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Abstract

Compressed Sensing teaches us that measurements can be traded for offline computation

if the signal being sensed has a simple enough representation. Proper decoders can exactly

recover the high-dimensional signal of interest from a lower-dimensional vector of that signal’s

observations. In graph domains — like social, similarity, or interaction networks — the relevant

signals often have to do with the network’s cluster structure. Partitioning a graph into different

communities induces a piecewise-constant signal, an object that can be decoded via Graph

Total Variation (G -TV) minimization even if it is not fully observed. In fact, assume that such a

signal can only be accessed by querying vertices at random. Then, we could sensibly ask: what

are the sampling probabilities that minimize the number of queries required for a successful

G -TV recovery? This thesis is an attempt to answer this question through the study of the

success conditions in G -TV minimization programs. I show that the recovery error in these

programs undergoes a phase transition in terms of the number of measurements, with a

threshold that explicitly depends on the vertex-sampling probabilities. It suffices to minimize

this threshold to obtain an optimal sampling design. Yet, sampling optimally in practice has

problems of its own. While numerical experiments reveal that it is important to focus on the

places of the graph where the signal varies, implementing the optimal design without actually

knowing the signal-to-be-sampled remains an open issue.

Keywords: Total Variation, graph signal processing, community structure, piecewise-constant

signal, convex optimization, `1 minimization, analysis sparsity, representer theorem, mini-

mum restricted eigenvalue, small ball method, inexact dual certificate, golfing scheme
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Résumé

L’Acquisition Comprimée nous enseigne qu’il est possible d’échanger des mesures contre du

calcul hors-ligne tant que le signal mesuré a une représentation suffisamment simple. Des

décodeurs appropriés peuvent récupérer exactement le signal d’intérêt de grande dimension

à partir d’un vecteur de plus petite dimension contenant des observations de ce signal. Dans

les domaines de graphes — comme les réseaux sociaux, de similarité ou d’interaction —, les

signaux pertinents ont souvent à voir avec la structure des clusters du réseau. Le partition-

nement d’un graphe en différentes communautés induit un signal constant par morceaux,

un objet qui peut être décodé via la minimisation de la Variation Totale sur le Graphe (G -

TV) même s’il n’est pas complètement observé. En fait, supposons qu’un tel signal ne soit

accessible qu’en interrogeant des nœuds de manière aléatoire. Alors, nous pourrions raison-

nablement demander : quelles sont les probabilités d’échantillonnage minimisant le nombre

de requêtes nécessaires à une reconstruction G -TV réussie? Cette thèse tente de répondre

à cette question en étudiant les conditions de réussite des programmes de minimisation

G -TV. Je montre que l’erreur de reconstruction dans ces programmes subit une transition

de phase en termes du nombre de mesures, avec un seuil qui dépend explicitement des pro-

babilités d’échantillonnage des nœuds. Il suffit de minimiser ce seuil pour obtenir un plan

d’échantillonnage optimal. Cependant, échantillonner optimalement dans la pratique pose

des problèmes particuliers. Bien que les expériences numériques révèlent qu’il est important

de se concentrer sur les endroits du graphe où le signal varie, la mise en œuvre du plan optimal

sans connaître réellement le signal à échantillonner reste une question ouverte.

Mots clés : Variation Totale, traitement du signal dans les graphes, structure de communauté,

signal constant par morceaux, optimisation convexe, minimisation `1, analysis sparsity, théo-

rème du représentant, valeur propre restreinte minimale, small ball method, inexact dual

certificate, golfing scheme
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1 Introduction

Eventually everything connects - people, ideas, objects.

The quality of the connections is the key to quality per se.

— Charles Eames

How much do the votes of politicians reflect their party affiliations? Stokes writes that “political

parties are endemic to democracy” [68, p.245], so wondering about the empirical expression

of party beliefs is important to diagnose issues in the democratic process. It helps inform the

debate of whether political parties “made modern democracy”, contributing to its respon-

siveness and realization of public goods, or “are an inextricable weed” in democracy’s garden,

“partial to their own conception of the good” [68, pp.263–264]. In Switzerland, the National

Council is one of the main stages of federal politics 1. Since 1963, it has had a fixed number of

seats (200) divided into shares proportional to each canton’s percentage of the total population.

Every four years the Swiss people elect a new council, the most recent of which has held office

from 2015 to 2019. It is the 50th legislature since the foundation of the Swiss federation, in

1848. Figure 1.1 displays a photo of the Council hall, next to a scatter plot of the National

Councillors taking part in the 50th legislature, highlighting their party affiliations.

1It is one of the two houses that form the Federal Assembly of Switzerland, the other being the Council of States.
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Chapter 1. Introduction

(a) The Council hall at the Federal Palace in Bern, Switzer-

land. © 2006 http://www.parlament.ch
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PVL
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CSP
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(b) Council members and their party affiliations dur-

ing the 50th legislature.

Figure 1.1 – The Swiss National Council. The scatter plot on the right has more “chairs” than
the 200 in the actual council hall on the left because I account for councillors that resigned or
were replaced throughout the 50th legislature.

The Swiss Parliament has an Open Data policy, allowing — in particular — the consultation of

voting results through a database of parliamentary votes 2. With this data, we can find out how

each National Councillor voted in each of the affairs in the 50th legislature, and, comparing

the voting patterns, record how similar the councilors are to one another in their voting

behaviors. I depict these similarities in the form of a network (or graph) on Figure 1.2a, with

edges connecting councilors who voted the most alike during the period 2015–2019. 3 Despite

increasing polarization of the Council since the 1990s — tied to the rise of the right-wing UDC

party 4 — it is not rare to find in Figure 1.2a councilors from different parties that nonetheless

vote alike. Had the Council been completely polarized, vertices of different colors would never

connect. Still, party affiliation is not meaningless, as there seem to be more connections

within than across parties. But how much of the party division in the Swiss National Council is

encoded in the network structure induced by the voting data? Or, more concretely, if we knew

the party affiliations of half the councilors, as in Figure 1.2b, could we infer the other half of

the labels based on the connectivity information?

2See https://www.parlament.ch/en/ratsbetrieb/abstimmungen/abstimmungs-datenbank-nr. I was pointed to
this source by D. Debruyn, Y. Morize, N. Orgland, and S. Stettler, who were all EPFL Master’s students at the time.

3I disclose the precise way in which this graph is constructed only in Chapter 6. For now, it suffices to interpret
connected vertices as representing councilors with similar voting decisions.

4https://www.swissinfo.ch/eng/political-drift_polarisation-of-swiss-parliament-continues/43752300

2
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(a) The graph with all the party labels.
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(b) The graph with half the party labels.

Figure 1.2 – The voting-similarity graph for the Swiss National Council. Each vertex represents
a council member, and the edges connect members that had similar voting patterns during
the 50th legislature.

These musings are part of the usual pipeline in modern Data Science [76]. An object of interest

in the real-world (Swiss National Council) has some available data (vote results) that can

be used to infer some property (party labels) of the object in question. The need for such

inference may come from difficulties in measuring the desired property or simply out of

scientific interest on the predictive powers of the available data. In the contrived example of

the missing party labels in Figure 1.2b, we might be just interested to see if the voting patterns

reflect the party affiliations. But in graphs such as the Internet or large social networks

querying every single node for some property can be very expensive. The missing information

in these cases is intrinsically due to the large size of the network. To infer, or recover, the

full content from scarce observations, there are two main issues that practitioners concern

themselves with. First, which kind of — and how many — measurements are available. Second,

which machinery to use to retrieve the missing information. The first point pertains to what

I call the sampling stage of the pipeline; the second, to the decoding stage. In this thesis, I

assume the freedom to act in both, choosing a suitable decoder for an important class of

signals and subsequently looking for an optimal sampling strategy adapted to this decoder.

Optimality here refers to reducing the number of measurements needed from the sampling

stage for a successful decoding stage. An added benefit of studying optimal sampling lies in

the possibility to quantify how suited the decoder is in retrieving the signals of interest. The

more samples the decoder needs, the less suited it is. Take, for example, the Swiss National

Council data, and imagine we chose a decoder for missing party labels (like those of Figure

1.2b) based on the voting-similarity connections. This decoder’s optimal number of samples

could, therefore, function as a numerical proxy to how well the councilors’ votes echo their

party affiliations.

3



Chapter 1. Introduction

1.1 The main objects and questions in the thesis

Networks (or graphs) have long been objects of interest in Mathematics and Computer Science,

but they have found their way into Signal Processing over the last decade or so. Graph Signal

Processing (GSP) is now an established subfield [66, 64, 55], concerned with any quantities

whose support can be interpreted as being a graph. I have already shown a graph signal.

Each member (vertex) of the Swiss National Council was associated with a party color, so

we can understand the mapping “councilor 7→ color” in Figure 1.2b as a signal living on the

voting-similarity graph. On the Internet, a relevant signal is the number of data packets at

each router; on a social network, it might be people’s likelihood of buying a given product.

Even when a graph is not naturally present — as in the Swiss National Council example —,

representing the variable dependencies through a network may be a beneficial pre-processing

step. To connect a vertex to only a few neighbors is akin to performing statistical selection,

restricting a variable’s predictors to its most similar peers. Moreover, these few connections

implicitly constrain the interactions between vertices to happen only locally, so comparisons

of signal values can be more efficiently computed.

One of the central tenets of GSP can be stated as “connected vertices have similar signal

values”. 5 It is the glue that binds the graph and the signals that it supports, but it gives

room to specify what “similar values" means. This thesis deals with a particular set of graph

signals deemed piecewise-constant. In loose terms, these objects assume constant values

over sizeable swathes of the graph but are allowed to vary abruptly between the constant

pieces. The councilors’ colors in Figure 1.2b is an example of a piecewise-constant signal: each

party defines a piece of constant color, but those colors are allowed to vary abruptly between

pieces. In general, any classification or segmentation task can be interpreted as producing

a piecewise-constant signal on some graph. Indeed, imagine a social network, then assign

value 1 to every person who has watched the 2010 movie “The Social Network”, and value 0

otherwise. The {0,1}-valued labels thus defined form a piecewise-constant signal over the

social network. Whenever we know the value of a signal at a vertex of the graph, I will say that

this vertex has been sampled. Sampled vertices represent the knowledge that an oracle made

available to us to help us figure out the full underlying signal. This thesis admits oracles that

provide vertex samples independently at random, according to a probability distribution set

beforehand. They are a model for any stakeholder that has a budget number of samples with

which to query the network for a signal of interest. Some vertices may be more important than

others, so they could be sampled with higher likelihood; the samples are kept independent

to facilitate the mathematical treatment of the process. Intuitively, if a company wants to

sell a product, then “influencers” in a social network should be queried for their propensity

to advertise the merchandise. Readers will find in Chapter 2 all the formalism that I use in

subsequent chapters when speaking of graphs, signals on graphs, and the sampling of these

signals.

5An analogous statement, “similar variables have similar outputs”, is the central assumption of the related field
of Semi-Supervised Learning [15].
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1.1. The main objects and questions in the thesis

Ground-truth

Samples (m = 114)

Recovered

Figure 1.3 – Example of the pro-
cessing pipeline highlighting the
sampling and decoding (recov-
ery) stages. See the paragraph on
the left for details.

The decoders in this thesis manifest themselves in terms

of convex programs. That is, their output is chosen by min-

imizing some convex loss function. Piecewise-constant

signals vary only across few of the edges on their graph

support, so it makes sense to pair them up with a recov-

ery function that penalizes edge-differences. 6 This idea

leads to the central subjects of the thesis, Graph Total Vari-

ation (G -TV) decoders. They are programs that minimize a

semi-norm of the form ‖D·‖1, for some difference operator

D. Total Variation (TV) minimization is a standard tool for

processing “classic” time-series or images that have rare,

but sudden changes in value. Think here of a quantized

waveform, or a Mondrian painting. I will show how TV

and piecewise-constant graph signals are also intimately

related. Chapter 3 provides the required background on

convex recovery and introduces the G -TV decoders so cen-

tral to this thesis.

The performance of the decoder depends on what happens

at the sampling stage. To get a better feeling for this, let

us revisit the Swiss National Council example, this time

with a different graph signal. The top row of Figure 1.3

depicts the indicator function of the Swiss People’s Party

(UDC in French), the largest party in the 50th legislature,

occupying about 30% of the total seats. The signal takes

value 1 (yellow) at vertices representing UDC members

and 0 (blue) everywhere else. UDC is politically the farthest

to the right on the National Council, so the party should

be fairly well encoded in the voting patterns represented

by the edges of the graph. In the middle row of Figure

1.3, I have sampled the UDC indicator function at 50%

of the vertices, uniformly at random. Many instances of

both yellow (UDC) and blue (non-UDC) vertices appear in

the sample because the party constitutes a considerable

share of the Council. The third row of Figure 1.3 shows the

decoded signal as output by G -TV interpolation, yet to be introduced in Chapter 3. Most of the

vertex labels are recovered correctly, but there are visibly wrong assignments. This means that

sampling uniformly at random the labels of half the councilors is still not enough to guarantee

a perfect recovery using our decoder. Sampling uniformly at random, however, is not the only

way to query the vertices under our oracle model. We could sample more often the vertices

6In a way, this recovery procedure is an instance of transductive learning [15, Chapter 24] where the sampled
vertices form the training set, the unsampled vertices form the testing set, and the loss implicitly defines a search
space.
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Chapter 1. Introduction

that are poorly connected, or the hubs of the graph, or even mix those two strategies. The

possibilities are endless. Rather than think of an ad hoc plan of action, this thesis asks

What is the vertex sampling design that minimizes the number of

measurements required for the success of G -TV decoders?

The best hope one has to find a sampling design that answers the question above is by studying

the conditions for successful recovery under G -TV minimization. In the course of this study,

we will encounter typical concepts that usually arise when dealing with stochastic objects in

high dimensions [77, Ch. 1], such as concentration, universality, and sharp transitions. In

particular, I will show that the recovery error drops suddenly to zero (with a high likelihood)

at a critical number of measurements that depends on the vertex sampling probabilities.

Minimize this threshold and one can find the optimal sampling design.

1.2 Contributions

To prove that a convex program returns the desired output, one must produce a certificate, an

object whose very existence guarantees the success of the recovery procedure. Chapters 4 and

5 describe two parallel attempts that I made towards producing such guarantees.

In Chapter 4, the certificate manifests itself as a positive lower bound on a minimum gain

functional. This view has proven fruitful when Gaussian-like vectors are used to measure the

ground-truth signal and has become standard in the literature [14, 72]. However, the nature of

vertex sampling gets in the way of the usual small-ball method [50, 38] used to lower bound

the minimum gain. As a result, I ultimately fail in this attempt, but I end the chapter pointing

towards a possible redemption, reliant on better knowledge of the coordinate structure of a

certain “descent cone”.

The real win comes in Chapter 5, while seeking a dual certificate for the G -TV decoder. There,

the Karush-Kuhn-Tucker conditions of the problem motivate a blueprint for an iterative golfing

scheme [28] that produces, in the end, the desired recovery guarantee. It is in this chapter

that the number of measurements implying a successful recovery is upper bounded by an

expression that depends on the vertex sampling probabilities. The optimal sampling design

then comes directly as a corollary. Interestingly, the sampling probabilities in this design

depend on how each vertex perturbs the graph difference operator, restricted to the edges

across which the piecewise-constant signal-to-be-recovered changes in value.

Chapter 6 closes the thesis with a numerical tour to balance out the mostly theoretical dis-

cussion up to that point. There I plot — for a variety of graphs and signals of interest —, the

phase transition underwent by the recovery error of a G -TV decoder when the number of

sampled vertices changes. Experiments show how these phase transitions can be improved

6



1.3. The presentation of the proofs

using proper sampling designs, but the question of how to make proper designs that are also

practical remains open in the end.

1.3 The presentation of the proofs

Most chapters in this thesis contain theorems with somewhat lengthy proofs, whose immedi-

ate presentation would disturb the flow of the text. For this reason, I have gathered detailed

arguments largely in appendices at the end of the relevant chapters. The proofs themselves

are written in a hierarchical structure, based on the guidelines advocated by L. Lamport [43].

For the unfamiliar reader, this means that I build a sequence of discrete, provable claims

leading to the desired result. Each of these discrete claims is settled as true either by appealing

to established knowledge or by presenting a sequence of discrete sub-claims. In the end,

the full proof resembles a nested list. I have avoided too much nesting due to the obvious

limitations of the printed format. Still, the hierarchical structure should make it easier to

distill the arguments and find exactly where I use each assumption in the statement of their

respective theorems.

1.4 Reproducibility and Open Science

This work is licensed under a Creative Commons Attribution 4.0 International

License. All the computer code required to reproduce the contents of this

thesis is distributed under the MIT License, and hosted at the following repository:

https://github.com/rodrigo-pena/phd-thesis
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2 Graphs, signals, and sampling

Graphs are combinatorial objects, but much of graph signal processing is a matter of linear

algebra. A real-valued signal supported on a network can be embedded on a Euclidean space

with dimension equal to the number of vertices. In this space, various difference operators

can be defined and used as a basis for Fourier analysis or dynamical process analogs for graph

signals [66].

The signals that this thesis cares about are piecewise-constant, a characteristic tantamount to

having few variations (or jumps) in value across edges. To measure such variations, we work

with an operator D, called the graph gradient matrix, whose induced p-semi-norms ‖D · ‖p

yield various ways to quantify the amount of signal variation on the graph. The semi-norms

corresponding to p = 1,2 receive special names: Graph Total Variation (G -TV) and Dirichlet

form, respectively. The former is one of the main objects of study in the thesis; the latter

appears sporadically, as a comparison point to the G -TV.

The act of sampling signal values is also cast in the language of linear algebra. Vertex mea-

surements can be obtained through multiplication with a random matrix A indexed by a

sampling setΩ. Specifying the inclusion probabilities of indices intoΩ is called a sampling

design. This design is represented numerically by a vectorπ, whose influence on the inclusion

probabilities I present in two alternative ways, the Bernoulli Sampling Model (Ber(π)) and

Coordinate Sampling with Replacement (CSWR(π)). Convenience dictates which one is used

when: Ber(π) in Chapter 4; CSWR(π) in Chapter 5. From the perspective of recovery problems,

we will see that these two models are essentially equivalent.

This chapter’s goal is to explain how the processing and sampling of graph signals can be seen

as issues about vectors and matrices. Readers can use it as a reference because much of the

notation in the thesis is already established here.
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Chapter 2. Graphs, signals, and sampling

2.1 Graph signal processing

Graphs, or networks, are tuples G = (V ,E ) of a vertex set V and an edge set E . The latter

contains ordered pairs evu = (v,u) that indicate directed connections from some vertex v ∈V

to another vertex u ∈V . We will consider a graph to be undirected if (v,u) ∈ E ⇐⇒ (v,u) ∈ E ,

that is, if vertex v connects to u if and only if u also connects to v . Moreover, a graph has no

self-loops if (v, v) ∉ E ,∀v ∈ V , and is connected if, starting from any vertex, one can visit all the

others by following the edges in E . The graphs in the numerical examples of Chapter 6 are all

connected, undirected, and without self-loops. Any other reference to graphs in the rest of the

text can be assumed to be valid for generic networks.

In machine learning and signal processing, graphs are commonly used to encode “closeness”

or “similarity” between the objects represented by the vertices. A common way to quantify

those similarities is by attaching non-negative weights to the edges of the graph. The larger

the weight, the more similar the corresponding connected vertices. Formally, the weight

assignment is done through a function w : E → R≥0. But an alternative representation of

the weights can be derived once we impose an arbitrary ordering v1 < v2 < ·· · < vn to the n

vertices in V . With this fixed ordering, we can build a weighted adjacency matrix W ∈ Rn×n

with entries given by

∀i , j ∈ [n], Wi j =
{

w((vi , v j )) if (vi , v j ) ∈ E

0 otherwise.

On undirected graphs, any pair (vi , v j ), (v j , vi ) really represents the same undirected edge. In

this case, we make the weight function symmetric, that is, w((vi , v j )) = w((v j , vi )), ∀vi , v j ∈ V .

As a consequence, W for an undirected graph is a symmetric matrix. Whenever the weight

function satisfies w ≡ 1, we say that the graph is unweighted, recovering in W the classic

adjacency matrix used in algebraic graph theory.

I reserve the variable n for the number of vertices on a graph. In other words, for any G = (V ,E ),

we will have n := |V |. Alluding to the imposed order on the vertices of V , we can employ a

one-to-one mapping between V and [n] := {1,2, . . . ,n}. This mapping, takes i 7→ vi , and vice

versa, for every i ∈ [n]. Without fear of ambiguity then — and for the sake of presentation —, I

interchangeably refer to the vertex set as either V or [n]. Similarly, we keep the letter N for

referring to the number of edges, |E |. The capital N also works as a mnemonic device for the

fact that the number of edges will almost always be larger than the number of vertices. In fact,

for any connected, undirected graph G , the bounds |V |−1 ≤ |E | ≤ |V |(|V |−1)
2 apply by a simple

counting exercise. The lower bound is reached if G is a tree, whereas the upper bound holds

whenever G is a complete graph.

Any function f : V → Rn is thought of as a signal on the graph. Intuitively, the naming is

justified by imagining each vertex v ∈ V as having a real value f (v) living on top of it. We can

10



2.1. Graph signal processing

then refer to the graph as the support of the signal. This view is borrowed from graphs such as

sensor networks, where each vertex (sensor) has a clear signal component (e.g., temperature)

attached to it. But we can abstract from this example and refer to, say, the numerical labels of

vertices in a clustered network as a graph signal as well.

For processing reasons, it is useful to identify the set of graph signals with the set of vectors

in Rn , via the bijection between V and [n]. In practice, this only means that for any x ∈ Rn

there exists a graph signal f such that x = (
f (vi )

)n
i=1, for some ordering v1 < v2 < ·· · < vn of

the vertices in V . From now on, having this identification in mind, I will only refer to graph

signals as vectors in Rn .

R

0

1

2

v1

v2

v3

v4

x =


f (v1)

f (v2)

f (v3)

f (v4)

=


2

2

2

1

 ∈R4

G = (V ,E )

V = {v1, v2, v3, v4}

E = {(v1, v2), (v2, v3), (v3, v4), (v3, v1),

(v2, v1), (v3, v2), (v4, v3), (v1, v3)}

Figure 2.1 – A signal supported on a graph. The graph is a tuple G = (V ,E ) of vertices and
edges, and the signal is a function mapping vertices to the reals (in this case). The vector
representation x of the graph signal gathers the function values at each vertex, once an
(arbitrary) vertex ordering has been fixed.

2.1.1 Piecewise-constant graph signals

In Figure 2.1 is what we would intuitively call a piecewise-constant signal: it assigns a constant

value of 2 for vertices v1, v2, v3 and another constant value of 1 to vertex v4. We could even

think that this signal encodes the community structure of this graph, with v1, v2, v3 in one

community and v4 in another.

To properly define a signal that is constant by pieces, it helps to explore a notion of “step-

functions” on graphs, similarly to how Figure 2.1 distinguishes between a “red” step and a

“blue” step. The indicator vector of a subset W ⊂ V is the object with entries

1{W }[i ] =
{

1 if vi ∈W

0 otherwise
, ∀i ∈ [n]. (2.1)
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Chapter 2. Graphs, signals, and sampling

The blue component of the signal in Figure 2.1 is the indicator vector of the vertex set {v4},

while the red component is twice the indicator vector of {v1, v2, v3}. Should we then state that

any graph signal x ∈Rn is piecewise-constant if it can be written as a linear combination of

indicator vectors? No, because the set of indicators
{
1{i }

}n
i=1 ≡ {ei }n

i=1 forms the standard basis

in Rn , so any graph signal lies in its linear span. To earn the adjective of piecewise-constant, a

signal must also have relatively few variations, which we can quantify with help from difference

operators.

2.1.2 Difference operators on graphs

The weights in the adjacency matrix W are supposed to represent how “close” vertices are to

one another. Hence, it is natural to consider gradient maps ∇G f : E → RN of graph signals

f : V →Rn as producing edge differences 1

(∇G f )[e] =
√

W j ,i
(

f (v j )− f (vi )
)

, ∀e = (vi , v j ) ∈ E . (2.2)

This gradient assigns each e = (vi , v j ) to a real number quantifying the variation of the signal

f from vertex vi to vertex v j . If f (v j ) is larger, this variation is positive, indicating that the

signal increases when going from vi to v j .

As we have done for vertices, fix now an (arbitrary) ordering e1 < e2 < ·· · < eN of the edges in E .

The gradient map can then be encoded in a weighted, signed, matrix D ∈RN×n with entries 2

Dkl =


√

W j i if l = i

−√
Wi j if l = j

0 otherwise

, ∀k ∈ [N ], l ∈ [n], with ek = (vi , v j ). (2.3)

If x = ( f (vi ))n
i=1 is the vector representation of a graph signal f , then the gradient map ∇G f

can be just as well expressed by the matrix-vector multiplication Dx. For this reason, I will

refer to D as the gradient (or difference) operator associated with graph G .

Going back to “step functions”, one can verify that D1W is supported 3 on the boundary ∂W ⊂ E

corresponding to the edges between the vertex set W and its complement V \ W . In graph

theory, ∂W is also known as the cut-set determined by the partition (W ,V \W ) of the vertex

set.

We can use any `p -norm to define a measure of “size” of a cut-set in a way that accounts for

1The square root in the expression is standard [66] and has to do with obtaining a clean expression for a related
difference operator, the graph Laplacian.

2For readers familiar with graph theory, this is a version of the transpose incidence matrix.
3The word “support” here refers to the edges corresponding to the non-zero entries of vector D1W .
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2.1. Graph signal processing

the edge weights:∥∥D1{W }
∥∥p

p =
∑

e=(vi ,v j )∈E

(
W j i

)p/2 ∣∣1{W }[ j ]− 1{W }[i ]
∣∣p

=
∑

e=(i , j )∈∂W

(
W j i

)p/2 .

