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Abstract

Today’s electrical grid is undergoing deep changes, resulting from the large integration of

distributed Renewable Energy Sources (RES) in an effort to decarbonize the generation of elec-

trical energy. In addition to the emergence of this volatile electricity production, the worldwide

demand for electricity increases due to a growing population and the intensified electrification

of buildings. Smart-buildings represent promising assets for supporting the electrical grid in

balancing demand with a supply based on non-dispatchable RES. A smart-building denotes a

building equipped with sensor/actuator hardware connected to a federating Building Data

Management System (BDMS) which enables high-level applications and services.

Tapping into the flexibility inherent to its various entities (load, storage, and generation), a

smart-building can provide Demand Response (DR) functionality through the optimization

of its energy profile in response to varying electricity prices or commands from the grid.

This PhD thesis provides a set of tools, algorithms, and frameworks, revolving around the

notion of smart-buildings that foster an enhanced Building-to-Grid (BtG) integration. The

tools developed here aim to fill the gap encountered in the literature created by the recent

rollout of BDMSs and the ubiquitous Internet of Things (IoT). Furthermore, the mismatch

between current DR and the future RES-based smart-grid opens the way to the development

of innovative algorithms and frameworks to manage the flexibility offered by smart-buildings

for grid-side agents.

Built upon BDMSs, two open-source tools have been developed. Firstly, an integrated high-

speed emulation and simulation software, dubbed Virtualization Engine (vEngine), allows the

simulation of non-existing components of a building directly on-site. The multi-threaded,

light architecture of vEngine permits efficient simulations, in a modular environment con-

ceived for developers. Secondly, we describe Open Energy Management System (OpenEMS), a

platform that seamlessly connects to any existing BDMS and provides its users with an envi-

ronment to create their own energy management algorithms, with a focus on Model Predictive

Control (MPC). Simulations using a realistic Swiss residential building model demonstrate the

effectiveness and modularity of both tools. Additionally, we propose a multi-state load profile

identification algorithm tailored to Non-Intrusive Load Monitoring (NILM). Applied to energy

disaggregation, it shows promising results for enhanced energy feedbacks to the occupants.

To attain daily energy balance within the smart-grid, we propose several algorithms and
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Abstract

energy management frameworks, using smart-buildings. An incremental MPC formulation

is derived to better balance monthly costs associated to energy and peak demand of large

commercial buildings. Simulations data show substantial benefits, for both the building’s

owner and the grid. Furthermore, we present a decentralized framework for autonomously

managing the energy in a community of smart-buildings, with RES. Based on blockchain

technology and smart-contracts, the framework optimizes an objective common to the whole

community without the need for a central agent. A group of Swiss residential buildings

are simulated; the results prove that the cooperative behavior enabled by the framework

reduces the peak demand of the community which better uses local resources, compared

to individual optimizations. Finally, we suggest a unified BtG model which could benefit

grid-side aggregators in both microgrids and electricity markets. Leveraging state-of-the-art

models, a second-order battery equation has been used to encapsulate the thermal behavior

of buildings, along with data structures that represent deferrable loads and electric vehicles.

Keywords: smart-building, energy management system, model predictive control, integrated

simulator, energy disaggregation, smart-grid, demand response, blockchain-based algorithm,

smart-community, building-to-grid
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Résumé

Le réseau électrique subit actuellement de profonds changements, principalement dus à

l’intégration distribuée de Sources d’Energie Renouvelable (RES) visant à décarboniser la gé-

nération d’énergie électrique. En plus de l’émergence de cette production volatile, la demande

mondiale en électricité augmente progressivement avec une population grandissante et une

intensification de l’électrification des bâtiments. Les bâtiments intelligents présentent un

potentiel significatif pour assister le réseau électrique à équilibrer la demande avec une offre

basée sur des RES non-contrôlables. Un bâtiment intelligent se réfère à un bâtiment équipé de

capteurs et actuateurs, fédérés par un Système de Gestion de Données du Bâtiment (BDMS)

qui offre un service à des applications tierces.

En exploitant la flexibilité inhérente à ses différentes entités (charges, stockage et production),

un bâtiment intelligent peut offrir une capacité de Réponse à la Demande (DR) via l’optimisa-

tion de son profil d’énergie en réponse à des prix d’électricité variables ou des commandes

venant du réseau intelligent. Cette thèse de doctorat fournit un ensemble d’outils, d’algo-

rithmes et de structures gravitant autour de la notion de bâtiment intelligent dans un but

d’améliorer l’intégration bâtiment-vers-réseau (BtG). D’une part, les outils développés visent

à combler un manque constaté dans la littérature, créé récemment par le développement des

BDMSs et de l’Internet des Choses (IoT). D’autre part, l’incompatibilité entre le DR actuel et

le future réseau intelligent riche en RES a ouvert la voie vers la conception d’algorithmes et

structures innovants afin de gérer la flexibilité que peuvent offrir les bâtiments intelligent aux

agent du réseau électrique.

Construits sur base des BDMSs, deux outils open-source ont été développés. Premièrement,

un logiciel haute-vitesse intégré de simulation et émulation, baptisé Moteur de Virtualisation

(vEngine), permet la simulation de composants virtuels directement au sein du bâtiment. Son

architecture multiprocessus et légère mène à des simulations efficaces, dans un environne-

ment modulaire favorable aux développeurs. Ensuite, nous décrivons notre Système Libre de

Gestion d’Energie (OpenEMS), une plateforme qui se connecte de manière transparente au

BDMS pour fournir un environnement de développement pour prototyper des algorithmes de

gestion de l’énergie, en particulier de la Commande Prédictive (MPC). Des simulations réali-

sées sur des modèles de bâtiments résidentiels suisses démontrent l’efficacité et la modularité

des deux outils. De plus, nous proposons un algorithme d’identification de profil de charges à

états multiples, conçu spécialement pour de la Surveillance Non Intrusive de Charges (NILM).
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Résumé

Appliqué à la désagrégation d’énergie, l’algorithme montre des résultats intéressants visant

un feedback amélioré pour les occupants du bâtiments.

Afin d’atteindre une balance énergétique quotidienne dans le réseau électrique intelligent,

nous proposons plusieurs algorithmes et structures de gestion énergétiques impliquant les

bâtiments intelligents. Une formulation incrémentale de MPC est dérivée dans l’objectif de

mieux balancer les coûts associés à l’énergie et aux pics de demande des bâtiments commer-

ciaux. Des simulations montrent un bénéfice non-négligeable de cette méthode, autant pour

le propriétaire que pour le réseau électrique. En outre, nous présentons un cadre décentralisé

pour la gestion automatisée de l’énergie d’une communauté de bâtiments, en présence de RES.

Basé sur la technologie blockchain et des contrats intelligents, ce cadre de gestion optimise

un objectif commun à l’entièreté de la communauté sans l’aide d’un agent central. Un groupe

de bâtiments résidentiels suisses est simulé, prouvant que le comportement coopératif mis en

place permet la réduction des pics de demande et une meilleure utilisation des ressources

locales, en comparaison aux optimisations individuelles. Finalement, nous suggérons un

modèle unifié de BtG qui pourrait être bénéfique aux organismes d’agrégations impliqués

dans les microgrid ou les marchés de l’énergie. En utilisant des modèles de l’état de l’art,

une équation de batterie de second ordre permet de capturer la dynamique thermique des

bâtiments, accompagnée de structures de données représentant les charges déférrables et les

véhicules électriques.

Mots-clés : bâtiment intelligent, système de gestion de l’énergie, commande prédictive, simula-

teur intégré, désagrégation de l’énergie, réseau intelligent, réponse de la demande, blockchain,

algorithme décentralisé, communauté intelligente, bâtiment-vers-réseau
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Introduction

In recent decades, electrical power systems have experienced unprecedented changes in the

way energy supply and demand are continuously balanced. Worldwide, countries and states

governments are increasingly promoting the deployment of Renewable Energy System (RES) to

face climate change and to provide clean energy to a growing population. For instance, by 2050

the European Union (EU) aims to reduce its emissions by 85-90% compared to its 1990 levels

and California, the world’s fifth-largest economy were it a sovereign nation, pledged to be

carbon-free by 2045 [2, 3]. However, the intrinsic volatility of wind and solar energy completely

redefines the paradigms of the electrical grid. Initially designed as a unidirectional system,

that provided energy for end-consumers from a set of large dispatchable power plants, the

unpredictability of RES leads to the need for a system able to follow a non-controllable supply

[4, 5]. Moreover, the distributed nature of RES calls for a restructuring of grid architecture to

enable adequate monitoring and control.

Residential and commercial buildings hold the largest shares in the demand in electricity,

accounting for about 70-75% of the electricity consumption in the U.S. [6]. Increasingly, they

become more equipped with ambient sensors, actuators, and connected devices, accelerated

by the adoption of Information and Communication Technology (ICT) and Internet of Things

(IoT). This led to the emergence of efficient BDMSs, backbones of connected buildings, which

gather information from sensors, communicate with actuators, and offer high-level services to

third party applications [7]. When supported by a BDMS, the resulting cyber-physical system

is referred to as intelligent building or a smart-building. Rendered aware of its own energy

consumption and flexibility potential, the smart-building presents an ideal candidate to assist

the smart-grid in its everyday task of balancing the power system [8].

Definition. Smart - The use of the "smart-" prefix with existing entities refers to their en-

hancement by sensor/actuator hardware, telecommunication links, and computer-based

algorithms, enabling them to sense, monitor, and automatically control their states.

Demand Response (DR) regroups the methods and strategies to dynamically shape end-

users’ consumption profiles according to the needs of the smart-grid [9]. Introduced in the

1980’s by Electric Power Research Institute (EPRI), current DR programs use electricity prices

and incentive-based contracts to enforce changes in the consumption of loads, with respect

to their normal operations. From the grid perspective, DR can be used to provide energy
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Figure 1 – Time evolution of publications involving Demand Response (DR, in blue) and
Smart Building (SB, in red) per type of article. Data from IEEE Xplore and ScienceDirect using
keywords "demand response" and "{smart, intelligent}{building, home, house}", respectively.

services such as energy arbitrage or peak shaving, capacity reserves, and Ancillary Services

(AS) such as frequency regulation. Therefore, a considerable amount of the new generation

and storage facilities, which would normally be required to provide these services, could be

saved through the deployment of DR. From the standpoint of a building, providing DR means

changing the normal operations of its electrical entities; often referred to as flexible demand.

Inertial loads, typically large Heating, Ventilation and Air Conditioning (HVAC) systems and

domestic Electrical Water Heaters (EWHs), can be temporarily disrupted without impacting

user comfort. In addition, Heat Pumps (HPs), Electric Vehicles (EVs), deferrable appliances,

secondary Energy Storage Systems (ESS), and behind-the-meter Photovoltaic (PV) systems

are also typically encountered in flexible smart-buildings.

Yet, DR faces many barriers on its way to large scale integration into the smart-grid and

its energy markets. In general, there is a considerable uncertainty around the value of DR

and hence, around its potential revenue for participants [10, 11]. While many DR programs

exist around the world, they lack normalization and unification in their implementations. In

addition, their current measurement methods and corresponding remunerations have severe

limitations. Finally, the inclusion of numerous, small RES at the distribution level of grids,

requires loads to continuously react to varying supplies, calling for an update in DR definition

and structure.

Smart-buildings have the potential to enable the flexibility management of energy demands in

systematic and structured ways and hence, can greatly benefit DR. As shown in Figure 1, both

domains have seen extensive interest due to the push to find carbon-free solutions for our

society and the rise of ubiquitous, affordable ICT. However, most of the existing solutions are
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designed for specific problems and individual test cases; there is a clear lack of a generic and

widely accepted approach to creating smart-buildings and connecting them to the smart-grid.

Furthermore, the traditional DR programs do not match the envisioned needs of the future

RES-based smart-grid and electrified houses.

Thesis Contribution

The aforementioned issues and drawbacks around DR motivated the research project de-

scribed in this Ph.D. dissertation. It aims to fill the gap between grid-level DR and its efficient

implementation at the building level. To do so, we provide in this thesis a set of tools and

frameworks revolving around the notion of the smart-building and the management of its

energy. We focus mainly on daily energy arbitrage and day-ahead optimization of the energy

consumptions of residential and commercial buildings1.

The growing adoption of BDMS in residential and commercial buildings paves the way toward

a structured entity, able to efficiently federate a large panoply of sensors, actuators, and other

IoT-based hardware, working with different technologies [13]. Leveraging building metadata

and time-series data stored in the BDMS, new kinds of building simulations can be envisioned,

more closely resembling the environment they emulate. This motivated our efforts to create an

innovative high-speed integrated building simulator that could seamlessly plug itself into any

existing BDMS. In addition to designing of the simulation engine, we also developed an open-

source version with a set of useful libraries which can be used by the research community.

Still based on the notion of BDMS, we designed an algorithm that systematically identified the

various active power states of a load from load power consumption data stored in time-series

databases. The resulting model has useful applications in energy disaggregation.

Zooming out and considering smart-buildings as active components of a smart-grid, their

connections with the latter are made through building Energy Management Systems (EMSs).

We designed and developed an open-source EMS tool that automatically connects to exist-

ing BDMSs, hybridizing them to form grid-responsive smart-buildings. Then, we derived a

method combining an economic Model Predictive Control (MPC) formulation with a day-

ahead deferrable load dispatch algorithm, integrating them into the EMS tool.

Dealing with commercial buildings subject to peak demand charges, a new MPC formulation

was engineered for better management of both the owner’s bill and the grid flexibility.

Considering a communities of smart-buildings, we further designed a two-phase blockchain-

based decentralized framework, able to reduce the overall community peak and optimize local

resources. Solidity smart-contracts were derived for an effective deployment of the framework,

and the corresponding code was rendered available to the research community.

1We have not tackled long-term provision of energy/capacity through smart-buildings nor the sizing of power-
system elements such as RES components. In addition, we did not investigate the potential for frequency/voltage
regulation [12], happening at a much shorter time scale (seconds) than the one considered in this thesis ( 5-15
minutes). It’s also worth noting that we solely considered the active part of the electrical power.
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Finally, in the context of aggregators, we compiled a thorough review and discussion of

Building-to-Grid (BtG) data structures, to subsequently derive a unified smart-building flexi-

bility model.

Thesis Organization

This thesis manuscript is divided into two main parts. In the first part, the smart-building is

studied as an individual entity, from an electrical consumption standpoint. The second part

deals with the algorithms, frameworks, and data structures needed for the active integration

of these smart-buildings into the electrical grid, providing energy flexibility. The chapters are

organized as follows:

PART I - SMART-BUILDING STRUCTURE

• Chapter 1 reviews the state-of-the-art building models and existing energy simulators.

The presented models cover electrical loads and appliances, energy storage systems,

and local energy generation. We also focus on thermal models of zones in buildings,

mainly the RC model, as their coupling with HVAC systems holds a large potential for

energy flexibility.

• Chapter 2 presents an innovative integrated smart-building simulator, dubbed Vir-

tualization Engine, that emulates the presence of common buildings’ entities. The

open-source software plugs seamlessly into any BDMS and has the advantages of being

lightweight, modular, and multi-threaded. We illustrate the efficiency of the tool through

simulations of an entire Swiss house, with a floor-heating system, connected to a HP

that can be controlled in addition to an EWH, an EV, and deferrable loads.

• Chapter 3 proposes an algorithm for automatically identifying the power states of

electrical loads from historical outlet-level data. Then, we leverage the resulting multi-

state load modeling for energy disaggregation using Hidden Markov Model (HMM).

Simulations based on a fine-grained building electricity consumption dataset show

that modeling loads, with multiple power states, better identifies individual appliances

participation, when compared to ON/OFF modeling.

PART II - ADVANCED INTEGRATION OF SMART-BUILDINGS INTO THE SMART-GRID

• Chapter 4 reviews common building EMS strategies and presents an open-source build-

ing EMS platform tailored for model-based algorithm development, named OpenEMS.

After a thorough description of the use of MPC for providing grid services, we illustrate

the modularity and user-friendly features of the OpenEMS tool by controlling the above-

mentioned simulated Swiss house. The Economic MPC is proven to be more energy

efficient and grid-responsive compared to traditional control.
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• Chapter 5 introduces an innovative Economic MPC formulation for better balancing

the various electricity costs charged to commercial buildings in USA. Simulations of

HVAC-driven commercial buildings prove that the new MPC framework reduces overall

bills while greatly improving the flexibility provided to the grid.

• Chapter 6 describes a blockchain-based framework for managing the energy of a com-

munity of smart-buildings, in the presence of local RES. We derive a set of distributed

algorithms coded in Solidity that together enable fully decentralized, cooperative, au-

tonomous two-phase energy arbitrage. Combining the tools presented in Chapters 2

and 4, sees fleets of smart-buildings and RES efficiently emulated in the Ethereum-based

framework; we show that the cooperative algorithm reduces individual bills in addition

to enabling community-level grid services.

• Chapter 7 reviews existing state-of-the-art BtG data structures which can be used by

aggregators. A total of three distinct models are studied in detail and simulations of

a commercial building highlight their features. Finally, we suggest a generic BtG data

structure which has the potential to incorporate multiple models of buildings’ flexibility

entities.

Finally, a Conclusion chapter summarizes the findings of this thesis and further discusses the

future outlook of the role of a smart-building within the smart-grid.

5





Part ISmart-Building Structure

7





1 State-of-the-art Building Energy Mod-
eling and Simulation

1.1 Building Components Modeling

A building consumes or provides electrical power, e[h], to the grid, depending on the internal

load consumption, energy storage, and local production. At any time period h, it can be

expressed as:

e[h] =

≥ 0︷ ︸︸ ︷
Nl∑

n=1
pn

l [h]+ pb[h]︸ ︷︷ ︸
≤ 0 or ≥ 0

+
≤ 0︷ ︸︸ ︷

pg [h] (1.1)

where pn
l denotes the power consumption (kW) of the nth load, pb , the charging/discharging

power (kW) of the ESS, and pg , the generated power (kW) of the local RES. In this discrete

form, power quantities represent average power consumption/production over the given

sampling period d t .

The parameter Nl denotes the total amount of loads in the building. The main drivers of

building consumption, i.e., building loads draw electricity in order to perform a specific task

serving the user.

Definition 1.1.1. Load - A load is an electrical entity that consumes a positive (or null) amount

of power.

1.1.1 Thermal loads

Definition 1.1.2. Thermal load - A thermal load denotes any load that impacts the thermal

comfort of a given space.

Thermal comfort is one of the most important metrics in buildings. The corresponding loads

strive to ensure that the temperature of the air in occupied building zones or water in tanks

remains within comfort bounds. HVAC refers to the set of thermal loads and technology

commonly deployed in buildings to regulate indoor air temperature and air quality. They
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Thermal model

Building state   x[h]

Outside temperature To[h]

Sun irradiance   g[h]

Internal gain   d[h]

HVAC input u[h]

Building state 
x[h+1]

Figure 1.1 – Generic zone thermal model

have been thoroughly studied in the literature [14], with models emerging, both simple and

complex ones, at the intersection of many engineering fields. Hot water tanks are entities that

store hot water to be delivered to the user or used in water pipes. A heating system generally

provides heat to the water tank, the more common being EWH and HP.

Fig. 1.1 illustrates the generic model that maps the updated zone state x[h +1] to the con-

trol HVAC signal u[h], the current zone state x[h], and influencing parameters. The latter

comprises outside temperature, sun irradiation, and internal gain, such as loads and human-

generated heat.

Formally, the state update of the entire building can be expressed through the thermal model

function f :

x[h +1] = f (x[h],u[h], g [h],d [h]) (1.2)

Tz [h] =C x[h] (1.3)

where x[h] stands for the building thermal state, u[h] the control input of the HVAC, g [h] the

incoming sun irradiation (W /m2), d(t ) the internal gain (W), and C is a vector mapping the

building state to the bound temperatures. The vector x[h] may have a direct physical meaning

(e.g., temperature nodes) or may be the result of an advanced data-driven modeling. The

nature of the input u[h] depends on the controllability of the HVAC at hand: electrical power

consumption set point, air fan speed, or simply temperature set point.

Many methods exist in the literature to identify the thermal model function f in Eq. (1.2).

They can be categorized in three main different families [6]:

• White-box model: Physical-based equations describe the detailed thermodynamics of

the building. They include radiant and convective effects to model surface temperature

and condensation, combined heat and mass transfer to account for air movement

between zones, solar energy absorption depending on window properties, and many

other effects. White-box models generally require extensive physical analysis by experts

to derive the corresponding equations and parameters.
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Cw
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Figure 1.2 – RC equivalent circuit of zone thermal model

• Black-box model: It is a data-driven model agnostic of the underlying physics of the

system it represents. Machine Learning algorithms are used to learn the relationship be-

tween output zone state (temperature) and influencing parameters (ambient condition,

HVAC input, etc.). Black-box models require a large amount of on-site measurements

for training, and are generally dependent on the operating conditions that lead to the

collected data.

• Gray-box model: It is a simplified physical-based model using equations with physical

meanings but without direct relationships to the actual building infrastructure. While

gray-box models are less complex than white-box models, they require data to train the

equivalent model parameters, which may depend on the training conditions as in the

case of black-box models.

Resistance-Capacitance equivalent model

The most widespread gray-box model used to describe thermal building dynamics is the RC

equivalent circuit, both for simulation and control [6, 15, 16, 17, 18, 19]. In this analogy, the

electrical current (A) and the potential (V) are replaced by heat flow (W) and temperature

(K), respectively. Similarly, electric resistance (Ω or V/A) and capacitance (F or C/V) are

substituted by thermal heat resistance (K/W) and thermal heat capacitance (J/K), respectively.

The zones constituting the building can therefore be modeled as a set of equivalent RC

components, holding a physical meaning. Yet, as these parameters are generally an equivalent

representation of an aggregation of multiple effects and sub-components (many layers and

different materials in walls, air renewal and relative humidity, uneven geometry, furniture,

heterogeneous air temperature repartition, etc.), they do not directly represent the building

physically.

Fig. 1.2 shows a typical RC equivalent model used to represent a zone temperature evolution

[19]. The model considers the zone temperature to be uniform (a single point), which is a

common assumption [20]. The corresponding equations can be derived 1:

1Eq. (1.5) considers that the zone is solely connected to one other zone (interior or exterior) at temperature Te .
There may be more zones connected to it: the first term on the right in Eq. (1.5) should be duplicated for each of
them.
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Cw
dTw

d t
= (Te −Tw )

Rw,e
+ (Ti −Tw )

Rw,i
+αG (1.4)

Ci
dTi

d t
= (Tw −Ti )

Rw,i
+ (Tm −Ti )

Rm
+qhvac +qi n,c (1.5)

Cm
dTm

d t
= (Ti −Tm)

Rm
+qi n,r i +βG (1.6)

where Te , Tw , Ti , and Tm represent the external, wall, zone air, and zone mass temperatures,

respectively. The external temperature can either be the outside air temperature or another

node temperature (adjacent room, water pipes from heating system, etc.). Cw , Ci , and Cm are

the equivalent capacitance of the wall, zone air, and zone internal mass, respectively. Rw,e

represents the equivalent resistance between the wall temperature node and the external

temperature node, Rw,i represents the equivalent resistance between the wall temperature

node and the zone air, and Rm represents the equivalent resistance between the zone air

and the zone internal mass. The HVAC input acts on the zone air temperature node 2 as a

controllable source of current. Disturbances g and qi n stand for sun irradiance and internal

heat gains coming from loads and occupants, respectively. The internal heat gain is split into

conductive heat gain qi n,c influencing the air temperature directly and the radiated heat gain

qi n,r i acting on the internal mass. Sun radiation influences the wall temperature through

coefficient α and the internal mass through coefficient β.

The presented R3C3 model captures most of the dynamics of the conditioned space and

surrounding effect and is generally a good candidate for a thermal model. Simpler and more

advanced models have also been investigated in the literature [6, 15, 16, 17, 18, 19].

Commercial versus residential HVAC

HVAC systems designed for commercial buildings differ from the ones used in residential

buildings. Commercial HVAC systems are generally large modular systems made of many

sub-components to ensure proper air temperature and quality for all the conditioned spaces

it controls. Most of them are set on the roof of commercial buildings, hence forming Roof-Top

Units (RTUs). Residential HVAC system are mostly sold as a self-contained package that

cannot be upgraded. This simpler system also leverages the fact that residential buildings

have windows to naturally circulate the air.

Many possible configurations exist in commercial HVAC systems, although many large build-

ings share the same features [21, 22]. The basic principle of commercial HVAC is to provide

conditioned air to target zones, by exchanging heat through a chiller or heater plant (cooling

or heating), circulating the air using fans and to improve the quality of air through humidifiers

and filters. A multitude of distributed controllers enable local regulation of water temperature,

water flow, air flow, air temperature, and air pressure. We consider a common HVAC design

made of a chilled water loop and a conditioned loop as in [21]. The general thermal Eq. (1.5)

2This modeling assumption holds for HVAC systems that exchange heat with the air directly. This might not be
the case for the heating system acting on the internal mass such as the floor, instead of the air mass.
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can therefore be written as:

Ci
dTi

d t
= (Tw −Ti )

Rw,i
+ (Tm −Ti )

Rm
+ cp ṁ(Tc −Ti )+qi n,c (1.7)

P c
el =

qcool i ng

COP
= cp ṁ(Ta,s −Tc )

COP
(1.8)

P f
el =α3ṁ3 +α2ṁ2 +α1ṁ +α0 (1.9)

Eq. (1.7) describes the commercial zone heat exchanges, where Tc is the cooling coil discharge

air temperature (K), ṁ is the air mass flow (kg/s), and cp is the specific heat capacity of air

(kJ/kg.K). Eq. (1.8) represents the electrical consumption of the cooling system working at a

specific COP to cool down supply air whose temperature is Ta,s . Eq. (1.9) denotes the electrical

consumption of the fan where α3,α2,α1,α0 are fixed parameters. The sum of P c
el and P f

el lead

to the global HVAC power.

The supply air results from the mix between outside air and air returning from all the zones:

Ta,s = θ

∑Nz
z ṁz Tz∑Nz

z ṁz

+ (1−θ)Ta,o (1.10)

where Nz is the number of conditioned zones, Tz is the internal air temperature of zone z,

Ta,o is the outside air temperature, and θ is the mixing factor.

Residential HVAC loads mainly include HP and electrical heater. Here, HP refers to a machine

that uses electricity to extract heat from a source to release it to a sink of heat. It therefore

encompasses common air-to-air Air Conditioner (AC) (cooling mode), air-to-water HP (heat-

ing mode), water-to-water HP (heating mode), and geothermal ground-to-water HP (heating

mode). The ratio between the thermal energy transferred and electrical energy used by the HP

is called COP (>= 1), and generally depends on working conditions such as outside and inside

temperatures. Alternatively, an electrical heater converts electricity into heat (in air or water)

through direct dissipation in electrical resistance, hence displaying poorer efficiency (<= 1)

than HPs.

In case of air heating/cooling HVAC, general thermal Eq. (1.5) can be written as:

Ci
dTi

d t
= (Tw −Ti )

Rw,i
+ (Tm −Ti )

Rm
+uhvac P cap

hvac +qi n,c (1.11)

where P cap
hvac (kW) is the thermal capacity of the residential HVAC that determines the max-

imum amount of heat transfer, and uhvac is the HVAC control input variable such that

0 ≤ uhvac ≤ 1.

In case of underfloor-heating, the heat from the heating system is first transferred to the water

pipes, then from the pipes to the floor, and finally from the floor to the air zone. The general

thermal Eq. (1.5) must therefore be changed accordingly:
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Chapter 1. State-of-the-art Building Energy Modeling and Simulation

Ci
dTi

d t
= (Tw −Ti )

Rw,i
+ (Tm −Ti )

Rm
+ (T f −Ti )

R f
+qi n,c (1.12)

C f
dT f

d t
= (Ti −T f )

R f
+ (Tpr −T f )

Rp f
(1.13)

Cpr
dTpr

d t
= (T f −Tpr )

Rp f
+ (Tps −Tpr )

Rr s
(1.14)

Cps
dTps

d t
= (Tpr −Tps)

Rr s
+uhvac P cap

hvac (1.15)

where T f , Tpr , Tps represent the temperature of the floor, return water in pipe, and supply

water in pipe, respectively. The distinction between return and supply section means that the

heat transfer from the water pipe to the floor is supposed to be done at the return section,

while the heating system acts on the supply section. C f , Cpr , Cps represent the equivalent

thermal capacitance of the floor, the return water, and the supply water, respectively, while R f ,

Rp f , Rr s represent the equivalent thermal resistance of the interfaces zone-floor, floor-pipe,

and return-supply, respectively. It is also assumed that the water-closed circuit does not suffer

from any heat loss and therefore transfers entirely the HVAC heat from the source toward the

zone.

The electrical energy consumption of the residential HVAC can therefore be derived as:

Pel =
uhvac P cap

hvac

η
(1.16)

where η refers to the efficiency of the system: η = COP for HP and 0 < η ≤ 1 for electrical

heater.

An important distinction between small residential equipment and large commercial installa-

tion is the nature of the HVAC control signal uhvac . While large commercial systems consider

a continuous range of values for the control signal, smaller residential and commercial instal-

lations only permit on/off operations on the HVAC, leading to:

uhvac =
{

1 on state

0 off state
(1.17)

The COP represents a key element in modeling a HP, and multiple approaches exist to as-

sess its value depending on ambient conditions [23], both for commercial and residential

loads. The simplest solution consists in assuming a constant COP value, regardless of the

surrounding temperature conditions. However, this method under- or over-estimates the

instantaneous COP when both outdoor and indoor temperatures vary over time. Moreover,

the relative humidity also impacts the thermal performance of the HP. The following linear

model therefore better estimates instantaneous COP:

cop[t ] = cop0 +αTi [t ]+βTo[t ] (1.18)

where cop0, α, and β are coefficients derived from manufacturer datasheets, and Ti ,To are

wetbulb indoor and outdoor temperatures (◦C ), respectively. Practically, wetbulb temperatures
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1.1. Building Components Modeling

can be assessed from dry air temperature, relative humidity, and air pressure [14]. Advanced

constraints on the HP compressors and other specific parts of the HVAC system have been

modeled in the literature. However, the chapters relying on building thermal models do not

consider these advanced modeling, for reasons explained.

Hot water tanks

Apart from the HVAC system, EWH and HP for domestic-use water heating represent important

thermal loads. A hot water tank provides hot water to its user and replaces the used hot water

by incoming cold water. The incoming cold water is mixed with the stored hot water and

subsequently heated to ensure that the output water remains hot enough. A typical EWH

contains two resistive elements: a lower heating element and an upper heating element, both

connected to a controller that acts on their electrical power. Outlet water is usually taken from

the top of the tank, while incoming water is pushed into its bottom.

Extensive work has been performed to model water temperature evolution within the tank

with a smart-grid context [24, 25, 26, 27, 28, 29, 12]. Models presented in [28, 29, 12] slice the

water tank into Nl multiple layers, each having uniform temperature and interacting with the

adjacent layers. These models are referred to as the stratified model and compute the change

in temperature of layer k as follows [29]:

Ṫk (t ) = Ṫk (t )
∣∣∣
di f f

+ Ṫk (t )
∣∣∣
dr aw

+ Ṫk (t )
∣∣∣
heat

+ Ṫk (t )
∣∣∣
loss

(1.19)

where:

• Ṫk (t )
∣∣∣
di f f

= uw

ρcw d 2 (Tk−1(t )+Tk+1(t )−2Tk (t )) represents the change in layer temperature

due to heat diffusion. uw is the heat conductivity of water (K /W.m), ρ is the water den-

sity (kg /m3), cw is the specific heat capacity of water (J/K .kg ), Tk−1 is the temperature

of the layer below, Tk+1 the temperature of the layer above. This equation is modified

for the top and bottom layer.

• Ṫk (t)
∣∣∣
dr aw

= ṁ(t )
mk

(Tk−1(t)−Tk (t)) represents the change in layer temperature due to

drawing of hot water, when occupants use hot water. ṁ is the water draw rate and mk

is the mass of water in the k th layer. This term is null when no hot water is used. The

bottom layer replaces Tk−1(t ) by Ti n(t ), the incoming water temperature.

• Ṫk (t )
∣∣∣
heat

= 1
cw mk

Qh (t )
Nh

represents the change in layer temperature due to electric heat-

ing. Qh(t ) represents the thermal heat added to the system, and Nh the amount of layer

in contact with the electrical heater. This term is null for layers that are not in contact

with any heating element.

• Ṫk (t )
∣∣∣
loss

= AkU
mk uw

(To(t )−Tk (t )) represents the change in layer temperature due to losses

with tank environment. U is the thermal conductivity of the tank structure, To(t) is
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Chapter 1. State-of-the-art Building Energy Modeling and Simulation

the ambient temperature, and Ak is the tank surface of contact of layer k. The latter is

higher for top and bottom layers.

In contrast to the stratified one, models in [24, 25, 26, 27] consider the water temperature to

be homogeneous throughout the whole tank. This leads to the following simpler thermal

equation:

Cw Ṫw (t ) =Qh(t )−ṁ(t )cw (Tw (t )−Ti n(t ))− AU (Tw (t )−To(t )) (1.20)

where Tw is the tank water temperature, A is the total tank surface area, Cw is the thermal

capacity of the total water mass, and all the other parameters are the same as in the stratified

model. Eq. (1.20) can be solved to get the temperature of the hot water after d t seconds:

Tw (t +d t ) = Tw (t )e−
d t

R∗C + (1−e−
d t

R∗C )(
AU

R∗ To(t )+ cw ṁR∗Ti n +R∗Q(t )) (1.21)

where R∗ = (AU + cw ṁ)−1 (K/W) is the equivalent thermal resistance modeling the losses

due to both the outside environment temperature and the inlet cold water, when a water

draw occurs. This simplified model does not accurately capture the complex dynamics of

heat propagation due to differences in temperature within the tank itself when incoming cold

water enters by the bottom or when heating elements provide heat to the layers around the

center of the tank. Nevertheless, Eq. (1.21) allows to catch the main behavior of the tank and is

computationally simpler than solving (1.19) for each layer. Moreover, Eq. (1.19) requires more

parameters that may not be available from the manufacturer.

1.1.2 Deferrable loads

Definition 1.1.3. Deferrable load - A deferrable load (or shiftable load) refers to a load whose

starting time can be postponed, with respect to the trigger time decided by the user, without

affecting her/his comfort.

Practically, the user specifies a minimum starting time t d ,s and maximum ending time t d ,e

for each deferrable load. An external controller/automation system will then decide an

appropriate starting time t∗d . The power profile Pd of the deferrable is supposed to be given,

leading to the following definition of load power consumption:

pd [h] =
{

Pd [h − t∗d ] if t∗d ≤ h ≤ t∗d +|Pd |
0 otherwise

(1.22)

where |Pd | refers to the duration of the deferrable load. The constraints fixed by the user can

therefore be expressed as follows:

t d ,s ≤ t∗d ≤ t d ,e −|Pd | (1.23)

Typical residential deferrable loads include washing machine, washer, and dryer.

16



1.1. Building Components Modeling

1.1.3 Non-controllable loads

Definition 1.1.4. Non-controllable load - A non-controllable load (also referred to as user-

driven load or uncontrollable load) is a load whose power consumption is driven by the user,

and no automation system/local controller may influence its state.

Most of the non-controllable loads are primarily made to directly interact with the user, in

order to provide a specific service. Any intervention of an automation system would therefore

disturb the main purpose of such loads. The common non-controllable loads encountered

in residential buildings are: computer and laptop 3, entertainment load (e.g., sound system,

television, video game console), kitchen appliances, light, and other miscellaneous loads (e.g.,

vacuum cleaner, chargers).

We present here a mathematical framework to model the non-controllable load power con-

sumption. A non-controllable load power profile Pnc is made of the following three compo-

nents:

• A set Mnc = {mi } of modes mi , describing the possible power consumption level that

the user-driven load can take. The basic information are considered given by the

manufacturer, or externally identified, as:

mi =
{

label (text)

(P i ,P
i
) Watt

(1.24)

where P i and P i represent the minimum and maximum power consumption, respec-

tively.

• A set Snc = {si j } of sequences si j , representing a succession of modes the load experi-

ences in the state i → j . If i = j , then si j holds the information about the modes that

can be activated in that steady-state 4, via the transition matrix Ai . The elements Ai , j k

matrix Ai define the probability of transitioning from mode m j to mode mk . Otherwise,

when i 6= j , si j describes the modes encountered to transition from state i to state j .

This can be summarized as:

si j =
{

Ai i = j

((mi j ,1, pi j ,1,di j ,1), ..., (mi j ,n , pi j ,n ,di j ,n)) i 6= j
(1.25)

where a triplet (mi j ,k , pi j ,k ,di j ,k ) contains the k th mode mi j ,k in the transition sequence

and its corresponding probability pi j ,k and duration di j ,k .

• An ordered list Anc = {ak } of activities ak that define instances of load utilization by its

user:

ak = (sk , tk ,dk , pk , par amk ) (1.26)

3Laptop systems generally draw power from a portable battery that is connected to the outlet. Even though this
could constitute a form of storage, they are considered to be non-controllable in this thesis.

4Common steady-state sequences are on, off, and standby.
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where sk is a sequence defined by Eq. (1.25), tk is the statistical distribution of starting

time (seconds), dk is the statistical distribution of activity duration (seconds), pk is the

probability that the activity happens, and par amk are additional parameters to the

activity.

Both M and S define the load power consumption independently of its use, while the list A

describes the way the user acts on it. A load profile Pnc is therefore linked to a specific load

and user, and this mathematical formulation can directly be leveraged to model and predict

the uncontrollable load power consumption. Chapter 3 will present techniques to extract load

profiles Pnc from historical data, by identifying the various parameters of the three sets Mnc ,

Snc , and Anc . More details about non-controllable load modeling can therefore be found in

that chapter.

1.1.4 Energy storage systems

Definition 1.1.5. Energy storage system - An Energy Storage System (ESS) is an entity capable

of absorbing electrical energy, storing it in any form, and delivering back electrical energy later

on. Charging and discharging powers are considered to be positive (or null) and negative (or

null), respectively.

An ESS is an important component to deal with the mismatch between production and

consumption power. Unlike air/mass thermal storage 5 presented in Section 1.1.1, an ESS

stores electrical energy in a certain form and part of it can later be retrieved as electrical energy.

The most common ESS include:

• Electrochemical battery (rechargeable battery): electrical energy is used to move ions

from one electrode to another (charging), and the opposite operation generates elec-

tricity (discharging). Lead-acid batteries have a huge share of the automotive market

due to their high power-to-weight ratio. Lithium-Ion (Li-Ion) batteries hold a higher

energy-to-weight and a slower self-discharge and are used for portable electronics and

electric vehicles. The typical round-trip efficiency is 80-90% for Li-Ion batteries, against

70-75% for lead-acid.

• Hydrogen fuel cell: the conversion of chemical energy contained in the hydrogen and

oxygen is performed through a pair of redox reactions to generate electricity (discharge).

Reversely, in charging mode, electricity is used to perform the electrolysis of water

produced during the discharge, leading to hydrogen. Typical round-trip efficiency is in

the range 30-50%.

• Pumped hydroelectric energy storage: electrical energy is transformed into gravitational

potential energy of water by pumping it to a higher altitude (charging). Alternatively,

5Ice storage is also found in large buildings, acting as an efficient means for cooling; it is not covered in this
thesis.
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Figure 1.3 – Battery KiBaM model

electricity can be generated by lowering that potential energy (discharging). Typical

round-trip efficiency is in the range 70-80%.

• Flywheel system: electrical energy is converted into rotational energy by accelerating

a rotor enclosed in vacuum at high-speed (charging). The deceleration of the rotor

generates electricity (discharging). Latest technology using magnetic bearings and

carbon-fiber composite rotor allows a round-trip efficiency of 85%.

The simplest model used in the literature describes the State-of-Charge (SoC) evolution in a

first-order integrative equation [6, 30, 31]:

xb[h +1] = (α xb[h]+ηc uc [h]+ 1

ηd
ud [h]) d t (1.27)

ub[h] = uc [h]+ud [h] (1.28)

where xb[h] represents the SoC of the battery (kWh) at time h, uc [h] and ud [h], the charging

and discharging power (kW) at time h, respectively, αb (h−1), the self-discharge coefficient, ηc

and ηd , the charging and discharging efficiency, respectively.

Battery charging/discharging power and SoC are physically bound:

C ≤ xb[h] ≤C (1.29)

0 ≤ uc [h] ≤ P (1.30)

0 ≥ ud [h] ≥ P (1.31)

where C and C represent the minimum and maximum SoC (kWh), P and P the maximum

charging and minimum discharging power (kW), respectively.

Advanced modeling of ESS

The Kinetic Battery Model (KiBaM) model [32, 33] provides further equations to better catch

advanced phenomena happening in batteries, through chemical kinetics processes. It uses
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two wells to represent the total storage capabilities C : the available-charge capacity bC and

the bound-charge capacity (1−b)C . As depicted in Fig. 1.3, the rate at which the charges

flow between the two wells depends on the conductance k (s−1) and the height difference

of the two wells. The discharging/charging power P influences only the charges E1 in the

available-charge well. Authors in [32] further proved that the KiBaM model is actually the

first-order simplification of the continuous diffusion model.

From the KiBaM basic equations, the discrete expressions of the two wells of energy can be

derived as [33]:

E1[h +1] = E1[h] ·e−k·d t +C ·b · (1−e−k·d t )+η ·P [h] · (1−e−k·d t )+b · (k ·d t +e−k·d t −1)

k
(1.32)

E2[h +1] = E2[h] ·e−k·d t +C · (1−b) · (1−e−k·d t )+η ·P [h] · (1−b) · (k ·d t +e−k·d t −1)

k
(1.33)

E [h] = E1[h]+E2[h] (1.34)

where d t is the discretization period and η is either the charging efficiency ηc or discharging

efficiency 1
ηd

, depending on the sign of P [h].

From the KiBaM model the maximum charging and discharging powers can be derived that

depend on the current state of the system:

P di sch
max [h] = k ·E1[h] ·e−k·d t +E [t ] ·k ·b · (1−e−k·d t )

1−e−k·d t +b · (k ·d t −1+e−k·d t )
(1.35)

P ch
max [h] = −k ·b ·C +k ·E1[h] ·e−k·d t +E [t ] ·k ·b · (1−e−k·d t )

1−e−k·d t +b · (k ·d t −1+e−k·d t )
(1.36)

Equations (1.32) and (1.33), together with equations (1.35) and (1.36), define the energy-

oriented KiBaM model of the building battery.

Lead-acid battery represents the main target of the model. When analyzing the current and

voltage, the model cannot be applied to Li-Ion batteries. However, the KiBaM model is valid

for that kind of battery if one looks solely at the energy exchange occurring in the system [33].

Electric vehicles

EVs rely on a large electrochemical rechargeable battery to power the mechanical system.

They require a substantial amount of electrical power to charge the battery in a relative short

amount of time and must therefore be appropriately coordinated. It is assumed that the EV

battery can be used in charging and discharging mode, when plugged-in to the building. In

addition to the dynamic equations modeling the SoC, the following constraints are added:
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1.1. Building Components Modeling

ub[h] = 0 ∀h ∈Tout (1.37)

xb[tb,a] =Cb,a (1.38)

Eq. (1.37) prevents the battery from being used when it is not physically present, in which

Tout represents the time periods when the EV is not available at the building site. When the

EV arrives at the building charging facility, the corresponding SoC is modelled in Eq. (1.38) by

forcing xb to the arrival SoC Cb,a at the arrival instant tb,a . Models and statistical distributions

like the ones used in [34] can statistically represent arrival time tb,a , arrival SoC Cb,a , and

disconnected periods Tout .

1.1.5 Local renewable energy production

Definition 1.1.6. Local renewable energy system - A local renewable energy system refers to

a small-scale system converting a source of renewable energy into electrical energy.

Local RES sources commonly encompass solar and wind at the building/community scale 6.

In this thesis, we focused mainly on PV modeling from incoming solar irradiation and ambient

temperature.

Photovoltaic energy production

Electrical energy generated from solar radiations is the most common source of renewable

energy encountered at the building level. It can easily be harnessed on rooftops of dwellings

or commercial buildings. This energy source is also commonly exploited in electrical grids

and microgrids, concentrated in one point to inject power in the grid infrastructure.

