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Abstract6

The configuration of a hydraulic fracture (HF) propagating perpendicular to the isotropy plane
of a transversely isotropic (TI) material is encountered in most sedimentary basins. We account
for both elastic and fracture toughness anisotropy, and investigate fracture growth driven by the
injection of a Newtonian fluid at a constant rate from a point source. In addition to the usual
dimensionless parameters governing HF growth in isotropy, four dimensionless elastic parameters
enter the problem for a TI material: the ratio β of elastic plane-strain modulus in the two orthogonal
directions of the material frame, two Thomsen parameters ε, δ and the stiffness ratio C13/C11.
Moreover, the ratio κ of fracture toughness in the two orthogonal directions as well as the details
of the toughness anisotropy also plays a role on the development of the fracture geometry. We
quantify HF growth numerically without any a-priori assumptions on the fracture shape. In doing
so, we derive the exact expression for the near-tip elastic modulus as a function of propagation
direction and extend to TI an implicit level set algorithm coupling a finite discretization with the
near-tip solution for a steadily moving HF. A solution for a toughness dominated elliptical HF in
a TI material is derived and used to verify our numerical solver. Importantly, the fracture shape is
strictly elliptical only for a very peculiar form of toughness anisotropy. The evolution of the HF
from the viscosity dominated regime (early time) to the toughness dominated regime (late time)
results in an increase of the fracture elongation. The elongation of the fracture in the viscosity
dominated regime scales as 0.76 β−1/3 and increases as the propagation transition to the toughness
dominated regime. We confirm the expressions for the transition time-scales in the two orthogonal
directions of the material frame obtained from scaling considerations. The exact form of the
toughness anisotropy plays a crucial role on the final fracture elongation in the toughness regime,
which scales as β−2 for the case of an isotropic toughness, β−1 for an isotropic fracture energy and
as (κ/β)2 for the peculiar case of an ’elliptical’ fracture anisotropy. Our results also indicate that
i) simplified approximations for the near-tip modulus previously derived are only valid for weak
anisotropy (β < 1.2) and that ii) the other elastic parameters have a second order effect on HF
growth (at most 10 percent).
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1. Introduction9

Transverse isotropy (TI) is an ubiquitous feature of sedimentary rocks. It is a direct result of the10

sedimentation process and occurs over a wide range of scales. In particular, shales and mudstones11

are the results of fine layers deposit of micro-meters to centimeters thickness whose constituents12

may also be intrinsically anisotropic (Bobko and Ulm, 2008; Sone and Zoback, 2013). Placing13

ourselves at the continuum level, we model these rocks as transversely isotropic and study in14

details the growth of a planar three-dimensional fluid-driven fracture perpendicular to the isotropy15

plane. Such a configuration notably corresponds to the case where the intrinsic rock layering16

is horizontal and the fracture grows vertically (see Fig. 1). This is notably the case in a large17

number of sedimentary basins which exhibit a normal or a strike-slip in-situ stress regime where18

the minimum principal stress direction is horizontal. Minimizing energy spent, the fracture thus19

grows in the vertical plane perpendicular to the material isotropy plane (Hubbert and Willis, 1957).20

In the presence of weak bedding planes (isotropy plane), the fracture may possibly deviates from21

the vertical direction resulting in T-shape like geometies, or exhibit several jogs/horizontal offset22

(Bunger and Lecampion, 2017). We do not account for this possibility here and strictly restrict23

our investigation to cases where the fracture grows in a single plane perpendicular to the material24

isotropy plane. This corresponds to the limit of either i) very strong isotropy / bedding planes or25

ii) very large in-situ compressive stress normal to the isotropy / bedding plane (i.e. σv � σh in the26

configuration of Fig. 1). In that limit, how a fluid driven fracture originating from a point source27

develops as function of the material anisotropy and injection parameters (fluid viscosity, injection28

rate) remains only partly understood. One of the main questions relates to the elongation of the29

fracture in the horizontal direction when transverse elastic isotropy is accounted for (Zia et al.,30

2018). Laubie and Ulm (2014) have investigated the problem of a strictly elliptical fracture in the31

so-called toughness dominated regime where dissipation associated with viscous fluid flow in the32

fracture is negligible. Using a simplified approach based on Hoenig (1978) solution for an elliptical33

crack, they have notably obtained a relationship between the aspect ratio of the equilibrium fracture34

and the ratio of the plane-strain elastic modulus in the 1 and 3 directions. Bessmertnykh and35

Dontsov (2018) have further obtained an approximation for the fracture elongation (assuming an36

elliptical shape) for the case of a fracture driven by Herschel-Bulkley fluid in both the viscosity37

and toughness dominated regimes. Assuming the same ideal elliptical fracture geometry, scaling38

laws and approximated growth solutions were recently obtained (Dontsov, 2019).39

In this contribution, we investigate the problem numerically in combination with a scaling40

analysis. We do not impose any a-priori constraint on the fracture shape and do not make any sim-41

plifications in our handling of elastic transverse isotropy. This will notably allow to quantify some42

of the approximations previously put forward (Laubie and Ulm, 2014; Bessmertnykh and Dontsov,43

2018; Dontsov, 2019). We extend a fully-coupled implicit level set algorithm for hydraulic frac-44

ture growth (Peirce and Detournay, 2008) to account for material transverse isotropy both in terms45

of elasticity and possibly fracture energy. We restrict to the case of low permeability materials46

and neglect fluid leak-off in the surrounding rock for clarity. Following the classical hydraulic47

fracture mechanics model, we account for viscous fluid flow in the fracture coupled to mechanical48

deformation and a linear elastic fracture mechanics criteria for quasi-static growth. One of the49

peculiarity of hydraulic fractures lie in the competition between the energy dissipation associated50
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C11 C33 C12 C13 C44

Olkiluoto mica gneiss (Hakala et al., 2007) 89.7 65.9 22.2 23.5 24
Gas-saturated Shaly Coal (Wang, 2002) 22.1 10.9 8.36 1.2 3.7

Woodford53 shale (Laubie, 2013) 28 17.3 7.5 8.3 5.6
Opalinius Clay (Thöny, 2014) 57.6 28.8 54.6 38.7 0.9

Yeocheon schist (Cho et al., 2012) 91.4 27.6 33.7 20 13.7
Calcareous mudstone (Chertov, 2012) 90.4 35.1 51.6 39.8 6.5

Table 1: Examples of elastic stiffness coefficients (Voigt notation) of different transversely isotropic (TI) rocks - all
values in GPa.

with viscous flow and the one associated with the creation of new fracture surfaces. This competi-51

tion is well understood for an isotropic material and results in very different propagation regimes:52

either viscosity or toughness dominated (Detournay, 2004, 2016). Moreover, this competition be-53

tween viscosity and toughness dissipation results in a multi-scale structure of the near-tip region54

(Garagash et al., 2011) which is extremely difficult to resolve accurately using naive discretiza-55

tion techniques (Lecampion et al., 2013, 2018). Such a near-tip solution for a steadily moving56

hydraulic fracture can be combined with a finite scale discretization of the fracture, yielding very57

efficient numerical schemes (Peirce, 2015, 2016).58

In the following, we first briefly recall the ingredients of the planar hydraulic fracture (HF)59

model highlighting the differences brought by transverse isotropy (TI). We then obtain an exact60

expression for the near-tip elastic operator as a function of propagation direction in a TI material.61

More precisely, we obtain the near-tip plane-strain elastic modulus entering the so-called Irwin62

matrix relating co-planar energy release rate and stress intensity factors (Barnett and Asaro, 1972).63

This enables the extension of the near-tip fluid-driven asymptotic solution to transverse isotropy64

(TI), and its use in a fully coupled numerical scheme as a result. We also obtain an exact analytical65

solution for an elliptical hydraulic fracture propagating in the toughness dominated regime. This66

notably allows to benchmark our simulator for a peculiar case of toughness anisotropy (leading to67

an elliptical fracture shape). Combining a scaling analysis and numerical simulations, we quantify68

the growth of a hydraulic fracture in both toughness dominated and viscosity dominated growth in69

a TI elastic medium under different assumptions on the anisotropy of fracture toughness (isotropic70

toughness versus isotropic fracture energy vs elliptical toughness anisotropy). We finally explore71

numerically the transition between the viscosity and toughness dominated regimes and confirm the72

expressions based on scaling arguments of the transition time-scales in the two different directions.73

2. Problem formulation74

We focus our study on the case of a hydraulic fracture (HF) growing in a plane perpendicular75

to both the direction of the minimum horizontal in-situ stress σh and the material isotropy plane76

(see Fig. 1). We define the material canonical orthonormal basis (eee1,eee2,eee3) where (eee1,eee2) defines77

the plane of material isotropy and eee3 is the axis of rotational symmetry. In such a reference frame,78

the elastic stiffness tensor ci jkl for a transversely isotropic (TI) material can be expressed in terms79
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Figure 1: Schematic of a planar three dimensional hydraulic fracture growing perpendicular to the isotropy plane
(e1, e2) and in the direction of the maximum horizontal stress σH . Different configurations of the near-tip region along
the fracture front are also depicted: a) a semi-infinite fracture propagating along the direction perpendicular to the
isotropy plane (arrester direction), b) a semi-infinite fracture propagating within the plane (eee1,eee3) at an angle α from
eee1 and c) a semi- infinite fracture propagating along the plane of isotropy (divider direction).
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of five elastic parameters (C11,C12,C13,C33,C44) using Voigt notation:80

ci jkl = (C11 − 2C66)δi jδkl + C66(δikδ jl + δilδ jk) (1)
+(C11 + C33 − 2C13 − 4C44)δi3δ j3δk3δ3l

