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ABSTRACT

Music is hierarchically structured, both in how it is per-

ceived by listeners and how it is composed. Such struc-

ture can be elegantly captured using probabilistic gram-

matical models similar to those used to study natural lan-

guage. They address the complexity of the structure us-

ing abstract categories in a recursive formalism. Most

existing grammatical models of musical structure focus

on one single dimension of music–such as melody, har-

mony, or rhythm. While these grammar models often work

well on short musical excerpts, accurate analysis of longer

pieces requires taking into account the constraints from

multiple domains of structure. The present paper pro-

poses abstract product grammars–a formalism which in-

tegrates multiple dimensions of musical structure into a

single grammatical model–along with efficient parsing and

inference algorithms for this formalism. We use this model

to study the combination of hierarchically-structured har-

monic syntax and hierarchically-structured rhythmic in-

formation. The latter is modeled by a novel grammar of

rhythm that is capable of expressing temporal regularities

in musical phrases. It integrates grouping structure and

meter. The combined model of harmony and rhythm out-

performs both single-dimension models in computational

experiments. All models are trained and evaluated on a

treebank of hand-annotated Jazz standards.

1. INTRODUCTION

Music is hierarchically organized, which is probably most

evident in the structure of harmonic sequences. Grammat-

ical models of music describe both local and non-local re-

lations between musical objects such as notes or chords

by assuming a latent hierarchical structure. Originally

inspired by Schenkerian analysis and generative linguis-

tics [9], grammatical models have been used in music the-

ory [14, 19, 24, 25], computational musicology [1, 5, 6, 13,

16, 27], music information retrieval [3, 4, 12, 18, 26], and

increasingly also music psychology [7, 20]. Consider for
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example the Jazz chord sequence C6 D7 Dm7 G7 C6 of the

A-part of the Jazz standard Take the A-Train. A hierarchi-

cal analysis of this sequence is shown in Figure 1a. The

progression D7 Dm7 G7 forms a dominant phrase inside

the tonic phrase C6 D7 Dm7 G7 C6, exhibiting a non-local

harmonic relationship between the chords D7 and G7. The

nesting of the phrases moreover illustrates the idea of how

pieces can be decomposed into hierarchically-structured

constituents (subtrees) which stand in part-whole relation-

ship with one another [6]. Figure 2 displays a typical case

of a non-local harmonic relation in Jazz harmony.

To analyze hierarchical harmonic structures, music the-

orists make use of many additional structural features such

as melody, rhythm, voice-leading, and form, for disam-

biguation. From this perspective, the latent harmonic

structure of a piece cannot be fully inferred from sequences

of chord symbols alone. Most existing grammatical mod-

els of harmony, however, do not take these other domains

of musical structure in account. In this paper, we propose

a novel formalism that combines models of different musi-

cal features. The mathematical idea is similar to Coupled-

context-free Grammars [17]. We extend that approach by

a probabilistic model and apply the general construction to

improve models of harmonic syntax by incorporating har-

monic rhythm.

1.1 Problem Setting

Existing grammatical models of harmony typically do not

capture how harmonic structure is laid out in time [21],

as shown in Figure 1a. This analysis captures informa-

tion such as the dependencies between different kinds of

musical phrase (tonic, dominant, subdominant), ordering,

and hierarchical constituency, but contains no information

on the duration of chords. This paper extends models of

harmonic syntax to include rhythmic structure illustrated

in Figure 1b. This figure shows how the musical phrases

in Figure 1a are laid out in time by progressively assign-

ing constituents to a metrical grid consisting of eight mea-

sures. The inclusion of the metrical domain reveals previ-

ously hidden structure. In the first step, the root of the har-

monic tree is assigned to the entire eight bars. In the sec-

ond step, the tonic phrase is split into equal halves which

are assigned to bars 1-4 and bars 5-8 of the metrical grid.

In the third step, the second half of the piece is split into

equal halves, introducing a V in the first part of the split
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and limiting the tonic scale degree to the second part. The

fourth step, in contrast, splits the first half (measures 1–

4) into two and assigns the second half of this split to the

second half of the progression (measures 5–8). Measures

3 and 4 are said to be a harmonic upbeat to measures 5

and 6. In the following, we present an integrated model

of harmony and phrase rhythm [22] that accounts for the

structural differences of the steps three and four. Note that

we therefore assume the existence of hypermeter, the ex-

tension of metrical structures within a single measure to

relations between measures [11].