The PV cell is the basic element of the PV system. Its crystalline silicon material reacts to

high-energy photons coming from solar radiation, hence allowing electrons to flow in the

semi-conductor and through an external circuit. The combined serial and parallel connection

of multiple PV cells produces a PV array (or module) that can practically be used in the

aforementioned electrical systems.

The PV array is a two-terminal active electrical component whose output voltage V dictates

the output current I, depending on the connected load and incoming radiation intensity. The

corresponding non-linear I-V curves define the characteristics of the PV array, from which the

instantaneous output DC power of the module can be derived. At any instant, it is suitable

to always harness as much power as possible from the PV system, defined as the maximum

product between I and V. The Maximum Power Point Tracker (MPPT) controller aims to fulfill

this task, and ensures an optimal couple (I,V) against any input/output conditions. Most of

the MPPT systems are integrated within the PV DC/AC inverter.

PV array modeling has received much attention, leading to the establishment of the well-

6Hydraulic, geothermal, and biomass are not considered as they generally require a larger plant to exploit them.
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Figure 1.4 – PV one-diode model: equivalent circuit

known one-diode and two-diode models [35, 36, 37]. Fig. 1.4 depicts the one-diode model

equivalent electrical circuit, involving a current source driven by solar radiation, a diode,

and two resistances Rsh (Ω) and Rs (Ω). The diode models the semi-conductor nature of the

module, and the resistances account for the losses:

I = IG − I0(e−
q(V +Rs ·I )

nkTc −1)− V +Rs · I

Rsh
(1.39)

where IG (A) is the solar-driven current, I0 (A), the reverse saturation current, q (C), the

charge of the electron, n, the ideality factor, k (J/K), the Boltzmann constant, and Tc the cell

temperature. The use of well established (I,V) curves by the PV array manufacturer enables

the identification of the parameters in Eq. (1.39).

As one looks solely at the output power model, a simplified model can be derived directly from

the knowledge of MPPT maximum power at nominal conditions [36]:

pg [h] = ncel l s Pn
G[h]

Gn
(1+αi ∆T [h])(1+αu ∆T [h]) (1.40)

where ∆T [h] is the cell temperature difference from standard condition, Gn is the nominal

radiation (W /m2), αi and αu are the temperature sensitivity (%/◦C ) of the PV output current

and voltage, respectively, ncel l s is the number of modules, and Pn (W) is the nominal MPPT

output power.

Such a model neglects the non-linearities of Eq. (1.39) as well as losses. Yet, it is not accurate

enough to be used in a MPPT controller or module characterization; it is suitable for the

purpose of simulating building PV energy production at the system level.

1.2 Existing Building Simulation Tools

Modeling and simulating (smart-)buildings in an appropriate way is of paramount importance

to characterize and analyze the complex relationships between its stakeholders. Many tools

exist to simulate energy in buildings, notably EnergyPlus [38], DOE-2 [39], TRNSYS [40], and

ESP-r [41]. Primarily tailored to accurately simulate the complex thermodynamics of buildings,

22



1.2. Existing Building Simulation Tools

they constitute many engines to model an individual building energy consumption analysis.

EnergyPlus is an open-source whole building simulation program developed by a collabo-

ration between National Renewable Energy Laboratory (NREL) and Department of Energy

(DOE) national laboratories. It takes input from the user files on the building’s geometry,

construction materials, user actions and schedules on internal loads, weather, and other

thermal characteristics. Based on these data, the tool then calculates the necessary heating

and cooling loads to ensure thermal comfort as well as other useful design information. The

software is based on many advanced models, such as heat balance of radiant and convective

effects, detailed HVAC system, layer-by-layer heat balances in windows, and even performs

atmospheric pollutant calculations. It produces a set of proprietary files that an expert can

use for a complete building energy consumption analysis. Similar to EnergyPlus, the software

DOE-2 developed at Lawrence Berkeley National Laboratory (LBNL) is the core kernel for

other widely used user-friendly software like Home Energy Saver [42] and MULTEA [43].

ESP-r is an open-source performance modeling software for energy in buildings, created by

the University of Strathclyde, widely used in consultancy and research. It solves conservation

equations on finite volumes discretizing the whole system and follows a holistic approach

to precisely model the building (heat, air, moisture, light, electrical power flows, ...). While it

offers a range of interesting features, the tool requires an expert user for complex tasks.

TRNSYS is a commercial, flexible software environment designed at the University of Wiscon-

sin to simulate transient systems. Thermal and electrical energy systems being the main target,

the applications can go beyond thereof. The core is coded in Fortran, but the particularity of

the tool lies in the modular components that can be added (typically in C, C++). Many plug-ins

gravitate around the TRNSYS kernel, such as a Graphical User Interface and a module for 3D

modeling.

Despite their wide acceptance and proven accuracy in single building energy simulation,

these tools are not directly suitable for co-simulation in a building-to-grid simulation context.

They were not primarily designed to connect to an external controller or energy management

system; instead, they were built as a monolithic software tailored solely for building energy

analysis. Hence, the research community developed modules like BCVTB [44], MLE+ [45],

and OpenBuild [46] that allow to jointly use advanced simulation tools like EnergyPlus and

user-friendly modeling languages such as MATLAB or Modelica. Authors in [47] also developed

a co-simulation interface to bridge the TRNSYS software with Simulink. A general-purpose

mathematical environment like Matlab offers librairies like Simscape Block [48], a user-friendly

hierarchical set of blocks to simulate the building thermal behavior. Likewise, Modelica

language comes with an open-source suite of tools and packages like [49] that enable advanced

continuous building modeling. Compared to the aforementioned single-purpose solutions,

environments like Matlab and Modelica are already widely spread in the engineering field, with

their users familiar to the scripting and modeling languages. In addition, the well-documented

libraries and the active community promote their use and adoption.

Multi-Agent Simulation (MAS) has recently been applied to smart-buildings to simulate com-

plex systems through the decentralized simulation of their individual actors [50]. Authors
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in [51] modeled the building as a set of distributed devices that work together to serve the

purpose of its users. They developed a multiagent system called CASA to simulate the complex

relationships between loads, sensors, actuators, user actions, and user comfort/security. Simi-

larly, the UMASS project [52] leverages MAS to simulate coordination of entities and control

logic in an intelligent home. In [53], multiple agents implement equivalent thermal RC model,

PV generation, and battery storage taking into account the uncertainty on electricity prices.

The Nottingham Multi-Agent Stochastic Simulation platform (No-MASS) was presented in

[54], along with a thorough review of MAS applied to occupant behavior modeling. Using

Functional Mock-up Interface (FMI), the tool provides EnergyPlus with user behavior sched-

ules that result from internal agent-based simulation. Beyond MAS-based solutions, it is also

worth citing projects and works like CASS [55], HomeSim [56], and HybridSim [57], allowing

innovative architecture to implement offline building simulation.
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2 An Integrated Simulator for Smart-
Buildings

Simulation of building energy consumption represents the cornerstone in building-to-grid

research. Therefore, a suitable building simulation tool is required to appropriately capture

their main features and model their flexibility potential, with a reasonable complexity and

computational time. As Building Data Management Systems (BDMS) become increasingly

popular, leveraging their infrastructure leads to the design of a new kind of building simulation

environment.

The main highlights and contributions of this chapter are:

• The building Virtualization Engine: a modular simulation and emulation tool closely

integrated within the widespread BDMS. Distributed micro-threads making up the

core of the engine interact with each other to reproduce physical building behavior, by

implementing common building component models. The resulting tool is open-source

for the research community.

• A detailed realistic test case of an instance of the Virtualization Engine, based on the

Swiss Minergie standard for energy efficient buildings. It emphasizes the modularity of

the tool through the simulation of loads, user behavior, storage, and generation.

Related publications:

[58] G. Lilis, O. Van Cutsem, and M. Kayal, "Building Virtualization Engine: a Novel Ap-

proach Based on Discrete Event Simulation," 2nd International Conference on Event-

Based Control, Communication, and Signal Processing, 2016.

[59] G. Lilis*, O. Van Cutsem*, and M. Kayal, "A High-Speed Integrated building emulation

engine based on discrete event simulation," Journal of Systems Architecture, vol. 92, pp.

53-65, 2018

*the authors contributed equally.
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2.1 Introduction and Motivation

Carrying out offline simulations of building energy consumption is a time and resource con-

suming task. It requires expert knowledge, to model the building geometry, wall & window

properties, HVAC system, loads, occupant behavior, and to identify the corresponding param-

eters. Many smart-buildings host a BDMS, a software that collects and dispatches data among

all the smart-devices in the building to expose them to high-level applications [1, 60]. Building

metadata and historical data collected over time is therefore readily available for a subsequent

identification of model parameters used in classic offline simulations. The data extraction,

processing & analysis, and formatting for a later offline simulation is an expensive process.

The external simulator generally also requires advanced expert knowledge and/or a license.

In this chapter, we present an innovative simulation engine that seamlessly plugs into existing

BDMS software, hence avoiding the aforementioned drawbacks of off-line simulations. The

developed tool, called Virtualization Engine (vEngine), consists of a module that replicates

building components behavior that are not physically present, through the use of a set of

distributed (micro-)processes. Completely agnostic to the virtual nature of the simulated

virtual entities, the BDMS handles their data and acts on it the same way it does on their

physical counterparts. Two different purposes of the vEngine exist: emulation or simulation

of building components. In emulation mode, the simulated entities run in real-time along

with the physical infrastructure it may interact with. A full description of the emulation mode

mechanisms can be found in [59, 13]. In simulation mode - the focus of this chapter -, the

simulated entities are decoupled from the real infrastructure. The tool has been enhanced

towards an autonomous simulation platform, that takes advantage of building metadata in

existing BDMS and the connection of existing advanced applicationq such as building EMS.

Freely accessible to the community, the corresponding open-source code can be found at [61].

The main advantages/innovations of the tool can be summarized as follows:

• BDMS integration: the simulation tool directly integrates the BDMS, thus removing

the need for an external tool. As described above, these tools are generally proprietary,

non-modular, monolithic, or a combination of these features. On the contrary, the close

connection with the BDMS allows to use local entity metadata and timeseries data and

to better characterize occupant behavior.

• Light and open source: a light and modular engine architecture was sought. The result-

ing tool is light, ideal for low-resources hardware, and its modularity eases the update or

addition of new models. Open source, it is entirely developed in Python that enjoys a

large community. This removes the burden of learning a new language solely for the use

of the simulation.

• Building-to-Grid research: the engine and its models do not intend to compete with

state-of-the-art monolithic energy simulators like EnergyPlus. Instead, it suits behav-

ioral analysis and multi-buildings simulations in which lower accuracy is acceptable,
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while being fast thanks to its light distributed architecture. Yet, the user is free to develop

more complex models for advanced building simulation.

Sharing similar architecture and purpose as the vEngine, authors in [62] presented a service-

oriented simulation architecture for intelligent building management. Their distinctive feature

is the modularity of the open platform which allows different users to participate in and con-

tribute to the development. The service-like architecture permits an effective and simplified

introduction of new services without entangling the developers with the complexity of the

BDMS. Their simulation design integrates both real and simulated devices like the architecture

presented in this paper. However, they only do so at the web service level. In addition, that

work does not study the simulation models but solely defines the service-oriented framework,

leaving the model design to the developers. On the contrary, this work proposes an optimized,

yet scalable and expandable solution for integrating real devices along with simulated ones at

the network, instead of the web layer. Additionally, it not only defines the models’ architecture

but also implements and validates a comprehensive list of models through a realistic test case.

The rest of this chapter is organized as follow. Section 2.2 presents the innovative simulation

engine developed in this thesis, along with the various mechanisms making up its logic. As an

illustration, Section 2.3 details a test case based of the Swiss Minergie Standard, highlighting

how the tool can be used in practice. Finally, Section 2.4 concludes the chapter and discusses

further applications of the engine.

2.2 Virtualization Engine: an Integrated Building Simulator

The overall architecture of the developed vEngine is depicted in Fig. 2.1. Seamlessly connected

to the BDMS, the engine acts as a virtual middleware by emulating building components

behavior, like their physical counterparts. Two different parts make up the engine, namely

the Virtual Middleware (vMid) and the pool of Virtual Entities (vEntities). On the one hand,

the vMid handles the startup of the building components simulation, ensures their proper

behavior and intercommunication, and connects it to the existing BDMS. It plays the same

role as a physical middleware, apart from the virtual nature of the entities it communicates

with. On the other hand, the pool of vEntities is a set of distributed elements that individually

implement specific models of building components. Their combined actions lead to the

simulation of a virtual part added to the existing building or the whole building itself.

Generally speaking, a middleware can be seen as a delegate of the underlying hardware (e.g.

measurement sensors, actuators), bridging low level components with higher level software

and services. In this context, the vMid is entirely interoperable with their physical homologues

at the BDMS premise. Instead of dealing with a dedicated hardware, the vMid collects data

from software-emulated entities - the vEntities - and transmits them upward to the BDMS or

internally to targeted vEntities. Alternatively, commands coming from the BDMS are passed

to the pool of vEntities through the vMid. The routing and message forwarding processed is
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Figure 2.1 – vEngine architecture and connection with the BMS

ensured by the sub-module Message forwarder & router.

Upon creation of the vMid, the Startup, Backup & Shutdown module spawns all the vEntities

linked to that specific vMid. The metadata and model parameters necessary for the simulation

of building entities are provided by the BDMS database, stored in the usual entry linked to

the virtual entity. As the module is fully set up and running, the performance of the pool

is continuously monitored by the Health Check module, especially important in emulation

mode. In simulation mode, the Simulation Coordinator (vCoordinator) module ensures the

correct orchestration of the distributed model simulations.

From an implementation standpoint, the aforementioned modules and the pool of simulated

entities run in separated processes. This allows a better parallelism when the host hardware

permits it as well as enhanced scalability. For communication, sets of SUB/PUB sockets are

used to enable two-way communication between the vMid and the pool of vEntities, as well as

among the vMid sub-modules. The library ZeroMQ practically enables a fast communication

[63]. Although perfectly compatible with the external BDMS protocol, an internal messaging

protocol has been created for structured communication between the vMid and the vEntities.

The exchanged messages build on a type of multiple-frame packet, called multi-part message,

that allows message forwarder and router to be agnostic to the actual content of the message.
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Despite sharing some similarity with multi-agent systems, the presented simulator is slightly

different. Indeed, single virtual entities are more basic, generally passive and their light

implementation facilitates a simple, fast individual model. In agent-based simulation, an agent

normally holds intelligence such as rule-based decisions or local optimization algorithms

[64]. Moreover, the overall evolution of the system solely depends on the interaction between

various agents. They are also more computationally demanding and exchange more messages.

On the contrary, the vEntities are preprogrammed input-to-output objects, free of methods

specific to agents. Instead, an external application leverages their flexibility to control them

and the responses of all the entities form the overall simulation.

From a practical aspect, the use of Python as the main language to implement the engine

does not add a significant overhead. Indeed, most of the sensitive parts and bottlenecks are

coded in C++, meaning that Python solely binds them all. This therefore does not undermine

the many advantages of the language, namely its simplicity, dynamic typing, and the large

community around it. They lead to a developing time greatly reduced and easier use of the

tool.

2.2.1 Virtual entity concept

Definition 2.2.1. Virtual Entity - A virtual entity (vEntity) is a basic block of the Virtualization

Engine, simulating the behavior of a building’s component through the use of a model and

data coming from others vEntities.

Whilst the vMid connects the vEngine to the external BDMS and ensures communication with

the existing infrastructure, the pool of vEntities simulates the behavior of elements that are not

physically present. They constitute the fundamental elements of the tool, and are similar to the

notion of virtual sensors presented in [55]. The simulation is done by implementing models

described in Section 1.1 through a generic process. Fig. 2.2 depicts this generic flowchart

that every virtual entity experiences during its lifetime. All going through the same generic

flowchart, the vEntities differentiate themselves by their input/output signals, equations

linking these signals, and their parameters (model or simulation). This flowchart applies

specifically to the behavior in simulation mode. Interested reader can further read about the

behavior of a vEntity in emulation mode in [13].

Right after being spawned, the vEntity reads the parameters that were given to it and sets up

its model structures. This includes intermediate state variables instantiation, initial value

assignation, and parametrization of useful function for a faster online utilization. Then, the

vEntity waits until it receives a specific signal with simulation context parameters, such as

simulation time step or the virtual starting timestamp of the simulation. This completes the

steps ’0’ in Fig.2.2. The entity then reaches the first step ’1’ of the main infinite loop, that

consists in sleeping until reception of a signal of type "simulation sync ." Once received, it

evaluates the parameter to decide whether to stay alive. In that case, it processes the data

messages that were encapsulated with the "simulation sync" one to update internal state
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variables/parameters. Subsequently, in the second phase of step ’2’, the entity updates internal

state based on its constituting equation, intermediate variables, and incoming data.

Among the internal state variables, some values are meant to be shared with other entities

(e.g., power state, stored energy, occupancy binary value). Whether such quantities must be

communicated up to the vMid is decided at step ’3’, by comparing output variable values with

given thresholds. If a new value must be emitted, a packet is created that encapsulates the

data along with the type of information it represents. Two types of data signal can be sent up

to the middleware from any virtual entity:

• Sensor value: contains the vMid ID as message recipient, the type of the measured

quantity (e.g., power, water flow), and the data itself.

• Actuator command: contains the vEntity ID it aims to target, the type of actuation it

intends to enforce (e.g., switch on appliance, set temperature setpoint, reduce water

flow), and actuation parameters. The actuation parameters depend on the type of action

(e.g., water flow value or valve state, temperature set point value).

This packet structure is similar to the one sent by physical entities connected to the BDMS.

30



2.2. Virtualization Engine: an Integrated Building Simulator

One exception is the action of the virtual user, who must act on the surrounding environment

to simulate reality. If she/he interacts with physical components, the signal sent has to comply

with the specific component, but there is no restriction on the virtual recipient. In that

case, actuation parameters may include simulation-specific data that would not exist in their

physical counterparts. For instance, a non-controllable load does not have physical actuators,

but their virtual version requires one to receive on/off commands from the (virtual) user.

Upon completion of sending events to upper-level vMid (or after internal state update), the

vEntity prepares itself to go back to sleep mode. Before doing so, it computes the time interval

with the next time instant it will have to wake up (step ’4’). Given the threshold on the output

data change for simulating measurement precision, a virtual entity might not need to be

waken up too often, hence wasting Central Processing Unit (CPU) resources. It can therefore

specify this time interval to the vCoordinator when sending the synchronization signal up to

the vMid, at step ’5’, specifying that it has completed its steps.

Lastly, the vEntity might be asked to stop and shutdown (leading to step ’6’). Instead of being

externally killed, the responsibility lies on the distributed entities to give them the opportunity

to save the internal state that might be useful for a later reincarnation.

Practically, a vEntity is an instance as a micro-thread (uTread), from the Python library ’green-

let’ 1. The main advantage of using low-level uTread instead of Operating System (OS) threads

lies in the faster context switching from one uTread to another [65]. As many vEntities coexist,

this is a key feature to increase simulation speed. However, dealing with uTread requires

manual management of the proper switching between entities, which is either ensured by

the Health-check module (see Appendix A.2.1) in emulation mode, or the vCoordinator in

simulation mode.

Every vEntity inherits from the same root (abstract) class, called "vEntity", that implements

the aforementioned generic step flow. Some functions are generic, e.g. the definition of output

variables, change threshold, and outgoing event generation based on internal value change.

Mandatory simulation and model parameters are therefore required for all sub-classes of root

one. The specialization of each vEntity (sub-classes) to give them their identity is done through

the definition of a set of (abstract) functions in the inheriting classes, called in the generic

"run" function of the root class. These functions include the initialization step, the incoming

message decoding & processing, the internal state update logic (generally implementing

equations with a physical meaning), and adaptation of sleeping time.

2.2.2 Simulation coordinator

Beyond the emulation purpose of the engine [59, 13], the tool holds significant values for carry-

ing offline building simulations. When dealing with simulation instead of real-time emulation,

1A ’greenlet’ is actually a more primitive version of a micro-thread, but is referred to as thereof for the sake of
clarity.
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the notion of time changes as the simulated entities perceive a virtual time step, generally

larger than the real one. The vEngine must therefore be adapted to integrate simulation capa-

bility: this is ensured by the vCoordinator, a module integrated into the vMidManager. The

resulting simulator is closely coupled with the BDMS and can directly leverage building meta-

data and historical timeseries data. This constitutes a valuable advantage over a traditional

offline simulator because it removes the burden of exporting existing data and formatting

them to make them compatible with the external simulator.

In practice, the vCoordinator communicates with the pool of uTread via a specific type of

signal to appropriately orchestrate simulation operations and the exchange of data within the

pool. These signals have already been mentioned in the previous section, at step ’0’, ’1’, and ’5’,

to start the vEntities, synchronize their wake-up instants, and allow them to indicate they are

ready for the vCoordinator, respectively. As the developed classes must be compatible for both

emulation and simulation mode to avoid unnecessary double work, one must carefully add the

layer of simulation mechanisms at the vEntity premise with the help of the vCoordinator. For

instance, any incoming event containing data would wake-up the vEntity. Although desirable

in emulation mode, this behavior would wrongly wake-up an entity in simulation mode and

make it skip one simulation step, leading to the erroneous data ahead of time for other entities.

All the emitted events must therefore go through the vCoordinator that will orchestrate the

way they will be dispatched. A specific order must be respected, as most of vEntities models

depend on data coming from other vEntities: the vCoordinator will therefore trigger the

vEntities according to a dependency table, in order to collect data from some of them before

launching the ones that need it. That table is reconstructed from the dependencies of all the

vEntities in the pool, an information stored in the BDMS.
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From the dependency table, the vCoordinator will start constructing a scheduling table, that

maps each vEntity to the vEntities they still depend on to be triggered. A simulation step

therefore starts by triggering all the vEntities that do not depend on any other (data provider).

Then, the rest of the simulation steps are dictated by the logic depicted on Fig. 2.3. Whenever

a new message is received from a vEntity k, it first checks the nature on the message:

• Message type "data" means the vEntity k just emitted a new event that might interest

other entities. This event is stored in the data table, repeated for all the vEntities that

subscribed to it (blue boxes for entities i and j ) 2. In addition, the incoming data will

remove the ID k in the scheduling table (red boxes). The vCoordinator will then trigger

all the vEntities that have empty remaining dependencies (entity j in the example) in

the scheduling table.

• Message type "simu ready" means that the vEntity k just completed its simulation round

and is ready for the next one. This is stored in the entity ready table. If the latter reaches

its full size n, this means the simulation round is finished: the scheduling table is reset,

and the same logic is started over again, with simulated time incremented.

A newly triggered entity receives the special signal of type "start simu-step", along with the

data events accumulated in the data table, from all the vEntities it subscribes to. The vEntity

will therefore process all these incoming events to update its internal states, and subsequently

follows the steps explained in the previous section.

The presented logic does not take into account external actors in the simulation, such as appli-

cations leveraging the collected BDMS data to act on the pool of vEntities. A typical example

involves the building automation system that could schedule deferrable loads at appropriate

low prices moment or switch off unused loads in unoccupied rooms. The vCoordinator must

therefore have a list of these external applications, and will wait for a signal coming from them

just before starting a new simulation step in the pool of vEntities. Practically, they will be

inserted in the scheduling table as negative IDs and subscribe to all the actors in the pool. This

ensures that external applications wait for the simulation step to be entirely completed and

will naturally block the next simulation step until all the external applications have sent their

"simu ready" signal, along with their control data signal

Blocking dependency removal

The creation of the dependency table from individual vEntities dependencies might lead to

unwanted deadlock cycles, as illustrated in Fig. 2.4 (left). If the dependency table is used

2A simulated entity might send multiple events or send targeted data to a specific entity, in which case the
newly emitted data must be stored either in a unique row in the data table or with the corresponding type of data.
In the latter case, the receiving entities will filter out the data, as they did not subscribe to that specific type. For
instance, a single virtual sensor might send humidity and occupancy data, and another virtual temperature sensor
might just be interested in the presence of the user.
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Figure 2.4 – Cycle removal illustration in vCoordinator (left) BMS representation of vEntity
relationship (right) use of a buffer by the coordinator to remove deadlock cycles

directly as such in the algorithm of vCoordinator previously described, this would cause

the vE3, vE4, vE5 to never be triggered. This phenomena happens in models with mutually

coupled equations, such as the ones used to describe the output of temperature sensors of

adjacent rooms.

An additional structure called non-blocking dependency table is therefore added in the de-

scription of each vEntity relationships, stored in the BDMS. This table describes the data that

an entity subscribed to without blocking its execution. Upon reception of newly emitted data

coming from vEntity k, the non-blocking dependency is used to store the emitted data to an

auxiliary buffer, sharing the same structure as the data table. When an entity is triggered, it

only receives the blocking data during its current execution, and will receive the content of the

buffer at the next time step. Fig. 2.4 (right) illustrates the use of this buffer to prevent cycles in

the dependency table.

Event-based simulation mode

Fig. 2.3 and the corresponding description of vCoordinator logic depict a generic synchronized

simulator in which every simulation participant is woken up at each simulation time step.

However, a vEntity does not necessarily need to wake up with a specific frequency, as they

might have no new event to produce. A too frequent wake-up schedule might therefore lead

to too many useless CPU acquisitions and simulation message exchanges, thus slowing down

the overall simulation.

To deal with this issue, vCoordinator also allows for an event-based simulation, a means

by which vEntities are just solicited whenever a new event is produced. Following [57], the

idea consists of leveraging the ∆t information sent by every vEntity at step ’4’ and ’5’ of their
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Algorithm 1 vCoordinator: event-driven targeted scheduling
1: t ← 0
2: t s ← [t , t , ..., t ]
3: procedure UPDATE_SCHEDULE(id k, interval ∆t )
4: t s[k] ← t +∆t
5: end procedure
6: procedure PICK_NEXT_VE

7: Spassed ← {k} ∀k s.t. t ≥ t s[k]
8: if passed_set is empty then
9: Str i g ← argmin

k
(t s)

10: t ← t s[k] for any k ∈Str i g

11: return CONSTRUCT_SCHEDULE_TABLE(Str i g )
12: else
13: return CONSTRUCT_SCHEDULE_TABLE(Spassed )
14: end if
15: end procedure

flowchart (cf. Fig. 2.2), at the end of their CPU use. Each uTread computes this ∆t as the time

interval from the current simulation time to the next one when they need to get the CPU again.

Such a time interval depends on internal models, the sensitivity threshold to emit output

events, and predefined timeseries data. For instance, a virtual ESS of capacity C (kWh) that

has a resolution of 1% on its output sensed SoC and a current charging power P (kW) will

compute its time interval to the next wake-up time as follows:

∆t = 3600∗C

P
∗0.01

Yet, a virtual entity can be woken up before their specified d t whenever they receive a message

from another entity/BDMS from which they subscribe to. For instance, in the previous

example involving the ESS, a new input power might be enforced by the BDMS, in which case

the vEntity would have to acquire the CPU to process it.

Picking the next entities to run is decided by Algorithm 1, in function pi ck_next_ve(). It

returns a reduced scheduling table that will be used the same way as it was presented through

Fig. 2.3. The vector t s contains the desired scheduled instant of all the entities, which is up-

dated through upd ate_schedul e() whenever an entity k - in the simulation pool or external

application - sends a "simu ready" signal along with its ∆t . Method pi ck_next_ve() starts by

looking at entities that might have a scheduled time inferior to the current time t , in which

case they must be scheduled immediately. Even though this case does not arise in a normal

situation, this is a robust technique to account for unexpected behaviors. The corresponding

entities are stored in Spassed . In normal execution involving Spassed to be empty, the entities

with the lowest trigger instant are selected and stored in Str i g . The next simulation time

t instant jumps directly to the scheduling time of this selected set of entities. Finally, the
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Figure 2.5 – vEntities implemented in the current version of the vEngine

scheduling table is constructed from the selected Str i g , by looking at all the actors interested

in events emitted by entities in Str i g and adding them to the table. Alternatively, if Spassed

contains values, they must be triggered without updating the current time.

In this configuration, the current simulation time t is therefore driven by the scheduled time

t s of the next picked entities, instead of being periodically incremented. This information

must be transmitted to every actor involved in the simulation, whenever they are woken up by

a "start simu-step" signal.

2.2.3 Simulated entity models

Many vEntities have been developed and can be instantiated to emulate/simulate building

components commonly found in a building. They all inherit from the root Python class "vEn-

tity", and other inheritances are found in some sub-classes. Fig. 2.5 depicts the hierarchical

classification of the developed virtual entities. Top-level categories have already been de-

scribed briefly in [59, 13], along with their pseudo-code logic. They represent the core pieces

of a generic building emulation/simulation and can be categorized as follows:

• vSensor (Virtual Sensor): data measurement constitutes the most fundamental action

found in a smart-building. A vSensor represents the virtualization of this functionality

and generically maps input variables I to output variables O . By default, a linear map-

ping {x1, ..., xn ∈ I , y ∈ O : f (x1, ..., xn) → y} can be given to the class vSensor. Alterna-

tively, a filename can be provided when spawning a vSensor instance to produce specific

data to other entities from a static file. To each of the output in O is mapped a sensitivity

threshold that characterizes the sensor resolution. The virtual sensor therefore stores
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incremental changes and emits event only when the change becomes significant.

• vActuator (Virtual Actuator) - actuating allows a remote control of building component

state (load power, blind position, temperature setpoint, etc.). A vActuator listens specif-

ically to commands that modify an output state. The generic form of the vActuator

takes as parameters a set of possible commands I and a set of output variable O . The

mapping between I and O is left to the user.

• vLoad (Virtual Load) - the load is the main power consumption actor in the building,

and vLoad models a load as a combination of a vSensor to emitting power data (W)

and a vActuator to receive the ON/OFF/DIMMING command (as represented by the

gray lines from vLoad in Fig. 2.5). The generic vLoad reads as parameter a load profile

structures P defined in Section 1.1.3, to drive the emitted power and the incoming

commands.

• vStorage (Virtual Energy Storage System) - the second actor that consumes power -

or provides it - at the building premise is the ESS, modeled by the vStorage. It uses a

vSensor to sense both charging/discharging power (W) and the SoC (%), and the generic

vStorage class implements the simple integrative model to update sensed battery SoC.

• vGenerator (Virtual Local Energy Generator) - any power generated locally is model

through a vGenerator that implements a vSensor to sense the generated power (W).

The generic vGenerator class is therefore no more than a generic vSensor with a lin-

ear mapping between outputs and inputs, but the user can model advanced energy

generators.

• vUser (Virtual Building Occupant) - the building and its components all serve its oc-

cupants, modeled as a vUser. The generic vUser class collects all the loads/actuators

profiles P it acts on in order to schedule the corresponding activities A . In its simpler

form, the vUser is therefore an event scheduler, sending ON/OFF signals and dimming

values throughout the simulation time.

Beyond these high-level families of entities, many important advanced sub-entities have been

further developed to refine building simulation. They are briefly reviewed in this section, and

interested readers can get further details in the documented code available at [61].

Advanced virtual sensors and actuator

The following advanced virtual sensors have been developed in the vEngine:

• Virtual zone temperature sensor: vTempSensor

The virtual temperature sensor implements equations of the RC equivalent model

presented in Section 1.1.1 in order to output a zone temperature. A zone can either be a
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room occupied by humans or a hydronic system filled with water. At initialization, two

data structures need to be transferred to the vTempSensor instance: the RC network with

each neighbor node and the geometry of the zone. The latter will be used to compute

the equivalent thermal capacity of the zone. At each simulation time step, the virtual

entity expects to receive temperature information of connected nodes and the heat

power gain injected by other vEntities they subscribe to in a non-blocking fashion. Eq.

(1.11) updates the zone temperature, given all the stored information.

• Virtual hot water tank temperature sensor: vHotWaterTank

Similar to vTempSensor logic, a vHotWaterTank leverages equations described in Section

1.1.1 to update the output temperature of the outlet water of a hot water tank. The imple-

mentation considers a simplified model, taking into account dynamic water draw and

losses with the environment. It therefore subscribes to event coming from the outside

temperature and the actuator governing the output water flow. Like the vTempSensor,

the dimensions of the tank are given at initialization to compute the equivalent thermal

capacity of the tank.

• Virtual solar irradiance sensor:vIrrSensor

Solar data may not always be available, or the simulation manager might prefer standard

solar scenarios. To this end, a virtual irradiance sensor allows to get solar irradiation

at the building site. Emitted events are the direct solar irradiance (W /m2) and diffuse

irradiance (W /m2). They depend on day of the year and time of the day as well as lati-

tude and longitude coordinates. Additional parameters include the ground reflectance

coefficient, the altitude, and optional cloud coverage. Used models are based on [66].

An instance of the class "vIrrSensor" therefore solely requires the simulated timestamp

and will provide irradiance data to interested entities.

The following advanced virtual actuators have been developed in the vEngine:

• Virtual window blind: vBlind

Blinds are common building components to prevent solar beams from entering and

heating the building mass through a window. A virtual blind can be instantiated from

the class "vBlind" to model both the glassing effect and the blind effect. Such an instance

therefore subscribes to a virtual irradiance sensor - such as a vIrrSensor - to subsequently

output an equivalent internal heat gain for interested entities - such as a vTempSensor. As

an actuator, the vEntity also listens to incoming commands, either from the vUser or the

BDMS. A first dimming effect is performed by the glassing of the window as a function of

the incidence angle of the solar beams that depends on the same variables/parameters

as a vIrrSensor. Additional parameters are required to characterize the glassing that

influences the reflection/refraction of part of the beam intensity according to [67]. The

second step consists in modeling the blind effect. In this simple model, the closing angle

is directly related to the amount of heat going through it.
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• Virtual flow regulator: vFLowReg

Many fluids (water) or gases (air) are used in the building infrastructure, either in close

or open circuit. An instance of the "vFlowReg" class aims to regulate the flux of the

fluid/gas. The vEntity expects ON/OFF commands from the BDMS or the vUser and a

dimming coefficient is typically provided along with the ON command. In addition, the

entity can simulate either an abrupt (instantaneous) or linear (delay) transition between

states. A typical example is the modeling of hot water use through the instantiation of a

vFLowReg, dimming the output water flow (l/s) or switching it off.

Advanced virtual loads

Most of the loads in the building aim to provide a given service through the use of electrical

power. Beyond entertainment or other services that cannot be easily modeled, the following

advanced virtual loads have been developed in the vEngine:

• Virtual deferrable load: vShiftLoad

The definition of a deferrable load was provided in Section 1.1.2. An instance of the

class "vShiftLoad" is therefore a load that can be scheduled by an external application

through the BDMS. The virtual user first specifies the starting time and the maximum

ending time, and the vEntity then transmits this information up to the BDMS. It then

waits for a command signal that will trigger its start and force it to consume power

according to its predefined load profile P .

• Virtual heat-pump: vHP

Thermal loads emit thermal heat flux (W) in addition to electrical power consumption

(W). The class "vHP" implements a general heater or HP model to compute the output

heat flux. For virtual HP (heating or cooling), parameters include cop0,α,β to compute

instantaneous COP according to Eq. (1.18):

cop = cop0 +αTi +βT0 (1.18)

Eq. 1.18 uses the data coming from internal and external temperature sensors to get Ti

and T0, respectively. A simpler model allows for a constant COP, and the electrical heater

model requires an efficiency coefficient. The output heat gain can then be emitted to

virtual temperature sensors.

• Virtual light: vLamp

A virtual lamp can be instantiated from the class "vLamp". It directly maps electrical

power (W) to an output light intensity (Lux), useful for humans. The vEntity only

requires mapping from electricity power to light intensity.
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Advanced virtual storage and generation

From the vStorage, a vEV (virtual electric vehicle) can be derived. An advanced KiBaM model

is also available in the engine as well as a PV panel model.

• Virtual KiBaM-based battery: vKiBaM

The KiBaM method to model a secondary battery was presented in Section 1.1.4. Two

connected capacities are linked via Eq. (1.32) and Eq. (1.33) to express the overall battery

state. The virtual KiBaM battery can be instantiated from the class "vKiBaM", with the

parameters k and b. The interest of this model compared to the integrative one lies in

the modeling of the maximum charging/discharging power that depends on battery SoC

according to Eq. (1.35) and Eq. (1.36). The power command of the BDMS may therefore

be impossible to hold, and the sensed power will be an important quantity.

• Virtual electric vehicle: vEV

A virtual electric vehicle from the class "vEV" simulates a vStorage, with an additional

layer of user actions. This vEntity is idle most of the time (input commands are ignored)

and becomes active under the impulsion of a signal coming from the vUser. The latter

provides starting SoC information at triggering time and may also specify the expected

SoC at leaving time tl . Both information are transmitted up to the BDMS applications

for a later control of battery state.

• Virtual PV array: vPVpanel

Directly implementing Eq. (1.40), the class "vPVpanel" models the generated power of

a PV module depending on outside air temperature (at the roof level) and incoming

irradiance. It therefore subscribes to the corresponding two vEntities.

Advanced virtual user

The virtual user is a special vEntity, as it holds a specific intelligence and does not have any

sensor nor actuator attached to it. It acts on the spawned vEntities, especially the virtual

sensors, actuators, and loads, by sending them commands or information.

These entities evolving in the virtual pool have an ID unique to their middleware, much like in

physical networks. However, a virtual user, spawned like other entities in a given vMid, must

know these IDs to be able to target specific entities. Hence, the vUser will be provided with the

unique IDs of the components it acts on, as being the BDMS key IDs. At the vMid premise, a

table is used to map this unique BDMS ID to a couple (middleware ID, entity ID) in order to

send the command to the right place.

In the current incarnation of the vEngine, the virtual user is simply an event scheduler able to

decode activity profiles of loads and actuators to subsequently produce commands. These

profiles are static and predefined, with optional probability to induce uncertainty. Advanced
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Figure 2.6 – Step-by-step procedure to derive vEngine building model

model can be implemented in the core of this vUser to better model the complex behavior of

the user that is generally closely coupled with her/his surrounding space and components.

The distributed architecture of the tool offers an ideal environment for advanced machine

learning techniques to model the virtual user action.

2.3 Case study: a Minergie Building

This section presents a case study to illustrate the use of vEngine for building energy simulation.

A Swiss building standard called Minergie is used to derive the all-electric building parameters,

from thermal envelope to PV sizing, including typical residential loads. The modeling in the

BDMS database shows how the various components are practically encoded to represent the

building meta-data. Translated into a set of vEntities, their interactions simulate the physics

of the Minergie building and its components, the behavior of the occupant, and lead to the

determination an overall energy consumption profile along with comfort profile.

2.3.1 Minergie building model

Minergie is a voluntary Swiss standard for comfort, efficiency, and value preservation in

buildings, created in 1998 [68]. The building constructed under the standard is awarded

the corresponding label, ensuring a high-quality envelope, controlled air exchange, and low-

energy consumption and maximum use of renewable energies. Various sub-labels can be

granted, such as Minergie-P for an enhanced building envelope leading to nearly no use of

thermal energy and Minergie-A for the combination of Minergie-P with PV panels, battery,

and load management. Compared to other certifications such as LEED, Minergie does not

41



Chapter 2. An Integrated Simulator for Smart-Buildings

vPHEV

vBlindZ1vBlindZ2

vTempHPWaterReturn

vTempHPWaterSupply

vTempOutside

vIrrDiffOutside

vIrrDirectOutside

vPVpanels

vAWHP

vTempWaterEWH

vOpenerEWH

vTempAirZ1vTempAirZ2

vEWH

vOccupant

vShiftLoad1

vShiftLoad3

...

vNonContrLoad1

vNonContrLoad11

...

EMS

Action

Model event
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work based on a system of score but instead the building must reach requirement thresholds

in all key performance indicators. As of 2018, more than 40,000 buildings have already been

certified, and an increasing number of new constructions are aiming for it [69].

We considered an all-electric residential dwelling based on Minergie standard, occupied by

a typical Swiss family. For simulation purposes, specifications of the standard help derive

building model parameters including building envelope, thermal energy use, maximum

energy consumption per area, water use, and many others. The step-by-step process to

extract building parameters from the standard is illustrated in Fig. 2.6. The process starts by

looking at (0) the building physical properties such as spatial geometry, walls and windows

material, number of zones, and ambient conditions where the building evolves. From these

data, the (1) RC equivalent thermal model of the interconnected zones can be computed.

Walls are modelled using two resistances and one capacitance, and a single capacitance

represents a zone. Then, (2) the heating system (thermal loads and water pipes) can be

designed accordingly. It includes the Air-source to Water Heat-Pump (AWHP) for space

heating and EWH for hot water use. The rest of the (3) electrical loads can subsequently

be modeled, according to their load profile P defined in Section 1.1.3. Along with thermal

loads, the deferrable loads and uncontrollable loads will lead to (4) the sizing of PV array and

battery, if installed. An optional EV can be added at that step. The step (5) models the various

actuators that are needed to automatize the resulting smart-building (e.g., blind/window

opener, hydronic system) and the actions taken by occupants on building facilities that define

how resources are used (e.g. hot water consumption). Comfort and preferences (6) constrain

the system on specific zones temperature, starting/ending time of deferrable loads, EV SoC

when arriving/leaving, and water temperature. Finally, in case the simulated building is

plugged to an (7) EMS, the optimization parameters should be specified (e.g., price of energy,

maximum peak demand).

The Minergie case study presents an application of this procedure and shows how the building
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Figure 2.8 – Minergie simulation environmental data

model can be broken down into independent simulated entities that can run in the vEngine.

The overview of the vEntities used in this case study and their interconnection is shown in

Fig. 2.7. The rest of this section describes each of these entities, their logic, and the data they

exchange.

Environmental data

Environmental data was taken from MeteoSwiss [70] at the weather station in Pully, Vaud,

Switzerland (Long 46.51027, Lat 6.66183). The governmental service provides accurate data

sampled at a frequency down to 10 minutes. The measures data includes temperatures, solar

radiation, relative humidity, wind speed, cloud coverage, and many others. Temperature and

solar radiation are shown in Fig. 2.8 for the simulation period (01/01/2015 to 01/03/2015). The

ambient air temperature (blue curve, label ’temp’) is around 0◦C on the first day and increases

around 2◦C on the second day, typical of a Swiss winter day. Despite the harsh temperature

conditions, the direct (orange curve, label ’ray-beam’) solar radiation went up to 400W /m2 on

the first day and was slightly less intense on the second day.

Three vEntities emulate outside environment sensors by reading data from MeteoSwiss his-

torical files and broadcasting corresponding values to the rest of the interested entities. As

the simulation goes by, these vEntities emit an event containing the data they sense whenever

a new read value differs from the current value, given a sensitivity threshold that reflects

the resolution of the sensor. The virtual sensor vTempOutside emits outside ambient dry air

temperature, with a resolution of 0.1◦C . Two other virtual sensors are in charge of reading

sun irradiance data: vIrrDirectOutside emits direct sun irradiance (W /m2) measurements

and vIrrDiffOutside emits diffuse sun irradiance (W /m2) measurements. They both have a
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Figure 2.9 – RC model of Minergie building thermal system

resolution of 1W /m2. It is assumed that emitted temperature and irradiance values hold for

any point in space of the outside environment (roof, ground, wall, window). The run radiation

does not affect directly the building interior space: virtual blinds vBlindZ1 and vBlindZ2 linked

to windows reflect part of them and the rest enters the building zones as disturbance heat.

Thermal model and floor-heating system

The zones the humans occupy in the Minergie building are heated by an underfloor hydronic

system. Water in pipes convey the heat from the AWHP source of energy toward the floor

where it is slowly released to zone 1 and zone 2. By doing so, the air temperature in each zone

can be kept within satisfying bounds, even when facing internal and external disturbance

such as sun radiation, internal heat gain, and losses due to the low outside air temperature.

Fig. 2.9 schematizes the complete RC thermal model of the building. Appendix A.1.1 provides

the simulation values and a complete description how these values have been derived from

Minergie specifications.

Heat transfer from the hydronic system to the air zones Z1 and Z2 leverage Eq. (1.12) to Eq.

(1.15) presented in Section 1.1.1. The heat pump uses electricity to transfer heat into the

supply part of the water pipes, represented by thermal capacitance Cw s at temperature Tw s .