The choice of p only influences — a priori — the importance given to the edge weights for the

size computation.

More generally, a linear combination of indicator vectors induces several partial cut-sets, one

for each constant piece. I call the union of these partial cut-sets the jump-set, indicating across

which edges the signal changes value. For piecewise-constant graph signals, we should expect

the size of the jump set to be small with respect to the total number N of edges in the graph.

The jump-set can be identified with an index set in [N ] via the action of D.

Definition 2.1.1 (Jump-set). The jump-set of a graph signal x ∈Rn is the set

S := supp(Dx) (2.4)

containing the indices of the non-zero entries of the weighted-edge-differences vector Dx.

R

0

1

2

v1

v2

v3

v4

e1 e2 e3 e4 e5 e6

e7

e8

Dx =



f (v1)− f (v2)

f (v2)− f (v1)

f (v2)− f (v3)

f (v3)− f (v2)

f (v3)− f (v4)

f (v4)− f (v3)

f (v3)− f (v1)

f (v1)− f (v3)


=



0

0

0

0

+1

−1

0

0



S := supp(Dx) = {5,6}

Figure 2.2 – Difference operation on the graph signal from Figure 2.1, assuming unit-weight
connections. The piecewise-constant signal varies only across two of the eight directed edges
in the graph. The jump-set S indexes the twin edges e5 and e6, whose cut splits the graph
into “red” and “blue” communities.

We can also measure the size of the jump-set using `p norms of Dx. Let x =∑L
l=1αl 1{Wl } be a

signal with L constant pieces, taking values {αl }L
l=1 on corresponding disjoint vertex subsets
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Chapter 2. Graphs, signals, and sampling

W1, . . . ,WL . The functional ‖Dx‖p
p decomposes into L terms, one for each constant piece:

‖Dx‖p
p =

∑
e=(vi ,v j )∈E

(
W j i

)p/2 ∣∣x[ j ]−x[i ]
∣∣p (2.5)

=
L∑

l=1

∑
vi∈Wl

∑
v j∈Wk 6=Wl

(
W j i

)p/2 |αl −αk |p .

I give special names to the functionals corresponding to two particular choices of p.

Definition 2.1.2 (Graph Total Variation (G -TV)). The Graph Total Variation of a signal x ∈Rn

is given by

‖Dx‖1 =
∑

i∈[n]

∑
j∈[n]

√
W j i

∣∣x[ j ]−x[i ]
∣∣ (2.6)

Definition 2.1.3 (Dirichlet form). The Dirichlet form of a signal x ∈Rn is given by

‖Dx‖2
2 =

∑
i∈[n]

∑
j∈[n]

W j i
(
x[ j ]−x[i ]

)2 (2.7)

Graph Total Variation is a constant presence in this thesis, whereas the Dirichlet form appears

in chapters 3 and 6 as a comparison point for results concerning the G -TV semi-norm.

The null space of D is a particularly important object in the analysis of the G -TV decoders

introduced in the next chapter. As usual for difference operators, null (D) is non-trivial, that

is, it contains a subspace of dimension at least one. If the associated graph is connected, this

subspace is span(1), the set of constant vectors in Rn . If, however, the graph has disconnected

parts, then null (D) will also contain the vectors that are constant on each of the connected

sub-graphs. In the limiting case of a graph without edges, null (D) ≡Rn .

2.2 Sampling

To sample is to request the values f (v) for every vertex v in some query set Q ⊂ V . In the

vector interpretation of graph signals, this process is the same as measuring a coordinate

subset of a point in Rn . To sense coordinates, consider the standard basis {ei }n
i=1 of Rn , where

each vector ei contains a one at the i th coordinate and zeros otherwise. Using this basis, a

coordinate sample yi ∈R of a graph signal x = ( f (vi ))n
i=1 at vertex vi is nothing but the inner

product

yi = 〈ei ,x〉 = xi .
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2.2. Sampling

More generally, given a sampling setΩ ∈ [n] of cardinality |Ω| = m, we can form a matrix

A := (
e>i

)
i∈Ω ∈Rm×n (2.8)

and define a sampling vector y = (yi )n
i=1 via the linear operation y = Ax.

Call A = A(Ω) the measurement matrix associated with the coordinate sampling setΩ. Some-

times it will be convenient to “lift” the co-domain of A to Rn , by inserting zero-valued rows for

the coordinates outside the sampling set. The resulting square matrix is
∑

i∈Ω ei e>i =: PΩ, the

orthogonal projection operator onto the sampling set. With that in mind, I will abuse notation

every once in a while and write A = PΩ as a shorthand.

A sampling design is a blueprint for choosingΩ, even if implicitly defined. In general, designs

can be either deterministic or probabilistic, but we will consider only the latter 4. I assign a

numeric template to sampling design in the form of a vector π= (π1,π2, . . . ,πn). This vector

assigns sampling probabilities to each element of [n], but not necessarily their inclusion

probabilities into Ω. Nonetheless, a larger πi implies a more likely sample of vertex vi . We

will assume that each coordinate is sampled independently from the others, a convenient

constraint for the probabilistic estimates in chapters 4 and 5.

R

0

1

2

v1

v2

v3

v4

?

?

y =
[

f (v1)

f (v4)

]
=

[
1 0 0 0

0 0 0 1

]
︸ ︷︷ ︸

A

x

Ω= {v1, v4}

Figure 2.3 – Sampling the graph signal of Figure 2.1. A vertex is more likely to be in the sampling
setΩ if its corresponding entry in π= (π1,π2,π3,π4) is large. Vector y gathers the measured
(sampled) signal values, a linear operation over the ground-truth x.

There exist parametric possibilities for modeling the probabilities in π. For an example, Jung

[34] takes each πi from an exponential family, parametrized by the signal value xi at vertex vi .

We will proceed otherwise, seeing the entries of π merely as unspecified real numbers in the

interval [0,1].

4Technically, it is possible to produce deterministic sampling designs from probabilistic ones by setting proba-
bility masses to either zero or one.
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Chapter 2. Graphs, signals, and sampling

2.2.1 Bernoulli Sampling Model (Ber(π))

Define random selectors {δi }n
i=1 by drawing n independent, {0,1}-valued Bernoulli random

variables, each of which according to the probabilities

P ({δi = 1}) =πi = 1−P ({δi = 0}) ,∀i ∈ [n]. (2.9)

These selectors induce a sampling set according to the rule Ω = {i ∈ [n] : δi = 1}. Note that

each vertex i ∈ [n] is included in the sampling set with probability

P ({i ∈Ω}) =πi .

An advantage of using Bernoulli selectors is that the independent coordinate samples do not

repeat. There is no redundancy in the sampling set, in the sense that the number of unique

coordinate observations is equal to the cardinality ofΩ. The downside is that this cardinality

is itself a random variable. Indeed, |Ω| =∑n
i=1δi , so the number of samples is not determined

a priori. Fortunately, the distribution |Ω| is fairly well concentrated around its expectation

m := E (|Ω|) =∑n
i=1πi . An application of the scalar Bernstein inequality (Lemma A.0.1) yields

m

2
≤ |Ω| ≤ 3m

2
, (2.10)

with probability at least 1−2exp
(−m /9

)
.

The (lifted) measurement matrix induced from the Bernoulli model can be written directly in

terms of the selectors, bypassing the sampling setΩ:

A =
∑
i∈Ω

e>i e>i =
n∑

i=1
δi e>i e>i , (2.11)

this expression will be very useful in Chapter 4.

2.2.2 Coordinate Sampling with Replacement (CSWR(π))

Let ω be a random variable taking values in [n] with probabilities P ({ω= i }) = πi , for each

i ∈ [n]. Draw m i.i.d. copies, ω1,ω2, . . . ,ωm , of ω and define the sampling multiset Ω =
{ωi }m

i=1 containing all those copies, including repetitions. This process effectively implements

independent coordinate sampling with replacement. In particular, setting π= (1/n, . . . ,1/n),

one retrieves uniform random sampling.

Compared to the Bernoulli model, the likelihood that any given vertex i ∈ [n] is in the sampling
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set has a more complicated expression:

P ({i ∈Ω}) =P ({ω1 = i ∨·· ·∨ωm = i })

= 1−P ({ω1 6= i ∧·· ·∧ωm 6= i })

= 1−P ({ω 6= i })m (i.i.d. )

= 1− (1−πi )m .

However, the total number of measurements is now deterministic and equal to m. This

property proves to be convenient in Chapter 5.

2.2.3 Reconstruction from samples

Behind every sampling procedure, there is an underlying signal x which is the real object of

interest. Sometimes the measurements only need to be numerous enough to estimate the

mean, variance or other simple statistics of x. We, however, want to recover the full signal, in

the spirit of Compressed Sensing (CS).

It should be expected that our ability to reconstruct a sub-sampled signal depends on how

many measurements we have taken. If we sample all of the n coordinates of x then the

problem is trivially solved; if we sample none, there is no hope for recovery. The interesting

cases are somewhere in between, especially when the number of measurements m is much

smaller than the dimension n of the signal, a setup we informally refer to as m ¿ n. In terms

of linear algebra, recovery of x from y = Ax is an attempt to invert a matrix A ∈ Rm×n that

is rank-deficient. This problem has infinitely many solutions and is therefore ill-posed. In

Chapter 3, I present decoders D :Rm →Rn , based on convex optimization, that remedy this

situation. They revert the measurement process, yielding x =D(y), as long as x belongs to a

restricted class of vectors within Rn .

I have previously postulated that the optimal sampling design for a fixed decoder will minimize

the number of measurements needed for a successful recovery. Intuitively, such a design

should sample more often the coordinates that contribute the most to the recovery confidence,

while neglecting those that do not add as much value. In terms of the probabilities in π =
(π1, . . . ,πn), each entry πi can be thus seen as an importance measure of coordinate i from the

perspective of the decoder. These guidelines become formal once we can precise how each of

the sampling probabilities in π affects the performance of the decoder.

2.2.4 “Equivalence” between the sampling models

Using the Ber(π) or the CSWR(π) model in our context is essentially a matter of convenience.

Indeed, we can borrow an argument by Candès et al. [12, Appendix], which I have detailed in

Appendix 2.A. The reasoning holds in the context of any decoder whose success probability,

P ({Success}), is monotonically increasing with the sample size m. This is the case for the
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Chapter 2. Graphs, signals, and sampling

procedures commonly used in Compressed Sensing.

To begin, P ({Success}) when sampling without replacement can only be larger than the cor-

responding success probability when sampling with replacement when we have the same

number of measurements in both settings. The Ber(π) model is without replacement, but

produces a random number of measurements. The tails of this distribution allow the redun-

dant CSWR(π) model to “catch-up”, as long as the number of redundant samples in the latter

is slightly larger than the average produced by Ber(π). Ultimately the two models, CSWR(π)

and Ber(π), need a similar number of measurements to reach the same recovery success

probability.

A related discussion comparing the use of sampling with or without replacement can be found

in Gross and Nesme [29], grounded on a classical moment domination result by Hoeffding

[30].

2.3 Summary

We can reason about signal processing on graphs by defining appropriate vector spaces and

linear operators therein that depend on the connections between vertices. Fundamentally,

signal variations across edges can be measured a map x 7→ Dx. Piecewise-constant graph

signals are the ones that have few edge variations, or a “small” jump-set. The size of the jump-

set can be measured by `p semi-norms induced by the graph gradient operator, allowing us to

assess the degree to which a signal can be deemed piecewise-constant. Table 2.1 is a record of

important Graph Signal Processing objects that are often referenced in the following chapters.

Concept Notes

Number of vertices n

Number of edges N

Jump-set of a signal x S := supp(Dx)

null (D) Contains at least span(1)

Graph Total Variation (G -TV) ‖Dx‖1 =
∑

i , j
√

W j i
∣∣x[ j ]−x[i ]

∣∣
Dirichlet form ‖Dx‖2

2 =
∑

i , j W j i
(
x[ j ]−x[i ]

)2

Table 2.1 – Summary of objects related to the graph gradient operator D ∈RN×n .

Vertex sampling is also a linear operation, x 7→ Ax, where the rows of A are taken from the

standard basis of Rn , indexed by a sampling set Ω⊂ [n]. A sampling design is a choice of a

vector π= (πi , . . . ,πn) that determines the inclusion probabilities of elements of [n] into Ω.
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2.3. Summary

I introduced two models for independent random sampling, named Ber(π) and CSWR(π),

that are almost equivalent in the context of recovery problems. Their use in chapters 4 and 5,

respectively, is dictated by convenience. Table 2.2 is a reference point for some properties of

these two sampling models.

Model Rows of A Repeated samples Number of samples (|Ω|)
Ber(π) drawn independently no m ∈ [1

2π
>1, 3

2π
>1

]
w.h.p.

CSWR(π) drawn independently yes m deterministic

Table 2.2 – Summary of sampling models used to construct the measurement matrix A from a
random (multi-)set of integersΩ⊂ [n].
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Chapter 2. Graphs, signals, and sampling

Appendix 2.A “Equivalence” of sampling models

This appendix adapts reasoning found in [12, Appendix], arguing for a certain equivalence be-

tween the sampling models introduced in Section 2.2. For the purposes of the sort of decoders

used in this thesis, a recovery guarantee obtained from one sampling model automatically

implies a similar recovery guarantee for the other.

Assume we have an algorithm that takes as input coordinate samples of some n-dimensional

vector and outputs a vector in Rn . Denote by Success the event whereby this algorithm

produces the correct output. The notion of success can be arbitrary, as long as its probability

never decreases as the number of samples increases. In other words, if the samples are indexed

by a random set Ω, the quantity P ({Success}) is monotonically increasing with increasing

E|Ω|.

Now, denote by PBer(π) ({Success}) and PCSWR(π) ({Success}) the probabilities of success in-

duced by the distributions of the Bernoulli Sampling Model (Ber(π)) and the Coordinate

Sampling with Replacement (CSWR(π)), respectively. Recall that CSWR(π) always draws m

samples, while the number of samples produced by Ber(π) is random, with mean denoted

by m = E (|Ω|). For any fixed sampling design π, I will put the number of samples in evidence

by referring to the Bernoulli Sampling Model as Ber(m) and to the Coordinate Sampling with

Replacement as CSWR(m).5

Lemma 2.A.1. Let m = 1
1+εm, for any ε> 0. Then, a success probability of P under CSWR(m)

implies a success probability of P
[

1−2exp
(
−3εm

8

)]
under Ber(m) .

PROOF:

〈1〉1. A direct calculation reveals

PBer(m) ({Success}) ≥
n∑

k=m
PBer(m) ({Success||Ω| = k})PBer(m) ({|Ω| = k})

≥PCSWR(m) ({Success})
n∑

k=m
PBer(m) ({|Ω| = k})

=PCSWR(m) ({Success})PBer(m) ({|Ω| ≥ m})

=PCSWR(m) ({Success})
[
1−PBer(m)

({|Ω| < c m
})]

≥PCSWR(m) ({Success})
[
1−2exp

(−3c m /8
)]

PROOF:

〈2〉1. Conditioned on its cardinality, the distribution of Ω under Ber(m) is equivalent to

coordinate sampling without replacement. A sample without replacement always

implies more distinct elements inΩ than a sample with replacement (for the same

5The design π is fixed only up to a normalizing constant, because π>1 = 1 for the CSWR(π) model, whereas
this need not hold for Ber(π).
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2.A. “Equivalence” of sampling models

number of measurements). Thus, for any k ≥ m,

PBer(m) ({Success||Ω= k|}) ≥PCSWR(m) ({Success}) .

〈2〉2. The mononicity assumption also implies, for every k ≤ m,

PCSWR(k) ({Success}) ≤PCSWR(m) ({Success}) .

〈2〉3. Finally, the scalar Bernstein inequality (Lemma A.0.1) uncovers the tail bound

PBer(m) ({|Ω| < m}) =PBer(m)
({|Ω| < (1+ε)m

})≤ 2exp
(−3εm /8

)
.

〈1〉2. Q.E.D.

Lemma 2.A.2. There exists some ε1 ∈ (0,1) such that if m = 1+ε
1−ε1

m, then a success probability

of P under Ber(m) implies a corresponding success probability of P − 2exp
(
−3ε2 m

8

)
under

CSWR(m), for any ε2 > 0.

PROOF:

〈1〉1. There exists some ε1 for which

PBer(m) ({Success}) =
(1−ε1)m−1∑

k=1
PBer(m) ({Success||Ω| = k})PBer(m) ({|Ω| = k})

+
n∑

k=(1−ε1)m
PBer(m) ({Success||Ω| = k})PBer(m) ({|Ω| = k})

≤PCSWR(m) ({Success})+PBer(m) ({|Ω| ≥ (1−ε1)m})

≤PCSWR(m) ({Success})+2exp

(−3ε2 m

8

)

PROOF:

〈2〉1. Conditioned on its cardinality, the distribution of Ω under Ber(m) is equivalent

to coordinate sampling without replacement. For the same number of measure-

ments, a sample without replacement always implies more distinct elements inΩ

than a sample with replacement with the same number of measurements. How-

ever, there exists some ε such that the number of distinct elements in a sample

without replacement of size (1−ε)m is smaller than the number of distinct ele-

ments in a sample with replacement of size m. Take ε1 to be the infimum among

such ε, and the monotonicity in the success likelihood for the algorithm will imply

PBer(m) ({Success||Ω= k|}) ≤PCSWR(m) ({Success}) ,

for any k ≤ (1−ε1)m.

〈2〉2. Once again, the tail bound is given by the scalar Bernstein inequality (Lemma
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Chapter 2. Graphs, signals, and sampling

A.0.1) uncovers

PBer(m) ({|Ω| > (1−ε1)m}) =PBer(m)
({|Ω| > (1+ε2)m

})≤ 2exp
(−3ε2 m /8

)
.

〈1〉2. Q.E.D.
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3 Recovery via convex programs

We left Chapter 2 with an ill-posed problem: retrieve x by observing y := Ax. Due to unsampled

vertices, the measurement matrix A is rank-deficient, so it cannot be inverted. In other words,

there is no way to distinguish, a priori, a signal x from all the points in the set
{

z ∈Rn : Az = Ax
}

.

The culprit for ill-posedness is the size of Rn , the default search space. Linear algebra tells

us that
{

z ∈Rn : Az = Ax
}

has infinitely many points whenever A is non-invertible. But in this

thesis we only care about piecewise-constant signals, so we should not have to look for answers

in the whole of Rn . We should aim to find a smaller set Z ⊂ Rn — containing piecewise-

constant signals — for which the search space {z ∈Z : Az = Ax} reduces to the singleton {x}.

That is, restricted to Z , the only vector with samples y = Ax is x itself. There would be no loss

of information by representing x in the compressed form y.

In modern signal processing, the variational principle is a popular way to constrain the search

space for inverse problems. First, one picks a function f :Rn →R that quantifies a key property

of the signal x to be recovered. The function here is seen as a “complexity cost”, taking small

values for signals that look like x and large values otherwise. Then, one simply looks among

the vectors agreeing with the measurements for the one that minimizes f .

min
z∈Rn

f (z) subject to Az = Ax. (P f )

We will call optimization programs like (P f ) interpolation problems, because the “penalty” f

informs how to fill in the missing data, without changing the values of the sampled points.

Interpolation is fine if the measurements are noiseless. Noise demands that we adapt (P f ),

but a simple tweak is usually enough. Let y = Ax+e be the noisy samples and assume that we

have (for some q ≥ 1 and η≥ 0) the upper bound ‖e‖q
q ≤ η on the noise component. Replace

the equality constraint in (P f ) by ‖Az−y‖q
q ≤ η, allowing the recovered values at the sampled

points to differ from the measurements, but restricting the difference to the noise level. The
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Chapter 3. Recovery via convex programs

resulting regression program 1 reads

min
z∈Rn

f (z) subject to ‖Az−y‖q
q ≤ η. (P f -η)

Problem (P f -η) actually generalizes (P f ): it suffices to take η = 0 to get the latter from the

former. Why then bother to define the two versions? This mostly has to do with Chapter 5,

whose arguments apply to an interpolation problem only. As that chapter contains the main

theoretical contributions in this thesis, the numerical experiments in Chapter 6 also consider

only noiseless settings. But in Chapter 4 we can work directly with regression, which allows

more general conclusions. In any case, the text will make clear whether a statement is valid for

a problem like (P f -η) or solely for (P f ).

Noise considerations aside, we still have to pick a function f adapted to the graph signals that

we care for. I proposed in Chapter 2 that a piecewise-constant graph signal x is characterized

by few jumps in value across the edges. Equivalently, the jump-set S := supp(Dx) has small

cardinality, or is sparse, using the language of Compressed Sensing (CS) 2. We can write the

cardinality of S as |S | = ‖Dx‖0, so the most direct proposal for a cost function appropriate to

piecewise-constant graph signals would be the map z
f7→ ‖Dz‖0.

However, the `0 “norm” is not convex, and it pays off to have a convex function in recovery

programs. The reasons are both analytical and numerical. First, a convex f turns (P f -η) and

(P f ) into convex problems, where every local minimum is a global minimum. Convexity

brings with it a range of theoretical tools to analyze the properties of the solutions to the

optimization problems. Second, convex problems have numerical solvers with convergence

guarantees. These solvers can approximate the global minimum with often relatively few

iterations. Furthermore, the lack of sub-optimal local minima in convex problems ultimately

decouples the numerical and analytical aspects of their solutions. In contrast, in non-convex

problems such as the training of deep linear neural networks, the trajectories of the gradient

descent solver inform the properties of the solutions found in practice [5]. With decoupled

analytical and numerical aspects, we can study convex programs independently of their

practical implementation.

In Compressed Sensing, the `1-norm is the standard “convexification” of the `0 “norm”. This

choice brings us to the Graph Total Variation (G -TV) interpolation decoder

min
z∈Rn

‖Dz‖1 such that Ax = Az. (P1)

Naturally, (P1) also has its noisy alternative,

min
z∈Rn

‖Dz‖1 subject to ‖Az−y‖q
q ≤ η. (P1-η)

1I name it regression in contrast with the interpolation version, because the penalty f potentially denoises the
sampled values, in addition to filling in the missing data.

2Some CS researchers would also say that x is co-sparse under the action of D [54].
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3.1. When is the solution of convex interpolation unique?

which I call the G -TV regression problem. Most of this thesis is dedicated to dwelling on these

two especial decoders.

But before that, the next section discusses some base conditions for unique and exact solution

in the general interpolation program (P f ). In the process, I introduce the descent cone and

the subdifferential of ‖D · ‖1, sets that play a fundamental role towards linking the number of

vertex samples with the success of G -TV minimization.

Following this, I argue why the G -TV semi-norm is a good convex surrogate to ‖D · ‖0 as a

signature for piecewise-constant graph signals. The reasoning is geometric, relying on the

atomic status of ‖D · ‖1. I also include a comparison with the Dirichlet form ‖D · ‖2
2, using

representer theorems to show that G -TV minimization is less dependent on the form of the

measurement matrix A.

This chapter ends by connecting our recovery programs with the wider Compressed Sensing

literature. Indeed, we can see in G -TV minimization an instance of general co-sparse (or

analysis-sparse) programs. What is exceptional in our setting is the sampling procedure. In

CS, Gaussian-like measurement vectors are the norm; comparatively little can be found on

coordinate-sampled, co-sparse models. Much of the difficulty in the subsequent chapters 4

and 5 stems from the scarcity of tools to deal with our measurement matrix.

3.1 When is the solution of convex interpolation unique?

Due to the minimization principle, the only obstacles to x being the sole solution of (P f ) are

the vectors z ∈ Rn for which f (z) ≤ f (x). To investigate the impact of these vectors, we can

fix ourselves on x and check how much of Rn we cover by only moving in the directions that

decrease f . The conic hull of these descent directions is called the descent cone.

Definition 3.1.1 (Descent cone). Let x be a fixed point in Rn . The descent cone of a convex

function f :Rn →R at x is the set

D( f ,x) := cone
({

u ∈Rn : f (x+u) ≤ f (x)
})

(3.1)

=:
⋃
τ≥0

{
τu ∈Rn : f (x+u) ≤ f (x)

}
. (3.2)

Unique recovery in (P f ) then turns out to be a question about how the descent cone D( f ,x)

intersects the null space of the measurement matrix A. The precise statement is given in

Theorem 3.1.1.

Theorem 3.1.1 ([14, Prop. 2.1],[35, Thm. 3]). Vector x is the unique solution of problem (P f ) if

and only if the trivial intersection 3 D( f ,x)∩null (A) = {0} takes place.

3Both D( f ,x) and null (A) contain at least 0, so “trivial intersection” highlights the situation when these sets
agree only at the origin.
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Chapter 3. Recovery via convex programs

The proof is standard but short, so I include it here.

PROOF:

〈1〉1. “ ⇐= ”: Assume that D( f ,x)∩null (A) = {0}, and let u ∈ Rn be such that f (x+u) ≤ f (x).

Vector x+u is thus a solution of problem (P f ) if A(x+u) = Ax. It follows that x+u = x.

PROOF:

〈2〉1. u ∈D( f ,x) by construction.

〈2〉2. A(x+u) = Ax =⇒ u ∈ null (A)

〈2〉3. u ∈D( f ,x)∩null (A) =⇒ u = 0, by assumption.

〈1〉2. “ =⇒ ”: Assume that x is the unique solution of (P f ), and pick u ∈Rn such that A(x+u) =
Ax. Then u ∉D( f ,x), unless u = 0.

PROOF:

〈2〉1. u ∈ null (A) by construction.

〈2〉2. If u 6= 0, then f (x+u) > f (x) because x is the unique feasible minimizer.

