
Digital Design with Implicit State Machines1

Fengyun Liu2

EPFL, Switzerland3

fengyun.liu@epfl.ch4

Aleksandar Prokopec5

Oracle Labs, Switzerland6

aleksandar.prokopec@gmail.com7

Martin Odersky8

EPFL, Switzerland9

martin.odersky@epfl.ch10

Abstract11

Claude Shannon, in his famous thesis (1938), revolutionized circuit design by showing that Boolean12

algebra subsumes all ad-hoc methods that are used in designing switching circuits, or combinational13

circuits as they are commonly known today. But what is the calculus for sequential circuits?14

Finite-state machines (FSM) are close, but not quite, as they do not support arbitrary parallel and15

hierarchical composition like that of Boolean expressions. We propose an abstraction called implicit16

state machine (ISM) that supports parallel and hierarchical composition. We formalize the concept17

and show that any system of parallel and hierarchical ISMs can be flattened into a single flat FSM18

without exponential blowup. As one concrete application of implicit state machines, we show that19

they serve as an attractive abstraction for digital design and logical synthesis.20

2012 ACM Subject Classification Replace ccsdesc macro with valid one21

Keywords and phrases Finite-state machines, hierarchical FSM22

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2323

1 Introduction24

Claude Shannon [26] revolutionized circuit design by showing that Boolean algebra subsumes25

all ad-hoc methods that are used in designing switching circuits, or combintional circuits as26

they are commonly known today. In contrast to combinational circuits which only contain27

stateless gates, sequential circuits may also contain stateful elements, like registers. But what28

is the calculus for sequential circuits? Finite-state machines (FSM) are close, but not quite.29

A good abstraction in programming should be composable. In a Boolean expression30

a ∨ b, the sub-expression a and b can be arbitrary Boolean expressions. We may also31

put two Boolean expression side by side to achieve parallel composition. Essentially, any32

combinational circuit design will eventually result in a Boolean expression, regardless of33

whether the design language is in VHDL, Verilog, or Chisel [1]. The composability of Boolean34

expression ensures that any combinational circuit can be represented.35

If we turn to sequential circuits, which may contain state elements and cycles, what is the36

calculus that all sequential circuits can compile to, like Boolean algebra for combinational37

circuits? Finite-state machines are close to fulfill the role, but not quite. Classic FSMs38

support neither hierarchical composability nor parallel composition. The milestone paper39

by Benveniste and Berry [2] argued that the lack of support for hierarchical design and40

concurrency is mentioned in as a major drawback of FSMs.41

Conceptually, we may compose FSMs side by side or in a nested way, which leads to42

parallel and hierarchical FSMs. In a hierarchical FSM, the behavior of the outer FSM43

depends on that of the inner FSM, and the inner FSM has a privileged access to the current44

state of the outer FSM. Parallel FSMs run side-by-side and respond to inputs concurrently.45

© Fengyun Liu, Aleksandar Prokopec and Martin Odersky;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7949-4303
mailto:fengyun.liu@epfl.ch
https://orcid.org/0000-0003-0260-2729
mailto:aleksandar.prokopec@gmail.com
mailto:martin.odersky@epfl.ch
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Digital Design with Implicit State Machines

If one FSM can be in state a, b, the other can be in state c, d, then their parallel composition46

may be in states ac, ad, bc, bd.47

There has been proposals for programming with hierarhical and parallel FSMs [7, 8, 12, 19],48

but so far no proposals address the two problems below:49

How to support parallel and hierarchical composition of FSMs in a declarative language?50

How to transform a complex system of FSMs into a flat FSM?51

While experts in logic verification and synthesis usually work with flat FSMs for its52

simplicity and expressiveness, digital designers primarily work with hierarchical FSMs to53

decompose the complexity of a system. It is unknown how to support hierarchical and parallel54

composition of FSMs in a language, and then transform it into a flat FSM to facilitate formal55

verification such as model checking [5], and optimizations such as state encoding [10, 30].56

The flattening of hierarchical and parallel FSMs generally results in exponential blowup57

in the size of their representation, e.g. flattening of 32 parallel 2-state FSMs would result in58

a flat FSM with 232 states. Existing programming models with FSMs require one case for59

each state in the code [7, 8, 12, 19], consequently, the exponential blowup cannot be avoided60

in such languages. This creates a gap between a complex system of parallel and hierarchical61

FSMs and a flat FSM. Despite its simplicity and mathematical elegance, we still do not know62

how to make FSMs a first-class construct for programming, optimization and verification63

due to the lack of efficient composability and flattening.64

To bridge the gap, we propose a novel abstraction, called implicit state machine (ISM),65

that supports arbitrary parallel and hierarchical composition of FSMs. Implicit state machines66

do not mandate states to be explicitly specified in the program, which avoids the exponential67

blowup when flattening a complex system of FSMs. This flexible composability makes68

implicit state machine an elegant first-class programming construct for digital design, and69

the avoidance of exponential blowup in flattening makes implicit state machines an attractive70

intermediate language for compilation, optimization and verification.71

From the perspective of circuit design, the flattening keeps the area and the delay, the two72

optimization goals of logic synthesis, unchanged. The result implies that any synchronous73

sequential circuits is equivalent to a circuit with all state elements at the boundary, and a big74

combinational core at the center. We conjecture this result will lead to more optimization75

opportunities. For example, now combinational techniques may be used to optimize the76

whole circuit, while it was previously convenient to optimize only combinational fragments77

using the fundamental techniques. It may also give rise to novel hardware architectures. For78

example, FPGAs no longer need to scatter state elements (e.g. D flip-flops) in its layout.79

Our contributions are listed below:80

We introduce the concept of implicit state machines, and formalize the concept in a81

declarative calculus. Implicit state machines support parallel and hierarchical composition,82

and we may optimize and reason about the code by equational reasoning.83

We show that any parallel and hierarchical FSMs can be flattened into a flat implicit state84

machine in polynomial time and code size. As far as we know, this is the first abstraction85

for hierarchial and parallel FSMs that avoids exponential blowup in flattening.86

To the best of our knowledge, we are the first to theorize that any synchronous sequential87

circuits is equivalent to a circuit with all state elements at the boundary and a big88

combinational core at the center with the same area and delay.89

We create an embedded DSL in Scala based on implicit state machines, and the initial90

experiments show positive results when implicit state machine is used as a programming91

model and an intermediate representation for logic synthesis.92

F. Liu, A. Prokopec, M. Odersky 23:3

2 Implicit State Machines93

2.1 Introduction94

Finite-state machines are widely used in the design and verification of reactive and real-95

time systems, which include critical systems that control nuclear plants, airplanes, trains, cars,96

etc. As a mathematical model, finite-state machines can precisely and succinctly characterize97

the behaviors of such systems, which forms the basis to formally verifying that the systems98

work reliably in accordance with the specification.99

Mathematically, a finite state machine is usually represented as a quintuple (I, S, s0, σ,O):100

I is the set of inputs101

S is the set of states102

s0 ∈ S is the initial state103

σ : I × S → S ×O maps the input and the current state to the next state and the output104

O is the set of outputs105

FSM can also be represented graphically by state-transition diagrams, as the following106

figure shows:107

q1start q2 q3

0/1

1/0

1/1
0/0

0/1, 1/1
108

In the state machine above, q1 is the initial state, and each edge denotes a transition:109

the label 0/1 on the edge means the transition happens when the input is 0, and it outputs 1110

when the transition occurs.111

Implicit state machines are based on a reflection on the essence of FSM: a mapping
from input and state to the next state and output. The first insight towards implicit state
machines is that the mapping function does not have to be represented as a set whose
size correlates with the size of the state space, as it is the case in existing languages for
programming with FSMs [12, 8, 7, 19]. In a declarative language, the mapping functionality
can be represented by any expression. This gives us a tentative representation as follows:

λx:I × S. (t1, t2) : I × S → S ×O

The body (t1, t2) enforces that the output and next state are implemented as two functions.
This imposes unnecessary constraints. If we introduce tuples in the language, we can replace
(t1, t2) just by t:

λx:I × S. t : I × S → S ×O

The second insight is that the state is neither an input to an FSM nor an output of an
FSM, but a self reference. It leads us to the following representation with the state variable
s:

λx:I. fsm { s⇒ t } : I → O

In the above, the term t still has the type S ×O, but seen from outside, a state machine112

just maps input to output, which corresponds to our intuition.113

CVIT 2016

23:4 Digital Design with Implicit State Machines

The last insight is that the inputs do not need to be represented explicitly, they can be
captured from the lexical scope:

fsm { s⇒ t } : O

We still miss the initial state, so we use the value v to denote the initial state of the FSM:

fsm { v | s⇒ t } : O

Voila! Suppose we are working in the domain of digital circuits, a one-bit D flip-flop with
an input signal d can be represented as follows:

fsm { 0 | s⇒ (d, s) }

It takes the value d as the next state, and outputs the last state on every clock. We may114

compose several such flip-flops to implement a shift register for a given input d:115

let q1 = fsm { 0 | s => (d, s) } in116

let q2 = fsm { 0 | s => (q1, s) } in117

let q3 = fsm { 0 | s => (q2, s) } in118

let q4 = fsm { 0 | s => (q3, s) } in119

(q1, q2, q3, q4)120

An equivalent flat FSM that implements the 4-bit shift register is shown below:121

fsm { (0, 0, 0, 0) | s => ((d, s.1, s.2, s.3), s) }122

Implicit state machines are just expressions, thus they may appear anywhere that an ex-123

pression is allowed. In particular, we may nest them to get another equivalent implementation124

of the shift register:125

fsm { 0 | q1 =>126

let q2 = fsm { 0 | s => (q1, s) } in127

let q3 = fsm { 0 | s => (q2, s) } in128

let q4 = fsm { 0 | s => (q3, s) } in129

(d, (q1, q2, q3, q4))130

}131

In the following, we formalize implicit state machines in a calculus.132

2.2 Syntax133

The syntax of the language is presented below:134

F. Liu, A. Prokopec, M. Odersky 23:5

t ::= terms
a, b, c external input
x, y, z, s variables
let x = t in t let binding
β Boolean value
t ∗ t 1 bit and
t+ t 1 bit or
!t 1 bit not
(t, . . . , t) tuple
t.i projection
fsm { v | s⇒ t } implicit state machine

β ::= 0 | 1 Boolean values
v ::= β | (v, . . . , v) values
i ::= 0, 1, 2, . . . indexes

135

Beyond the basic elements of Boolean algebra, we also introduce let-bindings, which is a136

basic abstraction and reuse mechanism. Tuples and projections are introduced for parallel137

composition and decomposition. In a projection t.i, the index i must be a statically known138

number. For implicit state machines, we require that the initial state is a value.139

A circuit usually has external inputs, which is represented by variables a, b, c. By140

convention, we use x, y, z for let-bindings, and s for the binding in implicit state machines.141

We choose Boolean algebra as the domain theory, but it can also be other mathematical142

structures, like groups or abelian groups. Our transform does not assume properties of143

mathematical structures as long as we may substitute equals for equals [29].144

2.3 Semantics145

The semantics of the language is defined with the help of a state map σ and an environment
ρ. The state σ maps a state variable to a state value, the environment variable ρ maps an
external signal to a value. The big-step operational semantics is defined with the following
reduction relation:

t
σ,ρ−→ v | σ′

It means that given the current state σ and environment ρ, the term t evaluates to the146

value v with the next state σ′. The semantics follows the synchronous hypothesis [2], which147

assumes that the computation of the response to an input takes no time. For synchronous148

digital circuits, it means that the system produces an output at each clock tick. The reduction149

rules are defined in Figure 1. We explain the rules below:150

E-Value. If it is already a value, do nothing. There are no nested state machines, thus151

the mapping for the next state is the empty set.152

E-Input. Look up the external variable a from the environment ρ.153

E-Let. First evaluate t1 to the value v1, then evaluate t2 with x replaced by v1.154

E-Tuple. Evaluate each component in parallel to a value, and accumulate the mapping155

for the next state.156

E-Project. First evaluate the term to a tuple value, then return the corresponding157

component.158

E-And. Evaluate the two components in parallel to Boolean values, then call the helper159

method and to compute the resulting Boolean value β. As each component may contain160

implicit state machines, accumulate the mapping for the next state.161

CVIT 2016

23:6 Digital Design with Implicit State Machines

v
σ,ρ−→ v | ∅ (E-Value)

v = ρ(a)
a

σ,ρ−→ v | ∅
(E-Input)

t1
σ,ρ−→ v1 | σ′ [x 7→ v1]t2

σ,ρ−→ v2 | σ′′

let x = t1 in t2
σ,ρ−→ v | σ′ ∪ σ′′

(E-Let)

t1
σ,ρ−→ v1 | σ1 . . . tn

σ,ρ−→ vn | σn
(t1, . . . , tn) σ,ρ−→ (v1, . . . , vn) | σ1 ∪ · · · ∪ σn

(E-Tuple)

t
σ,ρ−→ (v1, . . . , vi, . . . , vn) | σ′

t.i
σ,ρ−→ vi | σ′

(E-Project)

t1
σ,ρ−→ β1 | σ′ t2

σ,ρ−→ β2 | σ′′ β = and(β1, β2)
t1 ∗ t2

σ,ρ−→ β | σ′ ∪ σ′′
(E-And)

t1
σ,ρ−→ β1 | σ′ t2

σ,ρ−→ β2 | σ′′ β = or(β1, β2)
t1 + t2

σ,ρ−→ β | σ′ ∪ σ′′
(E-Or)

t
σ,ρ−→ β | σ′ β′ = not(β)

!t σ,ρ−→ β′ | σ′
(E-Not)

v = σ(s) [s 7→ v]t | σ,ρ−→ (v1, v2) | σ′

fsm { v | s⇒ t } σ,ρ−→ v2 | { s 7→ v1 } ∪ σ′
(E-Fsm)

Figure 1 Big-step operational semantics

E-Or. Similar as above, but use the helper function or to compute the resulting value.162

E-Not. Similar as above, but use the helper function not to compute the resulting value.163

E-Fsm. First look up the value for the current state from the state map σ. Then evaluate164

the body of the state machine to a pair value (v1, v2). The output is v2, and the next165

state is v1.166

The reduction relation only defines one-step semantics. The semantics of a system is167

defined by the trace of a given input series ρ0, ρ1, · · · . We define it formally below:168

I Definition 1 (Trace). The trace of a system t with respect to an input sequence ρ0, ρ1, · · ·169

is the sequence o0, o1, · · · such that170

t
σ0,ρ0−→ o0 | σ1171

. . .172

t
σi,ρi−→ oi | σi+1173

. . .174

In the above, σ0 is the initial state of FSMs as specified in t.175

F. Liu, A. Prokopec, M. Odersky 23:7

2.4 Type System176

We introduce a simple type system to ensure that the system is sound, i.e. it never gets177

stuck. The type system is presented in Figure 2. In the system, there are only two types:178

Bool for Boolean values and (T1, . . . , Tn) for tuples. We explain the typing rules below:179

T ::= Bool | (T, . . . , T)

Γ ` β : Bool (T-Bool)

a : T ∈ Γ
Γ ` a : T

(T-Input)

x:T ∈ Γ
Γ ` x : T

(T-Var)

Γ ` t : Bool
Γ `!t : Bool

(T-Not)

Γ ` t1 : T1 . . . Γ ` tn : Tn
Γ ` (t1, . . . , tn) : (T1, . . . , Tn)

(T-Tuple)

Γ ` t : (T1, . . . , Ti, . . . , Tn)
Γ ` t.i : Ti

(T-Project)

Γ ` t1 : Bool Γ ` t2 : Bool
Γ ` t1 ∗ t2 : Bool

(T-And)

Γ ` t1 : Bool Γ ` t2 : Bool
Γ ` t1 + t2 : Bool

(T-Or)

Γ ` t1 : T1 Γ, x:T1 ` t2 : T2

Γ ` let x = t1 in t2 : T2
(T-Let)

Γ ` v : T1 Γ, s:T1 ` t : (T1, T2)
Γ ` fsm { v | s⇒ t } : T2

(T-Fsm)

Figure 2 Type System

T-Bool. The type for Boolean values is always Bool.180

T-Input. For inputs, their types are predefined in the environment.181

T-Var. For variables, their types also appear in the environment.182

T-Not. The term t must be Bool.183

T-Tuple. If each component has a type, and then the type of the tuple has a corres-184

ponding tuple type.185

T-Project. If the term t has a tuple type, then the projection has the type of the186

corresponding component.187

T-And. If each component has the type Bool, the result also has the type Bool.188

T-Or. The same as above.189

T-Let. If the bound term has the type of T1, and the body of the let-binding has the190

type T2 under the environment Γ extended with the binding x:T1, then the let-binding has191

the type T2. Note that this rule forbids the usage of x1 in t1, which prevents undesired192

circles.193

T-Fsm. If the initial value has the type T1, and the body has the type (T1, T2) under the194

environment Γ extended with the binding s:T1, then the FSM has the type T2.195

We need an auxiliary definition of value map typing:196

CVIT 2016

23:8 Digital Design with Implicit State Machines

Γ ` ∅ Γ ` ξ Γ ` v : T
Γ, α: T ` ξ ∪ { α 7→ v }

In the above, α ranges over inputs a and state variables s, and ξ ranges over input map197