Part of that heat is conducted toward the return water capacitance Cwr at temperature Twr ,

through the resistance Rr s that depends on the water flow. The water can then serve to provide

energy to the floor, (capacitance C f at temperature T f ) through resistance R f r , which in turn

provides heat to zones Z1 and Z2 through resistances RZ 1 f and RZ 2 f , respectively.

The hydronic system and AWHP are simulated in the vEngine via three vEntities. A vAWHP

models the HP as a thermal load with COP that depends on both the outside air temperature
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and supply water temperature, according to Eq. (1.18). The electrical nominal power of the

HP is 1.5 kW and COP parameters are provided in Appendix A.1.1. In practice, this vEntity

subscribes for events coming from the vTempOutside and vTempHPWaterSupply and receives

power setpoint signal from an external controller. Two temperature sensors emulate the

return (vTempHPWaterReturn) temperature and supply (vTempHPWaterSupply) temperature

evolution, by using Eq. (1.14) and Eq. (1.15), respectively. These vEntities implement the

class vTempSensor with a precision of 0.1◦C and include thermal resistances with neighboring

interfaces. In addition, vTempHPWaterReturn stores the equivalent capacitance of the floor

to model its temperature. To simulate the effect of the HP power, vTempHPWaterSupply

subscribes to events coming from vAWHP.

Temperatures of the zones in which occupants lives are virtually measured by vTempAirZ1

and vTempAirZ2 for Zone 1 and Zone 2, respectively. These vEntities implement the class

vTempSensor, including thermal resistances with the outside environment, water pipes, and

adjacent zone, as well as intermediate capacitance to model heat flow delay in floor tiles and

walls. Therefore, each of the two zone subscribes to temperature coming from the virtual

temperature sensor of the other zone, the vTempOutside, and the vTempHPWaterReturn. In

addition, incoming heat gain coming from vBlind and internal virtual non-controllable loads

is received by the virtual zone air temperature sensor (Pi n and Pi r r in Fig. 2.9).

Non-controllable loads and occupant

A set of user-driven loads are simulated through the use of vEntity class vLoad. They contribute

to the overall building power consumption and to the release of heat that affects vTempAirZ1

and vTempAirZ2. Two types of vLoad subclasses run in the vEngine: purely non-controllable

loads as vNonContrLoad and deferrable loads as vShiftLoad. In addition to the virtual com-

ponents, a virtual human vOccupant actuates them by switching them on/off or dimming

their controllable power. The human behavior on any load is contained in the metadata of the

vLoad, as a load profile activity A .

Typical residential loads have been taken from the Electricity Consumption and Occupancy

(ECO) dataset [71] and their load profile structure is detailed in Appendix A.4. A total of 11 non-

controllable loads run in the simulation: 4 lamps, 1 freezer, 1 fridge, 1 laptop, 1 air-exhauster,

1 stereo sound system, 1 TV, and 1 entertainment station. In addition, 3 deferrable loads can

be scheduled by the central controller: 1 dishwasher, 1 washing machine, and 1 dryer.

Hot water tank and EWH

Hot water is provided to the home occupant by a different system than the AWHP: a EWH

heats water in a dedicated hot water tank. The virtual entity vEWH models a simple electrical

heater system with the efficiency of the water tank fixed to 0.98. This vEWH influences the

virtual sensor vTempWaterEWH that leverages Eq. (1.21). Model parameters are provided in
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Appendix A.1.1.

The virtual entity vTempWaterEWH also requires outside ambient temperature and hot water

usage information by subscribing to vTempOutside and vOpenerEWH, respectively. Modeled

as a virtual "flow regulator", the vOpenerEWH receives ON/OFF and dimming parameters

from the vOccupant to output the corresponding water flow usage necessary for the model

of the hot water temperature. We considered the water usage to take instantaneous values

ranging from 0 to 0.1 l/s, and it is assumed that one water-use event happens hourly, according

to a uniform distribution. Such an action lasts on average 240 seconds, with a standard

deviation of 60 seconds. Using hot water induces incoming cold water at 14◦C to flow in.

PV arrays and EV

Solar energy is harnessed to locally produce electricity at the building premise. The power out-

put of the corresponding PV installation is modeled by vPVpanels, according to Eq. (1.40), with

a nominal value of 5.775 kW. This virtual entity subscribes to data coming from vTempOutside,

vIrrDiffOutside, and vIrrDirectOutside to compute the instantaneous power production.

The Minergie building hosts a Tesla Model S electric vehicle, with an autonomy of 490 km.

The chemical battery has a capacity equal to 75 kWh (socmax = 72.5 kWh) and a maximum

charging power of 7 kW. The charging efficiency is taken as 90%. The virtual entity vPHEV

models this Tesla battery through Eq. (1.32) and Eq. (1.33), using KiBaM parameters provided

in Appendix A.1.1. As a residential vehicle is out of the dwelling premise on most weekdays,

the battery is out of the building model during that period. It is assumed that the vehicle is

available every day during t ev
st ar t (h) and t ev

stop (h) such that:

t ev
st ar t ∼N (6,1) and t ev

stop ∼N (18,1)

The vehicle arrives at the dwelling premise with an initial SoC at t ev
st ar t and should ideally

be fully charged at t ev
stop . The value soc(t ev

st ar t ) depends on the distance the vehicle traveled

during the day [34]. In this simulation, soc(t ev
st ar t ) is uniformly distributed between 0.3 and

0.5. It is then assumed that the dweller has the choice to offer the battery as an ESS or the EV

might only be considered as a load to charge.

2.3.2 Energy simulation

A total of 30 vEntities, mostly described here above, were spawn in the vEngine to simulate

the Minergie building. Their corresponding parameters and relationships were encoded in

the BDMS and retrieved by the vMid at its instantiation. Appendix A.2.2 provides a concrete

example of BDMS encoding of a virtual entity. The vCoordinator orchestrates the simulation,

and a fixed time step has been chosen over an event-based simulation, for the sake of simplicity.

An Intel Core i7-4710HQ CPU (2.50GHz×8) was used to practically perform the simulation.
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Algorithm 2 Minergie simulation: flexible entity control logic

1: procedure CONTROL_BUILDING(time t )
2: if Tewh ≥ T mean

ewh then
3: uewh[t ] ← 0
4: else if Tewh < T mean

ewh then
5: uewh[t ] ← umax

ewh
6: else
7: uewh[t ] ← uewh[t −1]
8: end if
9: if TZ ← T mean

Z then
10: uhp [t ] ← 0
11: else if TZ ← T mi n

Z then
12: uhp [t ] ← umax

hp
13: else
14: uhp [t ] ← uhp [t −1]
15: end if
16: if EV connected and EV not full then
17: uev [t ] ← umax

ev

18: else
19: uev [t ] ← 0
20: end if
21: for all k ∈ Nd do
22: if t ≥ t s

d [k] and k not yet scheduled then
23: ud [k] ←ON
24: else
25: ud [k] ←OF F
26: end if
27: end for

APPLY([uewh , uhp , uev , ud ])
28: end procedure

Some entities in the simulation wait for an external command to update their internal state.

The chosen logic is a rule-based control, described in Algorithm 2. Thermal loads vEWH and

vHP are switched on and off according to a thermostat logic. As for the HP, it is switched on

(maximum power) any time the zone temperatures TZ (either zone 1 or 2) reaches its lower

bound T mi n
Z = 19◦C . Alternatively, it is switched off whenever the regulated temperatures

reach the mean comfort T mean
Z = 20.5◦C . The mean value is chosen to trigger the switching

off in order to account for the large thermal inertia of the floor heating system that will keep

heating the zones even when the HP is off. The control rule of the EWH is slightly different to

track the mean comfort: it is switched on whenever the water temperature Tewh goes below

the mean acceptable temperature T mean
ewh = 60◦C , and is off otherwise. Good insulation of the

tank prevents large oscillation of the control signal. Concerning the Tesla EV, the rule consists
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Table 2.1 – Minergie building energy simulation: simulator statistics

Time step (minutes) Tot. Events vMid Overhead Simulation time (s)

1 51700 5.56 71.18
5 11296 1.216 11.37

15 4109 0.463 4.39
60 1187 0.133 1.54

in enforcing maximum charging power whenever it is plugged-in to the building and not full

yet. As for the Nd deferrable loads, they are simply triggered as soon as possible (similar to the

non-controllable loads).

A range of time steps has been used to show the performance of the tool. Table 2.1 displays a

few statistics about the distributed simulator under varying time steps. Given a simulation

time step of 60 seconds, this simple yet realistic building simulation needed a bit more than

1 minute to perform a daily simulation, through the exchange of a little more that 50,000

messages. As the time step is increased at the expense of accuracy - the simulator behaves

linearly, both in term of messages and duration. The vMid overhead represents the total

number of times the vMid used the CPU, staying around 8-10 % of the total simulation time.

Fast and numerous message exchanges could be ensured by the optimized ZeroMQ library.

Furthermore, these values could be reduced by implementing an event-based simulation, as

many vEntity were woken up for performing insignificant short increases in entity state, at low

time steps.

One advantage of the distributed simulator lies in the analysis of individual entities’ behavior.

Fig. 2.10 highlights each individual load’s power consumption. This allows for both individual

and comparative analysis. In this Minergie example, most of the non-controllable loads have

their main activities in the late evening, apart from the fridge and freezer that are periodically

switched on and off. One can already observe the difference in order of magnitude when

comparing non-controllable to controllable loads.

Applications connected to the BDMS post-process the generated data to generated aggregated

analysis as shown in Fig. 2.11 and Fig. 2.12. In this simple simulation, the main load is driven

by the EV that charges early in the morning. This behavior is obviously sub-optimal, as the

controller did not take into account the price of electricity (in red, middle figure) nor the local

PV production. To a lower scale, the same statement can be made for two uncontrollable loads

(Washing machine and Dryer). Luckily, the HP switched off around the starting time of the EV

charging.

Temperature comfort of air zones and hot water could be ensured by Algorithm 2, as proven in

Fig. 2.12. One can clearly observe the supply and return water temperature of the hydronic

system, with the former being higher than the latter. As for the zone air temperature, the cold

outside temperature pushes it down at the same time as the hydronic system pushes it up,
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also with the help of daily solar heat gain. It is worth noting that the hydronic system has been

modeled without any loss. A more realistic case would demonstrate lower temperatures and a

higher use of the HP. As hot water is consumed by the virtual user, tank water temperature

abruptly decreases, which directly triggers the EWH to switch on and provide heat to ensure

the user will have hot water for later use.

2.4 Conclusion and Outlook

A simulation tool tailored to building applications has been described in this chapter. Its

unique architecture relies on a set of distributed micro-threads called vEntities that imple-

ment individual models. Their cooperative interaction leads to a global building behavior

simulation, and the natural decentralized feature speeds up the simulation time when the host-

ing hardware allows it, compared to centralized solutions. The resulting pool of distributed

virtual components is seamlessly connected to existing BDMS through the use of a virtual

middleware vMid that acts exactly as its physical counterparts. In emulation mode, the vMid

leads to a coexistence of virtual components along with physical infrastructure for integrated

analysis. In simulation mode, the vMid acts as a simulation coordinator, through the use of

the vCoordinator module. The mechanisms of the latter permits either a synchronized fixed

time step simulation or a time-optimized event-based simulation. A test case on a realistic

Swiss Minergie building highlighted the process of creating virtual entities and connecting

them together. The resulting simulation was proven to be fairly fast, thanks to the lightweight

Python libraries practically used for developing the tool.

By leveraging BDMS metadata, existing building infrastructure can be quickly digitalized

without a large time overhead needed to migrate existing data to an offline simulator. In

addition, the insertion of new purely virtual entities allows to simulate the effect of non-

present technology on an existing building, before proceeding to the expensive retrofitting.

The resulting digital twin can therefore continuously learn from the building data updates

and can swiftly be upgraded with additional hardware for advanced analysis purpose. This

represents a promising tool, directly integrated to the existing BDMS, for real-time evaluation

of new component installation (e.g., sizing up solar panels or changing the heat pump),

building envelope upgrade, and occupant behavior analysis without the burden of depending

on an external expert tool.

Furthermore, the chosen approach is distributed and decentralized, meaning that the sim-

ulation designer will model building components individually, in a piece-by-piece process.

Compared to centralized, monolithic methods, this leads to a better working load distribution,

easier future individual modification, and adaptability. This architecture fully leverages the

parallelism that a multi-core hardware host might offer, as many entities can be triggered

at the same time from the scheduling table. Compatible with both continuous (physical)

models and event-based (user-driven) model, the tool is ideal for introducing uncertainty

and disturbances in the simulation. When plugging advanced applications to manage the
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flexible entities, real-life modeled uncertainties are of great value to test the robustness of the

application’s algorithm.

The tool, through the presented virtual entity classes, was primarily designed for residential

buildings simulation. Nevertheless, it may host other building models, thanks to its intrinsic

modularity that allows any user to insert her/his own models into the engine. By modeling

more advanced a HVAC system, the vEngine could be applied to commercial buildings that

hold a great potential for retrofitting, energy saving, and advanced energy management.

Beyond the simulation of a single building, the light design of the engine also enables the

simulation of a set of smart-buildings, ready to be included in smart-grid frameworks. In this

useful case, either a single BDMS can be used to model multiple units (i.e., buildings) or each

engine could be plugged to a single instance of a BDMS, to emulate real-life implementation.

Chapter 6 takes advantage of this feature to simulate a community of cooperative smart-

buildings.
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3 Multi-State Load Modeling for Energy
Disaggregation

Beyond the controllable entities present in the smart-buildings, non-controllable loads still

represent a large share of total energy demand. Their consumption closely depends on the

building occupants’ behavior, the state of the building, and its environment. Understanding the

way non-controllable loads drive whole building consumption will help enable energy efficiency.

Therefore, it is important to equip future smart-buildings with the right technology for valuable

energy feedback to the user at the individual load level.

The main highlights and contributions of this chapter are:

• We present an algorithm based on k-means to automatically extract appliance load

profile parameters from historical time-series power data. The resulting profile structure

contains both the power modes of the load and the user activities on the appliance.

• The identified multi-state load profiles have been used to conduct low-frequency en-

ergy disaggregation. Compared to traditional ON/OFF load modeling, this requires an

enhanced formulation of the Hidden Markov Model (HMM), which was implemented

in the MATLAB NILM-Eval toolbox.

• The resulting multi-state energy disaggregation was run against traditional binary load

modeling using the Electricity Consumption and Occupancy (ECO) dataset. Results

show that enhanced multi-state modeling significantly improves the disaggregation

performances, at the expense of a larger computational time.

Related publications:

[72] O. Van Cutsem, G. Lilis, and M. Kayal, "Automatic multi-state load profile identification

with application to energy disaggregation," IEEE International Conference on Emerging

Technologies and Factory Automation, 2018.
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3.1 Introduction and Motivation

The recent change of paradigms in the energy sectors led to a growing interest in Demand

Side Management (DSM) [10]. The smart-building, a building infrastructure enhanced with

sensors, actuators, and management systems, fosters the active inclusion of residential and

commercial buildings into the smart-grid. Supported by ICT equipments, the smart-building

can leverage the flexibility offered by controllable loads, energy storage systems, and local

energy production, to further provide services to the smart-grid. Nevertheless, part of the

energy demand still solely remains under the control of the dwellers, referred to as non-

controllable load consumption.

In the context of smart-buildings, energy feedback systems [73] represent a powerful means

of bringing the building occupants into the loop of DSM, concerning the user-driven share

of energy consumption. These feedback systems generally improve human awareness of the

electrical energy repartition within the building, hence understanding how various appliances

influence total energy consumption.

Due to the intrusiveness and excessive cost of installing a dedicated sensor for every home

appliance, methods fostering Non-Intrusive Appliance Load Monitoring (NILM) have been

developed for energy monitoring purposes. NILM algorithms disaggregate the superposition

of individual signals, sometimes taking into account appliance parameters or relying on

features database. Nowadays, smart meters have largely been deployed at building premises

and allow low-cost solutions for monitoring the overall building consumption, based on

low-frequency power data The design of the smart-building requires large controllable loads

to be equipped with sensing and actuation hardware for active participation in the DSM. In

that context, NILM methods can be applied at outlet-level for the remaining non-controllable

loads, hence grouping user-driven appliances sharing the same order of magnitude with

regards to power consumption.

This chapter presents an automatic method for detecting the multiple power states of any

appliance. It is trained on low-frequency historical data of the appliance’s active power

collected at plug-level. The output multi-state modeling of appliances is then used for power

disaggregation purposes. State-based HMM has been chosen in support of disaggregation

implementation, allowing the comparison between the standard binary ON/OFF modeling

and the proposed multi-state modeling of the appliances. Finally, a clustering-based algorithm

has also been developed to extract a representative set of user activities on the building

appliances.

An overview of the existing state-of-the-art load models, NILM algorithms, and a theoretical

background about HMM modeling is provided in Section 3.2. Then, Section 3.3 describes

the multi-state identification algorithm, from the clustering task to the extraction of power

modes. The experimental results of multi-state HMM-based power disaggregation from a

public dataset are detailed in Section 3.4. Finally, Section 3.5 concludes the chapter.
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3.2 State-of-the-art Load Modeling and Energy Disaggregation

3.2.1 Load modeling

Load modeling and power predictions for buildings have received intense attention, essentially

at the whole building level and community aggregation [74, 75, 76]. However, models of

individual loads have been investigated less due to the lack of granular data that smart meters

do not capture. Hart et al. [77] initially presented three different classes of load model: ON/OFF

(binary load), Finite State Machine (FSM), and continuous variable. In the ON/OFF model,

the load power consumption can only take a single mean value and a standard deviation

describes the variation around the mean value. As most of the loads can experience more than

one steady-state power consumption mode - generally depending on user-related workload -

the FSM allows for an arbitrary set of discrete states and transitions [78]. Finally, continuous

variables model dimmable loads, such as lighting and some HVAC systems. Authors in [79]

presented a dynamic programming technique for extracting FSM from the aggregated signal,

but did not apply it to any dataset. In [80], a mathematical model represents the load profiles

of various residential buildings, using a bottom-up approach. They used generic models

of household appliances and introduced a saturation level that statistically represents their

presence across a large set of building populations. Considering a single nominal power

consumption (W) per load, the authors proposed the use of a mean daily starting frequency,

along with a fixed time per cycle, to model user actions on the appliance.

Some works have studied the electrical properties of loads to model them from an electrical

standpoint. In [81], a voltage-dependent model of appliances is presented, leading to a bottom-

up method to retrieve an electric parameters profile (current, active/reactive power, power

factor, etc.). This model was implemented in MATLAB to get residential and commercial

building energy profiles, and shows results similar to EnergyPlus simulations. A survey is

presented in [82], where individual load characteristics (active/reactive power, current, and

harmonic content) are used to classify residential loads. They also emphasize the difficulty of

capturing individual load electrical characteristics, due to the influence of other loads. Authors

of [83] created a high-resolution smart home power demand model that takes into account the

activity patterns of individuals, based on the non-homogeneous Markov chain. It generates

highly realistic patterns that capture annual and daily features of building consumption, for

DSM potential analysis.

It’s also worth noticing that advanced building energy simulators like EnergyPlus practically

use fixed (hourly) schedules of appliance consumption [38]. The schedules generally define

the fraction of the load nominal power use in each period of time and therefore does not use

granular data of the appliances’ power consumption.
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3.2.2 Energy disaggregation

NILM was initially investigated by G. Hart [77] and identified ON/OFF switching events

in the aggregated power signal, analyzing them in the P-Q plan, for appliance clustering.

With the help of a signature database, he could then retrieve the appliances that caused

the switching events. Subsequently, substantial research in load identification and power

disaggregation has been carried out, mainly summarized in [84, 85]. With the distinction made

between the frequency of data sampling, the reviews classify NILM methods into supervised

or unsupervised, stateless or state-based, and dissociate them based on the analyzed features

(P, Q, power factor, etc). Most of the unsupervised NILM algorithms require the manual

intervention of the user to associate the disaggregated signals/events to the actual appliance.

The stateless methods generally consist of extracting the most useful features of switching

events and steady-states, followed by an efficient clustering and classification. In [86], the

authors presented two algorithms based on Decision-Tree that stores events and Dynamic

Time Warping, working on active power sampled either every 6 seconds or 1 minute. Their

main advantage is the required small training period. Researchers in [87] also based their

approach on a Decision-Tree that stores pairs of events. Their goal was to investigate the feasi-

bility of load disaggregation for consumer service development, showing the user its energy

consumption with an acceptable error of 10%. In [88], authors developed a Non-Intrusive

Load Identification, at the outlet level, using a time-series classifier. The resulting generated

database holds features ranging from average power, power variance, power extrema, and

duty cycle to waveforms of the power consumption. Baranski et al. [89] developed a fuzzy

clustering method for detecting main recurrent events. A genetic algorithm was then used for

forming a finite state machine, optimized using dynamic programming. Taking into account

the infrequent nature of the switching events, the authors in [90] leveraged the sparsity of the

on/off switching events matrix, leading to the Sparse Switching Event Recovering algorithm.

Furthermore, they developed an optimization algorithm that speeds up the disaggregation

process. Wytock et al. [91] presented a contextually supervised source separation, that lies

between supervised and unsupervised NILM. A convex optimization problem takes as inputs

the features of each source signal for estimating their participation in the global aggregated

signal.

State-based NILM was greatly enhanced by the use of HMM for modeling the individual

appliance states and their transitions. Kim et al. [92] detailed an unsupervised use of Facto-

rial Hidden Markov Model (FHMM) for low frequency power disaggregation purposes and

developed an extension called Conditional Factorial Semi Hidden Markov Model (CFSHMM)

that takes into account the ON/OFF duration distribution, the appliances dependency, and

the time of the day. The Expectation Maximization (EM) algorithm was used to determine

the model parameters while Gibbs sampling replaced the Viterbi algorithm for inferring the

hidden states. Authors of [93] presented methodologies for building HMM, aiming for load

recognition including multi-state model of appliances. Parson et al. [94] leveraged the prior

knowledge of a generic appliance model so that manual labeling could be avoided. The spe-
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cific model parameters are learned through the EM algorithm in periods during which only

one appliance is active.

The inference process in FHMM-based approaches suffers from many issues, namely enu-

merating an exponential number of states and local optima convergence. In [95], Kolter et

al. explained their approximate inference algorithm for energy disaggregation using additive

factorial HMM, leading to the AFAMAP convex optimization problem. The latter strives to

alleviate the aforementioned hurdles hampering the inference phase. Furthermore, authors in

[96] presented a segmented application of the Viterbi algorithm for state decoding of the HMM.

In [97] a Hierarchical Dirichlet Process Hidden Semi Markov Model is presented, a method that

learns the device models during inference process and takes into account multi-state model

of appliances, on the contrary to most of the binary ON/OFF approaches. Unlike common

NILM applied to the whole house power consumption, authors in [98] focused on circuit-level

monitoring and have proposed both a heuristic-based and a Bayesian approach, where infor-

mation about step changes in power are added to steady-state power information. Authors

of [99] propose a fully unsupervised NILM framework based on non-parametric FHMM and

have developed an efficient inference algorithm to detect the number of appliances from data

and disaggregate the power signal simultaneously.

Many NILM applications have been developed and practically deployed. AppliSense [100]

created by Weiss et al. is based on Hart’s approach that uses distortion power in addition to

P and Q features. A mobile phone application has been designed to train and acquire new

load signatures for the user to specify which appliance has been switched on/off. ViridiScope

[101] is a power monitoring system based on ambient data retrieved from inexpensive sensors,

such as magnetic or acoustic sensors. As the total power consumption is also taken into

account, an explicit optimization problem may be formulated, whose solution provides the

individual appliances consumption profile. RECAP [102], a complete real-time solution for

recognition and profiling of appliances, uses Artificial Neural Network (ANN) for features

training such as P-Q, RMS current/voltage, and peak current/voltage. Through a user-interface,

this solution can easily be installed in existing buildings. In [103], NILM found an interest for

load-shed verification, such that utilities can check whether a Demand Response subscriber

has performed the contracted behavior.

Most of the presented disaggregation approaches, with the exception of [93, 97, 104], focus

solely on binary ON/OFF models, averaging power consumption over the active periods. The

present chapter investigates the potential of the multi-state modeling of appliances’ active

power consumption for power disaggregation, compared to the common binary ON/OFF

modeling. The supervised approach uses FHMM in which each appliance may have more

than one ON state. Those numerous active states are automatically extracted from past time-

series data, unlike [93, 104] that manually encoded them. Similar to the context of [98], the

disaggregation tasks take place at outlet level, grouping appliances that share the same order

of magnitude of power consumption.
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Figure 3.1 – FHMM: A graphical interpretation of appliances hidden states and the whole
aggregated consumption

3.2.3 Factorial hidden markov model applied to NILM

In the domain of NILM, HMM has recently become the reference method because of its

simplicity for modeling time-series data in a probabilistic way. In a HMM, the observation

of sequential data Y = {y1, y2, ..., yT } is caused by sequential hidden states Q = {q1, q2, ..., qT }

that have to be determined. Each of the hidden states takes a value among the finite set

S = {S1, ...,SK }, where K is the total number of possible states. The HMM then defines three

quantities for modeling the sequential process:

- The initial state probability distribution π= {π1, ...,πK }:

πi = p(q1 = Si ) such that
K∑

i=1
πi = 1

- The transition matrix A whose element Ai , j represents the probability to switch from

state i at time t to state j at time t +1:

Ai , j = p(qt+1 = j |qt = i ) such that
K∑

j=1
Ai , j = 1

- The emission matrix B whose element Bn, j represents the probability of seeing a partic-

ular observation n during state j :

Bn, j = p(Φt = n|St = j )

As an extension of HMM, FHMM [77] takes multiple appliances into account by modeling

each of them with a sequence of hidden states, as illustrated in Figure 3.1. The combination
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of those hidden states at each time instant leads to the sensed aggregated consumption

Y = {y1, y2, ..., yT }, i.e., Q = {q1, q2, ..., qT }, in which qi = {q1i , q2i , ..., qNi }, N standing for the

total amount of aggregated appliances. In the context of NILM, the elements of the emission

matrix B commonly follow a Gaussian distribution, i.e., p(Φt = n|St = j ) ∼N (µ j ,σ j ) for each

state j . As reviewed in the former section, the set S of a given appliance is generally made

of the ON and OFF states. In this chapter, we consider the general case of multiple non-null

states.

Disaggregating a power signal consists of leveraging the combined FHMM to retrieve individ-

ual appliance participation in the aggregated signal. The first step aims to learn the parameters

πi , Ai , j , and Bn, j for each appliance from historical data. This is the focus of the next section.

Then, the disaggregation of a new incoming signal leads to the determination of the hidden

states of the appliances in a new aggregated signal, which can be done using Maximum Like-

lihood Estimation (MLE). Applying MLE in energy disaggregation results in finding hidden

states q̂ that are the most likely to have triggered the measured aggregated signal:

q̂ = argmin
q

P (Y , q |λ) (3.1)

where λ is the set of parameters linked to the FHMM. The Viterbi algorithm, popular for

efficiently estimating the hidden states of a HMM, cannot practically be used for estimating

the FHMM [77]. Instead, methods like Simulated Annealing [105] can be used to infer the

hidden states of the FHMM. While this method is unlikely to find a global optimum, it generally

finds a very good solution even in the presence of noise.

3.3 Multi-State Load Profile Identification Algorithm

The non-controllable load power profile model was briefly introduced in Chapter 1. It is made

up of a set of power modes M , mode sequences S , and user activities A . Figure 3.2 illustrates

the sets M and A on a 24h load profile example. On the one hand, each mode {mi } describes

the possible power consumption of the load in the corresponding state. On the other hand, an

activity ai contains information about how the appliance is used by the user throughout the

day and is therefore specific to each user. Within an activity, the structure S will dictate the

transitions from a power mode to another.

This load profile structure solely models the steady states of power consumption, and thus

does not catch the short transition modes. In the example of Figure 3.2, the load may be in five

distinct states. The off and standby states are represented by M0 and the state M4 captures the

frequent high peaks of the appliance. Modes M1, M2, and M3 are the more common power

states of the appliance at hand. These power consumption modes are observed in activities

a0 and a1 throughout the day, outside of which the default mode is M0. An activity is defined

by a statistical distribution on its starting/ending time and duration, as well as the sequence

of power modes S it experiences. For instance, the activity a0 only contains M1 and M2,

whereas the activity a1 encompasses higher modes M3 and M4. In the rest of this section,
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M4

M3

M2
M1

M0

a0 a1

Figure 3.2 – Load profile modeling: example of modes and activities

we present the algorithm to automatically extract the set M , and Section 3.4 will present the

application of this algorithm for energy disaggregation, as well as a method for user activities

A extraction.

Algorithm overview

The load profile identification algorithm’s goal is to extract a set of distinct power states M of

an appliance, given an incoming time-series vector x , containing T samples. Each element

mi of the set M represents a power consumption state the corresponding appliance can be in.

It is composed of the following parameters:

- The average power consumption µi in the state

- The variance σ2
i of the power consumption in the state

- The extrema [P mi n
i ,P max

i ] of the power consumption in the state

The purpose of the algorithm is therefore to estimate the optimal number of states along with

the aforementioned parameters characterizing each of them. Figure 3.3 shows the flowchart

of the proposed states identification algorithm. A pre-processing step aims at removing unde-

sired outliers that are not representative of the appliance steady states. Then, the clustering

phase iteratively gathers power consumption into distinct groups, whose amount increases

along with the iterations. Based on the formed groups, the cluster selection step chooses
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Preprocessing
Outliers removal based on hist(x)

Clustering Algorithm
k-means algorithm based on x and k

Timeseries 
samples x

k = 1

Clustering index 
& variance

k < Kmax Yes

Clusters selection 
K* = argmin f(k, idx, var)

NO

States postprocesing
S = {S1, …, SK*} 

k++

Figure 3.3 – Flowchart of the appliance state identification algorithm

the most optimal combination of groups, a trade-off between clustering performance and a

desired low number of states. Finally, similar states that are close enough are merged during

the post-processing phase. Taking into account that the resulting multi-state model is further

used for power disaggregation purposes, the total amount of states must be reduced as much

as possible. An excessive number of states would slow down the disaggregation process and

might also degrade the accuracy of the result since different appliances could share the same

states.

Time-series data preprocessing

The clustering algorithm in use, described in the following subsection, is sensitive to outliers

in the time-series data x , due to the norm it relies on for updating centroids. To remove

those outliers while avoiding losing useful information, the histogram h of the vector x is

computed, associating an occurrence frequency for each power consumption range. The

whole range of power consumption of h is then sliced into Nbi ns bins of equal width, in which

the corresponding occurrence frequencies are summed up. An outlier bin is then defined as a

bin containing less than a specified number of occurrences, depending on the total amount of

values in the histogram. For each detected outlier bin, the corresponding values in the initial
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Figure 3.4 – Histogram of an air exhauster’s power consumption. In red, the centroid of the
identified clusters and in green, the corresponding estimated normal distribution
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Figure 3.5 – Air exhauster power consumption: DB clustering index and cost-error function
used for states identification

time-series data x are removed:

xi = 0 ∀xi ∈ j s.t. h j ≤αout ·T (3.2)

where αout is a value in [0;1] and T is the total number of samples. By doing so, the infre-

quent steady-state or transient power consumption can be removed and won’t jeopardise the

identification of the main states.

As a last preprocessing step, the values of x that are inferior to a given precision Pthr es are

gathered into the OF F state. This includes the measurement errors due to the sensors as well

as a possible standby neglectable power consumption. Hence, the clustering phase only works

on x ≥ Pthr es and therefore analyzes the power consumption states when the appliance is

switched ON .
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Clustering algorithm

The state identification is carried out through pattern recognition in the one-dimensional

active power consumption histogram h. The k-means algorithm is preferred over the non-

parametric Mean-Shift clustering algorithm [106]. Indeed, with the main objective of mini-

mizing the optimal number of clusters while keeping a representative set M , the parameter

k - i.e., the number of clusters - should be progressively tuned for estimating the quality

of new clusters. Moreover, the simplicity and average good results of k-means motivate its

choice for the current application, whereas the Gaussian Mixture Models algorithm and Fuzzy

C-means could be useful for solving the overlapping clusters issues [107]. The latter case

rarely appears for appliance power state identification since the states to be extracted must be

completely distinct for FHMM-based disaggregation application, and can generally be labeled.

Furthermore, k-means is suitable for the large time-series dataset used in the current context.

In [108] and [109], authors used the k-means algorithm in an iterative way for selecting the

clustering solution that best groups {P,Q,STC } features for NILM purposes 1. Yet quantities Q

and STC are not commonly available in most of the BDMS database, unlike low-frequency

active power P. Similarly, the preprocessed time-series data x will be grouped in k clusters by

the k-means algorithm, with k iteratively varying from 1 to Kmax . For each cluster number k,

the set of cluster centroids Ck are given by solving the following optimization problem:

Ck = argmin
c j

k∑
j=1

∑
xi∈Ck, j

∥∥xi − c j
∥∥2 (3.3)

where c j is the centroid of Ck, j ∈ Ck . The k-means formulation actually strives to directly

minimize the intra-class variance S j in every cluster:

S j = 1

N j

Ns∑
i=1

||xi − c j ||2 (3.4)

where N j is the number of samples in cluster j . The k-means algorithm will therefore start

by selecting "random" initial centroids Ck amongst the power consumption data. These

starting centroids, called "seeds", will condition the performance and convergence of the

algorithm. Methods such as k-means++ [110] aim to find the best starting points to converge

toward near-optimal clusters. Then, the algorithm iteratively applies an assignment step and a

centroid update step, until convergence. The assignment step browses all the points xi in the

dataset to assign them to a unique cluster ck, j , such that the following property is respected:∥∥xi − ck, j
∥∥2 ≤ ∥∥xi − ck,l

∥∥2 ∀l 6= j (3.5)

After all the points have been assigned to their closest cluster, the set of centroids Ck are

updated as follows:

ck, j =
1

N j

∑
xi∈Ck, j

xi (3.6)

1P stands for the active power consumption, Q for the reactive power consumption, and STC for the switching
transient current.
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where Ck, j is the set of points assigned to the centroid ck, j . These steps are repeated until

the set of centroids Ck does not change between two consecutive iterations, hence reaching

convergence.

States selection

Among the created sets {Ck }, one has to find the combination of clusters that best suits the

multi-state modeling task. Many indices exist for evaluating the quality of a set of clusters

[111], such as Bayesian Information Criterion (BIC), Calinski-Harabasz (CH) index, Davies-

Bouldin (DB) index or Silhouette (SH) index. The DB index fits for the current application

because it penalizes centroids that are too close while fostering the low variances clustering

solutions.

For each cluster in {Ck }, the quantity Di can be defined as:

Di = max
j 6=i

Si +S j

|ci − c j |
where j ∈ [1, ...,k] (3.7)

where Si ,S j are defined by Eq. (3.4) and ci ,c j by Eq. (3.6).

Then the DB index can be derived as:

DBi d x (k) = 1

k

k∑
i=1

Di (3.8)

A lower value of DBi d x (k) indicates a better DB fitting for the clustering Ck . However, selecting

k solely based on the DB index may lead to an excessive number of states for some cases. A

cost function fc is hence used to foster the selection of small values of k:

fc (k) =
{

al ·k +bl if 1 ≤ k < Kav

ae ·ek +be if Kav ≤ k < Kmax
(3.9)

where al ,bl , ae and be are parameters to tune and Kav represents the threshold above which

the number of states becomes costly2.

The final cost-error function ε(k) is a trade-off between DBi d x and fc , and also takes into

account that the total standard deviation has to be minimized:

ε(k) = DBi d x (k) · fc (k) ·
√√√√ k∑

j=1
S j (3.10)

Finally, the optimal K ∗ is taken to be the solution of:

k∗ = argmin
k

ε(k) (3.11)

The corresponding set of clusters Ck∗ further defines the mean µi , standard deviation σi ,

and extrema {P mi n
i ,P max

i } of the power consumption of each power mode mi , i = 1, ...,k∗.

2It is fairly reasonable to fix Kav to 4 and Kmax to 8 for power disaggregation purposes.
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Figure 3.4 shows the power histogram of an air exhauster device, along with an estimated

Gaussian distribution for each of the three clusters identified by the algorithm. In Figure

3.5, the corresponding cost-error function ε(k) displays a minimum for k = 3 that defines

the number of active states for this appliance. One can observe that the DB index decreased

around the larger values of k, while the function ε(k) is convex.

States merging

The above algorithm may result in the identification of close states that could decrease the

quality of the load disaggregation process. The post-processing step ensures that centroids

spaced less than αdi st percent from the total power range are merged together. A value of

αdi st = 5% is a reasonable compromise for preventing close states while ensuring enough

granularity.

3.4 Case Study on the ECO Dataset

The presented multi-state modeling algorithm aims at enhancing the automatic detection

of an appliance’s load profile. Among others, this appliance modeling can be beneficial for

FHMM-based power disaggregation techniques. In this section, the experimental results

of the multi-state modeling are carried out on a public dataset for outlet-level power load

disaggregation tests and are compared to binary ON/OFF modeling. Time-series data collected

at plug-level for various appliances is used for the load profile identification algorithm, that

outputs the multi-state model of each appliance. The true aggregated signal is then formed by

summing up the individual time-series signals.

3.4.1 The ECO dataset

Many datasets are publicly available in support of the research in the NILM domain, such

as the REDD [112], BLUED [113], GREEND [114] or the ECO dataset [71]. In the ECO dataset,

data has been sensed at the building smart-meter level and also at plug-level for six different

houses, over a period of eight months at a granularity of 1Hz. This dataset has been chosen

for its many user-driven appliances, particularly in household two, which will be the only

household of interest.

The ECO dataset has primarily been designed for occupancy estimation based on whole-

house consumption [115]. Nevertheless, the granularity and large data it holds made it a good

candidate for NILM evaluation. Table 3.1 shows the loads that are used for the experiments,

along with the results of the automatic states identification algorithm. Figure 3.6 displays a

histogram for some of the loads and a graphical representation of the state’s identification

results. A sampling period of 180 days has been used, leading to the identification of more

that one active state for most of the tested loads.
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Table 3.1 – Automatic states identification of appliances in Household 2 of ECO dataset

Appliance name K ∗ State means (W)

Tablet 4 {0 ; 6.4 ; 8.6 ; 10.7}

Dishwasher 3 {0 ; 123.7 ; 2192.3}

Fridge 3 {0, 15.3 ; 70.7}

Entertainment 4 {0 ; 24.1 ; 53.8 ; 208.4}

Freezer 2 {0 ; 53.8}

Water kettle 2 {0 ; 1838.3}

Lamp 3 {0 ; 85.1 ; 185.2}

Laptop 3 {0 ; 31.0 ; 69.6}

TV 2 {0 ; 160}

Stereo 4 {0 ; 24.0 ; 50.2 ; 149.2}

3.4.2 Load power disaggregation

The authors of the ECO dataset have also developed NILM-Eval, a combined MATLAB-Python

framework for evaluating the most popular disaggregation algorithms on any dataset. The

implemented algorithms cover the various approaches of the design space of NILM algorithms:

Parson [94], Baranski [89], Weiss [100], Kolter [95], and FHMM-based algorithms.

Basis on NILM-Eval, the multi-state identification algorithm could easily be integrated for

determining the appropriate number of states for each appliance, along with the means and

variances for each of the identified states. The EM algorithm, run by default for FHMM param-

eter identification based on plug-level data, was used for determining the transition matrix

A and the initial state probability distribution π. This corresponds to the set of sequences

defined in the proposed Load Profile (LP) structure, presented in Chapter 1. The multi-state

identification process and the subsequent EM algorithm constitute the training phase for

load disaggregation. Once all the individual FHMM models have been trained, the combined

FHMM model is instantiated for power disaggregation purpose. From an input time-series

data vector resulting from the aggregation of Na real consumption signals, the NILM-Eval

toolbox allows the disaggregation algorithm to be run.

To evaluate the performance of the multi-state FHMM-based power disaggregation, the

corresponding binary FHMM-based power disaggregation has been run with the same config-

urations, also referred to as ON /OF F . For each of the disaggregated signals x̃i , the difference

with the real one xi is quantified by three different quantities:

- The F-score, taking into account the number of True Positive (TP), False Positive (FP),

and False Negative (FN). Introducing Precision = T P
T P+F P and Recall = T P

T P+F N , F-score
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Figure 3.6 – Histogram and automatic states identification for some of the ECO dataset appli-
ances. In red, the centroid of the identified clusters and in green, the corresponding estimated
normal distribution.

represents their harmonic mean:

F-score = 2 · Precision ·Recall

Precision+Recall

- The Root Mean Square Error (RMSE) (W), defined as:

RMSE =
√√√√ 1

T

T∑
t=1

(x̃i (t )−xi (t ))2

- The error in the total estimated energy ∆E
E (%). As the user is more interested in the

total energy used by its appliances rather than their instantaneous power, the error in

aggregated estimated energy use has been evaluated. This quantity is computed over

the Na appliances that influence the aggregated signal:

∆E

E
=

∑Na

i=1 |Ẽi −Ei |∑Na

i=1 Ei

where Ẽi and Ei stands for the inferred and real energy consumption of appliance i over

the disaggregation period, respectively.

A definition of accurate TP and inaccurate TP have been suggested by Kim et al. [92] to

make the distinction between the recognition of an active ON state and an accurate power
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Table 3.2 – Comparison between binary and multi-state FHMM disaggregation results, trained
for 30 days

Appliance set
ON/OFF Multi-state

∆E
E Fa-score RMS ∆E

E Fa-score RMS

TV
0.9

0.996 4.11
0.3

0.999 0.54

Laptop 0.966 7.28 0.984 2.22

TV
2.5

0.995 4.22
0.4

0.990 7.84

Lamp 0.972 9.81 0.907 7.68

TV
1.7

0.991 5.90
1.1

0.991 5.84

Entertainment 0.836 13.26 0.977 6.91

Laptop
1.5

0.892 11.77
2.0

0.889 11.40

Entertainment 0.831 15.28 0.868 9.56

Stereo

17

0.930 13.68

3.7

0.802 13.49

Laptop 0.780 16.60 0.770 9.57

Entertainment 0.885 25.44 0.894 8.91

TV

4.4

0.978 8.45

5.8

0.994 4.50

Laptop 0.892 11.12 0.857 12.52

Stereo 0.932 10.86 0.722 13.10

TV

2.9

0.944 14.90

2.1

0.976 9.81

Laptop 0.884 12.22 0.885 11.80

Entertainment 0.836 13.25 0.866 9.01

TV

53.4

0.984 8.00

13.9

0.948 22.93

Lamp 0.698 46.61 0.260 29.54

Entertainment 0.438 94.60 0.933 51.18

Stereo 0.788 17.94 0.915 14.13

estimation. Since each state mean and standard deviation are estimated by the multi-state

identification algorithm, a more precise definition can be derived: a TP is said to be accurate if

|x̃i (t )−xi (t )|
xi (t )

≤ 3 ·σ j

where j is the state corresponding to x̃i (t ), otherwise it is classified as an inaccurate TP. The

corresponding accurate F-score is used in the experiment results, referred to as Fa-score.