〈2〉3. u ∈D( f ,x) ⇐⇒ u = 0

〈1〉3. Q.E.D.

x is the unique solution of (P f ) ⇐⇒ D( f ,x)∩null (A) = {0}.

Theorem 3.1.1 is a geometric result, illustrated in Figure 3.1. The cone D( f ,x) is a deterministic

object, the fruit of the signal we want to recover and its implicit modeling through function f .

The null space of A is a random subspace: its exact orientation depends on which vertices are

sampled in the graph.

0

null(A)

{
z ∈
R n

: ‖Az−
y‖ q

q ≤
η }

D( f ,x)

bd(Bn
q )

Figure 3.1 – Illustration of the trivial intersection property D( f ,x)∩null (A) = {0}.
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3.1. When is the solution of convex interpolation unique?

Figure 3.1 points at an intuitive idea: the narrower the descent cone, the easier should be the

for the trivial intersection to take place. The precise notion of width is discussed in Chapter

4, where we will also see that the same geometric idea can potentially be used to arrive at

robust recovery guarantees for the regression problem (P f -η). The reader may suspect that

this is possible by examining how the blue slab
{

z ∈Rn : ‖Az−y‖q
q ≤ η

}
wraps around null (A).

Potential regression solutions can distance themselves from x at most by approximately the

noise level.

In the language of information theory, the trivial intersection property is the same as lossless

dimension reduction using matrix A. There is no ambiguity in representing x by Ax, provided

we use (P f ) as decoder. Gaussian matrices are known for their dimension reduction properties

when applied to finite [31] or sparse [22] sets of vectors. And more recently broader classes of

sub-Gaussian matrices have also been shown to behave as such [56]. Can one say the same

about our coordinate sampling matrix A? This is essentially the question studied in Chapter 4.

Specializing to Graph Total Variation interpolation, we can also obtain a simpler, necessary

condition for uniqueness. It involves the null space of D and is recorded in Proposition 3.1.1.

Proposition 3.1.1. If null (D)∩null (A) 6= {0}, then problem (P1) has infinitely many solutions 4.

The subspace null (D) belongs to D(‖D · ‖1,x), so the trivial intersection property in Theorem

3.1.1 is strictly stronger. Nonetheless, Proposition 3.1.1 is a first glimpse on the compatibility

required from the analysis and measurement operators if vector x is to be properly recovered.

PROOF: Assume that z? is in the solution set of (P f ) and let h be an arbitrary point in the

subspace null (D)∩null (A) ⊂Rn . Note that z?+h is feasible, as A(z?+h)−Ax = Az?−Ax = 0.

Furthermore, ‖D(z?+h)‖1 = ‖Dz?‖1, so z?+h is also a solution. Since h was arbitrary and the

subspace to which it belongs is not zero-dimensional, the claim holds.

Working with the descent cone is not the only way to derive uniqueness results for (P f ).

Readers familiar with optimization problems in Calculus know that maxima and minima of a

differentiable function can be found where the gradient vanishes. The analogous object in the

variational analysis of non-differentiable functions is the subdifferential set.

Definition 3.1.2 (Subdifferential). Let x be a point in Rn . The subdifferential of a convex

function f :Rn →R at x is the set

∂ f (x) := {
u ∈Rn : f (z)− f (x) ≥ 〈u,z−x〉, ∀z ∈Rn}

. (3.3)

The subdifferential ∂ f (x) is polar to the closure of D( f ,x) [62, Thm. 23.7], meaning that

〈v,u〉 ≤ 0 whenever u ∈D( f ,x) and v ∈ ∂ f (x). Intuitively, both sets share the origin, but “point”

towards opposite directions. The trivial intersection property can be equivalently expressed

4Actually, readers can examine the proof to convince themselves that the conclusion is valid whenever the
interpolation problem (P f ) employs a function of the form f (·) = g (D·), where g :RN →R is convex.
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Chapter 3. Recovery via convex programs

in terms of the subdifferential under the guise of Karush-Kuhn-Tucker (KKT) conditions. I

explore this optic in Chapter 5.

0

null(A)

ra
nge
( A

>
)

D( f ,x)

cone
(
∂ f (x)

)

bd(Bn
q )

Figure 3.2 – Illustration of the polarity between the descent cone and the subdifferential of a
convex function f . Exact recovery happens either if D( f ,x) and null (A) intersect trivially, or
equivalently if ∂ f (x) and range

(
A>)

intersect non-trivially.

The subdifferential of the G -TV semi-norm has simple defining expressions, which I write

down in the next proposition. I omit its proof because it is standard in variational analysis, and

not very informative to us. Just recall that PS =∑
i∈S ẽi ẽ>i denotes the coordinate projection

indexed by set S .

Proposition 3.1.2. Let S := supp(Dx) for some matrix D ∈ RN×n and some vector x ∈ Rn . A

point z ∈Rn belongs to the subdifferential z ∈ ∂‖D · ‖1(x) if and only if z = D>w for some w ∈RN

satisfying simultaneously

PS w = sign(Dx) , and (3.4)

‖(IN −PS )w‖∞ ≤ 1. (3.5)

The polar relationship between the descent cone and the subdifferential allows us to deduce

a corresponding expression for (the closure of) D(‖D · ‖1,x). The result, given as Proposition

3.1.3, has an accompanying proof in Appendix 3.A.1.
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Proposition 3.1.3. Let S := supp(Dx). The topological closure of D(‖D · ‖1,x) can be written

as

D(‖D · ‖1,x) = {
u ∈Rn :

〈
sign(Dx) ,Du

〉≤−‖(IN −PS )Du‖1
}

. (3.6)

This expression allows us to connect the trivial intersection in Theorem 3.1.1 with the so-called

null-space property commonly required in Compressed Sensing [22, Ch. 4]:

‖PS Du‖1 < ‖(IN −PS )Du‖1, for all u ∈ null (A) \ {0}. (3.7)

Note that ‖PS Du‖1 ≥ 〈
PS sign(Dx) ,Du

〉 = 〈
sign(Dx) ,Du

〉
, hence (3.7) implies the trivial

intersection D(‖D · ‖1,x)∩null (A) = {0}, through Proposition 3.1.3.

3.2 Why G -TV minimization for piecewise-constant graph signals?

In science, it is often a good idea to apply Occam’s razor: among competing hypothesis, pick

the simplest one. In signal processing, sparse linear models are among the simplest. Let

t1,t2, · · · ∈T be a set of vectors in Rn , and c1,c2, · · · ∈R be constants. A linear model of a signal

x, using the atoms in T takes the form

x =
∑

i
ci ti . (3.8)

The multiplying constants quantify the importance of each atom in describing x. If only a

few of the constants are different from zero, we say that the model is sparse. Equivalently, x is

explained by only a few of the atoms in T .

On the one hand, if we want the output of (P f ) to have a sparse linear expression as (3.8),

then the set x+D( f ,x) gathering the potential solutions should contain the atoms in T . On

the other hand, Theorem 3.1.1 indicates that descent cones should not be too “wide”, lest it

intersect with the null space of A. The convex hull of T , denoted conv(T ), is the narrowest

convex set containing T , at least from the perspective of the angles at the atoms. Thus,

whenever x is explained by combining few of such atoms, making D( f ,x) the conic hull of

−x+conv(T ) yields a fairly narrow cone. See Figure 3.3 for an illustration of this fact.
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0

t1

t2

t3

t4

t5

0

t1

t2

t3

t4

t5

Figure 3.3 – An atomic set, T = {t1, . . . ,t5}, whose convex hull is bounded by the thick red
lines. The thick blue lines form the boundary of a larger convex set containing the atoms in T .
Suppose that x = t1. If f is the gauge of conv(T ), then the descent cone of this function at x
has the same shape as the red cone. If, however, f is the gauge of the larger convex set, then
its descent cone at x is as wide as the blue cone.

The function f for which D( f ,x) = cone(−x+conv(T )) is the gauge of conv(T ) [14]. This

gauge is the map z
f7→ ‖z‖T := inf{t > 0 : z ∈ t conv(T )}, which becomes a Minkowski norm

whenever T is symmetric about the origin. For a familiar example, the `1 norm in Rn is the

gauge of the convex hull of standard basis vectors e1, . . . ,en .

But what would be an appropriate atomic set T for modelling piecewise-constant signals on

graphs? Well, we have already a linear model for those signals in Chapter 2, using indicator

vectors. Denote by V1,V2, . . . all possible vertex subsets on the graph, and let 1V1 ,1V2 , . . . be the

corresponding indicator vectors. A piecewise-constant graph signal with P pieces is then of

the form

x =
∑

i
ci 1Vi , (3.9)

where we can always choose only P of the constants c1,c2, . . . to be non-zero. The matching

vertex subsets are disjoint and represent each of the constant pieces of the signal. Given (3.9)

and the discussion of the previous paragraphs, it makes sense then to pick indicator vectors of

vertex subsets as our signal atoms. This modeling by a sparse linear combination of indicator

vectors also appears in Jung [34] — for example — under the name of “clustering hypothesis”.

The G -TV semi-norm induces a fairly narrow descent cone if x is described by a sparse combi-

nation of vertex-subset indicators. Formally, Proposition 3.2.1 shows that such indicators are
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the “extreme points” 5 of the ‖D · ‖1-ball. As a result the tip of the cone D(‖D · ‖1,x) resembles

the neighborhood of a hyper-edge on the polyhedron conv({1V1 ,1V2 , . . .}). The fewer atoms it

takes to describe x, the narrower this tip potentially is. Refer to Appendix 3.A.2 for a proof of

the proposition — and a precise definition of “up-to-additive-constant extreme points”.

Proposition 3.2.1 (Extreme points of BG−T V , adapted from [69]). A vector t? ∈Rn is an (up-

to-additive-constant) extreme point of {x ∈Rn : ‖Dx‖1 ≤ 1} if and only if the entries of t? take

on exactly two distinct values, v1 6= v2 ∈R. In particular, such extreme points can be written as

t? = (v2 − v1) · 1Sv2 (t?) + v11, where Sv2 (t?) := {i ∈Rn : ti = v2}.

3.2.1 Graph Total Variation versus the Dirichlet form

From the pure perspective of counting signal jumps, there is not much difference a priori

between ‖Dx‖1 = ∑
i , j

√
Wi j |xi − x j | and the Dirichlet form 6 ‖Dx‖2

2 = ∑
i , j Wi j (xi − x j )2 as

signatures for piecewise-constant signals. How different is it to solve

min
z∈Rn

‖Dz‖2
2 subject to ‖Az−y‖q

q ≤ η, (3.10)

rather than (P1-η)? After all, a decoder similar to (3.10) has been used by Puy et al.[60] for

recovering sub-sampled, bandlimited 7 graph signals.

The answer I present in this section adapts the representer theorems of Unser et al.[74, 75]

to compare the form of the points in the solution set of both `1 and `2 settings. A second,

numerical perspective on the difference between (3.10) and (P1-η) can be found in Chapter 6.

To place ourselves within the same context as Unser et al., let us generalize a bit the regression

problems (3.10) and (P1-η). Denote by C a convex, compact set in Rm and consider the

program

Mp = min
z∈Rn

‖Dz‖p
p such that Az ∈C . (3.11)

Both (P1-η) and (3.10) are particular instances of (3.11), achieved by setting C = {v ∈ Rm :

‖v−Ax‖q
q ≤ η}. This set is indeed convex and compact by virtue of being a scaled, translated

norm ball.

The first representer theorem concerns the `1 version of the general program (3.11). Its proof,

5“Extreme points” is in quotation marks because BG−TV does not actually have proper extreme points, conse-
quence of the non-trivial null space of D. Indeed, suppose t were an extreme point of BG−TV, and use some con-
stant c ∈R to create new points s := t+c1 and u := t−c1. Then, ‖Ds‖1 = ‖Du‖1 = ‖Dt‖1, because null (D) ⊃ span(1).
This implies s,t ∈BG−TV. But at the same time, t = 1

2 (s+u), so t cannot be an extreme point of BG−TV. The propo-
sition goes around this problem by defining extreme points up to the null space of D.

6The name “Dirichlet form” is inspired by noting that 1
2 D>D is usually called the Laplacian matrix L [66]. Hence,

‖Dx‖2
2 = x>Lx is a Laplacian quadratic form.

7Let L = UΛU> be the singular value decomposition of the graph Laplacian matrix, with eigenvector columns
ordered from smallest to largest w.r.t. their respective eigenvalues. A signal is said to be k-bandlimited if it lies in
the span of the first k eigenvectors in U.
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presented in Appendix 3.B.1, is based on [74, Theorem 19].

Theorem 3.2.1. Consider problem (3.11) with p = 1 and assume that:

1. null (D)∩null (A) = {0}.

2. The set C ⊂Rm is convex and compact.

3. The pre-image A−1(C ) := {z ∈Rn : Az ∈C } is non-empty.

Then, the extreme points of the solution set M1 are of the form

z? = D+a?+b?, (3.12)

where a? ∈RN has at most m non-zero coefficients, and b? ∈ null (D).

The graph gradient matrix D, mapping signals to edge differences, embodies our prior infor-

mation that piecewise-constant graph signals vary little across edges. The columns of the

Moore-Penrose pseudo-inverse, D+, transfers the edge-differences perspective back to the

vertex domain. The extreme points of the solution set of (3.11) are effectively explained by a

small selection of columns of the pseudo-inverse. Consequently, the signals that we hope to

recover have to be, in a sense, “compatible” with the network structure because D+ depends

solely on the graph. For an example of compatible signal, turn to Figure 3.4, where we meet

once again the Swiss National Council graph introduced in Chapter 1. The presence of an

atom of D+ so well-aligned with the party split indicates that the graph connections are a good

predictor of whether a council member belongs or not to UDC. In other words, the party is a

fairly well-defined community in the network.
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UDC indicator vector Best-aligned atom in D+

0.0

0.2

0.4

0.6

0.8

1.0

−0.03

−0.02

−0.01

0.00
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0.02

Figure 3.4 – A piecewise-constant signal that is compatible with the graph structure. In the
Swiss National Council graph depicted above, council members are linked by similarity in
their voting patterns. The left image displays the indicator vector of the right-wing UDC party.
Its best match among the columns (atoms) of the matrix D+, in terms of inner product, is
shown on the right. Since D+ depends on the graph alone, the UDC party is fairly well encoded
in the edge distribution and forms an effective community in the network.

Let us turn our attention now to the `2 version of problem (3.11). Unlike before, the measure-

ment matrix A makes an appearance in the representer theorem.

Theorem 3.2.2. Consider problem (3.11), with p = 2, and use the same set of assumptions as in

Theorem 3.2.1. Then, all the points of the solution set M2 are of the form

z? = D+A>v+b?, (3.13)

for some fixed v ∈Rm , and some b? ∈ null (D).

Both theorems 3.2.1 and 3.2.2 include an unavoidable term in the null space of D, but the

solution set induced by the Dirichlet form depends explicitly on the measurement matrix A.

Unser et al.[74] use this contrast to argue that `1 regularization is better at imposing prior

information despite the form of the measurements. This position will become even more

appealing in Chapter 6, where I show that the recovery error of the Dirichlet form decoder is

more sensitive to A than to the graph connections represented in D.

3.3 Relevant recovery results in the literature

Problems with (potentially) redundant dictionaries 8 such as (P1-η) have been studied in

Compressed Sensing at least since Rauhut et al.[61] and Candès et al.[11]. If D were a tight

frame and A a Gaussian matrix, then the recovery error ‖z?−x‖2 of any solution z? to (P1-η)

8The matrix D in ‖Dx‖1 is often called dictionary or analysis operator because it maps x to a potentially sparse
representation.
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would have an optimal dependence on the noise level, as long as the number of measurements

is on the order of s := ‖Dx‖0 [11, Theorem 1.2]. The argument that Candès et al. use to show

this relies on A satisfying a certain D-Restricted Isometry Property. The number (N − s) 9

is sometimes called the cosparsity level of x under the analysis operator D. Nam et al.[54]

and Kabanava and Rauhut [36] are good places to find more results about cosparse models

in compressed sensing. Still, these papers focus on frames for dictionaries and Gaussian

measurement matrices. Our graph gradient matrix is not a frame 10, and our measurement

vectors are not Gaussian.

In Kabanava et al. [37] and Krahmer et al. [40] we start to see difference operators being used

as the analysis transform, but the measurements are still (sub-)Gaussian-like. Poon [59] also

studies Total Variation minimization but in the context of weighted Fourier sampling. All

of these works restrict themselves to signals lying on the Euclidean grid, so their difference

matrix D can be interpreted as the graph gradient of the grid graph. I would like to be able

to deal with more general graphs. Kabanava et al.[37] attack the Total Variation problem by

examining the descent cone of ‖D · ‖1 and deriving a direct certificate of recovery, a strategy

that we will explore in Chapter 4. Poon [59], on the other hand, employs a golfing scheme,

derived from the properties of the subgradient of ‖D · ‖1, arriving at a so-called dual certificate.

This is the line of work developed in Chapter 5, which is also greatly informed by the work of

Boyer et al.[10].

One can also refer to Jung et al.[33, 32, 34] for a more network-oriented perspective on Total

Variation recovery problems. Under their “clustering hypothesis”, a piecewise-constant graph

signal naturally induces a partition of the vertices into disjoint clusters. The sampled vertices

are said to “resolve” the partition if they satisfy the Network Null Space Property defined below.

Definition 3.3.1 (Network Null Space Property (NNSP)[33]). The measurement matrix A satis-

fies the NNSP with respect to an edge set S ⊆ E if

‖PS Du‖1 ≤
1

2
‖(IN −PS )Du‖1 , (3.14)

for any u ∈ null (A) \ {0}.

Similarly to other null-space properties in compressed sensing, the NNSP is shown to imply

exact recovery in the interpolation problem (P1).

Proposition 3.3.1 ([33]). If A satisfies the NNSP w.r.t. S = supp(Dx), then x is the unique

solution (P1).

Jung et al. [33] give deterministic conditions upon which the sampled vertices resolve the par-

tition induced by a piecewise signal of interest. These conditions look into the hop distances

9Recall that D ∈RN×n .
10Due to its non-trivial null-space.
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of sampled vertices to the borders of the partition, but do not otherwise inform how to design

an optimal random sampling for the recovery problem.

In this thesis, I approach optimal sampling design for the decoders (P1) and (P1-η) in a similar

manner as Puy et al.[60] did. They showed that a type of coherence-weighted sampling can

minimize the number of rows that A needs to represent an approximate isometry map for ban-

dlimited graph signals. The decoder is naturally constructed by penalizing non-bandlimited

vectors. In our case, we have decoders (P1) and (P1-η) that were hand-picked for another

class of graph signals, piecewise-constant. But the optimal sampling design is still deduced

by minimizing the sample complexity of the decoder with respect to the vertex sampling

probabilities π= (πi , . . . ,πn).

What kind of sample complexity expressions can one expect? Readers familiar with Com-

pressed Sensing might know that m = O
(
s log(n/s)

)
random Gaussian measurements are

enough to recover, with high probability, any s-sparse vector via `1 minimization [22, Chap-

ter 9]. The “sparsity-level” in Graph Total Variation (G -TV) problems is s := ‖Dx‖0, which is

the number of edges in the jump-set S := supp(Dx) of signal x. Can one hope for sample

complexity thresholds in (P1) that are proportional to ‖Dx‖0? Surprisingly, such thresholds

appear in the work of Lee et al. [48]. They even apply for coordinate sampling, and have

accompanying optimal designs. Why not just adapt Lee et al.’s work to the context of graph

signals to answer the main question in this thesis?

The reason is that Lee et al. [48]’s bounds can be vacuous when dealing with graph signals. I

will show in Chapter 6 examples where |S | is larger than the number of vertices, but we can

still successfully interpolate the respective signals using relatively few samples. For such large

jump-sets, Lee et al. [48] would prescribe a number of measurements, m, larger than the total

number of vertices, n. Therefore our sample complexity should be more than just a function

of the cardinality of the jump-set and potentially depend on the signal-to-be-recovered 11.

This conclusion is not particularly new in the context of analysis-sparse (or co-sparse) models.

Recent studies make a good case for considering only non-uniform guarantees whenever

the decoder computes the `1 norm in the image of a non-invertible analysis operator D. For

instance, Giryes et al. [25, 26] show that no algorithm can accurately recover a co-sparse signal

from a number of measurements proportional to the signal’s manifold dimension. Meanwhile,

Genzel et al. [24] construct two examples of analysis operators for which a signal has the same

cosparsity level, but lead to completely different recovery thresholds 12. Once again, those

observations are to reinforce the fact that one should avoid naively using sample complexity

thresholds proportional to ‖Dx‖0 in problems like (P f ).

11Results with this characteristic are often called “non-uniform” in Compressed Sensing. They are named in
contrast with results that are valid for a whole class of signals sharing a certain descriptive parameter. For example,
any statement containing “... for all s-sparse vectors ...” is a uniform result.

12Genzel et al. [24] prescribe instead thresholds that depend on the partition of the Gram matrix DD> by the
support S := supp(Dx). Through S , their guarantee depends on x, hence is non-uniform.
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3.4 Summary and final notes

The variational principle is a popular paradigm for recovering signals from subsampled linear

measurements. Among all vectors satisfying the observation constraints, the returned solution

is the one that minimizes a loss function f . This function is often chosen to be convex for

analytical and numerical reasons.

There is also precedent in the literature for setting the search space directly, without resorting

to a penalty f . Problems of the type “min
z∈Rn

‖Az−y‖q
q subject to z ∈K ”, where K is a convex set,

are sometimes called the K -lasso [57]. Despite the difference at first sight, there is a ρ > 0 for

which the K -lasso becomes equivalent to (P f -η) by setting K = {z ∈Rn : f (z) ≤ ρ}. 13 Some

researchers, like Bora et al. [7], might even use non-convex constraint sets K . They set out to

recover images of human faces from few pixel measurements, having access to a pre-trained

Generative Adversarial Network (GAN). This GAN excels in creating natural-looking faces, so

Bora et al. argue that its range can be used as the recovery search space. It is an implicit way

to avoid points in Rn that do not look like human faces, but it definitely makes the problem

harder to study mathematically.

The G -TV semi-norm is a good penalty choice for recovering piecewise-constant signals on

graphs. These signals have a sparse representation in terms of the extreme points of the G -TV

ball. As a result, D(‖D · ‖1,x) should be fairly narrow when x is piecewise constant, making it

easier for a trivial intersection with null (A) to take place. Ultimately, the trivial intersection is

what guarantees the exact recovery of x from Ax. I have also argued that minimizing ‖D · ‖1

is preferable to minimizing ‖D · ‖2
2 if we want solutions less dependent on the form of the

measurement matrix.

Our main decoders, (P1) and (P1-η), fall under the scope of co-sparse models in Compressed

Sensing. But the most relevant work in this field (Lee et al. [48]) prescribes sample complexity

bounds that are potentially vacuous when dealing with graph signals. In the end, I have to

reach new recovery guarantees from scratch, with the next two chapters compiling attempts

to do so. Chapter 4 deals with a gain functional certifying that the descent cone D(‖D · ‖1,x)

and the subspace null (A) intersect only at 0. In parallel, Chapter 5 uses the characteristics of

the subdifferential ∂‖D · ‖1(x) as a blueprint to iteratively build a recovery certificate.

13This can be proved by the method of Lagrange multipliers [9, Chapter 5].

36



3.A. Geometry of the G -TV semi-norm

Appendix 3.A Geometry of the G -TV semi-norm

3.A.1 Proof of Proposition 3.1.3

Here I adapt [41, Lemma 4.1], where Krahmer and Stöger characterize the descent cone of the

matrix spectral norm. But first, let me precise the notion of polarity for cones.

Definition 3.A.1 (Polar cone). Let K ⊂Rn be a cone. The corresponding polar cone, denoted

K o, is the set

K o := {v ∈Rn : 〈v,u〉 ≤ 0,∀u ∈K }. (3.15)

I will say that a vector v is polar to a set S if 〈v,s〉 ≤ 0,∀s ∈S . Similarly, v is polar to another

vector u if 〈v,u〉 ≤ 0.

PROOF: The desired expressions are a consequence of the subdifferential ∂‖D · ‖1(x) being

polar to D(‖D · ‖1,x) [62, Thm. 23.7]. Recall from Proposition 3.1.2 that v ∈ ∂‖D · ‖1(x) if and

only if v = D> sign(Dx)+D>(IN −PS )w, for some w ∈ RN satisfying ‖(IN −PS )w‖∞ ≤ 1. We

then split the argument in two parts:

〈1〉1. “ ⇐= ”: If
〈

sign(Dx) ,Du
〉≤−‖(IN −PS )Du‖1 then u ∈D(‖D · ‖1,x).

PROOF: For any given v ∈ ∂‖D · ‖1(x), directly compute

〈v,u〉 = 〈
D> sign(Dx)+D>(IN −PS )w,u

〉
= 〈

sign(Dx) ,Du
〉+〈(IN −PS )w,Du〉

≤ 〈
sign(Dx) ,Du

〉+‖(IN −PS )Du‖1 · ‖(IN −PS )w‖∞︸ ︷︷ ︸
≤1

(Hölder inequality)

≤ 0. (Assumption)

Therefore, u is polar to ∂‖D · ‖1(x), meaning u ∈D(‖D · ‖1,x).

〈1〉2. “ =⇒ ”: If u ∈D(‖D · ‖1,x) then
〈

sign(Dx) ,Du
〉≤−‖(IN −PS )Du‖1.