We propose an approach that models the upbeat and the

downbeat of harmonic constituents separately. Figure 1c

shows a hierarchical analysis integrating harmonic syntax

and harmonic rhythm. In this notation, the durations of

upbeats are separated from the durations of downbeats by

the symbol ⊕. The symbol � is used to indicate the “time

stealing” from generation step 3 in Figure 1b.

2. GRAMMATICAL MODELS

2.1 Abstract Context-Free Grammars

The following two definitions are adopted from [6], where

further explanation and examples can be found.

A (non-probabilistic) Abstract Context-free Grammar
G = (T,C,C0,Γ) consists of a set T of terminal symbols,

a set C of constituent categories, a set of start categories
C0 ⊆ C, and a set of partial functions

Γ := { r | r : C �→ (T ∪ C)∗ } , (1)

called rewrite rules or rewrite functions. The arrow �→ is

used throughout the paper to denote partial functions and

dom(r) denotes the set of arguments for which a partial

function r is defined. A sequence β ∈ (T ∪ C)∗ can be

generated from a sequence α ∈ (T∪C)∗ by one rule appli-
cation of a rewrite function r ∈ Γ, denoted by α −→r β,

if there exist α1, α2 ∈ (T ∪ C)∗ and A ∈ C such that

α = α1Aα2 and β = α1r(A)α2. A sequence of rewrite

rules r1 . . . rn is called a derivation of a sequence of termi-

nals α ∈ T ∗ if there exists a start category α1 ∈ C0, and

α2, . . . , αn ∈ (C ∪ T )∗ such that

α1 −→r1 α2 −→r2 · · · −→rn α, (2)

where ri is always applied to the leftmost category of αi

for i ∈ { 1, . . . , n− 1 }. The set of derivations of α is

denoted by D(α). The language of the grammar G is the

set of terminal sequences that have a derivation in G.

A Probabilistic Abstract Context-free Grammar is an

Abstract Context-free Grammar where each category A ∈
C is associated with a random variable XA over rewrite

functions r such that the probability P(XA = r) is positive

if and only if r(A) is defined, that is A ∈ dom(r). In the

following, we also use the notation p(r | A) = P(XA = r)
and p(A −→r α) = P(XA = r) �(r(A) = α). The prob-

ability p(d) of a derivation d = r1 . . . rn of a sequence

of terminal symbols α ∈ T ∗ is defined as the product∏n
i=1 P(ri | Ai) where in each step ri is applied to a cat-

egory Ai ∈ C. The probability of α is then defined as

p(α) =
∑

d∈D(α) p(d).

I

I

I

C6

V

V

V

G7

II

Dm7

V/V

D7

I

C6

(a) Generative syntax tree of the harmonic structure. The leafs of
the tree are the chord symbols of the A-part. The internal nodes
show scale degrees with respect to C major as latent categories.
Subtrees form harmonic constituents. The nested structure of the
subtrees shows how complex constituents are build from simpler
constituents [6].

1: | I | | | | | | | |
2: | I | | | | I | | | |
3: | I | | | | V | | I | |
4: | I | | V/V | | V | | I | |
5: | I | | V/V | | II | V | I | |
6: | C6 | | D7 | | Dm7 | G7 | C6 | |

(b) Schematic generation of the chord sequence including their
metrical positions. Each row consists of 8 measures and shows
one step in the generation process. Chords are tied over follow-
ing “empty” measures. The third and the fourth step show the
two basic kinds of harmonic preparation with respect to their
metrical placement. In step three, the preparation of the I by
the V pushed the I back by two measures while in step four, the
preparation of V by V/V protrudes into the time domain of the
preceding I.
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(c) Generative syntax tree of the harmonic structure with inte-
grated rhythmic information. The numbers in parentheses de-
note the duration of the constituents relative to the whole pro-
gression. The branch I(1) −→ I( 1

2
� 1

4
) I( 1

4
⊕ 1

2
) is an in-

stance of a split that anticipates the upbeat preparation of G7 by
D7. Because of a 2 measures long upbeat, the left child is 2 mea-
sures shorter and the right child is 2 measures longer than in a
preparation without an upbeat.