The binary and multi-state FHMM-based power disaggregation methods have been applied

to various groups of appliances and various lengths of training/disaggregation periods. Given

the same period’s length, the lowest value of ∆E
E of the binary model has been selected among

all the results and the corresponding multi-state model has been recorded. By doing so, the

advantage of using more than one active power state may be highlighted.
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Figure 3.7 – Snapshot of outlet power consumption and its estimation for the set {Stereo,
Laptop, Entertainment}. (Top) On/OFF modeling (Bottom) Multi-state modeling

Table 3.2 lists the results for 30 days of training and a disaggregation period of 30 days. A

time-series example of the disaggregation result is shown in Figure 3.7. It can be seen that

multi-state modeling generally outperforms binary modeling in terms of energy estimation

and RMSE. The disaggregated time signal analysis shows better coverage of the multiple states

taken by the outlet appliances. The Fa-score is yet not much improved by the multi-state

modeling. This is due to the fact that the variance taken by the binary model state is generally

larger than the variances in each state of the multi-state model, leading to less inaccurate

TP in the binary Fa-score. Extremely low values of the Fa-score highlight the degradation of

the disaggregation results based on multi-state modeling as an excessive number of states

define the appliances. While the sum of the estimated signals gets closer to the real signal,

the large amount of possible state combinations leads to erroneous individual signals. Other
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Table 3.3 – Comparison between binary and multi-state FHMM disaggregation results, trained
for 60 days

Appliance set
ON/OFF Multi-state

∆E
E F -score RMS ∆E

E F -score RMS

Stereo

7.8

0.929 12.32

1.4

0.884 14.60

Laptop 0.858 11.44 0.898 10.78

Entertainment 0.816 17.47 0.913 10.49

TV

3.2

0.958 13.40

0.9

0.972 11.83

Laptop 0.867 11.11 0.884 9.82

Entertainment 0.828 12.67 0.930 7.53

TV

2.8

0.979 8.23

4.8

0.988 9.967

Laptop 0.895 9.70 0.681 11.14

Stereo 0.932 11.74 0.893 12.32
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Figure 3.8 – Computation time (in seconds) of the load disaggregation process as a function of
the logarithm of the total number of states of the combined FHMM

issues appear when frequent switching peaks populate the histogram, leading to a dedicated

state. This short peak state might be erroneously identified in the presence of concurrent high

consuming loads. The aforementioned issues could be mitigated by the modeling of the state’s

duration, especially the peaks, within a Semi-Hidden Markov Model. Moreover, a Conditional

Factorial Markov Model could also improve the disaggregation results as correlated appliances

are active at the same time [92].

The training period substantially influences the disaggregation efficiency for both the binary

and the multi-state models. Table 3.3 shows the disaggregation results for a training period

of 60 days and a disaggregation period of 30 days. Compared to Table 3.2 where the training

period is two times smaller, the multi-state model behaves better in all cases. Indeed, the

training phase might have detected new frequent states and filtered out others less frequent.

Nevertheless, the disaggregation process of the FHMM in the NILM-Eval toolbox grows ex-

ponentially in time as the number of states per appliance increases. Figure 3.8 shows the
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experimental disaggregation time as a function of the total number of states that the FHMM

model has to deal with. It was run in an Intel® i7-6700-based machine, with 32GB DDR4

memory. Therefore, increasing the number of states per appliances comes at a higher cost

with respect to computation time, as well as the required memory. This might explain why a

binary ON/OFF model generally suffices for load disaggregation purposes when coping with a

large number of appliances and large disaggregation periods. However, applications dealing

with less than five appliances might prefer multi-state modeling for better accuracy in the

results.

3.4.3 Activity set identification

The algorithm presented in Section 3.3 and used for energy disaggregation allows identification

of intrinsic power states of the loads independently from user behavior. As the building

occupants use the various appliances, specific patterns can be identified such as when the

appliances are used and what power modes are preferred in each of them. The temporal use of

a specific appliance is defined in a probabilistic way over 24 hours. To get their characteristics

and probability, the entire historical time-series in analyzed. First, all the consumption

points are represented by their discrete modes (m1 to mk ) instead of continuous values. This

chronological sequence of power modes is then compressed into an linked list to reduce

the memory need. Activity is then identified whenever a succession of non-zero modes is

observed for more than a specific threshold of time, typically a few dozens of seconds. Daily

activities ai throughout the dataset can thus be extracted, defined by their starting time ti ,s ,

duration di , and succession of modes.

The set of raw user activities {ai } is then processed to determine a condensed set A of typical

daily activities. Essentially, one tries to extract a set A as small as possible, gathering similar

past activities together. To do so, scatter plots of raw activities have been created, as depicted

in Figure 3.9 for three different loads of the ECO dataset. In the left column, the activity starting

time is plotted against its duration, while the right column plots the activity ending time against

its duration. The identified clusters and centroids (black crosses) are the result of iterative

k-means algorithms, with a cluster selection procedure similar to the mode identification

algorithm presented previously, involving the DB index. As the couples {starting time, duration}

sometimes lead to a large number of clusters with a high variance in duration and starting

time, the "ending time" feature has been preferred in these cases. The selection between the

two features - starting or ending instant - is done by looking at the DB index and total variance

of both solutions. Appendix A.4 includes more activity clustering examples.

Clustering the activities allows us to obtain a small set A of representative activities. For

each of them, normal distributions of their duration and start/end time instant are computed

from the corresponding data points they contain. As not all the activities happen every day,

their probability to occur must also be computed, based on the data point density of their

corresponding cluster. Furthermore, the linked lists of mode switching events lead to the
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Figure 3.9 – Activity clustering by activity duration and (left) starting time or (right) ending
time. From top to bottom rows: laptops, entertainment system, and stereo system.

creation of a set of sequence modes S that define the transitions of modes within each activity.

The occurrence frequency of each mode fills the diagonal of the transition matrix in S and

switching from mode i to j fills the corresponding cell in that matrix. Similarly, looking at the

starting modes in each activity leads to the determination of starting mode probability.
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3.5 Conclusion

In this chapter, we presented a new method to automatically extract power states and user

activities of common building appliances, based on plug-level historical data. A load profile

identification algorithm has been implemented for the automatic detection of the optimal

number of states of the appliances under test and it then determines the model parameters in

each of the states. The algorithm is based on the k-means clustering algorithm, for which the

number of clusters is iteratively increased. A clustering quality index, penalizing the higher

number of states, has been derived and used for state selection. Similarly, k-means clustering

helped extract common user activity patterns in the consumption data. This results in a

compact structure of representative user activities on their appliances.

The multi-state power modeling was then experimented on the ECO dataset by enhancing the

FHMM available in the NILM-Eval toolbox, for 1 Hz disaggregation tests. Compared to the

basic ON/OFF binary model, multi-state FHMM-based disaggregation reduces significantly

the RMS error of the estimated appliance power. Modeling the appliances with more than a

single active state allows the algorithm to better match the actual consumption. The proposed

modeling, therefore, improves the accuracy of the total estimated energy consumption per

appliance. Yet, as the set of possible states at each time instant grows bigger, this comes at the

expense of larger computation time. This represents an interesting improvement for a more

accurate user feedback towards better demand-side management, as the building occupants

would get a better view of their appliances’ energy consumption.
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4 Smart-Building Energy Management

Buildings’ electrical loads, energy storage systems, and local generation infrastructure form a

complex heterogeneous fleet of flexible entities. The proper management of such energy flexibility

requires the deployment, at the building premises, of an Energy Management System (EMS) that

continuously ensures the appropriate use of the controllable part of the energy. Balancing both

the building owner benefits and the the smart-grid objectives while maintaining user comfort,

the building EMS should carefully be designed. Furthermore, it should seek compatibility with

existing Building Data Management System (BDMS) for a large scale adoption.

The main highlights and contributions of this chapter are:

• A review of energy management algorithms in building, with a focus on Model Predictive

Control (MPC) and existing tools to deploy them in buildings.

• We developed OpenEMS, an open-source building Energy Management System for

smart-grid applications. The modular and generic architecture of the software allows

a plug-and-play connection with existing BDMS. Programmable by the user, many

advanced energy management algorithms can be implemented through its object-

oriented structure.

• Simulations based on the Minergie test case highlight the modularity of OpenEMS for

building energy management, by comparing Rule-Based Control (RBC) with MPC.

• The open-source tool, coded in Python, is available at [116] and common energy man-

agement strategies tailored to OpenEMS can be found in [117].
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4.1 Energy Management in Buildings

The control of energy in buildings has received plenty of attention in past decades. Initially

driven by the need to reduce the total amount of energy consumed at the building site, re-

search has recently moved towards the energy management of flexible entities for dynamic

grid support. The requirement of the grid utility is expressed through the notion of DSM

[118]. DSM represents a set of programs aimed at changing the consumption of buildings,

categorized into Energy Efficiency (EE) and DR. On the one hand, EE programs encompass

passive techniques to reduce the overall building energy demand: enhanced building en-

velopes, efficient appliances, double-gazing windows, etc. On the other hand, DR programs

represent active methods to shape the daily building power profile (residential or commercial)

which can itself be subdivided into time-based and incentive-based programs. Time-based

signals define the retail price of electricity, which can be as static as Time-of-Use (TOU) tariffs

or as dynamic as Real-Time Pricing (RTP). Capacity market, interruptible, emergency, and

Direct-Load Control (DLC) programs fall mainly into the event-based category.

Electricity prices and other DR signals generated at the grid side must be properly understood

and translated into local actions at the building premises. To this end, the use of energy

management algorithms in buildings has been intensively studied [6, 119, 120, 121, 122].

Traditional control methods such as rule-based decisions acting on a local part of the system

have, therefore, progressively led the way to more advanced optimization-based strategies

that take the whole building into account [123, 120, 122]. These strategies generally leverage a

given model of the building to minimize the electricity cost paid by the user while still ensuring

their comfort. In [6], authors review the common models that are used for advanced model-

based control in building. They emphasize the importance of predicting future environmental

conditions, as they directly impact the models. Vardakas et. al. [122] differentiates the

optimization-based approach to tackle DR between load scheduling and energy management.

While load scheduling models all the flexible loads as deferrable (shiftable) loads, energy

management dives into the details of each of the underlying models and constraints.

The load scheduling (or appliance commitment) task consists of deciding on the most ap-

propriate starting time instants of a set of deferrable loads, ahead of time [124, 125, 126].

Mohsenian-Rad et al. [127] and Law et al. [78] formulated the load scheduling task as a linear

programming problem that can be solved by the Interior Point method or commercial solvers.

In [128], the problem is approached via the knapsack method and eventually boils down to a

linear programming formulation. Integration of ESS along with deferrable loads is presented

in [31] and proves to reduce the daily Peak-to-Average Ratio (PAR). Authors in [129] relaxed the

linear programming formulation for EWH temperature management and integrate a heuristic

to schedule the load according to RTP. As a deterministic formulation might not be realistic,

Chen et al. [130] consider uncertainties in household appliance operation time and fluctuating

renewable generation in their load scheduling formulation. Compared to basic load models

used in the aforementioned works, more realistic multi-state models have been used in [131],

in addition to a method to mitigate the load uncertainty at the grid level.
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Beyond load scheduling, more advanced models can be used to create a forecast of the building

consumption ahead of time. Hubert et al. [30] included knowledge of the building’s physics

along with a deferrable load scheduling task to generate a 24-hour Mixed-Integer Linear

Programming (MILP) problem. Comfort preferences and EV SoC could directly be included

in the problem constraints set. In [132], authors formulated both a robust and stochastic

optimization problem to schedule a set of deferrable appliances, an AC, an EV, and an EWH.

To cope with the intraday changes in electricity prices, authors in [133] proposed to update

the parameters and re-run the MILP problem, considering five types of loads. Particle Swarm

Optimization (PSO) has been applied in [134] to solve the day-ahead building energy planning

problem, in the presence of deferrable appliances, ESS, and local renewable energy.

Day-ahead optimization leads to optimal planning based on assumptions prone to forecast

uncertainties. MPC mitigates this issue by enabling a real-time controller that solves a reduced

optimization problem at every control step (typically one hour to five minutes). The control

method has solely emerged recently for smart-building applications thanks to the ubiquitous

ICT and cheaper computational power. Afram et al. [135] reviewed the use of MPC for HVAC

control systems, from simulation to experimental fields. The gain in energy efficiency has been

shown to be case-specific, as high as 30-70%. Compared to other traditional controllers, MPC

can directly incorporate user comfort and physical preferences into the optimization problem

formulation and the optimization function directly reflects user costs and/or grid benefits.

Nevertheless, as the controller is mostly based on the forecast, a good prediction of the model

parameters and influencing disturbances is required. The thermal model is generally the main

element of the MPC formulation. Authors in [17] detailed a generic intermediate complexity

model for room thermal comfort automation. However, simpler RC models are generally

used for catching the main thermal dynamics of the building [136, 33, 137, 6], leading to a

less complex problem to solve. To generate a building model tailored to predictive control,

[138] developed the BRCM MATLAB toolbox. The toolbox outputs a discrete-time bilinear

state-space model of the building, from EnergyPlus input files [38]. Furthermore, building

occupants play an important role in the quality of the energy control algorithm because of their

natural unpredictability. A review of the models used to predict user occupancy and behavior

for MPC purpose has been conducted in [139]. Machine learning has also been applied to the

field of MPC. In [140], authors used ANN to derive a model of the building to integrate it into

an MPC at residential level. Approximate model-predictive building control was proposed

in [141], where the model is simplified by the use of a time-delay neural network. The use

of machine learning techniques helps reduce the large hardware and software requirements

necessary for MPC.

Due to its structure, MPC is the ideal tool to enable a building-to-grid framework. In [142],

an MPC-based strategy decides whether to involve the building or not into the Day-Ahead

Demand Response program. During the next day, price of electricity is directly use to drive the

building power consumption. Maasoumy et al. [143] proposed a contract-based framework

between the building and the utility to leverage the flexibility offered by the HVAC fan. An

optimal baseline is initially computed by the building, and then during the day the MPC
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leverages the thermal inertia of the system to increase building benefits through the tracking

of a utility signal. Combining both price-based and event-based DR programs, Knudsen et

al. [144] developed a two-stage MPC. The innovative structure allows the building to decide

on optimal bids offered to an aggregator. Authors in [145] managed to decentralize the MPC

problem within a building, leading to a consensus-based algorithm among to participants to

agree on a maximum value of power peak.

Parallel to MPC, MAS has experienced a keen interest in decentralizing and distributing the

energy management strategy. Though it is more often encountered in smart-grid applications,

it offers interesting practical features for building energy management. Authors of [119] and

[54] provide thorough reviews of MAS tailored to building control and energy optimization.

The main idea consists of segmenting the complex building energy management system into

sub-modules and letting independent agents interact to solve the whole problem. In [54],

a MAS-based framework relying on four layers is proposed: a simulation layer, knowledge

information layer, network data acquisition layer, and action layer. Hurtardo et al. [146]

implemented a MAS control framework with the JADE framework able to take into account

the grid key performance indicators to drive the energy management logic.

Beyond the design of innovative energy management algorithms, their practical implementa-

tion in the building EMS has also been investigated. Their simulations are generally carried

out in MATLAB, unsuitable for real-time light embedded energy management. Zhou et al.

[147] presents the concepts and configuration of residential EMS. They highlight the need

for a (wireless) network of sensors and actuators connected to a main panel of EMS. The

widespread smart-meter is referred to as the home gateway to the external utility for bidi-

rectional communication purposes. As the set of loads, energy storage, and local renewable

energy infrastructure run during the day, their power must be monitored, logged, controlled,

and managed by the EMS. Authors in [148] detailed a multi-modal residential EMS for DR.

The device object is at the center of their database design, linked to measurement, controller,

and room objects. A prediction object collects external forecasts useful for control. A service

layer offers a Graphical User Interface (GUI) for data extraction and user involvement in the

EMS decision. An EMS based on ZigBee is introduced in [149], separating the design into

sensing infrastructure, context-aware, and service management. Leveraging home area net-

work systems, authors in [150] proposed a residential EMS to connect building loads to an

external aggregator. The design of a Building Operating System (BOS) was described in [151]

that enabled the test of multiple strategies, including MPC, on a university campus. Tools like

VOLTTRON [152] and XBOS [60] coupled with MPCPy [153] can play the role of a combined

robust BDMS-EMS platform for energy monitoring and optimization in buildings.

In this chapter, we present the design and implementation of a light plug-and-play EMS

that can seamlessly connect to existing deployed BDMS. The tool is called Open Energy

Management System (OpenEMS) and is entirely coded in Python. Unlike [149, 148, 150], we

have decided to separate the sensor network and data storage from the EMS design. This

allows better modularity and renders the tool more generic. Like MPCPy, it relies on external
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BDMS infrastructure to get the necessary data for running the algorithms. Nevertheless, in

addition to MPC, the OpenEMS can deploy other control algorithms as specified by the user.

From a software design standpoint, the tool differs from MPCPy by being a standalone process

that automatically plugs into the BDMS to enable energy management of its building.

The rest of this chapter is organized as follows. Section 4.1.1 concludes the literature review by

describing the mechanisms of MPC in buildings and Section 4.2 further derives grid-oriented

MPC formulations. The multi-threaded architecture of the OpenEMS is presented in Section

4.3. A case study involving a Minergie building demonstrates the usefulness of the tool

in Section 4.4 by implementing and comparing two control strategies. Finally, Section 4.5

concludes the chapter.

4.1.1 Model-predictive control applied to building energy management

Definition 4.1.1. MPC - A Model Predictive Controller (also referred to as MPC controller)

is a controller that uses the knowledge of the model of the system it intends to control to

periodically compute setpoints aimed at the system. The setpoints sent to the various control-

lable elements constituting the system result from solving an optimization problem given the

model of this system, constraints on its components, and data forecast over a limited future

horizon.

Fig. 4.1 depicts an MPC controller applied to a generic building environment. In a smart-

building context, the corresponding model in the MPC typically encompasses the thermal

dynamics, batteries & EV, controllable loads, user behavior, and PV production. Constraints

are added to the physical components, as well as to ensure temperature comfort. Input

forecasts generally include environmental conditions, occupant behavior, and electricity

prices. Solving the optimization problem generally implies the minimization of an economic

cost function or the consumed energy over the next horizon of time H . By denoting the

cost function J [h] at each time instant h, the generic MPC formulation for building energy

management has the following form:

min
u

H−1∑
h=0

J [h] (4.1)

s.t. building state at time h = 0

∀h = 0. . . H −1 :

building model at time h

constraints on building entities/user at time h

Out of the resulting control variable u∗, the first value is practically applied as an input to the

system.

The MPC controller receives feedback from the building in a closed-loop fashion. Sensors

deployed at the building premises help construct part or the entire MPC model state to be
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MPC controller

Objective minimization given a building 
model under constraints and 

disturbance forecast
u = {u0, u1, …, uH-1}

Building 
environment

u0 = { u0,0, u0,1, ..., u0,N}

Building sensors

Forecast:
- Electricity price
- Environmental data
- Occupant behavior
...

Figure 4.1 – MPC applied to buildings: system overview
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Figure 4.2 – Illustration of MPC horizon of optimization.

used for the subsequent optimization problem. Fig. 4.2 illustrates the MPC operation over

time. At time t1, the MPC model state x0 is updated after reading the sensors data, and

forecast data [d0, ...,dH−1] is retrieved. The cost function is then built over the horizon H ,

along with the building model and constraints over the horizon H given as constraints to the

problem. Solving the problem (4.1) at time t1 outputs an optimal trajectory for the building

state [x0, ..., xH−1] provided that the optimal input [u0, ...,uH−1] was applied to the model over

horizon h. Practically, the set of input commands u0 are applied to the building system at time

t1. Then, at the next control instant t2, the updated state x0 resulting from the application of

u0 is retrieved along with new forecast data in order to repeat the same optimization problem

at time t2. A new input command set u0 will be computed, applied to the building at time t2,

and so on.

A note on control versus energy management

It is important to differentiate the setpoints resulting from MPC-based energy management

and local controllers’ actions. A local controller acts on a specific part of the building to

regulate comfort or on a building component (e.g., temperature setpoint tracking, battery
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power regulator). These controllers are, therefore, listening to signals emitted by the EMS

(temperature, power, on/off states, etc) and ensure the local system they control follows the

received signal. Whereas the EMS relies on advanced model-based algorithms to decide on

these setpoints, local controllers generally apply simpler rule-based or Proportional Integral

(PI) control. There is also a significant difference in the order of magnitude of the operational

timescale. Typical periods for EMS setpoints updated range from one hour to five minutes.

Concerning the local controllers, they must work at a higher frequency to properly track a

signal; this frequency depends on the dynamics of the system it controls.

In this thesis, the focus is set on the methods of energy management. Consequently, one

assumes that local controllers are present in the building to ensure the tracking of EMS-

generated setpoints.

4.2 MPC as a Means to Provide Grid Services

MPC has been introduced in the previous section as a powerful means to manage a building’s

energy consumption, being aware of its numerous stakeholders. In this section, we further

discuss how an MPC-enabled smart-building can seamlessly implement common grid services.

MPC formulations are developed to practically incorporate various DR programs’ specification

into their constraints and objective function. We consider that a building model is known with

corresponding constraints and that the MPC outputs on the flexible signal u.

4.2.1 Price responsive smart-buildings

Price-based MPC (or economic MPC) for smart-buildings are commonly found when studied

in a smart-grid context [154, 155]. The fundamental idea is to produce a set of optimal

commands for the flexible entities that minimize the cost of energy in a given horizon 1. The

corresponding generic MPC formulation is expressed as follows:

min
u

H−1∑
h=0

c[h] e[h] (4.2)

s.t. ∀h = 0. . . H −1 :

building model at time h

constraints on building entities/user at time h

where c[h] is the price of energy ($/kW h) at time period h. It could be as simple as day/night

or a TOU tariff defined by the electricity retailer through a contract and fixed for a long time.

Additionally, some utilities propose DR programs like Critical Peak Pricing (CPP) that increase

the price of electricity for specific periods, generally announced a day in advance, while

offering price compensation the rest of the time. More dynamic prices would consist of using

1Depending on the price signal, this does not necessarily translate into the minimization of the overall energy
used.
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market RTP or local aggregator/microgrid prices updated frequently as a function of local

demand and generation. In either case, the structure of MPC allows for the easy integration

of these prices into the objective function. Finally, TOU demand charges may apply to large

commercial buildings, especially in the US. Balancing both the costs due to energy charges

($/kW h) and the demand charge ($/kW ) is a non-trivial task and will be the focus of Chapter

5.

4.2.2 Event responsive smart-buildings

While energy prices represent a great vector for decentralized demand response, they might

lead to a lack of guaranty on the change in energy/power consumption [156]. To this end,

event-based DR, also referred to as incentive-based or physical DR, programs provide the

grid-side agent with a better guaranty on demand behavior, as both parties are bound by a

contract. The response to a DR event will be evaluated against a baseline by the grid-side

agent (e.g., the utility) to verify whether the building responded appropriately.

Definition 4.2.1. Baseline - A baseline refers to a power consumption profile of a building

used for reference purposes. When used in a DSM context, a baseline represents the building

consumption that would be expected in the absence of a DR event.

Let us denote this baseline power by sr , i.e., a vector of power consumption over a defined

horizon H . Furthermore, we consider that the building’s EMS optimizes an objective function

fc (e[h] (e.g., energy consumption or cumulative energy cost).

Load shedding/shifting/capping

Load shedding constitutes a widespread DR program to impose a time-limited decrease in

demand during critical periods of the year. The reduction in power ∆PDR [h] is computed with

respect to the baseline sr [h] that would have been expected without the event. An additional

constraint must thus be incorporated into the MPC formulation:

min
u

H−1∑
h=0

fc (e[h]) (4.3)

s.t. e[td ] ≤ sr [td ]−∆PDR [td ] ∀td ∈Hd (4.4)

∀h = 0. . . H −1 :

building model at time h

constraints on building entities/user at time h

Constraint (4.4) prevents the power consumption from rising abovesr −∆PDR at strategic time

instants Hd that activate the constraint. Out of these sets of time periods, the constraint is

inactive and there is no restriction on power consumption.

As power demand is limited by load shedding programs for some periods of time, this might
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induce a rebound effect due to the need to compensate for the reduced energy used [157]. This

effect especially occurs when dealing with loads linked to thermal inertial. The concept of

load shifting solves this issue by specifying periods of increased demand (Hu) and decreased

demand (Hd ) which can be inserted in the MPC as follows:

min
u

H−1∑
h=0

fc (e[h]) (4.5)

s.t. e[td ] ≤ sr [td ]−∆Pdr [td ] ∀td ∈Hd (4.6)

e[tu] ≥ sr [tu]+∆Pdr [tu] ∀tu ∈Hu (4.7)

∀h = 0. . . H −1 :

building model at time h

constraints on building entities/user at time h

While constraint (4.6) is similar to constraint (4.6) in formulation (4.3), constraint (4.7) enforces

the consumption to be higher than the baseline by ∆Pdr . It is worth noting that these new sets

of constraints might lead to an infeasible problem, in which case they should be expressed as

soft constraints.

Instead of limiting the power consumption with respect to the building baseline, the grid-side

agent might directly specify the absolute amount of power the emax [h] building should not

exceed at time h:

min
u

H−1∑
h=0

fc (e[h]) (4.8)

s.t. ∀h = 0. . . H −1 :

e[h] ≤ emax [h] (4.9)

building model at time h

constraints on building entities/user at time h

Load following

Unlike the aforementioned event-based programs that aim to punctually change power con-

sumption compared to a given baseline, load following programs continuously shape the

building power profile. To this end, the building is provided with a signal sr , that it must track

as much as possible. This signal can either be an absolute power directly used for optimization

or a normalized vector representing a relative expected consumption shape. In the latter case,

the building itself is in charge of constructing the power signal that it has to track given the

knowledge of the maximum power it will consume in the signal period. The corresponding

MPC formulation can be derived as follows:
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Figure 4.3 – OpenEMS distributed architecture

min
u

H−1∑
h=0

(e[h]− sr [h])2 (4.10)

s.t. ∀h = 0. . . H −1 :

building model at time h

constraints on building entities/user at time h

The quadratic objective function in Eq. (4.10) strives to reduce the least-square error between

the forecast power consumption e and the desired one sr . If the special case where H = 1,

only the next power consumption value is specified and must be followed. This can arise for

providing ancillary services such as Frequency Control Regulation (FCR) where the building is

asked to track a signal updated as often as four-second intervals to help regulating the system

frequency [158]. Applications to energy arbitrage lead to a large value of H (typically 96 for a 24

h horizon with a 15 min precision) and intends to match as much as possible local generation

with local demand; this scenario will be the focus of Chapter 6.

4.3 OpenEMS: a Generic Open-Source EMS

The architecture of the OpenEMS is depicted in Fig. 4.3. It has been designed as a multi-

threaded process to decouple the input/output interfaces with external applications from the

internal core functions to handle the building energy. Two interfaces, BMS interface and Grid

interface, allow the core of the OpenEMS to leverage data coming from (sending data to) the

BDMS and the grid utility, respectively. They both use the Application Programming Interface

(API) offered by these applications, to retrieve metadata about the building, its entities, and

the grid signals that will be sent in real-time. Mainly, the BDMS’ API provides the OpenEMS

with useful data to represent the building from an energy management point of view.

The Model & Data Structure module receives static data from the BMS interface already pre-

processed by the latter. This data mainly contains building geometry, zones and their thermal
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Figure 4.4 – OpenBMS-OpenEMS interactions timeline

interconnection, the energy-related entities information (loads, battery, generation), and other

miscellaneous data (e.g., altitude, coordinates). It then structures them in a way that eases

their manipulation for control purposes. Along with the building-specific data, structures

co-exist to handle the exodata, such as the ambient conditions and information/constraints

coming from the grid.

Finally, the Energy Management logic module may take advantage of the Model & Data Struc-

ture module to implement the core logic of energy management. The structure of this module

has been created in a modular way that enables the users of the tool to program the man-

agement strategy themselves. In addition to building data, two advanced modules assist the

energy management strategy designer in solving common problems: deferrable load schedul-

ing carried out by the Load Scheduler module and model-based optimization formulation

provided by the Linear Programming module.

Practically, Model & Data Structure and Energy Management logic are run in a unique thread,

implemented by the Python class EnergyManagementSystem. This class inherits from the

Python module Thread to infinitely run for a periodical management of the building energy. It

collects real-time building data and other exodata from the Model & data structure module

that connects itself to the aforementioned interfaces. The complete documented code of the

OpenEMS is available at [116].
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4.3.1 BMS interface

Fig. 4.4 shows the timeline of interactions between the OpenEMS (in red, left) and the build-

ing’s BDMS (in blue, right), from the initialization to the real-time update of setpoints. Practi-

cally, this interaction is enabled by the BMS interface thread. It has the mission to decode the

API responses and real-time data coming from the BDMS, as well as format API requests. Two

main operations are performed by the BMS interface:

• API data decoding/encoding: different BDMS are likely to expose different APIs [7],

forcing the BMS interface module to adapt itself to any of them. The first set of API calls

aims to initialize the building static model by reconstructing the building geometry, its

zones, and the interface separating the various zones. Then, it must obtain metadata

about all energy-related entities present at the building site and link them with the

zones.

• Sensors and actuators mapping: the OpenEMS core must be totally agnostic to the

underlying technology and even to the notion of sensors and actuators. Both of these

entities are fundamental for the BDMS and are generally linked to an energy-related

entity or a comfort metrics. Hence, the BMS interface maps incoming data from sensors

to the corresponding higher-level OpenEMS entities. For instance, new data from a

power sensor of load x will update the current state in the object linked to that load, and

a new temperature from an environment sensor will update the comfort state of the

corresponding zone object. Similarly, setpoints updated on the OpenEMS objects are

translated into commands to a specific actuator in the BDMS.

Due to the threaded architecture, inter-thread queues convey data in a bidirectional way,

between the interface and the Data Management module of the OpenEMS.

4.3.2 Data management module

Pre-processed data coming from the BMS interface finds its way towards the Data Management

module that encapsulates it into appropriate objects. Two root data structures, linked to static

data in Fig. 4.3, separate the energy-related entities from the zones. Any data that refers to

a state of power/energy is directed toward the corresponding energy-related object, while

comfort data is stored at the level of its active zone. Detailed Unified Modeling Language

(UML) diagrams of the classes making up the Data Management module can be found in

Appendix A.3.2.

Fig. 4.5 provides a hierarchical overview of the OpenEMS energy-related entities.

The electrical loads are subdivided into user-driven (non-controllable) loads and controllable

loads, as described in Chapter 1. Among the controllable loads, one finds the deferrable

loads (shiftable but uninterruptible) and interruptible loads (shiftable and interruptible).

Each of these subclasses is mapped to the corresponding class in the OpenEMS that defines
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Figure 4.5 – Smart-building electrical entities categorization

parameters and useful methods to control them according to their capabilities, or prediction

about their consumption.

Beyond reversible secondary energy storage (chemical, mechanical, etc.), the Energy Storage

System category includes thermal storage linked to air zones, water tanks, or refrigerated

cells that receive/lose heat from a thermal interruptible load. The storage capacity and

leakage coefficient of zone thermal storage are closely linked to data stored in the second root

data structure modeling the building geometry and storing the thermal comfort state and

constraints. The third category contains data about local energy generation.

These energy-related entities must all implement the abstract method getForecast() that returns

a power forecast for a specified time interval. Most of the uncontrollable loads and local

generation infrastructure, as well as the deferrable loads, can provide this power estimation

given environmental conditions or user-actions forecasting that will drive their behavior. In

the case of a flexible model-based forecast, applying to thermal loads or batteries, this method

will depend on the optimization results.

A zone object contains static information about its geometry and thermal model parameter of

its interfaces with the adjacent zones, current comfort state, comfort constraints, and the loads
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acting on the zone. Like energy-related entities, any instance must implement the abstract

method getForecast(). Whereas most of the zone (thermal) comfort forecasts are model-based

and, therefore, depend on advanced optimization results, some zones, such as the outside

environment, can provide a fixed forecast. To populate the latter, the Ambient Data module

connects to an external forecast data provider that is periodically polled.

Finally, the Grid data & constraints module stores signals ready to be used for optimization,

such as the price of electricity, coming from the Grid interface. This interface with the grid

utility can either rely on a custom protocol or implement the widespread standard Open

Automated Demand Response Standard (OpenADR) for message formatting [159].

4.3.3 Energy management core module

Data from the BDMS and grid utility is structured in handy objects in the Data Management

module so core energy management strategies can leverage them in the Energy Management

logic module. Practically, the Python class EnergyMangementSystem is run as a thread that

instantiates the Data Management module and populates the structures by creating queues

with the two interfaces. Periodically, the instance of that class calls the abstract method

update() that must generate new setpoints targeted to the building entities.

The development and deployment of a new energy management algorithm, therefore, consists

of creating a class that inherits from the EnergyMangementSystem and programming the

update() method (as well as the init() to initialize the algorithm). To this end, the programmer

can count on a panel of useful objects, methods, and advanced model-based libraries. Basic

objects refer to the structures contained in the Data Management module, exposing the

programmer to a building’s list of entities and zones, their current state, constraints, and

specific parameters. Useful methods include setpoints command creation and energy/comfort

forecast.

Two libraries are available to the user for the advanced optimization problem formulation

and solving. The Load Scheduler practically browses the set of available deferrable loads and

generates an optimal triggering instant for each of them, given the scheduling cost function

and time window (typically used day-ahead for the next 24 hours). In real-time, it automatically

looks for the loads to trigger and generates the corresponding ON setpoint for the BDMS. In

the case of advanced model-based energy management, the Linear Programming module

digs into the details of the flexibility and forecast of available entities stored in the Data

Management module to generate a set of optimization constraints, c, and a parametric cost

function objective f . Both c and f can be inserted into a solver to create a sequences of

optimal setpoints to apply to the building. The content and implementation of these libraries

will be thoroughly described in the next section in the form of a case study.

The modular plug-and-play structure of the OpenEMS core allows its users to code a generic

EMS strategy rather than a code tailored to a specific building as it is often encountered in the
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literature. Available samples of common EMS strategies tailored to the OpenEMS are available

at [117].

4.4 OpenEMS Case Study: Energy Management of a Minergie Build-

ing

Introduced in Chapter 2, the simulated Minergie building is used in this section to emphasize

the modularity of the OpenEMS. Two energy management strategies have practically been

deployed in the tool, by inheriting the Ener g y M anag ementSy stem class as explained in

Section 4.3. The traditional on/off control encountered in most current buildings has been

run against advanced MPC. While the traditional control solely ensures comfort to the user

without considering grid services, the more complex MPC leverages the knowledge of the

building model to provide grid services (price incentive). The next subsections describe the

logic of each strategy and its implementation within the OpenEMS.

To test the management methods, the OpenEMS periodically sends new setpoints to the BDMS

that conveys them to entities simulated by the Virtualization Engine (vEngine) introduced

in Chapter 2. Both the vEngine and the OpenEMS get their static data from the BDMS, but

use them differently. Namely, the vEngine reads data referring to virtual entities simulation

that is hidden to the OpenEMS. Alternatively, the OpenEMS needs high-level information and

forecasts not available to the simulation, to centrally generate the setpoints.

4.4.1 Baseline: traditional control

A traditional on/off energy manager was already used in Chapter 2, described by Algorithm 2.

Practically, the strategy is implemented by instantiating the following E MS_T R AD I T ION AL

class as the main OpenEMS core logic:

1 from ems_main import EnergyManagementSystem

2 from building_data_management.category_management.cat_config import *

3

4 class EMS_TRADITIONAL(EnergyManagementSystem):

5 def __init__(self , ** kwargs):

6 ...

7

8 def update(self):

9 commands_set = []

10

11 # Loop over the list of "zones"

12 for r_id in self.building_data.zone_ids_list:

13

14 temp_constr = self.building_data.zone(r_id).get_comfort_constraint(

EMS_COMFORT_temperature)

15 current_temp = self.building_data.zone(r_id).get_comfort_value(

EMS_COMFORT_temperature)
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16

17 if current_temp > temp_constr.get_max(self.current_time):

18 for hvac_id in self.map_zone_thermal_load[r_id]:

19 commands_set.append(self.hvac_set_point(hvac_id , 0))

20 elif current_temp < temp_constr.get_min(self.current_time):

21 for hvac_id in self.map_zone_thermal_load[r_id]:

22 commands_set.append(self.hvac_set_point(hvac_id , 100))

23

24 # Loop over EVs

25 phev_list = self.building_data.get_entity_list([

EMS_CATEGORY_ENTITY_STORAGE_PHEV])

26 for ev_id , ev_obj in phev_list:

27 sp_max = ev_obj.max_power_charge ()

28 commands_set.append(self.batt_set_point(ev_id , sp_max))

29

30 # Loop over deferrable loads

31 def_list = self.building_data.get_entity_list([

EMS_CATEGORY_ENTITY_DEF_LOAD])

32 for l_id , l_obj in def_list:

33 if l_obj.triggered_time is None and self.current_time >= l_obj.

sched_time:

34 commands_set.append(self.start_def_load(l_id))

35

36 return commands_set

First, one has to import the main Ener g y M anag ementSy stem class that will provide the

necessary objects to sense the building states. By inheriting from that class, the E MS_T R AD I T ION AL

may access the BDMS object, "sel f .bui ldi ng _d at a" that contains all the necessary variables

and methods to navigate through the data of the building. The module "cat_con f i g " holds

the keywords and useful mapping structures to ease the manipulation of such building meta-

data and measurement values. Then, the on/off control logic practically run in the method

upd ate(), senses the constrained zone temperature to detect a possible comfort violation.

Whenever such a case arises, the corresponding thermal load is switched on or off. In this

implementation, it is worth noting that the hot water tank is modeled as a "zone" of water

influenced by its EWH. Then, the EV object is retrieved and a charging instruction is emitted if

it is connected and not fully charged. The deferrable loads are triggered as early as possible.

Finally, the set of generated commands are collected in the list, command_set and returned

by the function.

4.4.2 MPC formulation tailored to a Minergie building

Running MPC as the energy manager is performed by instantiating the E MS_MPC class

that inherits from the Ener g y M anag ementSy stem class. Unlike the simple rule-based

traditional control presented above, the MPC requires a model of the building to decide on the

optimal sequence. To this end, the class uses both the Linear Programming and Load Scheduler

modules. On the one hand, the Linear Programming module provides the E MS_MPC class

92



4.4. OpenEMS Case Study: Energy Management of a Minergie Building

with an interface to model the energy-related entities present in the building. On the other

hand, the Load Scheduler module is in charge of appropriately scheduling the deferrable loads

in a day-ahead manner every day and effectively triggering them at the corresponding time

the next day.

Deferrable load scheduling

Scheduling the deferrable loads intends to minimize the cost of triggering them over the next

24 hours. The cost minimization problem is subject to constraints on the start/end time

preferences specified by the user and models their predefined load profile. The problem can

therefore be written as [147]:

min
td

D−1∑
h=0

Nd∑
i=1

c[h] ed ,i [h] (4.11)

s.t. ∀i = 1. . . Nd :

ed ,i [h] =
{

P i [h − td ,i ] if td ,i ≤ h ≤ td ,i +|P i |
0 otherwise

∀i = 1. . . Nd (1.22)

t d ,i ≤ td ,i ≤ t d ,i −|P i | ∀i = 1. . . Nd (1.23)

where D is the number of time slots in the next 24 hours, c[h] is the price of electricity ($/kW h)

at time instant h, P i is the power profile of the i th load, and Nd is the number of deferrable

loads to be scheduled. The power consumption of load i at time h is expressed as ed ,i [h]

and is defined by Eq. (1.22), under the constraints Eq. (1.23) as described in Chapter 1. The

optimization vector td = [td ,0 . . . td ,Nd−1] contains optimal decisions on the starting instants of

the deferrable loads.

Practically, the above load scheduling problem can hardly be solved due to the i f ...el se

statement in Eq. (1.23) that involves the optimization variables td . Using additional vectors

circumvents this issue, leading to the following problem:

min
xd

D−1∑
h=0

Nd∑
i=1

fi [h] xd ,i [h] (4.12)

s.t. ∀i = 1. . . Nd :

D−1∑
h=0

xd ,i [h] = 1 (4.13)

xd ,i [h] = 0 ∀h ∈ [0; t d ,a]∪ [t d ,a −|Pa |;D] (4.14)

where:

• The optimization vector xd , contains binary optimization vectors xd ,i , whose boolean

values xd ,i [h] indicate whether the load i should be trigger at time instant h.

• fi [ j ] =∑ j+|P i |
h= j c[h]ed ,i [h] is the cost to trigger load i at time j ,
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• Constraints defined by Eq . (4.13) enforce vectors xd ,i to only have one value different

than zero. Consequently, only one scheduling instant may exist.

• Constraints defined by Eq . (4.13) ensure that the scheduling instant cannot fall outside

user preferences.

Solving this optimization problem outputs Nd vectors xd ,i whose index corresponds to the

unique non-null value that determines the scheduled time td ,i for load i . It’s worth noticing

that this formulation can be adapted for inter-dependences among the deferrable loads (e.g.,

the dryer must run after the washing mashing).

MPC formulation

The upd ate() method solves the following MPC problem at every update period d tmpc , to

generate setpoint u:

min
u

H−1∑
h=0

c[h] e+[h]+kε
H−1∑
h=0

εT ε (4.15)

s.t. xb[0] = x0
b , x0

z [0] = x0
z (4.16)

xb[ha] =Ca , xb[hl ] =Ce (4.17)

∀h = 0. . . H −1 :

e[h] = uhp [h]+uewh[h]+ub,c [h]+ub,d [h]+pg [h]+pnc [h]+
Nd∑
i=1

pd ,i [h] (4.18)

e+[h]+e−[h] = e[h], e+[h] ≥ 0, e−[h] ≤ 0 (4.19)

0 ≤ e+[h] ≤ M se [h] (4.20)

0 ≥ e−[h] ≥−M (1− se [h]) (4.21)

xz [h +1] = A xz [h]+Bu uhp [h]+Bd dz (4.22)

Tz [h] =C xz [h] (4.23)

0 ≤ uhp [h] ≤ P hp (4.24)

T z [h]−εz [h] ≤ Tz [h] ≤ T z [h]+εz [h] (4.25)

Tw [h +1] =αt Tw [h]+ (1−αt )(
AU

R∗ To[h]+ cw ṁR∗Ti n +R∗uewh[h]) (4.26)

T w −εw [h] ≤ Tw [h] ≤ T w +εw [h] (4.27)

xb[h +1] =αb xb[h]d t +ηb,c ub,c [h]d t + 1

ηb,d
ub,d [h]d t (4.28)

0 ≤ ub,c [h] ≤ P b,c sb[h] (4.29)

0 ≥ ub,c [h] ≥−P b,d (1− sb[h]) (4.30)

C ≤ xb[h] ≤C (4.31)

The vector u = [u∗
hp ,u∗

ewh ,u∗
b ] contains the power consumption setpoint of controllable enti-
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ties: u∗
hp is the HP control power, u∗

ewh is the EWH control power, and u∗
b = ub,c +ub,d is the

battery control power.

Eq. (4.18) defines the power exchange with the grid e as the sum of the optimization variables

u, the locally generated power forecast pg , the uncontrollable load power consumption pnc ,

and load consumption due to deferrable loads pd ,i . The PV production is determined through

Eq. (1.40) using the forecast of outside air temperature and sun irradiance provided by the

Ambient Data module. Power consumption drawn by the uncontrollable and deferrable loads

depend on their load profile P . Whereas the deferrable loads have a deterministic schedule,

the uncontrollable power forecast is set to the most likely profile in P .

Furthermore, Eq. (4.19) to (4.21) separate the net positive import e+ and the net positive

export e−, such that only the power consumption of the building is used in the objective

function defined by Eq. (4.15). The variable se is used to implement the Big-M method [160]

that ensures that e+ and e− are never simultaneously non-null.

Eq. (4.22) to (4.23) describe the thermal dynamics of the building zones and the hydronic

system that drive the HP power consumption, thoroughly detailed in Section 2.3. Constraints

(4.24) to (4.25) limit the HP power consumption and the zones temperature, respectively. Soft

constraints are used in Eq. (4.25) to ensure problem feasibility through slack variables εz .

These slack variables εz contained in ε are penalized in the objective function Eq. (4.15) by

forcing their square values to zero through a high parameter kε (∼ 106).

Hot water tank temperature evolution is modeled in Eq. (4.22), where αt = e−
d t

R∗C , as defined

in Section 1.1.1. In Eq. (4.23), the hot water temperature is forced to be bound between T w

and T w with soft constraint slack variables εw . Similar to zone modeling, εw is inserted in

ε to be penalized in the objective function Eq. (4.15). The battery SoC evolution of the EV

is represented by Eq. (4.28). Constraints on maximum charging and discharging power are

applied in Eq. (4.29) and Eq. (4.30). The Big-M method is used again to prevent charging and

discharging from being set at the same time. Eq. (4.30) bounds the battery SoC to acceptable

maximum and minimum values.

Initial states of the battery, zone thermal state, and hot water temperature are described in Eq.

(4.16). In addition, Eq. (4.17) models the initial SoC Ca at arrival instant and the final SoC Ce

at leaving instant. Due to the latter constraints on the battery state at the leaving instant, a

minimum value of the MPC horizon H must be set to ensure that the optimization problem

has the necessary visibility on future states and constraints 2. After solving the MPC problem,

the upd ate() method practically extracts the first values of the optimal vector u and returns

these values for a further transmission to the building management system. At the next control

time step t +d tmpc , the building state will be updated by OpenEMS and the MPC will use the

new values to compute the next setpoints.