ρ and state map σ.198

I Theorem 2 (Soundness). If Γ ` t : T , and if for each ρi in the input sequence ρ0, ρ1, . . .199

we have Γ ` ρi, then there exists a trace corresponding to the input sequence.200

The proof follows from the following lemma by induction on the length of the input201

sequence:202

I Lemma 3. Given Γ ` t : T , Γ ` ρ, Γ ` σ, Γ ` σ0, where σ0 is the initial state map as203

specified in t, then t σ,ρ−→ v | σ′, Γ ` v : T and Γ ` σ′.204

Sketch. By induction on the typing judgment Γ ` t : T . J205

2.5 Flattening206

In this section, we present a transform that translates any system of parallel and hierarchical207

implicit state machines into a flat implicit state machine. The transformation is defined in208

Figure 3. It consists of two major steps:209

Lifting. This step lifts FSMs to top-level.210

Flattening. This step merges FSMs to a single FSM.211

For the purposes of the transformation, we first define the FSM-free fragment of the212

language, which is represented by e. Lifting will result in lifted normal form (N), where all213

FSMs are at the nested at the top of the program, with an FSM-free fragment in the middle.214

The relation t1 ;L t2 says that the term t1 takes a lifting step to t2. Lifting is defined215

with the help of the lifting context L. The lifting context specifies that the transform follows216

the order left-right and top-down. The actual lifting happens with the function J·K, which217

transforms the source program to the expected form. We explain the concrete transform218

rules below:219

fsm { v | s⇒ e1 } ∗ t2. The FSM absorbs t2 into its body. The symmetric case, and the220

cases for AND and OR are similar.221

let x = fsm { v | s ⇒ e1 } in t2. It pulls the let-binding into the body. The case in222

which FSM is in the body of let-binding is similar.223

fsm { v | s⇒ e }.i. It pulls the projection into the body of FSM.224

(ē, fsm { v | s⇒ e }, t̄). It pulls the tuple into the body of FSM.225

Once all FSMs are nested at the top-level after lifting, flattening takes place. The relation226

t1 ;F t2 says that the term t1 takes a flattening step to t2. Flattening is defined with227

the help of the flattening context F . The flattening context specifies that the flattening228

happens from inside towards outside. The actual merging step is quite straightforward: it229

just combines the initial states v1 and v2, as well as merges s1 and s2 into s.230

We use the notation t1 ; t2 to mean that t1 takes either a lifting step (;L) or a231

flattening step (;F) to t2. We write t1 ;∗ t2 to mean 0 or multiple such transform steps.232

For simplicity of presentation, we omit the formal definitions.233

F. Liu, A. Prokopec, M. Odersky 23:9

FSM-free Fragment

e ::= v | e ∗ e | e+ e | !e | (e, . . . , e) | e.i | let x = e in e | x | s | a

Lifted Normal Form

N ::= e | fsm { v | s⇒ N }

Lifting

L ::= [·] | L ∗ t | e ∗ L | L+ t | e+ L | !L | L.i | (e1, . . . , L, . . . , tn) |
fsm { v | s⇒ L } | let x = L in t | let x = e in L

JtK = fsm { v | s⇒ t′ }
L[t] ;L L[fsm { v | s⇒ t′ }]

Jfsm { v | s⇒ e1 } ∗ t2K = fsm { v | s⇒ let x = e1 in (x.1, x.2 ∗ t2) }
Je2 ∗ fsm { v | s⇒ e1 }K = fsm { v | s⇒ let x = e1 in (x.1, e2 ∗ x.2) }
Jfsm { v | s⇒ e1 }+ t2K = fsm { v | s⇒ let x = e1 in (x.1, x.2 + t2) }
Je2 + fsm { v | s⇒ e1 }K = fsm { v | s⇒ let x = e1 in (x.1, e2 + x.2) }

J! fsm { v | s⇒ e }K = fsm { v | s⇒ let x = e in (x.1, !x.2) }
Jlet x = fsm { v | s⇒ e1 } in t2K = fsm { v | s⇒ let s1, x = e1 in (s1, t2) }
Jlet x = e1 in fsm { v | s⇒ e2 }K = fsm { v | s⇒ let x = e1 in e2 }

Jfsm { v | s⇒ e }.iK = fsm { v | s⇒ let x = e in (x.1, x.2.i) }q
(ē, fsm { v | s⇒ e }, t̄)

y
= fsm { v | s⇒ let x = e in (x.1, (ē, x.2, t̄)) }

Flattening
F ::= [·] | fsm { v | s⇒ F }

JNK = fsm { v | s⇒ e }
F [N] ;F F [fsm { v | s⇒ e }]

Jfsm { v1 | s1 ⇒ fsm { v2 | s2 ⇒ e2 } }K = fsm { (v1, v2) | s⇒ let s1, s2 = s in

let x = e2 in ((x.2.1, x.1), x.2.2) }

Figure 3 Flattening of nested FSMs. We write let x, y = t1 in t2 as a syntactic sugar for
let z = t1 in let x = z.1 in let y = z.2 in t2.

I Theorem 4 (Complexity). If the term t contains FSMs, then there exists e such that234

t ;∗ fsm { v | s ⇒ e } in O(m ∗ n) steps where m is the size of the term t, and n is the235

number of state machines in the code.236

Sketch. During lifting, each step moves some code that pre-exists in t inside another FSM.237

Thus, the worse case is O(m ∗ n). During flattening, each step reduces one FSM, thus it238

takes n steps for flattening. Therefore, the complexity is O(m ∗ n). J239

A tighter bound is O(d ∗ n), where d is the max depth of FSM from the root (if we see a240

term t as an abstract syntax tree), n is the number of FSMs. However, as lifting introduces241

CVIT 2016

23:10 Digital Design with Implicit State Machines

let-bindings which changes the height of the tree, technically it is more complex to establish242

the bound, we thus leave it to future work.243

Meanwhile, the complexity also establishes the bound for the resulting code size after244

flattening: for each lifting and flattening step, the code size increase by a small constant245

(usually an additional let-binding and tuple), thus code size increase is also bound by O(m∗n).246

I Corollary 5 (Code Size). If the term t contains FSMs, and there exists e such that247

t ;∗ fsm { v | s ⇒ e }, then the code size increase of e compared to e is bounded by248

O(m ∗ n), where m is the size of the term t, and n is the number of state machines in the249

code.250

I Theorem 6 (Semantic Preserving). If t ; t′, then they have the same trace for any given251

input sequence ρ0, ρ1, · · · .252

It follows from the following lemmas by induction on the length of the trace:253

I Lemma 7. If t ;L t
′, t σ,ρ−→ v | σ1, then t′

σ,ρ−→ v | σ1.254

Sketch. First perform induction on the lifting contexts, then perform case analysis on the255

concrete transform rules. J256

I Lemma 8. If N ;F N ′, i.e. in the flattening Jfsm { v1 | s1 ⇒ fsm { v2 | s2 ⇒ e2 } }K257

of two state machines, let f = λσ.{ s 7→ (σ(s1), σ(s2)) } ∪ (σ\{ s1, s2 }), and f(σ) = σ′,258

N
σ,ρ−→ v | σ1, then N ′

σ′,ρ−→ v | σ′1 and f(σ1) = σ′1.259

Sketch. Perform induction on the flattening contexts. Note that for the initial states σ0 and260

σ′0 specified in N and N ′ respectively, f(σ0) = σ′0 holds trivially.261

J262

2.6 Discussion: Are Implicit State Machines FSMs?263

The mathematical definition of FSM requires the transition function to be a pure function, i.e.264

a function that always return the same result given the same input. However, it is generally265

not the case for implicit state machines, as an implicit state machine may contain a nested266

implicit state machine, which makes the transition function stateful or impure. Consequently,267

if an implicit state machine does not contain any nested ISM, then its body is a pure Boolean268

function, which make the ISM an FSM in the mathematical sense.269

From this perspective, flattening plays another important role: it transforms a possibly270

non-FSM implicit state machine to an FSM. This also reflects a natural design choice of271

implicit state machines: in order to support hierarchical state machines, we need to give up272

the requirement that the transition function is pure.273

Also note that implicit state machines just do not mandate states to be explicitly274

represented in the program, however, they do not forbid that. This means that programmers275

can continue to program with explicit states when necessary. This is can be done with a276

switch on the state of the FSM (in pseudocode):277

fsm { 0 | s =>278

when (s == 0) t1279

when (s == 1) t2280

when (s == 2) t3281

otherwise t4282

}283

F. Liu, A. Prokopec, M. Odersky 23:11

In the above, we the when construct to define one transition for each state. We implement284

when as a syntactic sugar in our DSL and use it to decode controller instructions (Section 4).285