Figure 1: Hierarchical analysis of the A-part of the Jazz

standard Take the A-Train in C major, considering the

structural domains of harmony and rhythm.
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Figure 2: Hierarchical analysis of the Jazz standard Half Nelson, integrating harmonic and rhythmic structure. In this tree,

a duration of 1 corresponds to one measure for the sake of readability (the whole tune spans 16 measures). The non-local

dependency between the chords A�� and G7 constitutes a characteristic harmonic relation of the tune.

2.2 Product Grammars

This paper proposes to improve generative grammar mod-

els of harmony by forming a product of a harmony gram-

mar and a rhythm grammar.

Let G = (T,C,C0,Γ) and G′ = (T ′, C ′, C ′
0,Γ

′) be

two PACFGs and let ar(r) denote the arity of a rule r,

which is defined as the length of its right-hand side. The

product grammar

G �� G′ = (T × T ′, C × C ′, C0 × C ′
0,Γ �� Γ′) (3)

is constructed from the Cartesian products of the sets of ter-

minals, categories, and start categories. The rewrite func-

tions of G �� G′ are all pairs of functions of equal arity,

Γ �� Γ′ = { (r, r′) ∈ Γ× Γ′ | ar(r) = ar(r′) } . (4)

For a product category (A,A′) ∈ C×C ′ and rewrite func-

tions r ∈ Γ and r′ ∈ Γ′ of equal arity, the application of

(r, r′) to (A,A′) is defined component-wise,

(r, r′)(A,A′) = (r(A), r′(A′)). (5)

By abuse of notation, the right-hand side of this equation

does not stand for a pair of sequences, but a sequence of

pairs. The probability of a product rule application is de-

fined as the product of the probabilities of the rule applica-

tion components,

p((r, r′) | (A,A′)) = p(r | A) p(r′ | A′). (6)

That is, the choice of rule r is set to be independent of A′

and r′, and the choice of r′ is independent of A and r in

the generative process.

A helpful intuition of product grammars is that they

compute the intersection of two sets of derivation trees for

a sequence. The derivation trees of the grammar G �� G′

are exactly those which are derivations in both G and G′

if the labels of the trees (terminals and categories) are ig-

nored. The probability of a derivation in G �� G′ is then

also equal to the product of its corresponding derivations

in G and G′.

2.3 Rhythm Grammar

2.3.1 Full Rhythm Grammar

A rhythmic category a ⊕ b consists of two rational num-

bers a ∈ Q and b ∈ Q such that 0 ≤ a, 0 < b, and

a+ b ≤ 1. The first number a is called the upbeat and the

second number b is called the downbeat of the category.

The intuition behind the symbol ⊕ is that the total length

of a rhythmic category equals the sum of its two compo-

nents, λ(a ⊕ b) := a + b, where λ is the function that

denotes the length of the rhythmic constituent as a pro-

portion of the overall piece, which is fixed to be the unit

1 ∈ Q. The condition 0 ≤ a forbids negative upbeat parts,

0 < b ensures positive category lengths, and a + b ≤ 1
ensures that no category is longer than the whole piece.

For convenience, we use two additional short-hand nota-

tions: a category with no upbeat is denoted by the length

of its downbeat, b = 0 ⊕ b. The category of a rhythmic

constituent that loses a portion c of its downbeat (formerly

with length b) to the upbeat of the following rhythmic con-

stituent is denoted by b � c := 0 ⊕ (b − c). In this case

λ(b� c) = b− c, too.

The start category of the rhythmic grammar is 1, the

length of the piece, and any category with zero upbeat

is allowed to be a terminal (leaf node). The essential

grammar rules are given by two families of rewrite func-

tions, one family of partial functions for splitting the up-

beat components of categories usplitv : C �→ C∗ and

one family of total functions for splitting the downbeats

dsplitu
v : C → C∗,

usplitu(a⊕ b) := ((1− u)a⊕ ua) (0⊕ b)
(7)

dsplitv
w(a⊕ b) := (a⊕ (1− v − vw)b) (vwb⊕ wb),

where u, v, w ∈ Q such that 1
2 < u ≤ 1 and a > 0 in

the first equation, and 0 ≤ v < 1 and 0 < w < 1 in the

second equation. The parameter u represents the downbeat
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proportion of the upbeat, v is the upbeat proportion of the

second category of a downbeat split, and w is the downbeat

proportion of the second category of a downbeat split.