+(C13 −C11 + 2C66)(δi3δ j3δkl + δk3δl3δi j)
+(C44 −C66)(δ j3δk3δil + δi3δl3δ jk + δ j3δl3δik

+δi3δk3δ jl)

where C66 = 1
2 (C11 −C12) and δi j denotes the Kronecker delta. We use the convention of summa-81

tion on repeated indices.82

Predictions of HF growth requires to couple linear elastic fracture mechanics with lubrication83

flow inside the fracture (Detournay, 2016). The solution of such a moving boundary problem84

consists in the time-evolution of the fracture contour, fracture width and fluid pressure inside the85

fracture.86

2.1. Elastic deformation87

For a fracture propagating in an infinite medium, the quasi-static elastic problem can be re-88

casted into a system of three boundary integral equations relating the traction vector ti = σi jn j89

to the discontinuity of displacements di across the fracture. For a self-equilibrated fracture (with90

continuity of tractions) of surface Σ and normal ni (defined outward from its lower face), the91

Somigliana representation for the elastic stress tensor σmn = cmnklεkl (εkl being the small-strain92

tensor) can be written as (e.g. Bonnet, 1999; Mogilevskaya, 2014):93

σmn(yyy) = cmnklεkl(yyy) = −cmnkl

∫
Σ

S k
i j(yyy, xxx)

(
nl(xxx)

∂di

∂x j
(xxx) − n j(xxx)

∂di

∂xl
(xxx)

)
dΣxxx (2)

where S k
i j(yyy, xxx) denotes the fundamental solution for the stress at point yyy induced by a unit point94

force at xxx in a TI material (Pan and Chou, 1976). The induced traction vector tm = σmn(yyy)nn(yyy)95

over the fracture surface Σ is thus given by:96

tm(yyy) = −cmnklnn(yyy)
∫

Σ

S k
i j(yyy, xxx)

(
nl(xxx)

∂di

∂x j
(xxx) − n j(xxx)

∂di

∂xl
(xxx)

)
dΣxxx (3)

It is worth noting that similarly to the case of an isotropic material, the shear and opening modes97

uncouple for a planar fracture in the case of transverse isotropy (Lin and Keer, 1989; Keer and98

Lin, 1990). In other words, a pure opening mode loading do not induce any shear displacement99

discontinuity (and vice-versa). In the case of a planar hydraulic fracture (pure mode I fracture)100

with a normal coinciding with the axis eee2 of the material frame (ni = δi2eee2) also being a direction101

of the in-situ principal stress tensor, the quasi-static elastic problem reduces to a single boundary102

integral equation for the opening mode:103

p(yyy) = p f (yyy) − σh = c22kl

∫
Σ

S k
2 j(yyy, xxx)

(
δ2l
∂d2

∂x j
(xxx) − δ2 j

∂d2

∂xl
(xxx)

)
dx1dx3 (4)

where the net pressure p(yyy) = p f (yyy) − σh controls the opening of the fracture. p f (yyy) is the fluid104

pressure inside the fracture- which is neither uniform nor constant during propagation - and σh105

is the in-situ minimum compressive horizontal stress (see Fig. 1). In the following, in line with106

previous contributions, we write the fracture opening as w(xxx, t) = d2(xxx, t).107
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2.2. Fluid flow inside the fracture108

Fluid flow inside the fracture follows lubrication theory (Batchelor, 1967). For an incompress-109

ible fluid and an impermeable surrounding rock, the width averaged mass conservation of the fluid110

inside the fracture reduces to111

∂w
∂t

+
∂qi

∂xi
= Qoδ(x1, x3) i = 1 & 3 (5)

where Qo denotes the constant fluid injection rate located at the origin. The width-averaged bal-112

ance of momentum of the fluid inside the fracture reduces to Poiseuille’s law, which relates the113

fluid flux qi = wvi (where vi is the 2D fluid velocity in the fracture plane - i = 1 & 3 as per Fig. 1)114

to the fluid pressure gradient:115

qi(xi) = −
w3

µ′
∂p f

∂xi
i = 1 & 3 (6)

where µ′ = 12µ is an effective viscosity used here to shorten notation.116

2.3. Boundary conditions117

For a hydraulic fracture propagating in an isotropic material, it can be shown that the fluid and118

fracture front coalesces when
σhK2

Ic

µ′VE′2iso

� 1 where V is the local front velocity, KIc the rock fracture119

toughness and E′iso is the isotropic plane-strain modulus of the rock (Garagash and Detournay,120

2000). An in-situ confining stress σh of the order of few O(MPa) is sufficient to satisfy such a121

condition under most practical configurations. As a result, for a fracture propagating at depth, the122

fluid lag is negligible. The boundary conditions at the fracture front then reduce to (Detournay and123

Peirce, 2014)124

w(xxxC, t) = 0, qi(xxxC, t)ni(xxxC, t) = 0, xxxC ∈ C(t).

2.4. Fracture Propagation condition125

In the general case, the Irwin relation for the energy release rate per unit area of co-planar126

crack extension as function of the stress intensity factors Ki (i = 1, 2, 3) is given by (Barnett and127

Asaro, 1972; Rice, 1985):128

G = KiΛi jK j i, j = 1, 2, 3 (7)
Λi j = Λ ji

where Λ11 = Λ22 = 1/E′iso, Λ33 = (1 + ν)/Eiso for an isotropic material. However, the Irwin ma-129

trix Λi j is not necessarily diagonal for an anisotropic solid. It depends on the local direction of130

propagation and a matrix related to the pre-factor of the solution of an edge dislocation (Barnett131

and Asaro, 1972; Stroh, 1958) which is itself related to the point force Green’s function S k
i j. For132

general anisotropy and arbitrary direction of planar propagation, its expression can be obtained nu-133

merically (Barnett and Swasger, 1971; Barnett and Asaro, 1972), or semi-explicitly in the material134

frame (Malén and Lothe, 1970).135
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In the configuration investigated here where the planar fracture is perpendicular to the isotropy136

plane of a transversely isotropic material (Fig. 1), the fracture mode decouples and as a result the137

Irwin matrix is diagonal. However, the expressions of Λii remains function of the local propagation138

direction with respect to the material axis. For a planar fracture normal to eee2, it is solely function139

of the angle α between the normal to the local tangent to the fracture front C and the material axis140

eee1. For such a planar mode I fracture configuration, the local energy release rate along the front141

thus reduces to:142

G(α) =
K2

I

E′α
(8)

where Λ11 = 1/E′α. The exact expression of E′α = E′(α) is further derived in Section 3. The143

quasi-static linear elastic fracture mechanics propagation condition (G = Gc) can alternatively be144

written as the equality of the mode I stress intensity factor with the material fracture toughness145

KIc.146

We will investigate the case where in addition to elastic transverse isotropy, the fracture tough-147

ness (or alternatively the critical fracture energy Gc) may also be anisotropic. In other words,148

the fracture toughness of the material may vary depending on the local fracture front propagation149

direction, i.e. as function of the angle α (Fig. 1). As a result, the propagation condition for a150

hydraulic fracture propagating under quasi-static equilibrium can be written as151

KI(xxxC, t) = KIc (α) , xxxC ∈ C(t),

for all point xxxC along the fracture front C with a local propagation direction defined by the angle152

α.153

In order to quantify the degree of anisotropy of fracture toughness, we use the ratio between154

the fracture toughness in the divider (eee1) and arrester (eee3) directions κ = KIc,1/KIc,3. The evolution155

of the material toughness can therefore be schematically expressed as:156

KIc (α) = KIc,3 f (α, κ) (9)

where the dimensionless function f is obviously material dependent and must be characterized157

experimentally. In the following, we restrict to three limiting cases.158

1. The case of a particular form of toughness anisotropy leading to an elliptical fracture shape159

under uniform loading (see Appendix A.1). Such a type of anisotropy will notably allow to160

verify our numerical model.161

2. The case of an isotropic fracture toughness: KIc(α) = KIc (i.e. κ = 1, f = 1) such that162

according to (8) Gc(α) = K2
Ic/E

′
α.163

3. The case of an isotropic fracture energy: Gc(α) = Gc, which gives KIc(α) =
√

GcE′α accord-164

ing to (8).165

3. Near-tip elastic operator: expression for Λ11 = 1/E′α166

We now derive an exact expression for the mode I compliance Λ11 = 1/E′α appearing in the167

Irwin’s matrix for a planar fracture perpendicular to the isotropy plane. Such a local near-tip elastic168
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constant (function of the propagation direction) is directly obtained by deriving the near-tip elastic169

operator for a mode I crack. The near-tip elastic configuration is akin to a 2D semi-infinite fracture170

where the out of plane direction is taken locally as the tangent to the fracture front. Such a direction171

is thus characterized by the angle α with respect to the horizontal axis eee1 (divider direction). Three172

different local configurations are displayed in Fig. 1 for illustration.173

This near-tip semi-infinite fracture problem is more easily described in a local system of co-174

ordinates (eee′1,eee
′
2,eee
′
3) where eee′1 is the direction of propagation of the semi-infinite fracture with175

(êee′1,eee1) ≡ α, and the normal to the fracture surface is eee′2 = eee2 and eee′3 is an axis such that (eee′1,eee
′
2,eee
′
3)176

define a direct orthonormal basis. The change of coordinates between such a local frame and the177

global (material) frame (eee1,eee2,eee3) is given by:178

eee′i = Pi′ieeei, (10)

where Pi′i is defined in the material canonical basis as179

Pi′i =

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)