Note that outside the setting of formal verification and theory of computation, the term286

finite-state machine is sometimes used in programming to loosely mean any machine that has287

a finite set of states. In the rest of the paper, when there is no danger of misunderstanding,288

we use the term FSM in the loose sense.289

3 Programming Model for Digital Design290

The hardware design community is yearning for a better programming language [16, 20, 21].291

We believe introducing implicit state machines as a programming model will improve the292

situation.293

3.1 Declarative Programming294

It is well-known in the programming language community that a declarative language enjoys295

many advantages over an imperative language. The mainstream languages for digital design,296

such as VHDL and Verilog, are in imperative style.297

A declarative language is easier to work with than an imperative one. Declarative programs298

are easier to compose and reason about, as we may substitute equals for equals [29]: given an299

equation x = t in the program, we may safely substitute the variable x with the code t without300

changing semantics of the program. In contrast, such substitution is generally problematic301

in imperative programs. Consequently, it is much easier to perform semantic-preserving302

transformations and optimizations of declarative programs than of imperative programs.303

Imperative programming with states faces the problem of double assignment. In the304

Verilog code example below, the variable a is assigned twice when c is true:305
306

1 always @ (posedge clk)307

2 if (enable) begin308

3 a <= c & d; b <= c | d;309

4 if (c) a <= b; // double assignment of a if c is true310

5 end else a <= d; // b not assigned in else branch311

6 end312313

Most languages take the last assignment as effective in the case of double assignment.314

The fact that such code is supported is a little counter-intuitive as all registers are refreshed315

exactly once on each clock tick in synchronous digital circuits. What is worse is that double316

assignment could be mistakes made by the programmer, for which the compiler is helpless to317

address.318

Such problems are inherent in imperative programming with states. However, a stateful319

computation does not need to be in imperative style. The synchronous dataflow model in320

Lustre [6] and Signal [4] is one evidence for this. Yet it is unknown how to make programming321

with FSMs declarative, as they are stateful computation by nature, and past proposals on322

programming with FSMs are all in imperative style [19, 8]. With implicit state machines, we323

show how to program with FSMs in declarative style.324

It is reported that dataflow programming is a good fit for dataflow-dominated applica-325

tions, while FSM-based imperative programming is a more suitable for control-dominated326

applications [3, 8]. The FSM extension to Lustre [8] comes from the need to support both327

styles in the same language, in which FSMs desugar to a core dataflow calculus. Our calculus328

of implicit state machines can be seen as another synergy of dataflow programming and329

imperative programming. The expression-oriented nature of the calculus makes dataflow330

CVIT 2016

23:12 Digital Design with Implicit State Machines

programming easy. Meanwhile, an implicit state machine with an explicit case for each state331

is a good fit for control-dominated applications.332

3.2 Scalable Abstraction333

It is well-known that abstraction is the way to control complexity and build complex systems.334

Boolean algebra saves digital designers from transistors and resistors. It is a pity that Chisel335

[1, 18, 15], the latest hardware construction language that gains traction, still promotes336

programming with wires and connections. If we examine Chisel, VHDL, and Verilog closely,337

it is not clear what is the core calculus which plays the role of lambda calculus for functional338

programming.339

With implicit state machines, we eliminate wires, connections, registers and flip-flops from340

hardware design. We cannot imagine what else can be removed further, as mathematicians341

would have discovered the simpler formalism and replaced FSMs with it.342

Implicit state machine is a scalable abstraction. It may succinctly describe the most343

basic building blocks of digital design, such as D flip-flops, as well as complex systems344

via hierarchical and parallel composition. Any synchronous digital system that may be345

characterized by an FSM can be programmed with implicit state machines, because the346

transition function of implicit state machines can be both stateful and stateless, that latter347

corresponds to the transition function of FSMs.348

Explicit state machines, i.e. state machines with one separate case for each state are349

implicit state machines by definition. It means programmers can freely choose to program350

with explicit states or implicit states. Some circuits are simpler to program implicitly, such351

as that of D flip-flop. The D flip-flop representation with implicit state machines only takes352

one line:353

fsm { 0 | s => (d, s) }354

However, explicit representation in a truth table would take several lines:355

s d s’ Q
0 0 0 0
0 1 1 0
1 0 0 1
1 1 1 1

356

The D flip-flop is so simple that digital designers seldom think them as an FSM in357

programming. Programming with FSM in Verilog and VHDL is just a design methodology,358

with implicit state machines, it becomes a reality.359

3.3 Acyclic by Construction360

It is common to compose FSMs in digital design, as hierarchical decomposition is a widely361

used method to break down a complex system. In Verilog and VHDL, FSM is not a primitive362

programming construct. They are usually encoded with registers in separate modules, and363

then the modules are composed. Such composition, however, is dangerous, as combinational364

cycles may arise from the composition of FSMs [25, 2]. The combinational cycles resulted365

from FSM composition is illustrated in Figure 4.366

Despite the fact that combinational cycles have been studied theoretically [27, 22], in367

practice they represent mistakes in the design and CAD tools for synthesis and verification368

F. Liu, A. Prokopec, M. Odersky 23:13

Combinational Logic

State

input output

next statecurrent state

A B C

Figure 4 FSM composition. (A) An FSM in circuit, where the combinational logic is acyclic. (B)
The connection of two FSMs results in combinational cycles. (C) The connection does not result
in combinational cycles, as the feedback to the upper FSM only goes to the state element, which
breaks the loop.

require circuits without combinational cycles as input. In our calculus, there are no combina-369

tional cycles by construction. To compose two FSMs as in Figure 4B, a digital designer has370

to write the following code:371

fsm { v3 | s3 =>372

let o1 = fsm { v1 | s1 => t1 } in373

let o2 = fsm { v2 | s2 => t2 } in374

(t3, (o1, o2))375

}376

In the code above, another FSM is created with the state name s3, which is the shared377

state that decouples the combinational loop.378

In the case where the connection in Figure 4C does not result in combinational cycles, i.e.379

one feedback only goes into the state elements but not output, there is no need to create an380

additional FSM:381

fsm { v1 | s1 =>382

let o1 = t1 in383

let o2 = fsm { v2 | s2 => t2 } in384

(t3, (o1, o2))385

}386

In the above, the next state and output of the inner FSM, i.e. t2, may depend on387

o1. Meanwhile, the next state of the outer FSM, i.e. t3, may depend on o2. The code is388

guaranteed to be acyclic by construction.389

3.4 Logic Synthesis390

De Micheli [9] mentioned that sequential synthesis is hindered by combinational boundaries:391

typical optimizations extract combinational logic from the register-separated circuit network392

and optimize the combinational fragments only. The flattening of FSMs can transform any393

circuit into an equivalent circuit with state elements at the boundary and a big combinational394

core in the center. We conjecture such a transformation will facilitate optimizations as well395

CVIT 2016

23:14 Digital Design with Implicit State Machines

as enable more optimization opportunities. We leave the conjecture to be substantiated by396

future research.397

An expert in logic synthesis might wonder, what is the impact of flattening on area and398

delay, the two goals of logic optimizations? The answer is that they are unchanged. The399

reason is that during flattening, we only introduce let-bindings, it neither creates additional400

gates nor changes the number of gates on any path. With implicit state machines, experts in401

logic synthesis no longer need to worry about combinational boundaries any more.402

Already in 1991, Malik [23] envisioned the possibility of applying combinational techniques403

to optimizing sequential circuits by pushing registers to the boundary of the circuit network,404

and cut the loops when needed. The approach taken by Malik is based on a technique called405

retiming [17], which changes the timing behaviors of the circuit by moving registers around406

in the circuit network.407

Our approach essentially follows the same spirit. However, we achieve the same goal408

without changing timing behavior of the circuit. The optimization opportunities enabled409

by retiming is different from ours, but it can be expressed based on top of implicit state410

machines. For example, given the circuit network below:411

C2C1
delay = 3

delay = 1

delay = 5

412

The circuit above shows that two outputs of the sub-circuit C1 go to two different registers.413