In other words: The upbeat split rule usplitu sepa-

rates the upbeat from the downbeat and optionally splits

the upbeat again into a new upbeat and downbeat. For ex-

ample for u = 1 and u = 2
3 :

1
4 ⊕ 2

4

2
4

1
4

3
8 ⊕ 4

8

4
8

1
8 ⊕ 2

8

and

In contrast, the downbeat split dsplitv
w ignores the up-

beat and splits the downbeat. It optionally introduces a

new upbeat preparation. For example for v, w = 0, 1
2 and

v, w = 1
2 ,

1
2 :

1
4 ⊕ 2

4

1
4

1
4 ⊕ 1

4

1
4 ⊕ 2

4

1
8 ⊕ 1

4
1
4 ⊕ 1

8

and

One rule unary(a⊕b) := a⊕b is added to the grammar

to ensure compatability with grammars that use rewrite

rules of arity one.

The probability of a rhythmic rewrite functions does not

depend on the particular rhythmic category that it rewrites,

but only on whether or not the category has an upbeat of

length zero. This enables a maximal sharing of probability

mass by preserving consistency with the constraints of the

rewrite rules. More precisely,

1 = p(unary | a⊕ b) (8)

+
∑

1
2<u≤1

p(usplitu | a⊕ b)

+
∑

0≤v<1

∑
0<w<1

p(dsplitv
w | a⊕ b)

for a > 0 and

1 = p(unary | 0⊕ b) (9)

+
∑

0≤v<1

∑
0<w<1

p(dsplitv
w | 0⊕ b).

For practical applications, the parameters u, v, and w are

limited to a finite set of rational numbers to put a proper

normalized prior on the rule distributions.

2.3.2 Simplified Rhythm Grammar

For comparison, we additionally consider a simplified ver-

sion of the rhythm grammar presented above which does

not explicitly model upbeats. The rhythmic categories

and the terminals of this grammar are rational numbers

0 < a ≤ 1 representing constituent durations relative to

the full piece. Apart from the technical unary rule, the rules

of the grammar form a family of total rewrite functions

splits(a) := (sa) (a− sa). (10)

The parameter 0 < s < 1 is called the temporal split ratio
of the rule. The probabilities of the rewrite rules are set to

be independent from the category they rewrite. Therefore,

1 = p(unary) +
∑
a∈Q

p(splita). (11)

2.4 Harmony Grammar

The harmony grammar used in this paper is a standard

probabilistic context-free grammar (Σ, N, S,R) in Chom-

sky normal form. It consists of a set Σ of chord sym-

bols as terminal symbols, a set of copies of chord symbols

N as non-terminal symbols, a distinguished start symbol

S ∈ N , and a set of standard rewrite rules

R ⊆ {A −→ B1 B2 | Bk ∈ N,A = B1 or A = B2 } .

In particular, rules of the form A −→ A A are included by

this definition. Each non-terminal symbol A is also asso-

ciated with a random variable XA over rewrite rules that

have A as their left-hand side. The symbols, rules, and

parameters of the grammar are read from dataset of tree

annotations described in the next section.

Note that since every rewrite rule of a standard context-

free grammar can be interpreted as a partial function with

a singleton domain,

dom(A −→ α) = {A } for all α ∈ (Σ ∪N)∗, (12)

every standard context-free grammar is also an Abstract

Context-free Grammar and can be used in the product

grammar construction.

3. DATASET

This study uses a dataset of 75 hand-annotated tree analy-

ses of Jazz chord sequences from the iRealPro dataset [23].

The tree annotations were performed by the authors and a

student assistant. Each chord sequence is annotated with a

single binary tree that spans the whole piece. In contrast to

the introductory examples of this paper, the internal nodes

of each tree in the data are not labeled by scale degrees

but chord symbols. depth one subtrees corresponds to a

rule of the grammar described in the previous section. Fig-

ure 3 shows the absolute frequencies of the 20 most fre-

quent harmonic rewrite rules from the dataset, after each

sequence was transposed to the root of C. Rules of the

form A −→ A A, called prolongation rules, and rules

of the form A −→ B A for A 
= B, called preparation
rules, are the most used rule schemes.