PROOF:

〈2〉1. Pick a vector w ∈ BN
∞ for which 〈w, (IN −PS )Du〉 = ‖(IN −PS )Du‖1. Then v =

D> sign(Dx)+D>(IN −PS )w is a valid subgradient in ∂‖D · ‖1(x), because

‖(IN −PS )w‖∞ ≤ ‖(IN −PS )‖∞︸ ︷︷ ︸
≤1

·‖w‖∞︸ ︷︷ ︸
≤1

≤ 1,

where I used the fact that the rows of IN −PS are either the zero vector or one of

the standard basis vectors in RN .

37



Chapter 3. Recovery via convex programs

〈2〉2. Since v ∈ ∂‖D · ‖1(x) is polar to D(‖D · ‖1,x), we conclude that

0 ≥ 〈u,v〉 (Assumption)

= 〈
D> sign(Dx)+D>(IN −PS )w,u

〉
= 〈

sign(Dx) ,Du
〉+‖(IN −PS )Du‖1 . (Choice of w)

〈1〉3. Q.E.D.

3.A.2 Proof of Proposition 3.2.1

I will need to establish some notation before delving into the argument.

Definition 3.A.2 (Graph cut). The graph cut associated with two vertex sets S1,S2 ⊂ [n] is the

set

cut(S1,S2) := {
e = (

vi , v j
) ∈ E : (i ∈S1 ∧ j ∈S2)∨ ( j ∈S1 ∧ i ∈S2)

}
. (3.16)

We also define the size of cut(S1,S2) to be

|cut(S1,S2)| :=
∑

i∈S1

∑
j∈S2

√
Wi j . (3.17)

Definition 3.A.3 (Up-to-additive-constant extreme point). We say that t ∈ S is an up-to-

additive-constant extreme point of S when we can write t =βs+ (1−β)u, using β ∈ (0,1) and

s,u ∈S , only if s− t = cs 1 and u− t = cu1, for some constants cs ,cu ∈R.

Lastly, define also the following level sets of t ∈Rn , indexed by v ∈R:

Sv (t) := {i ∈R : ti = v} (3.18)

Sv+(t) := {i ∈R : ti > v} (3.19)

Sv−(t) := {i ∈R : ti < v}. (3.20)

I will prove a slightly stronger claim than the one stated in the main text: the up-to-additive-

constants extreme points t? of BG−TV are of the form

t? = |cut(Sv1 (t?),Sv2 (t?))| · 1Sv2 (t?) + v11. (3.21)

The argument is adapted from Szlam et al. [69].

PROOF: Let v1 < v2 < ·· · < vd ∈ R be all the distinct values taken by the coordinates of some

t ∈Rn . Trivially, 1 ≤ d ≤ n. I will split the argument into the cases d = 1, d = 2, and d ≥ 3, and

show that t is an extreme point of BG−TV if and only if d = 2. The precise expression for t? will

appear as a consequence of the computations in the proof.
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〈1〉1. If d = 1, t is not an extreme point of BG−TV.

PROOF: Vector t = v11 is constant, so ‖Dt‖1 =
∑

(i , j )
√

Wi , j |v1 − v1| = 0. Since ‖Dt‖1 < 1,

vector t cannot be an extreme point of BG−TV.

〈1〉2. If d ≥ 3 and ‖Dt‖1 = 1, t is still not an extreme point of BG−TV.

PROOF: I will construct perturbations s := t+εp1Svp (t) −εq1Svq (t) and u := t−εp1Svp (t) +
εq1Svq (t), for some small εp ,εq > 0 and some vp , vq ∈ {v1, . . . , vd }. With these construc-

tions, I show that s,u ∈ BG−TV. Since t = 1
2 s+ 1

2 u, this will imply that t cannot be an

extreme point of BG−TV.

〈2〉1. Note first that if we pick any positive ε< min
k 6=l∈[d ]

|vk −vl | the effect of the perturba-

tion ε1Sv (t) decouples from ‖Dt‖1:

‖D(t+ε1Sv (t))‖1 =
∑

(i , j )∈E

√
Wi j

∣∣ti − t j +ε1Sv (t)(i )−ε1Sv (t)( j )
∣∣

= 2
∑

i∈Sv−(t)

∑
j∈Sv (t)

√
Wi j |ti − t j −ε|︸ ︷︷ ︸

=t j−ti+ε

+2
∑

i∈Sv (t)

∑
j∈Sv (t)

√
Wi j |ti − t j |

+2
∑

i∈Sv (t)

∑
j∈Sv+ (t)

√
Wi j |ti − t j +ε|︸ ︷︷ ︸

=t j−ti−ε

= ‖Dt‖1 +ε


[ ∑

i∈Sv− (t)

∑
j∈Sv (t)

√
Wi j

]
︸ ︷︷ ︸

=:|cut(Sv− (t),Sv (t))|

−
[ ∑

i∈Sv (t)

∑
j∈Sv+ (t)

√
Wi j

]
︸ ︷︷ ︸

=:|cut(Sv+ (t),Sv (t))|

 .

〈2〉2. Therefore, if we pick εp ,εq < 1
2 min

k 6=l∈[d ]
|vk − vl |, we can write the G -TV semi-norm

of s as

‖Ds‖1 =
∥∥∥D

(
t+εp1Svp (t) −εq1Svq (t)

)∥∥∥
1

= ‖Dt‖1︸ ︷︷ ︸
=1

+εp

(∣∣∣cut(Sv−
p (t),Svp (t))

∣∣∣− ∣∣∣cut(Sv+
p (t),Svp (t))

∣∣∣)
−εq

(∣∣∣cut(Sv−
q (t),Svq (t))

∣∣∣− ∣∣∣cut(Sv+
q (t),Svq (t))

∣∣∣)
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and, similarly for u,

‖Du‖1 =
∥∥∥D

(
t−εp1Svp (t) +εq1Svq (t)

)∥∥∥
1

= 1−εp

(∣∣∣cut(Sv−
p (t),Svp (t))

∣∣∣− ∣∣∣cut(Sv+
p (t),Svp (t))

∣∣∣)
+εq

(∣∣∣cut(Sv−
q (t),Svq (t))

∣∣∣− ∣∣∣cut(Sv+
q (t),Svq (t))

∣∣∣)

〈2〉3. For both s and u to be on bd(BG−TV), i.e., ‖Ds‖1 = ‖Du‖1 = 1, it suffices to pick

εp ,εq such that

εp = εq


∣∣∣cut

(
Sv−

q (t),Svq (t)
)∣∣∣− ∣∣∣cut

(
Sv+

q (t),Svq (t)
)∣∣∣∣∣∣cut

(
Sv−

p (t),Svp (t)
)∣∣∣− ∣∣∣cut

(
Sv+

p (t),Svp (t)
)∣∣∣

 .

〈2〉4. We conclude that t is not an extreme point of BG−TV, because t = 1
2 s+ 1

2 u and

s,u ∈BG−TV.

〈1〉3. If d = 2 and ‖Dt‖1 = 1, t is an (up-to-additive-constant) extreme point of BG−TV.

PROOF: It suffices to show that if t =βs+ (1−β)u for some β ∈ (0,1) and s,u ∈ bd(BG−TV)

with s 6= u, then s and u differ from t only by a constant.

〈2〉1. Since t = (v2−v1)1Sv2
+v11, Dt is supported on the edges in cut(Sv2

(
t),Sv1 (t)

)⊂ E .

〈2〉2. Define a new graph R = (V ,E |cut(Sv2

(
t),Sv1 (t)

)) which is the restricted version of

the original graph G to the edges in cut(Sv2

(
t),Sv1 (t)

)
. Correspondingly, define a

new graph difference operator DR by setting to zero the entries in D related to the

edges in the complement of cut(Sv2

(
t),Sv1 (t)

)
.

〈2〉3. By construction, the graph TV semi-norm of t is conserved in this new graph, i.e.,

‖Dt‖1 = ‖DRt‖1 = 1.

〈2〉4. I can then use the triangle inequality to get the relation

1 = ‖DRt‖1

= ‖DR(βs+ (1−β)u)‖1

≤β‖DRs‖1 + (1−β)‖DRv‖1.

〈2〉5. On the other hand, ‖Dt‖1 :=∑
(i , j )

√
Wi j |ti − t j | is monotonically decreasing w.r.t.

the edge weights, and R had fewer edges than G . Therefore, since both s and u

are assumed to be on bd(BG−TV), we thus verify

β‖DRs‖1 + (1−β)‖DRv‖1 ≤β‖Ds‖1︸ ︷︷ ︸
=1

+(1−β)‖Dv‖1︸ ︷︷ ︸
=1

=β+ (1−β)

= 1.

〈2〉6. By the two previous steps, we must have ‖Ds‖1 = ‖DRs‖1 = ‖DRu‖1 = ‖Du‖1 = 1.
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3.B. Representer theorems

Hence, both Ds and Du must also be supported on cut(Sv2

(
t),Sv1 (t)

)
.

〈2〉7. Finally, having verified that Dt,Ds,Du share the same support, and that ‖Dt‖1 =
‖Ds‖1 = ‖Du‖1, we must conclude that t,s,u can differ only by elements on the

null space of D. The latter corresponds to the space of vectors of the form c1, for

c ∈R, so the claim is proved.

〈1〉4. If d = 2 and t? is an (up-to-additive-constants) extreme point of BG−TV, then t? =
|cut(Sv1 (t?),Sv2 (t?))| · 1Sv2 (t?) + v11.

PROOF: This is just a computation exercise. Since t? = (v2−v1)1Sv2
+v11 and ‖Dt?‖1 = 1,

we obtain the identity

1 = ‖Dt?‖1

=
∑

(i , j )

√
Wi j |ti − t j |

= 2
∑

i∈Sv2

∑
j∈Sv1

√
Wi j (v2 − v1)

= 2
∣∣cut(Sv2

(
t?),Sv1 (t?)

)∣∣ · (v2 − v1).

Therefore, (v2 − v1) = 1
2|cut(Sv2

(
t?),Sv1 (t?)

)| .
〈1〉5. Q.E.D.

We have exhausted the options for the number d of distinct coordinates, so t is an extreme

point of BG−TV if and only if d = 2. Furthermore, any such extreme point is of the form

2|cut(Sv1 (t?),Sv2 (t?))| · 1Sv2 (t?) + v11.

Appendix 3.B Representer theorems

Throughout this appendix, we will consider problems of the type

Mp = min
z∈Rn

‖Dz‖p
p such that Az ∈C , (3.11)

with p ≥ 1, and assume that

null (D)∩null (A) = {0} (A1)

C ⊂Rm is compact and convex (A2)

A−1(C ) := {z ∈Rn : Az ∈C } is non-empty. (A3)

The representer theorems I will prove are based on the work of Unser et al. [74], but here I

extend their results to operators D without a right-inverse. 14 The first basic fact that I need to

establish is the following characterization of the sets Mp , for p ≥ 1. It follows the reasoning of

Unser et al. [74, Lemma 20].

14A matrix has a right inverse if and only if it represents a surjective linear map. Our graph gradient operator,
D ∈ RN×n , is not guaranteed to have a right inverse because N > n in general — hence D cannot represent a
surjective map.
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Chapter 3. Recovery via convex programs

Lemma 3.B.1. For any p ≥ 1, Mp is a non-empty, convex, and compact subset of Rn .

The proof relies on features of the interactions between linear maps and convex, compact

sets, as well as on properties of norms in finite-dimensional spaces. I begin by characterizing

the pre-image A−1(C ). Then, I use the Bolzano-Weierstrass theorem to show that Mp is not

empty. Finally, writing Mp as an intersection of “well-behaved” sets, we can conclude that it

must be convex and compact.

PROOF:

〈1〉1. A−1(C ) is closed because C is closed and the linear map L : z 7→ Az is continuous.

〈1〉2. A−1(C ) is also convex, because the pre-image of a convex set C by a linear map is

convex.

〈1〉3. Mp is non-empty.

PROOF:

〈2〉1. For notation sake, let γ := inf
z∈A−1(C )

‖Dz‖p
p

〈2〉2. Let (z(i ))i∈N be a sequence of elements of A−1(C ) inducing a decreasing sequence

(‖Dz(i )‖p
p )i∈N of norms such that lim inf

i→∞
‖Dz(i )‖p

p = γ.

〈2〉3. For each i ∈N, decompose z(i ) uniquely as z(i ) = D+a(i ) +b(i ), where a(i ) = Dz(i ) is

an element of range
(
D>)

and b(i ) is an element of null (D).

〈2〉4. The sequence (a(i ))i∈N is bounded, because ‖a(i )‖p
p = ‖Dz(i )‖p

p ≤ ‖Dzi−1‖p
p ≤ ·· · ≤

‖Dz1‖p
p .

〈2〉5. The sequence (b(i ))i∈N is also bounded.

PROOF: To see this, note that assumption A1implies ‖b(i )‖p
p ≤ c‖Ab(i )‖p

p for some

positive constant c > 0. Then, compute

‖b(i )‖p
p ≤ c‖Ab(i )‖p

p

= c‖Az(i ) −AD+a(i )‖p
p

≤ c‖Az(i )‖2 + c‖AD+a(i )‖p
p .

The left term on the RHS, ‖Az(i )‖p
p , is bounded because Az(i ) ∈ C and C is a

compact set. The right term is bounded because a(i ) is bounded and AD+ is a

finite dimensional linear operator, hence bounded.

〈2〉6. We can then extract a sub-sequence from (z(i ))i∈N that converges to some point

z(∞) = D+a(∞) +b(∞).

PROOF: Bolzano-Weierstrass theorem, using the boundedness of both (a(i ))i∈N
and (b(i ))i∈N sequences.

〈2〉7. The converging point z(∞) must satisfy ‖Dz(∞)‖p
p ≤ γ.

PROOF: Indeed, ‖Dz(∞)‖p
p ≤ ‖Dz(i )‖p

p , for any i ∈N, due to the sequence

(‖Dz(i )‖p
p )i∈N being decreasing. Therefore, taking the limit on both sides of this

inequality, z(∞) must satisfy ‖Dz(∞)‖p
p ≤ inf

z∈A−1(C )
‖Dz‖p

p =: γ.

〈2〉8. On the other hand, ‖Dz(∞)‖p
p ≥ inf

z∈A−1(C )
‖Dz‖p

p =: γ because A−1(C ) is closed, con-
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3.B. Representer theorems

taining all limits of sequences of its elements.

〈2〉9. ‖Dz(∞)‖p
p = γ, so Mp contains at least one point, namely z(∞).

〈1〉4. Finally, I can show that Mp is both convex and compact.

PROOF:

〈2〉1. Let Lp = {
z ∈Rn : ‖Dz‖p

p ≤ γ}
. We can write Mp as the intersection Mp = Lp ∩

A−1(C ) = {[
Lp ∩ range(D)

]∩A−1(C )
}⊕{

[L ∩null (D)]∩A−1(C )
}
.

〈2〉2. Lp ∩ range(D) is convex and compact because it is a norm ball in a subset of Rn .

〈2〉3. Hence,
[
Lp ∩ range(D)

]∩A−1(C ) is both convex and compact, by virtue of being

the intersection of two convex sets, one closed and the other compact.

〈2〉4. For the second term in the direct sum, consider splitting the feasible set as

A−1(C ) = [
A−1(C )∩ range

(
A>)]⊕ [

A−1(C )∩null (A)
]
. The first term is a one-to-

one linear mapping from C to a set inRn . Therefore, the compactness of C implies

the compactness of
[
A−1(C )∩ range

(
A>)]

. Moreover, the latter is a hyperplane

slice of a convex set, so it is itself convex. As for the term
[
A−1(C )∩null (A)

]
, it is

the empty set if 0 ∉C , or equal to null (A) otherwise.

〈2〉5. Since ‖Dz‖p
p = 0 ⇐⇒ z ∈ null (D), we have the identity Lp ∩null (D) = null (D).

Thus, by assumption A1,

[
Lp ∩null (D)

]∩ [
A−1(C )∩null (A)

]={
; if 0 ∉C

{0} otherwise.

In any case,[
Lp ∩null (D)

]∩A−1(C ) = null (D)∩
{[

A−1(C )∩ range
(
A>)]⊕ [

A−1(C )∩null (A)
]}

= null (D)∩
[
A−1(C )∩ range

(
A>)]

,

which is a hyperplane slice of a convex and compact set, thus also convex and

compact.

〈2〉6. At last, we conclude that Mp is both convex and compact, because those proper-

ties are preserved under direct sum.

〈1〉5. Q.E.D.

3.B.1 Proof of Theorem 3.2.1

Let me restate below an informal reminder of this section’s goal.

Claim. The extreme points z? of M1 are of the form z? = D+a?+b?, where a? has at most m

non-zero coordinates, and b? ∈ null (D).

The main tool we will need is the next lemma.
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Chapter 3. Recovery via convex programs

Lemma 3.B.2. Let D(A−1(C )) := {Dz ∈RN : Az ∈C ⊂Rm}. The extreme points of the set

M̃1 := min
a∈D(A−1(C ))

‖a‖1 (3.22)

have at most m non-zero coefficients.

The proof can be deduced from [74, Theorem 6], but I give the full argument here for com-

pleteness.

PROOF:

〈1〉1. First of all, M̃1 is non-empty, convex and compact. This is a consequence of Lemma

3.B.1, with the linear transformation z 7→ Dz mapping M1 to M̃1.

〈1〉2. By the Krein-Milman theorem, M̃1 is then the closed convex hull of its extreme points.

〈1〉3. Let a? be one such extreme point, chosen arbitrarily. I will show that ‖a?‖0 ≤ m, implying

the main claim.

PROOF:

〈2〉1. For notation sake, let γ := min
a∈D(A−1(C ))

‖a‖1, so that ‖a?‖1 = γ.

〈2〉2. Prooceed by contradiction, assuming that ‖a?‖0 ≥ m+1. Without loss of generality,

we can say that {a?j }m+1
j=1 forms a set of non-zero coordinates of a?.

〈2〉3. Define a new vector a := a?−∑m+1
j=1 a?j e j , where {e j }N

j=1 forms the standard basis

in RN . Note that by construction a and a? have disjoint supports.

〈2〉4. Now, for each j ∈ [m +1], define v j := AD+(a?j e j ) ∈ Rm . Since any collection of

m+1 vectors inRm is linearly dependent, there must exist constants c1,c2, . . . ,cm+1

for which
∑m+1

j=1 c j v j = 0.

〈2〉5. Using these same constants, define a new vector in RN through a0 :=∑m+1
j=1 c j a?j e j .

We already know that a? ∈ D(A−1(C )), but we further remark that the perturbations

a?−εa0 and a?+εa0 are also both in D(A−1(C )), for any ε> 0.

PROOF: AD+a0 =
∑m+1

j=1 c j v j = 0 by construction. Hence, AD+(a?−εa0) = AD+a? =
AD+(a?+εa0) for any ε> 0.

〈2〉6. I now claim that
∑m+1

j=1 c j |a?j | = 0, implying ‖a?±εa0‖1 = γ.

PROOF:

〈3〉1. Suppose otherwise that
∑m+1

j=1 c j |a?j | 6= 0, and pick ε ∈
(

−1
max

j∈[m+1]
|c j | ,

1
max

j∈[m+1]
|c j |

)
.

Then either ‖(a?−εa0)‖1 < γ or ‖(a?+εa0)‖1 < γ.
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3.B. Representer theorems

PROOF: This follows by computing

‖(a?±εa0)‖1 =
∥∥∥∥∥a+

m+1∑
j=1

(1±εc j )a?j e j

∥∥∥∥∥
1

=
disjoint support

‖a‖1 +
m+1∑
j=1

|1±εc j ||a?j |

=
choice of ε

‖a‖1 +
m+1∑
j=1

(1±εc j )|a?j |

=
reordering

‖a‖1 ±
m+1∑
j=1

εc j |a?j |

= γ±
m+1∑
j=1

εc j |a?j |.

〈3〉2. But since γ = min
a∈D(A−1(C ))

‖a‖1 and we have established that both a? ± εa0

belong to D(A−1(C )), the conclusion of the last step is absurd. Thus,∑m+1
j=1 c j |a?j | = 0 and ‖a?±εa0‖1 = γ, as claimed.

〈2〉7. A direct consequence of ‖a?±εa0‖1 = γ is then that a?±εa0 ∈ M̃1

〈2〉8. We have reached our contradiction: we are able to write a? as the convex combi-

nation a? = 1
2 (a?+εa0)+ 1

2 (a?−εa0) of two points in M̃1. Thus, a? cannot be an

extreme point of M̃1.

〈1〉4. Q.E.D.

Any extreme point of M̃1 ⊂RN must have at most m non-zero coordinates.

With Lemma 3.B.2 at hand, I am finally ready to prove Theorem 3.2.1.

PROOF OF THEOREM 3.2.1:

〈1〉1. The extreme points z? of M1 satisfy the equation Dz? = a?, where a? has at most m

non-zero coefficients.

PROOF: Applying the change of variable Dz = a, call on Lemma 3.B.2 and realize that

the extreme points of M1 are mapped to the extreme points of M̃1 through the linear

transformation z 7→ Dz.

〈1〉2. We can express any z ∈ Rn as z = D+Dz+ (In −D+D)z, by seeing Rn as a direct sum

between range
(
D>)

and null (D).

〈1〉3. Q.E.D.

Any extreme point of z? of M1 takes the form z? = D+Dz?+b? = D+a?+b?, for some

b? ∈ null (D), and a? ∈RN satisfying ‖a?‖0 ≤ m.
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Chapter 3. Recovery via convex programs

3.B.2 Proof of Theorem 3.2.2

This section’s goal is the following:

Claim. All the points in M2 are of the form z? = D+DA>v+b?, where v ∈Rm is a fixed vector,

and b? ∈ null (D).

This time I adapt [74, Theorems 5, 9, 18] to use as our main tool.

Lemma 3.B.3. Let D(A−1(C )) := {Dz ∈RN : Az ∈C ⊂Rm}. The set

M̃2 := min
a∈D(A−1(C ))

‖a‖2
2 (3.23)

has a single point, a?. Furthermore, this point is of the form a? = Dr? for some r ∈ range
(
A>)

.

PROOF:

〈1〉1. The set D(A−1(C )) is convex and closed because it is a linear mapping of a convex and

closed set C . It is also non-empty because A−1(C ) is assumed to be non-empty.

〈1〉2. The solution set M̃2 contains thus a single point, namely the the orthogonal projection

of the origin, 0, onto the convex set D(A−1(C )). Let us call this single point a?.

〈1〉3. Let z? be a point in Rn such that a? = Dz?. Decompose this point as z? = r?+n?, where

r? ∈ range
(
A>)

and n? ∈ null (A). Then, we must have n? = 0.

PROOF:

〈2〉1. By assumption A1, the orthogonal projection operators D+D and A+A commute.

〈2〉2. This commutative property leads to the fact ‖Dz?‖2
2 = ‖Dr?‖2

2 +‖Dn?‖2
2. Indeed,

‖Dz?‖2
2 = ‖Dr?‖2

2 +2〈Dn?,Dr?〉+‖Dn?‖2
2

= ‖Dr?‖2
2 +2〈n?,D>Dr

?〉+‖Dn?‖2
2

=
for some z∈Rn

‖Dr?‖2
2 +2〈n?,D+DA+Az?〉+‖Dn?‖2

2

=
commutativity

‖Dr?‖2
2 +2〈 n?︸︷︷︸

∈null(A)

,A+AD+Dz?︸ ︷︷ ︸
∈range(A>)

〉+‖Dn?‖2
2

= ‖Dr?‖2
2 +0+‖Dn?‖2

2

〈2〉3. The term n? must be in null (D).

PROOF: To see this, note that Az? = Ar?, so Ar? is also in D(A−1(C )). But because

Dz? is a norm minimizer, together with the result from the previous step, that

‖Dr?‖2
2 ≥ ‖Dz?‖2

2 = ‖Dr?‖2
2 +‖Dn?‖2

2 ⇐⇒ ‖Dn?‖2
2 = 0. Hence, n? ∈ null (D).

〈2〉4. In summary, n? ∈ null (A)∩null (D). Calling upon assumption A1 once again, we

conclude that n? = 0.

〈1〉4. Q.E.D.

The single point belonging to M̃2 has the form a? = Dr?, for some r? ∈ range
(
A>)

.
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Finally, proving Theorem 3.2.2 is very similar to proving Theorem 3.2.1, but this time I call on

Lemma 3.B.3 instead of Lemma 3.B.2.

PROOF OF THEOREM 3.2.2:

〈1〉1. Every point z? ∈M2 satisfies the equation Dz? = DA>v, for a fixed vector v ∈Rm .

PROOF: With the change of variable Dz = a, apply Lemma 3.B.3 and realize that the

points of M2 are all mapped to the single point in M̃2 through the linear transformation

z 7→ Dz.

〈1〉2. We can express any z ∈Rn as z = D+Dz+ (In −D+D)z.

〈1〉3. Q.E.D.

Any point of z? of M2 ⊂Rn takes the form z? = D+Dz?+b? = D+DA>v+b?, for a fixed

vector v ∈Rm , and some b? ∈ null (D).
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4 Direct certificates: measurement gain
inside the descent cone

In Chapter 3 I hinted at how the geometry of the descent cone influences the correctness

of the solutions to the interpolation problem (P f ). In this chapter, I will show which sense

of narrowness in the descent cones can lead to robust recovery guarantees for regression

problems (P f -η), and in particular (P1-η). Recall that the regression setting admits noisy

measurements of the type y = Ax+e where we have a bound, ‖e‖q
q ≤ η, on the noise level.

Notions of width appear as a consequence of translating the trivial intersection property from

Theorem 3.1.1 into something computable. This quantity is a positive lower bound on the

so-called measurement operator’s gain restricted to the descent cone. I call this lower bound a

direct recovery certificate, in contrast to the dual certificates investigated in the next chapter.