Both day-ahead load scheduling and the MPC problem are MILP optimization problems, well

2The MPC horizon H could be reduced by applying a linear change on the final SoC of the battery at the leaving
instant, but this may lose the knowledge of future low prices of electricity.
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studied and compatible with most solvers. Indeed, the scheduling task defined through Eq.

(4.12) to Eq. (4.14) relies on a linear objective with linear constraints and the nature of the

optimization variables must be boolean (0 or 1). Concerning the MPC, the models inserted

as problem constraints are all linear to their optimization variables and binary variables are

used in the Big-M formulation. The cost function holds a linear term to minimize the cost

paid by the user and a quadratic term to penalize the comfort violations, resulting in a convex

problem.

4.4.3 Simulation results

Daily simulations have been carried out, to observe the building behavior under both energy

management strategies given the same environmental conditions. This section intends to

highlight the use of OpenEMS to practically deploy these strategies and discuss their ad-

vantages/drawbacks, rather than quantifying precisely their effect on building consumption

metrics. Indeed, the presented results are highly dependent on the chosen environment, user

behavior, and the simulation models.

An Intel Core i7-4710HQ CPU (2.50GHz×8) was used to practically run the vEngine/OpenEMS

processes and the Gurobi solver [161] solves the MPC optimization problem every 15 minutes.

The solver has been used for its ability to handle MILP problems and the handy interface with

Python.

While the model parameters and environmental data are the same as the ones used in Section

2.3, the following parameters have been chosen for the simulations:

• Traditional energy management: both simulation timesteps in the vEngine and the

update of setpoints in OpenEMS are fixed to 60 seconds to react swiftly to comfort

violation.

• MPC energy management: the simulation timestep of the vEngine is fixed to 60 seconds

while OpenEMS only updates the setpoints every 900 seconds (15 minutes). The price of

electricity is derived from the Swiss Day-Ahead Auction Market prices [162]. A horizon

of 18 hours is chosen for the MPC, leading to 72 time slots of forecasting. This value has

been decided based on the constraints on the EV but also to appropriately catch the

variation of the price of electricity and the large inertia of the hydronic system.

Fig. 4.6 depicts the power exchange with the grid for both methods, and the EV battery SoC

over time. The price of energy ($/kWh) presents typical peaks in the morning around 7.00

am, towards the end of the day around 5.00-6.00 pm, and a minimum during the middle

of the day. Traditional control (grey curve) is not aware of this and triggers a peak in power

consumption at moments of high cost. The charge of the electrical car is also inappropriately

launched from 4.00 am and crosses high a price period. Short peaks in power consumption

are due to the EWH that strives to maintain a constant hot water temperature. During the
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Figure 4.6 – OpenEMS applied on a Minergie building: comparison between traditional control
and MPC (top) grid consumption (bottom) battery state of charge

day, local PV power is produced and cannot entirely be used by the loads under traditional

control. Consequently, part of this energy has been injected into the grid. The MPC strategy

(blue curve) could optimally handle the high peaks of energy by pre-heating the hydronic

system and the hot water tank while holding onto the charge of the car in the morning peak.

A high peak of grid power demand is witnessed during instants of low prices (around noon),

due to the decision of the MPC to switch on to their maximal capacity every flexibility load, in

addition to some of the deferrable ones already scheduled the day before.
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Figure 4.7 – OpenEMS applied on a Minergie building: focus on MPC

Interestingly, the MPC decided to charge the EV battery beyond its necessary SoC at leaving

time (6.00 pm). This is to cope with a high price of energy during the second peak coupled

with the absence of sunshine, hence using part of the energy stored in the EV to power loads.

However, an odd behavior drives the battery in discharge mode to release energy back to the

grid for 15 minutes. Fig. 4.7 presents the details of MPC method results, highlighting the be-

havior of each type of building entity. As expected, the flexibility load consumption is entirely

covered by the battery of the EV around 5.00 pm, but the battery is wrongly programmed in

discharge mode and therefore, releases energy to the grid, going against optimal behavior

since the grid utility does not pay the user for the energy generated. This mistake is explained

by an unexpected problem with the Gurobi solver, which failed at solving the MPC at 6.00

pm. Whereas the loads are switched off, the battery kept the last setpoint in memory and

continued applying it.

As for the comfort of the user, Fig. 4.8 compares the temperatures resulting from both methods.

Under traditional energy management, the hot water tank keeps a constant temperature, as

the EWH is immediately switched on as soon as the temperature deviates from the mean level

of acceptable comfort. The hydronic system and the zones present a slower dynamic and are

influenced by external conditions such as solar irradiance and the outside air temperature.

After an intense pre-heating in the morning to reach an acceptable mean zone temperature,

the inherent large inertia of the water system keeps heating the zones, and the smaller zone
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even sees its top-constraint being slightly violated.

The MPC offers a more powerful management of the flexible entities, taking into account

the daily local production and prices of energy through the linear model-based forecast. It

realizes smarter temperature management for the Minergie building for both the hot water

tank and the zones. Unlike the traditional control, it does not pre-heat the hydronic system

nor the hot water tank and even guides their temperatures towards their lower bound for most

of the morning. An exception occurs in the EWH that must counteract the frequent water

draws triggered by the user. Nevertheless, it manages to do it at low energy prices (before 5qm

and around 10am), like the charge of the EV that does not happen during the high morning

peak. The knowledge of the building model, future environmental conditions, and prices of

electricity allowed the system to consume as low as possible from the grid while keeping the

lowest bound still acceptable. Then, as the sun shines and the price of electricity decreases,

both the thermal loads and the EV are set to their maximum power. Relatively high prices in

the evening and the corresponding absence of sun led the MPC to pre-heat the zones and hot

water tank as much as possible. By doing so, good insulation of the building could avoid the

need to provide heat for most of the time when the sun does not shine.

4.5 Conclusion

Energy management in buildings represents an active research topic, due to the forthcoming

electrification of building loads, emerging RES, and intrinsic flexibility of most of the big

thermal loads and batteries. Designing a proper energy management strategy is, therefore,

of utmost importance for advanced Building-to-Grid (BtG) integration. In this chapter, we

presented an open-source energy management system, dubbed OpenEMS. The main interest

of the tool resides in its plug-and-play nature concerning existing BDMS. It leverages the

metadata of the latter and periodically updates its local representation of the building. A set of

objects mapped to the building environment (state, preferences, outside environment, etc.)

is exposed to the user to easily program any kind of energy management logic, remaining

agnostic to the underlying technology of sensors and actuators. Future work consists of

rendering OpenEMS compatible with popular metadata schema for buildings like BRICK

[163], towards a standardized BDMS-EMS communication.

A test case illustrated the use of this object-oriented library to manage the energy of a sim-

ulated Minergie building, initially introduced in Chapter 2. It aimed to highlight how the

OpenEMS could be used to compute setpoints based on simple logic (traditional thermostats)

to more advanced model-based management strategies (MPC). The compactness of code

fosters the quick development of a proof-of-concept control strategy, and the advanced Lin-

ear Programming and Load Scheduling modules can be leveraged for smarter management

strategies.

MPC has shown great results on the energy consumption of the Minergie-inspired house and

is considered as the most promising building control technique. Nevertheless, its performance
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highly depends on the developed model, the quality of the forecast, and the identified param-

eters. In addition, it requires intense computational power and ill-conditioned problems can

fail to be solved. The developed open-source tool, therefore, reduces the engineering time

to deploy an EMS and allows researchers to focus on the enhancement of advanced control

algorithms like MPC.
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Figure 4.8 – OpenEMS applied on a Minergie building: temperature comfort (top) traditional
control (bottom) MPC
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5 MPC Applied to Commercial Build-
ings: Balancing Energy and Peak
Demand

Model Predictive Control (MPC) has intensively been studied for managing the energy of com-

mercial buildings. Their large controllable thermal loads and the increasing presence of au-

tomation systems make them the ideal candidate for providing grid flexibility. Due to their

relatively high demand on the electrical grid, utilities charge them for their maximum peak

consumption every month to foster their minimization. However, using the monthly bill defini-

tion, involving demand charges, in the relatively short MPC receding horizon does not optimize

the owner’s bill nor the grid services. Therefore, there is a need to thoroughly study the balance

between energy and peak demand for MPC in commercial buildings.

The main highlights and contributions of this chapter are:

• Introduction of an innovative MPC method, called incremental MPC, to better tackle

demand charges over the entire month and across multiple TOU periods.

• Simulation on realistic U.S. commercial buildings to compare multiple MPC formula-

tions and their impact on owner’s bills, grid peak demand, and load shifting flexibility.

Substantial gains in grid flexibility can be obtained through our incremental approach,

while maintaining, or even reducing, the owner’s bill and grid peaks.

Related publications:

[164] O. Van Cutsem, D. Blum, M. Pritoni, and M. Kayal, "Comparison of MPC Formulations

for Building Control under Commercial Time-of-Use Tariffs," PowerTech 2019.

103



Chapter 5. MPC Applied to Commercial Buildings: Balancing Energy and Peak Demand

5.1 Commercial Time-Of-Use Rates and MPC

The building sector in the U.S. accounts for 40% of the country’s energy consumption [165],

and commercial buildings are responsible for 36% of all U.S. electricity usage [166]. The latter

is gaining increasing attention, due to its high potential for energy saving and load shifting.

Constituting a large portion of the energy consumption of commercial building, HVAC systems

represent a primary target of control method research. Most large commercial buildings and

offices generally have a BDMS which collects sensor data and may act on HVAC/lights in

the building. Therefore, they represent ideal grid-responsive candidates to support the grid

through advanced control.

MPC recently emerged as a state-of-the-art method in commercial building energy manage-

ment [135]. The ability of MPC to consider future conditions to drive the current system state

makes it suitable for DR. DR refers to the set of grid mechanisms to shape a building’s electric

load when market prices are high or when the grid reliability is jeopardized [167], through

either financial incentives or electricity pricing structures. TOU tariffs, which define distinct

price levels for specific periods of the day as a form of DR, are widely used to incentivize con-

sumers to shift demand outside of grid peak hours. In addition, CPP programs superimpose

a large increment in energy price to the basic TOU rates for some strategic hours, generally

decided a day in advance by the grid utility. This known structure can be directly leveraged by

the MPC formulation to shift loads appropriately.

TOU tariffs are a widespread means to shape daily commercial building consumption. Unlike

RTP, TOU rates are well defined in advance, over the period of the contract settled between

the utility and the end-user [168]. Under TOU rates, prices of energy ($/kwh) are generally

higher during peak load periods, and lower when there is an excess of generation with respect

to the load. In addition to TOU energy costs, commercial building owners also face TOU peak

power demand charges ($/kW) every month. These peak power demand charges (referred to

as demand charges in the rest of this chapter) penalize the maximum power consumption

values 1 for each of the TOU periods defined by the utility.

Definition 5.1.1. Demand cost - A demand cost refers to the part of the electric bill that

charges the building’s owner for the peak power consumption set during the month.

The monthly bill Bm ($) of a commercial building in the U.S. can, therefore, be derived as

follows:

Bm =C f i x +
Nm∑
h=1

ce [h] ·E [h]+
NT OU∑
ρ=1

cd [ρ] ·max
j∈Hρ

{P [ j ]} (5.1)

where:

• C f i x ($) is a fixed monthly cost

1The power consumption is generally computed over 15 minutes, or 5 min for large consumers.
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Figure 5.1 – Monthly Time-Of-Use Demand Charges: example of on- and mid- peaks on a 6
days power consumption signal

• ce [h] is the cost of energy ($/kWh) at time h

• cd [ρ] is the cost of demand ($/kW) for the TOU period ρ

• E [h] (kWh) is the energy consumed by the building in period h

• P [ j ] is the power demand (kW) of the building in period j

• Nm is the total number of time periods in the month, NT OU is the number of TOU

demand charge periods

• Hρ represents the periods in the month when the TOU demand charge ρ is active
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The first term C f i x incorporates infrastructure charges. The second term represents the

integrative energy consumption charges. The third and last term is the demand cost. Whereas

energy costs are incrementally summed up over time, demand charges account for a handful

of power peaks set over a large period of time. Fig. 5.1 illustrates how utilities practically

compute these demand charges, on a monthly power signal reduced to a 6-day example

under a 2018 Pacific Gas & Electricity (PG&E) tariff structure. For each of the TOU periods

- highlighted in red on the graphs - the maximum 15-min-averaged power consumption is

found and multiplied by the corresponding demand cost for that period. In addition to the

on-peak and mid-peak charges depicted in Fig. 5.1, a global demand charge over the entire

month is added to the monthly bill.

Most of the MPC works encountered in the literature focus on optimizing the energy-related

components of Eq. (5.1) [135]. When peak demand charges are tackled, the approach is

generally a "best-effort" or "naive" manner, for it strives to reduce the peak as much as

possible at every control step. In [169, 170, 171], MPC formulations include a maximum

demand penalty alongside the incremental energy consumption. Kim et al. [169] presented an

overall MPC approach to coordinate RTUs and the experimental field test showed both energy

and demand costs could be reduced compared to traditional controllers. In [170, 171], week-

long simulations on EnergyPlus models, coupled with a MATLAB controller, demonstrated that

the simulated building could follow temperature setpoints, while precooling and reduce peaks.

The authors in [172] presented a stochastic optimization method that keeps the grid power

purchased below a defined demand charge threshold, considering multi-peak periods. For

these MPC formulations, the coefficient of the demand component in the objective function is

either set to a single monthly cost of demand or a weight for which the tuning is not discussed

at all.

Nevertheless, these methods fail to look at the problem on a monthly basis. The MPC hori-

zon only optimizes the power profile in the receding horizon, and does not guarantee the

minimizing of a monthly bill. Even though it ensures peak reduction in a best-effort manner,

this does not necessarily translate into bill optimization or better grid services. Therefore,

in this chapter, we investigate how to change the MPC approach to ensure the overall bill

optimization, and compare our approach with existing ones.

The rest of this chapter is organized as follows. Section 5.2 presents the generic commercial

building model used throughout the chapter and describes the common MPC formulations

encountered in the literature to tackle demand charge. It further introduces the innovative

incremental approach used to better balance energy and demand costs on a monthly basis. In

Section 5.3, two case studies are used to compare the different MPC formulations for handling

demand charges and their impact on both the building owner and grid manager; simulations

are performed to theoretically discuss the metrics. Section 5.4 concludes this chapter.

106



5.2. Economic MPC to Tackle Demand Charges

Table 5.1 – Nomenclature used in Chapter 5: parameters

Symbol Description Unit

C The matrix linking building state x to building temperature t /

ce [h] The price of energy at time instant h $/kWh

cd [ρ] The demand charge for TOU period ρ $/kW

d (t ) The disturbance affecting the building model t /

f The building model function t /

H The number of steps in the MPC horizon /

h The time period index /

Hρ The time periods in the month when TOU period ρ occurs /

NT OU The amount of TOU periods /

kd The coefficient for demand charge in the "naive" objective function /

pnc [t ] The uncontrollable building power demand at time t kW

ρ The index of a TOU period t /

T ,T The minimum/maximum comfort on temperature ◦C

umax The maximum HVAC power kW

x thr
ρ The power demand threshold in TOU period ρ kW

Table 5.2 – Nomenclature used in Chapter 5: variables and notations

Symbol Description Unit

e[t ] The building net power demand at time t kW

T [t ] The building temperature at time t ◦C

u[t ] The building flexible HVAC demand at time t kW

x[t ] The building thermal state at time t /

z The slack variable used to model maximum "naive" power demand kW

zρ The slack variable used to model maximum power in TOU period ρ kW

•(bold) Vector [•0, ...,•n] /

5.2 Economic MPC to Tackle Demand Charges

Let us first introduce the generic continuous building model that is used in the MPC formula-

tions of this chapter. We consider an instantaneous commercial building power consumption

that can be expressed as follows:

e(t ) = pnc (t )+u(t ) (5.2)

where pnc (t ) represents the uncontrollable building consumption and u(t ) is the flexible part

of the building consumption that can be autonomously controlled by the EMS. The non-

flexible part of the power consumption contains any kind of commercial loads, lighting, and

appliances that cannot be actuated by the EMS. It is assumed that the commercial EMS can
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only act on the HVAC system, in which the electrical power influences the room temperature

T (t ) according to:

ẋ(t ) = f (x(t ),u(t ),d (t )) (5.3)

T (t ) =C x(t ) (5.4)

where x(t ) stands for the building thermal state, u(t ) the control set-points of the HVAC, x(t )

the disturbances influencing the building state, and C is a vector mapping the building state

to the building temperature T (t ).

The HVAC power consumption is physically limited:

0 ≤ u(t ) ≤ umax (5.5)

Finally, the commercial building ambient temperature must be kept within the comfort

boundary at any time instant, with a possible night setback:

T (t ) ≤ T (t ) ≤ T (t ) (5.6)

where T (t )/T (t ) represent the time-varying temperature comfort limits.

5.2.1 Common "naive" approach to Demand Charges

The common approach encountered in the literature [135, 172, 173, 169, 170, 171] to handle

demand charges in MPC can be expressed as follows:

min
u

H−1∑
h=0

ce [h] ·e[h] ·d t +kd · max
h=0...H−1

(e[h]) (5.7)

s.t. ∀h = 0. . . H −1 :

e[h] = pnc [h]+u[h] (5.2)

x[h +1] = fd (x[h],u[h],d [h]) (5.3)

T [h] =Cd x[h] (5.4)

0 ≤ u[h] ≤ umax (5.5)

T [h] ≤ T [h] ≤ T [h] (5.6)

where max
h=0...H−1

(e[h]) denotes the maximum power peak in the receding horizon. The max

term in Eq. (5.7) can be replaced using the slack variable z:

minimize
u

H−1∑
h=0

ce [h] ·e[h] ·d t +kd · z (5.8)

s.t. ∀h = 0. . . H −1 :

Building model Eq. (5.2) to (5.4)

Building constraints Eq. (5.5) to (5.6)

z ≥ e[h] (5.9)
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The Eq. (5.9), along with the minimization of the z term, ensures that the variable z will take

the highest value of the building power consumption in the receding horizon H .

This approach strives to minimize the power peak demand in each receding horizon H .

However, this does not guarantee that the monthly bill is reduced at the end of the billing

period, nor that the grid operator can expect a given building flexibility. This MPC problem

does not consider that the utility demand bill is based on the highest peak throughout the

entire month, during each TOU period. Given a reasonable optimization horizon on the order

of 12–24 hours, rather than the whole month, it is, therefore, incorrect to weigh the monthly

demand costs against only a day’s worth of energy cost in the objective. This will bias the

optimization to reduce demand as much as possible during each MPC control period, at the

expense of a higher energy cost, especially if a high peak demand has already been set earlier

in the month.

In light of the aforementioned features, the common approach encountered in the literature

is referred to as a "naive" approach. Indeed, the corresponding economic MPC formulations

applied to commercial buildings naively include the bill formulation Eq. (5.1) in their objective

function.

5.2.2 Incremental approach to demand charges

To better account for the demand charges in the MPC horizon, they should be considered in

an incremental way, like the energy charges:

minimize
x

H−1∑
h=0

ce [h] ·e[h] ·d t +
NT OU∑
ρ=1

cd [ρ] · zρ (5.10)

s.t. ∀h = 0. . . H −1 :

Building model Eq. (5.2) to (5.4)

Building constraints Eq. (5.5) to (5.6)

∀ρ = 0, . . . , NT OU :

zρ ≥ 0 (5.11)

zρ ≥ e[h]−x thr
ρ , ∀h ∈Hρ∩ {0, . . . , H −1} (5.12)

In this MPC formulation, zρ is a slack variable representing the maximum increment in

demand for the corresponding TOU periods ρ of the horizon H , and x thr
ρ is a peak demand

threshold that only penalizes demand cost if the power e[h] is larger than this threshold. It

could be set to the maximum peak encountered since the beginning of the billing period, or

to a prediction of what the maximum demand during the month will be. Therefore, x thr
ρ =

max(xseen
ρ , xexp

ρ ) is the maximum of xseen
ρ , the already seen maximum demand in Hρ , and

xexp
ρ , the expected maximum demand in the billing period in Hρ . We term this formulation as

incremental because the objective function represents the incremental portion of the monthly

bill for the given time horizon for both the energy and demand costs.
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Figure 5.2 – Illustration of the "Naive" MPC approach to tackle demand charges

Bi
ll 

($
)

Energy Demand

dCE

dCP...

...

off offmid midon

Po
w

er
 (k

W
)

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

H

Figure 5.3 – Illustration of the "Incremental" MPC approach to tackle demand charges

As illustrated in Fig. 5.2, the "naive" approach formulated by Eq. (5.8) penalizes the absolute

peak power consumption over the receding horizon, along with the incremental energy cost.

This method does not leverage the knowledge of past peaks that have already been set earlier

in the billing period - or any forecast of what it could be. Fig. 5.3 depicts how the incremental

approach handles the additional demand charges. This method now penalizes the increment

of energy cost and the increment of demand cost in the monthly bill, over each receding

horizon.

The building owner can, therefore, optimize his/her monthly bill by applying Algorithm 3. At

the beginning of each billing period, the function i ni t_peak() initializes the threshold values

x thr
ρ in Eq. (5.11) & (5.12), for each TOU period ρ. The threshold could simply be set to zero -

hence starting as the "naive" formulation - or with a forecast of the monthly peaks. Methods

such as the one described in [174] could be used for estimating the peak for the entire month.

The vector tou_per i od maps the time instants to their TOU periods.
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Algorithm 3 Incremental MPC

1: procedure UPDATEMAXSEENPEAK(period ρ, power p)
2: x thr

ρ ← max(x thr
ρ , p)

3: end procedure
4: procedure RUNMPC(time t )
5: p ← g et_cur r ent_consumpti on(t )
6: UPDATEMAXSEENPEAK(tou_periods[t], p)
7: u ← solve Eq. (5.10)
8: return u
9: end procedure

Periodically, at each supervised control interval d t , the r unMPC () function is called. It starts

by comparing the current building consumption p with the past peak values, to update the new

peak power consumption for the corresponding TOU period through upd ateM axSeenPeak().

Then, with the updated threshold values x thr
ρ , the constrained optimization problem Eq. (5.10)

can be solved. The function returns the output of the latter, as a list of optimal setpoints for

the flexible entities. Then, at the next control instant d t , the same steps are repeated.

5.3 MPC Formulations Comparison: Case Studies

This section presents simulations results to compare the aforementioned MPC formulations

and their impact on monthly metrics. We start by presenting two simulation test cases. The

first one aims to establish best case theoretical metric values on simplified models. The second

test case uses a more detailed model to discuss qualitative effects of each method. Finally,

we describe the actual implementation of such a MPC controller on the Solar+ Blue-Lake

Rancheria (BLR) test site, a microgrid research project involving advanced control.

5.3.1 Case Study 1 - Simplified simulated commercial buildings

Building model and data

The Case Study 1 highlights the impacts of various MPC approaches on building owner’s bill,

shifting load potential and peak demand. The study consists in multiple monthly simulations

of commercial buildings energy consumption. It intends to provide a best-case quantitative

analysis of the grid-level effects induced by each of the control strategies.

The simplified commercial building model is shown in Fig. 5.4: a unique zone represents the

entire commercial building, whose homogeneous temperature evolves depending on the RC

components and the various sources of heat. The flexible AC electrical power demand u(t)
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Figure 5.4 – Case Study 1: Building RC thermal model

influences the temperature according to:

u(t ) = uAC (t ) · P cap
AC

kcop
(5.13)

where P cap
AC (kW) is the maximum thermal power capacity of the AC unit (negative value), and

kcop is the average COP of the AC unit, considered to be independent of ambient conditions.

The cooling demand uAC (t ) can be tuned in a continuous way:

0 ≤ uAC (t ) ≤ 1 (5.14)

The AC unit cools down the whole building according to the following equation [6]:

Ceq · Ṫi (t ) = uAC (t ) ·P cap
AC +Pnc (t )+ 1

Req
· [Ti (t )−Te (t )] (5.15)

where Ti (t) and Te (t) are the internal and external temperature at time t , respectively; Ceq

and Req are the equivalent capacitance and resistance of the thermal zone model, respectively.

In this model, the uncontrollable loads dissipate electricity entirely as heat into the zone, in

addition to human heat gain. Moreover, the solar heat gain has not been modeled directly

in the Eq. (5.15), but has been transferred as a shift in outside temperature values. Given

the simple R1C1 model in use and the direct link between outside air temperature and solar

irradiance, this method simplifies the simulation.

In order to model the thermal storage of the building internal mass, a zone capacitance

multiplier is applied to the air capacitance [175]:

Ceq = kmass ·Cai r (5.16)

The thermal comfort of the commercial building occupants must be ensured at any time t :

T mi n
i (t ) ≤ Ti (t ) ≤ T max

i (t ) (5.17)

The chosen model simplifies drastically the behavior of real commercial buildings, and would
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Table 5.3 – Case Study 1: Simulated buildings equivalent parameters

Parameter & data Retail Store Secondary School

Req [K/W] 4.311e−4 4.774e−5

Ceq [J/K] 1.4e7 1.5e8

kmass 4 / 8 3 / 6

P cap
AC [kW] -94.5 / -154 -595 / -735

kcop 3.5 3.5

Pnc (t ) [kW] See Fig. 5.5 (left) See Fig. 5.5 (right)

Tariff A-10 E-19

T mi n
i (t ) [◦C] 21 from 6am to 9pm, 16 else

T max
i (t ) [◦C] 24 from 6am to 9pm, 30 else

therefore never be used to simulate a specific building accurately. However, rather than

modeling a specific commercial building very accurately, this study intends to assess the

grid-level impact of MPC control methods. The model is therefore suitable enough for this

purpose, as it represents a generic commercial building, containing both uncontrollable load

and flexible demand.

The DOE Commercial Building Dataset [176] has been used to derive commercial buildings

simulation parameters in the aforementioned equations. The dataset gathers generic building

information (e.g. thermal envelope, zones size, uncontrollable load profile magnitude) and

schedules (e.g. occupancy, heating/cooling, internal gain) for a wide range of commercial

buildings. Two distinct buildings have been chosen for this study, whose parameters are listed

in Table 5.3:

• Retail store: a medium-size commercial building, made of few conditioned zones on a

single level. Its internal mass coefficient can either be 4 (lightweight) or 8 (heavyweight).

The aggregated uncontrollable load signal is shown in Fig. 5.5 (left). The week-days and

week-ends profiles are both very similar, with a rise around 6.30am and a slow decrease

starting at 5pm. The AC electrical capacity varies according to the ambient climate, and

can be as high as the larger value of the uncontrollable load.

• Secondary school2: a large commercial building, made of > 40 conditioned zones,

spread on two levels. Its internal mass coefficient can either be 3 (lightweight) or 6

(heavyweight). The aggregated uncontrollable load signal is shown in Fig. 5.5 (right).

The week-ends profile differs greatly from the week-days profiles, as no one occupies

the building; this means that peak demand is more likely to be set during a week day. In

hot climate, the AC electrical capacity exceeds the maximum uncontrollable load power.

2The secondary school is considered as a "commercial building" by the utility, for its power profile shape and
peak demand
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Figure 5.5 – Case Study 1: Uncontrollable load profile (left) Retail store (right) Secondary
school. Maximum AC capacity in green: (filled) Warm and Hot environment, (dashed) Mild
environment.
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Figure 5.6 – Case Study 1: Outside temperatures in July, for 3 environments.

The outside temperature data depends on the climate zone (Mild, Warm, or Hot) and rep-

resents a typical month in the summer for three different cities in California [177]. Fig. 5.6

describes statistically the hourly signals used for the simulations. Depending on the simulated

climate, the AC thermal capacity in each building takes a different value (see Table 5.3). A

night setback applies to both buildings, relaxing the constraints on internal temperatures

outside of occupancy hours.

MPC objective scenarios

Table 5.4 describes the MPC objectives and features implemented in this case study. The first

one, "A. Energy only", is the most encountered in the literature and only optimizes on the

energy part of the bill, hence setting kd = 0 in Eq.(5.8). The second one, "B. Peak best effort" or

"naive", strives to reduce the peak demand in the MPC horizon, setting kd to the total demand

cost in Eq.(5.8).

The method "C1. Incremental TOU Multi-Peak" implements the optimization as in Eq.(5.10),

setting x thr
ρ to the maximum peak already encountered earlier in the month and taking into
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Table 5.4 – Case Study 1: description of the implemented MPC methods.

Objective

Scenarios
A B C.1 C.2

Energy X X X X

Peak best effort X

Incremental TOU Multi-Peak X X

Max demand prediction X

Table 5.5 – Case Study 1: PG&E summer tariff rates - off-peak = week-days 10pm - 8am,
week-ends & holidays, mid-peak = week-days 8am-12pm & 6pm-10pm, on-peak = week-days
12pm-6pm.

Energy ($/kWh) Demand ($/kW)

Time periods A-10 E-19 A-10 E-19

off-peak 0.134 0.085 0 0

mid-peak 0.163 0.111 0 5.18

on-peak 0.218 0.152 0 18.64

All time / / 18.26 17.57

CPP increment 0.9 1.2 0 0

account the multiple TOU demand charges. At the start of the billing period, x thr
ρ are set to

zero. Compared to the former, the method "C2. Incremental TOU Multi-Peak with prediction"

benefits from the knowledge of the maximum demand that will occur during the month,

stored in x thr
ρ at the beginning of the month. For practical purpose of these simulations, these

forecast peaks are retrieved from the simulation results of method B.

This study considers two different TOU commercial tariffs of PG&E, the electrical utility in

North California, described in Table 5.5. Both tariffs have TOU energy rates and a demand

charge applied to all time periods of the month. In addition, tariff E-19 includes TOU demand

charges, adding peak demand costs during mid-peak and on-peak hours. On top of these

basic rates, PG&E can also trigger CPP events from 2pm to 6pm 3. These events are generally

called upon a very hot day, with a limit of 10 to 15 per year. In order to assess the shifting

capability under realistic DR events, three CPP events increase the prices of energy for the

three hottest days: the 8th, 17th, and 27th of July.

Due to the simplicity of the model used for the simulations, the results in this section represent

the best-case scenario that could be encountered in real-life applications. A major hypothesis

is to consider the same model for the MPC and the simulated building. Though unrealistic,

3The main 3 Investor-Owned Utilities (IOU)s in California changed their TOU structures in 2019 to better face
RES production, but this study used the structure of 2018.
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Figure 5.7 – Case Study 1: Relative decrease of the maximum power demand of the month,
compared to control Method A. For each control method: (left bar) Retail store, (right bar)
Secondary school.

this is useful in this case to mitigate the inherent inaccuracy of the control model.

Applying the various MPC methods to simulations of different buildings and environments

allows for a sensitivity analysis of the results, instead of focusing on a specific configuration.

In this study, the MPC methods of Table 5.4 are evaluated on all possible configuration triplets

{blg type, internal mass, climate}. This corresponds to a total of 12 simulations per MPC

method. Every simulation spans over an entire month, with an MPC update every 15 minutes.

At each time step, the internal temperature is kept within bounds, while optimizing the

objective over a time horizon. The MPC horizon is set to 12 hours, large enough to foresee the

price, temperature, and uncontrollable power variation. From an implementation standpoint,

the Python package cvxpy wraps the optimization formulations of Eq. (5.10) and calls the

open-source ECOS solver [178]; the package control discretizes the continuous thermal model

Eq. (5.15), for both the simulation and the MPC model.

Results and discussion

The two simulated buildings differ in their average power consumption by almost one order of

magnitude. To place them together on the same graphs, a reference MPC scenario is needed.

As the most encountered in the literature, scenario "A. Energy only" represents the ideal

baseline. Therefore, instead of observing absolute metrics for each MPC scenario in Table

5.4, this section presents a relative comparison with respect to scenario "A. Energy only". The

following metrics are used to compare scenarios B, C.1, and C.2 to the baseline A:
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Figure 5.8 – Case Study 1: Relative decrease of the monthly bill, compared to control Method A.
For each control method: (left bar) Retail store, (right bar) Secondary school.

• Maximum peak demand: the maximum power demand (kW) throughout the month,

averaged over 15 minutes.

• Monthly bill: the bill ($) paid by the building owner at the end of the month, according

to Eq.(5.1).

• Load shifting capacity: the energy (kWh) consumed during CPP DR events, initiated by

the utility.

Fig. 5.7 shows the relative decrease of the maximum peak demand for the control methods

B, C.1, & C.2 with respect to the control method A. One observes a tremendous decrease of

the peak demand, ranging from 15% to 35%, due to the fact that the method A does not take

the demand cost into account. The secondary school displays a larger gain than the retail

store. The explanation is twofold. First, the proportion of controllable to uncontrollable load

is higher for the secondary school, on average over time. Second, the tariff E-19, which the

secondary school falls under, penalizes demand more than the A-10. The MPC formulations

will therefore strive to reduce much more the maximum peak for each receding horizon H . As

for the peak performance, the method B reduces peak demand slightly more than the methods

C.1&C.2 for all of the cases. This is due to the method B using the full demand cost as the

weight to penalize the demand over the MPC horizon. Nevertheless, the incremental methods

C.1&C.2 only worsen the peak by 2%, in the worst case.

Fig. 5.8 shows the relative decrease of the monthly bill for the control methods B, C.1, & C.2

with respect to the control method A. The large gap between the retail store and the secondary

school is mainly driven by the lower peak to average ratio of the latter, strongly penalized by
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Figure 5.9 – Case Study 1: Relative loss of energy shifting potential during CPP events, com-
pared to control Method A. For each control method: (left bar) Retail store, (right bar) Sec-
ondary school.

the tariff E-19 with higher demand charges. Methods C.1 & C.2 show an improvement of about

1-2% compared to the method B. The improvement can be explained by a better management

of the TOU demand charges, whereas the method B does not differentiate the periods of the

day. Moreover, the incremental demand charge feature of C.1 & C.2 enables them to dictate

load shifting with energy rate fluctuations. The knowledge of the maximum peak in the month

with method C.2 slightly improves the bill compared to method C.1. This feature leads to

better pre-cooling decisions during the beginning of the month, where method C.1 does not

risk setting a new peak. While the bill gain difference seems low, it is to be compared with an

already-optimized system. Reducing the monthly bill through MPC software improvement

does not induce any additional investment.

Fig. 5.9 shows the relative decrease (negative increase) of the load shifting capacity for the

control methods B, C.1, & C.2 with respect to the control method A. This metric is computed

by summing the energy consumption during the three CPP events of the month. Method A is

therefore the best, as it only optimizes on energy cost and can shift the demand as much as

possible, while respecting the system constraints. Compared to this baseline, method B clearly

lacks the ability to shift load, especially under a tariff that strongly penalizes the peak demand

(secondary school). Incremental methods C.1 & C.2 are capable of cutting the loss of load

shifting potential in half compared to method B. This effect would even be more marked as the

proportion of controllable load is increased. This is due to the fact that these methods leverage

the knowledge of past behavior and prediction of future behavior. They are specifically being

able to trade off cost savings from load shifting to cost increases from setting a new demand

peak. The prediction of monthly maximum peak demand - method C.2 compared to method
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Figure 5.10 – Case Study 1: Timeseries analysis of "secondary school" control methods (left)
hourly mean of power consumption, energy price and outside temperature throughout all
simulations (right) 15-min power consumption on the 3rd CPP event.

C.1 - improves the shifting potential by about 1-2%.

Analyzing the details of timeseries power consumption results allows for further understanding

of metric trade-offs and global trend of each method. Fig. 5.10 (left) plots the hourly power

consumption induced by each control method, averaged over all of the simulations of the

secondary school except the CPP days. The four methods exhibit the same behavior in the

early morning (until 6am) and at the end of the day (from 5pm), due to the low risk of setting a

new monthly peak. Just before the first TOU energy rate increment appears, they all pre-cool

the zone. However, subsequent behavior diverges. Method A reduces the energy as much

as possible, whereas incremental methods C.1&C.2 only slightly reduce it. Method B keeps

a constant increase in power demand, disregarding the energy rate increase. At the hours

before the on-peak period, the method A fully pre-cools the building to the lower bound of

temperature to allow maximum free-float during the subsequent period of higher energy price.

Methods C.1&C.2 enable some pre-cooling, though better account for the tradeoff between

energy shifting and setting a new peak demand. The monthly peak demand prediction in

method C.2 allows it to provide slightly more energy shift, as it knows the monthly peak will

be set later anyway. Method B does not pre-cool at all since the demand cost prevails on the

energy cost.

Fig. 5.10 (right) presents the last CPP day of the month, for a simulation of the secondary school

(warm weather, large internal mass). On this day, the hot temperature prevents methods C.1

and C.2 from pre-cooling too much without setting a new costly demand peak, hence looking

alike method B. Nevertheless, more pre-cooling during the morning than method B still allows

for more load reduction during CPP hours, though less than method A.

5.3.2 Case study 2 - Advanced simulated commercial buildings

Although suitable for the purpose of the monthly simulations, Case Study 1 uses unrealistic

R1C1 building model in Eq. (5.15) to drive the AC power consumption. The main limitation

lies in the unique capacitance that accumulates a mix of energy coming from internal air
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Figure 5.11 – Case Study 2: environmental conditions

and internal mass heat. Commercial buildings generally cools down the incoming air that

circulates in it, to regulate the thermal comfort. The air heat exchange also impacts the

building mass temperature, such as furniture and walls, but with a delay that the R1C1 does

not capture. When used in a MPC controller on an actual commercial building, this would

result in a too large AC power set point and therefore violation of comfort constraints.

In this Case Study 2, an advanced linear model has been used to analyse the different MPC

formulations presented earlier in this chapter. The building consists in three interconnected

zones, each containing their own HVAC system. Disturbances impact their temperature,

namely outside air temperature, solar irradiation, and internal load heat gain. An EnergyPlus

model has been linearized via OpenBuild toolbox [46], resulting in the following linear model:

x[t +1] = A x[t ]+Bu u[t ]+Bd d [t ] (5.18)

T [t ] =C x[t ] (5.19)

where x[t ] is a vector holding the building state at time instant t , with no straightforward physi-

cal meaning, and T [t ] is the zone temperature at time instant t . Values of matrices A,Bu ,Bd ,C

as well as initial building state are provided in Appendix A.1.2. The initial continuous model

has been discretized with a sampling period of 20 minutes.

The commercial building must provide thermal comfort through the control of three heaters

positioned in each of the rooms. Zone temperatures must ideally stay in range of 21-24 ◦C , and

HVAC power are limited to 15 kW each. The simulated disturbance can be seen in Fig. 5.11.

A cold winter month has been selected, when outside temperatures rarely exceed 0◦C and

a weak solar radiation impacts the building state. The internal load supplies uncontrollable

heat throughout the three zones.

The price of electricity is artificially generated as follows, identical every day. The building

pays the energy: 0.2 $/kWh from 00:00am to 04:00am, 1.2 $/kWh from 04:00am to 08:00am,
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Figure 5.12 – Case Study 2: (left) MPC cost function (right) Power consumption

0.2 $/kWh from 08:00am to 04:00pm, 1.2 $/kWh from 04:00pm to 08:00pm, and 0.2 $/kWh

from 08:00pm to 00:00am. The building pays for the demand peaks: 18 $/kW regardless the

period in addition to 20 $/kW for the peak occurring between 12pm to 6pm.

Results and discussion

Weekly simulations have been performed, driven by the same MPC formulations as in Table 5.4

with the exception of scenario C.2. Python package cvxpy wraps up the MPC constraints/ob-

jectives and Gurobi solver [161] finds the optimal trajectory at each control step fixed to 20

minutes. In this section, we present a qualitative analysis of the various MPC formulations, by

analysis objective functions, power profiles, computational time, and temperature evolution.

The common approach to tackle demand charges found in the literature (Scenario B "naive")

overestimates the importance of peak cost with respect to energy cost in each MPC iteration.

Fig. 5.12 (left) shows the share of energy and demand in the objective function, at each

iteration. Fig. 5.12 (right) depicts the total building consumption and helps understanding

the link with the objective functions. One clearly observes a high share of demand cost when

scenario B is applied (blue dashed line). Yet, the energy cost does not dramatically vary

compared to the other two methods (A and C) at the beginning of the simulation, as one can

see the three plain lines superimposed. However, as the ambient conditions become harsher

at day 4, the wrong demand cost in the prediction pushes down the energy cost, compared to

methods A and C. The incremental method (orange lines) behaves like the "naive" method at

the very beginning of the month, due to a threshold x thr
ρ fixed to zero. Right after and until the

end of day 2, the mild ambient conditions drive the increment demand cost to zero, hence the

method optimizes the objective like scenario A (Energy only). Arrived at the end of day 3, the

harsher ambient temperature drives the incremental method energy cost towards the "naive"

approach one. Day 4 shows two different behaviors for the incremental method: during low

internal gain, the system is forced to ensure minimal thermal comfort while minimizing the

peak, similar to the "naive" one. At the end of the day, as internal gains are accumulated in

the structure of the building and demand charge drops, the incremental method behaves
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Figure 5.13 – Case Study 2: zones temperature comfort

like the scenario A, and dares to set a new demand peak charge. The harsher day 6 leaves no

opportunity to the incremental method to relax its energy cost share, and must even set a

new peak. The rest of the simulation follow the same duality for the incremental method: a

behavior similar to the "naive" approach when ambient conditions are jeopardizing the peak

demands while leveraging the knowledge of the past peaks, and a consumption/objective

identical to "Energy only" when these conditions are relaxed.

Evolution of the three zones temperature are displayed in Fig. 5.13, for each of the control

methods. The method A. Energy Only clearly aims to minimize energy cost and therefore

keeps temperatures to their lower bound, except before each price transition. When energy

prices increase, the MPC controller pre-heats the zones as much as possible, for one or few

time steps. The incremental approach tends to pre-heat each zone using lower power inputs,

but keeps the state at the highest temperature bound for a longer time. This case only happens

with an advanced lumped model R3C3 model and would never happen with the R1C1 as a

control model. Indeed, even though the first capacitance might be fully charged - and so the

sensed temperature at the highest - the resulting heat transfer toward the second capacitance

can greatly benefit the resulting thermal inertia and therefore lower the subsequent energy

costs. This effect is even more pronounced in method "naive", where the two largest zones

stay at maximum temperature for a few hours before each price transition. In that case, the

temperatures decrease more slowly than in the previous cases.

We close this second case study by looking at the computational time for each MPC method,

in Fig. 5.14. Faster than the other two, method A takes on average 170 ms to complete the

entire MPC step. The common "naive" approach spends more time solving the problem, and

shows a larger variance in the computational times. Close behind, the incremental method is

the slowest with an average 240 ms to solve the MPC optimization. However, unlike the other

two, some MPC control steps can take twice as much time to be solved in comparison to the

average. This can be explained by the discontinuity induced by the incremental peak variable

in Eq. (5.12), jumping from 0 to a non-zero value to penalize.
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Figure 5.14 – Case Study 2: comparison of MPC computational time

5.4 Conclusion

This chapter reviewed existing economic MPC formulations applied to commercial buildings

and presented a new incremental method that leverages past behavior of the building. Two

simulated case studies compared the MPC formulations with the proposed approach. Results

showed that the traditional MPC method of taking into account demand charges reduces

both the peak demand and the electricity bill relative to the solution optimizing for energy

costs only. However, it prevents the building from shifting load when needed, such as during

CPP events. Compared to that "naive" approach, the incremental formulation improved the

building responsiveness to price-based DR signals, while similarly keeping constant or even

slightly reducing the owner’s bill and maximum peak demand.

Simulation on a more realistic building model highlighted that building inherent thermal

mass actually reduces the HVAC peak to spread the pre-cooling/heating on a larger time

frame. It’s also been observed that, depending on the ambient conditions, the proposed

incremental MPC method constitutes an ideal trade-off between the methods optimizing

only on the energy or on the peak. When facing harsh ambient conditions or high costs

of demand, the proposed controller acts like the "naive" one, preventing peaks as much as

possible. On periods when demand/energy costs decrease and ambient conditions do not

push the physical loads to their limit, the controller behaves like the one optimizing solely on

energy cost, hence providing the most energy flexibility to the grid.