The output of the two registers go to an AND gate and its output in turns goes to the414

sub-circuit C2. The critical path of the circuit has the delay 6. The critical path is the path415

in the circuit that has the maximum delay between an input signal or a register read, to416

an output signal or a register write. The period of clock in a synchronous circuit has to be417

bigger than the delay of the critical path.418

Using retiming, we can push the two registers after the AND gate, which results in the419

following network:420

C2

delay = 3

delay = 1

delay = 5

C1

421

Now the critical path of the circuit has a delay of 5 instead of 6, and it saves one register.422

If we represent the circuit C1 by the term t1, and the circuit C2 by the term t2, then the423

circuit before the retiming optimization can be expressed as follows:424

let x = t1 in425

let y = fsm { (0, 0) | s =>426

(x, s.1 & s.2)427

F. Liu, A. Prokopec, M. Odersky 23:15

}428

in t2429

In the above, x represents the two output signals of the circuit C1, and the input signal430

to the circuit C2 is represented by the variable y. The circuit after the retiming optimization431

can be expressed as follows:432

let x = t1 in433

let y = fsm { 0 | s =>434

(x.1 & x.2, s)435

}436

in t2437

If the AND gate in the original circuit is a XOR gate, then we also need to change the438

initial state of the transformed FSM in the above.439

If we see it from another perspective, retiming transforms are just usage of laws of implicit440

state machines. In addition to the transformations presented in lifting and flattening, the441

following transformations may also serve as laws because they are semantic-preserving:442

Jlet x = t1 in t2K = [x 7→ t1]t2 inlining
Jfsm { v | s⇒ (v, t) }K = let s = v in t stable state
Jfsm { v | s⇒ (s, t) }K = let s = v in t const state
Jfsm { v | s⇒ (t1, v2) }K = v2 const output
Jfsm { v | s⇒ (t1, t2) }K = t2 if s is not free in t2 fake state
Jfsm { v | s⇒ (t1, t2) }K = let x = t1 in fsm { v | s⇒ (x, t2) } simple state

if s is not free in t1
Jfsm { v | s⇒ (x, t2) }K = fsm { v′ | s⇒ ([s 7→ x]t2, s) } retiming

if t2
σ0,∅−→ v′

443

The essence of retiming is succinctly expressed by the last rule, except the subtlety about444

the initial state: it requires that t2 should evaluate to a value v′ given the initial states for445

all FSMs in the program σ0. The empty environment enforces that t2 may not depend on446

external inputs. Otherwise, we do not see how to preserve semantics in the transform.447

4 Implicit State Machine in Scala448

To test feasibility of making implicit state machines as a programming model, we implemented449

an embedded DSL in Scala for hardware construction.450

4.1 A Quick Glance451

The following code shows how we may implement a half adder in our DSL:452
453

1 def halfAdder(a: Signal[Bit], b: Signal[Bit]): Signal[Vec[2]] = {454

2 val s = a ^ b455

3 val c = a & b456

4 c ++ s457

5 }458459

In the code above, the type Signal[Bit] means that a is a signal of 1 bit. The type460

Signal[Vec[2]] means a signal of width 2. Here we take advantage of literal types in Scala,461

CVIT 2016

23:16 Digital Design with Implicit State Machines

which supports the usage of a literal constant as a type. The type Bit means the same as462

Vec[1]:463
464

1 type Bit = Vec[1]465466

The DSL supports common bit-wise operations like XOR (^), AND (&), OR (|), ADD467

(+), SUB (-), SHIFT (<< and >>), MUX (if/then/else). The operator ++ concatenates two bit468

vector to form a bigger bit vector. All these operations are supported in Verilog [28], and469

they follow the same semantics as in Verilog.470

We may compose two half adders to create a full adder, which takes a carry cin as input:471
472

1 def full(a: Signal[Bit], b: Signal[Bit], cin: Signal[Bit]): Signal[Vec[2]] = {473

2 val ab = halfAdder(a, b)474

3 val s = halfAdder(ab(0), cin)475

4 val cout = ab(1) | s(1)476

5 cout ++ s(0)477

6 }478479

In the above, we make two calls to halfAdder. Each call will create a copy of the half480

adder circuit to be composed in the fuller adder. It returns the carry and the sum. We may481

compose them further to create a 2-bit adder:482
483

1 def adder2(a: Signal[Vec[2]], b: Signal[Vec[2]]): Signal[Vec[3]] = {484

2 val cs0 = full(a(0), b(0), 0)485

3 val cs1 = full(a(1), b(1), cs0(1))486

4 cs1(1) ++ cs1(0) ++ cs0(0)487

5 }488489

To actually generate a representation of the circuit, we need to specify the input signals:490
491

1 val a = variable[Vec[2]]("a")492

2 val b = variable[Vec[2]]("b")493

3 val circuit = adder2(a, b)494495

Now we may generate Verilog code for the circuit:496
497

1 circuit.toVerilog("Adder", a, b)498499

For testing purposes, we can call the interpreter to get the result for a specific input:500
501

1 val add2 = circuit.eval(a, b)502

2 val Value(c1, s1, s0) = add2(Value(1, 0) :: Value(0, 1) :: Nil)503

3 assertEquals(c1, 0)504

4 assertEquals(s1, 1)505

5 assertEquals(s0, 1)506507

You might be wondering, what about a generic adder that generates circuits for a given508

width? This can be implemented with a recursion on the number of bits:509
510

1 def adderN[N <: Num](lhs: Signal[Vec[N]], rhs: Signal[Vec[N]])511

2 : Signal[Bit ~ Vec[N]] = {512

3 val n: Int = lhs.size513

4 def recur(index: Int, cin: Signal[Bit], acc: Signal[Vec[_]]) =514

5 if (index >= n) cin ~ acc.as[Vec[N]]515

6 else {516

7 val cs: Signal[Vec[2]] = full(lhs(index), rhs(index), cin)517

8 recur(index + 1, cs(1), (cs(0) ++ acc.as[Vec[N]]).asInstanceOf)518

9 }519

10520

11 recur(0, lit(false), Vec().as[Vec[_]])521

F. Liu, A. Prokopec, M. Odersky 23:17

12 }522523

In the code above, the type Signal[Bit ~ Vec[N]] means a signal that is a pair, the left524

is one bit, the right is a bit vector of length N. To construct a signal of such a type, we just525

connect two signals with ~ as it is used at line 5. At line 8, we used several type cast in the526

code, due to the fact that Scala currently does not support arithmetic operations at type527

level.528

4.2 Sequential Circuits529

We show how to create sequential circuits with the example of moving average. The moving
average filter we are going to implement is specified below:

Yi = (Xi + 2 ∗Xi−1 +Xi−2)/4

For the input Xi, the output Yi also depends on the previous values Xi−1 and Xi−2. The530

FSM that delays a given signal by one clock can be implemented as follows:531
532

1 def delay[T <: Type](sig: Signal[T], init: Value): Signal[T] =533

2 fsm("delay", init) { (last: Signal[T]) =>534

3 sig ~ last535

4 }536537

In the code above, we declare an implicit state machine with the specified initial state538

init. The body of the FSM is a pair sig ~ last, where the first part becomes the next state,539

and the second part becomes the output. This is exactly the D flip-flop.540

Now we may create the circuit for the moving average:541
542

1 def movingAverage(in: Signal[Vec[8]]): Signal[Vec[8]] = {543

2 let(delay(in, 0.toValue(8))) { z1 =>544

3 let(delay(z1, 0.toValue(8))) { z2 =>545

4 (z2 + (z1 << 1) + in) >> 2.W[2]546

5 }547

6 }548

7 }549550

In the code above, we first create an instance of the delay circuit and bind it to the551

variable z1. Then we delay the signal z1, and bind it to z2. Finally, the computation is552

expressed on bit vectors.553

Note that it is tempting to implement the same circuit without using the let-bindings:554
555

1 def movingAverage(in: Signal[Vec[8]]): Signal[Vec[8]] = {556

2 val z1 = delay(in, 0.toValue(8))557

3 val z2 = delay(z1, 0.toValue(8))558

4 (z2 + (z1 << 1) + in) >> 2.W[2]559

5 }560561

The circuit, though functions the same, will need more gates to implement. The reason is562

that, in our DSL, the variable definition z1 represents the D flip-flop circuit (not the signal),563

each usage of the variable z1 will create a copy of the circuit. It is used twice, the circuit is564

thus duplicated twice. The way to avoid duplication is to use let-bindings, which serves the565

same role as that of wires: a bound variable may be used multiple times, just like a wire566

may forward the same signal to multiple gates.567

The adder example in the previous section also suffers from this problem. However, to568

our surprise, the version without let-binding is optimized better by synthesis tools from our569

testing. This problem is common in meta-programming, i.e. write a program to generate570