Strategies for lower bounding the minimum gain vary according to which random matrix plays

the role of measurement operator. It is enlightening at first to imagine what would happen if

we had Gaussian measurement vectors. Then, I introduce Mendelson’s small-ball method as a

potential path towards a direct certificate in our setting. Unfortunately, the “spikiness” of our

coordinate-sampling matrices proves to be a burden down this road.

The chapter finishes with an open question, but points towards a way to get a direct certificate

for a robust recovery in (P1-η). A way that requires knowing more about the coordinate

structure of descent cones induced by the G -TV semi-norm. Ultimately, the sample complexity

of G -TV decoders only gets a workable expression in Chapter 5.

4.1 A positive gain functional as a recovery certificate

We can quantify the trivial intersection property in terms of any q-norm by noting that

D( f ,x)∩null (A) = {0} ⇐⇒ ‖Au‖q
q > 0,∀u ∈D( f ,x) \ {0}. (4.1)

This motivates the definition of a minimum gain functional as a numerical proxy for the

property.
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Chapter 4. Direct certificates: measurement gain inside the descent cone

Definition 4.1.1 (Minimum q-gain). For any q ≥ 1, the minimum q-gain of a measurement

operator A, restricted to the descent cone D( f ,x) is the quantity

γ
(q)
min

(
D( f ,x),A

)= inf
u∈D( f ,x)∩bd(Bn

q )
‖Au‖q

q . (4.2)

The right-hand side of (4.1) now simply reads as γ(q)
min

(
D( f ,x),A

)> 0. Automatically, by The-

orem 3.1.1, we conclude that a positive minimum q-gain yields the uniqueness of x as a

solution of the interpolation problem (P f ). In the literature,
√
γ(2)

min

(
D( f ,x),A

)
is also known

as simply “minimum gain” [14], or “minimum conic singular value” [72]. Rather than being a

mere numeric translation of a geometric property, minimum gain functionals also inform on

the robustness of convex recovery programs to noise.

A regression program of the type

min
z∈Rn

f (Dz) subject to ‖Az−y‖q
q ≤ η. (P f -η)

recovers x robustly from y = Ax+e if any solution z? is as close to x as the noise e permits.

Theorem 4.1.1 shows how the distance between z? and x is inversely proportional to the

minimum gain functional, and directly proportional to the noise level.

Theorem 4.1.1 ([14, Prop. 2.2], [72, Prop. 2.6], [37, Thm. 4]). If γ(q)
min

(
D( f ,x),A

) > 0 and

‖e‖q
q ≤ η, then any solution z? of problem (P f -η) satisfies

‖z?−x‖q
q ≤ 2η

γ
(q)
min

(
D( f ,x),A

) . (4.3)

Therefore, the larger γ(q)
min

(
D( f ,x),A

)
, the more robust the corresponding decoder is. Theorem

4.1.1 is a powerful result with a simple proof.
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PROOF: A straightforward adaptation of the argument in [37, Theorem 4], connecting two

separate inequalities to reach the claim. Let z? be some solution (P f -η).

〈1〉1. ‖z?−x‖q
q ≤ ‖A(z?−x)‖q

q

γ
(q)
min(D( f ,x),A)

PROOF:

〈2〉1. f (z?) ≤ f (x), because z? is a solution of (P f -η).

〈2〉2. Hence, z?−x ∈D( f ,x).

〈2〉3. With u := 1
‖z?−x‖q

q
∈D( f ,x)∩Bn

q , we conclude that γ(q)
min

(
D( f ,x),A

) · ‖u‖q
q ≤ ‖Au‖q

q ,

by definition of the minimum q-gain.

〈1〉2. ‖A(z?−x)‖q
q ≤ 2η.

PROOF: Just use the triangle inequality and the feasibility of both z? and x:

‖A(z?−x)‖q
q = ‖(Az?−y)− (Ax−y)‖q

q

≤ ‖Az?−y‖q
q +‖Ax−y‖q

q

≤ η+η.

〈1〉3. Q.E.D.

‖z?−x‖q
q ≤ ‖A(z?−x)‖q

q

γ
(q)
min(D( f ,x),A)

≤ 2η

γ
(q)
min(D( f ,x),A)

.

The dependence of ‖z?−x‖q
q on the noise level is optimal, because all we know about e is

the bound ‖e‖q
q ≤ η. Furthermore, Theorem 3.1.1 from Chapter 3 becomes a mere corollary,

reached by making η→ 0 in the recovery error bound. Hence there is no loss in considering

only regression — and not interpolation — problems in this chapter.

In Compressed Sensing, a metric condition more commonly used than γ(q)
min

(
D( f ,x),A

)> 0 is

the Restricted Isometry Property (RIP). Adapted to our setting, the RIP would demand that 1

c‖z‖q ≤ ‖Az‖q ≤C‖z‖q , 0 < c <C , ∀z ∈D( f ,x). (4.4)

But the left-hand side of (4.4) is equivalent to a positive minimum q-gain. The RIP is thus

a stronger condition; too strong, in fact. Recent research [19] suggests that the right-hand

side of (4.4) gives rise to a gap between the optimal and the RIP-certifiable numbers of mea-

surements required in `1-recovery problems. The reason for the gap seems to be that the

inequality ‖Az‖q ≤C‖z‖q requires of A either very good concentration properties or a large

number of rows [45]. Despite the popularity of the RIP, I will therefore focus only on how our

measurement matrices can be made to satisfy γ(q)
min

(
D( f ,x),A

)> 0.

1The RIP as stated here is non-standard. Traditionally, if f = ‖·‖1, one would require the inequalities to hold for
all z with at most k non-zero entries, for some constant k ∈ [n]. Such vectors z are said to be k-sparse. If we are
interested in recovering k-sparse vectors x, then then

⋃
x is k−sparse D(‖ ·‖1,x) contains in particular the set of all

k-sparse vectors with `1 norm less than x. For presentation sake, I chose then to use the descent cone as a proxy
when introducing the RIP, so that the rightmost inequality in (4.4) makes it immediately clear that the RIP is a
stronger condition than the positive lower bound on the minimum q-gain.
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Chapter 4. Direct certificates: measurement gain inside the descent cone

4.2 Interlude: what is known for Gaussian measurements?

The properties of Gaussian random vectors are among the easiest to characterize theoretically.

It is no surprise then that most of the work in convex recovery [14, 72, 78, 57, 49, 58, 79] (in gen-

eral), and Compressed Sensing [22, 23, 20, 19] (in particular) employ Gaussian measurement

ensembles.

Gordon’s “escape through a mesh” theorem [27, Cor. 1.2] connects the minimum 2-gain of a

Gaussian matrix 2 A to its number of rows (measurements) through the Gaussian width of the

descent cone [14, Cor. 3.3]. This notion of conic width through the lens of Gaussian vectors

can be defined as follows.

Definition 4.2.1 (Conic Gaussian width [72, Def. 3.1]). Let K ⊂Rn be a cone and g ∼N (0,In)

be a standard Gaussian vector. The conic Gaussian width of K is the quantity

w(K ) := E
(

sup
u∈K ∩Sn−1

〈g,u〉
)

. (4.5)

The conic Gaussian width is computed for the descent cones of some atomic norms in Chan-

drasekaran et al. [14]. The authors can then use those widths to arrive at the number of

Gaussian measurements required for a robust recovery in the respective decoders.

More than that, it is even possible to precisely describe the phase transition undergone by the

probability of recovery in convex recovery problems with Gaussian measurements. Such a

result, derived from conic integral geometry tools, is presented next.

Theorem 4.2.1 (Phase transition [4, Thm. II]). Let A ∈Rm×n be a random measurement matrix

with i.i.d. standard Gaussian entries. Define Success as the event that γ(q)
min

(
D( f ,x),A

) > 0

takes place. Then, for any ε ∈ (0,1){
m ≤ w(D( f ,x))2 −

√
8n log(4/ε) =⇒ P (Success) ≤ ε

m ≥ w(D( f ,x))2 +
√

8n log(4/ε)+1 =⇒ P (Success) ≥ 1−ε (4.6)

In words, the theorem says that if the number of Gaussian measurements crosses a barrier

of O
(p

n
)
, centered at w(D( f ,x))2, then the probability of success suddenly jumps from

almost zero to almost one. Sharp transition phenomena like this one are ubiquitous in high-

dimensional geometry [21, 56]. Below, I give a brief sketch of the proof of Theorem 4.2.1,

because it complements the geometric intuition from Chapter 3.

2By “Gaussian matrix” I always mean a random matrix whose entries are independent draws from the standard
Gaussian distribution.
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PROOF SKETCH: If the entries of A ∈ Rm×n are i.i.d. standard Gaussian, then the solutions

to the equation Au = 0 lie almost surely on an (n −m)-dimensional subspace of Rn drawn

uniformly at random 3. The probability that a fixed cone, D( f ,x), and a uniformly random

subspace, null (A), intersect only at 0 is given by the kinematic formula studied in conic

integral geometry [65]. The kinematic formula is expressed as a sum of certain “conic intrinsic

volumes”, which are shown to concentrate sharply around the square of the conic Gaussian

width [4] 4

It is possible to rank different objectives f , from worst to best, according to how small is

w(D( f ,x)). This is one of the main benefits of pinpointing the sample complexity threshold

so precisely. The width functional almost singlehandedly determines how many Gaussian

measurements are needed for a successful recovery; good objectives f should require a small

number of measurements. Lemma 4.2.2 shows a possible upper bound to the Gaussian width

of the descent cone induced by the G -TV semi-norm.

Lemma 4.2.2 (Conic Gaussian width of D(‖D · ‖1,x) [37]). Let S := supp(Dx) be the support

of x under the action of the analysis operator D ∈ RN×n , and define PS to be the orthogonal

projection operator onto span{ei : i ∈S }. Then, with g ∼N (0,In),

w(D(‖D · ‖1,x))2 ≤ n −
E(∥∥(IN −PS )Dg

∥∥
1

)
max
‖z‖2≤1

‖Dz‖1

2

. (4.7)

The G -TV is suited to recover a signal x from Gaussian measurements only if the descent cone

D(‖D · ‖1,x) has small Gaussian width. Referring to Theorem 4.2.1 and inequality (4.7), the

closer the term [
E
(∥∥(IN −PS )Dg

∥∥
1

)/
max
‖z‖2≤1

‖Dz‖1

]2

is to n, the fewer observations are needed for a successful recovery. Among these terms,

the only depending on x (through the jump-set S ) is E
(∥∥(IN −PS )Dg

∥∥
1

)
. Intuitively, this

expectation is made larger the smaller the jump-set is. Therefore, even if measured by Gaussian

vectors, piecewise-constant graph signals (due to their small jump-set) seem to be efficiently

reconstructed by G -TV decoders.

I should remark that there are currently better estimates for the Gaussian width of D(‖D · ‖1,x).

The sampling-rate function in Genzel et al. [24] gives a tighter upper bound than the one in

Lemma 4.2.2. I avoided introducing this function for the sake of presentation, but the reader is

invited to check Genzel et al.’s paper because it discusses interesting properties of `1-analysis

recovery programs in general.

3More precisely, a subspace distributed according to the Haar measure on the Grassmannian manifold G(n−m),n
invariant to the group of rotations SO(n).

4Actually, Amelunxen et al.show that the conic intrinsic volumes concentrate around the so-called “statistical
dimension” of the descent cone, δ(D( f ,x)). Nevertheless, this quantity is bounded as w(D( f ,x))2 ≤ δ(D( f ,x)) ≤
w(D( f ,x))2 +1 [4, Prop. 10.2], so the Gaussian width and the statistical dimension are essentially equivalent for
the purposes of characterizing the phase transition in Theorem 4.2.1.
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4.3 The small-ball method and its shortcomings

If the measurement matrix A is not Gaussian, which tools from probability theory can still

be used to show when the random object γ(q)
min

(
D( f ,x),A

)
is positive? The sampling matrices

defined in Chapter 2 have independent rows, so the minimum q-gain is a bounded function

of many independent random variables. By concentration of measure, we could argue that

γ
(q)
min

(
D( f ,x),A

)
is then essentially constant [70], taking values that are almost always close

to its mean. If E
(
γ

(q)
min

(
D( f ,x),A

))> 0 then the minimum q-gain would also be positive with

high probability.

The downside of such concentration arguments is that they only work properly if the marginals

of γ(q)
min

(
D( f ,x),A

)
have well-behaved tails. The small-ball method [50, 38] was developed by

Mendelson and others with the explicit goal of “obtaining high-probability, uniform estimates

in heavy-tailed situations” [52, p. 7]. The method’s name comes from its main assumption,

a positive lower bound on the small-ball probability infu∈Sn−1 P ({|〈u,a〉| > 0}), where a is

distributed as the rows of A in our context.

Definition 4.3.1 (Small-ball condition). A random vector v satisfies a small-ball condition

with constants κ> 0 and δ ∈ (0,1) if P ({|〈v,u〉| ≥ κ‖u‖2}) ≥ δ for all u.

The small-ball condition can be linked to identifiability questions about linear functionals [46,

44]. Let X be a random variable distributed according to some probability measure µ. A

class of linear functionals F = {〈v, ·〉 : v ∈S } is identifiable under µ if P ({〈v, X 〉 6= 〈u, X 〉}) > 0

for every u 6= v ∈S . This is equivalent to assuming P ({|〈v, X 〉| > 0}) > 0 [46, 44], which is the

small-ball condition. This condition is thus weak in the sense that it simply demands the

distribution of random vectors X to be able to distinguish the functions in F — with some

non-zero probability.

The first step towards the small-ball method is to see the minimum q-gain functional as the

infimum of a non-negative empirical process induced by the rows of A. Denote those rows by

{ai }m
i=1, so as to unpack the q-norm in Definition 4.1.1 as

(
γ

(q)
min

(
D( f ,x),A

))1/q
= inf

u∈D( f ,x)∩Bn
q

(
m∑

i=1
|〈ai ,u〉|q

)1/q

. (4.8)

Then, a series of non-trivial manipulations of this expression ends up lower bounding the

minimum q-gain by the difference of two functionals, one related to a small-ball condition

and the other to a new notion of width for the descent cone D( f ,x). The first of these terms is

the marginal tail function.

Definition 4.3.2 (Marginal tail function [72]). The marginal tail function, at level ξ≥ 0, of a

random vector v restricted to a set S is defined as

Qξ(v,S ) := inf
u∈S ∩Sn−1

P ({|〈v,u〉| ≥ ξ}) (4.9)
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4.3. The small-ball method and its shortcomings

The second functional appearing the the lower bound of γ(q)
min

(
D( f ,x),A

)
is the mean empirical

width. It has a similar expression to the conic Gaussian width of the previous section, but the

expectation is taken with respect to a Rademacher average of the rows of A.

Definition 4.3.3 (Mean empirical width [72]). Let ε1, . . . ,εm be i.i.d. copies of a Rademacher

random variable 5. The mean empirical width of a set S , as measured by m i.i.d. copies,

v1, . . . ,vm , of a random vector v, is the quantity

Wm(v,S ) := E

 sup
u∈S ∩Sn−1

〈
1p
m

m∑
i=1

εi vi︸ ︷︷ ︸
=:h

,u

〉 (4.10)

In passing, note that whenever v has bounded moments the Central Limit Theorem tells us

that the distribution of h tends to N (0,E
(
vv>

)
) as m →∞. If, on top of that, v is isotropic 6

then Wm(v,S ) will approximate the Gaussian width w(S ) as the number of i.i.d. copies of

v grows. The functional Wm is really then an empirical analogous of the notion of set width

induced by standard Gaussian vectors.

The precise expression relating the minimum q-gain to the marginal tail function and the

mean empirical width is given in Theorem 4.3.1. Its proof is taken from Tropp [72], but I

reproduce it in Appendix 4.A.1 for the interested reader.

Theorem 4.3.1 ([72, Prop. 5.1]). Let the rows of A ∈Rm×n be i.i.d. copies of a random vector a.

Then, for any constants ξ, t > 0, and with probability at least 1−exp
(
−t 2

2

)
, we have the lower

bound

γ
(q)
min

(
D( f ,x),A

)≥ m
2−q

2
[
ξ
p

mQξ(a,D( f ,x))−2Wm(a,D( f ,x))−ξt
]q

. (4.11)

This lower bound combines with Theorem 4.1.1 to form in the following robust recovery result

for regression problems of the type (P f -η).

Corollary 4.3.1.1. Let the rows of A ∈Rm×n be i.i.d. copies of a random vector a. Then, for any

constants τ,ξ, t > 0, any solution z? of problem (P f -η) satisfies

‖z?−x‖q
q ≤ 2η

τm(2−q)/2
, (4.12)

with probability at least 1−exp
(
−t 2

2

)
, provided that

m ≥
(

2Wm(a,D( f ,x))+ξt +τ1/q

ξQξ(a,D( f ,x))

)2

. (4.13)

5That is, a {−1,1}-valued random variable ε for which P ({ε=−1}) =P ({ε= 1}) = 1/2.
6E

(
vv>

)= In
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Chapter 4. Direct certificates: measurement gain inside the descent cone

PROOF: Set τ := [
ξ
p

mQξ(a,D( f ,x))−2Wm(a,D( f ,x))−ξt
]q as a lower-estimate for m

2
2−q times

γ
(q)
min

(
D( f ,x),A

)
. This estimate is positive by condition (4.13). Then, combine Theorem 4.3.1

and Theorem 4.1.1.

In light of Corollary 4.3.1.1, the small-ball method prescribes the following three steps for

uncovering the sample complexity of decoders like (P f -η) whenever the measurement matrix

has independent rows.

1: Bound Qξ(a,D( f ,x)) below.
2: Bound Wm(a,D( f ,x)) above.
3: Return m according to Corollary 4.3.1.1.

There are many tools for attacking the non-trivial steps 1 and 2. Unless we already know the

constants in the small-ball condition satisfied by a, a Paley-Zygmund inequality [18, Prop.

3.3.1] may lower-bound the marginal tail function. Generic chaining [71, Ch. 2] or cone

polarity [72, Prop 7.1], in turn, may majorize the mean empirical width by simpler objects.

Indeed, in Appendix 4.A.2 I adapt an argument of Tropp to arrive at the following estimate

for the mean empirical width associated with the G -TV regression decoder (P1-η). Notice its

similarity to Lemma 4.2.2, even though the rows of A are not necessarily Gaussian random

vectors.

Lemma 4.3.2 (Mean empirical width of D(‖D · ‖1,x)). Let S := supp(Dx) be the support of

x under the action of the analysis operator D ∈ RN×n , and define PS to be the orthogonal

projection operator onto span{ei : i ∈S }. Recall that, given m i.i.d. copies of a random vector

a, we define h := 1p
m

∑m
i=1 εi ai as their Rademacher average. Then, the following upper bound

holds:

Wm(a,D(‖D · ‖1,x))2 ≤ E(‖a‖2
2

)−
E(‖(IN −PS )Dh‖1

)
max
‖z‖2≤1

‖Dz‖1

2

. (4.14)

This bound is manageable even when we consider the sampling matrices defined in Chapter 2.

We only need an estimate for the second moment of the rows of A, and we can borrow from

the literature [37] ways to deal with the rightmost term in (4.14). Our coordinate sampling

matrices only become a problem when dealing with the marginal tail function.

Koltchinskii and Mendelson [38] — and later Tropp [72] — state that the marginal tail function

reflects the absolute continuity of the distribution of the random vector v. Hence Qξ(v, ·) may

be quite small when the distribution of v is “spiky”, an adjective we can certainly give to the

sampling vectors used in this thesis. After all, the rows of A are drawn among the standard

basis vectors in Rn , so the distribution of our sampling vectors is supported on n points only.

Meanwhile, the distribution of Gaussian vectors is supported on the whole of Rn .

For a concrete example of how large the marginal tail function can be for absolutely continuous
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random vectors, consider the following proposition.

Proposition 4.3.1. If g ∼N (0,In), then

lim
ξ→0

inf
u∈Sn−1

P
({|〈g,u〉| ≥ ξ})= 1. (4.15)

PROOF: It suffices to realize that 〈g,u〉 ∼N (0,‖u‖2
2︸ ︷︷ ︸

=1

) and compute

lim
ξ→0

inf
u∈Sn−1

P
({|〈g,u〉| ≥ ξ})= lim

ξ→0

1p
2π

∫ ∞

−∞
1{|t |≥ξ}e

−t 2/2d t

= lim
ξ→0

2p
2π

∫ ∞

ξ
e−t 2/2d t (2× Gaussian tail)

= 1.

Now, contrast Proposition 4.3.1 with the next one concerning random vectors from the Coor-

dinate Sampling with Replacement (CSWR(π)) model.

Proposition 4.3.2. Let a ∈ Rn be distributed as an arbitrary row of a matrix following the

CSWR(π) model. Then,

lim
ξ→0

inf
u∈Sn−1

P ({|〈a,u〉| ≥ ξ}) ≤ 1

n
. (4.16)

PROOF:

〈1〉1. The distribution of vector a is supported on the set of standard basis vectors {ei }n
i=1. This

distribution is parametrized as P ({a = ei }) =πi ,∀i ∈ [n], where
∑n

i=1πi = 1.

〈1〉2. Thus, P ({|〈a,u〉| ≥ ξ}) =∑n
i=1 1{|〈ei ,u〉|≥ξ}πi .

〈1〉3. We can pick u ∈Sn−1 orthogonal to all but one of the standard basis vectors. Pick this

non-orthogonal vector as the one associated with the smallest sampling probability.

Then,

lim
ξ→0

inf
u∈Sn−1

P ({|〈a,u〉| ≥ ξ}) = lim
ξ→0

inf
u∈Sn−1

n∑
i=1

1{|〈ei ,u〉|≥ξ}πi

= min
i∈[n]

πi .

〈1〉4. Q.E.D.

The claim holds by noting that

(
n ·min

i∈[n]
πi

)
≤∑n

i=1πi = 1.

Through Corollary 4.3.1.1, a marginal tail function as minuscule as in Proposition 4.3.2 would

lead to a vacuous sample complexity — unless the mean empirical width were impractically

small 7. That is for most practical convex functions in (P f -η), the corollary would guarantee

7The related Gaussian width for convex cones commonly used in recovery problems varies between O (n) and
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robust recovery only if m > n, a number of coordinate samples larger than the total number of

coordinates in the signal-to-be-recovered.

This is the main roadblock in using the standard small-ball method to arrive at the sample

complexity for the decoders in this thesis. Still, the reason why this roadblock was reached

might help in future attempts to certify coordinate-sampled convex recovery programs via

the minimum q-gain functional. My unsatisfactory estimate for our marginal tail functional

was a consequence of being able to pick a vector u ∈ Sn−1 orthogonal to all but one of the

standard basis vectors in Rn . This means, however, that this pick is itself one of the standard

basis vectors. But in employing Proposition 4.3.2 I willfully ignored how the descent cone

might restrict this choice 8. If the vectors in D( f ,x)∩Sn−1 are shown to be “far” from any given

coordinate axis 9, we might be able to get a better lower bound on Qξ even when the small-ball

condition does not strictly hold.

Indeed, take the toy example D( f ,x) ≡ span(1). Then, for any u ∈ D( f ,x)∩Sn−1, we have

|〈a,u〉| = 1/
p

n. Hence, lim
ξ→0

inf
u∈D( f ,x)∩Sn−1

P ({|〈a,u〉| ≥ ξ}) = 1, just as in the Gaussian case. In the

next section I will further explore how the coordinate information of the descent cone could

be used to bypass the shortcomings we found in the standard small-ball method.

4.4 Exploring the coordinate structure of the descent cone

I will focus in this section on the Bernoulli Sampling Model (Ber(π)) of independent vertex

sampling (see Chapter 2). As a reminder, this model uses i.i.d. Bernoulli selectors to build a

measurement matrix A =∑n
i=1δi ei e>i . The q-gain of A for any vector u ∈Rn is then a sum,

‖Au‖q
q =

n∑
i=1

δi |〈ei ,u〉|q =
n∑

i=1
δi |ui |q , (4.17)

of independent random variables whose expectation has the form

E
(
‖Au‖q

q

)
=

n∑
i=1

E (δi ) |ui |q =
n∑

i=1
πi |ui |q . (4.18)

A simple application of the Bernstein inequality shows that ‖Au‖q
q does not deviate too much

from its expectation. The precise estimate — whose proof I put in Appendix 4.A.3 — is given

in the following lemma.

O
(
logn

)
[4, Table 3.1]

8We can safely ignore the descent cone in marginal tail function for random vectors satisfying a small-ball
condition with large constants κ,δ (see Definition 4.3.1). In such cases, the effects of the measurement vectors and
the convex objective on the minimum gain functional essentially decouple: Qξ is a sort of condition number for
the measurements; Wm deals with the geometry of the descent cone.

9We could make this statement precise, as Mendelson does, by defining sets with “regular coordinate struc-
ture” [53].
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Lemma 4.4.1. Suppose that matrix A ∈Rn×n , with n ≥ 2 rows comes from the Ber(π) sampling

model, and let u be any vector in Rn . Set τ := ∑n
i=1πi |ui |q . If τ ≥ 32

3n ‖u‖q
∞ log

(2
ε

)
, we then

observe

τ

2
≤ ‖Au‖q

q ≤ 3τ

2
(4.19)

with probability at least 1−ε.

The condition
∑n

i=1πi |ui |q ≥ 32
3n ‖u‖q

∞ log
(2
ε

)
has to do with the geometry of the set to which

vector u belongs. If it holds, then u belongs — as Mendelson [53] would say — to a set of

“regular coordinate structure”, because enough coordinates in u are larger than some constant.

Such vectors are in some sense “far” from the coordinate axes (when measuring distances

by angle, for example). The set span(1), evoked in the end of the previous section, is an

extreme example of a set with regular coordinate structure. Note in passing that the vertex

probabilities, π1, . . . ,πn , appear in the condition, indicating where the sampling design may

affect the recovery guarantees.

