated with the �uctuations in the simulation with a
sti�er harmonic bias to be smaller than that of the simulation with a weaker bias. However, since
the variance of f is also larger, the two simulations yield two values of the kinetic coe�cient
— 1.240 (κ = 1 × 10−4) and 1.741 (κ = 1 × 10−5) in Lennard–Jones units of (mϵ)−1/2 — that are
both comparable with the results obtained by Briels and Tepper [104], even though they studied
the same model system with a di�erent interatomic potential3.

In the second set of simulations, we employed the already described free solidi�cation method
(section 4.3.3) to estimate the kinetic coe�cient from the analysis of the interface growth as
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Figure A.4 – Plot of the solid fraction as a function of time monitored during two pinned-
interface simulations of Lennard–Jones in which two di�erent values of the strength of the
harmonic bias applied have been used.

a function of the degree of undercooling. In particular, we started from a simulation box
containing two solid-liquid boundaries equilibrated at the melting temperature of Tm = 0.62
(in Lennard–Jones reduced units) and, during equilibration, we monitored that the number of
solid atoms was �uctuating around one third of the total atoms present in the simulation cell.
Subsequently, we rescaled the system’s temperature to a value below Tm according to a given
undercooling between 2% and 5%. We then let the simulation run in the NPT ensemble for as
many time-steps as needed after which, except for the smallest undercooling, the system was
crystalline in its entirety. The following relation then yields an estimate of the crystallization
rate

R =
vs

2Nsa
2
0

dNs

dt
,

where vs is the atomic volume of the solid, Ns is the number of atoms per interface plane,
and a0 is the lattice parameter. The above relation is straightforward to apply since the only
information needed is the number of solid atoms as a function of time, a quantity that the
simulation’s trajectory directly provides. Figure A.5 shows the the number of solid atoms Ns as
a function of time for di�erent values of undercooling. Besides the plateaus which indicate that
several simulations were already completely solidi�ed after about 100 Lennard–Jones time-units,
the linear growth of Ns con�rms that we managed to attain steady non-equilibrium conditions.

Since it is known [104] that the choice of thermostat has a non-negligible e�ect on interface
dynamics, we ran �ve independent sets of simulations within the same undercooling range with
two di�erent thermostat: the global, stochastic velocity–rescaling thermostat and a local one,
a slightly modi�ed Langevin thermostat whose implementation [147] correctly preserves the
momentum distribution and showed to be more e�cient than the standard implementation in
the over-damped regime. The results obtained for the crystal growth rate R are shown in �g. A.6,
where the two straight lines represent the linear �ts whose slope is the kinetic coe�cient. We
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Figure A.5 – Plot of the number of solid atoms Ns as a function of time during several non-
equilibrium simulations with di�erent values of undercooling ranging from 2.0% (rightmost
blue curve) to 5.0% (leftmost brown curve). In these simulations, temperature was �xed by
a local, Fast-forward Langevin thermostat [147]. The plateau regions for all but the smallest
undercooling indicate that our simulations were long enough to observe a complete solidi�cation,
and the linear growth ofNs con�rm that constant non-equilibrium conditions have been attained
for all the simulations. The dashed vertical lines indicate the cuto�s up to which the linear �ts
were performed, with the rightmost vertical line referring to the smallest undercooling and so
on.

obtained the two values of 2.51 ± 0.18 and 2.18 ± 0.15 — in Lennard–Jones units of kB/(mϵ)1/2 —
from simulations using the global and the local thermostats respectively. Although the measured
crystal growth rates di�er appreciably, the values of the kinetic coe�cient are consistent with
each other within the estimated errors.

In order to compare the kinetic coe�cient obtained with free solidi�cation simulations
— where M links the interface normal velocity to the undercooling — and that obtained by
the analysis of equilibrium interface �uctuations through the solid fraction, one needs the
information of the dependence of the chemical potential on temperature. For this particular
Lennard–Jones potential, dµ/dT has been calculated by Cheng, Tribello, and Ceriotti [117]
in a study of homogeneous nucleation. The values of M in terms of the chemical potential
di�erence then become 1.27 ± 0.09 and 1.46 ± 0.10 for the simulations with the local and the
global thermostat, respectively. These two values are close enough to the results we obtained
from equilibrium �uctuations analysis, suggesting that, at least for a potential that is suited to
model a unary system and does not su�er from a wrong description of thermal phenomena,
our approach provides consistent values of the kinetic coe�cient.
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Figure A.6 – Crystal growth rate as a function of temperature below the melting temperature of
0.62 ϵ/kB . The two curves represent two sets of simulations where di�erent thermostats were
keeping the temperature constant during the non-equilibrium run: the orange curve reports
the results from the simulation in which a global, stochastic velocity-rescaling thermostat [50]
was used, while the blue curve reports results from simulations with a local, Fast-forward
Langevin [147] thermostat. The values of R and their error bars are calculated from �ve
independent simulations with the same undercooling. Besides the shift between the two curves,
the linear �ts (black dashed lines) suggest two consistent values of the mobility, which turned
out to be 2.51 ± 0.18 (stochastic thermostat) and 2.18 ± 0.15 (Langevin thermostat).
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B Block averaging in practice

This brief appendix illustrates in practice how one can apply the block averaging technique
discussed previously (section 2.7.1). Suppose to have a series of N measurements A1,A2 . . .AN .
Taking the average of all consecutive pairs of data, one obtains a dataset half as large: A′i =
(A2i−1 +A2i ) /2. It can be shown that both 〈A〉 and σ 2(A) are invariant under this blocking
procedure. In particular, it is evident that 〈A〉 = 〈A′〉 and

σ 2(A′) = 1
N ′

∑
i

A′2i − 〈A′〉2. (B.1)

Provided that the simulation has been performed for long enough, σ 2(A′)
N ′−1 converges to a

constant value as the number of blocks M increases: Flyvbjerg and Petersen [19] showed
that this limiting, constant value is a correct estimate of σ 2(A) — one that takes into account
the correlation between successive measurements. Hence, we can take as an estimate of the
ensemble average of the observable A the value

〈A〉 ± σ (A′)√
N ′ − 1

. (B.2)

In practice, plotting σ 2 versus the number of blocks M gives a visual estimate of the value of
M for which the averages A′i become completely uncorrelated. Increasing further the number
of blocks should not lead to any signi�cant change in σ 2, and one can then take eq. (B.2) as a
correct estimate of 〈A〉.
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