CVIT 2016

23:18 Digital Design with Implicit State Machines

another program (possibly in another language). We believe linear type systems might be571

useful in such settings to ensure that method call results are used linearly, as a method572

usually synthesize some piece of code, duplicate usage or no usage are usually mistakes.573

Meanwhile, method arguments should be non-linear, i.e., they may be used multiple times.574

4.3 Optimizations575

The synthesized code for the moving average example initially looks like the following (in a576

notation close to the calculus):577
578

1 let x: Vec[8] = fsm { 0 | delay => a ~ delay }579

2 in580

3 let x1: Vec[8] = fsm { 0 | delay1 => x ~ delay1 }581

4 in (x1 + (x << 1) + a) >> 2582583

After lifting of FSMs, we get the following code:584
585

1 fsm { 0 | delay =>586

2 fsm { 0 | delay1 =>587

3 let x6: Vec[8] ~ Vec[8] = a ~ delay588

4 in589

5 let x: Vec[8] = x6.2590

6 in591

7 let x8: Vec[8] ~ Vec[8] =592

8 let x7: Vec[8] ~ Vec[8] = x ~ delay1593

9 in594

10 let x1: Vec[8] = x7.2595

11 in (x7.1 ~ x1 + (x << 1) + a) >> 2596

12 in x8.1 ~ x6.1 ~ x8.2597

13 }598

14 }599600

As expected, a lot of unnecessary let-bindings are introduced, and the flattening of FSMs601

will introduce several more let bindings. To eliminate such bindings, we first transform the602

code into A-normal form (ANF), then perform detupling that reduces pairs to bit vectors,603

and finally inline trivial let-bindings. In the end, we get the following compact code:604
605

1 fsm { 0 | state =>606

2 a ++ state(15..8) ++ ((state(7..0) + (state(15..8) << 1) + a) >> 2)607

3 }608609

Eventually, the generated Verilog code looks like the following:610
611

1 module Filter (CLK, a, out);612

2 input CLK;613

3 input [7:0] a;614

4 output [7:0] out;615

5 wire [7:0] out;616

6 reg [15:0] state;617

7618

8 assign out = (((state[7:0] + (state[15:8] << 1’b1)) + a) >> 2’b10);619

9620

10 initial begin621

11 state = 16’b0000000000000000;622

12 end623

13624

14 always @ (posedge CLK)625

F. Liu, A. Prokopec, M. Odersky 23:19

15 state <= { a, state[15:8] };626

16 endmodule627628

In the Verilog code above, only the following line updates the state of the FSM, other629

lines compute the next state and output:630
631

1 always @ (posedge CLK)632

2 state <= { a, state[15:8] };633

3 endmodule634635

This is the typical code generated by our DSL compiler, all the code is combinational636

except one line, no matter how complex the circuit is. Is the generated Verilog efficient? For637

curiosity, we implemented the moving average filter in Chisel:638
639

1 class MovingAverage3 extends Module {640

2 val io = IO(new Bundle {641

3 val in = Input(UInt(8.W))642

4 val out = Output(UInt(8.W))643

5 })644

6 val z1 = RegNext(io.in)645

7 val z2 = RegNext(z1)646

8 io.out := (io.in + (z1 << 1.U) + z2) >> 2.U647

9 }648649

Chisel generates the following Verilog code after removing comments and the reset input:650
651

1 module MovingAverage3(652

2 input clock,653

3 input [7:0] io_in,654

4 output [7:0] io_out655

5);656

6 reg [7:0] z1;657

7 reg [7:0] z2;658

8 wire [8:0] _GEN_0;659

9 wire [8:0] _T_12;660

10 wire [8:0] _GEN_1;661

11 wire [9:0] _T_13;662

12 wire [8:0] _T_14;663

13 wire [8:0] _GEN_2;664

14 wire [9:0] _T_15;665

15 wire [8:0] _T_16;666

16 wire [8:0] _T_18;667

17 assign _GEN_0 = {{1’d0}, z1};668

18 assign _T_12 = _GEN_0 << 1’h1;669

19 assign _GEN_1 = {{1’d0}, io_in};670

20 assign _T_13 = _GEN_1 + _T_12;671

21 assign _T_14 = _GEN_1 + _T_12;672

22 assign _GEN_2 = {{1’d0}, z2};673

23 assign _T_15 = _T_14 + _GEN_2;674

24 assign _T_16 = _T_14 + _GEN_2;675

25 assign _T_18 = _T_16 >> 2’h2;676

26 assign io_out = _T_18[7:0];677

27 always @(posedge clock) begin678

28 z1 <= io_in;679

29 z2 <= z1;680

30 end681

31 endmodule682683

CVIT 2016

23:20 Digital Design with Implicit State Machines

Now we run the synthesis tool Yosys1 on both files, we get the following result:684

wires wire bits public wires public wire bits cells
Chisel (original) 73 147 11 85 85
Chisel (after correction) 59 106 8 55 73
Our DSL 55 84 4 33 73

685

For all columns, lower is better. The most important is last column cells, which says686

the number of gates required to implement the circuit. The column wires means the total687

number of wires in the synthesized design, the column wire bits means the total number of688

wires in bits, as wires may be wider than 1 bit. The column public wires means the wires689

that exist in the original design, i.e. not created by Yosys, the column public wire bits is690

similar.691

The difference between the first two lines comes from the fact that Chisel handles << by692

incrementing the width of the result, it thus increases wires and gates. Our DSL follows the693

semantics of Verilog, i.e. to keep the result the same width as the shifted bit vector. After694

the correction of the semantics for <<, Chisel uses the same number of gates as our DSL, and695

our DSL still performs better on wire bits. This shows that at least for simple circuits, our696

DSL compiler generates efficient circuits on par with the industry-level DSL.697

4.4 Case Study: Microcontroller698

To further test the usability of the DSL, we implemented a 2-stage accumulator-based699

microcontroller. The microcontroller supports 20 instructions:700

NOP, ADD, ADDI, SUB, SUBI, SHL, SHR, LD, LDI, ST, AND, ANDI, OR, ORI,701

XOR, XORI, BR, BRZ, BRNZ, EXIT702

NOP is the no-op. EXIT is used for testing.703

Arithmetic operations have two versions, those with immediate operands (such as ADDI704

and ORI) and those with indirect operands (such as ADD and OR).705

SHL and SHR always have immediate operands.706

LD loads a date from memory to the accumulator. LDI puts the immediate operand in the707

accumulator. ST stores the value in the accumulator to a memory address.708

BR is unconditional jump. BRZ will jump to the operand address if the accumulator is zero.709

BRNZ is the opposite of BRZ.710

The controller interfaces with a bus, which make the requested data on bus in the next711

clock cycle:712
713

1 type BusOut = Vec[8] ~ Bit ~ Bit ~ Vec[32] // addr ~ read ~ write ~ writedata714

2 type BusIn = Vec[32] // read data715716

The signature of the microcontroller generator is as follows:717
718

1 def processor(prog: Array[Int], busIn: Signal[BusIn]): Signal[BusOut ~ Debug]719720

It takes a program prog to store in a on-chip instruction memory, which is different from721

the external memory connected by the bus. Note that the output type is BusOut ~ Debug,722

where we add Debug for testing purposes:723

1 https://github.com/YosysHQ/yosys

F. Liu, A. Prokopec, M. Odersky 23:21

724
1 type Debug = Vec[32] ~ Vec[_] ~ Vec[16] ~ Bit // acc ~ pc ~ instr ~ exit725726

Note that the width of the program counter PC is unspecified, because it depends on the727

size of the given program. If the program size is 62, then the width is 6.728

At the high-level, the microcontroller is an FSM which contains three architectural states:729
730

1 fsm("processor", pc0 ~ acc0 ~ pending0) { (state: Signal[PC ~ ACC ~ INSTR]) =>731

2 val pc ~ acc ~ pendingInstr = state732

3 }733734

The variable pc refers to the program counter, acc is the accumulator register, pendingInstr735

is the instruction from the last cycle waiting for data from the external memory. The type736

ACC and INSTR are aliases of Vec[32] and Vec[16] respectively. The type PC is an alias of737

Vec[addrWidth.type], where addrWidth is a local variable computed from the program size.738

The skeleton of the implementation is as follows:739
740

1 let("pcNext", pc + 1.W[addrWidth.type]) { pcNext =>741

2 let("instr", instrMemory(addrWidth, prog, pc)) { instr =>742

3 let("stage2Acc", stage2(pendingInstr, acc, busIn)) { acc =>743

4 when (opcode === ADDI.W[8]) {744

5 val acc2 = acc + operand745

6 next(acc = acc2)746

7 } /* ... */ } }747748

It first increments the program counter pc and bind the result to pcNext. Then it binds749

the current instruction to instr. Next, it gets the updated value of the accumulator from750

the pending instruction. At the circuit-level, the three operations are executed in parallel.751