Still, Lemma 4.4.1 is not the end of the story; a direct certificate for problem (P1-η) is only

obtained if we have a lower bound on inf
u∈D(‖D·‖1,x)∩Sn−1

‖Au‖q
q . One possible line of attack

towards this goal is an ε-net argument. That is, show that all points in D(‖D · ‖1,x)∩Sn−1 are

at most ε-far from a finite set F with regular coordinate structure, and then apply the previous

lemma in a union bound over u ∈F 10.

But even then a question remains open: what finite set F with a regular coordinate structure

forms an ε-net for D(‖D · ‖1,x)∩Sn−1? Or, even more fundamentally, when is the intersection

D(‖D · ‖1,x)∩Sn−1 close to such an F ? Answers to these questions require a better geometric

characterization of the descent cone induced by the G -TV semi-norm for different classes

of graphs and signals. I do not have this characterization, but looking for it should be an

interesting endeavor.

4.5 Summary and further notes

This chapter delved into the possibility of providing a direct recovery certificate for the Graph

Total Variation regression (P1-η) by lower-bounding a minimum q-gain functional.

Coordinate sampling ensembles such as ours are somewhat unusual in compressed sensing,

so I chose to show first what would happen if we had Gaussian measurements instead. In this

exercise, we saw how the size of the descent cone (via the conic Gaussian width) informs how

many Gaussian vectors it takes to encode enough information about the ground-truth signal

and ensure a robust recovery. Other notions of width appear in similar settings in the literature,

induced by other specific classes of linear measurements. For instance, Sivakumar et al. [67]

10This is the strategy employed by Mendelson [53] in the context of sparse recovery problems from subsampled,
random convolutions.
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define a mean exponential width to deal with measurement vectors with sub-exponential

tails. In any case, the conclusion is always the same: narrower cones lead to better sample

complexities.

Mendelson’s small-ball method has been involved in many success stories regarding lower-

bounds for non-negative empirical processes like our minimum q-gain functional. But the

small-ball condition of our coordinate sampling vectors is very poor. It predicts a marginal tail

function that is too small and finally leads to a vacuous sample complexity for practical convex

decoders. I should mention that Mendelson has kept building upon the original method. A

somewhat recent improvement was replacing the small-ball assumption by a stable lower

bound condition [51], extending the scope of empirical processes can be dealt with.

By the end of this chapter I can but point towards a direction where the G -TV regression

(P1-η) might be given a direct recovery certificate. The path requires a better understanding

of the geometry of the descent cone D(‖D · ‖1,x), especially in what concerns the coordinate

structure of the set D(‖D · ‖1,x)∩Sn−1. But this characterization I leave as an open problem.

In the next chapter, I will finally show a recovery certificate – even if only for the noiseless,

interpolation program (P1). An optimal sampling design will then be revealed as the one that

minimizes the number of samples the certificate demands.
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4.A. Proofs

Appendix 4.A Proofs

4.A.1 Proof of Theorem 4.3.1

In this section, A ∈ Rm×n is a random matrix whose rows, a1, . . . ,am , are i.i.d. copies of a

random vector a. The reader should recall Definitions 4.1.1, 4.3.2, and 4.3.3 for the minimum

q-gain, the marginal tail function, and the mean empirical width, respectively. The minimum

q-gain of A, restricted to a set S , will be seen as a non-negative empirical process induced by

the random vectors a1, . . . ,am :

γ
(q)
min (S ,A) = inf

u∈S ∩bd(Bn
q )

‖Au‖q
q = inf

u∈S ∩bd(Bn
q )

m∑
i=1

|〈ai ,u〉|q .

I will then show that for any constants ξ, t > 0, and with probability larger than 1−exp
(
−t 2

2

)
,

the lower bound(
γ

(q)
min (S ,A)

)1/q
≥ m

2−q
2q

[
ξ
p

mQξ(a,S )−2Wm(a,S )−ξt
]

takes place. The argument is taken from Tropp [72, Sec. 2.5.5].

PROOF:

〈1〉1. Use, successively, the Lyapunov and Markov inequalities to reach the starting lower

bound(
1

m

m∑
i=1

|〈ai ,u〉|q
)1/q

≥ 1

m

m∑
i=1

|〈ai ,u〉| ≥ ξ

m

m∑
i=1

1{|〈ai ,u〉|≥ξ}.

〈1〉2. Add and subtract P ({|〈ai ,u〉| ≥ 2ξ}) on the RHS of the inequality in the previous step.

Then take the infimum over S on both sides:

inf
u∈S

(
1

m

m∑
i=1

|〈ai ,u〉|q
)1/q

≥ ξ
=:Q2ξ(a,S )︷ ︸︸ ︷

inf
u∈S

P ({|〈ai ,u〉| ≥ 2ξ})

− ξ

m
sup
u∈S

m∑
i=1

[
P ({|〈ai ,u〉| ≥ 2ξ})− 1{|〈ai ,u〉|≥ξ}

]
〈1〉3. Control the supremum on the new RHS using the bounded differences inequality [8,

Sec. 6.1]. This is possible because the summands inside the supremum are independent

and bounded in magnitude by one. With probability larger than 1−exp
(−t 2/2

)
, we then

have

sup
u∈S

m∑
i=1

[
P ({|〈ai ,u〉| ≥ 2ξ})− 1{|〈ai ,u〉|≥ξ}

]≤ E(
sup
u∈S

m∑
i=1

[
P ({|〈ai ,u〉| ≥ 2ξ})− 1{|〈ai ,u〉|≥ξ}

])
+ t

p
m.

61



Chapter 4. Direct certificates: measurement gain inside the descent cone

〈1〉4. It remains to bound the expected supremum to the right. Let ε1, . . . ,εm be i.i.d. copies of

a Rademacher random variable; I claim that the following holds:

E

(
sup
u∈S

m∑
i=1

[
P ({|〈ai ,u〉| ≥ 2ξ})− 1{|〈ai ,u〉|≥ξ}

])≤ 2

ξ
E

(
sup
u∈S

m∑
i=1

εi 〈ai ,u〉
)

,

PROOF:

〈2〉1. Define a “soft” indicator function ψξ :R→ [0,1] (see Figure 4.1) as the map

s 7→ψξ(s) :=


0, |s| ≤ ξ

|s|−ξ
ξ , ξ< |s| ≤ 2ξ

1, |s| > 2ξ

We will need two, easily-verifiable properties of this function. First, it is “sand-

ψξ(s)

s

−2ξ −ξ 0 ξ 2ξ

Figure 4.1 – “Soft” indicator function

wiched” by two indicator functions, 1{|·|≥2ξ} ≤ψξ(·) ≤ 1{|·|≥ξ}. Second, the product

map s 7→ ξψξ(s) is a contraction.

〈2〉2. Use the soft indicator function — and its properties — to apply a symmetrization

procedure [47, Lemma 6.3], and then the Rademacher comparison principle [47,

Theorem 4.12] to the expected supremum. As a result, the claim is proved:

Esup
u∈S

m∑
i=1

[
P ({|〈ai ,u〉| ≥ ξ})− 1{|〈ai ,u〉|≥ξ}

]
= Esup

u∈S

m∑
i=1

[
E1{|〈ai ,u〉|≥2ξ} − 1{|〈ai ,u〉|≥ξ}

]
(“sandwiched” ψξ)≤ Esup

u∈S

m∑
i=1

[
Eψξ(〈ai ,u〉)−ψξ(〈ai ,u〉)]

(symmetrization)≤ 2Esup
u∈S

m∑
i=1

εiψξ(〈ai ,u〉)

(contraction of ξψξ)≤
2

ξ
Esup

u∈S

m∑
i=1

εi 〈ai ,u〉︸ ︷︷ ︸
=:
p

mWm (a,S )
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4.A. Proofs

〈1〉5. Q.E.D.

The desired lower bound on the minimim q-gain functional arises by combining steps 〈1〉2,

〈1〉3 and 〈1〉4:

(
γ

(q)
min (S ,A)

)1/q
:= inf

u∈S

(
1

m

m∑
i=1

|〈ai ,u〉|q
)1/q

≥ m
2−q
2q

[
ξ
p

mQξ(a,S )−2Wm(a,S )−ξt
]

.

4.A.2 Proof of Lemma 4.3.2

As a reminder, I use the symbols S := supp(Dx) for the jump-set of x, PS := ∑
i∈S ei e>i for

the corresponding orthogonal projection operator, and h := 1p
m

∑m
i=1 εi ai for the Rademacher

average of vectors a1, . . . ,am . I will prove the bound

Wm(a,D(‖D · ‖1,x))2 ≤ E(‖a‖2
2

)−
E(‖(IN −PS )Dh‖1

)
max
‖z‖2≤1

‖Dz‖1

2

for the mean empirical width of the G -TV descent cone, as measured by i.i.d. copies, a1, . . . ,am ,

of a random vector a.

The argument — an adaptation of [37, Lem. 1 & Thm. 3] — works by relating the descent cone

D(‖D · ‖1,x) to the subdifferential

∂‖D · ‖1(x) := {
v ∈Rn : 〈v,z−x〉 ≤ ‖Dz‖1 −‖Dx‖1,∀z ∈Rn}

. (4.20)

In particular, the defining expressions of the subdifferential are called upon (see Proposi-

tion 3.1.2).

PROOF:

〈1〉1. Tropp [72, Prop. 7.1] gives us the initial upper bound

Wm(a,D(‖D · ‖1,x))2 ≤ E
(

inf
τ≥0

inf
v∈∂‖D·‖1(x)

‖h−τv‖2
2

)
〈1〉2. We can exchange the expectation and the first infimum:

E

(
inf
τ≥0

inf
v∈∂‖D·‖1(x)

‖h−τv‖2
2

)
≤ inf
τ≥0

E

(
inf

v∈∂‖D·‖1(x)
‖h−τv‖2

2

)

〈1〉3. Consider a fixed τ≥ 0. I claim that E

(
inf

v∈∂‖D·‖1(x)
‖h−τv‖2

2

)
≤ E(‖h‖2

2

)−[
E(‖(IN−PS )Dh‖1)

max
‖z‖2≤1

‖Dz‖1

]2

PROOF:
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Chapter 4. Direct certificates: measurement gain inside the descent cone

〈2〉1. Start with the following characterization from subdifferential calculus:

v ∈ ∂‖D · ‖1(x) ⇐⇒ v ∈ D>∂‖ ·‖1(Dx)

⇐⇒ ∃u ∈BN
∞ : v = D>

PS sign(Dx)︸ ︷︷ ︸
=sign(Dx)

+(IN −PS )u


〈2〉2. Note that ∂‖D · ‖1(x) is a compact set, because it is the linear image of points in

BN
∞ by the finite-dimensional linear operator D>.

〈2〉3. Therefore, there exists at least one v? in ∂‖D · ‖1(x) for which the maximum

max
v∈∂‖D·‖1(x)

〈h,v〉 =: 〈h,v?〉 is achieved.

〈2〉4. Fix this v? ∈ ∂‖D · ‖1(x), and compute

inf
v∈∂‖D·‖1(x)

‖h−τv‖2
2 ≤ ‖h‖2

2 −τ〈h,v?〉+τ2‖v?‖2
2

= ‖h‖2
2 −2τ max

v∈∂‖D·‖1(x)
〈h,v〉+τ2 max

‖z‖2≤1
〈z,v?〉

= ‖h‖2
2 −2τ〈h,D> sign(Dx)〉−2τmax

u∈BN∞

〈
h,D>(IN −PS )u

〉
+τ2 max

‖z‖2≤1

〈
z,D> [

sign(Dx)+ (IN −PS )u?
]︸ ︷︷ ︸

(For some u? ∈BN
∞)

〉

= ‖h‖2
2 −2τ〈h,D> sign(Dx)〉−2τ‖(IN −PS )Dh‖1

+τ2 max
‖z‖2≤1

〈
Dz,

[
sign(Dx)+ (IN −PS )u?

]〉
(Hölder ineq.)≤ ‖h‖2

2 −2τ〈h,D> sign(Dx)〉−2τ‖(IN −PS )Dh‖1

+τ2 max
‖z‖2≤1

‖Dz‖1 ·
∥∥sign(Dx)+ (IN −PS )u?

∥∥∞︸ ︷︷ ︸
≤1

〈2〉5. Recall that E (h) = 0, so taking the expectation on both sides of the previous in-

equality yields

E

(
inf

v∈∂‖D·‖1(x)
‖h−τv‖2

2

)
≤ ‖h‖2

2 −2τE (‖(IN −PS )Dh‖1)+τ2 max
‖z‖2≤1

‖Dz‖1.

〈2〉6. Calculus tells us that τ= E‖(IN−PS )Dh‖1

max
‖z‖2≤1

‖Dz‖2
1

is the minimizer of the RHS above. Replace

this value of τ onto the inequality to reach the claim.

〈1〉4. Finally, check that E
(‖h‖2

2

)= E(‖a‖2
2

)
.

PROOF: By direct calculation,

E
(‖h‖2

2

)
:= E

(∥∥∥∥∥ 1p
m

m∑
i=1

εi ai

∥∥∥∥∥
2

2

)
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4.A. Proofs

= 1

m

∑
i , j
E
(
εiε j

)
E
(〈ai ,a j 〉

)
(Independence of a and ε)

= 1

m

∑
i 6= j

E
(
εiε j

)︸ ︷︷ ︸
=E(εi )E(ε j )=0

E
(〈ai ,a j 〉

)

+
m∑

i=1
E
(
ε2

i

)︸ ︷︷ ︸
=1

E (〈ai ,ai 〉)


(Independence and zero mean of ε1, . . . ,εm)

= 1

m

m∑
i=1

E
(‖ai‖2

2

)
= 1

m

m∑
i=1

E
(‖a‖2

2

)
(Identical distribution of a1, . . . ,am ∼ a)

= E(‖a‖2
2

)

〈1〉5. Q.E.D.

Join the estimates in each step to unveil Wm(a,D(‖D · ‖1,x))2 ≤ E(‖a‖2
2

)−[
E(‖(IN−PS )Dh‖1)

max
‖z‖2≤1

‖Dz‖1

]2

,

the desired upper bound.

4.A.3 Proof of Lemma 4.4.1

For A ∈Rn×n coming from the Ber(π) sampling model, and u ∈Rn , I claim that

‖Au‖q
q ∈

[
τ

2
,

3τ

2

]
with likelihood larger than 1−ε, as long as τ :=∑n

i=1πi |ui |q ≥ 32
3n ‖u‖q

∞ log
(2
ε

)
.

PROOF: We only need to apply the scalar Bernstein inequality (Appendix A) to the random

deviation ‖Au‖q
q −E‖Au‖q

q .

〈1〉1. Set X := ‖Au‖q
q −E

(
‖Au‖q

q

)
=∑n

i=1 (δi −πi )|ui |q︸ ︷︷ ︸
=:Xi

. The scalar X is a sum of independent,

zero-mean random variables Xi , because the Bernoulli selectors {δi }n
i=1 are indepen-

dent.

〈1〉2. Each term in the sum is upper bounded almost surely as

|Xi | = |δi −πi |︸ ︷︷ ︸
≤1

|ui |q ≤ max
i∈[n]

|ui |q = ‖u‖q
∞ =: B.
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Chapter 4. Direct certificates: measurement gain inside the descent cone

〈1〉3. We can also write an upper bound for their second moments as

E
(
X 2

i

)= E(
(δi −πi )2) |ui |2q =πi (1−πi )|ui |2q ≤πi |ui |2q ≤ Bπi |ui |q .

and set σ2 := B
n

∑n
i=1πi |ui |q .

〈1〉4. The scalar Bernstein inequality in Lemma A.0.1, along with the moment estimates above,

give us the deviation probability

P
({∣∣∣‖Au‖q

q −E
(
‖Au‖q

q

)∣∣∣> t
})

≤ 2exp

(
−3n

8
min

{
t 2

σ2 ,
t

B

})
= 2exp

(
−3n

8

t

‖u‖q
∞

min

{
nt∑n

i=1πi |ui |q
,1

})
.

〈1〉5. Picking t = 1
2

∑n
i=1πi |ui |q =: 1

2E‖Au‖q
q , we have nt∑n

i=1πi |ui |q ≥ 1, as long as n ≥ 2. With this

choice, the deviation inequality becomes

P

({∣∣∣‖Au‖q
q −E

(
‖Au‖q

q

)∣∣∣> 1

2

n∑
i=1

πi |ui |q
})

≤ 2exp

(
−3n

32

∑n
i=1πi |ui |q

‖u‖q
∞

)
.

〈1〉6. Q.E.D.

The claim holds by setting the RHS of the last inequality to at most ε.
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5 Dual certificates: KKT conditions and
the golfing scheme

As we exit our search for a direct recovery certificate — cut short by lack of coordinate informa-

tion on D(‖D ·‖1,x) —, this chapter looks for an alternative in the polar opposite of the descent

cone. The subdifferential ∂‖D ·‖1(x) appears when considering the Karush-Kuhn-Tucker (KKT)

conditions for the solutions of

min
z∈Rn

‖Dz‖1 such that Ax = Az. (P1)

One of these conditions relies on the existence of a certain dual vector u ∈ RN living in the

co-domain of the linear transformation represented by D. The very existence of the dual

vector u can be seen as a recovery certificate for (P1); the hard task is proving that such a

vector exists. Nevertheless, I show how to use the KKT conditions as a blueprint for an iterative

scheme producing approximations of the dual vector that are still valid certificates. This

idea gives rise to a version of the golfing scheme [28], popular in Compressed Sensing, and

whose convergence depends on well-behaving tails in random matrices born of the interaction

between D and A. Although powerful, this scheme(by its very construction) applies only to the

noiseless, interpolation problem (P1). 1

In the end, I can reach a sample complexity threshold for the G -TV interpolation under Coor-

dinate Sampling with Replacement (CSWR(π)). More importantly, this threshold explicitly

depends on the sampling probabilities π= (π1, . . . ,πn) of CSWR(π). The corresponding op-

timal design is then just a corollary of sample complexity result, achieved by minimizing

the threshold level with respect to π. Although simple to state, the optimal sampling design

is difficult to evaluate in practice, but some approximations of it are examined in the next

chapter.

1This restriction is the main downside of the certificates in this section, as compared to the ones that we could
have obtained in the previous chapter.
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Chapter 5. Dual certificates: KKT conditions and the golfing scheme

5.1 Lagrange dual problem and the KKT conditions

The method of Lagrange multipliers [9, Ch. 5] gives us a dual perspective on problem (P1).

First, consider augmenting its objective function in the following way. Let ν= (ν1, . . . ,νm) ∈Rm

be a vector with an entry for each of the m implicit equations in Az = Ax. The numbers

ν1, . . . ,νm will act as the Lagrange multipliers for the equality constraint Az−Ax = 0. The

multipliers augment the objective through the map

z,ν 7→L(z,ν) := ‖Dz‖1 +〈ν,Az−Ax〉 , (5.1)

The function L :Rn ×Rm →R is then deemed the Lagrangian of the problem. Second, use the

Lagrangian to define the dual problem 2

max
ν∈Rm

min
z∈Rn

‖Dz‖1 +〈ν,Az−Ax〉 , (P1-dual)

whose objective has an optimal value identical to the one of (P1) 3.

The just-defined (P1-dual) is a saddle-point problem, convex in z and concave 4 in ν. Vari-

ational analysis [63, Thm. 8.15] tells us that (z?,ν?) is the corresponding saddle-point (or

optimal pair) if the inclusions

0 ∈ ∂νL(z?,ν?), and (5.2)

0 ∈ ∂zL(z?,ν?) (5.3)

take place 5. The Lagrangian is differentiable with respect to ν, so we can unpack (5.2) as

0 ∈ ∂νL(z?,ν?) ⇐⇒ 0 =∇ν
{‖Dz?‖1 +

〈·,Az?−Ax
〉}

(ν?)

⇐⇒ 0 = Az?−Ax.

For the second inclusion, we have to deal with the subdifferential of ‖D·‖1 at z?, and it will help

to recall this set’s defining expressions from Proposition 3.1.2. Setting S = supp
(
Dz?

)
, we can

write z ∈ ∂‖D·‖1(z?) ⇐⇒ there is some vector u? ∈RN such that z = D>u?, PS u? = sign
(
Dz?

)
,

and
∥∥(IN −PS )u?

∥∥∞ ≤ 1. As a result, we may read (5.3) as

0 ∈ ∂zL(z?,ν?) ⇐⇒ 0 ∈ ∂‖D · ‖1(z?)+∇z
{〈
ν?,A ·−Ax

〉}
(z?)

⇐⇒ −A>ν? = D> [
sign

(
Dz?

)+ (IN −PS )u?
]

,

where
∥∥(IN −PS )u?

∥∥∞ ≤ 1.

2Taking (P1) as the reference, primal problem.
3This is guaranteed because the primal problem is convex and Slater’s condition is satisfied: there is at least one

strictly feasible point z, namely z ≡ x, belonging to the relative interior of the primal’s objective [9, Sec. 5.2.3].
4It is actually linear in ν, hence both convex and concave.
5In Calculus, this is analogous to finding the critical points of a differentiable function in the places where the

derivative vanishes.
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5.2. Inexact dual certificates for G -TV interpolation

Together, the unpacked saddle-point expressions form the so-called Karush-Kuhn-Tucker

(KKT) conditions for the optimality of the primal-dual pair (z?,ν?):

Az? = Ax

and

−A>ν? = D>u? :

{
PS u? = sign

(
Dz?

)∥∥(IN −PS )u?
∥∥∞ ≤ 1

,

for some u? ∈ RN . The first of these conditions just restates the interpolation constraint;

the second lists the ingredients we will need in the rest of the chapter. Problem (P1) is only

succesful if each of its optimal points z? is identical to x. In this case the first of the KKT

conditions is trivially satisfied; let us focus on the rest of them then.

Note that not much is demanded of the optimal dual point ν?: it just constraints D>u? to

be in the range of A>. The only degree of freedom left is the vector u?. If there is some such

vector simultaneously satisfying

D>u? ∈ range
(
A>)

, (5.4)

PS u? = sign(Dx) (5.5)∥∥(IN −PS )u?
∥∥∞ ≤ 1, (5.6)

where S = supp(Dx), then u? certifies x as a solution of (P1). We should then try to find such

certificate vectors.

But before we rush, remember the random nature of the sampling matrix A. It makes imprac-

tical the search for a vector u? satisfying an equality constraint like PS u? = sign(Dx), while

having a deterministic image D>u? that lies in a random subspace. Fortunately, I show in

the next section how some points u ∈RN can be enough of a recovery certificate despite PS u

merely approximating sign(Dx). This relaxation does not come — of course — without a cost,

for it demands a more precise control over the interplay between operators D and A. Still, it

pays off, later on, when the defining expressions for these inexact certificates are turned into

the blueprint for an effective golfing scheme.

5.2 Inexact dual certificates for G -TV interpolation

Inexact dual certificates are a staple of exact recovery studies in Compressed Sensing, especially

when the measurement ensemble is “structured” 6 [3, 10, 13]. Ever since Candès and Plan [13],

the scope of such certificates has been incrementally extended. Using the form of (P1) as a

template, we can say that inexact dual certificates were initially shown to exist only when the

sparsifying transform D was the identity. Then, other proofs started admitting programs with

6As opposed to measurement ensembles like the Gaussian which are considered “unstructured”
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Chapter 5. Dual certificates: KKT conditions and the golfing scheme

tight frames [11] or injective operators [48]. From the perspective of the measurement matrix,

the traditionally imposed restraints regarded the covariance structure of A. It was only after

Kueng and Gross [42] that non-isotropic 7 measurements could be dealt with.

The lemma that I present next generalizes the progress discussed in the historical account of

the previous paragraph. It shows that inexact dual vectors can certify (P1) for a large class of

matrices D and A. In particular, the analysis operator D need not be injective, as long as its

null space intersects trivially with the one of A 8. Moreover, the random properties of A are

allowed to be regularized by a free parameter in the form of a matrix B.

Lemma 5.2.1 (Inexact Dual Certificate). Set M := [
D(In −BA)D+]>, using some matrix B ∈

Rm×n , and let u be some vector in RN . The point x ∈Rn is certified by u to be the unique solution

of (P1) if all of the following hold:

null (D)∩null (A) = {0}, (A1)

‖PS MPS ‖2 ≤ 1/3, (A2)

max
k∉S

∥∥PS M>ek
∥∥

2 ≤ 1, (A3)

D>u ∈ range
(
A>)

, (A4)

‖PS (u− sign(Dx))‖2 ≤ 1/3, (A5)

‖(IN −PS )u‖∞ ≤ 1/3. (A6)

To prove this result, I took inspiration from Boyer et al. [10, Appendix A]. The reader can find

the full argument in Appendix 5.A.1, but here is the gist of it.

PROOF SKETCH: If a perturbation z = x+h is a solution of P1, and the assumptions above

hold, I argue then that h ≡ 0 in order to avoid the contradiction ‖Dz‖1 > ‖Dx‖1. This line of

reasoning follows closely the seminal proof in Candès and Plan [13, Lemma 3.2], but I make

the necessary adaptations due to the non-trivial null space of D.

As might be expected from the proof sketch, if we set D = In and B = A> then Lemma 5.2.1

reduces to Candès and Plan [13, Lemma 3.2]. The more recent work of Lee et al.has a similar-

looking statement [48, Lemma 21], that is nonetheless only valid for D injective and A such

that A>A is a projection matrix. This can also be seen as a specialization of Lemma 5.2.1, since

the injectivity of D turns Assumption A1 trivial.