The simulation results highlight that multiple MPC formulations can offer the same value for

the building owner (in terms of utility monthly bill cost) but different grid service capabilities.

Ongoing world decarbonisation efforts increasingly encourage the deployment of price-based

DR programs to incentivize load shifting and peak load reduction. The tariff structures

should, therefore, be carefully designed to optimally leverage building load flexibility offered by

different MPC formulations. Furthermore, differences in building behavior will be accelerated
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by the electrification of building, that will offer a greater controllability. The grid operator will

have to deal with such a large fleet of flexible buildings, controllable via prices of electricity,

and therefore account for the variety of available building controllers.
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6 Decentralized Demand Response in a
Community of Smart-Buildings

The increasing penetration of distributed Renewable Energy System (RES) calls for a restructur-

ing of the electrical grid and a change of paradigm in the way electricity is consumed. To this

end, Demand Response (DR) is progressively moving from a centralized, unidirectional structure

to a set of advanced, decentralized mechanisms that better balance distributed supply and de-

mand. Yet, the large fleets of distributed flexible entities must be carefully handled, as it involves

complex coordination of decentralized energy actors with different interests, heterogeneous

technology, and data privacy requirements of participants.

The main highlights and contributions of this chapter are:

• We present a decentralized framework to autonomously manage the day-ahead energy

planning of a community of smart-buildings, in the presence of local RES.

• The framework is enabled by blockchain, that allows the trustworthy decentralization of

the algorithm. We presented a common economically-driven objective in this chapter,

although the modularity of the framework allows any community to optimize a specific

common objective, such as greenhouse gas emission reduction.

• Ethereum smart-contracts practically deploy and orchestrate the day-ahead decentral-

ized algorithm, and the real-time monitoring and billing of participants.

• Simulations are performed on a community of realistic Swiss Minergie buildings, to

analyse both the scalability and the energy-related metrics. Given the current Ethereum

version, the framework is proven to handle up to 100 smart-buildings.

Related publications:

[179] O. Van Cutsem, D. Ho Dac, P. Boudou, and M. Kayal, "Cooperative energy management

of a community of smart-buildings: a blockchain approach," International Journal of

Electrical Power & Energy Systems, vol 117, pp 105643, 2020.
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Table 6.1 – Nomenclature used in Chapter 6: parameters

Symbol Description Unit

αb Battery leakage coefficient s−1

η+b ,η−b Battery charging and discharging efficiency /

al Electricity cost of local production $/kWh

aq
g Quadratic cost of grid import $/kWh2

al
g Linear cost of grid import $/kWh

ac
g Constant cost of grid import $

C
k
b Max. k th battery capacity kWh

C k
b Min. k th battery capacity kWh

C k
b,a Charge of the k th EV upon arrival kWh

C k
b,l Charge of the k th EV when leaving kWh

d k
w Water drawn from the k th hot water tank l/s

d t Sampling period s

H Number of intervals in the planning forecast /

l+∗ , l−∗ Snapshot of import/export community forecast kW

Nsb Number of smart-buildings in the community /

Nr es Number of RES in the community /

nk
pv Number of cells on the k th PV panel /

P
k
th Max. power of the k th thermal load kW

P
k
b Max. charging power of the k th battery kW

P k
b Max. discharging power of the k th battery kW

P n
pv Nominal power of the PV system kW

P̂ k
d Power profile of the k th deferrable load kW

t s,k
d Min. starting time of the k th deferrable load h

t e,k
d Max. ending time of the k th deferrable load h

Ta Outside air temperature ◦C

T k
out The set of periods in which the k th EV is unplugged /

t k
b,l The leaving time of the k th EV h

t k
b,a The arriving time of the k th EV h

6.1 Introduction and Motivation

The increasing world demand in electricity is envisioned to be entirely supplied by sustainable

RES in order to counteract the global climate change. However, intrinsic volatility and un-

controllably of decentralized RES production pose severe challenges to the current electrical

grid, that must ensure stability at any time. Progressively, the centralized grid sees a change

in paradigms, transitioning from a system dispatching a production portfolio following the

electrical demand to a smart-grid that handles a portfolio of controllable demand to match an
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Table 6.2 – Nomenclature used in Chapter 6: variables

Symbol Description Unit

e Building net demand kW

pk
d k th deferrable load power kW

uk
th k th thermal load power kW

uk
d k th deferrable load starting time h

uk
b Power of the k th battery kW

u+,k
b Charging power of the k th battery kW

u−,k
b Discharging power of the k th battery kW

xk
b Charge state of the k th battery kWh

y+, y− Community grid import/export kW

y−
l Community power generation kW

Table 6.3 – Nomenclature used in Chapter 6: conventions and notations

Notation Description

•̂ Vector [•0, ...,•n]

•[h] Value at discrete time period h

•+ Positive power demand related value

•− Negative power demand related value

•,• Minimum/Maximum value

k The index of an energy-related entity in a specific building

N Normal probability distribution

U Uniform probability distribution

uncontrollable supply [180].

To assist this transition, smart-buildings have recently emerged as a solution to leverage the

flexibility offered by the various entities commonly found in buildings (appliances, thermal

loads, lights, storage, and local generation). Equipped with the right hardware and ICT, they

can provide active DR to the electrical grid [150, 156]. DR regroups a set of mechanisms divided

into incentive and price-based programs, that specify various signals to be exchanged between

the grid and the consumers in order to shape the power profile of the latter. Many works have

tackled the problem at individual building level, demonstrating their capability to adapt their

power consumption to grid signals while ensuring occupant comfort [181, 134, 182, 169].

Beyond individual building optimization, there is a need of handling the problem at the

community level. By doing so, local resources such as PV production can optimally be har-

nessed and the aggregated overall peak power demand can be reduced [183]. Many op-

timization frameworks have emerged to collectively manage the energy of multiple users

[184, 185, 186, 187, 173]. Nevertheless, these solutions require a central agent that collects
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user information to subsequently dispatch optimal set points to each of them. Even though

generic simplified models can be used to represent buildings flexibility [185, 173], centralized

solutions still face issues of privacy, single point of failure, scalability, and challenging market

entry of small prosumers. Furthermore, the growing penetration of distributed RES leads to

the need of decentralized and distributed DR solutions that become complex to solve centrally

when considering a large community of flexible assets.

Game-Theory (GT) [188] and Peer-to-Peer (P2P) [189] energy trading have extensively been

applied to energy scheduling in local microgrids/communities. On the one hand, GT defines

a conceptual framework in which the individual actions of rational participants optimize a

community objective [188, 190, 127, 191]. Notably, Mohsenian-Rad et al. [127] decentralized

the central grid planning optimization problem, such that every participant in a microgrid

solves locally a load scheduling problem taking into account the predictions sent by the others.

The quadratic structure of the price of electricity incentivizes the whole community to reduce

the aggregated PAR. On the other hand, P2P energy trading represents the virtual exchange

of electricity among community participants, with the aim to locally match production and

consumption[189]. P2P energy generally lays on GT principles to fix the price of energy trans-

action. In [192], a shared Energy Sharing Provider (ESP) is in charge of deciding the local prices,

through an iterative process that involves all the local participants. Each consumer optimizes

its objective function that is modelled as a combination of energy cost and inconvenience in

load shifting. Furthermore, local markets such as the one presented in [193] help incentivizing

local participants to shift their energy or optimizing the use a shared battery, by formalizing a

framework that fairly shares revenues/costs among the users.

Renowned for the cryptocurrency applications [194], the blockchain has rapidly proven ca-

pabilities for energy trading and optimization in microgrids. Blockchains are distributed

ledgers shared by participants that can securely store digital transactions, without the need

of a central agent [195]. These transactions are aggregated into blocks, linked to one another

through cryptography methods to form a chain of immutable information. When adding

smart-contracts into the blockchain, like the Ethereum technology [196], decentralized algo-

rithms can practically be deployed. A smart-contract is a piece of executable code shared by

every node that defines immutable rules, running directly in the blockchain. This replaces

the need of a centralized trusted entity to hold the algorithm logic, and can therefore foster

the fast deployment of innovative community DR solutions. Many significant energy trading

projects using the blockchain technology have been deployed worldwide, notably the Brooklyn

Microgrid projects [197] and various research demonstrators [198, 199, 200]. In addition to the

project description, Mengelkamp et al. formally present the seven market components that

any efficient microgrid energy market framework should incorporate [197]. Authors of [201]

demonstrated that the blockchain technology represents a reliable mechanism for energy

trading, compared to traditional centralized transactive energy schemes.

The use of blockchain in microgrid goes beyond local energy trading, as thoroughly reviewed

in [202, 195]. For instance, authors in [203] were the first to use smart-contracts in distributed
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optimization, relying on them to play the role of an ADMM coordinator. In [204], authors

applied blockchain to deploy a GT algorithm that solves a DR problem and discuss how P2P

trading could be incorporated in their work. Pop et al. [205] developed a decentralized solution

to manage and monitor DR with the use of blockchain. Their smart-contracts penalize the

gap between the expected baseline and the actual consumption, and manage in real-time the

microgrid imbalance.

In the present chapter, we propose an innovative generic framework to manage the energy

in a community of flexible smart-buildings with local RES production. Unlike P2P energy

trading [197, 198, 199, 200] that optimizes the individual costs, the framework at hand allows

participants to collectively optimize any generic objective, such as grid services or promoting

local RES energy consumption. Practically, the framework works in two phases. During the

planning phase, the participants iterative propose a forecast of their power profile - consump-

tion and/or production - until a consensus is collectively found. Compare to the iterative

algorithm in [127], the planning phase also includes RES production and a generic bottom-up

model of the buildings. Then, during the online phase, the participants ensure that their

power profiles matches as much as possible their planning forecast.

Although sharing some similarities, our work is different from the frameworks of Noor et al.

[204] and Pop et al. [205]. In this study, we use a generic building model that better repre-

sents end-user flexibility such as thermal inertia, and we directly included local RES in the

day-ahead optimization problem. Unlike [205] that used past data to construct the building

baseline against which the participant is rewarded/penalized, the presented day-ahead decen-

tralized algorithm defines the building baseline itself, allowing more flexibility in the decision.

Moreover, we presented a reward/penalty decision based on the community behavior, instead

of individual participant actions. The use of blockchain, and more particularly Ethereum

smart-contracts, enables both the decentralization of the energy management algorithms

among untrustworthy participants and the monitoring of the community in real-time. Beyond

the interest of blockchain for price-based P2P energy trading leveraged in [204], we used it to

empower smart-communities to collectively manage their energy in a flexible way according

to their common interests. Finally, the simulation code is publicly available [61], and its

modularity allows any developer to include additional models.

This chapter is organized as follow. A theoretical background on blockchain and smart-

contracts is provided in Section 6.1.1. Then, Section 6.2 presents the generic smart-building

model used in this study. Section 6.3 describes the community optimization framework with

its generic community objectives, and the various smart-contracts to decentralize the logic.

In Section 6.4, results of simulations and a general discussion are presented. The chapter is

concluded in Section 6.5.

6.1.1 Blockchain and smart-contracts

Definition 6.1.1. Blockchain - A blockchain is a shared, distributed ledger that enables the
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Figure 6.1 – Blockchain is a list of blocks, linked to one another by the unique previous block
hash. Each block i contains Ni transactions.

process of recording transactions and tracking assets in a network [206].

The blockchain concept has been initially presented in [194] and its applications go now

far beyond cryptocurrency. In its generic form, it represents a reliable network that enables

transactions between anonymous users in a transparent and trustworthy way, useful for

decentralized computation and data storage. Authors in [206] compared blockchain to an OS,

for it allows various applications - such as Bitcoin [194] - to leverage its numerous services.

However, unlike a central OS, blockchain relies on distributed nodes that work together,

autonomously orchestrated by a distributed consensus mechanism and secured by a set of

cryptographic functions. Hence, it removes the need of a central agent to perform the same

tasks. Compared to centralized solutions, it is proven to be more:

• Cost-effective, as it removes the need of intermediaries.

• Efficient, because once a transaction is recorded, it becomes available to all the network

participants.

• Safe and secure, for the shared ledger is tamperproof and immutable: a transaction

cannot be changed, any new transaction is added in the right order, and the participants

can access the agreed blockchain state even when facing cyber-attack or change in

participants.

Blockchain gets its name for the resulting chain of blocks it generates over time, as network

participants create transactions and these transactions are validated by the decentralized

nodes. As illustrated in Figure 6.1, a block contains a bundle of transactions and necessary

header data. Among this header data one finds the block number, the block hash code, the

block timestamp, and the ID of the validator node. In addition, the block i stores the hash
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code of the block i −1, which ensures the right order of blocks for auditing the system history

and preventing content alteration.

In a public blockchain, any newly emitted transaction is verified by a group of independent

nodes called miners. Proof-of-work consensus algorithms, used in Bitcoin and the current

version of Ethereum, challenge the miners with a difficult puzzle to solve, whose solution

proves the legitimacy of the transaction. The challenge consists in finding a nonce, that when

the new block data is hashed with, the resulting hash is smaller than a certain threshold. As

this problem is non deterministic, it requires brute force that takes time, hence leading to a

proof of the CPU work. With such a mechanism, any malicious entity must own at least 51 %

of the total CPU power in the network to be able to take control of the generated blocks. In a

private blockchain, these consensus algorithms are replaced by a verification process through

a set of authorized individuals [198].

Definition 6.1.2. Smart-contract - A smart-contract is a piece of code running in the blockchain

that automatically transfer funds upon specific events, transactions, or time instants.

While blockchain lays the foundations for decentralized transactions, smart-contracts actually

define the logic of decentralized applications. Although they already existed in the Bitcoin

technology, the Ethereum platform allows programmers to define them in a flexible and

modular way, on top of a blockchain-based network [196]. This results in a set of distributed,

immutable rules that autonomously enforce new transactions in the blockchain following

specific conditions. In the microgrid context, smart-contracts represent a powerful means for

peer-to-peer energy exchange and, more generally, advanced decentralized algorithms.

6.2 Energy Actors Modeling

Prior to the description of the proposed blockchain-based energy management framework,

this section presents a generic "(smart-)building model", mostly relying on the state-of-the-art

models introduced in Chapter 1. The prosumers in the framework are assumed to be equipped

with adequate BDMS and sensors/actuators to enable the management of their energy. Any

variable/parameter that is not explained in the text can be found in the nomenclature’s Tables

6.1, 6.2, and 6.3.

Definition 6.2.1. Prosumer - A prosumer refers to a building environment that is both capable

of consuming and producing energy over time.

A smart-building - or prosumer in this context - is an entity in the community that consumes

or produces a total power e[h] (kW) at a given time period h, which can be broken down as

follow:

e[h] = pnc [h]+pg [h]+u f [h] (6.1)

where pnc represents the non-controllable part of the building load consumption (kW), pg
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the behind-the-meter power generation (kW), and u f the total flexible load (kW). The latter

sums up the following components:

u f [h] =
nth∑

k
uk

th[h]+
nd∑
k

pk
d [h]+

nb∑
k

uk
b [h]

where nth is the number of thermal loads, nd the number of deferrable loads, and nb the

number of batteries present in the building. The rest of this section presents the models

impacting the variable e[h].

Thermal loads

The variable ût h (kW) influences the temperature of air zones where home occupants live

or the temperature of the water in hydronic pipes/tanks, used by home occupants. The

corresponding loads are HVAC system, HPs, and EWHs.

The conditioned zones/hydronic system state and water tank state evolve as follow [6]:

x̂t h[h +1] = A x̂t h[h]+Bu ût h[h]+Bd d̂t h[h] (6.2)

T̂ [h] =C x̂t h[h] (6.3)

where x̂t h (◦C) regroups both the constrained thermal air/water temperatures and intermedi-

ate model states, such as wall temperatures. Thermal model disturbance vector d̂t h is made

of outside temperature, internal load heat gain, and solar heat gain. The matrices A,Bu ,Bd

contain the building model parameters, such as RC equivalent model parameters and thermal

load efficiency.

The air zone and water temperatures should ideally be kept within min/max limits and the

thermal load power is physically limited:

T̂ m[h] ≤ T̂ [h] ≤ T̂ M [h] (6.4)

0 ≤ ût h[h] ≤ P̂ t h (6.5)

where T k,m and T k,M (◦C) are the k th air zone or water tank temperature limits, specified by

the user.

Deferrable loads

A deferrable load refers to any appliance whose discrete starting time ûd (h) can be controlled

and that cannot be interrupted once started. This category regroups mainly residential loads

like washing machines, dryers, and washers. When switched on, the deferrable load power

consumption is given by its predefined load profile:

pk
d [h] =

{
P k

d [h −uk
d ] if uk

d ≤ h ≤ uk
d +|P k

d |
0 otherwise

(6.6)
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where |P k
d | refers to the duration of the deferrable load profile. The model is constrained

by home occupants preferences that can specify a minimum starting time and a maximum

ending time:

t̂ s
d ≤ ûd ≤ t̂ e

d − ˆ|Pd | (6.7)

Energy storage system

The continuous variable ûb (kW) influences the SoC of chemical batteries used in EV. An

integrative model describes the SoC evolution [173]:

x̂b[h +1] = (αb x̂b[h]+η+b û+
b [h]+ 1

η−b
û−

b [h]) d t (6.8)

ûb[h] = û+
b [h]+ û−

b [h] (6.9)

Battery charging/discharging power and capacity are physically limited. In order to ensure

that uk,+
b [h] and uk,−

b [h] are not simultaneously non-null, binary variables sk
b [h] are injected

in the constraints:

Ĉ b ≤ x̂b[h] ≤ Ĉ b (6.10)

0 ≤ û+
b [h] ≤ ŝb[h] P̂ b (6.11)

0 ≥ û−
b [h] ≥ (1− ŝb[h]) P̂ b (6.12)

When the battery is used in an EV, initial and final conditions apply on SoC when unplugged,

and at time of arrival and departure:

uk
b [h] = 0 ∀h ∈T k

out (6.13)

xk
b [t k

b,a] =C k
b,a , xk

b [t k
b,l ] =C k

b,l (6.14)

Solar PV panel

Environmental conditions influence the power pg locally generated by PV array installation.

The PV output power is linearly modelled as follow [207]:

pg [h] = fPV (G[h],Ta[h]) ncel l s
pv P n

pv (6.15)

where fPV (.) is a function that modulates the PV array nominal power, depending on outside

solar irradiance and cell temperature difference from standard condition ∆T [h]:

f PV = G[h]

Gn
(1+αi ∆T [h])(1+αu ∆T [h])

where Gn is the nominal radiation W
m2 , αi and αu are the temperature sensitivity (%/◦C ) of the

PV output current and voltage, respectively.
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Figure 6.2 – Smart-Buildings community with local RES: structure, communication, and power
flows: centralized aggregator approach
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Figure 6.3 – Smart-Buildings community with local RES: structure, communication, and power
flows: autonomous decentralized approach

Uncontrollable load

Building occupants and environmental conditions influence uncontrollable load behavior

pnc . Their power profile is supposed to be a given input parameter to the system.

6.3 Cooperative Decentralized DR Framework

The community encompasses the local energy actors, the physical power system through

which electricity flows, and the energy management mechanisms. A common approach

consists in using a local aggregator to centrally collect the parameters of flexible actors and

RES data to subsequently optimize a given objective, both in planning and real-time operations

[156]. Figure 6.2 depicts such a situation, where the centralized aggregator agent handles the

communication with the grid operator.
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The decentralized approach taken in this chapter is depicted in Figure 6.3. Without the aggre-

gator agent, the goal of the community is to agree on a consensus that optimizes a given shared

objective function. The aggregator is partly replaced by the blockchain environment and every

energy actor only interacts with the blockchain. The latter orchestrates events that will trigger

the appropriate smart-contracts functions to enable cooperative energy management.

The role of every participant in the community is to dispatch its flexible assets in order to

meet an aggregated objective, a role that was granted to the aggregator in the centralized

scheme. The proposed mechanism works in two distinct phases. In the day-ahead phase, the

community decides on an optimal planning of the aggregated load profile, and transfers it up

to grid operator. To ensure that the actual community consumption is as close as possible to

its planning, the online phase strives to track the day-ahead aggregated profile during the day.

6.3.1 Decentralized planning algorithm

The planning profile is the result of the community cost function minimization problem,

solved in a decentralized fashion. At time instant h, the community can buy local electricity

y−
l [h] at a cost f c

l (y−
l [h]) and electricity coming from the grid y+[h] at a cost f c

G+(y+[h]). If it

doesn’t import electricity from the grid, it might export y−[h] to the grid for a gain f c
G−(y−[h]).

The responsibility to optimize the flexible assets falls into the smart-buildings themselves,

instead of a central aggregator. Each participant in the community hence computes a local

optimum for their planning, given an intermediate forecast of other nodes, to then shares

their updated decision with the rest of the community. Iteratively, the smart-buildings will

therefore adapt their power forecast, based on forecast actions taken by the others, in order to

optimize an aggregated cost function. The resulting algorithm can be seen as a GT problem

[188], in which the players are incentivized to change their power consumption, given grid

utility electricity prices or a common community goal.

The local optimal planning of the i th smart-building is given by the input sequence ûi solving:

min
ûi

H−1∑
h=0

f c
G+(y+[h])+ f c

l (y−
l [h])+ f c

G−(y−[h]) (6.16)

s.t. Eq. (6.2) and (6.8) init. state at h = 0

∀h = 0...H −1 :

e i [h]+ l+∗−i [h]+ l−∗−i [h] = y+[h]+ y−[h] (6.17)

e i ,−[h]+ l−∗−i [h] = y−
l [h] (6.18)

0 ≤ y+[h] ≤ M sy [h] (6.19)

0 ≥ y−[h] ≥−M (1− sy [h]) (6.20)

Eq. (6.1) to (6.15) at time h

where l+∗−i and l−∗−i represent the demand and production forecast of the community minus
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Algorithm 4 Smart-Contract 1 - Day-Ahead planning logic

1: procedure STARTPLANNINGPHASE(participant i)
2: emit runPlanningAndBroadcast( i)
3: end procedure
4: procedure UPDATEPLANNING(participant i)
5: if new forecast (l+j ,l−j ) then

6: emit updateCommunityForecast(i, l+j , l−j )
7: if allowedToRunPlanning then
8: emit runPlanningAndBroadcast()
9: end if

10: end if
11: end procedure

the i th smart-building, respectively, and e i ,− is the net power export of the i th building. The

vector ûi = [ûi
t h , ûi

d , ûi
b] regroups the control input variables for all the flexible entities of the

i th building. Eq. (6.17) models the power balance at the grid entry point of the community,

while Eq. (6.18) defines the total local production.

Binary variables sy [h] along with constant M (∼ 106) are used in Eq. (6.19) and (6.20) to ensure

that variable representing grid importing and exporting don’t take simultaneously a non-null

value at time period h, via the big-M method [160]. It’s worth noticing that slack variables are

used on the air/water temperature constraints in order to ensure feasibility of the problem

but removed from Eq. (6.16) for the sake of clarity.

Practically, the decentralized algorithm sequences and information broadcasting are enabled

by the smart-contract described by Algorithm 4. The functions called through the keyword

"emit" are located at the building premise, while the smart-contracts run in the blockchain.

A periodic event (every 24h) is used to trigger the day-ahead planning phase, by calling the

corresponding function startPlanningPhase in the contract. To orchestrate the iterations of

the algorithm, the function updatePlanning of the contract is in charge of periodically reading

whether a new planning-related transaction has been written in the blockchain. In that case,

the smart-buildings update their community planning knowledge and then, if allowed to do so,

run their own optimization, by solving Problem (6.16). Eventually, the decentralized planning

phase will naturally be over when all the participants write on the blockchain the message

"no planning change". The resulting community planning is then the aggregation of the last

transactions containing individual planning forecast data:

ŷpp = [y+[0]− y−[0], ..., y+[H −1]− y−[H −1]] (6.21)

This decentralized planning algorithm represents an autonomous DR scheme in the sense that

all the participants tap into their flexibility to shape their expected power profile. Traditional

DR programs generally refer to a baseline against which building are compared to check
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Algorithm 5 Planning update of building i

1: let (variable) l+∗−i , l−∗−i = [0,...,0]
2: procedure UPDATECOMMUNITYFORECAST(power l+, l−)
3: l+∗−i ← l+, l−∗−i ← l−

4: end procedure
5: procedure RUNPLANNINGANDBROADCAST

6: ei ← solve dec. planning Eq.(6.16) given (l+∗−i , l−∗−i )
7: if e changes or significant objective change then
8: broadcast new forecast ei on the blockchain
9: else

10: broadcast "no planning change" on the blockchain
11: end if
12: end procedure

whether they appropriately responded. Unlike traditional methods that look at the last days

power consumption to create this baseline, this iterative algorithm naturally leads to the

declaration of such a baseline by each building, a day in advance. Then, the second part of

this autonomous DR scheme consists in rewarding/penalizing participant with respect to that

baseline, as explained in the next section.

6.3.2 Online phase: tracking and monitoring

The community is incentivized to ensure that the actual community grid power imports and

exports follow the planning decided a day in advance.

Community billing

Smart-Contracts defined by Algorithms 6 and 7 are deployed to monitor the real-time buildings

power profiles and to individually bill the participants, respectively.

In Algorithm 6 (Smart-Contract for monitoring), an event is periodically emitted to collect

individual participant power consumption/production. The monitoring is carried out by

pMoni tor i ng (), which gathers the whole community state before calling communityMoni-

toring(). The latter compares the power profile of the entire community to the one that was

announced through the cooperative planning. If the difference exceeds a given threshold, the

participants must individually be penalized, for their aggregated behavior deviates too much

from the planning they all agreed to follow. However, the actual billing is not yet carried out:

instead, tracking errors are stored in the vector g ap and the billing is deferred until the end of

the day. The function tr acki ng Er r or Event () notifies the participants that the community

failed to track their planning at time instant h.
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Algorithm 6 Smart Contract 2 - Online monitoring (periodic, every d t )

1: let (constant) εthr es[]
2: let (previously computed) ŷpp []
3: let (variable) power[:][:], gap[:][:] ← 0
4: procedure PMONITOR(power l+, l−)
5: power[i][h] ← p
6: validate participant i
7: if all participants validated then
8: call communityMonitoring(h)
9: end if

10: end procedure
11: procedure COMMUNITYMONITORING(time h)
12: εtr ack ← (

∑
j power[j][h]− ŷpp [h])

13: if εtr ack exceeds εthr es[h] then
14: emit trackingErrorEvent(h, εtr ack )
15: for each participant i do
16: gap[i][h] ← power [i ][h]−epp,i [h]
17: end for
18: end if
19: end procedure

The Algorithm (7) (Smart-Contract for billing) ensures that each participant is properly billed

individually at the end of the the day as follows:

B i
D = c+D ·

H−1∑
h=0

e+i [h]− c−D ·
H−1∑
h=0

e−i [h]−
H−1∑
h=0

f c
l (e−i [h]) (6.22)

c+D =
∑H−1

h=0 f c
G+(y+

G [h])+ f c
l (y−

l [h])∑N
j=1

∑H−1
h=0 e+k [h]

c−D =
∑H−1

h=0 f c
G− [h]∑N

j=1

∑H−1
h=0 e−k [h]

)

where c+D and c−D represent the average daily community prices ($/kWh) of buying or selling

energy from/to the grid, respectively. The function el ectr i ci t yBi l l i ng () in Algorithm (7)

implements such a volumetric billing.

In addition to the daily volumetric bill, the participants in the community are also individually

rewarded or penalized depending on the online planning tracking quality. The Smart-Contract

for billing (Algorithm 7) rewards/penalizes the individual buildings as a result of the com-

munity behavior, through the functions pool () and i ncenti veBi l l i ng (). The event pool ()

is called by the community participants, with a certain amount of blockchain currency to

enable the transaction, as specified by the keyword "payable". As all the community actors

have filled up their balances, the actual tracking reward/penalty mechanisms can be executed
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Algorithm 7 Smart Contract 3 - Accounting (periodic, every day)

1: let (constant) requiredAmount[]
2: let (previously computed) gap[][], power[][]
3: let (variable) balance[:] ← 0
4: procedure ELECTRICITYBILLING

5: for each building i do
6: bill ← compute B i

D as Eq.(6.22) given power
7: emit billEvent(i, bill)
8: end for
9: end procedure

10: procedure (PAYABLE) POOL(participant i, amount a)
11: require a >= requiredAmount[i]
12: balance[i] += a
13: add i to whitelist
14: if whitelist complete then
15: authorize incentiveBilling()
16: end if
17: end procedure
18: procedure INCENTIVEBILLING

19: for each building i do
20: p−, r+ ← PRComputation(i, gap[i]
21: balance[i] += (r+−p−)
22: balance[grid_id] -= (r+−p−)
23: end for
24: end procedure

by i ncenti veBi l l i ng (). Variables p− and r+ represent the corresponding penalty and reward

applied to the balance of the i th participant. The index g r i d_i d stands for the grid operator

to which the community provides tracking services.

Forecast tracking

As for the implementation on the online tracking of the forecast, this could be done by solving

a decentralized MPC to reduce the error between the community profile and the forecast

planning, iteratively executed by each flexible asset:

min
{ûi }

Ho−1∑
h=0

(y+[h]− y+
pp [h])2 + (y−[h]− y−

pp [h])2 (6.23)

s.t. Community model and constraints as in Eq. (6.16)

Updated environmental data forecast

where Ho is the receding horizon. However, the large latency inherent to blockchain won’t
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allow such a decentralized MPC to be deployed at a large scale. Instead, each energy actor can

opt to track their individual day-ahead forecast epp,i through a local MPC:

min
ûi

Ho−1∑
h=0

(ei [h]−epp,i [h])2 (6.24)

s.t. Eq. (6.1) to (6.15) at time h = 0, ..., Ho −1

Updated environmental data forecast

The Smart-Contracts described by Algorithms 6 and 7 pave the way to incentivize the de-

centralized tracking of the day-ahead planning. In this 2-phase framework, the blockchain

capabilities are fully leveraged: whereas it is used as a pure immutable shared database in

the planning phase, the blockchain is then use to transfer funds in real-time through the

second and third smart-contracts. Through its innovative structure, the blockchain allows a

close to real-time monitoring and penalty/reward billing, enabled by the community and its

decentralized rules themselves. This represents a huge advantage over traditional centralized

third parties that would take more time to apply them, because they would be relying on

banking systems and administrative services, and would also lack of transparency. Never-

theless, the specific implementation, such as the details of the function PRComput ati on()

and the online phase practical implementation, goes beyond the scope of this chapter. An

entire framework, involving tailored penalties/reward functions, would be needed for an

effective cooperative online tracking. Instead, this study focuses merely on the planning phase

mechanisms and the blockchain deployment.

6.3.3 Community objective

The objective function shared by all participants in Eq. (6.16) influences the behavior of the

entire community, with respect to grid services and local resources use. The framework at

hand allows participants to join any program, according to his/her own personal interest. This

chapter analyzed two different community programs, presented below. Both of them lead to a

global convex formulation of the community optimization problem.

Price-based DR for grid services

In this program, community participants try to minimize their daily own bill according to

Eq. (6.22). Pricing represents a traditional means for the grid operator to influence the whole

community planning phase. The cost of importing electricity from the grid is given by:

f c
G+(x,h) = aq

g [h] x2 +al
g [h] x +ac

g , (x ≥ 0)

where the coefficients aq
g , al

g vary over time. This generic form allows to take into account

multiple influencing factors. Firstly, the constant term ac
g ($) encompasses infrastructure

cost. Secondly, the linear term al
g ($/kW h) can either be a constant energy price, a static TOU
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retail price, or could follow the wholesale market prices. Lastly, the quadratic coefficient aq
g

($/(kW h)2) accounts for second order effects [203], such as quadratic dependency of some

power plants with respect to their generated power, or the losses in the lines due to long

distance energy transport. Such a quadratic dependency will have the effect to flatten the

overall grid demand.

The cost of buying electricity from local RES is supposed to be time-invariant:

f c
l (x) =−al x, (x ≤ 0)

The gain (negative cost) of exporting electricity to the grid assumes that the locally generated

energy is sold to the grid at a lower price than the price to buy it locally:

f c
G−(x) =αs al x, (x ≤ 0,0 ≤αs < 1)

Green community

This program solely aims to increase the use of local resources, regardless of their cost. The

cost of buying electricity from local RES is therefore set to zero:

f c
l (x) = 0

By joining this program, participants will foster the integration of RES into the grid, such as

residential PV and windmills, and ensure that their production matches as much as possible

the participants consumption.

6.4 Case Study and Discussion

This section presents a realistic test case and discusses the results of the decentralized planning

algorithm described in Section 6.3. The code developed for this project is in open access at

the repository [61] and has been run on a single Intel Core i7-4710HQ CPU (2.50GHz×8) with

8GB of DDR4 RAM.

6.4.1 Simulation platform

The simulation setup architecture decouples the simulation coordination from the models

described in Section 6.2, each of them running as an independent process. Figure 6.4 depicts

the main components of the simulation environment. A NodeJS server is at the heart of the

platform, and performs three distinct tasks:
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Figure 6.4 – Blockchain-based decentralized simulation setup

• Routing the simulation messages to coordinate the energy-related entities. The fast

messaging protocol ZeroMQ [63] allows a bidirectional communication between the

actors in the community, to enable the decentralized logic.

• Connecting the community to the Ethereum blockchain via Web3JS API [208]. Instead

of connecting each process to the blockchain as it would be the case in reality, passing

through the NodeJS server has been preferred for the maturity of the Web3JS API. Practi-

cally, the ganache-cli private blockchain, using EthereumJS [209], simulates a full client

behavior for the purpose of these simulations.

• Binding a web interface with the simulation for display and control. Sockets created at

the NodeJS server publishes any new information about the decentralized algorithm

and actual power consumption, and the web interface updates in real-time the corre-

sponding graphs.

As for the energy-related actors, both RES and smart-building simulated entities share the

same Python class, in order to implement the same decentralized logic flow. However, while

RES simply reads forecast files, a smart-building process is more advanced. The package

CVXPY [210] models the equations presented in Section 6.2, and the linked Gurobi solver [161]

is used to compute the solution of the local planning problem given by Eq. (6.16). Upon a

day-ahead planning phase request, triggered by the the Smart-Contract described in Algorithm

4, every entity will periodically read and write in the blockchain by exchanging information

through a PUB/SUB link with the NodeJS server. In real-time operation, they send their power

consumption - a task performed by the smart-meter in reality - to the NodeJS router that both

writes it in the blockchain and the web-client sockets.
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Figure 6.5 – Outside temperature and irradiance used for simulation

The Smart-Contracts presented in Section 6.3 are practically coded in Solidity [211]. The

ganache-cli environment allows a tuning of the block size, mining time, hash rate, and other

useful blockchain parameters. To each of the energy actors - prosumers and RES - is linked a

unique blockchain account and a running node. An sufficient number of Ethers (the Ethereum

currency) is granted to each of them, to ensure that they have the necessary amount to run

the smart-contracts. The Solidity code describing the logic of the contracts is not directly used

in the blockchain. It must first be compiled into more basic hash code that the Ethereum

blockchain will be able to understand to automatically generate new transactions in it.

Simulation model parameters

The test case consists in a community of Nsb smart-buildings and Nr es RES. The parameters

of the buildings are derived from the Swiss standard Minergie [68], that specifies a set of con-

straints on the maximum electrical power use, thermal insulation requirements, air renewal,

and other useful data facilitating the model parameters extraction task. More information

about the Minergie standard and how the corresponding building parameters have been

extracted can be found in Chapter 2. The EV parameters are derived from Tesla Model S,

and the vehicles are supposed to be plugged-in during the day. The behind-the-meter PV

system takes parameters from Solar’s DIAMOND CS6X-310 manufacturer datasheet. As for

the environment in which the community evolves, external temperature and sun irradiance

are shown in Figure 6.5, retrieved from MeteoSwiss. The data corresponds to the weather in

Pully, Vaud, Switzerland, during the month of January 2015.

To generate a fleet of similar yet different buildings, probability distributions on the parameters

have been applied. More specifically, the following parameters vary from one building to

another in the community:
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• Zones and water tank volume - the nominal value is multiplied by a factor following a

uniform distribution U (0.5,2).

• Thermal mass - the thermal mass in each room follows a uniform distribution U (3,6).

• Building envelope, i.e. the zones equivalent thermal resistance with the outside envi-

ronment - the nominal value is multiplied by a factor following a uniform distribution

U (0.6,1.5).

• Temperature preferences - the lower bound nominal value is incremented by a value

following the uniform distribution U (−2,2), and the upper bound a uniform distribution

U (−1,3).

• Hot water use - the periodic usage is shifted for each building by a value following

uniform distribution U (0,6000), in seconds.

• Arrival/leaving time of the EV (if present) - the nominal value is shifted by a value

following the normal distribution N (0,1800), in seconds.

• Initial EV SoC (if present) - the nominal value is multiplied by a factor following a

uniform distribution U (1,3).

• PV size (if present) - the nominal value is multiplied by a factor following a uniform

distribution U (1,3).

• Deferrable load presence - each deferrable load is present with a probability of 2/3.

In practice, instances of the OpenEMS presented in Chapter 4 handle the prosumer simu-

lation as a Python process. Upon instantiation as individual processes, they connect to the

shared OpenBMS (see Appendix A.3.1) to retrieve the building model and its parameters. The

parameters distribution is hardcoded for each building, and applied by the OpenEMS itself at

instantiation through their BMS interface.

6.4.2 Scalability analysis

The decentralized planning algorithm converges once all the actors don’t observe any change

in their forecast planning or in their own objective function. This section explores the conver-

gence rate for an increasing community size. Due to the decentralization logic, the order in

which entities take the hand (referred to as sequence) can randomly vary depending on the

computational time of each node and other factors. Therefore, for each community size Nsb ,

the planning algorithm has been launched multiple times with a random sequence, leading to

statistical distribution of the convergence rate. Figure 6.6 (top) shows the number of iterations

needed to complete the decentralized day-ahead algorithm Eq. (6.16) as a function of the

community size Nsb , with the convex price-based objective. The trend clearly indicates a

linear dependency between the number of iterations, and hence the number of transactions
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Figure 6.6 – Planning phase: algorithm iterations as the the community size grows
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Figure 6.7 – Planning phase: steady-state cost function disparity as a function of the commu-
nity size

in the blockchain, with respect to the community size. In the public Ethereum blockchain,

a new block takes on average 15 seconds to be written and the system waits for 3 blocks to

actually validate the transaction. On the tested machine, an iteration needs on average 15

seconds to complete the updated forecast. A community of 30 buildings could therefore take

up to 2 hours to carry out the planning phase via the Ethereum blockchain. Practically, the

planning phase should execute during the afternoon, in order to get reliable forecast, and

finish before the end of the day for the grid to be able to use it. Considering that window of 6

hours, the proposed framework is therefore limited to a maximum of roughly 100 buildings.

However, one must bear in mind that this statement is valid for the considered community

cost function, the building models, and the chosen public blockchain.
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Figure 6.8 – Planning phase convergence for a community of 8 buildings. Individual curves
refer to a given day-ahead algorithm sequence.

Since the sequence influences to some extend the convergence rate, it’s interesting to analyze

how does the order impact the steady-state result. One defines the steady-state cost function

disparity Dc (n) as the gap between the optimal solution of a sequence of Nsb buildings and

the most optimal solution, after convergence:

Dc (n) = lim
k→∞

f n
c (k)−mi n

x∈SN

( lim
k→∞

f x
c (k))

where f n
c (k) is the community objective function at iteration k, SN is the set of all possible

permutations of {1...Nsb} and n is a specific sequence in SN . Figure 6.6 (bottom) plots this

metric as a function of Nsb . One observes that the steady-state cost function disparity is less

than 0.3% regardless the size of the community. The sequence therefore does not impact the

planning cost function of the community, meaning that any participant can take the lead on

the decentralized algorithm without impacting the aggregated cost.

6.4.3 Community simulation scenarios

The rest of this section considers a community of 8 Minergie smart-buildings and 1 local

RES. The previous subsection concluded that the algorithm is not impacted by any particular

sequence, and this is highlighted on Figure 6.8 for the small community at hand. In this

specific case, the algorithm actually converges after 3 rounds (24 iterations).

This section highlights how the algorithm is impacted by the presence of local RES, the building

assets, and the type of optimization objective. Two scenarios have been considered for the

community:
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Figure 6.9 – Load profiles resulting from the Cooperative Planning Phase in the community of
8 Minergie buildings, in the presence of Market prices, and with RES (dashed green): (top left)
non-cooperative load profiles (top right) cooperative load profiles (bottom) aggregated profiles.
In the top row graphs, each colored dashed-line corresponds to a community participant
power profile, either a RES or a smart-building profile, and their aggregation leads to the
bottom graphs.

• Green community with Market price. The community consumes local resources in

priority, and the cost of importing electricity from the grid is proportional to the Swiss

Day-Ahead Auction Market prices [162] ( aq
g = 0).

• Grid-services with Quadratic price. The community is subject to both a linear price of

energy proportional to the Day-Ahead Market prices and a quadratic price of energy.

The quadratic coefficient aq
g is set to 0.03125 ($/kWh2) throughout the day, such that

the quadratic term prevails on the linear one when the community exceeds a certain

demand threshold.

For each of the aforementioned scenarios, three community configurations are simulated: (1)

the presence of a wind-powered RES, (2) 50% of the buildings are equipped with PV panels,

and (3) 50% of the buildings are equipped with PV panels and EV (not necessarily the same

buildings). Community-level metrics can then be derived from the simulation results:

147



Chapter 6. Decentralized Demand Response in a Community of Smart-Buildings

0 4 8 12 16 20 24
Time (hour)

0

2

4

6

8

10

12

14

16

Po
we

r p
ro

fil
e 

(k
W

)

0 4 8 12 16 20 24
Time (hour)

0

2

4

6

8

10

12

14

16

Po
we

r p
ro

fil
e 

(k
W

)

0 4 8 12 16 20 24
Time (ho r)

−10

0

10

20

30

40

Ne
t g

rid
 c
om

m
 n
ity
 d
em

an
d 
(k
W
)

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28Indiv
Colab
Price

Figure 6.10 – Load profiles resulting from the Cooperative Planning Phase in the community
of 8 Minergie buildings, in the presence of Quadratic prices, and with RES (dashed green):
(top left) non-cooperative load profiles (top right) cooperative load profiles (bottom) aggre-
gated profiles. In the top row graphs, each colored dashed-line corresponds to a community
participant power profile, either a RES or a smart-building profile, and their aggregation leads
to the bottom graphs.

• RES consumption: the ratio between the daily use of energy generated locally and the

daily energy generated locally.

• PAR: the ratio between the maximum grid power demand and the mean grid power

demand.

• Community cost: the community cost corresponding to the day-ahead planning con-

sensus.

Table 6.4 and Table 6.5 regroup the simulation results considering the presented commu-

nity configurations, for both scenarios Green community (Market prices) and Grid-services

(Quadratic price), respectively. The label "Indiv." stands for the non-coordinated simulation,

i.e. the smart-buildings optimize their consumption regardless the behavior of the other;

Inversely, the label "Coop." regroups the results of the cooperative planning algorithm. Figure

6.9, Figure 6.10, and Figure 6.11 help understanding the community load profiles for both
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Figure 6.11 – Load profiles resulting from the Cooperative Planning Phase in the community
of 8 Minergie buildings, in the presence of Quadratic prices, with behind-the-meter PV,
and no RES: (top left) non-cooperative load profiles (top right) cooperative load profiles
(bottom) aggregated profiles. In the top row graphs, each colored dashed-line corresponds
to a community participant power profile, either a RES or a smart-building profile, and their
aggregation leads to the bottom graphs.

individual and cooperative logic. It’s worth noticing that the simulation doesn’t account for un-

controllable loads, which would change the PAR as an uncontrollable baseline would appear.

The simulations therefore represent a best case scenario, in which all the loads are perfectly

controllable. The presented results thus set the highest limits of the community metrics, for a

more realistic model/experiment would worsen the results.