The elastic stiffness tensor c′i jkl in such a local basis (eee′1,eee

′
2,eee
′
3) is related to ci jkl (Eq. (2)) in the180

material basis as:181

c′i jkl = Pi′iP j′ jPk′kPl′lci jkl (11)

Sufficiently close to the local, the planar fracture edge C has locally an infinite radius of cur-182

vature. Any variation of the fracture opening near the front occurs in the direction normal to the183

front and thus the surface gradient in the elastic integral equation (2) is reduced to be only along184

the local propagation direction eee′1. As a result, for such a semi-infinite fracture (with the tip located185

at the origin), the representation for the strain tensor is:186

εk′l′(yyy′) =

∫ ∞

0
S k′

2 j′(yyy
′, xxx′)

(
δl′2δ j′1′ − δ j′2δ1′l′

) ∂w
∂x′1

(
xxx′

)
dx′1. (12)

We directly verify from Eq. (12) that the local propagation occurs in state of plane-strain:

ε1′3′(yyy′) = ε23′(yyy′) = ε3′3′(yyy′) = 0

We can thus directly write the near-tip elastic relation from the plane elastic solution of an edge187

dislocation in an orthotropic solid (Hirth and Lothe, 1982). Using the distributed dislocation tech-188

nique, the elastostatic boundary integral equation for such a tensile semi-infinite fracture takes the189

usual form of the Hilbert transform:190

p f
(
y′1

)
− σh =

E′α
4π

∫ ∞

0

1
y′1 − x′1

∂w
∂x′1

dx′1, (13)

where E′α = E′(α) is a near-tip elastic modulus which depends on the angle of propagation of the191

semi-infinite fracture with respect to the material axis eee1 and the different elastic constants. From192

the solution of Hirth and Lothe (1982) and the change of coordinates previously defined, we obtain193

E′α =
2 M(α) C′22(α)C′66(α)
√

C′22(α)C′11(α)
(14)
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where C′i j(α) are the stiffness coefficients (Eq.(11)) in Voigt notation in the local frame (e′e′e′1,e′e′e′2,e′e′e′3)194

defined by α. M is a dimensionless elastic constant equal to:195

M(α) =

(√
C′22(α)C′11(α) + C′12(α)

)
×

√
C′22(α)C′11(α) −C′12(α)

C′22(α)C′66(α)
( √

C′22(α)C′11(α) + C′12(α) + 2C′66(α)
)

1/2

.

The form of the integral operator (13) is exactly the same as the case of isotropy pending the196

expression of E′α. As a result, we directly identify the coefficient of the Irwin relation (8) as197

Λ11 = 1/E′α.198

3.1. Evolution of E′α199

The near-tip elastic modulus E′α evolves monotonically with α (see Fig. 2) and satisfies:

E′α (α) = E′α (π − α) = E′α (π + α) = E′α (−α) .

In case of elastic isotropy, it reduces to the isotropic plane-strain Young’s modulus:200

E′iso = C11

(
1 −

C2
12

C2
11

)
(15)

For α = 0, the semi-infinite fracture propagates along the divider eee1 direction (case Fig. 1)). The
elastic modulus depends only on two elastic parameters C11 and C12:

E′(α = 0) = E′α (α = 0) = E′1 =
C2

11 −C2
12

C11
.

On the other hand, when the semi-infinite fracture propagates in the arrester direction eee3 (α = π/2),
E′3 depends on four elastic parameters (see also Chertov (2012); Laubie and Ulm (2014)):

E′α
(
α =

π

2

)
= E′3 =

√
C33/C11(−C2

13 + C11C33)

C33

√
−C2

13 − 2C13C44 + C11(C33 + 2
√

C33/C11C44)
C11C44

.

It is interesting to write E′α (14) as a product of a characteristic elastic modulus and a dimensionless201

function F depending on four dimensionless elastic constant and the local angle of propagation α:202

E′α = E′∗F (β, ε, δ,C13/C11, α). The characteristic elastic modulus E′∗ can be chosen either as E′1,203

E′3, or any combination of Ci j. We take for illustration the average value of E′1 and E′3. We also204

express the dimensionless function F (β, ε, δ,C13/C11, α) as depending on relevant dimensionless205

elastic parameters such as the ratio β = E′1/E
′
3, the ratio C13/C11, and the Thomsen parameters206

(ε, δ) (Thomsen, 1986) defined as:207

ε =
C11 −C33

2C33
δ =

(C13 + C44)2
− (C33 −C44)2

2C33 (C33 −C44)
(16)

9



Material β = E′1/E
′
3 ε δ C13/C11

Olkiluoto mica gneiss (Hakala et al., 2007) 1.16 0.18 0.09 0.26
Gas-saturated Shaly Coal (Wang, 2002) 1.26 0.51 −0.17 0.06

Woodford53 shale (Laubie, 2013) 1.31 0.31 0.14 0.29
Opalinius Clay (Thöny, 2014) 1.33 0.5 0.49 0.67

Yeocheon schist (Cho et al., 2012) 1.43 1.15 1.23 0.22
Calcareous mudstone (Chertov, 2012) 1.9 0.78 0.66 0.44

Table 2: Dimensionless elastic parameters values corresponding to the different rocks given in Table 1.

Finally, we can re-express the near-tip elastic modulus E′α in the following form:208

E′α = 〈E′〉 × F
(
β = E′1/E

′
3, ε, δ, C13/C11, α

)
(17)

〈E′〉 =
(
E′1 + E′3

)
/2 (18)

For most rocks, the Thomsen parameters ranges from 0 to 1, the ratio β = E′1/E
′
3 varies between 1209

and 2 (weak to strong anisotropy) while C13/C11 is usually smaller than 1 (see Table 2. We display210

in Fig. 2 the scaled modulus E′α/ 〈E
′〉 as a function of α for different values of the dimensionless211

elastic parameters (β, ε, δ,C13/C11) in the range expected for rocks. We also compare the analyt-212

ical expression E′α/ 〈E
′〉 (Eq. (14)) in solid line with an approximation E′app/ 〈E

′〉 put forward by213

Laubie and Ulm (2014) in dashed line, where E′app is given by:214

1
E′app

=
cos2(α)

E′1
+

sin2(α)
E′3

(19)

Such an approximated expression for the local near-tip elastic modulus depends only on β (not on215

ε, δ and C13/C11). As can be observed from Fig. 2, the magnitude of the difference in the elastic216

modulus depends on the ratio βwhereas the evolution is function of the other dimensionless elastic217

parameters (β, δ ε,C13/C11). The transition from E′1 to E′3 is steeper for increasing (β, δ), and for218

decreasing (ε,C13/C11). We observe that the approximation (19) always provides a lower estimate219

of the exact E′α. This approximation is only accurate for weak anisotropy (β < 1.2) and departs220

significantly from the exact value for smaller values of C13/C11, ε, and larger δ, β respectively.221

4. Near-tip hydraulic fracture asymptotes for a transversely isotropic material222

As a direct consequence of the fact that the near-tip elastic operator (13) has a form strictly223

similar than the isotropic case pending the use of the proper near-tip elastic modulus E′α (14),224

the known asymptotic solutions for a steadily moving semi-infinite HF in an isotropic material225

(Desroches et al., 1994; Garagash et al., 2011) can be directly transposed to the transversely226

isotropic case.227

For a steadily moving HF with velocity V , the linear elastic fracture mechanics (LEFM) asymp-228

tote prevails in the near-field. The fracture width follow the classical square-root evolution229

w(x′1) =
√

32/π
KIc(α)

E′α

√
x′1, x′1 � `∞mk. (20)
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Figure 2: Near-tip elastic modulus as function of α using the exact solution(Eq. (14) - solid line) and its approximation
(Eq. (19) dashed line). Reference values: β = 1.5, C13/C11 = 0.5, ε = 0.3 and δ = 0.2 (black lines). (a) Effect of β =

(1.2, 1.5, 2), (b) effect of C13/C11 = (0.4, 0.5, 0.7), (c) effect of ε = (0.2, 0.3, 0.5), and (d) effect of δ = (0.1, 0.2, 0.3).

where E′α is the near-tip TI elastic modulus (14) and KIc(α) is the corresponding value of tough-230

ness. On the other hand, in the far-field, the solution is dominated by viscous flow. The so-called231

viscous dominated asymptote for fracture width is given by (Desroches et al., 1994):232

w(x′1) = 21/335/6
(
µ′

E′α
V
)1/3

x′1
2/3, x′1 � `∞mk. (21)

The transition between the near-tip LEFM and the far-field viscosity asymptotes is governed by233

the characteristic lengthscale `∞mk defined as the distance where the width given by two asymptotes234

are of the same order of magnitude (Garagash et al., 2011):235

`∞mk =
K′6

E′α4V2µ′2
, (22)

where K′ =

√
32
π

KIc. The solution for the complete transition between the toughness and viscous236

asymptote can be found in Garagash et al. (2011).237

5. Numerical solution238

We resort to numerical modeling using the implicit level set algorithm (ILSA) to study the239

growth of a planar 3D hydraulic fracture in a transversely isotropic medium under the configu-240

ration depicted in Fig. 1. We refer to Peirce and Detournay (2008); Peirce (2015); Dontsov and241
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Peirce (2017) for details of the scheme originally developed for the isotropic case and to Zia and242