By the way, let me remark on some things about the conditions in the lemma. Readers will

correctly identify assumptions A4–A6 as consequences of the KKT conditions 5.4–5.6. The

absolute constant of 1/3 in the assumed inequalities is a presentation choice; examine the

proof in Appendix 5.A.1 to convince oneself that other numbers in (0,1) could be used. The

pair A2 and A3, on the contrary, are artifacts of the proof. They could potentially be replaced if

7A random matrix A ∈Rm×n is isotropic if E
(
A>A

)= In .
8Recall from Proposition 3.1.1 that null (D)∩null (A) = {0} is a necessary condition for unique solutions in (P1).
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5.3. The golfing scheme for producing certificates

different arguments were devised.

In light of Lemma 5.2.1, I will call any vector u ∈RN satisfying A4–A6 an inexact dual certificate

for x as the solution of P1. The next section shows how to actually produce such vectors using

the lemma’s assumptions as guidelines.

5.3 The golfing scheme for producing certificates

In the same spirit of the classic golfing scheme [28], we will start with a simple guess u(0) which

is then iteratively updated — via statistically independent adjustments — becoming some

vector u(L) after L steps. The exact number of steps is specified later on, but if u(L) is to be an

inexact dual certificate, we need to make sure that the error vectors

w(l ) := PS

(
sign(Dx)−u(l )

)
, l ∈ [L], (5.7)

end up into the origin-centered Euclidean ball of radius 1
3 . At the same time, we have to

guarantee that (IN −PS )u(L) is within the cube 1
3B

N
∞. The name of the iterative scheme gets

is thus a metaphor: we imagine a ball at the initial position u(0) and push it towards some

ideal point u? specified by PS u? = sign(Dx) and
∥∥(IN −PS )u?

∥∥∞ ≤ 1. Each iteration draws

us closer to u?, just as each golf shot should bring the ball closer to the hole (see Figure 5.1).

admissible cylinder

PS (RN )

(IN −PS ) (RN )

RN

sign(Dx)

u?

u(0)

u(1)

. . .

u(L−1)

u(L)

Figure 5.1 – The golfing scheme. Pick an initial guess u(0) and iteratively push it towards a
region where inexact dual certificates are located. The admissible cylinder is given by the set{

u ∈RN : PS u− sign(Dx) ∈ 1
3B

N
2 and (IN −PS )u ∈ 1

3B
N
∞

}
, according to Lemma 5.2.1. The red

line segment represents the region ofRN containing the vectors that satisfy the KKT conditions
(5.5) and (5.6) exactly.
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A good place for picking the initial guess u(0) is within the slab{
u ∈RN :

∥∥(IN −PS )u?
∥∥∞ ≤ 1

3

}
.

Then, we could simply update each next iterate in the direction of the error vector w(l ), an

assignment like the one below.

1: . . .

2: u(l ) ← u(l−1) +w(l )

3: . . .

If we choose, for example, u(0) = 0 then within a single iteration u(1) = sign(Dx) would im-

mediate yield a perfect certificate according to the KKT conditions (5.5) and (5.6). But the

procedure above ignored an important detail: a valid dual certificate u(L) should also satisfy

D>u(L) ∈ range
(
A>)

.

But the range condition in (A4) is stated in the primal domain, because D> maps vectors

in RN to Rn . To transform it into a condition on the dual domain (where u(0),u(1), . . . ,u(L)

live), I will employ assumption (A1). The trivial intersection null (D)∩null (A) = {0} implies the

one-to-one equivalence 9

D>u ∈ range
(
A>) ⇐⇒ (D+)>D>︸ ︷︷ ︸

=DD+

u ∈ range
(
(D+)>A>)

, (5.8)

for any u ∈RN . Each iterate u(l ) can be expressed as u(l ) = DD+u(l )+(
IN −DD+)

u(l ), by means

of a direct sum of RN . Hence, by the equivalence (5.8), we are only required to write the

orthogonal projection of u(l ) onto the range of D as (D+)>A>v, for some vector v ∈Rm .

We can now improve the prototypical assignment by incorporating this new constraint using

an additional sequence of vectors, {v(l )}l∈[L]. Instead of simply adding the error vector w(l ),

modify the part of it which lies within the range of D and add the result to the current iterate:

1: . . .

2: u(l ) ← u(l−1) + (
IN −DD+)

w(l ) + (D+)>A>v(l )

3: . . .

As long as u(0) starts in
{

u ∈RN : DD+u ∈ range
(
(D+)>A>)}

, we can rest assured that each

subsequent u(l ) will remain in the same set. Fortunately, picking u(0) = 0 will always guarantee

this situation. But which form should the vectors v(1), . . . ,v(L) take?

It would be convenient if each v(l ) were a function of w(l ), so we would not have to deal with

9It suffices to note that null (D)∩null (A) = {0} implies that the orthogonal projection operators defined by D
and A commute.
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a separate sequence of vectors. Consider the following parametrization: v(l ) = B>D>w(l ), for

some matrix B ∈Rn×m to be chosen later. This expression — although not intuitive — allows

the update directions to be then expressed as linear transformation of the error vector using

familiar matrices:(
IN −DD+)

w(l ) + (D+)>A>v(l ) = [
IN −DD++ (D+)>A>B>D>]

w(l )

= [
IN − (D+)> (In −BA)> D>]

w(l )

=

IN − (
D (In −BA)D+)>︸ ︷︷ ︸

=M

w(l ).

The matrix M ∈ RN×N is the same as the one in the statement of Lemma 5.2.1. By retracing

our steps, we can now see that multiplying any vector in RN by IN −M forces the result to

be in the set
{

u ∈RN : Du ∈ range
(
A>)}

. But unlike DD+ or AA+, the matrix IN −M does not

represent an orthogonal projection, in general. The need to control certain semi-norms of M

in Lemma 5.2.1 should seem less alien now. With matrix M, our working version of the golfing

scheme update reads as

1: . . .

2: u(l ) ← u(l−1) + (IN −M)w(l )

3: . . .

Keep in mind that we still have an unspecified matrix B hidden within the assignment above.

Let us address it now. Our measurement operator is a random matrix, so matrix M — being a

function of A — is also random. If M is zero-mean, then — at least on average — u(l ) is updated

in the direction of w(l ) as initially intended. 10 That is, E
(
u(l ) −u(l−1)

)
points straight in the

direction of the error vector w(l ). So how can we make M zero mean? Assume that A has a full

rank covariance matrix 11, then E (M) = 0 if

B = [
E
(
A>A

)]−1
A>. (5.9)

From now on, assume B as in the expression above. Not only will it have the aforementioned

effect on the average direction of the updates, but it will also simplify some probabilistic

estimates of M later on in the chapter. I leave open the question of whether other choices of

this conditioning matrix are useful or not.

Regardless, the vector u(L) at the final iteration is only a proper inexact certificate if we can

properly control the semi-norms ‖PS (u(L) − sign(Dx))‖2 and ‖(IN −PS )u(L)‖∞. The first of

10Ignoring, for now, the statistical dependence between w(l ) and M.
11This is true of both Ber(π) and CSWR(π) sampling models in this thesis.
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these concerns directly the error vector w(L), which can now be unpacked as 12

w(L) := PS (sign(Dx)−u(L))

= PS

(
sign(Dx)−u(L−1) − (IN −M)w(L−1))

= PS

(
w(L−1) −w(L−1) +Mw(L−1))

= PS MPS w(L−1)

. . .

= [PS MPS ]L w(0)

=: [PS MPS ]L sign(Dx) .

If we show PS MPS to be a contraction then the length of the error vectors decreases geomet-

rically with each update. More precisely, if at each iteration l ∈ [L] there is a constant α ∈ (0,1)

such that
∥∥PS MPS w(l )

∥∥
2 <α

∥∥w(l )
∥∥

2, then the norm of the error vector at the end of the of

golfing steps is

‖PS (u(L) − sign(Dx))‖2 = ‖w(L)‖2

=
∥∥PS MPS w(L−1)

∥∥
2

≤α
∥∥w(L−1)

∥∥
2

. . .

≤αL‖sign(Dx)‖2

=αL
√

|S |. (5.10)

For the second semi-norm that we need to control, suppose that PS MPS as well as its comple-

ment, (IN −PS )MPS , are contractions — now in the infinity norm. In other words, let all steps

l ∈ [L] admit some constant β ∈ (0,1) such that
∥∥PS MPS w(l )

∥∥∞ and
∥∥(IN −PS )MPS w(l )

∥∥∞
are smaller than β

∥∥w(l )
∥∥∞ 13. Then we could see that the coordinates in the orthogonal

complement of the error vectors w(1), . . . ,w(L+1) do not drift far from zero throughout the

process:

‖ (IN −PS )MPS u(L)‖∞ =
∥∥∥∥∥ L∑

i=1
(IN −PS ) (IN −M)PS w(l−1)

∥∥∥∥∥∞
=

∥∥∥∥∥ L∑
i=1

(IN −PS )MPS w(l−1)

∥∥∥∥∥∞(because (IN −PS )PS = 0)

≤
L∑

i=1

∥∥∥(IN −PS )MPS w(l−1)
∥∥∥∞(triangle ineq.)

≤
L∑

i=1
β

∥∥∥w(l−1)
∥∥∥∞

12Keep in mind that w(L) = PS w(L).
13This simultaneous control over the infinity norms of PS MPS and

(
IN −PS

)
MPS is an idea taken from

Boyer et al. [10] to avoid having ‖(
IN −PS

)
MPS u(L)‖∞ depend on the size of the support S := supp(Dx).

74



5.3. The golfing scheme for producing certificates

=
L∑

i=1
β

∥∥∥PS MPS w(l−2)
∥∥∥∞

≤
L∑

i=1
β2

∥∥∥w(l−2)
∥∥∥∞

. . .

≤
L∑

i=1
βl

∥∥w(0)
∥∥∞

=
L∑

i=1
βl

∥∥sign(Dx))
∥∥∞︸ ︷︷ ︸

=1

= 1−βL

1−β . (5.11)

If we wish u(L) to be an inexact dual certificate as predicted by Lemma 5.2.1, our new objective

is then to find out when we can guarantee contraction constants α,β ∈ (0,1) that satisfy

αLp|S | ≤ 1
3 and 1−βL

1−β ≤ 1
3 .

Recall that M is a random matrix, so the desired contraction inequalities have to be prob-

abilistic estimates. At this stage, such estimates are somewhat hampered by the statistical

dependence between M and each error vector w(l ) 14. The traditional way around this issue

is to force each iterate u(l ) to be independent of each other by using different matrices in the

place of M for each update. This idea goes back to Gross [28] — who introduced the golfing

scheme — and is based on selecting L independent matrices, A(1) ∈ Rm1×n , . . . ,A(L) ∈ RmL×n

such that

L⋃
l=1

range
(
A(l )>

)
⊂ range

(
A>)

and m1 +m2 +·· ·+mL = m. (5.12)

The way I will define each of these smaller matrices is by simply stacking successive rows of

our sampling operator. That is, A(1) consists of the first m1 rows of A, A(2) the next m2 rows, an

so on. This strategy works whenever the original matrix has independent rows, like the ones

in this thesis 15.

We now use each of the independent chunks of A at its corresponding iteration. By that I mean

14To get a feeling for this, consider the semi-norm
∥∥∥(

IN −PS

)
MPS w(l )

∥∥∥∞ := max
k∉S

∣∣∣〈ẽk ,MPS w(l )
〉∣∣∣. The

moments of the quantities
〈

PS M>ẽk ,w(l )
〉

inside the maximum cannot be factored into a product with a term

depending only M and another relying only on w(l ). This is because both these objects are functions of the
same random matrix A. As a result, it is infeasible to condition on w(l ) in order to obtain a bound of the type∥∥∥(

IN −PS

)
MPS w(l )

∥∥∥∞ ≤β
∥∥∥w(l )

∥∥∥∞ without having detailed knowledge on how the distribution of A affects the

action of M on w(l )

15The same idea can work in other contexts. For example, Boyer et al.[10] study row-block measurements, so
their matrices A(1), . . . ,A(L) are built by stacking independent blocks of rows.
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to define an operator analogous to the matrix M, for each l ∈ [L], via the expression

M(l ) :=
[

D
(

In −E
(
A(l )>A(l )

)−1
A(l )>A(l )

)
D+

]>
. (5.13)

Once that is done, we can finally settle on the final version of the golfing scheme, which I

record here as Algorithm 1. Notice how M(l ) and w(l ) are now independent because the error

vector is only a function of M(l−1),M(l−2), . . . ,M(1) but not M(l ).

Algorithm 1 Golfing scheme

1: Set u(0) = 0

2: for l = 1, . . . ,L do

3: u(l ) ← u(l−1) + [
IN −M(l )

]
w(l ) .with M(l ) as in (5.13), and w(l ) as in (5.7)

4: end for

5: return u(L) as a potential certificate

Some readers may rightfully wonder, is the range constraint D>u(L) ∈ range
(
A>)

still satisfied

with the artificially introduced independent iterates? The answer is yes, because D>u(L) ∈⋃L
l=1 range

(
A(l )>)

and the right-hand side belongs to range
(
A>)

by construction. Still, notice

the trade-off as we exchange a potentially larger certificate search space for the chance to work

with independent iterates.

In the end, any iterative scheme proposing inexact dual certificates is only useful if the returned

vector, u(L), has all the qualities laid out by Lemma 5.2.1 — at least with high probability. The

following lemma makes this wish precise in what concerns the golfing scheme of Algorithm 1.

I include its proof in Appendix 5.A.2, but it essentially just assigns probabilistic figures to the

assumptions we have gathered up to this point.

Lemma 5.3.1. The vector u(L) produced by Algorithm 1 after L := 1+
⌈

log |S|
2log3

⌉
steps is, with

probability larger than 1−ε, an inexact dual certificate for x as the unique solution of P1 if

null (D)∩null (A) = {0}, (A1)

P
({‖PS MPS ‖2 > 1/3

})≤ ε

3
, (A2)

P

({
max
k∉S

∥∥PS M>ek
∥∥

2 > 1

})
≤ ε

3
, (A3)

and, for all v ∈RN and l ∈ [L],

P({‖PS M(l )PS v‖2 > (1/3)‖v‖2}) ≤ ε/3L, (A5-l)

P({‖PS M(l )PS v‖∞ > (1/4)‖v‖∞}) ≤ ε/3L, (A6(a)-l)

P({‖(IN −PS )M(l )PS v‖∞ > (1/4)‖v‖∞}) ≤ ε/3L. (A6(b)-l)
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The correctness of the golfing scheme is but a means towards knowing how many sam-

ples it takes for x to be the unique vector decoded by P1. As usual in Compressed Sensing,

such sample complexities appear as a consequence of enforcing tail bounds like the ones

in Lemma 5.3.1. To be concrete, imagine that assumptions A2 and A3 were to hold as long

as m = m′, and assumptions A5-l–A6(b)-l if m1 = m2 = ·· · = mL = m′′ 16 Then we would be

allowed to conclude, with high probability, that problem P1 outputs only x, provided that A

has at least m = max
{
m′,L ·m′′} rows. I will finish this chapter giving precise figures to this

argument, as it applies to the Coordinate Sampling with Replacement (CSWR(π)) model.

5.4 An optimal vertex-sampling design for G -TV interpolation

In the CSWR(π) model, the measurement operator is formed by stacking m standard basis

vectors of Rn , picked independently at random 17. The picks are determined by i.i.d. copies

of a random variable ω taking values in [n] with probabilities P ({ω= k}) = πk ,∀k ∈ [n]. The

i.i.d. copies, ω1, . . . ,ωm , form a sampling setΩ with which we express the sampling matrix as

A = (
e>ωi

)
ωi∈Ω.

Skipping some computations 18, the CSWR(π) model induces the following expression for the

matrix M appearing in Lemma 5.3.1:

M :=
[

D
(
In − [

E
(
A>A

)]−1
A>A

)
D+

]>
= 1

m

m∑
i=1

[
D

(
In − 1

πωi

eωi e>ωi

)
D+

]>
. (5.14)

In words, M is thus a sum of independent perturbations of the orthogonal projection matrix

DD+ by random, rank-one matrices. Each rank-one matrix is associated with a vertex of the

graph via the probabilities π1, . . . ,πn . By its very construction, a matrix M(l ) only differs then

from M by restricting the limits of the sum in (5.14) to ml consecutive rows. I will fix each of the

chunks A(1), . . . ,A(L) of A in the golfing scheme to be of the same size19 (i.e.,m1 = m2 = ·· · = mL)

in order to write

M(l ) = 1

m1

l ·m1∑
i=(l−1)·m1+1

[
D

(
In − 1

πωi

eωi e>ωi

)
D+

]>
(5.15)

at once, for all l ∈ [L].

The golfing scheme’s ability to output an inexact dual certificate depends on the tails of func-

tions of M and {M(l )}l∈[L]. I will show that these tails are well-behaved if certain moments of

the respective matrices are well-behaved. Correspondingly, define the following deterministic

16Recall that m1, . . . ,mL are the number of rows, respectively, of the independent sub-matrices A(1), . . . ,A(L)

induced by A.
17See Chapter 2.
18It suffices to note that A>A =∑m

i=1 eωi e>ωi
and E

(
A>A

)= m diag(π).
19There is no point in doing otherwise for the CSWR(π) model, because the rows of A are statistically indistin-

guishable from each other.
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parameters (whose notation I borrowed from Boyer et al. [10]).

Definition 5.4.1.

Θ(S ,π) := max
i∈[n]

∥∥∥∥[
D

(
In − 1

πi
ei e>i

)
D+

]>
PS

∥∥∥∥∞→∞
(5.16)

= max
i∈[n]

max
k∈[N ]

∥∥∥∥ẽ>k

[
D

(
In − 1

πi
ei e>i

)
D+

]>
PS

∥∥∥∥
1

(5.17)

Υ(S ,π) := sup
‖v‖∞≤1

n∑
i=1

πi ·
∥∥∥∥[

D
(

In − 1

πi
ei e>i

)
D+

]>
PS v

∥∥∥∥2

2
(5.18)

Γ(S ,π) := max{Θ(S ,π),Υ(S ,π)}. (5.19)

The main theorem of this chapter is the next result, which provides a sample complexity

threshold for exact recovery in (P1) under CSWR(π) measurements. To prove it, simply call

upon certain versions of the Bernstein inequality, as seen in Appendix 5.A.3. Good Bernstein

bounds rely on the good estimation of moments, so I avoided approximations, deferring them

to Chapter 6. The elaborate expressions hidden under Γ(S ,π) are a consequence of this

choice.

Theorem 5.4.1 (Sample complexity of (P1) under CSWR(π) measurements). Let A ∈Rm×n be

the measurement matrix in the CSWR(π) model and D ∈RN×n be the analysis matrix, denoting

S := supp(Dx) for some x ∈Rn . If null (D)∩null (A) = {0} almost surely, then vector x is the sole

output of (P1), with probability larger than 1−ε, if

m ≥ 38 ·Γ(S ,π) · log(|S |) · log

(
63 ·N · log(|S |)

ε

)
. (5.20)

As far as this thesis is concerned, the best sampling design for the (P1) decoder is the one

that minimizes its sample complexity. This design — according to Theorem 5.4.1 — should

therefore minimize Γ(S ,π), since this is the only factor in the sample complexity bound that

depends on the sampling probabilities π= (π1, . . . ,πn). The next corollary just formalizes this

statement.

Corollary 5.4.1.1 (Optimal CSWR(π) design). Let D ∈ RN×n be the analysis matrix for some

x ∈ Rn , yielding the co-support S := supp(Dx). The CSWR(π) design that minimizes the

number of measurements required by Theorem 5.4.1 to exactly recover x from (P1) with high

probability is

π=
{

arg min
p∈Rn

Γ(S ,p)

subject to p º 0 and 〈p,1〉 = 1.
(5.21)
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The optimal design — despite being easy to state — is not necessarily straightforward to imple-

ment. After all, the objective Γ(S ,π) is the maximum of two rather complicated expressions,

Θ(S ,π) and Υ(S ,π). Boyer et al. [10], in a similar situation, suggest looking for common

upper bounds to Θ(S ,π) and Υ(S ,π), and optimize that instead. But finding appropriate

upper bounds for our setting goes beyond the scope of this chapter. It is also important to

mention the dependence of Γ(S ,π) on S = supp(Dx) 20: since x is the hidden “ground-truth”

signal, how can one estimate the actions of the projection matrix PS without knowing x a

priori? The reader will find some numerical experiments addressing this questions in Chapter

6.

5.5 Summary and final notes

The Karush-Kuhn-Tucker (KKT) conditions of the interpolation problem (P1) reveal that dual

certificate vectors arise in the interaction of range(A) and the subdifferential ∂‖D·‖1(x). In fact,

merely approximating the KKT conditions can be enough to guarantee exact recovery. Using

Lemma 5.2.1 as blueprint, I formulated a golfing scheme that produces potential certificates.

Experienced readers might spot how Algorithm 1 encompasses other golfing schemes from

the literature, derived from particular instances of problem (P1) 21.

When A comes from the CSWR(π) model, the success of the golfing scheme demands a

number of measurements proportional to a term Γ(S ,π). Here lies the explicit connection

between the sample complexity of (P1) and the sampling designπ. Finding the optimal design

is thus a matter of minimizing Γ(S ,π), a quantity related to moments of random matrices

induced by D and A. The practical aspects of sampling optimally are discussed in the next

chapter.

Lastly, a short note about the absence of the regression version (P1-η) in this chapter. Em-

ploying the golfing scheme can be suboptimal when dealing with noisy measurements [41].

By this, I mean that the number of measurements predicted by the scheme is knowingly not

the best possible for some measurement ensembles. I decided then to restrict this chapter to

setting with noiseless samples, hoping that ideas like the ones in Chapter 4 could prove to be

effective in the future to study the sample complexity of G -TV regression decoders.

20Recall that, in the context of piecewise-constant graph signals analysed via the graph gradient, S is called the
jump-set of the signal.

21Problems that have, for example, D = In and a Gaussian matrix for A.
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Appendix 5.A Proofs

5.A.1 Proof of Lemma 5.2.1

As a reminder, I follow the strategy of Candès and Plan [13, Lemma 3.2]: assume that some

perturbation x+h is a solution of (P1), and then show that assumptions A1 – A6 imply h = 0,

lest the contradiction ‖D(x+h)‖1 > ‖Dx‖1 take place.

〈1〉1. Suppose x+h is a solution of (P1). It suffices to consider h ∈ null (A) such that h ⊥
null (D).

PROOF:

〈2〉1. From the feasilibilty condition, A(x+h) = Ax =⇒ h = 0. So h has to be in the null

space of A in order for x+h to be a solution.

〈2〉2. If, on top of that, h ∈ null (D), then assumption A1 implies h = 0 and the unique-

ness claim holds trivially.

〈2〉3. Therefore, the interesting perturbations are the ones belonging to the intersection

null (A)∩ range
(
D>)

.

〈1〉2. Define g := sign(Dx)+ (IN −PS )sign(Dh) ∈RN . Vector g is a valid subgradient of ‖ ·‖1 at

Dx.

PROOF:Indeed, we verify

PS g = sign(Dx)

‖(IN −PS )g‖∞ = ‖(IN −PS )sign(Dh)‖∞ =
∥∥sign((IN −PS )Dh

)‖∞ ≤ 1,

so g is a valid subgradient, by Proposition 3.1.2.

〈1〉3. Use the expression of g and the fact that it is a subgradient to lower bound ‖D(x+h)‖1 as

‖D(x+h)‖1 ≥ ‖Dx‖1 +
〈

g,Dh
〉

= ‖Dx‖1 +
〈

sign(Dx) ,Dh
〉+〈

(IN −PS )sign(Dh) ,Dh
〉

= ‖Dx‖1 +
〈

sign(Dx) ,Dh
〉+‖(IN −PS )Dh‖1 .

We need now to provide estimates to the terms to the right of ‖Dx‖1 in the bound above.

〈1〉4. Let u ∈RN be any vector satisfying A4. Then, 〈u,Dh〉 = 0.

PROOF: Since h ∈ null (A), then 〈v,h〉 = 0 for any v ∈ range
(
A>)

. But D>u ∈ range
(
A>)

, so

〈u,Dh〉 = 〈D>u,h〉 = 0.

〈1〉5. Add 0 = 〈u,Dh〉−〈u,Dh〉 to the bound of step 〈1〉3, obtaining

‖D(x+h)‖1 ≥ ‖Dx‖1 +〈u,Dh〉︸ ︷︷ ︸
=0

−〈
u− sign(Dx) ,Dh

〉+‖(IN −PS )Dh‖1

= ‖Dx‖1 −
〈

u− sign(Dx) ,Dh
〉+‖(IN −PS )Dh‖1.

Next, we upper bound
∣∣〈u− sign(Dx) ,Dh

〉∣∣.
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〈1〉6. Let u further abide by assumptions A5 and A3. Then,

∣∣〈u− sign(Dx) ,Dh
〉∣∣≤ 1

3
‖PS Dh‖2 +

1

3
‖(IN −PS )Dh‖1.

PROOF:

〈2〉1. Split u− sign(Dx) into range(PS ) and null (PS ).

〈2〉2. Then, using the triangle and Hölder inequalities, along with assumptions A5 and

A3, compute∣∣〈u− sign(Dx) ,Dh
〉∣∣= ∣∣〈PS (u− sign(Dx)),Dh

〉+〈
(IN −PS )(u− sign(Dx)),Dh

〉∣∣
=

∣∣〈PS (u− sign(Dx)),PS Dh
〉+〈(IN −PS )u, (IN −PS )Dh〉

∣∣
≤

∣∣〈PS (u− sign(Dx)),PS Dh
〉∣∣+|〈(IN −PS )u, (IN −PS )Dh〉|

≤ ‖PS (u− sign(Dx))‖2 · ‖PS Dh‖2

+‖(IN −PS )u‖∞ · ‖(IN −PS )Dh‖1

≤ 1

3
‖PS Dh‖2 +

1

3
‖(IN −PS )Dh‖1.