The results of the Green community program (Table 6.4) indicate that the community could

optimally consume the local resources, compare to a selfish algorithm. In the presence of

1 independent RES and no behind-the-meter PV (Scenario 1, Figure 6.9), almost half of the

local resources were sold back to the grid. This can be seen in the bottom graph of Figure

6.9, as the global community export is negative for most of the morning. The decentralized

cooperative algorithm allowed a local consumption of nearly 95%, only releasing energy back

to the grid in the late evening. When half of the community has PV installed (Scenario 2,

no figure), the surplus that could not be self-consumed was almost entirely sold to the grid

(RES consumption < 1%). The cooperative algorithm manages to tap into the flexibility of the
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Table 6.4 – Cooperative algorithm applied to Minergie community - Scenario Greeen commu-
nity with Market-price. Scenarios (1) includes an independent RES, while scenarios (2) and (3)
only involve buildings.

Metrics
Scenarios

(1) No PV, no EV (2) 50% PV, no EV (3) 50% PV, 50% EV

Indiv. Coop. Indiv. Coop. Indiv. Coop.

RES consumption (%) 56.29 94.25 0.008 100 14.65 100
Community cost ($) 29.07 24.16 20.35 19.74 39.05 36.1
PAR 8.61 8.79 9.15 9.6 7.16 8.1

Table 6.5 – Cooperative algorithm applied to Minergie community - Scenario Grid-services
with quadratic price. Scenarios (1) includes an independent RES, while scenarios (2) and (3)
only involve buildings.

Metrics
Scenarios

(1) No PV, no EV (2) 50% PV, no EV (3) 50% PV, 50% EV

Indiv. Coop. Indiv. Coop. Indiv. Coop.

RES consumption (%) 56.29 96.96 0.008 100 14.65 100
Community cost ($) 96.08 27.97 88.67 37.73 254.14 90.45
PAR 8.61 1.61 9.15 1.37 7.16 1.22

smart-buildings to entirely balance local generation with local consumption. When adding EV

(Scenario 3, no figure), their profiles naturally match a bit more the local production, but most

of the latter is still sold to the grid. Once again, the decentralized planning phase managed to

harness all the local resources. Overall, since the price of RES (including PV) is lower than the

market price, the cooperation results in a lower community cost. However, as the considered

buildings are entirely made of flexible components, they all consume when the price of energy

is lower, leading to a high PAR. The addition of a quadratic component solves this issue.

Adding a quadratic component to the linear pricing allows to really harness the full potential

of the decentralized planning algorithm (Grid-services program. As each smart-building is

concerned by the decision of the others, both for local resources use and grid consumption

peak, the overall community profile is flattened (cf. Figure 6.10 and Figure 6.11). In Table 6.5,

the PARs are therefore tremendously reduced, closer to unity. In the individual selfish scheme,

the costs are now much higher due to lack of communication among the community actors,

and such a tariff structure would therefore be unrealistic in a non-collaborative community.

6.4.4 Discussion

Price structure and fairness. The community framework can provide a service to the grid

manager, that can locally tune the prices to shape the entire aggregated profile. To do so, the

grid operator can decide on either the linear or the quadratic coefficient. The linear coefficient
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influences the flexible energy distribution over the day, while the quadratic coefficient dictates

the PAR of the system. To a larger extend, the grid manager could handle multiple of these

smart-communities and balance the demand and supply via the price of electricity across

the set of communities. The billing scheme proposed in Eq.(6.22) fosters the buildings to

cooperatively take part in the decentralized day-ahead consensus, because the community

aggregated data are taken into account rather than individual actions. This means that it does

not reward nor penalize who consumes/produces how much and at what time, but rather

spread the actions of everyone on the resulting community cost.

Prediction uncertainty. The presented test case assumes perfect forecast knowledge and

exact models for prediction, as well as ignored non-controllable loads, which is unrealistic

especially at residential level subject to many uncertainties. The threshold discussed in

Algorithm (6) could be a solution to this problem. By joining an uncertainty to its forecast

planning, the smart-building could tell the community and hence the grid about the reliability

of its prediction. The Algorithm (6) could then integrate directly this uncertainty as the

threshold to reward/penalize the smart-building.

Decentralized algorithm robustness. Concerning the robustness, the presented smart-contracts

would need to include more mechanisms to prevent non-responding nodes from jeopardizing

the entire planning operation. Malicious participants could therefore deliberately block the al-

gorithm. Such an issue could be addressed by a smarter way to pick the next building forecast,

for example through bids, or simply by privatizing the blockchain.

Reproducibility and privacy. The framework enables the participation of heterogeneous

decentralized actors, possibly gathering various building types and control techniques (e.g.

MPC in commercial buildings, load scheduling in homes). This important feature circumvents

the need of a central controller that must know the details of every entities it supervises. The

privacy of data is therefore ensured, and it also reduces the engineering time to reproduce the

framework in a different environment.

Blockchain. The type of blockchain (private, semi-private, or public) depends on the objec-

tive of the community. In the case of the sole optimization of local resources use, a public

blockchain is suitable as it allows any participant to join. When providing services to the grid,

the aggregator/utility is likely to deploy a semi-private blockchain to regulate the participants.

Although the current consensus system for public blockchain (Proof-of-Work) is debatable

when applied to energy efficiency [202], blockchain has a great potential for accelerating the

decentralization of a large and complex system such as power system. The decentralized

capability of blockchain allows to implement bottom-up solutions, without depending on

grid operators or waiting for changes in policies. Equipped with the right technology and mo-

tivated to better consume energy, communities of people could fasten the pace of renewable

integration and DR.

Deployment cost. In addition to their BDMS, smart-buildings require an energy management

application to effectively shape their power profile. Optimization of individual building profile
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runs into this local application, generally by leveraging prices of energy emitted by the energy

provider to provide local grid support [120]. In comparison to the individual optimization,

the proposed cooperative framework replaces the price signal and the individual objective

function by a community cost function and an exchange of power forecast information. It also

replaces the utility monitoring/billing function by automated smart-contracts. The added

cost therefore solely depends on the underlying network, in this case the blockchain itself.

Practically, running a smart-contracts implies fees to the participants, that vary with the

state of the blockchain system at the running time, as well as the type of blockchain itself as

discussed in the previous paragraph. In the first incarnations of the proposed framework, such

a cost might be high due to the intense energy need of the promising blockchain technology,

but we envision this cost to significantly decrease as it gains popularity and maturity.

6.5 Conclusion

This chapter presented a decentralized framework to manage the electrical consumption

in a community of smart-buildings and local RES. Blockchain and smart-contracts allowed

the participants to collaboratively decide on a planning profile that minimizes the overall

aggregated cost, through a succession of local optimization processes. This planning can

greatly benefit the grid operator in its day-ahead dispatch, and the online tracking reduces

the need of additional capacity reserve. Moreover, the simulation results showed that the

algorithm fostered the local use of energy and, under special tariff structure, the peak grid

demand could be reduced. Finally, the scalability analysis highlighted that it can be applied to

a community of up to 100 smart-buildings, given the current state of Ethereum.

The proposed framework, and technology like blockchain in general, changes the paradigms

in DR tailored to energy arbitrage. It provides a group of heterogeneous smart-buildings and

RES with the capability to consume energy in a smarter way, without the need of a central

entity that must know the details of every entity it supervises. As the future calls for an intense

electrification of buildings and transportation, these decentralized assets must be efficiently

incorporated in the global grid by taking into account their aggregated behavior. Beyond the

grid services presented in this thesis, this blockchain-based solution allows the participants

themselves to cooperatively work towards an overall decarbonized electrical grid.
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7 Toward a Unified Smart-Building
Model

The previous chapters have demonstrated the effectiveness of energy prices as a vector for shaping

electricity consumption either at the building premises or at the level of an entire community.

Yet, microgrid operators, market aggregators, and electrical utilities are also interested in directly

leveraging the flexibility offered by smart-buildings instead of relying on prices that might not

guarantee a required load change. Given the large heterogeneity in building types, controllable

entities, and the technology used to enable smart-buildings, there is a need to use a standard

representation of the flexibility of any building.

The main highlights and contributions of this chapter are:

• A review of existing models and data structures representing the building’s energy

flexibility. These data structures are meant to be exchanged with grid-side agents

for integration into their optimization-based decision-making process. The studied

models are: demand bidding curves, a flexibility contractual framework, and the Battery

Equivalent Model (BEM).

• Simulations of these data structures on a large building model demonstrate their advan-

tages and disadvantages as well as their strong dependency on environmental condi-

tions. The advanced analysis illustrates the limitation of the BEM framework when used

in MPC.

• A proposed generic Building-to-Grid (BtG) flexibility data structure mostly based on

the BEM framework and a new Equivalent Kinetic Battery Model (Eq-KiBaM), as well as

deferrable load models.
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Table 7.1 – Nomenclature used in Chapter 7: Parameters

Symbol Description Unit

α The BEM self-discharge s−1

β/β The price of power ramp-down/ramp-up $/kW

c The price of electricity $/kWh

C ,C The BEM minimum and maximum capacity kWh

∆T The system & control sampling period h

d The disturbances on building’s thermodynamics /

G , g The matrix & vector containing the constraints on variables θ and u /

H/H m The receding horizon length /

H c The flexibility contract length /

h1/h2 The "height" of the first/second well of the Eq-KiBaM kWh

k The "conductance" between the two wells of the Eq-KiBaM s−1

b The capacity ratio between the two wells of the Eq-KiBaM /

Nz The number of zones in the building /

ηch ,ηd The BEM charging/discharging efficiency /

σ,σ BEM maximum charging/discharging power kW

θr
k The reference temperature of the k th zone ◦C

ur
k The k th HVAC input for reference tracking /

P r The total building power consumption for reference tracking kW

P ,P The maximum/minimum power consumption of building’s HVAC kW

x0 The initial BEM State-of-Charge kWh

Table 7.2 – Nomenclature used in Chapter 7: Variables

Symbol Description Unit

θk The temperature of the k th zone ◦C

uk The k th HVAC input signal /

Pb The BEM power input kW

Ptot The total building power consumption kW

φ/φ The flexibility contractual framework’s power envelopes kW

xb The BEM State-of-Charge kWh

x1/x2 The Eq-KiBaM State-of-Charge of the first/second well kWh

Table 7.3 – Nomenclature used in Chapter 7 - Conventions and notations

Notation Description

• (bold) Vector [•0, ...,•n]

•,• Lower and upper bounds of a variable
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Figure 7.1 – Smart-grid actors representation.

7.1 Smart-Grid, Energy Markets, and Microgrids: the Role of Smart-

Buildings

Buildings are the primary end-users of the electrical grid, continuously consuming energy

injected along lines of the power system. Yet, the inclusion of behind-the-meter solar panels,

secondary battery storage equipments, and their increasing ability to adapt their demand

give them the potential to actively participate in the daily task of grid energy balancing and

ancillary services. The future smart-building will have to interact with many different smart-

grid entities to enable such a large task. Figure 7.1 schematizes the various actors present in

the envisioned smart-grid. Vital elements of the system, generators (G), produce electricity on

the power lines by using fossil fuel, nuclear resources, or renewable energy sources. The end-

loads (buildings, electric vehicles, public infrastructure, etc.) consume this electricity, either

in an inflexible way (L) or with some kind of flexibility of their load profile (SB). Distributions,

transmission, and feeder lines are geographically deployed to connect these remote actors

over areas that can span countries and continents.

In addition to the physical infrastructure and actors, an ecosystem of entities ensures a

perpetual balance between supply and demand at various time scales (years, days, hours,

minutes, and sub-seconds). Buildings (residential and commercial) do not buy their electricity

directly from the generators. Instead, an energy retailer will sell electricity to a group of end-

loads registered or assigned to it through a contract. Depending on the area, these retailers

buy their electricity from a wholesale energy market or through bilateral contracts [212]. As

smart-buildings offer flexibility in their consumption profile, aggregators are in charge of
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pooling their resources to form a unique entity offering services to a higher-level grid-side

agent [186]. Also referred to as a Virtual Power Plant (VPP), an aggregator commonly provides

its services to grid utilities (or retailers) or directly bids into the wholesale energy market on

behalf of a fleet of smart-buildings [213].

On the one hand, deregulated wholesale electricity markets have recently emerged as solution

to match supply and demand. They work as a succession of bidding procedures that define

clearing electricity prices both a day in advance in the Day-Ahead Market (DAM) and during

the day in the Real-Time Market (RTM). As illustrated in Figure 7.21, the aggregators can send

their bids to the market operator2 by using the ability of smart-buildings to increase or decrease

their consumption according to a reference. Whenever a bid is won by an aggregator, the

corresponding price represents the economic value of its flexibility. For instance, the Demand

Response Auction Mechanism (DRAM) was launched in 2015 in California to promote the

1This figure does not include all the actors in an energy market, for instance, importation from other areas are
omitted.

2The market operator stands for the Independent System Operator (ISO) in the US
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participation of DR agents into the California Independent System Operator (CAISO) markets

[214]. Yet, the baseline energy of buildings is paid to local retailers who have bid in the

electricity market.

On the other hand, smart-buildings can also be valuable assets in microgrids [215]. A microgrid

refers to a set of interconnected electrical loads and Distributed Energy Resources (DER) within

clearly defined electrical boundaries, seen as a single entity by the grid from which it can

disconnect [216]. Microgrids are useful for efficiently optimize local resources and, therefore,

represent valuable solutions to provide energy to loads in harsh environments (e.g., flood,

wildfire, etc.). Either through an aggregator or directly interacting with the microgrid EMS, as

depicted in Figure 7.3, the smart-building will use its flexibility to meet local objectives such

as energy arbitrage or frequency regulation.

Being a hybrid entity between an end-load and a distributed flexible generator, the smart-

building should declare to the aggregator its energy flexibility capabilities and related con-

straints as clearly and efficiently as possible. The protocol OpenADR, created in 2009, enforces

the kind of information that must be exchanged between grid-side agents and load-side

agents [159, 217]. However, it does not specify the model to be used by both parties and is

mainly focused on traditional DR signals (cf. Chapter 4) which has limited value for advanced

model-based aggregated algorithms. Furthermore, the integration of model-based optimized

smart-buildings in the smart-grid changes paradigms in the way current incentive-based

DR works, as the end-users become more proactive. Indeed, how can the aggregator (or a

utility/ISO) measure and validate that a DR event actually really when facing an ever-changing

power profile, optimally shaped based on an internal model, user preferences, and grid re-

quirements. Gathering every single building model and their controllability details for the

grid-side agent to compute a most-probable baseline would be unimaginable due to its large

variety, the specificity of internal building control, and user data privacy.

The notion of Building-to-Grid (BtG) integration was introduced in [218, 219] as the set of

technologies to achieve an integrated building energy efficiency and continuous demand

response. They presented the technical opportunities and barriers at scale for residential

and commercial buildings, highlighting the current lack of building response concerning its

overall potential. Leveraging this definition, Taha et al. [220] developed a mathematical BtG

integration framework in the smart-grid. By jointly optimizing the network grid optimal power

flow and the energy flexibility of buildings, they showed that better allocation of resources

could be achieved. Nevertheless, this method still requires a large amount of data to be shared

between the grid-side agents and the buildings.

In light of the aforementioned considerations, there is a clear need to develop a unified and

generic model of flexible buildings (or end-loads in general) to be leveraged by aggregators.

This model should ideally federate heterogeneous groups of residential and commercial build-

ings based on different technologies. The idea of representing the building as a "power node"

with capacity, power limits, and ramp-up/down limits was introduced in [221]. Subsequently,

the concept of Virtual Battery (VB) to model a thermostatically-conditioned building was
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detailed in [158]. The authors showed that residential multiple Thermostatically Controlled

Loads (TCLs) could be modeled as a first-order battery (referred to as Generalized Battery

Model) and demonstrated that the grid operator could leverage such a model to provide

ancillary services, namely frequency regulation. Huges et al. [222] extended the use of the

model to commercial buildings driven by non-linear HVAC loads and referred to it as the

Battery Equivalent Model (BEM). In [223], the same authors provided a method for identifying

the BEM parameters of residential buildings, extending the model to a larger category of

flexible loads. Considering a set of commercial and residential smart-buildings along with

physical ESS, the BEM model was proven in [173] to effectively unify its representation on the

aggregator side.

This chapter reviews and compares three distinct state-of-the-art BtG data structures that can

benefit aggregators in handling large sets of heterogeneous flexible buildings. In addition to the

BEM [173] mentioned above, the demand bidding curves [185] and the flexibility contractual

framework [143] have been studied. Beyond a critical theoretical discussion, we highlight,

through simulations, the advantages and limitations of these data structures; this is the focus

of Section 7.2. In Section 7.3, we propose a unified advanced data structure that better captures

building thermodynamics and includes other flexible entities (e.g., deferrable loads and EV).

Finally, the summary and overall discussion can be found in Section 7.4.

7.2 Building-to-Grid Data Structures

Definition 7.2.1. Building-to-Grid data structure - A Building-to-Grid data structure (or BtG

data structure) refers to the set of parameters, generally compact, that a building and its

grid-side agent exchanges to characterize a shared model of the building energy flexibility.

Let us consider a building with Nz zones that must be thermally regulated through the use of

an HVAC system:
θ[t +1] = fz (θ[t ],u[t ],d [t ])

P [t ] = fp (θ[t ],u[t ],d [t ])

G

[
θ[t ]

u[t ]

]
≤ g [t ]

(7.1)

where fz is a function (linear or not) dictating the next thermal state of the zones, given the

current state θ[t ], the HVAC input power u[t ], and the zone disturbances d [t ]. For simula-

tion purposes, we used the 3-zone (commercial) building model presented in Chapter 5 and

Appendix A.1.2. In this model, the HVAC system’s power consumption can be continuously

dimmed every 20 minutes and provides heat to the zones during a cold winter month. Further-

more, the zones are subject to heat disturbances throughout the day because of occupancy

and solar radiation.

The rest of this section presents three interesting data structures that simplify and generalize
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Figure 7.4 – Demand bid illustration

the model of building’s flexibility. Although the frameworks to incorporate them in aggregator

decision-making are also discussed, we do not quantify the cost of running them at building

level. This cost, called opportunity cost, accounts for the impact, on the building environment,

of providing ancillary services. Authors of [224] and [225] provided useful definitions and

examples of these time-dependent costs on simulated commercial buildings.

7.2.1 Demand bidding curves

Generation and demand bids occur in liberalized energy markets3, leading to the determi-

nation of the clearing price by the market operator (e.g., an ISO in the U.S.). Yet, most of the

demand bids are price-takers while generation bids are the real price-makers. For instance, in

the DAM of the CAISO in 2014, only 10% of demands bids (in terms of MWh) were economic

bids, against 68% of economic generation bids [226]. An economic bid means that the bidder

proposes various prices it is willing to pay (demand) or sell (generation) for a given amount of

energy.

An economic demand bid represents an interesting data structure to model the demand

flexibility of a smart-building at a given time instant. As illustrated in Figure 7.4, the smart-

building is expected to produce a pair of demand-price {E ,ce } that represents the amount of

energy, E , it is willing to consume in a given time interval for the corresponding electricity

price, ce . The bidding curve takes the form of a decreasing step-wise function, as flexible

buildings are likely to consume more energy when electricity prices get lower.

However, sensitivity to electricity prices is a relative metric and the building’s EMS must,

3As for CAISO, economic demand bids occur only in DAM, as in RTM the demand is forecast by the market
operator.
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Figure 7.5 – The evolution of commercial building demand bids over one day

therefore, be aware of a reference price from which the curve can be built. Wei et al. [185]

described an MPC-based method to construct bids for an aggregator. They considered that

all the buildings were given a forecast price of electricity c . Upon query of the aggregator at

time t , the requested smart-building iteratively changes the price of electricity at the time

interval starting at t while keeping the rest of the forecast signal unchanged: c̃ = [ck ;c [1 : end ]],

where ck is the altered price of electricity at time t . This altered price vector c̃ , is subsequently

used in the model-based optimization problem for computing an optimal consumption

forecast. The building consumption at time interval t represents the demand it would agree to

purchase at the corresponding altered price. By varying the price, ck , in a large set of values,

the smart-building progressively constructs a demand bid like the one shown in Fig. 7.4.

Figure 7.5 shows the time evolution of such demand bids based on the simulated commercial

building (price and demand bid have been swapped for the sake of graph clarity). For this

simulation, a TOU retail price was made up of a fixed energy price 0.2 $/kWh ofr most of

the day, except for two peak periods 4-8 am and 4-8 pm, during which the price was 1.2

$/kWh. It’s worth noting that the building HVAC systems are being controlled by a perfect

MPC and, therefore, operates close to comfort limits. One observes a change in the bids during

peak price periods according to energy price values as well as a correlation with the ambient

environment. The afternoon exposes a highly inelastic demand as the building is already

heated by the HVAC, sun radiation, and humans, and thus does not consume much power.

Therefore, it would use HVAC power only at a very low energy price. In the morning (4-8 am),

the bidding curves span a larger range of prices because short-term energy prices are high
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Figure 7.6 – Flexibility contract illustration

(1.2 $/kWh). An abrupt transition occurs in the demand-price bidding curves from 6-8 am as

the model-based optimization foresees that the price will dramatically decrease after 8 am.

Consequently, the smart-building decided to bid on power demand (around 10kW) for the

price range [0.6-0.2] $/kWh (still better than the current price of 1.2$/kWh) and then suddenly

raises the bidding power close to maximum capacity for prices below 0.2 $/kWh. A smoother

bidding curve is observed at 4 pm when the energy price abruptly increases again. Compared

to the morning curves, lower values of the power demand bids are observed at higher prices.

Indeed, the building has been heated by solar radiation and internal load for the whole day

and the minimum HVAC power to ensure thermal comfort is, therefore, lower; this effect fades

away in the late evening, especially when the energy price decreases after 8 pm.

Leveraging the knowledge of local demand and generation bids, the aggregator logic presented

in [185] consists of minimizing the customer utility and generator cost function, constrained

by the physical limitations of the underlying power system (buses, transmission lines, etc.).

Therefore, the optimization-based tasks of the smart-buildings and the aggregator are decou-

pled while being linked to each other through the demand bids. While these bids represent

a way of encapsulating the building flexibility capabilities, they require knowledge of the

electricity price forecast. This is realistic in the current grid state, in which retailers (i.e., IOUs)

sell electricity to residential/commercial customers at a fixed price. However, to a larger extent,

where buildings are directly subject to unknown real-time prices, advanced methods should

be set up to forecast the value of the required price signal. Furthermore, demand bidding

curves only capture a snapshot of the current building flexibility at a specific instant. The

aggregator, therefore, loses the knowledge of the consequences of present decisions on the

future, as it is kept at the buildings premises.

7.2.2 Flexibility contractual framework

Demand bidding data structures find their application mainly in large-period energy arbitrage,

at aggregator premises. Any update requires running as many MPC simulations as there are

energy prices to test, and the resulting curve applies only for the next period of time. Therefore,

they are not scalable for frequent, short-term signals tailored to frequency regulation and load

balancing that can occur as fast as four seconds [158].
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To promote faster short-term regulation signals, Maasoumy et al. [143, 155] presented a flex-

ibility contractual framework through which a smart-building specifies its power flexibility

for a specified horizon, given a reward structure from its grid-side agent (e.g., utility or aggre-

gator). Figure 7.6 illustrates the notion of a flexibility contract happening at time instant tc .

First, the grid-side agent must provide a forecast for the electricity price c[t ], in the contract

horizon [tc ; tc +Hc ], as well as ramp-up and ramp-down prices ($/kW h) that correspond to

the reward for increasing (β) and decreasing (β) the planned power consumption, respectively

(not represented in Figure 7.6). Given these price signals, the building replies back with the

following data structures over the entire contract horizon [tc ; tc +Hc ]:

• The baseline power, P∗(t ), it is planning to consume, corresponding to a baseline system

input u∗(t ).

• Two signals up-flex limits Φ(t) and down-flex limits Φ(t) representing the maximum

and minimum power consumption the building is willing to consume without violating

internal comfort constraints, respectively.

Having agreed at time instant tc upon a building baseline and flexibility, the grid-side agent will

frequently send a power consumption signal, s(ts), in the contract horizon ∀ts ∈ [tc ; tc +Hc ].

This consumption command will fall in the flexibility envelope and thus does not impact on

comfort in the building. On its side, the building must ensure that its actual power consump-

tion, P (t ), equals the agent signal, s(t ). Concerning the bill at the end of the day, the incentive

lies in the fact that the building is charged based on the proposed baseline, P∗(t ), at price c[t ],

instead of the actual consumption, P (t). In addition, it receives rewards for each change of

power consumption with respect to the baseline, i.e., |P (t )−P∗(t )|.

Mathematically speaking, the data structure transmitted by the building to its grid-side agent

can be computed by solving the following optimization problem:

minimize
u,φ,φ

H m−1∑
h=0

Cb(u[h],c[h])−R(φ[h],φ[h],β[h],β[h] (7.2)

s.t. θu[h +1] = fz (θu[h],u[h]+φ[h],d [h]) ∀h = 0 · · ·H m −1

θd [h +1] = fz (θd [h],u[h]+φ[h],d [h]) ∀h = 0 · · ·H m −1

G

[
θu[h]

u[h]+φ[h]

]
≤ g [h] ∀h = 0 · · ·H m −1

G

[
θd [h]

u[h]+φ[h]

]
≤ g [h] ∀h = 0 · · ·H m −1

φ[h] ≤ 0, φ[h] ≥ 0 ∀h = 0 · · ·H m −1

A vector notation has been chosen as multiple flexible entities may be controlled within the

same building. The objective function in Eq. (7.2) is made up of two elements: a part Cb(.), for

162



7.2. Building-to-Grid Data Structures

charging the baseline P∗, and a reward function, R , that specifies the gain linked to a change of

consumption, φ or φ. The constraints involve a pair {θd ,θu} of two distinct possible building

states corresponding to the system state when applying u +φ and u +φ, respectively. When

linked to temperatures, these two states represent the extreme thermal values the building is

willing to set its zones for the corresponding rewards dictated by β and β. An infinite value of

these prices (β=β= inf) would set the states {θd ,θu} to their comfort boundaries, while null

values (β=β= 0) would result in θd equal to θu and thus, an empty flexibility envelope.

The optimization horizon H m in Eq. (7.2) is greater than the contract length, H c . Therefore,

only the first H c values of the variables solving Eq. (7.2) will be transmitted to the grid-side

agent. The latter incentivizes the smart-building to provide flexibility through the parameters

β and β according to the need of the overall grid it connects to. At the next contract period

tc +H c +1, the building’s EMS will update the building state and environment information

to repeat the same transactions with its grid-side agent. Such a contractual framework has

the advantage to clearly announce in advance at just one transaction instant, tc , a baseline

power profile and flexibility envelope around it. Then, the information flows solely from the

grid-side agent towards the smart-building for setting commands.

Commercial buildings naturally lend themselves to this framework, as large HVAC fan power

can be continuously regulated. This is why the authors of [143, 155] have considered a HVAC

system of a commercial building that consumes energy from various sources:

Phvac = P f (ut )+Pc (ut ,Tout )+Ph(ut ,Tout ) (7.3)

where P f is the fan power, Pc is the cooling power, and Ph is the heating power (gas). To a

larger extent, an aggregation of thermostatically controlled loads [158] could be integrated

into this framework, in which the corresponding aggregator would play the role of the building

site.

7.2.3 Battery equivalent model

Thermal storage in the building mass, water, and air of its zones represents a natural method of

providing flexibility, as already thoroughly exploited throughout this thesis. Grey-box models

such as equivalent RC circuits allow the capture of the main thermal features of the building’s

thermodynamics. This model already holds useful flexibility information that can be leveraged

for control and energy management at the aggregator premises. Yet, a large variety of RC

combinations exist, from the simple 1R1C to highly detailed zone models that represent heat

transfers through doors, multiple material walls, windows, etc. In addition, the discrepancy in

data usage by different buildings in connecting it to these models makes it difficult to use at

an aggregator level.

The aforementioned drawbacks motivated the authors of [158, 222, 223, 173] to introduce

the BEM formalism, for unifying the models of residential and commercial buildings, as well
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as physical battery storage. They showed that the model could be applied to three families

of entities (residential AC, commercial HVAC, and independent ESS). When gathered in the

same distribution grid, the aggregator could leverage their unified model to provide both

regulation services and energy arbitrage. The main idea of the BEM framework is to model the

building’s zones (physical spaces and HVAC systems) as a set of batteries, as depicted in Figure

7.7. Parameters of the well-known first-order model of the battery (cf. Chapter 1) are extracted

by the building intelligence system itself (e.g., BDMS or EMS) based on user preferences

of comfort and knowledge of a specific building model. This battery model describes the

operational flexibility of the building with respect to a given predefined baseline. It allows the

unification of flexible buildings with radically different models and technologies under the

same generic model.

Mathematical framework

Let us first define ur as the necessary HVAC input vector for tracking a given reference tem-

perature θr in a given horizon H . It can be obtained by solving the following optimization

problem:

minimize
u

H−1∑
t=0

Nz−1∑
k=0

(θk [t ]−θr
k [t ])2 (7.4)

s.t. θ[h +1] = fz (θ[h],u[h],d [h]) ∀h = 0 · · ·H −1

G

[
θ[h]

u[h]

]
≤ g [h] ∀h = 0 · · ·H −1

Solving Eq. (7.4) results in a vector, ur [t ], of HVAC input signal, such that the natural building

thermal losses and disturbances are counterbalanced to keep the zones temperature as close as

possible to θr [t ] in the horizon t = 0 · · ·H −1. The reference HVAC input signal corresponds to

a total baseline power consumption, P r [t ] = fp (θr [t ],ur [t ],d [t ]), in the horizon t = 0 · · ·H −1.
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The linear battery model can then be introduced for each of the zones. A null SoC xz = 0

means the corresponding zone, z, is at its reference state θr
z . The battery power at time t is

defined as the gap between the actual building power consumption P [t ] and the reference

power P r [t ]:

Pb[t ] = P [t ]−P r [t ] (7.5)

Given the aforementioned definitions, the generic BEM model can be derived [173]:
σ[t ] ≤ Pb[t ] ≤σ[t ]

C [t ] ≤ xb[t ] ≤C [t ]

xb[t +1] =α xb[t ]+
{

ηch Pb[t ] ∆t charge
1
ηd

Pb[t ] ∆t discharge

(7.6)

It’s worth noting that the model denoted by equations (7.6) can be applied to both the thermal

zone (with respect to the pre-computed baseline) and the physical battery model:

• Physical battery: the minimum capacity C is positive or null, α is generally high (slow

self-discharge) while ηch and ηd are generally in the vicinity of 0.9 (losses during a

round-trip cycle).

• Thermal zone: the minimum capacity C is opposite to the maximum capacity: C =
−C =C . This means that the BEM’ SoC can be negative. The parameter, α, is generally

low (fast self-discharge) while ηch = ηd = 1.

As an illustration, let us consider a single residential thermal zone model (See Chapter 1). The

linear mapping between the thermal model linked with user comfort and the BEM parameter-

s/variables can be expressed as follows [173]:
θz [t +1] = fz (θz [t ],u[t ],d [t ])

P [t ] = u[t ]

θ[t ] ≤ θz [t ] ≤ θ[t ], 0 ≤ u[t ] ≤ P

Eq. (7.6)−−−−−→
wher e


xb[t ] =Cz (θr −θ[t ])/COP

Pb[t ] = u[t ]−ur [t ]

ηch = ηd = 1, α= (RzCz )−1

(7.7)

where Cz and Rz are the equivalent RC parameters of the zone and COP is the coefficient of

performance if the HVAC. In this simple example, the mapping of a linear first-order model is

direct and an analytic solution can, therefore, be found. The equivalent BEM capacity, omitted

in Eq. (7.7), can easily be derived analytically. However, thermal equations driving the zones’

state are generally more complex and the corresponding system may display a non-linear

behavior. Therefore, such an analytical mapping cannot be identified in practice and one

must rely on numerical methods.
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Parameters identification

For a given zone, the corresponding equivalent battery parameters must be identified, namely,

the maximum charging power σ and maximum discharging power σ, the battery capacity C ,

and the battery self-discharge α.

The battery power is limited by the maximum and minimum electrical power capacity of the

corresponding zone’s HVAC:

σ[t ] = P −P r [t ] (7.8)

σ[t ] = P −P r [t ] (7.9)

However, these constraints do not consider the current state of the battery and could thus,

cause constraints violation. Therefore, a more conservative approach has been preferred:

σ[t ] = mi n(P −P r [t ],
C −x0

2 ∆T
) (7.10)

σ[t ] = max(P −P r [t ],
−C −x0

2 ∆T
) (7.11)

where factor 2 has been chosen in practice to mitigate the non-linear effects of BEM mapping

and hence, prevents constraint violation as much as possible.

The BEM capacity C and self-dischargeα are tightly coupled and must therefore be determined

together. The idea, introduced in [223], consists of using a set of constant inputs {ui } to

compute the corresponding set of BEM violation times {t b
v,i }, such that xb(t = t b

v,i ) =C when

ui is added to the baseline reference. Since the BEM is a first-order model, any BEM violation

time t b
v,i can analytically be derived given the (positive) input ui :

ẋ(t ) =−αx(t )+ui

x(t = 0) = x0

x(t = tv,i ) =C

→ t b
v,i =− 1

α
ln

C − ui
α

x0 − ui
α

(7.12)

Details can be found in Appendix A.5, especially for negative inputs ui . Alternatively, the

building zones model given by Eq. (7.1) might not be linear or complex to compute analytically.

Therefore, one needs to simulate the system to compute the set of system violation times {t̂v,i },

defined as the duration needed to violate comfort constraints when applying ui to the baseline

power. Figure 7.8 shows the simulated temperature evolution until violation constraints, given

various input signals, for the simulated commercial building presented at the beginning of

this section.

Having the simulated system violation times, {t̂v,i }, and the analytical form of BEM violation

times Eq. (7.12), one wants to identify the parameters C and α that ensure a best fit of both

violation time sets. This can be done through least-squares optimization:
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Figure 7.8 – BEM excitation signals at t=12h: effect on the room temperature (top) Room 1
(bottom) Room 2

minimize
x0,α,C

n+∑
i=0

(t̂v,i + 1

α
ln

C − ui
α

x0 − ui
α

)2 +
n−∑
i=0

(t̂v,i + 1

α
ln

−C − ui
α

x0 − ui
α

)2 (7.13)

s.t. t b
v,i ≤ t̂v,i (7.14)

C > 0, 0 <α≤ 1, −C ≤ x0 ≤C (7.15)

where n+ and n− are the number of samples in which ui is positive and negative, respectively.

The objective function denoted by Eq. (7.13) strives to ensure a parameter fitting that optimizes

a mean-square error between the system violation times and the BEM ones. By adding

constraint (7.14), a conservative approach is taken, leading to parameter values that will never

violate the temperature constraints of the actual system.
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Figure 7.9 – BEM capacity
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Figure 7.10 – BEM self-discharge

BEM-based MPC simulations

The BEM model finds its application when centrally gathered by an aggregator (e.g., utility

or private aggregator), as demonstrated in [173] for a large set of residential and commercial

buildings, along with physical batteries. Periodically, the aggregator requires an update

of the buildings baseline P r [t ], for a given horizon, t = ts · · · te , and the BEM parameters,

{x0,α,C ,σ,σ}, corresponding to the baseline in the same horizon. The building’s EMS will,

therefore, be in charge of computing these quantities periodically, following the method

described in the above sections, and will transmit them to the aggregator. Subsequently, the

aggregator will send the power signal command ∆P j [t ], back to the building j at time t , after

optimizing a shared aggregated objective such as the one described in Chapter 6. In this

section, we intend to analyze the effect of using a BEM-based MPC algorithm to optimize the

power consumption of a single building. As the aggregator would base its decision on BEM

168



7.2. Building-to-Grid Data Structures

0 5 10 15 20
time (h)

0

5

10

15

20

25

30

35

Po
we

r c
on

su
m

pt
io

n 
(k

W
)

perfect_mpc
bem_control

0.2

0.4

0.6

0.8

1.0

1.2

El
ec

tri
cit

y 
pr

ice
 ($

/k
W

h)

price

Figure 7.11 – Building total power consumption under BEM-based MPC (red) and perfect MPC
(blue)

parameters, it is important to assess how the use of this simplified model impacts the building

power profile and user comfort.

In this simulation, the building baseline, P r , is the result of a PI control applied to the simulated

system with the knowledge of external disturbances. This baseline represents the necessary

HVAC power consumption to track a mean zone temperature of 22◦C , given the boundaries

[20,24]◦C . Then, the determination of the BEM parameters linked to each of the three zones is

conducted by applying a constant increment to the reference P r , for each of them 4. Figure

7.8 shows the effects of these excitation signals on the zones’ predicted temperature until their

comfort boundaries are reached, for Zone 1 & 2 (Zone 3 shows similar behavior as room 1)

at noon. The asymmetry between positive and negative input power is worth noting, as the

zone losses are always working against the positive power increment. Additionally, non-linear

behaviors can be observed, due to the disturbances impacting on the model over time. The

temperature evolution, thus, does not follow exactly a first-order model and, therefore, the

BEM simplification will approach the real dynamic with a best-effort first-order model.

Using the set of simulated violation times with BEM constant charging/discharging power in

Eq. (7.13), one can derive the capacity C , self-discharge α, and initial state x0 at each control

interval t . Practically, the Python sci py.opti mi ze library was used to identify the parameters.

To help the solver converging, the initial state x0[t ] was assessed at each control period as

4It’s worth noticing that the BEM model does not work with strongly coupled zones. In the case of the present
simulated model, the zones almost don’t exchange heat with one another.
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follows:

x̃0[t ] = (1−α ∆t )x0[t −1]+∆t Pb[t −1] (7.16)

Along with the use of x̃0[t ] as the initial state, the capacity and self-discharge coefficient of the

BEM at time t −1 were used to warm-start the solver. Figures 7.9 and 7.10 show the evolution

of virtual BEM capacity and self-discharge over time, as the system is being controlled. The

parameters are not constant over time. On the one hand, the capacity seems to increase

throughout the day, starting from 4–5 kWh to end between 7 and 9 kWh for Zone 1 and 3; Zone

2 experiences the same trend but with a capacity three times lower than the other two zones.

On the other hand, the self-discharge coefficient decreases over time, to stay between 0.2

and 0.3 h−1 at the end of the day. Such a time-dependent trend does not occur in a low-mass

system that can be approximated by a single node RC system, but does occur in the advanced

model at hand that stores heat in both the air and the mass of the zones.

The BEM model can now be used in an MPC formulation in order to minimize the building

owner’s bill. For each of the zones, leveraging Eq. (7.6) naturally leads to the following

constrained optimization problem:

minimize
{Pb }

H−1∑
h=0

c[h] Pb[h] (7.17)

s.t. x[0] = x0

xb[h +1] = (1−α ∆t ) xb[h]+∆t Pb[h]

−C ≤ xb[h] ≤C

σ≤ Pb[h] ≤σ

where c[h] denotes the price of electricity at time h. Solving Eq. (7.17) outputs the optimal

battery setpoint, Pb[0], to be added to the HVAC power reference, P r [t ], of the considered

zone, at time instant t . At the next time instant t +∆t , new BEM parameters will be acquired

and used again in Problem (7.17), and so on. However, as the BEM model is less accurate than

the actual one and the solver might result in incorrect values of the parameters, a traditional

ON/OFF control is applied any time the constraints are violated. A daily simulation produces

the data shown in Figure 7.11 and Figure 7.12, where the red curves refer to the BEM-based

MPC and the blue curves refer to an MPC energy management using the perfect model (i.e.,

the control model is the simulated model).

Figure 7.11 displays the total building power consumption. One observes that the BEM-based

MPC tends to behave like the perfect MPC but often departs from it for a few reasons. First, the

numerous spikes compared to the perfect MPC are caused by constraint violations, in which

case Pb = 0 and hence, the reference power consumption is applied. Indeed, the BEM-based

controller strives to steer the SoC towards its lower bound −C , but the imprecision of the

model triggers a comfort violation. Second, the BEM-based solution does not pre-heat the

building as optimally as does the perfect MPC before an increase in electricity price. This

is because the BEM model represents a first-order system and gathers all the heat storage
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Figure 7.12 – Zones temperature evolution under BEM-based MPC (red) and perfect MPC
(blue); (top-left) Zone 1 (top-right) Zone 2 (bottom) Zone 3

capacity in one single node. However, the simulated building model considers, for each zone,

an air node and a mass node, whose temperatures are closely interdependent. Therefore, the

perfect MPC foresees that it’s worth pre-heating the mass by activating the HVAC for a longer

time. The single-node battery model is unable to predict this behavior.

As for the temperature of the zones (see Figure 7.12), the comfort violation mainly occurs in

Zone 1. Interestingly, the BEM-based controller did not judge economically in fully pre-heating

the building before the first morning peak in energy price. At the second peak in the late

afternoon, an opposite behavior occurs: pre-heating is too intense, causing an upper-bound

comfort violation. This observation comes from the poor parameter identification process

that either underestimate or overestimate the capacity and self-discharge of the equivalent

battery and from the intrinsic approximation.

7.3 A Generic Building-to-Grid Model Proposition

In this section, we proposed a generic BtG model that could be used by an aggregator for

either balancing a microgrid, bidding in an energy market, or applying common DR for the

utility services. It is essentially based on the same idea as the BEM framework presented in the

previous section and further integrates more flexible entities. In addition to HVAC and EWH
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Generic BtG model
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Figure 7.13 – A generic building-to-grid data structure proposition
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Figure 7.14 – Generic KiBaM model for BtG application (left) Zone conditioned through the air
(right) Zone conditioned through the mass/water

encompassed by the BEM model, the proposed generic building model also includes electric

vehicles and deferrable loads. Figure 7.13 depicts such a model made of three distinct sets of

data structures:

• A set of Equivalent Kinetic Battery Models (Eq-KiBaM) for HVAC-conditioned zones with

thermal constraints.

• A set of Constrained BEM for electric vehicles whose batteries SoC are constrained at

leaving time.

• A set of Delayed Operation (DelayOp) for deferrable loads whose starting time can be

flexibly shifted.

Equivalent kinetic battery model

Simulations presented in Section 7.2.3 highlighted the limitation of the BEM model when

applied to a model-based controller. Indeed, the first-order equation governing the BEM’s SoC

is unable to capture the storage effect in the building mass that can later be used to heat/cool
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the air in the zones. The KiBaM formulation, presented in Chapter 1, lends itself ideally to

model this intermediary effect. Indeed, it intends to represent the recovery effect happening

in lead-acid and other chemical batteries, an effect that prevents a battery from using all the

stored charges when plugged into a load.

When applied to buildings’ HVAC systems, the same principle as the simple BEM holds: the

equivalent KiBaM-based battery (Eq-KiBaM) is used to model the flexibility of a conditioned

zone to deviate from its baseline. Unlike the BEM framework, two configurations exist for

the Eq-KiBaM as shown in Figure 7.14. For both configurations, variable x1 and x2 account

for air-related charges and mass-related charges, respectively. Therefore, the capacity linked

to x1 is determined by user preferences and the capacity linked to x2 depends on physical

constraints. On the one hand, the zone can be heated/cooled through its mass that will

subsequently transfer to air that impacts the occupants. This is represented in Figure 7.14 (left)

where the HVAC system exchanges heat with x2. Heated floor/radiator/ water pipes linked to

HPs fall into this category. On the other hand, the zone can be heated/cooled directly through

the air that will subsequently transfer to its surrounding mass. This is represented in Figure

7.14 (right) where the HVAC system exchanges heat with x1. Common air-based AC, electrical

heaters, and HPs fall into this category.

Considering a zone conditioned through its air, the Eq-KiBaM equations can be written as

follows:{
d x1(t )

d t =−α1x1(t )+k(h2(t )−h1(t ))+P (t )
d x2(t )

d t =−α2x2(t )−k(h2(t )−h1(t ))
(7.18)

whereα1 andα2 (s−1) are the self-discharge coefficient of the first and second well, respectively,

and h1 and h2 (s−1) are the heights of the first and second well, respectively. The "conductance"

parameter, k, models the charge transfer flow between the two wells.