The dataset additionally includes the length of each

chord in quarter notes. The chord durations of each piece

are divided by the total duration of the piece. From

the chord durations and the harmonic tree annotations,

the duration of each constituent (subtree) can be calcu-

lated automatically as shown in Figure 4. The temporal

split ratios of the rule applications–as introduced in Equa-

tion 10–are then in turn calculated from the durations of

the constituents. Consider for example the rule application

G7( 5
32 ) −→ F�( 2

32 ) G7( 3
32 ) from Figure 4. Its temporal

split ratio is 2
5 .
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Figure 3: Absolute frequencies of the 20 most frequent

harmonic rewrite rules of the tree annotations. All se-

quences are transposed to the common root C. Major-

seventh chords are denotes as Cˆ7 and A�ˆ7.

C6( 8
32 )

C6( 7
32 )

C6( 2
32 )G7( 5

32 )

G7( 3
32 )

G7( 2
32 )F�∅7( 1

32 )

F�( 2
32 )

F�( 1
32 )C7( 1

32 )

C�( 1
32 )

Figure 4: Tree annotation of the last chords of St. Thomas.

Chord durations are shown relative to the total duration of

the tune, 2
32 corresponds to one measure. The durations of

the inner nodes are calculated automatically.

Figure 5: Absolute frequencies of the 10 most frequent

split ratios of annotated tree constituents. The split ratio

of a binary rewrite rule is defined as the time proportion

of the left child. The y-axis is plotted using a logarithmic

scale.

The 10 most frequent temporal split ratios are shown in

Figure 5. The split ratio 1
2 is by far the most frequent one.

Most of the remaining ratios can be expressed either as
n−1
n or as 1

n for some n ∈ N. The former arise for example

from chains of descending fifths or applied dominants that

accumulate time step by step in the temporal order of the

piece. The latter arise from upbeat preparations that can

be understood using the rhythmic categories described in

Section 2.3.1. Two rhythmic rewrite rules that explain a

split ratio of 1
n are

(
n
m

) −→
(

n
2

m � n
2 −1

m

) (
n
2 −1

m ⊕ n
2

m

)

and
(

1
m ⊕ n−1

m

) −→ (
1
m

) (
n−1
m

)
, where m ∈ N. The

former results from a downbeat split with w = 1
2 and the

latter results from an upbeat split with u = 1.

4. PARSING WITH PRODUCT GRAMMARS

A naive approach to parsing against a product grammar

would enumerate all product categories and memoize the

inverted rewrite rules on these categories. In this section,

we show how the inefficient blow-up of the number of cat-

egories can be avoided using the independence assumption

of Equation 6.

Consider an Abstract Context-Free Grammar in Chom-

sky normal form. The standard CYK algorithm–here used

to calculate the probability of a sequence of terminals

w ∈ T ∗ of length n, indexed from 0 to n − 1–can be for-

mulated recursively by the equations

p(A, i, i) =
∑
r∈Γ

p(A −→r wi) (13)

and

p(A, i, j) (14)

=

j−1∑
k=i

∑
r∈Γ

p(A −→r B1 B2)p(B1, i, k) p(B2, k + 1, j)

where A,B1, B2 ∈ C and i, j ∈ N such that 0 ≤ i < j ≤
n − 1. The probability of the sequence is then given by

p(w) =
∑

A∈C0
p(A, 0, n− 1).

Given a product grammar G �� G′, a sequence of prod-

uct terminals can be parsed utilizing Equation 6,

p((A,A′), i, i) =
∑

(r,r′)∈Γ��Γ′
p(A −→r wi) p(A

′ −→r′ w
′
i)

(15)

and

p((A,A′), i, j) =
j−1∑
k=i

∑
(r,r′)∈Γ��Γ′

p(A −→r B1 B2)

(16)

p(A′ −→r′ B
′
1 B

′
2)p((B1, B

′
1), i, k) p((B2, B

′
2), k + 1, j)

It is therefore sufficient to parse the component grammars

individually at each step. In other words, the combined

grammar is computed on-the-fly to achieve efficiency.
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5. EXPERIMENTS