Lecampion (2019) for its python implementation. We discuss here briefly this scheme emphasiz-243

ing the extensions required to account for transverse isotropy.244

The fracture plane is discretized using a Cartesian grid consisting of uniform rectangular ele-245

ments. We discretize the elasticity equation (4) using a collocation method based on rectangular246

displacement discontinuity elements. The solution for a rectangular displacement discontinuity in247

a TI medium can be found in Pan et al. (2014). The fracture width is thus constant over an ele-248

ment and the fluid pressure is evaluated at the element center. The lubrication flow is discretized249

spatially with a five-point stencils finite difference scheme and with a backward Euler (implicit)250

scheme for time integration. The resulting non-linear hydro-mechanical system (elasticity and251

lubrication) is solved using fixed point iterations for a given position of the fracture front.252

A level set function φ(x1, x3) is used to represent the fracture front located in the (eee1,eee3) plane.253

The propagation algorithm relies on the coupling of the finite discretization with the near-tip so-254

lution of a steadily moving HF (see section 4) in the rim of elements near the front. The fracture255

front is advanced over a time-step through an iterative procedure (until subsequent estimations256

of the level set falls below a fixed tolerance, set to 10−3 here). For a given position of the front,257

the non-linear hydro-mechanical system is solved. The new trial width in the elements located258

just before the tip elements (ribbon elements) are used to invert the near-tip solution and obtain259

the new shortest distance to the fracture front (from the ribbon elements centers). The Eikonal260

equation is then solved to update the level set function from the tip region outward to the rest of261

the yet unfractured domain using the fast marching method. The front is then reconstructed in a262

piece-wise manner and the asymptotic solution enforced in a weak sense in the tip elements (see263

Peirce (2015) for more details). In the case of a transversely isotropic material, the difference264

with the isotropic case stems (beside the elastic operator) from the fact that the complete near-tip265

HF solution (spanning the transition from the toughness to the viscosity asymptote) depends on266

the local propagation direction (via the dependence of E′α and KIc on the angle α) beside the lo-267

cal front velocity. This introduces another non-linearity which is solved by iterating on the local268

propagation direction: by repeatably inverting the tip asymptote and reconstructing new estimate269

of the front until convergence (Zia et al., 2018). It is worth noting that the local propagation direc-270

tion (local normal to the front) can be directly obtained from the gradient of the level set function271

ni = φ,i/‖φ,i‖ in the ribbon element. It is then straightforward to estimate its angle αwith the eee1 axis272

and the corresponding near-tip elastic modulus (14) and toughness (9). A tolerance of 10−3 has273

been used to check the convergence of the local propagation direction in all simulations reported274

here.275

6. Scaling and structure of the solution276

Our aim is to study how the geometry of the HF deviates from a radial shape due to material277

isotropy. We thus follow the scaling first introduced by Savitski and Detournay (2002) for the case278

of a radial hydraulic fracture driven by a Newtonian fluid in an isotropic medium. A characteristic279

length scale L(t) scales all distances, while the fracture width and pressure are scaled by W(t) and280

P(t) respectively. We define a normalized fracture contour γ, fracture opening Ω and net pressure281
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Π as:282

C(t) = L(t)γ (P(t), β, ε, δ,C13/C11, κ, f (α, κ)) (23)
283

w(x1, x3, t) = W(t)Ω (x1/L(t), x3/L(t),P(t), β, ε, δ,C13/C11, κ, f (α, κ)) (24)
284

p(x1, x3, t) = P(t)Π (x1/L(t), x3/L(t),P(t), β, ε, δ,C13/C11, κ, f (α, κ)) (25)

where for transverse isotropy in addition to the evolution parameter P(t), the solution also de-285

pends on the dimensionless elastic parameters previously defined and the ratio of toughness and286

its evolution function. Following the isotropic case for a radial fracture (Savitski and Detournay,287

2002), two different scalings can be obtained either emphasizing the importance of energy dissi-288

pation in viscous flow (so-called M/viscosity scaling) or in the creation of new fracture surfaces289

(K/toughness scaling). The corresponding lengthscales and the associated dimensionless param-290

eter P governing the solution in both scaling are recalled in Table 3. We have written them here291

as function of a characteristic elastic modulus E′∗ and a characteristic toughness K′∗. The viscosity292

dominated propagation regime (M-scaling) is valid at early time of growth. This can be grasped293

from Table 3 where we can see that the dimensionless toughness K increases with time (and is294

directly related to the dimensionless viscosityM = K−18/5 which decreases with time). At very295

early time, fracture toughness is irrelevant (K ∼ 0) and fracture growth is propagating in the so-296

called viscosity dominated regime where the solution is self-similar for radial growth (given by the297

characteristic scales and solution for the dimensionless length, pressure and opening in viscosity298

scaling all of order 1). At large time, on the contrary, fracture toughness dominates the energy dis-299

sipation and viscous flow becomes irrelevant. The fracture propagates in the viscosity dominated300

regime where the solution is also self-similar. The transition between these two regimes (viscosity301

to toughness) is captured by the characteristic timescale tmk:302

tmk =

(
µ′5E′∗

13Q3
o

K′∗18

)1/2

. (26)

at which K(tmk) = M(tmk) (or alternatively Lm(tmk) = Lk(tmk)). A corresponding (M-K) scaling303

can then be used where the characteristic scales are not independent of time, and the solution only304

depends on t/tmk.305

For the case of a transversely isotropic material, several choices can be made for the character-306

istic modulus and toughness. In view of the configuration investigated here, we take values along307

the divider direction (eee1) and the arrester direction (eee3). The solution will now be function, in ad-308

dition to a dimensionless time (e.g. t/tmk,∗), on the ratio between the dimensionless toughness (or309

viscosity) between the arrester and the divider directions. This is similar to taking the ratio of the310

transition time-scales between the arrester and divider directions. Such a ratio is solely function311

of the ratio of toughness κ = KIc,1/KIc,3 and plane strain elastic modulus β = E′1/E
′
3:312

tmk,3

tmk,1
=

(
K1

K3

)9

= β−13/2κ9 (27)

We see that a small anisotropy of toughness and elasticity (e.g. β = κ−1 = 1.2) induces a strong313

anisotropy in the transition from viscosity to toughness between the divider and the arrester di-314

rection
(
tmk,1/tmk,3 ' 17

)
. The fracture front will likely reaches the toughness propagation regime315

earlier in the arrester direction for these particular values of β and κ.316
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Viscosity (M) Toughness (K) Viscosity to toughness (M-K)

L(t) Lm =

(
E′∗Q

3
ot4

µ′

)1/9

Lk =

(
E′∗Qot

K′∗

)2/5

Lmk =
µ′QoE′∗

3

K′∗4

W(t) Wm =

(
Q3

oµ
′2t

E′∗2

)1/9

WK =

(
QoK′∗

4t
E′∗4

)1/5

Wmk =

(
µ′QoE′∗

K′∗2

)1/2

P(t) Pm =

(
µ′E′∗

2

t

)1/3

Pk =

(
K′∗

6

QoE′∗t

)1/5

Pmk =

(
K′∗

18

Q3
oE′∗9µ′

)1/6

P(t) K = K′∗

(
t2

µ′5Q3
oE′∗13

)1/18

K = 1 K =

(
t

tmk

)1/9

P(t) M = 1 M = µ′
(

Q3
oE′∗

13

K′∗18t2

)1/5

M =

( tmk

t

)2/5

Table 3: Characteristic scales and dimensionless parameters in the viscosity (M), toughness (K) and the transition
from viscosity to toughness (M-K). Note thatM = K−18/5.

The ratio of timescales tmk,3/tmk,1 likely captures the main effect of transverse anisotropy on317

HF growth, but the Thomsen parameters ε, δ as well as C13/C11 and the details of the toughness318

evolution function f (α, κ) also affect the solution. The fracture shape will also evolve between319

the early time (viscous dominated) and toughness dominated regime. We quantify these effects320

numerically in what follows.321

Unless otherwise specified, we scale the numerical results with the average value of the plane322

strain elastic modulus E′∗ = 〈E′〉 =
(
E′1 + E′3

)
/2 and the average toughness K′∗ = 〈K′〉 =

(
K′1 + K′3

)
/2.323

We will also refer the half-lengths in the divider (eee1) and arrester (eee3) directions as a and b respec-324

tively, and denote abusively the fracture aspect ratio as b/a although the fracture shape is not325

necessarily elliptical.326

7. Viscosity dominated propagation327

We first focus on the viscosity dominated regime which corresponds to early time (e.g. t < tmk328

in the tougher direction). In such a regime, the solution is not affected by fracture toughness (see329

the scaling in Table 3). The interest therefore lies in the effect of TI elasticity on the potential330

deviation of the fracture from the radial geometry obtained for isotropic material. We investigate331

the effect of the dimensionless elastic parameters β, ε, δ and C13/C11 by varying them around the332

set of base values already used to illustrate the variation of the near-tip modulus (see Fig. 2).333

In all the simulations, the fracture plane is discretized with 100 × 100 rectangular element334

(∆x1 = 2∆x3). Our numerical scheme use a re-meshing strategy (ensuring volume conservation).335

The discretization is coarsened by a factor when the fracture reaches the end of the grid. This336

allow us to span multiple time and length scales at a reasonable cost. The fracture is initialized as337

a small radial fracture with a fluid pressure slightly above the minimum confining stress σh.338

The evolution of the dimensionless major and minor semi-axis a(t) and b(t) and the dimen-339

sionless width at the injection with time are displayed in Fig. 3 for different values of β = E′1/E
′
3.340
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Figure 3: Viscosity dominated propagation: time evolution of the dimensionless major a(t)/Lm(tm) and minor
b(t)/Lm(tm) semi axis in (a), and of the dimensionless width at the injection point w(0, 0)/Wm(tm) in (b). The nu-
merical simulations are performed for different values of β = (1.2, 1.5, 2) with ε = 0.3, δ = 0.2, and C13/C11 = 0.5.