Given that x1 = bh1 and x2 = (1−b)h2, Eq. (7.18) can be re-written as:{
d x1(t )

d t =−α1x1(t )+k( x2(t )
1−b − x1(t )

b )+P (t )
d x2(t )

d t =−α2x2(t )−k( x2(t )
1−b − x1(t )

b )
(7.19)

Adopting a matrix-form notation of Eq. (7.19) leads to the following formulation of the Eq-

KiBaM framework:

σ(t ) ≤ Pb(t ) ≤σ(t )

bC ≤ x1(t ) ≤ bC

(1−b)C ≤ x2(t ) ≤ (1−b)C

d
d t

[
x1(t )

x2(t )

]
=

[
−α1 − k

b
k

(1−b)
k
b −α2 − k

(1−b)

][
x1(t )

x2(t )

]
+

[
1

0

]
P (t )

(7.20)

The procedure for parameter identification in the system denoted by Eq. (7.20) is identical to
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the one in the BEM system 5, although slightly more complex as the equations are coupled.

These parameters are α1, α2, x0,1, x0,2, k, b, and C , in addition to maximum charging power σ

and maximum discharging power σ. Therefore, a total of nine parameters must be gathered

for each zone of the building with the Eq-KiBaM framework, against five for the BEM.

Constrained battery equivalent model

The presented BEM formulation also fits for modeling the dynamics of the battery of an electric

vehicle. However, an EV’s battery is meant to be moving with the vehicle, hence depriving

the building’s EMS of the flexible entity during absence periods Tout . In addition, the EV’s

battery cannot generally be used for providing energy back to the building’s loads, which

translates into a positive or null battery power Pb . The battery is also expected to be charged

to a minimum acceptable state, Ce , from a given instant te . The corresponding constrained

BEM model varies from the BEM by adding the following constraints on the optimization

variables that the aggregator will use:
Eq. (7.6)

Pb ≥ 0

xb[te ] =Cend

Pb[to] = 0 ∀to ∈Tout

(7.21)

Beyond its application to EVs, the data structure represented by Eq. (7.21) can also include

a hot water tank linked to an electrical heater for domestic hot water use. For each forecast

water demand period, the corresponding BEM’s SoC should be at its highest to cope with the

occupant’s unknown demand for hot water.

Delayed operation

Deferrable loads, presented in Chapter 1, can hardly be modeled through continuous equa-

tions such as those of the BEM. This is because of the temporal link between the predefined

power consumption of the load profile and the discrete nature of the decision variable on the

starting time of the load. The group of loads that have the ability to be shifted in time thus, fall

into the model of Delayed Operation:

pd [h] =
{

Pd [h − t∗d ] if t∗d ≤ h ≤ t∗d +|Pd |
0 otherwise

(1.22)

Once started, the deferrable load cannot be interrupted and is then considered an uncontrol-

lable load at the next update of the building’s flexibility capacity model.
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Table 7.4 – Summary of existing and proposed building-to-grid data structures

Name Entities Applications Advantages & Limitations

Demand
bidding
curves [185]

All
- Local RES produc-
tion matching

- Aggregator bidding in
market

X Independent of flexible entity
(black-box)

X Structure compatible with existing
energy markets

× Need for forecast price signals
× No receding horizon: only applies

at current time

Flexibility
contract
[143]

Large
HVAC,
EWH

- Short-term ramp-
up/down (freq. reg.)

- Short-term load bal-
ancing

X Few MPC computations
X Ready to be used by utilities/aggre-

gators

× Need for forecast price signals
× High sensitivity to disturbances

Battery
equivalent
model [173]

HVAC - Local RES produc-
tion matching

- Medium-term (24h)
energy arbitrage

- Short-term ramp-
up/down (freq. reg.)

- Current DR programs

X Compact structure (5 parameters)

X Simple and well-known equations

× Too simple for advanced building
control (MPC)

× Need one set of parameters per
zone

Proposed
Generic BtG
model

HVAC,
EWH,
EVs,
shiftable
loads

Same as BEM’s X Works with all existing flexible en-
tities

X Better precision for building-level
MPC

X Easy to integrate in grid-side opti-
mization framework

× Large amount of parameters

7.4 Conclusion

Building-to-grid (BtG) models are essential structures for large scale integration of flexible

demand into the future smart-grid. They can be applied in a wide range of areas, from a locally

5It is worth noting that the Eq-KiBaM boils down to the BEM framework if b = 1 or k = 0.
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isolated microgrid to a larger energy market where aggregators bid on their behalf, as well as

to electricity retailers. In this chapter, we have identified three relevant BtG data structures

of radically different natures. Table 7.4 gives an overview of the reviewed BtG models, their

grid-level applications, and a list of advantages/limitations for each of them. In addition

to a theoretical discussion, simulations on a common commercial model highlighted the

features and limitations of these frameworks. Then, we proposed an extension of the BEM

model based on KiBaM, dubbed Eq-KiBaM, to capture the effect of thermal mass storage in a

building’s zones. A generic BtG model was envisioned to gather a set of Eq-KiBaM parameters,

constrained BEM parameters for EVs and EWH modeling, and DelayOp model parameters to

represent deferrable loads.

Despite their great results on simulated environments, one must bear in mind that the studied

frameworks and the proposed framework all depend on the knowledge of a building model;

they build their data structures and parameters entirely upon this model. As for the demand

bidding curves and flexibility contracts, the model must be compatible with the MPC solver

in which it is included. As an exception, the BEM and the Eq-KiBaM may allow a more

complex model that will be mapped to the linear model of these frameworks. Relying on

a model and environmental data forecast might lead to a variation between the building’s

forecast consumption/flexibility and its actual one. Furthermore, these building-to-grid data

structures also rely on the building’s EMS and BDMS to practically control its entities, which

might be another source of error. As a consequence, this could translate into a discrepancy

between the grid-side agent’s command on power consumption and what the building will

really consume.

The frameworks presented in this section completely change the way DR programs will be

designed. Instead of relying on inaccurate methods solely based on historical consumption

data to build a possible baseline, the buildings themselves can compute this baseline. As

the baseline forecast is done at the building premises, it holds much more information and

allows for advanced models to be used. Then, the presented frameworks offer a means for the

grid-level agents to shape this baseline according to their needs. A generic building model,

such as the one presented in this section, is envisioned to be a dynamic set of data structures

that changes over time, depending on the environment in which the building evolves and

especially the humans occupying it.
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Smart-buildings, as cyber-physical structured entities, have the potential to support the smart-

grid in balancing daily energy production and demand. However, current incarnations of

grid-connected smart-buildings are still rare and generally do not extend beyond local projects,

specific to their particular test site. In this thesis, we provided a set of tools, frameworks, and

models to foster the wider adoption of smart-buildings as active assets in the power systems.

In Chapter 2, we presented an integrated building simulator, named Virtualization Engine

(vEngine), that plugs in to existing Building Data Management Systems (BDMSs). As BDMSs

become increasingly present in buildings, an integrated simulator, deployed close to the heart

of the smart-building, represents a valuable tool for performing realistic user-centric simula-

tions, computing costs of retrofitting, and assessing the grid-flexibility potential, directly at

the smart-building site. The engine is readily available to the research community, enabling

users to add more entities in modular and structured ways. The multi-state load modeling

presented in Chapter 3 was proven to perform better than state-of-the-art binary modeling,

when applied to the energy disaggregation of a limited set of loads. As part of a building’s

consumption will still remain non-controllable (driven by the user), accurate energy disag-

gregation methods are primordial in helping a building’s occupants understanding its energy

usage.

Chapters 4 and 5 described how the smart-buildings could practically respond to traditional

energy price changes and other Demand Response (DR) signals. In Chapter 4, we presented

our Open Energy Management System (OpenEMS): an open-source platform compatible with

BDMSs that enables the deployment of energy management strategies in smart-buildings.

The use of this tool can save time which can then be re-invested in the development of robust

advanced energy management methods for both simulations and real-life implementation.

Chapter 5 focused on MPC when applied to a commercial building and highlighted the impor-

tance of dealing appropriately with peak demand charges, often neglected in the literature.

We introduced an innovative incremental MPC method which better balances energy and

demand costs in its objective function. Although subject to the same pricing structure, we

illustrated that slightly different energy management strategies on similar buildings led to

different grid behaviors. Utilities and policies must, therefore, bear in mind this heterogeneity

when designing electricity prices in the presence of smart-buildings.
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Chapters 6 and 7 dealt with the practical management of multiple smart-buildings in proac-

tive communities and at the level of aggregators. In Chapter 6, we presented an innovative

blockchain-based framework which enabled the decentralized management of a community

of smart-buildings in the presence of Renewable Energy Sources (RES). Such a decentralized

framework is envisioned to promote and accelerate the inclusion of smart-buildings into a

smart-grid in a bottom-up fashion, unlike top-down policies which might take more time to

appear in a near future. Yet, the blockchain technology still needs to mature further to become

a large scale viable solution.

Finally, Chapter 7 presented a BtG data structure that encompassed most of the flexible en-

tities encountered in buildings, with the goal of suggesting a unified model to be used by

aggregators.

Grid-Oriented Smart-Buildings: Future Outlook

Data-driven control: the future of MPC?

Throughout this thesis, model-based energy management was intensively used either for

optimization of a single building’s assets or for a whole community. Nonetheless, MPC as

applied to buildings has not yet been adopted broadly and is, so far, mainly limited to test

field demonstrators. This comes from the complexity of deploying such a system and the

corresponding cost for both the physical components and the engineering time. Moreover, one

should ideally use a robust MPC and/or stochastic MPC to cope with the inherent disturbances

affecting the system [227], which have not been tackled in this thesis. Additionally, as it

intrinsically relies on a given model and a forecast of ambient conditions, the optimal path

identified by the MPC is prone to drift away from the real building behavior and, therefore,

will require engineering tweaks specific to the site under control.

Data-driven methods have recently been tested in the field of smart-buildings. Beyond their

use for MPC parameter identification [19], Machine Learning (ML) methods have the potential

to replace the need of a deterministic model in predictive control as they learn autonomously

the relationship between building’s inputs and its state. More robust to noise and less compu-

tationally heavy than MPC, a ML-based predictive control, such as Reinforcement Learning

(RL), can lead to faster on-line optimization for smart-building [228]. Yet, these methods

are still in the early stages of smart-buildings and will need to prove their added value to

be more readily accepted. Tools like OpenEMS presented in Chapter 4 will be useful for the

proof-of-concepts of data-driven algorithms.

The need of normalized building models

To carry out simulations for this thesis, we used various building models, which we mostly

made ourselves, and different datasets for parameter identification. Even though they rep-

resented realistic buildings and were useful for energy management algorithms comparison
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purposes, reproducing the identical building models and environments represents a chal-

lenging time-consuming task. Most grid-oriented building models found in the literature

follow the same trend of using a customized model. Despite the existence of public models

like the Modelica Building Library, the MATLAB Thermal Model, or the ANSI/ASHRAE/IES

Standard 90.1, that specify the building envelope and the HVAC system parameters, too many

liberties can be taken in practice concerning the user behavior model, the ambient conditions,

simulation timesteps, control parameters, etc.

Therefore, the research community studying energy in buildings needs a normalized build-

ing model, similar to the IEEE 30-bus for power system simulation, compatible across all

simulation platforms. The BOPTEST project [229], financed by DOE, aims to fill this gap. It

intends to create a framework which allows for comparing advanced control strategies across a

standard set of buildings and climates. This would decouple the controller from the simulator,

and provide the developer with a smart-building model, thus seen as a black-box, interfaced

through an API (cloud-based or local instances).

Humans at the heart of the smart-buildings

Research in grid-connected smart-buildings and DR generally focuses on thermal models

and pushes the modeling of human behavior into the background. Yet, the occupants of

buildings (especially residential) influence the building state in a complex way. In this thesis,

we have followed the traditional approach which considers a pre-defined schedule for user-

driven loads, occupants’ actions on their environment, and comfort preferences. It would be

worth using existing, more advanced models, better capturing the relationship between the

humans and their surrounding environment [230]. The distributed and modular nature of the

Virtualization Engine described in Chapter 2 makes it a suitable candidate with which to use

ML for advanced modeling of humans behavior.

To a larger extent, the smart-building will be a reality only with the active involvement of

its occupants. Smart-meters, progressively being rolled out worldwide, represent the first

step towards the BtG interface and will allow building owners to better monitor their energy

consumption. However, the investment into sensor/actuator hardware and data management

systems, the backbones of smart-buildings, depends solely on the initiative of the building’s

owner/occupant(s). Incentives will therefore be needed to promote large-scale investment in

smart-building equipment and, most importantly, synchronize them with emerging smart-

grid standards and data structures.

Energy policies: the key enabler for smart-buildings development

The lack of proper grid policies is often referred to as the major barrier to Demand Side

Management (DSM) and DR [11, 157]. Closely linked with the aforementioned human barrier,

energy policies are envisioned to incentivize building owners to invest in new technology for
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smart-buildings. However, policies are currently falling behind and do not reflect the need

in DR of the future smart-grid. They should be updated to better redefine retail electricity

price structures, and to promote the development of microgrids in remote places or harsh

environments, local markets, and RES-oriented DR programs. The price of electricity remains

the most widespread vector in shaping a smart-building’s power profile, as demonstrated

in Chapters 4, 5, and 6. However, same building types may have different controllers and

logics (cf. Chapter 5). The intense electrification to meet world decarbonization objectives will

increase the share of controllable loads, and therefore lead to a higher price responsiveness.

It is, therefore, of utmost importance that price structures are properly designed, to account

for different building behavior and environments. Dynamic prices which reflect local supply

should be favored against static time-of-use contracts, either via traditional utilities or local

aggregators.

Nevertheless, future smart-buildings and microgrids may raise social issues if the energy

policies are not properly designed. Indeed, smart-community and microgrid technologies will

reduce the dependency on the global grid, hence cutting part of the revenue. However, they

are generally only available to the rich segment of the population; it would, therefore, leave

the other poorer segment of the population, with an old grid relying on fossil fuel that would

increase prices to cope with the reduced demand.

Concluding remarks

This PhD dissertation has demonstrated through a set of developed tools, models, and frame-

works, that the smart-building represents a valuable asset in supporting the smart-grid in

its daily task to balance supply and demand. Properly managed, flexible entities available in

existing buildings can circumvent the need for investing in additional generation and storage

facilities in the grid. The BtG integration will be ensured through efficient models and data

structure that will bridge both domains. As the smart-building technology becomes ready,

energy policies will have to both follow and foresee the rollout of a distributed renewable

energy supply and flexible demand. Additionally, bottom-up decentralized frameworks can

already optimize the use of local energy resources.
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A Appendix

A.1 Building Models

Most of the models used in this thesis are derived from either a physical phenomenon or

a equivalent RC model. In both cases, the resulting model is continuous and expresses the

derivative of the state. The discretization process of a continuous Ac ,B c
u ,B c

d ,C c LTI model

consists in identifying the following matrices A,Bu ,Bd ,C , given a discretization step Ts :

{
ẋ(t ) = Ac x(t )+B c

u u(t )+B c
d d (t )

T (t ) =C c x(t )
⇒

{
x[t +1] = A x[t ]+Bu u[t ]+Bd d [t ]

T [t ] =C x[t ]

Exact identification of discrete matrices can be done by looking at the exact solution of the

continuous system:

x(t ) = e Ac t x(0)+
∫ t

0
e Ac (t−τ)Bc u(τ)dτ

In practice, the Python control toolbox allows to get the discrete LTI system through the

Zero-Order Hold (ZOH) method.

A.1.1 Minergie residential model

Building description and geometry

Table A.1 summarizes the values of the parameters used in Section 2.3 for the building thermal

model (cf Fig. 2.9)

The Minergie building model created in this study is artificially made of 3 distinct zones

(Fig. A.1). It intends to represent an average Swiss independent villa, hosting a family. The

equivalent zones regroup rooms sharing similar perturbation effect (solar radiation, load and

human heat gain) and comfort preference:
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Table A.1 – Minergie building - RC equivalent parameters

Parameter Value Parameter Value Parameter Value

Rz121 [K/W] 2.500e-2 Cz1 [J/K] 2.724e5 Rz1 f [K/W] 2.800e-3

Rz122 [K/W] 2.500e-2 Cz2 [J/K] 3.891e5 Rz2 f [K/W] 1.900e-3

Rz1a1 [K/W] 1.640e-2 Cw12 [J/K] 4.500e5 R f r [K/W] 1.400e-3

Rz1a2 [K/W] 1.640e-2 Cw1a [J/K] 1.646e6 Rr s [K/W] 1.720e-3

Rz2a1 [K/W] 1.370e-2 Cw2a [J/K] 1.896e6 Cwr [J/K] 2.092e6

Rz2a2 [K/W] 1.370e-2 C f [J/K] 6.822e6 Cw s [J/K] 3.139e5

TZ3 TZ1TZ2

Figure A.1 – 3-zone segmentation model

• Zone 1 - Bedrooms, where the temperature comfort is more tight when occupied and

the human effect is lower on average.

• Zone 2 - Common living part (living room, hall, kitchen) where lots of perturbations

appear and the temperature comfort are similar but more relaxed than in zone 1.

• Zone 3 - The user seldom stays there and the comfort is not required (garage, etc).

For sake of simplicity, Zone 1 (bedrooms) is at the same level as Zone 2, whereas commonly it

should be upstairs. While this hypothesis does not model the multi-floor thermal interaction,

this simplifies the floor-heating system design common for both zones. These zones are not

physically present as depicted in Fig. A.1, but instead represent the aggregation of the rooms

that share the same properties (user occupation, comfort properties, etc).

We decided on the following dimension for the whole building: total length of 20 meters, total

width of 12 meters, and height of 2.5 meters. The chosen areas for each zone and the amount

of windows are displayed in Table A.2. Windows all have an area of 1.5m2, and an internal wall

of an equivalent length of 24 meters separates zone 1 and zone 2.

Walls and windows properties

The standard Minergy [68] specifies U-values (W /m2.K ) requirements for walls and windows:
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Table A.2 – Minergie building zones area

Parameter Zone 1 Zone 2 Zone 3 Total

floor area (m2) 84 120 36 240

windows 6 4 2 12

Table A.3 – Minergie building wall properties

Wall type Th. capacity (J/K .kg ) Th. conductivity (W /m2.K ) Density (kg /m3)

Exterior concrete 2200 1.95 1040

Interior 1000 0.33 50

• External wall: uw all = 0.16 W /m2.K

• External window: uwi ndow = 0.9 W /m2.K

However these values solely model the thermal conductivity of the material and don’t take

into account the air renewal. The equivalent U-value of an interface separating two zones

must therefore add the heat losses due to air renewal to the one due to material conductivity.

This can be expressed as 1:

Ueq =∑
i

A ui + 1

3
NV

where A is the wall surface, ui represent the U-value of each component of the interface, N is

the air renewal rate [h−1], and V is the zone volume. N is fixed to 0.6 h−1 for a good air quality.

The thermal capacity of an external wall making up the building envelope depends on the

wall material and its geometry. Layers of concrete, brick, and glass wool are used to form a

total thickness 0.2 meter and a equivalent U-value of 0.25 W /m2.K . Concerning the interface

between the two internal zones (zone 1 and zone 2), glass wool has been chosen, with a

thickness of 0.15 meter. Thermal properties are shown in Table A.3.

Hydronic heating system

The hydronic heating system encompasses the underground water pipes circuit and the floor

that releases the heat from the water to the zones occupied by humans. The water pipes

contain water that is heated by a AWHP on a specific portion of the circuit (referred to as the

supply circuit) and slowly transfer their heat to the floor tiles in the building. The total mass of

water in contact with the floor through the pipes (referred to as the return circuit) depends on

the pipe diameter and length [231].

1The coefficient 1
3 is derived from the air density, air heat capacity and hours to seconds conversion
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Table A.4 – Minergie building floor properties

Floor type Th. capacity (J/K .kg ) Th. conductivity (W /m2.K ) Density (kg /m3)

Ceramic tiles 880 0.7 3800

We assume a supply temperature of 50◦C , a return temperature of 40◦C . The length of the pipes

in each zone will therefore dictate the amount of power released in the building. From the

MoPEC 2014 [232], it can be found that a maximum of 25 W
m2 is allowed for heating. Therefore,

from the table provided in [231], the following water pipe length is derived for both zones:

• Zone 1: a maximum of 25×0.35×240W = 2100W can be provided, therefore a maximum

length of 100m of pipes, leading to a water flow of 200 l/hr. That means a total volume

of 100×π× ( 0.02
2 )2 = 0.0314m3 = 31.42l . The resistance to the floor Rz1 f = 0.018

100×π×d =
0.0028 K

W .

• Zone 2: a maximum of 25×0.5×240W = 3000W can be provided, therefore a maximum

length of 150m of pipes, leading to a water flow of 300 l/hr. That means a total volume

of 150×π× ( 0.02
2 )2 = 0.0471m3 = 47.12l . The resistance to the floor Rw f 1 = 0.018

150×π×d =
0.0019 K

W .

Combining both heating pipe circuits, a total of about 80l of water is flowing through the

return water circuit. One can fairly imagine a supply water volume of 20l , hence a total water

circuit of 100 liters2.

The equivalent thermal resistance modeling the water exchange between supply and return

depends on water flow and heat capacity:

1

Rth
= ṁ × cp = 500

l

h
×4184

J

K kg
= 581.11 → Rth = 0.00172

K

W

The heat stored in the water pipes must then be transferred to a material with a large thermal

capacity and good conductivity. Stone/Ceramic and slate tiles are some of the best flooring for

underfloor heating, due to their high thermal mass and good conductivity [233]. Heat coming

from the water pipes can therefore quickly transfer to the surface. The thermal properties of

ceramic tiles are shown in Table A.4.

Given that the floor thickness is fixed to 0.075 meter:

• Zone 1 (A = 84m2): R f z = 0.0034 W
K and C f loor = 2.8×106 J

K

• Zone 2 (A = 120m2): R f z = 0.0024 W
K and C f loor = 4.0128×106 J

K
2In practice, these values have been tweaked through trial and error simulations, and lead to a higher water

volume.
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Figure A.2 – Air-to-water heat pump COP model (Indoor temperature = supply water tempera-
ture)

Air-Source to Water Heat Pump

The residential model Air-to-water Heat Pump Kita M [234] has been chosen in this study.

Coefficients extracted through linear regression (Python sklearn toolbox) for the AWHP model

are: cop0 = 7.010, α = −0.0794, and β = 0.0896. The R2-value of the fit is 0.952, despite the

small dataset provided by the manufacturer. Fig. A.2

Water tank and heater

A Westinghouse Durable 316l Stainless Steel Tank 80 Gallon (302 liters) equipped with a 4500-

Watt Electric Water Heater has been elected for the Minergie house. The tank is 1,7526m high

and has a diameter of 0.6m. It stores and heats water ranging from 50 ◦C C to 80 ◦C with a

thermal efficiency of 98%. The standby loss is 0.57 %/h leading to a U-value of 1 W /K .m2.

Electric Vehicle

The Minergie building hosts a Tesla Model S electric vehicle, providing an autonomy of 490 km.

The chemical battery has a capacity equal to 75kW h(SoCmax = 72.5kWh) and a maximum

charging power of 7kW. The charging efficiency is taken as 90%.

As a residential vehicle is most of the weekday out of the dwelling, the battery is out of the

building model during that period. It is assumed that the vehicle is available everyday during

t ev
st ar t and t ev

stop
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The vehicle arrives at the dwelling premise with an initial SoC at t ev
st ar t and should ideally be

fully charged at t ev
stop . It is then assumed that the dweller has the choice to offer the battery as

an ESS. Alternatively, the EV might only be considered as a load to charge.

The document [34] uses US data for modeling the starting charging time and the distance

range of use. From the latter, the initial state-of-charge can be derived.

A.1.2 Commercial building model

The commercial building model used in Part II (Advanced integration of Smart-Buildings into

the Smart-Grid) has been provided by the Automatic Control Laboratory at EPFL [235]. It

initially comes from a detailed Energyplus model that was subsequently linearized via the

OpenBuild toolbox developed in the same laboratory [46]. The resulting model can therefore

be written as:

x[t +1] = A x[t ]+Bu u[t ]+Bd d [t ]

T [t ] =C x[t ]

where x represents the building state that does not have a straightforward physical meaning.

Matrices A describes the losses in the system, Bu maps the HVAC input power to state change,

Bd the disturbance to state change, and C the state to zone thermal comfort. These matrices

result from the discretization of a continuous model, given a discretization step d t = 20mi n:

x0 =



−6.73 103

1.34 103

−5.96 102

9.22

−4.21 102

−3.94 10−1

−1.23 101

−3.01 101

−7.55 10−1

1.38 102


,

A =



9.90 10−1 −3.41 10−2 −3.50 10−2 3.95 10−4 1.79 10−2 9.36 10−5 9.89 10−3 1.15 10−3 8.01 10−6 1.60 10−3

−2.95 10−2 7.16 10−1 −2.58 10−1 2.26 10−3 −7.20 10−2 −3.36 10−4 8.80 10−2 −4.10 10−2 2.18 10−4 1.15 10−2

−3.22 10−2 −2.62 10−1 7.25 10−1 2.54 10−3 2.03 10−2 1.36 10−3 1.30 10−1 −2.82 10−2 4.50 10−4 2.22 10−2

3.81 10−4 2.33 10−3 2.54 10−3 9.76 10−1 −2.03 10−3 9.50 10−2 −1.88 10−3 −9.56 10−5 1.67 10−2 −3.75 10−4

1.89 10−2 −6.29 10−2 2.32 10−2 −2.06 10−3 5.61 10−1 −7.97 10−4 −9.52 10−2 −1.66 10−1 5.71 10−4 −4.54 10−2

9.42 10−5 −2.49 10−4 1.43 10−3 9.50 10−2 −1.09 10−3 5.14 10−1 1.84 10−4 −1.34 10−3 −1.40 10−1 −4.03 10−4

7.10 10−3 8.21 10−2 1.17 10−1 −1.71 10−3 −8.10 10−2 2.76 10−4 7.51 10−1 −1.28 10−2 −1.03 10−4 −1.20 10−1

−1.41 10−3 −4.62 10−2 −4.23 10−2 1.53 10−4 −1.30 10−1 −1.05 10−3 −2.09 10−2 7.32 10−1 4.58 10−4 −1.10 10−1

−3.45 10−6 2.13 10−4 4.14 10−4 1.67 10−2 7.67 10−4 −1.40 10−1 −1.39 10−4 4.42 10−4 7.51 10−1 −7.16 10−4

1.77 10−4 2.23 10−3 4.72 10−3 −6.04 10−5 −1.05 10−2 −2.80 10−4 −2.45 10−2 −1.61 10−3 −6.14 10−4 6.69 10−1


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Figure A.3 – BLR building and casino microgrid

Bu =



−1.29 −5.13 −1.28

1.04 −2.36 101 1.07

−1.86 −1.64 101 −1.95

4.09 1.20 10−1 −3.98

8.49 −3.85 8.39

−1.02 101 −8.06 10−3 1.03 101

2.40 2.33 2.37

1.95 −9.06 10−1 1.95

−9.55 10−1 5.80 10−3 9.58 10−1

5.21 10−1 1.42 10−1 5.23 10−1


, Bd =



−1.65 −3.62 10−1 −6.10

−7.96 10−2 3.28 10−2 −2.16

−1.05 −7.09 10−2 −6.02

1.92 10−2 −1.57 10−2 1.06 10−1

2.06 1.06 10−1 1.17 101

1.02 10−2 8.01 10−4 5.87 10−2

−7.85 10−1 −3.19 10−1 1.29 10−1

−9.03 10−1 −2.63 10−1 −1.84 10−1

−4.12 10−3 −1.31 10−2 −7.60 10−3

1.92 1.40 10−1 −8.36 10−1


, C =



−3.29 10−3 −6.39 10−3 −3.28 10−3

1.14 10−3 −2.84 10−2 1.17 10−3

−3.64 10−3 −2.26 10−2 −3.73 10−3

4.19 10−3 1.87 10−4 −4.01 10−3

1.41 10−2 −3.67 10−3 1.40 10−2

−1.22 10−2 −1.95 10−6 1.24 10−2

2.90 10−3 5.81 10−3 2.86 10−3

3.09 10−3 −2.52 10−3 3.09 10−3

−2.15 10−3 1.72 10−5 2.15 10−3

1.45 10−3 1.06 10−3 1.45 10−3



T

This model represents the thermal dynamic of a three-zone building, each containing an HVAC

system and subject to internal heat gain (loads and humans), solar radiation, and outside air

temperature disturbances.

A.1.3 Blue Lake Rancheria test site

BLR is a city located in Humbold Country in the north of California, United States. Among

other things, the city hosts tribal government offices, a hotel & casino, and a gas station with a

convenience store. Due to its location, the area is frequently subject to intense natural disaster
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such as forest fires and heavy rainstorms, often causing power outages. Loosing the electrical

power coming from the coast could therefore endangered the isolated community.

To this end, Schatz Energy Research Center (SERC) successfully deployed a microgrid tech-

nology in 2016. A total capacity of 420kwac of PV array locally can be used to power the local

loads or charge the 500 kW/950 kWh battery energy storage system. A microgrid management

system allows for an optimized autonomous control over a forecasted planning horizon, lead-

ing to microgrid protection, control, data acquisition, and forecasting. The project received

many awards for RES integration and its resulting resiliency. In 2017 a nearby wildfire isolated

BLR from the main grid, and the microgrid could successfully fulfil the need of local energy

demand. In addition to its resiliency, the local RES and smart microgrid management decrease

greenhouse gas emission and the annual electricity costs. More information can be found in

the final report [236].

Basic building energy management strategies were enabled in that first project, in the form

of discrete priority load shedding. Nevertheless, further optimization could be performed

through controlling the loads consuming the local production. A second project led by SERC

in collaboration with LBNL, called Solar+ Optimizer aims to develop a generic toolkit for

commercial building energy management. The ongoing Electric Program Investment Charge

(EPIC) project started in 2018 and intends to provide:

• A hardware toolkit for designing integrated Solar+ packages.

• An open-source software for controlling the technology.

• A set of site targeting guidelines for helping optimize which sites are the best candidates

for investment given the local conditions and the potential for coordination.

When taken together, the main outcomes of the Solar+ project focus on the interconnection

between advanced control in commercial buildings, solar, and energy storage system. Ideally,

the project should constitute a set of market-ready technologies that could be deployed all

over California, in order to improve resiliency and decrease greenhouse gas emissions.

The primary target represents gas stations and convenience stores, for their canopy can easily

host solar. Fig. A.3 shows the gas station and convenience store (top), the 420 kW solar

installation microgrid deployed during the first project (bottom left), and the conditioned

goods sold in the store (bottom right). A first part of the Solar+ Optimizer project consisted in

deploying 60 kW of solar as depicted in Fig. A.4.

A 174 kWh battery was further installed behind the convenience store and wired to the rest of

the system to complete the local microgrid. That microgrid can be islanded from the main

grid (PG&E) at any moment via to a SEL Relay and PCC breaker. Table A.5 provides detailed

information for each of the components.
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Figure A.4 – Solar+ project: PV installation on gas station and convenience store

Solar+ Optimizer

The main innovative research lays in the development of the Solar+ Optimizer block that

drives the controllable loads. Sharing similarities with the Open Building Data Management

System (OpenBMS) and OpenEMS presented in Chapter 2, the software leverages ambient

forecast (weather, prices, etc), sensors data, and building model in order to optimally drive the

flexible entities setpoints. Fig. A.5 depicts the interconnection between the Solar+ Optimizer

and the surrounding modules/services of the project. eXtensible Building Operating System

(XBOS) [60], the core of the system, connects the various Smart-Building components together.

The module offers the following features:

• Real-time monitoring of building sensors - it collects data from smart-sensor to monitor

the state of the building. Services data such as weather forecast and utility DR signals

can also be pushed to the building operating system.

• Control of building actuators - it relays high-level commands to low-level hardware,

agnostic to the protocol of the latter.

• Collection, modeling, and analytics of building data - the module stores the building

metadata and understands high level queries for further analysis.

• Advanced management and coordination of building systems/subsystems - the module

expose its data through PUB/SUB protocol to higher level modules that can leverage

the building state and metadata information.

The building operating system relies on a BOSSWAVE data bus to convey data from one

sub-module to another. The bus mainly interconnects hardware drivers for sensor/actuator
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Table A.5 – Blue Lake Solar+ demonstrator: new installed hardware

Name Data Comment

PV array/modules
SunPower

Pnom = 60.120kW

Av. efficiency 22.2%
Sunny Tripower CORE1 PV system invertor

CK Johnson Rack substructure
and IronRidge PV Rack

Battery storage system
Tesla Powerpack2

Cap. 174 kWh
Power 109 kW

140 kVA inverter

Refrigeration controllers
Parker

3 controllers /

Programmable thermostat
Venstar

1 thermostat /

Power meters
AcuEnergy

2 meters
Acuvim II-D-RCT-P1 (2 comm modules)

AXM-WEB (6 CTs) RCT16-1000
Islanding real-time

automation controller
SEL

/ /

communication, various databases for data management, and higher-level applications. More

information can be found in the documentation [237].

Constituting the main application of XBOS in the frame of the Solar+ Optimizer project,

the MPC module continuously orchestrates the building power flows. The application is a

Python process based on the MPCPy package [153] that periodically calls XBOS API to update

the necessary exodata and the state of the building model used for control. The predictive

controller can then solve the economic optimization problem to drive the thermostat set

points, fridge & freezer set points, and battery power. The particularity of MPCPy lays in the

use of Modelica, a equation-based and object-oriented modeling language. The tool JModelica

leverages the derived building model to practically solve the constrained optimization problem.

Beyond its optimization usefulness for MPC purpose, the tool can also perform simulation

and analysis, which can be of interest for user interface.

The Modelica-based system used for representing the whole Solar+ project site is depicted in

Fig. A.6 (left). The bloc diagram shows the relationship between the input variables and the

output variables of the system, made of a thermally-driven building, a PV array, and a battery.

The input variables range from uncontrollable parameters (radiation, outside temperature,

etc) to control variable (battery charge/discharge, freezer state, etc).

A lumped capacitance models the thermal behavior of the building, Fig. A.6 (right). Three

conditioned spaces make up the entire convenience store model: the store zone conditioned

by the RTU, a first food zone conditioned by the refrigerator system, and a second food zone

conditioned by the freezer. Due to a 24h per day presence and the need to keep food cool, the
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Figure A.5 – Solar+ Optimizer software architecture and its connection with microgrid entities

temperature constraints must be ensured continuously without any setback.

The RTU system is composed of a 2-stage cooling unit and a 1-stage gas heating unit. In cooling

mode, the maximum power cannot exceed 29.3 kW and the load is assumed to work with a

fixed COP of 2.59; in heating mode, the capacity is 24.91 kW with a 0.8 efficiency. Concerning

the refrigerator, it can draw a maximum power capacity of 5.861 kW with a cooling COP of 1.3;

The freezer cooling capacity is 6.096 kW with COP 1.7. The modeling approach of refrigerator

and freezer is similar to the RTU system assuming constant capacities and efficiencies.

The input cooling/heating signals can continuously take values from 0 to 1. Concerning the

battery, the SoC can not go lower than 25% and cannot exceed 100%.

Outside disturbances influence the PV output and building zone temperatures. The web

service Dark Sky provide the necessary forecast to the MPC module through XBOS, such as

ambient temperature, relative humidity, and solar radiation. The internal loads releasing heat

inside the convenience store are mainly slot machines, whose consumption is supposed to be

constant.
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Figure A.6 – Solar+ Optimizer software: Modelica bloc diagram representation of (left) system
model (right) thermal building model

A.2 Virtualization Engine

A.2.1 The vEngine in emulation mode

Health-check module

When emulating the behavior of a non-existing entity, the vEngine competes with physical

middleware that run in real-time. For the emulated entities to properly work, the vEngine

should ensure that all of them have a fair share of the computational power and no one starve.

Any excessive computational starvation would entail an inappropriate behavior of the virtual

component, inducing errors and non-natural delays at the BDMS premise. Moreover, as the

vEntities are practically implemented as uTread, their execution only depend on the internal

code and cannot therefore be controlled by a third party - like the OS.

These reasons have led to the development of the Health-check module, an independent

module that runs into the vMid with the mission to monitor the pool of vEntities and ensure

they behave appropriately. By periodically sending a special message "health report" to target

vEntities, the Health-check module reconstructs the state of the pool. A target vEntity i will

respond to a "health report" signal with the following data, computed internally:

• Computational time Qi : the time elapsed from entity wake-up to the release of CPU.

• Effective sleeping time ∆ti : the time elapsed from a CPU release to the next CPU acqui-

sition.

• Expected sleeping time ∆t a
i : the sleeping time explicitly specified by the vEntity i itself

just before releasing the CPU.
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Algorithm 8 Health Check module logic

1: procedure GET_POOL_STATE

2: UvE ← {i | (αi −α) ≥σfair}
3: if UvE is not empty then
4: for all j in {vE s} \UvE do
5: d̄ j ←α

∑
i∉UvE

Qi +∑
i∈UvE

αi Qi −α j Q j

6: if d̄ j ≥ d max
j then

7: REDUCE_CPU_USE(∀i , i ∈UvE )
8: break
9: end if

10: end for
11: end if
12: end procedure
13: procedure REDUCE_CPU_USE(i)
14: if vEi has a simpler model then
15: REDUCE_COMPLEXITY(i)
16: else
17: ∆ti ←Qi /α
18: end if
19: end procedure

• Other useful metrics, like the amount of received and emitted events, etc.

Given these measured quantities, the delay experienced by vEntity i can be expressed as

∆ti −∆t a
i , and must ideally be kept below a threshold di . Such delays depend on many

dynamic factors, like the model of the vEntities, the hosting hardware, and the pool instance.

This is the role of the Health-check module to keep them within bound, regardless these

conditions. It does it by following Algorithm 8. The chosen approach consists in punishing the

uTreads that are judged to be unfair with respect to the rest of the pool. To measure unfairness,

one must first define the relative CPU use αi of a uTread and the mean fair CPU share α:

αi = Qi

Qi +∆t a
i

α=
∑

i Qi∑
i Qi +∆t a

i

From these data computed by the Health-check module, the set UvE of entities that are unfair

with respect to the other can be created. An entity is considered as unfair when its relative CPU

share αi exceeds the mean fair CPU share α by more than σfair. If it exists at least one unfair

entity, vEk , in the vEntities pool A, the resulting introduced delay to its peers is measured.

The quantity d̃ j represents the worst case delay experienced by vE j where vE j ∈ A ∧k 6= j ,

weighted by each entity’s α j . It aims to be compared with the maximum acceptable delay d j .

193



Appendix A. Appendix

If d̃ j exceeds the d j threshold, it means that the unfairness of some entities like vEk impacts

the vE j peers. Hence, the Health Check module forces them to better cooperate.

The uTreads have at their disposal a useful mechanism to release the CPU usage, even before

the full completion of their computational step: the possibility to "sleep" and give the hand

to a waiting uTread whenever they want. This context switching can be useful during a

computational heavy function, and the vEntity has therefore the choice to slice its execution

into various chunks of time. By doing so, it is less likely to starve other entities and hence

being penalized by the Health-check module. A more radical solution consists in changing

the model in use to a simplified, less computational greedy one. These two mechanisms are

enforced by the Health-check module through the method r educe_cpu_use(), whenever an

entity is judged to be unfair, according to the method g et_pool_st ate().

Virtual network

Delays and packet losses represent a big challenge in a cyber-physical system in which many

sensors and actuators communicate with the main data management system. In this context,

an emulated virtual network called vNetwork was developed in [13], [59] to emulate packet

losses and delays virtually hampering the communication between the vEngine and the BDMS.

Spawn as a kernel process and integrative part of the vEngine, it intends to replicate ICT flaws

depending on the type of virtual network the user wants to emulate.

A.2.2 OpenBMS example

Fig. A.7 depicts how a virtual entity is practically encoded in the OpenBMS [1]. The exam-

ple consists in a virtual temperature sensor based on the vTempSensor class model. As the

OpenBMS is initially designed for an actual physical building, each virtual entity must be

mapped to an element in the database (the sensor "Minergie-Zone2 Temp Sensor" in this

example). Simulation parameters helps connecting the theoretical thermal model with pa-

rameters contained in the BDMS, such as the interfaces between rooms (3 in this case). The

output data "TEMP" will be emitted only when it changes by more than 0.1 ◦C , and the default

wake-up delay is set to 15 minutes.

Concerning the dependencies, three tables are practically used. The first one allows the virtual

entities to get data from actual physical sensors, but is left empty for this simulation. The

second table specifies the set of blocking relationships, meaning that the entity won’t run

its simulation step until it receives data from that entity. The third and last table lists the

non-blocking relationship, meaning that the data coming from these entities will be used at

the next iteration.
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Figure A.7 – BDMS example of virtual entity encoding (top) Principal characteristics (bottom)
Dependencies

A.3 ELAB Smart-Building Simulator

The ELAB Smart-Building simulator is a Python project developed for smart-building sim-

ulation and energy management. It relies on the Virtualization Engine and the OpenEMS195
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Figure A.8 – GUI of the ELAB Smart-Building simulation project

presented in Chapter 2 and 4, respectively. On the one hand, the Virtualization Engine emu-

lates the building entities present in the building and their interactions. It allows a variable

simulation time step and an overall bottom-up modeling of electrical entities as well as oc-

cupants, thermal propagation, sensors, and actuators. On the other hand, the OpenEMS

periodically updates its own model of the building to change the set-points of the control-

lable entities and offers a user-friendly data analysis interface. The code is open-source and

available at [116].

Fig. A.7 displays the user interface of the ELAB Smart-Building simulator, used in Chapter

4. Upon instantiation, the environment fetches data of the simulated building from the

OpenBMS’s API. Then, it spawns in parallel instances of the Virtualization Engine and the

OpenEMS, providing them the necessary information to setup their own environment and

connects to the OpenBMS. Once both processes are ready, the user can trigger the simulation

and will see a user-friendly log file being updated as the simulation goes on.

A.3.1 Open Building Data Management System

The data coming from the Virtualization Engine to the OpenEMS must be abstracted due

for the technology-agnostic feature of the designed EMS, and vice versa. This role is taken

by the OpenBMS whose architecture can be seen in Figure A.9. In the bottom layer lays the

low-level hardware front-end which are then interfaced by a embedded middleware agent

depending on their protocol. These agents are distributed and all connect to the real-time

server for data acquisition and forwarding. Data are efficiently stored in a time-series database

in addition to a database gathering metadata about the building itself. These two databases

can be accessed through a RestAPI interface by external third-parties. Furthermore, sockets

with external application may be opened for a fast acquisition of sensed data.
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Figure A.9 – The BMS architecture used in this thesis, schema from [1]

A.3.2 Open Energy Management System

Figure A.10 shows the UML diagram on which the OpenEMS relies to generate its internal

model of the building and its components. The hierarchical set of energy-related entities

are based on the state-of-the-art building model presented in Chapter 1. These entities are

located in a set of space (interior or exterior) that are mapped to the "Room" class. As there

spaces must generally be conditioned, a class "Comfort" stores a list of BMS’s sensors and

actuators that connect to this space as well as user preference (e.g., temperature limits or

reference). Finally, the class "Interface" links two "Room" instances with each other and

provide the necessary RC model parameters and other useful properties. It’s worth noting

that occupant’s actions are implicitly stored in a set of stochastic model parameters for every

concerned component (e.g., a probabilistic set of arrival/leaving time of the EV or a Load

Profile structure for loads).

A.4 Non-Controllable Loads Model

Figure A.11 shows activity clustering for two other appliances of the ECO dataset in addition

to the three others presented in Chapter 3.
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A.5 Battery Equivalent Model

The BEM violation time is derived as follow, for a positive value of ui :


ẋ(t ) =−αx(t )+ui

x(t = 0) = x0

x(t = tv,i ) =C

→


x(t ) = a +b e−αt

a +b =−x0 +ui

a +b e−αtv,i =−αC +ui

(A.1)


a = ui

α

b = x0−ui
α

e−αtv,i = C− ui
α

b

(A.2)

and since x0 ≤C , tv,i exists only if ui ≥ C
α .

In case of discharge, i.e. ui < 0, the battery SoC tends towards −C :


ẋ(t ) =−αx(t )+ui

x(t = 0) = x0

x(t = tv,i ) =−C

→


x(t ) = a +b e−αt

a +b =−x0 +ui

a +b e−αtv,i =αC +ui

(A.3)


a = ui

α

b = x0−ui
α

e−αtv,i = −C− ui
α

b

(A.4)

and since x0 ≥−C , tv,i exists only if ui ≤ −C
α .
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The top figures refer to a living room lamp, and the bottom figures to the TV in the ECO dataset
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