We compare four product grammars that integrate har-

monic and rhythmic structure. Additionally, we report the

performances of their single-domain components and of

a random baseline. As first component, we consider the

harmony grammar presented in Section 2.4, trained either

on the annotations in the original keys of the tunes or on

the annotations after each tune was transposed to C ma-

jor. As second component, we consider the full rhythm

grammar presented in Section 2.3.1 that distinguishes up-

beats and downbeats of constituents, and its simplification

that uses the total length of the constituents, presented in

Section 2.3.2. All models are trained and evaluated on

the dataset described in Section 3. Apart from the full

rhythm grammar, all models are trained by counting the

harmonic rewrite rules or the temporal split ratios present

in the dataset. The full rhythm grammar is trained using

variational Bayesian inference [8]. Every model predicts

the latent tree structure of a given sequence using the max-

imum a posteriori tree. One-fold cross validation was ap-

plied to avoid overfitting to the data: 75 times the model

was trained on 74 sequences and evaluated on the remain-

ing sequence.

5.1 Evaluation Metric and Baseline

The similarity of two trees is calculated as the unlabeled

tree accuracy, defined as follows. Let α be a sequence of

n terminals, left-to-right indexed from 0 to n − 1, let t be

a tree with α as leafs, and let s be a subtree of t. The

span of s is defined as the pair of the index of its left-most

child and the index of its right-most child. The set of spans

of t consists of the spans of all subtrees of t that are not

leafs. The unlabeled tree accuracy of a tree prediction t to

the respective Goldstandard tree t∗ is then defined as the

cardinality of the correctly predicted spans, divided by the

total amount of spans of t∗.

Given a chord sequence of length n, the random base-

line uniformly samples one tree from the set of all binary

trees with n leafs.

5.2 Results and Discussion

The results of the computational experiments are shown in

Figure 6. All combined models of harmony and rhythm

perform significantly better than the single-domain har-

mony grammars and all models perform significantly bet-

ter than the random baseline (p < 0.01 using 2-sample

bootstrap tests). There is no statistical difference observ-

able between the not transposed and the transposed har-

mony models. Surprisingly, the single-domain rhythm

grammars perform much better than the single-domain har-

mony grammars. This is, however, only possible because

we consider the unlabeled tree accuracy. Other measures

such as perplexity would reveal the obvious incapability of

the rhythm grammars to predict chord sequences.

Both rhythm grammars improve the harmony models

similarly. As discussed in Section 3, the simplified ver-

sion of the proposed rhythm grammar is also able to cap-

Figure 6: One-fold cross-validated tree accuracies of the

tested models and the random baseline. The error bars

show 95% bootstrap confidence intervals. The combined

models of harmony and rhythm perform significantly bet-

ter than the plain harmony grammars.

ture some complex rhythmical structures. The music-

theoretically more sophisticated formalism, however, fa-

cilitates the interpretation and explanation of the observed

split ratios.

6. CONCLUSION

The usage of rhythmical information is shown to signifi-

cantly improve the performance of harmonic syntax mod-

els. The empirical comparison between a music-theoretical

motivated model and its simplified version shows that both

models improve the harmony grammar equally well. The

simplified model can therefore be used as an algorithmic

proxy of the more expressive model. This might, how-

ever, only be true for rhythmically regular structures such

as the harmonic rhythm of chord sequences from Jazz stan-

dards. It is, moreover, surprising how much information is

already contained in the rhythm of the sequences, which

underpins the importance of the rhythmic dimension of

music [10]. In these sequences, both the harmonic syn-

tax and the phrase rhythm work together to strengthen the

intentionality of the music.

The here proposed model of interaction between har-

mony and rhythm is also capable to describe the interaction

of pitch and rhythm in melodies. A rewrite function for

syncopation could be added for future applications, since

syncopation is an essential part of melodic rhythm.

The general product grammar construction presented in

this paper integrates multiple domains of structure using

strong independence assumptions. Future research can ex-

tent the formalism, explicitly modeling inter-domain de-

pendencies. We hope that the presented approach will

prove to be useful for applications such as rhythm quanti-

zation [2], the definition of similarity metrics [5], and com-

putational composition assistance [15].
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