The other dimensionless elastic parameters ε, δ and C13/C11 have almost no effect on the solution341

in that propagation regime (see Figs.3-5). The time in these plots is scaled using a timescale tm342

corresponding to the time taken to reach a fracture lengthscale of 1 m: Lm(tm) = 1. Similarly, the343

width w(t), the semi-axis a(t) and b(t) are scaled by Wm(tm) and Lm(tm) respectively. The results344

for an isotropic material are also displayed (in dot-dashed line) for reference.345

Fig. 3 clearly shows the self similarity of the solution in the viscosity dominated regime. It346

follows the same power law of time as in the isotropic case: 4/9 for the radius, and 1/9 for347

width. The difference of the fracture semi-axes with the isotropic radial case (b(t)/a(t) = 1)348

is barely visible in such log-log plots, similarly for the width at the injection point - except for349

β = 2 (Fig. 3b)). As the solution is self-similar in this viscosity dominated regime, we can plot350

the dimensionless fracture footprint (removing the time-dependence contained in Lm(t)) γm for351

different set of parameters in Fig. 4 (we plot a quarter of the fracture shape due to symmetry),352

while the corresponding dimensionless profiles of width and pressure along the major axis eee1 are353

exhibited in Figs. 5 and 6 respectively.354

An elongation of the fracture in the divider direction (eee1) for increasing β can be observed355

from the dimensionless self-similar footprint (Fig. 4). The other elastic constants do not appear to356

influence the solution significantly. A difference of 18% between the fracture height and length is357

obtained for β = 2. The evolution of the fracture aspect ratio as function of β can be well approx-358

imated as b/a ≈ 0.76 β−1/3 (see Fig.4a-inset). Such a variation of b/a with β can be actually be359

easily recovered analytically from the near-tip solution as discussed in Bessmertnykh and Dontsov360

(2018). Matching the width given by the viscosity asymptote Eq. (21) in both the arrester and di-361

vider directions gives a2/3/E′1/31

(
da
dt

)1/3

∝ b2/3/E′1/33

(
db
dt

)1/3

, where
da
dt

and
db
dt

are the propagation362

velocities of the crack tips at the major and the minor axes respectively. Assuming a self-similar363

growth, the ratio of the these tip velocities should be constant as shown in Bessmertnykh and364
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Figure 4: Viscosity dominated propagation - self similar fracture footprint γm (quarter of the footprint). Reference
parameters: β = 1.5, C13/C11 = 0.5, ε = 0.3, and δ = 0.2. Effect of the variations of: (a) β = (1.2, 1.5, 2), (b)
C13/C11 = (0.4, 0.5, 0.7), (c) ε = (0.2, 0.3, 0.5), and (d) δ = (0.1, 0.2, 0.3). The inset in figure (a) displays the
evolution of the fracture aspect ratio b/a as function of β.
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Figure 5: Viscosity dominated regime - self similar width profiles w/Wm(t) along the major axis eee1. Reference
parameters: β = 1.5, C13/C11 = 0.5, ε = 0.3, and δ = 0.2 as base reference values. Effect of the variations of: (a)
β = (1.2, 1.5, 2), (b) C13/C11 = (0.4, 0.5, 0.7), (c) ε = (0.2, 0.3, 0.5), and (d) δ = (0.1, 0.2, 0.3).

Dontsov (2018):365

db
da

=
b
a

(28)

As a result, we recover the evolution of the aspect ratio with β: b/a ∝ (E′3/E
′
1)1/3 = β−1/3.366

The fracture width and pressure have similar evolution along the minor and major axis (eee3 and367

eee1) actually very close to the isotropic solution. Figures 5 and 6 display the dimensionless width368

and net pressure profile along the major axis. The fracture width increases slightly with β, while369

it does not appear to be influenced by ε, δ and C13/C11.370

8. Toughness dominated propagation371

We now turn to the toughness dominated propagation regime, valid at large time compared372

to tmk (t � tmk). In this regime, viscous flow is negligible and has no effect on the solution: the373

pressure is uniform (but not constant) inside the fracture. We study here the combined effect of374

the anisotropy of elasticity and fracture toughness.375
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Figure 6: Viscosity dominated regime - self similar pressure profiles p/Pm(t) along the major axis eee1. Reference
parameters: β = 1.5, C13/C11 = 0.5, ε = 0.3, and δ = 0.2 as base reference values. Effect of the variations of: (a)
β = (1.2, 1.5, 2), (b) C13/C11 = (0.4, 0.5, 0.7), (c) ε = (0.2, 0.3, 0.5), and (d) δ = (0.1, 0.2, 0.3).
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8.1. Elliptical hydraulic fracture376

We first investigate the case of a peculiar form of toughness anisotropy ensuring an exact377

elliptical shape under uniform loading:378

KIc = KIc,3

(
E′α
E′3

) sin2 θ +

(
b
a

)2

cos2 θ

1/4

(29)

θ = arctan
(
b tanα

a

)
(30)

Such a toughness evolution directly comes from the solution of the mode I stress intensity factor379

along the front of an uniformly pressurized elliptical crack in TI medium (see Appendix A). From380

such an elastic solution, it is then possible to obtain a solution for the propagation of such an381

elliptical hydraulic fracture in the toughness dominated regime. The details of such an analytical382

(and self-similar) HF propagation solution are given in Appendix A. It is worth noting that the HF383

propagates in a self similar manner with the same power law of time as in the isotropic case: 2/5384

for the radius, 1/5 for width and −1/5 for the pressure.385

Making use of Eq. (29) at α = θ = 0 (the divider direction) where KIc = KIc,1 and at α = θ =386

π/2 (the arrester direction) where KIc = KIc,3, we obtain the following relation between the ellipse387

aspect ratio and the ratio KIc,1/KIc,3:388

b
a

=

(
KIc,1

KIc,3

E′3
E′1

)2

=

(
κ

β

)2

. (31)

We use the fracture toughness function (29) in our numerical solver for the case κ−1 = β = 1.2. The389

resulting effect of anisotropy of elasticity and toughness are cumulative in that case (see Eq. (31)390

for κ < 1 and β > 1) and the corresponding aspect ratio is b(t)/a(t) = 0.47. We set the other391

elastic parameters to: ε = 0.3, δ = 0.2, and C13/C11 = 0.5. The fracture is initialized with the392

analytical (isotropic) solution of a radial fracture propagating in toughness dominated regime. The393

rectangular domain is divided into 150 cells along eee1 and 100 along eee3.394

The numerical (black dots) and the analytical elliptical (green solid line) HF toughness domi-395

nated solutions are both displayed on Fig. 7. We scale the time in Figs. 7c, d, e and f by tk defined396

as Lk(tk) = 1, the pressure by Pk(tk), the width by Wk(tk) and semi-axis by Lk(tk)(=1). The ana-397

lytical toughness dominated solution for isotropic toughness (κ = 1) and elasticity (β = 1) is also398

reported in Fig. 7 (dash-dotted lines) taking E′∗ = 〈E′〉, and K′∗ = 〈K′〉 as corresponding isotropic399

parameters. We clearly see that our numerical solution closely matches the analytical elliptical400

HF solution for both width profiles, major and minor axis as well as net pressure evolution. The401

relative error between the numerical results and the analytical solution of the major and minor402

axis always remain under five percent for about four decades of time - with only small oscillations403

associated with remeshing. It is worth to recall that the fracture is initialized as a radial following404

the isotropic solution. Interestingly, the width at the center w/Wk(tk) and the net pressure p/Pk(tk)405

takes slightly more time to converge toward the elliptical HF toughness solution (Figs. 7e and f)406

compared to the fracture shape (Figs. 7c).407
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This comparison verify our numerical solver, and has proven useful to test its robustness as408

anisotropy increases. It is also important to re-emphasize than the fracture has exactly an elliptical409

shape only for the evolution of fracture toughness given by Eq. (29).410

8.2. Isotropic toughness411

We now investigate the case of an isotropic fracture toughness: KIc (α) = KIc (κ = 1). We412

vary the different elastic parameters around the same set of reference values as before: β = 1.5,413

ε = 0.3, δ = 0.2, and C13/C11 = 0.5. The numerical results for the self similar footprint γk and414

width profiles w/Wk along the major and the minor axis eee1 and eee3 are displayed in Figs. 8 and 9415

respectively, whereas the pressure at the injection function of time is performed in Fig. 10. We use416

the toughness scaling defined in Table 3.417

The fracture elongates more in the stiffer direction (eee1) as can be seen from Fig. 8a. More418

importantly, the fracture is not elliptical. The fracture aspect ratio is proportional to β−2 as shown419

in Fig. 8a-inset. This is also the case for the elliptical fracture (b/a = β−2 when KIc,1 = KIc,3 in420