Finally, the instruction is decoded and executed in a series of when constructs. The when752

construct is a syntactic sugar created from the built-in multiplexer that supports selecting753

one of two n-bit inputs by a single bit control. Eventually, each branch calls the local method754

next with appropriate arguments:755
756

1 def next(757

2 pc: Signal[PC] = pcNext,758

3 acc: Signal[ACC] = acc,759

4 pendingInstr: Signal[INSTR] = 0.W[16],760

5 out: Signal[BusOut] = defaultBusOut,761

6 exit: Boolean = false762

7): Signal[(PC ~ ACC ~ INSTR) ~ (BusOut ~ Debug)] = {763

8 val debug = acc ~ (pc.as[Vec[_]]) ~ instr ~ exit764

9 (pc ~ acc ~ pendingInstr) ~ (out ~ debug)765

10 }766767

As can be seen from above, the method next defines default values for all arguments, such768

that each branch may only specify parameters that are different. For example, the following769

are the code for unconditional jump BR and indirect addition ADD:770
771

1 } .when (opcode === BR.W[8]) {772

2 next(pc = jmpAddr)773

3 } .when (opcode === ADD.W[8]) {774

4 next(out = loadBusOut, pendingInstr = instr)775

5 }776777

The implementation for the method stage2 just checks the pending instructions, and778

computes the updated accumulator value from the bus input. If the pending instruction is779

NOP, it simply returns the current value of the accumulator.780

CVIT 2016

23:22 Digital Design with Implicit State Machines

The on-chip instruction memory is implemented by generating nested conditional expres-781

sions. Each condition tests whether the input address is equal to a memory address, if true,782

the instruction at the address is returned in the same clock cycle (they are combinational783

circuits):784
785

1 def instrMemory(addrWidth: Int, prog: Array[Int],786

2 addr: Signal[Vec[addrWidth.type]]): Signal[Vec[16]] = {787

3 val default: Signal[Vec[16]] = 0.W[16]788

4 (0 until (1 << addrWidth)).foldLeft(default) { (acc, curAddr) =>789

5 when[Vec[16]] (addr === curAddr.W[addrWidth.type]) {790

6 if (curAddr < prog.size) prog(curAddr).W[16]791

7 else default792

8 } otherwise {793

9 acc794

10 }795

11 }796

12 }797798

We test the implementation with small assembly programs. Despite the allure of success-799

fully running simple assembly programs, we are aware that the microcontroller is still too800

simple and it may not match quality standards. Our next goal is to implement RISC-V cores801

and compare with the state-of-the-art open source implementations by standard metrics.802

5 Related Work803

Statecharts [12] is a visual formalism which supports hierarchical states and orthogonal states.804

Its formal semantics is subtle, and was given several years later after its first introduction805

[14, 24, 11, 13]. Hierarchical states do not automatically give rise to hierarchical FSMs806

required for hierarchical module composition in circuit design. In a sense, hierarchical states807

and hierarchical FSMs are two orthogonal concepts, as hierarchical FSMs do not imply808

hierarchical states either. Implicit state machines do not support hierarchical states natively,809

but such an extension is conceptually possible, though what they should look like and810

whether they are useful in digital design is open to debate. Implicit state machines just811

do not mandate one separate case for each state in the program, but do not forbid them,812

hierarchical or not.813

An extension of hierarchical FSMs [8] is experimented in Lucid Synchrone [7] and814

integrated in the declarative dataflow language Lustre [6]. The extension is in imperative815

style, and it desugars to a core dataflow calculus. Since the state machines need to define a816

transition for each state separately, their code representation suffers from exponential blowup817

after flattening.818

Caisson [19] is an imperative language for digital design, which supports nested states and819

parameterized states. The language contains both registers and FSM as primitive constructs.820

In contrast, our approach is more fundamental in that it makes implicit state machines as821

the only primitive construct.822

Malik [23] proposed the usage of combinational techniques to optimizing sequential823

circuits by pushing registers to the boundary of the circuit network, and cut the loops when824

needed. The approach is based on a technique called retiming [17], which changes the timing825

behaviors of the circuit by moving registers around in the circuit network. We achieve the826

same goal without changing timing behavior of the circuit. The retiming optimization can827

be expressed on top of implicit state machines.828

F. Liu, A. Prokopec, M. Odersky 23:23

6 Conclusion829

It is well-known that Boolean algebra is the calculus for combinational circuits. In this paper,830

we propose implicit state machines as the calculus for sequential circuits. Implicit state831

machines do not mandate one separate case for each state in the specification of an FSM.832

Compared to classic FSMs, implicit state machines support arbitrary parallel and hierarhical833

composition, which is crucial for real-world programming.834

Compared to explicit state machines that require one separate case for each state, implicit835

state machines enjoy a nice property: any system of parallel and hierarchical implicit state836

machines may be flattened to a single implicit state machine without exponential blowup. For837

digital circuits, this means that any sequential circuit can be transformed into an equivalent838

circuit with state elements at the boundary, and a big combinational core in the center. This839

creates more optimization opportunities for digital circuits, and logic synthesis experts no840

longer need to worry about combinational boundaries anymore.841

There are two directions for future work. First, implicit state machines, due to their842

composability, will make integrated and compositional specification in complex systems843

easier. Meanwhile, flattening may also flatten the specifications, which can then be fed into844

off-the-shelf verification tools, together with the flattened FSMs. In this sense, implicit state845

machines bridge the gap between complex systems and verification tools.846

Second, implicit state machines may lead to new hardware architectures. For example,847

in FPGA architectures, currently state elements are scattered across the chip to support848

different kinds of sequential circuits. This architecture is still not flexible enough, and it is a849

waste of resource when the distribution of the state elements diverges too big from the circuit850

to be implemented on the FPGA chip. A possibility is to centralize all state elements, as any851

circuit is equivalent to a circuit with state elements at the boundary and a combinational852

core, of the same delay and area.853

References854

1 Jonathan Bachrach, Huy Vo, Brian C. Richards, Yunsup Lee, Andrew Waterman, Rimas855

Avizienis, John Wawrzynek, and Krste Asanovic. Chisel: Constructing hardware in a scala856

embedded language. DAC Design Automation Conference 2012, pages 1212–1221, 2012.857

2 A. Benveniste and G. Berry. The synchronous approach to reactive and real-time systems. Pro-858

ceedings of the IEEE, 79(9), September 1991. URL: http://ieeexplore.ieee.org/document/859

97297/, doi:10.1109/5.97297.860

3 A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The861

synchronous languages 12 years later. Proceedings of the IEEE, 91(1), January 2003. URL:862

http://ieeexplore.ieee.org/document/1173191/, doi:10.1109/JPROC.2002.805826.863

4 Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Synchronous programming864

with events and relations: the SIGNAL language and its semantics. Science of Computer Pro-865

gramming, 16(2), September 1991. URL: http://www.sciencedirect.com/science/article/866

pii/016764239190001E, doi:10.1016/0167-6423(91)90001-E.867

5 Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and Lain-Jinn Hwang.868

Symbolic model checking: 1020 states and beyond. Information and computation, 98(2), 1992.869

6 P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A Declarative Language for870

Real-time Programming. In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium871

on Principles of Programming Languages, POPL ’87, New York, NY, USA, 1987. ACM.872

event-place: Munich, West Germany. URL: http://doi.acm.org/10.1145/41625.41641,873

doi:10.1145/41625.41641.874

7 Paul Caspi, Gregoire Hamon, Marc Pouzet, and Univ Paris-Sud. Synchronous Functional875

Programming: The Lucid Synchrone Experiment. 2008.876

CVIT 2016

http://ieeexplore.ieee.org/document/97297/
http://ieeexplore.ieee.org/document/97297/
http://ieeexplore.ieee.org/document/97297/
http://dx.doi.org/10.1109/5.97297
http://ieeexplore.ieee.org/document/1173191/
http://dx.doi.org/10.1109/JPROC.2002.805826
http://www.sciencedirect.com/science/article/pii/016764239190001E
http://www.sciencedirect.com/science/article/pii/016764239190001E
http://www.sciencedirect.com/science/article/pii/016764239190001E
http://dx.doi.org/10.1016/0167-6423(91)90001-E
http://doi.acm.org/10.1145/41625.41641
http://dx.doi.org/10.1145/41625.41641

23:24 Digital Design with Implicit State Machines

8 Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. A conservative extension of synchronous877

data-flow with state machines. In Proceedings of the 5th ACM international conference on878