Eq. (31)). However, for isotropic toughness the slope is slightly different: b/a ≈ 0.9β−2. This421

implies that assuming an elliptical shape for the case of an isotropic toughness will underestimate422

the fracture aspect ratio by about 10%. Similarly than for the viscosity dominated regime, the423

relation between the fracture aspect ratio and β can be recovered from the toughness near-tip424

asymptote (20). Similarly to Bessmertnykh and Dontsov (2018), matching the width along the425

minor and major axis direction from the near-tip asymptote gives
√

b/a ∝
E′3
E′1

, in other words426

b/a ∝ β−2.427

We also report in Fig. 8 the numerical results obtained using E′app(α) as the near-tip elastic428

modulus. As previously discussed, for large β, the approximate solution E′app underestimates the429

elastic near-tip modulus compared to the exact expression E′α (Fig. 2-a). As a result, the computed430

fracture aspect ratio is also underestimated. As an illustration for β = 2, the ratio of the minor to431

major axis obtained using E′app is equal to 0.32, whereas it is of 0.59 when using the exact near-tip432

elastic modulus E′α. The difference between the fracture footprint obtained using either the exact433

E′α and E′app is however not very significant for β ≤ 1.5. In other words, E′app provides a good434

approximation only for weak anisotropy.435

Figs. 8b and c display the fracture footprint for different C13/C11 and ε respectively. These two436

elastic dimensionless parameters have the same effect on the behavior of the fracture footprint,437

i.e the aspect ratio increases from b/a ≈ 0.48 for small value of C13/C11 (C13/C11 = 0.4) or ε438

(ε = 0.2) to b/a ≈ 0.52 for larger value of C13/C11 (C13/C11 = 0.7) or ε (ε = 0.5). This indicates439

that a faster transition of the near-tip E′α from E′1 to E′3 (see Fig. 2), results in smaller elongation440

of the fracture footprint (i.e. larger b/a). The effect of the Thomsen parameter δ on the fracture441

footprint appears relatively small (less than 4% of relative difference) as can be observed from442

Fig. 8d.443

The corresponding self-similar width Ωk = w/Wk profiles along the major and the minor axis444

are shown in Fig. 9. We observe that the fracture width profile appears to be mostly sensitive to β,445

with little effect of the other dimensionless elastic parameters (C13/C11, and the Thomsen param-446

eters ε and δ). Fig. 10 reports the time-evolution of the dimensionless net pressure p(t)/Pk(tk) for447

different values of β, C13/C11, Thomsen parameters ε and δ (see Figs. 10a,b, c and d respectively).448
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Figure 7: Toughness dominated regime - elliptical toughness anisotropy κ−1 = 1.2, β = 1.2, ε = 0.3, δ = 0.2,
and C13/C11 = 0.5: (a,b) dimensionless self-similar width profile Ωk along eee1 and eee3 respectively, (c) exhibit the
dimensionless length of the major a(t)/Lk(tk) and minor b(t)/Lk(tk) semi-axis as well as the relative error with respect
to the analytical solution (Appendix A) in (d). (e,f) Time evolution of the dimensionless width w(0, 0)/Wk(tk) and net
pressure p(0, 0)/Pk(tk) respectively at the injection.
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It evolves with −1/5 power law of time, similarly than in the case of isotropic material as antici-449

pated by the scaling analysis. We also directly observe that the dimensionless elastic parameters450

have little effect on the net pressure, which is close to the radial isotropic toughness dominated451

solution.452

8.3. Isotropic fracture energy453

Another possible limiting anisotropic behavior is the case of an isotropic fracture energy454

Gc(α) = Gc. As a result, the fracture toughness KIc(α) =
√

GcE′α decreases with α in this case, fol-455

lowing the variation of the elastic modulus E′α (see Fig. 2). The toughness ratio, κ = KIc,1/KIc,3 =
√
β456

is thus greater than 1 such that it partly compensates the effect of elastic anisotropy. Using a simi-457

lar procedure than before, i.e. matching the width of the toughness dominated near-tip asymptote458

in the divider and arrester directions (KIc,1/E′1
√

a ∝ KIc,3/E′3
√

b, we now obtain that b/a should be459

proportional to β−1, compared to β−2 for isotropic toughness (Bessmertnykh and Dontsov, 2018;460

Laubie and Ulm, 2014). A series of simulation for different values of β recover exactly such an461

estimate as can be seen from Fig 11. Here again, the time-evolution of fracture shape, width and462

net pressure follows the same power-law of time than the isotropic case as predicted by the scaling463

analysis. It is worth noting that the effect of the other elastic parameters (besides β) is, similarly464

than for the isotropic toughness case, rather small and thus not shown here.465

8.4. Self-similar fracture shape: planar 3D results versus an approximated elliptical solution466

It is interesting to compare our numerical results obtained without any assumptions on the467

fracture shape to a previous analysis based on the assumption of an elliptical fracture shape (Laubie468

and Ulm, 2014; Bessmertnykh and Dontsov, 2018). In the toughness dominated regime, where the469

pressure is uniform, we can use the analytical solution for an elliptical fracture in TI medium (see470

e.g. Appendix A) and either for the assumption of isotropic KI or G obtain the aspect ratio b/a by471

minimizing the variations of KI , respectively G along the front. Using the approximation E′app (19)472

in lieu of the exact E′α (14), Laubie and Ulm (2014); Bessmertnykh and Dontsov (2018) obtained473

that b/a ∝ β−1 under the assumption of isotropic fracture energy (for weak elastic anisotropy).474

Using a similar method as Laubie and Ulm (2014) (using either E′app or the exact E′α), we475

can compare the self-similar fracture aspect ratio in the toughness dominated regime using such476

an approximated ”elliptical” fracture approach with our fully coupled numerical solution. We477

minimize the variations of either KI or G along the front using a L1 norm and twenty sample478

points in a quadrant of the elliptical fracture front.479

The evolution of the aspect ratio as function of β are displayed in Fig. 12 for both the fully480

coupled numerical results (not assuming an elliptical shape) and the minimization assuming an481

elliptical shape. The complete numerical results (with the exact E′α) and elliptical approximation482

follows the trend b/a ∝ β−2 as expected but with different pre-factors. The discrepancy increases483

significantly for large anisotropy. For β > 1.12 (i.e. β−2 < 0.8), the aspect ratio given by the484

elliptical fracture assumption is overestimated by more than 10% compared to the exact numerical485

results (and more than 30% for strong anisotropy: β−2 < 0.45). For weaker anisotropy (β <486

1.12, i.e. β−2 > 0.8), the two estimations agree well. The numerical results obtained using E′app487

(blue triangles) as the near-tip modulus for the fully HF coupled problem diverge from the ones488

obtained using E′α (green dots) for β−2 < 0.6 (β > 1.3). They underestimate fracture elongation489
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Figure 8: Toughness dominated propagation - isotropic toughness case: self similar footprint γk obtained using the
exact expression for E′α (solid line) and the approximation function E′app (dashed line) as the near-tip elastic modulus.
Reference parameters: β = 1.5, C13/C11 = 0.5, ε = 0.3, and δ = 0.2. (a) variations of β = (1.2, 1.5, 2), (b) variations
of C13/C11 = (0.4, 0.5, 0.7), (c) variations of ε = (0.2, 0.3, 0.5), and (d) variations of δ = (0.1, 0.2, 0.3). The insets
display the corresponding evolution of the fracture aspect ratio b/a.
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Figure 9: Toughness dominated propagation - isotropic toughness case: self similar width profiles along eee1 and eee3.
Reference parameters: β = 1.5, C13/C11 = 0.5, ε = 0.3, and δ = 0.2. (a, b) variations of β = (1.2, 1.5, 2), (c, d)
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Figure 10: Toughness dominated propagation - isotropic toughness case: dimensionless pressure evolution at the
injection point p(0, 0)/Pk(tk) with time t/tk. Reference parameters: β = 1.5, C13/C11 = 0.5, ε = 0.3, and δ = 0.2. (a)
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Figure 11: Toughness dominated propagation - isotropic fracture energy case: self similar footprint for different values
of β = (1.2, 1.5, 2) with ε = 0.3, δ = 0.2, and C13/C11 = 0.5. The inset figure displays the evolution of the fracture
aspect ratio b/a as function of β.
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Figure 12: Toughness dominated regime - isotropic toughness: comparison of the fracture aspect ratios b/a obtained
from the minimization of the stress intensity factor variation along the front of an elliptical crack using E′α (black
square) or the approximation E′app (red diamond) for the near-tip elastic modulus and results of the numerical solution
using E′α (green dot) or E′app (blue triangles). ε = 0.3, δ = 0.2, and C13/C11 = 0.5 for all cases.

by as much as 45%. The variations of the stress intensity factor along the front of an elliptical490

fracture obviously never exactly disappear (even after minimization) as only a peculiar form of491

fracture toughness anisotropy (29) can ensure a exact elliptical shape. Fig. 13 displays the residual492

variations obtained after minimization. They are smaller for weak elastic anisotropy, and reaches493

about 7% in relative term for β = 2.494

The results for the hypothesis of an isotropic fracture energy are summarized in Fig. 14. The495

difference between the elliptical assumption and the complete numerical solution is smaller than496

for the case of isotropic toughness. All results follow a trend b/a ∝ β−1. The approximated497

solutions tends to slightly over-estimate the fracture elongation (especially for stronger elastic498

anisotropy - β−1 < 0.7). The residuals variations of the stress intensity factor along the elliptical499

crack are smaller than for the hypothesis of isotropic toughness (at most 4% percent for the largest500

anisotropy).501

9. Transition from viscosity to toughness dominated growth502

After investigating the hydraulic fracture growth in each of the toughness and viscosity dom-503

inated regime, we now focus on the evolution from toughness to viscosity and the time of its504

occurrence. We compare the numerical results given by the three different toughness variations505

defined above: elliptical fracture toughness function, isotropic toughness and isotropic fracture506

energy. The simulations are performed with an initial rectangular domain of 100 cells along eee1507

and 80 cells along eee3. The fracture is initiated with the solution of a radial fracture propagat-508

ing in the viscosity dominated regime. We set the elastic parameters to the following values:509

β = 1.5,C13/C11 = 0.5, ε = 0.3, δ = 0.2. We present the numerical results using the viscosity-510

to-toughness M-K scaling listed in Table 3 where E′∗ and K′∗ are chosen here to be inline with511

the arrester direction (E′∗ = E′1,K′∗ = K′1). We focus here on the evolution of the semi-major and512

minor axes function of the dimensionless time t/tmk,1 (Figs. 15, 16 and 17) as the fracture shape,513
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Figure 13: Toughness dominated regime - isotropic toughness: residual of the variation of the scaled stress intensity

factor KI/KI,1 after minimization as function of θ = arctan
(

b
a
α

)
with ε = 0.3, δ = 0.2, and C13/C11 = 0.5 for all

cases.
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Figure 14: Toughness dominated regime - isotropic fracture energy: comparison of the fracture aspect ratios b/a
obtained from the numerical solution (green dot), the fracture energy minimization criterion using E′α (black square)
or the approximation E′app (red diamond) for the near-tip elastic modulus as function of β−1. ε = 0.3, δ = 0.2, and
C13/C11 = 0.5 for all cases.

27



10−3 10−2 10−1 100 101 102 103 104 105

10−1

100

101

102

M-solution

Toughness elliptical 

solution

         M+K 

(Dontsov 2019)

Minor a
xis

Major a
xis

Figure 15: Elliptical toughness - viscosity to toughness transition: time evolution of the dimensionless major a(t)/Lmk,1
and minor b(t)/Lmk,1 semi axis for κ−1 = 1.2, β = 1.5, ε = 0.3, δ = 0.2, and C13/C11 = 0.5.

width and pressure profiles have been already grasped for the limiting regimes previously (sec-514

tions 7 and 8). We compare our numerical results with the approximated solution M+K (green515

dot-dashed lines) of Dontsov (2019) obtained by combining the near-tip HF asymptote and the516

global volume balance assuming an elliptical fracture. This solution (which uses the approxima-517

tion of E′app) depends only on the elasticity ratio β and the toughness ratio κ. It is applicable for518

large toughness ratio (κ−1 > 10) in the transitional part when the semi-major axis propagates in519

the viscosity dominated regime and the minor axis already propagated in the dominated tough-520

ness regime (Dontsov, 2019). Nevertheless, we also report this solution in Figs. 15, 16 and 17 for521

comparison despite the possibly significant error of the approximated solution for small toughness522

ratio.523

We also plot the isotropic radial HF viscosity dominated solution in blue dot-dashed lines using524

〈E′〉 and 〈K′〉 as the value of the elastic modulus and fracture toughness respectively (M-solution525

in Figs. 15, 16 and 17). The analytical solution for the elliptical toughness dominated HF (see526

Appendix A for details) is presented in red dotted-dashed lines. The purple line represent the time527

at which the numerical results for the major (in dashed) and the minor (in dot-dashed) axis are528

within 7% of the elliptical HF toughness solution. We use that threshold to define the start of the529

toughness dominated regime.530

9.1. Elliptical toughness531

Fig. 15 displays the fracture semi-axis with time for the elliptical toughness anisotropy Eq. (29)532

for a toughness ratio κ−1 = 1.2. The ratio of the transition time scales of the arrester and divider533

direction is (see Eq. (27)) tmk,3/tmk,1 = β−13/2κ9 = 0.014. At early time (t/tmk,1 < 1), the fracture534
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Figure 16: Isotropic toughness (κ = 1) - viscosity to toughness transition: time evolution of the dimensionless major
a(t)/Lmk,1 and minor b(t)/Lmk,1 semi axis for β = 1.5, ε = 0.3, δ = 0.2, and C13/C11 = 0.5.

radius follow closely the isotropic solution of a radial fracture as discussed in section 7. In the535

intermediate regime 102 < t/tmk,1 < 104, the approximated M+K solution for the major axis a(t)536

(Dontsov, 2019) is close to the numerical solution but deviates as soon as the fracture radius537

reaches the elliptical solution for the toughness regime, while for the minor axis, the two solutions538

(M+K solution and the numerical solution) are quite apart which can be traced back to the domain539

of validity of the M+K approximated solution which is accurate only for toughness ratio (κ−1 > 10)540

much larger than the one used here (κ−1 = 1.2).541

The numerical results matches well the exact elliptical HF toughness dominated solution at542

times larger than 1.3 × 105 tmk,1. Notably, The numerical fracture shape evolves in the toughness543

dominated regime with a constant aspect ratio exactly as predicted by equation (31): b/a = β−2κ2 =544

3.24. In terms of dimensionless toughness K1 = (t/tmk,1)1/9 (see Table 3), the major axis reaches545

the toughness regime within 7% of relative error at K1 ≈ 3.7 (t ≈ 1.3 105tmk,1), which is consistent546

with the estimation obtained for the case of isotropy (Savitski and Detournay, 2002). The minor547

axis reaches the toughness regime when K3 = K1 ×
(
tmk,3/tmk,1

)−1/9
≈ 4.5 according to Fig. 15 -548

which corresponds to an earlier time (t ≈ 1.06 × 104 tmk,1 = 75. 105tmk,3).549

9.2. Isotropic toughness550

Fig. 16 presents the numerical solution for the semi-major and minor axes assuming an isotropic551

toughness function. The analytical solution for the toughness dominated elliptical HF is here plot-552

ted for the case κ = 1. The ratio of timescales is now only function of β: tmk,3/tmk,1 = β−13/2 = (0.07553

for the chosen β = 1.5). The viscosity dominated regime extends further squeezing the transition554

to a narrow region. The M+K approximated solution captures the order of magnitude of the evolu-555
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tion of the major respectively minor axis in a narrow range of times 70 < t/tmk,1 < 3. 102 (major),556

respectively 102 < t/tmk,1 < 8. 103. The slope (power-law) of this approximated solution in both557

cases clearly do not follow the numerical results - which again is due to the fact that such a M+K558

solution is only valid for the case of a large toughness anisotropy (κ−1 > 10).559

For an isotropic toughness, our numerical solution indicates that the major and minor axis560

reach the toughness dominated regime for K1 ≈ 4.3 (t ≈ 5 × 105 /tmk,1 and K3 ≈ 3.7 (t ≈ 104 tmk,1)561

respectively. The relative difference between the numerical solution and the toughness dominated562

elliptical HF solution is larger in that case. This is directly related to the fact that the fracture does563

not have strictly an elliptical shape in the toughness dominated regime as discussed in section 8.4.564

9.3. Isotropic fracture energy565

The results for the isotropic fracture energy case is given in Fig. 17. The toughness ratio is566

here a function of the elasticity κ−1 =

√
E′3/E

′
1 = β−1/2(= 0.8 for β = 1.5) which we use for the567

toughness dominated HF elliptical solution. The ratio of the characteristic timescales now reduces568

to: tmk,3/tmk,1 = κ9β−13/2 = β−2(= 0.44). The effect of anisotropy of toughness and elasticity are569

not compounded in this case. As a result, the fracture propagates with a smaller aspect ratio570

(b/a = β−1) in the toughness dominated regime. The transition to the toughness regime occurs571

earlier for such an isotropic fracture energy assumption: at K1 ≈ 2.9 (t ≈ 1.4 × 104 tmk,1 ) for the572

major axis, and K3 ≈ 1.13 (t ≈ 1.3 × 104 tmk,1) for the minor axis. The numerical results at large573

time follows the elliptical HF toughness dominated solution (with a slight deviation that is barely574

visible in log-log scale). The fracture shape is not far from being elliptical in that case as discussed575

in section 8.4. Similarly than for the isotropic toughness, for such a rather low toughness ratio, the576

approximated M+K solution is out of its domain of validity. It exhibits a different power-law of577

time for the minor and major axis evolution compared to the fully coupled numerical results.578

10. Conclusions579

Propagation of a planar HF perpendicular to the isotropy plane is arguably the most common580

configuration encountered during the stimulation of unconventional hydrocarbon reservoirs. Using581

a fully coupled HF solver, we have quantified the impact of transverse isotropy on the growth of a582

hydraulic fracture, notably the elongation of the fracture in the divider direction and its shortening583

in the arrester direction.584

Using a change of reference frame and the solution for a edge dislocation in an orthotropic585

medium, we have obtained an exact expression of the elastic modulus controlling the near-tip586

elastic operator (14) as function of the angle between the local fracture propagation direction and587

the isotropy plane (see Fig. 1). This near-tip elastic modulus enters both in the local near-tip588

elastic operator and the Irwin matrix relating the energy release rate and the stress intensity factor.589

This exact expression of the near-tip elastic modulus quantifies the validity of an approximated590

expression put forward previously (Laubie and Ulm, 2014) which appears to be valid only for weak591

elastic anisotropy (β ≤ 1.2). As a result, approximated solutions for the growth of a finite HF in a592

TI material using this approximation in combination with the assumption of an elliptical fracture593

do compare reasonably well with our fully coupled numerical results only for weak anisotropy594
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Figure 17: Isotropic fracture energy viscosity to toughness transition: time evolution of the dimensionless major
a(t)/Lmk,1 and minor b(t)/Lmk,1 semi axis for β = 1.5, ε = 0.3, δ = 0.2, and C13/C11 = 0.5.