Embedded software - EMSOFT ’05, Jersey City, NJ, USA, 2005. ACM Press. URL: http:879

//portal.acm.org/citation.cfm?doid=1086228.1086261, doi:10.1145/1086228.1086261.880

9 G. De Micheli. Synchronous logic synthesis: algorithms for cycle-time minimization. IEEE881

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 10(1), January882

1991. URL: http://ieeexplore.ieee.org/document/62792/, doi:10.1109/43.62792.883

10 Giovanni De Micheli, Robert K Brayton, and Alberto Sangiovanni-Vincentelli. Optimal884

state assignment for finite state machines. IEEE Transactions on Computer-Aided Design of885

Integrated Circuits and Systems, 4(3):269–285, 1985.886

11 Willem-Paul de Roever, Gerald Lüttgen, and Michael Mendler. What Is in a Step: New Per-887

spectives on a Classical Question. In Zohar Manna and Doron A. Peled, editors, Time for Veri-888

fication, volume 6200. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. URL: http://link.889

springer.com/10.1007/978-3-642-13754-9_15, doi:10.1007/978-3-642-13754-9_15.890

12 David Harel. Statecharts: a visual formalism for complex systems. Science of Computer891

Programming, 8(3), June 1987. URL: https://linkinghub.elsevier.com/retrieve/pii/892

0167642387900359, doi:10.1016/0167-6423(87)90035-9.893

13 David Harel and Hillel Kugler. The Rhapsody Semantics of Statecharts (or, On the Executable894

Core of the UML). In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg,895

Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan,896

Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi, Gerhard897

Weikum, Hartmut Ehrig, Werner Damm, Jörg Desel, Martin Große-Rhode, Wolfgang Reif,898

Eckehard Schnieder, and Engelbert Westkämper, editors, Integration of Software Specification899

Techniques for Applications in Engineering, volume 3147. Springer Berlin Heidelberg, Berlin,900

Heidelberg, 2004. URL: http://link.springer.com/10.1007/978-3-540-27863-4_19, doi:901

10.1007/978-3-540-27863-4_19.902

14 David Harel and Amnon Naamad. The STATEMATE Semantics of Statecharts. ACM Trans.903

Softw. Eng. Methodol., 5(4), October 1996. URL: http://doi.acm.org/10.1145/235321.904

235322, doi:10.1145/235321.235322.905

15 A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim, C. Schmidt, C. Markley,906

J. Lawson, and J. Bachrach. Reusability is firrtl ground: Hardware construction languages,907

compiler frameworks, and transformations. In 2017 IEEE/ACM International Conference908

on Computer-Aided Design (ICCAD), pages 209–216, Nov 2017. doi:10.1109/ICCAD.2017.909

8203780.910

16 M. Keating. The simple art of soc design. 2011.911

17 Charles E. Leiserson and James B. Saxe. Retiming synchronous circuitry. Algorithmica,912

6(1-6), June 1991. URL: http://link.springer.com/10.1007/BF01759032, doi:10.1007/913

BF01759032.914

18 Patrick S. Li, Adam M. Izraelevitz, and Jonathan Bachrach. Specification for the firrtl language.915

Technical Report UCB/EECS-2016-9, EECS Department, University of California, Berkeley,916

Feb 2016. URL: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-9.html.917

19 Xun Li, Mohit Tiwari, Jason K Oberg, Vineeth Kashyap, Frederic T Chong, Timothy Sherwood,918

and Ben Hardekopf. Caisson: A Hardware Description Language for Secure Information Flow.919

20 Dan Luu. Verilog is weird. https://danluu.com/why-hardware-development-is-hard/.920

Accessed: 2019-12-24.921

21 Dan Luu. Writing safe verilog. https://danluu.com/pl-troll/. Accessed: 2019-12-24.922

22 S. Malik. Analysis of cyclic combinational circuits. Proceedings of 1993 International Conference923

on Computer Aided Design (ICCAD), pages 618–625, 1993.924

23 Sharad Malik, Ellen M Sentovich, and Robert K Brayton. Retiming and Resynthesis: Optim-925

izing Sequential Networks with Combinational Techniques.926

http://portal.acm.org/citation.cfm?doid=1086228.1086261
http://portal.acm.org/citation.cfm?doid=1086228.1086261
http://portal.acm.org/citation.cfm?doid=1086228.1086261
http://dx.doi.org/10.1145/1086228.1086261
http://ieeexplore.ieee.org/document/62792/
http://dx.doi.org/10.1109/43.62792
http://link.springer.com/10.1007/978-3-642-13754-9_15
http://link.springer.com/10.1007/978-3-642-13754-9_15
http://link.springer.com/10.1007/978-3-642-13754-9_15
http://dx.doi.org/10.1007/978-3-642-13754-9_15
https://linkinghub.elsevier.com/retrieve/pii/0167642387900359
https://linkinghub.elsevier.com/retrieve/pii/0167642387900359
https://linkinghub.elsevier.com/retrieve/pii/0167642387900359
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://link.springer.com/10.1007/978-3-540-27863-4_19
http://dx.doi.org/10.1007/978-3-540-27863-4_19
http://dx.doi.org/10.1007/978-3-540-27863-4_19
http://dx.doi.org/10.1007/978-3-540-27863-4_19
http://doi.acm.org/10.1145/235321.235322
http://doi.acm.org/10.1145/235321.235322
http://doi.acm.org/10.1145/235321.235322
http://dx.doi.org/10.1145/235321.235322
http://dx.doi.org/10.1109/ICCAD.2017.8203780
http://dx.doi.org/10.1109/ICCAD.2017.8203780
http://dx.doi.org/10.1109/ICCAD.2017.8203780
http://link.springer.com/10.1007/BF01759032
http://dx.doi.org/10.1007/BF01759032
http://dx.doi.org/10.1007/BF01759032
http://dx.doi.org/10.1007/BF01759032
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-9.html
https://danluu.com/why-hardware-development-is-hard/
https://danluu.com/pl-troll/

F. Liu, A. Prokopec, M. Odersky 23:25

24 A. Pnueli and M. Shalev. What is in a step: On the semantics of statecharts. In Takayasu Ito927

and Albert R. Meyer, editors, Theoretical Aspects of Computer Software, Lecture Notes in928

Computer Science, Berlin, Heidelberg, 1991. Springer. doi:10.1007/3-540-54415-1_49.929

25 Daniel Sanchez. Minispec reference guide. https://6004.mit.edu/web/_static/fall19/930

resources/references/minispec_reference.pdf, 2019. Accessed: 2019-12-24.931

26 Claude E. Shannon. A symbolic analysis of relay and switching circuits. Transactions of the932

American Institute of Electrical Engineers, 57:713–723, 1938.933

27 T.R. Shiple, V. Singhal, R.K. Brayton, and A.L. Sangiovnni-Vincentelli. Analysis of934

combinational cycles in sequential circuits. In 1996 IEEE International Symposium on935

Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96, volume 4,936

Atlanta, GA, USA, 1996. IEEE. URL: http://ieeexplore.ieee.org/document/542093/,937

doi:10.1109/ISCAS.1996.542093.938

28 IEEE Computer Society. IEEE Standard for Verilog Hardware Description Language. IEEE,939

2005.940

29 Harald Søndergaard and Peter Sestoft. Referential transparency, definiteness and unfoldability.941

Acta Informatica, 27:505–517, 1990.942

30 Lin Yuan, Gang Qu, Tiziano Villa, and Alberto Sangiovanni-Vincentelli. An fsm reengineering943

approach to sequential circuit synthesis by state splitting. IEEE Transactions on Computer-944

Aided Design of Integrated Circuits and Systems, 27(6):1159–1164, 2008.945

CVIT 2016

http://dx.doi.org/10.1007/3-540-54415-1_49
https://6004.mit.edu/web/_static/fall19/resources/references/minispec_reference.pdf
https://6004.mit.edu/web/_static/fall19/resources/references/minispec_reference.pdf
https://6004.mit.edu/web/_static/fall19/resources/references/minispec_reference.pdf
http://ieeexplore.ieee.org/document/542093/
http://dx.doi.org/10.1109/ISCAS.1996.542093

	Introduction
	Implicit State Machines
	Introduction
	Syntax
	Semantics
	Type System
	Flattening
	Discussion: Are Implicit State Machines FSMs?

	Programming Model for Digital Design
	Declarative Programming
	Scalable Abstraction
	Acyclic by Construction
	Logic Synthesis

	Implicit State Machine in Scala
	A Quick Glance
	Sequential Circuits
	Optimizations
	Case Study: Microcontroller

	Related Work
	Conclusion