(β ≤ 1.2). Assuming the fracture shape to be elliptical overestimates the exact fracture aspect ratio595

by more than 30% for larger elastic anisotropy (β > 1.5) and isotropic toughness.596

It is important to recall that the fracture has strictly an elliptical shape only for a very peculiar597

case of toughness anisotropy that can be deduced from the elliptical crack elastic solution (Ap-598

pendix A). We have derived from the TI elliptical fracture solution, a solution for HF growth in599

the toughness dominated regime (for such a form of elliptical toughness anisotropy). Our numeri-600

cal solver perfectly reproduces this toughness dominated solution.601

In the viscous dominated regime, toughness does not affect HF growth. Our results show that602

elastic anisotropy leads to a slight elongation of the fracture in the divider direction in this viscous603

regime, with aspect ratio scaling as b/a ≈ 0.76 β−1/3, confirming the scaling arguments derived in604

Bessmertnykh and Dontsov (2018). The other dimensionless elastic parameters have a relatively605

small effect.606

In the toughness dominated regime, the fracture is more elongated than in the viscosity domi-607

nated regime both for the hypothesis of elliptical toughness, isotropic toughness or isotropic frac-608

ture energy. The intensity of the elongation strongly depends on the type of toughness anisotropy.609

As already mentioned, the fracture is elliptical only when toughness evolves according to eq. (29)610

where b/a = (κ/β)2. For an isotropic toughness (κ = 1), the aspect ratio evolves as b/a ≈ 0.9β−2,611

consistent with the ratio of the LEFM asymptote between the orthogonal directions (eee1 and eee3).612

The other elastic parameters have a second order effect (at most about 10% of variation). The613

elongation is less pronounced for the case of an isotropic critical fracture energy, where b/a ≈ β−1.614

Here again the other elastic parameters do not impact fracture growth significantly.615

We have explored numerically (for a given set of elastic coefficients), the transition between the616
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viscosity and toughness dominated regimes. Our results confirm the expression of the transition617

time-scales tmk,1 and tmk,3 obtained from scaling considerations. The ratio of these time-scales618

tmk,3/tmk,1 = β−13/2κ9 govern how early fracture elongation start to increase from its initial value in619

the viscosity dominated regime. The exact time at which the toughness regime is reached depends620

on the type of toughness evolution. However, to first order it is consistent with the limit obtained621

for isotropy (Savitski and Detournay, 2002): i.e K > 3.5 for toughness dominated growth.622

The extension of the implicit level set algorithm to account for transverse isotropy has proven623

robust for all realistic values of material properties investigated here. It provides a robust solution624

for planar 3D HF growth in TI. Of course, extreme anisotropy β > 2 causes numerical difficul-625

ties as the fracture curvature becomes extreme in the divider direction (eee1) thus requiring finer626

discretization.627

For practical applications, the variation of fracture toughness as function of the local propaga-628

tion direction (angle α) is clearly of first importance, as already pointed out for the elastic isotropy629

/ toughness anisotropic case (Zia et al., 2018). Our results reinforce the need for better exper-630

imental characterization of the mode I fracture toughness of TI material in different directions.631

Unfortunately, such laboratory measurements are rare and often focus mostly on the plane-strain632

case of a planar crack propagating at angle with the isotropy plane, and not for different value of633

α as per the configuration of Fig. 1. Our results indicate a positive effect of anisotropy on vertical634

containment of hydraulic fractures propagating in finely layered sedimentary formation: a possi-635

ble explanation for the small vertical extent of HFs in finely layered sedimentary rock even in the636

absence of in-situ stress contrast. Ultimately, laboratory experiments of HF growth in TI materials637

with proper measurements of the evolution of the fracture shape are required to further test the638

theoretical results presented here.639
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Thöny, R., 2014. Geomechanical analysis of excavation-induced rock mass behavior of faulted Opalinus Clay at729

the Mont Terri Underground Rock Laboratory (Switzerland). Ph.D. thesis. Diss., Eidgenössische Technische730
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Appendix A. The elliptical hydraulic fracture in a TI material737

Appendix A.1. Elliptical fracture under uniform pressure738

Eshelby et al. (1953) has shown that for an elliptical fracture in anisotropic media with semi-739
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major axis a and semi-minor axis b under an uniform pressure p, the fracture opening takes the740

form:741

w = Bo p
√

ab

√
1 −

x2
1

a2 −
x2

3

b2 (A.1)

where Bo is a constant function of the elastic parameter yet to be determined. A number of solu-742

tions have been derived in the literature (Fabrikant, 2015; Hoenig, 1978; Kanaun and Levin, 2009,743

among others), but we have noticed some discrepancies and therefore re-derive it here follow-744

ing Laubie and Ulm (2014) but using the exact near-tip plane-strain modulus E′α (see section 3).745

Additionally, an approximation solution using the E′app can be found in Dontsov (2019).746

First we define A f (x f
1 , x

f
3) as the projection on the fracture front of a point A(x1, x3) inside the747

fracture. We denote |x′1| as the distance between these two points and α the angle between the748

major axis eee1 and the local axis eee′1 as described in Fig. 1. Using the geometrical properties of the749

ellipse750

tanα =
a2

b2

x3

x1
(A.2)

we obtain the first order expansion:751

1 −
x2

1

a2 −
x2

3

b2 = 2
∣∣∣x′1∣∣∣  x f

1 cosα
a2 +

x f
3 sinα

b2

 + O
(
x′1

2
)

(A.3)

Introducing the polar angle characterizing the ellipse:752

x f
1 = a cos θ x f

3 = b sin θ (A.4)

such that from Eq. (A.2), we have the correspondance:753

tanα =
a
b

tan θ (A.5)

Eq. (A.3) can thus be re-written as:754

1 −
x2

1

a2 −
x2

3

b2 = 2
∣∣∣x′1∣∣∣ (cos2 θ

a2 +
sin2 θ

b2

)1/2

+ O
(
x′1

2
)

(A.6)

We thus obtain the first order term asymptote of the near-tip fracture opening (A.1) as:755

w = Bo p
√

b
√

2
∣∣∣x′1∣∣∣ sin2 θ +

(
b
a

)2

cos2 θ

1/4

,
∣∣∣x′1∣∣∣ � a,

∣∣∣x′1∣∣∣ � b (A.7)

The stress intensity factor along the elliptical front can thus be obtained by equalizing the previous756

equation to the classical LEFM near-tip asymptote (20):757

KI =
Bo

4
√
πaE′αp

sin2 θ +

(
b
a

)2

cos2 θ

1/4

. (A.8)
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The global fracture energy G, on the other hand, is given by the derivative of the work W with758

respect to the crack extension area under constant load:759

G =
1

2πb
∂W
∂a

=
1

2πb
∂

∂a

(
1
2

pV f rac

)
=

1
2

p2ba1/2Bo (A.9)

where V f rac =
2
3
πabBo is the fracture volume. The global fracture energy G can also be estimated760

from the integral of the local energy release rate along the crack front which for a mode I fracture761

in our configuration reduces to:762

G =
1

2π

∫ 2π

0

K2
I (α(θ)

E′α(α(θ))
dθ. (A.10)

Following Hoenig (1978), we recover the opening pre-factor Bo from the two expressions of the763

global fracture energy (A.9) and (A.10):764

Bo = 16
(
b
a

)1/2 1∫ 2π

0
E′α(α(θ)) ×

(
(b/a)2 cos2 θ + sin2 θ

)1/2
dθ
. (A.11)

which needs to be evaluated numerically using the expression of E′α (14). For the isotropic elastic765

case, Bo is obtained analytically function of the complete elliptical integral of the second kind766

E
( √

1 − (b/a)2
)

(Gao and Rice, 1987; Hills et al., 1996, among others).767

Bo,iso =
4

E′isoE
( √

1 − (b/a)2
) (

b
a

)1/2

(A.12)

Appendix A.2. Elliptical hydraulic fracture - toughness dominated solution768

From the previous elastic solution, it is rather simple to obtain a growth solution for a hydraulic769

fracture in the toughness dominated regime. We write KIc,3 as the material toughness in the divider770

direction eee3 and E′3 the corresponding near-tip elastic modulus. First, to ensure a self similar771

growth of an elliptical fracture, the toughness must be equal to the stress intensity factor (A.8) at772

all points along the fracture front. The toughness variation must therefore has exactly the following773

form:774

KIc(α(θ)) = KIc,3
E′α
E′3

sin2 θ +

(
b
a

)2

cos2 θ

1/4

(A.13)

From the previous equation, we directly obtain the relation between the ellipse aspect ratio (at775

θ = 0, π/2) and the ratios β = E′1/E
′
3 and κ = KIc,1/KIc,3:776

b
a

=

(
KIc,1

KIc,3

E′3
E′1

)2

=

(
κ

β

)2

. (A.14)

Under quasi-static propagation, KI = KIc at all times such that Eqs. (A.8) and (A.13) provide the777

following expression for the net pressure:778

p(t) =
4KIc,3

√
a/b

BoE′3
√
πb(t)

, (A.15)
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The evolution of the semi- minor and major axis can then be obtained by enforcing the fact that for779

an impermeable medium the volume of the fracture must be equal to injected volume: V f rac = Qot.780

We then obtain:781

b(t) =

(
3tQoE′3(b/a)

8KIc,3
√
π

)2/5

, a(t) =

(
KIc,3

KIc,1

E′1
E′3

)2

b(t) (A.16)

which complete the solution.782
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