〈1〉7. Pair the result from step 〈1〉6 with assumption A3, to read the lower bound from step

〈1〉5 as

‖D(x+h)‖1 ≥ ‖Dx‖1 −
1

3
‖PS Dh‖2 +

2

3
‖(IN −PS )Dh‖1.

Continue by controlling ‖PS Dh‖2 in terms of ‖(IN −PS )Dh‖1.

〈1〉8. Assumptions A2 and A3 imply

‖PS Dh‖2 <
3

2
‖(IN −PS )Dh‖1.

PROOF:

〈2〉1. Crucially, assumption A2 implies that the matrix IN −PS D(In −BA)D+PS is

invertible. Indeed, we can bound the norm of its inverse, using the Neumann

series, as

∥∥∥[
IN −PS D(In −BA)D+PS

]−1
∥∥∥

2
=

∥∥∥∥∥ ∞∑
k=0

[
PS D(In −BA)D+PS

]k

∥∥∥∥∥
2

≤
∞∑

k=0

∥∥PS D(In −BA)D+PS

∥∥k
2

≤
∞∑

k=0

1

3k

= 3

2
.

〈2〉2. We can then write the projection matrix PS in the slightly convoluted form
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PS = [
IN −PS D(In −BA)D+PS

]−1 [
IN −PS D(In −BA)D+]

PS .

〈2〉3. Furthermore, h ⊥ null (D) implies h = D+Dh, while h ∈ null (A) implies

BAh = 0 for any matrix B ∈ Rn×m . Together, these facts entail the identity

h = (In −BA)D+Dh.

〈2〉4. Gathering these observations, and using the shorthand PS c := IN −PS , we

are able to write

‖PS Dh‖2 =
∥∥∥[

IN −PS D(In −BA)D+PS

]−1[
PS−PS D(In −BA)D+PS

]
Dh

∥∥
2

≤
∥∥∥[

IN −PS D(In −BA)D+PS

]−1
∥∥∥

2
×∥∥PS

[
IN −D(In −BA)D+]

PS Dh
∥∥

2

≤ 3

2

∥∥PS

[
IN −D(In −BA)D+]

PS Dh
∥∥

2

=:
3

2

∥∥PS

[
IN −D(In −BA)D+]

(IN −PS c)Dh
∥∥

2

= 3

2

∥∥∥∥∥∥∥PS

[
IN −D(In −BA)D+]

Dh︸ ︷︷ ︸
=0

−PS

[
IN −D(In −BA)D+]

PS cDh
∥∥

2

= 3

2

∥∥PS

[
D(In −BA)D+]

PS cDh
∥∥

2

≤ 3

2

∑
k∈S c

∥∥PS

[
D(In −BA)D+]

ẽk
∥∥

2 · |ẽ>k Dh|

≤ 3

2
max
k∈S c

∥∥PS

[
D(In −BA)D+]

ẽk
∥∥

2 · ‖PS cDh‖1

≤ 3

2
‖(IN −PS )Dh‖1.

〈1〉9. Steps 〈1〉7 and 〈1〉8 combine to yield the lower bound

‖D(x+h)‖1 ≥ ‖Dx‖1 +
(

2

3
− 1

2

)
‖(IN −PS )Dh‖1 = ‖Dx‖1 +

1

6
‖(IN −PS )Dh‖1.

〈1〉10. But then we must conclude that (IN −PS )Dh = PS Dh = 0. In other words, h ∈ null (D).

PROOF:

〈2〉1. Vector x+h is assumed to be a minimizer of ‖Dz‖1, subject to Az = Ax. Hence,

‖D(x+h)‖1 ≤ ‖Dx‖1, because x is trivially feasible.

〈2〉2. In order to avoid contradiction in step 〈1〉9, we must then have ‖(IN −PS )Dh‖1 =
0, meaning (IN −PS )Dh = 0.

〈2〉3. The second assertion, PS Dh = 0, ultimately follows from the dominance relation

‖PS Dh‖2 < 3
2‖(IN −PS )Dh‖1.

〈1〉11. Q.E.D.
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The only point h satisfying both h ∈ null (D) and h ⊥ null (D) is h = 0. Therefore,

x+h = x+0 = x is the only solution of problem (P1).

Remark. The arguably most unnatural step in this proof, 〈1〉8〈2〉1, was inspired by a comment

in Boyer et al. [10, Appendix A]. This step is ultimately the reason I could directly adapt the

classical proof from Candès and Plan [13]. To wit, Lee et al. [48, Lemma 21] arrive at a result

that is similar to (but slightly weaker than) Lemma 5.2.1, but their proof — derived from

Chen and Chi [16] — requires splitting their argument into two complementary cases. The

first supposes ‖PS Dh‖2 < ‖(IN −PS )Dh‖1, while the second ‖PS Dh‖2 > ‖(IN −PS )Dh‖1.

Our implicit invertibility assumption in ‖PS MPS ‖2 ≤ 1/3 (a version of which Lee et al. [48]

also require) makes the second case above irrelevant: ‖PS Dh‖2 is always dominated by

‖(IN −PS )Dh‖1.

5.A.2 Proof of Lemma 5.3.1

All we need to do is verify that the assumptions of Lemma 5.2.1 hold with high probability.

Recall that w(l ) := PS

(
sign(Dx)−u(l )

)
is the error vector at each iteration l ∈ [L], and the

updates of the golfing scheme are given by u(l ) = u(l−1) + [
IN −M(l )

]
w(l ). The rest of the proof

is a computation exercise.

PROOF:

〈1〉1. Refer back to expression 5.7. If assumptions (A5-l) hold for each v ∈RN and l ∈ [L], then

the choice of L := 1+
⌈

log |S|
2log3

⌉
implies that, with probability at least 1−ε/3,

‖PS (u(L) − sign(Dx))‖2 ≤
(

1

3

)L √
|S|

≤ 1

3
p|S |

√
|S |

≤ 1

3
.

〈1〉2. Similarly, refferring to inequality (5.11), assume (A6(a)-l) and (A6(b)-l). For any L ≥ 1,

we have then

‖(IN −PS )u(L)‖∞ ≤ 1

4

(
1−1/4L

1−1/4

)
= 1

3

(
1− 1

4L

)
≤ 1

3
,

with probability at least 1−ε/3.

〈1〉3. By construction, u(L) satisfies D>u(L) ∈ range
(
A>)

with probability 1.

〈1〉4. Together with assumptions (A2) and (A3), we verify all the requirements of Lemma 5.2.1

with probability at least 1− (
ε
3 + ε

3 + ε
3

)= 1−ε.
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〈1〉5. Q.E.D.

With probability larger than 1−ε, vector u(L) is an inexact dual certificate for x, according

to Lemma 5.2.1. Therefore, with the same likelihood, vector x is the unique solution of

problem (P1).

5.A.3 Proof of Theorem 5.4.1

PROOF: The argument consists of going through each of the conditions in Lemma 5.3.1,

ensuring that the golfing scheme will produce an inexact dual certificate for the uniqueness

of x as the solution of (P1). All the operators we have to deal with are sums of bounded,

independent random matrices, allowing us to employ the Bernstein inequalities in Appendix

A to derive the necessary tail bounds.

〈1〉1. I claim that P
({‖PS MPS ‖2→2 > 1/3

})≤ ε
3 if m ≥ 24 ·Θ(S ,π) · log

(
6|S |
ε

)
.

PROOF: Write

X := PS MPS = 1

m

m∑
i=1

PS

[
D

(
In − 1

πωi

eωi e>ωi
PS

)
D+

]>
PS︸ ︷︷ ︸

=:Xi

,

a sum of independent, zero-mean random matrices {Xi }i .

〈2〉1. Bound each Xi almost surely withΘ(S ,π):

‖Xi‖2→2 ≤ ‖PS ‖2→2︸ ︷︷ ︸
=1

·
∥∥∥∥[

D
(

In − 1

πωi

eωi e>ωi

)
D+

]>
PS

∥∥∥∥
2→2

≤ max
i∈[n]

∥∥∥∥[
D

(
In − 1

πi
ei e>i

)
D+

]>
PS

∥∥∥∥
2→2

≤Θ(S ,π).

〈2〉2. Bound the second moment matrices in the positive definite order:

0 ¹ E(
Xi X>

i

)= PS DD+E
([

D
(

In − 1

πωi

eωi e>ωi

)
D+

]>
PS

)
︸ ︷︷ ︸

=0

+E
(

1

πωi

[
D+]> eωi e>ωi

D>PS

[
D

(
In − 1

πωi

eωi e>ωi

)
D+

]>
PS

)
¹ E

(
1

πωi

[
D+]> eωi e>ωi

D>PS

)
×max

i∈[n]

∥∥∥∥[
D

(
In − 1

πi
ei e>i

)
D+

]>
PS

∥∥∥∥
2→2

¹Θ(S ,π) ·DD+PS

¹Θ(S ,π) · IN , (DD+ is an orthogonal projector)

and, by symmetry, E
(
X>

i Xi
)¹Θ(S ,π) · IN .
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〈2〉3. Set the variance parameter v(X) := max
{
E
(
XX>)

,E
(
X>X

)}= 1
mΘ(S ,π).

〈2〉4. With these moment bounds, the matrix Bernstein inequality in Lemma A.0.3 gives

the tail bound

P
({‖PS MPS ‖2→2 > 1/3

})≤ 2|S | ·exp

(
− m

24Θ(S ,π)

)
.

〈2〉5. This probability is less than ε/3 if m ≥ 24 ·Θ(S ,π) · log
(

6|S |
ε

)
.

〈1〉2. I claim that P

({
max
k∉S

∥∥PS M>ek
∥∥

2 > 1

})
≤ ε

3 if m ≥ 24 ·Θ(S ,π) · log
(

6(N−|S |)
ε

)
.

PROOF: Note the domination relation

max
k∉S

∥∥PS M>ek
∥∥

2 ≤
∥∥PS M> (IN −PS )

∥∥
2→2 = ‖(IN −PS )MPS ‖2→2 ,

implying P

({
max
k∉S

∥∥PS M>ek
∥∥

2 > 1

})
≤ P({‖(IN −PS )MPS ‖2→2 > 1

})
. The right-hand

side is less than ε/3 if m ≥ 24 ·Θ(S ,π) · log
(

6(N−|S |)
ε

)
, by precisely the same arguments

given in step 〈1〉1.

〈1〉3. For each l ∈ [L], I claim that P
({∥∥PS M(l )PS v

∥∥
2 > (1/3)‖v‖2

})≤ ε/3L, as long as the row

size satisfies ml ≥ 8 ·max{3Υ(S ,π),Θ(S ,π)} · log
(6L
ε

)
.

PROOF: The problem is the same for each l ∈ [L], so we consider only l = 1. Fix v ∈BN
2

and write

PS M(1)PS v = 1

m1

m1∑
i=1

PS

[
D

(
In − 1

πωi

eωi e>ωi
PS

)
D+

]>
PS v︸ ︷︷ ︸

=:vi

,

a sum of independent, zero-mean random vectors {vi }i .

〈2〉1. Bound each vi almost surely withΘ(S ,π):

‖vi‖2 ≤
∥∥∥∥[

D
(

In − 1

πωi

eωi e>ωi

)
D+

]>
PS

∥∥∥∥
2→2

· ‖v‖2︸︷︷︸
≤1

·

≤Θ(S ,π).

〈2〉2. Bound the second moment as

E
(‖vi‖2

2

)= n∑
i=1

πi

∥∥∥∥PS

[
D

(
In − 1

πωi

eωi e>ωi
PS

)
D+

]>
PS v

∥∥∥∥2

2

≤
n∑

i=1
πi

∥∥∥∥[
D

(
In − 1

πωi

eωi e>ωi
PS

)
D+

]>
PS v

∥∥∥∥2

2

≤Υ(S ,π).

〈2〉3. Set the variance parameter σ2 = 1
m2

1

∑m1
i=1E

(‖vi‖2
2

)≤ 1
m1
Υ(S ,π).

〈2〉4. With these moment bounds, the vector Bernstein inequality in Lemma A.0.2 gives
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the tail bound

P
({∥∥∥PS M(l )PS v

∥∥∥
2
> (1/3)‖v‖2

})
≤ 2exp

(
−m1

8
min

{
1

3Υ(S ,π)
,

1

Θ(S ,π)

})
.

〈2〉5. This probability is less than ε/3L if m1 ≥ 8 ·max{3Υ(S ,π),Θ(S ,π)} · log
(6L
ε

)
.

〈1〉4. For each l ∈ [L], I claim that both P({‖PS M(l )PS v‖∞ > (1/4)‖v‖∞}) ≤ ε/3L and its com-

plement P({‖(IN −PS )M(l )PS v‖∞ > (1/4)‖v‖∞}) ≤ ε/3L hold, provided that the number

of rows satisfies ml ≥ 8 ·max{3Υ(S ,π),Θ(S ,π)} · log
(6N
ε

)
.

PROOF: Once again, the problem is the same for each l ∈ [L], so we consider only l = 1.

Fix k ∈ [N ], some v ∈BN
∞, and write

X :=
〈

ẽk ,M(l )PS v
〉
= 1

m1

m1∑
i=1

〈
ẽk ,

[
D

(
In − 1

πωi

eωi e>ωi
PS

)
D+

]>
PS v

〉
︸ ︷︷ ︸

=:Xi

a sum of independent, zero-mean random variables {Xi }i .

〈2〉1. Bound each Xi almost surely withΘ(S ,π):

|Xi | =
∥∥∥∥ẽ>k

[
D

(
In − 1

πωi

eωi e>ωi
PS

)
D+

]>
PS

∥∥∥∥
1
· ‖v‖∞︸ ︷︷ ︸

≤1

≤Θ(S ,π).

〈2〉2. Bound the second moment as

E
(|Xi |2

)= n∑
i=1

πi

∣∣∣∣〈ẽk ,

[
D

(
In − 1

πωi

eωi e>ωi
PS

)
D+

]>
PS v

〉∣∣∣∣2

≤Υ(S ,π).

〈2〉3. Set the variance parameter σ2 = 1
m2

1

∑m1
i=1E

(|Xi |2
)≤ 1

m1
Υ(S ,π).

〈2〉4. The scalar Bernstein inequality in Lemma A.0.1 gives the tail bound

P
({〈

ẽk ,M(l )PS v
〉
> (1/4)‖v‖2

})
≤ 2exp

(
−3m1

32
min

{
1

4Υ(S ,π)
,

1

Θ(S ,π)

})
for each fixed k ∈ [N ].
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〈2〉5. Taking the union bound over S and then over N \ [N ] yields in turn

P
({〈

ẽk ,M(l )PS v
〉
> (1/4)‖v‖2

})
≤ 2|S |×

exp

(
−3m1

32
min

{
1

4Υ(S ,π)
,

1

Θ(S ,π)

})
P

({〈
ẽk ,M(l )PS v

〉
> (1/4)‖v‖2

})
≤ 2(N −|S |)×

exp

(
−3m1

32
min

{
1

4Υ(S ,π)
,

1

Θ(S ,π)

})
〈2〉6. Both these probabilities are less than ε/3L if m1 ≥ 32

3 ·max{4Υ(S ,π),Θ(S ,π)} ·
log

(6N L
ε

)
.

〈1〉5. We now call upon the definition ofΓ(S ,π) := max{4Υ(S ,π),Θ(S ,π)}. All requirements

in Lemma 5.3.1 depending on matrices M(l ) are simultaneously attained if

m =
L∑

l=1
ml ≥

32L

3
·Γ(S ,π) · log

(
6N L

ε

)
,

whereas the requirements depending on matrix M are enforced if

m ≥ 24 ·Θ(S ,π) · log

(
6N

ε

)
.

Recalling that L ≥ 2+
⌈

log |S|
2log3

⌉
, if suffices then to set

m ≥ 32

3

(
2+ log |S |

2log(3)

)
·Γ(S ,π) · log(|S |) · log

6 ·N ·
(
2+ log |S |

2log(3)

)
ε

 ,

which can be simplified to m ≥ 38 ·Γ(S ,π) · log(|S |) · log
(

63·N ·log(|S |)
ε

)
if we assume

|S | ≥ 3. 22

〈1〉6. Q.E.D.

All the conditions of Lemma 5.3.1 hold simutaneously with probability larger than 1− ε.

Therefore — with the same likelihood — the golfing scheme certifies x to be the unique

solution of (P1).

22We do not lose in doing so, since a co-support S = supp(Dx) of 3 is orders of magnitude below what is normally
encountered in applications.
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6 A numerical tour

The goal of this chapter is to display how the theoretical discussion presented thus far re-

lates to the practice of signal recovery on graphs. First of all, I show how to implement the

Graph Total Variation (G -TV) decoders as efficient iterative procedures derived from a proxi-

mal splitting technique. They are efficient in the sense that they require only a sequence of

sparse matrix-vector multiplications and some inexpensive elementwise operations. Then,

I present four datasets with signals that exhibit small jump-sets with respect to their graph

support 1. The first contains draws of random graphs under the Stochastic Block Model

(SBM); the corresponding signals are the community-indicator vectors. The SBM is tradition-

ally used to emulate clustered networks, so this data could be seen as a sort of baseline for

comparisons. The next two datasets have each a single, fixed graph. The email-EU-core
network encodes email exchanges across departments in a European research institution; the

swiss-national-council network 2 connects members of the Swiss Parliament by “voting

similarity”. The piecewise-constant signals in each of these two are derived from the “natural”

communities in their respective graphs. The final dataset, BSDS300, relates to an image seg-

mentation task. Each graph in this collection represents a natural image by mapping pixels to

vertices and patch color similarity to edges. The segmentation masks of the images can then

be interpreted as piecewise-constant graph signals. The second half of the chapter is a series

of numerical experiments on our four datasets. For information on how to reproduce them,

visit

https://github.com/rodrigo-pena/phd-thesis/blob/master/python/README.md

To supplement a discussion from Chapter 3, I show how the behavior of the interpolation

error changes if we minimize the G -TV semi-norm ‖D · ‖1 or the Dirichlet form ‖D · ‖2
2. Under

G -TV minimization, the recovery error goes through a sharp phase transition as the number

of measurements increases; under the Dirichlet form, the error decays smoothly. The main set

1Recall that small jump-sets are what qualify a graph signal as piecewise-constant.
2The same from Chapter 1.
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Chapter 6. A numerical tour

of experiments then investigates the sampling design’s effect over the recovery error of G -TV

interpolation. For that, I compare uniform random sampling with two designs inspired by the

results of Chapter 5. To reduce the number of samples needed for recovery, the experiments

show that it is important to know more about the signal’s jump-set than just its size.

6.1 Implementing the G -TV decoders with proximal splitting

There is a base algorithm that can be used to solve both 3

min
z∈Rn

‖Dz‖1 such that PΩz = PΩx (P1)

and

min
z∈Rn

‖Dz‖1 subject to ‖PΩz−y‖q
q ≤ η. (P1-η)

To use it, I need to state each of these problems in the generic unconstrained form

min
z∈Rn

f (z)+ g (Dz)+h(z) (6.1)

using convex functions f : Rn → R and g : RN → R, and a function h : Rn → R that is both

convex and differentiable. I will do that first for problem (P1), with help from a convex

indicator function.

Definition 6.1.1 (Convex indicator function). The convex indicator function of a set C is the

mapping

z 7→ ιC (z) =
{

0, if z ∈C ,

+∞ otherwise.
(6.2)

This function is useful whenever one needs to transform a constrained problem like min
z∈C

f (z)

into its unconstrained equivalent min
z∈Rn

f (z)+ιC (z). The interpolation problem has a constraint

set C := {z ∈Rn : PΩz = PΩx}, so the template (6.1) represents (P1) if we set

f (·) = ι{z∈Rn :PΩz=PΩx}(·) (6.3)

g (·) = ‖·‖1 (6.4)

h(·) ≡ 0. (6.5)

For the regression problem, I will proceed differently. Let us focus on the case when q = 2 in

3Here I incur in a slight abuse of notation, which was already foreseen in Chapter 2, Section 2.2. Still (from
the implementation’s perspective) it is more convenient to work with the square projection operator PΩ ∈Rn×n

than with the rectangular sampling matrix A ∈Rm×n . Through zero-padding, one can avoid ever going from Rn to
Rm . Furthermore, identifying A with PΩ turns matrices like A>A — that would appear in the algorithms — into
P>
Ω

PΩ = PΩ, because the later is a projection operator. Overall, the algorithms’ statement is cleaner using PΩ.
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6.1. Implementing the G -TV decoders with proximal splitting

the error estimate, so that z 7→
∥∥PΩz−y

∥∥2
2 is a convex, differentiable function. Then there is

some regularization hyperparameter ρ for which the choice

f (·) = 0 (6.6)

g (·) = ‖·‖1 (6.7)

h(·) = ρ

2
‖PΩ(·)−y‖2

2 (6.8)

expresses in (6.1) the same problem as (P1-η) [9, Ch. 5].

The Forward-Backward-Forward (FBF) primal-dual procedure in Komodakis and Pesquet [39,

Algorithm 6] is a numerical solver for any problem of the form (6.1). It is based on a proximal

splitting technique, alternating between (forward) gradient steps and (backward) calls to a

proximity operator. Between each forward and backward steps the matrix D connects the

primal and dual spaces. 4 Interested readers can find a more detailed account in Appendix

6.A. Meanwhile, I present Algorithms 2 and 3 as the respective translations of the base FBF

procedure for the particular problems (P1) and (P1-η). Therein, softγ(·) represents the soft

thresholding operation, defined coordinatewise by

∀i , wi 7→


wi −γ, if wi > γ

0, if |wi | ≤ γ
wi +γ, if wi <−γ

.

This function shows up because it is the proximity operator associated with the `1 norm. The

algorithms admit some leeway in specifying the step sizes for each iteration. As long as the

sequence (γn)n∈N stays within the given intervals, convergence is guaranteed [39].

Algorithm 2 FBF primal-dual iterations for solving (P1)

1: z0 ← 0 ∈Rn . Primal variable

2: d0 ← 0 ∈RN .Dual variable

3: repeat

4: pick γn ∈
(
0, 1

1+‖D‖2

)
5:

(
w1,n , w2,n

)← (
zn −γnD>dn , dn +γnDzn

)
. Forward

6:
(
p1,n , p2,n

)← (
(In −PΩ)w1,n +PΩx, w2,n − softγn (w2,n)

)
. Backward

7:
(
q1,n , q2,n

)← (
p1,n −γnD>p2,n , p2,n +γnDp1,n

)
. Forward

8: (zn+1, dn+1) ←
(
zn −w1,n +q1,n , dn −w2,n +q2,n

)
9: until convergence

10: return zn+1

4The primal space in our problems is Rn (where x lives), while the dual space is RN (the co-domain of D).
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Algorithm 3 FBF primal-dual iterations for solving (P1-η)

1: z0 ← 0 ∈Rn . Primal variable

2: d0 ← 0 ∈RN .Dual variable

3: repeat

4: pick γn ∈
(
0, 1

1+ρ+‖D‖2

)
5:

(
w1,n , w2,n

)← (
zn −γn

[
ρ(PΩzn −y)+D>dn

]
, dn +γnDzn

)
. Forward

6:
(
p1,n , p2,n

)← (
0, w2,n − softγn (w2,n)

)
. Backward

7:
(
q1,n , q2,n

)← (
p1,n −γn

[
ρ(PΩzn −y)+D>p2,n

]
, p2,n +γnDp1,n

)
. Forward

8: (zn+1, dn+1) ←
(
zn −w1,n +q1,n , dn −w2,n +q2,n

)
9: until convergence

10: return zn+1

Other algorithms could certainly be used to implement (P1) and (P1-η), but the FBF procedure

is good enough for two reasons. The first of these, I have already mentioned: the same general

algorithm applies to both problems. The second reason has to do with numerical efficiency.

Each step in Algorithms 2 and 3 requires only elementwise operations, and matrix-vector

multiplications using the graph gradient operator D. Graphs used in practice are often sparse 5,

so that D has few non-zero entries, making multiplications with it cheap to compute.

6.2 The data

To test the G -TV decoders, we should let them try to recover the sort of signal that motivated

their study. Signals with a small jump-set can always be found in the indicator vectors of

the communities in a clusterable graph. I present here four datasets, drawn from different

domains, yielding graphs with different cluster structures. The clusters are reflected — in

varying degrees — on the constant pieces of the assembled signals therein. Each dataset in

this section is used in at least one experiment later on in the chapter.

6.2.1 Community indicator vectors in the Stochastic Block Model

The standard way to simulate graphs with a community structure is via the Stochastic Block

Model (SBM)6. The SBM describes a distribution of random graphs, and one may refer to it

using the notation SBM(n,C ,p,Q) when the drawn graphs have a fixed number n of vertices [1].

The set C = {C1, . . . ,Ck } lists the communities, which are themselves lists of vertices in the

graph. The vector p = (p1, . . . , pk ) lists the probabilities with which vertices within each

5Sparse graphs are ones that have few edges. Generally, graphs are considered sparse their number of edges is
on the order of their number of vertices. Dense graphs can have a number of edges on the order of the square of
the number of vertices. As the number of vertices grows, storing dense graphs quickly becomes a problem on most
systems.

6According to Abbe [1], this is the most commonly used name for it in the Statistics literature. The model is also
known as “planted partitions” in Computer Science, or “inhomogeneous random graph” in Mathematics.
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community connect to each other. 7 The matrix Q, in turn, gathers the probabilities of

connection across communities. 8.

In my experiments, I only consider SBM graphs with two communities, having the same

internal connection probability p. In other words, p1 = p2 = p. Since there are only two

communities, the matrix Q can be reduced to a single probability parameter q . I will use

shorthand and refer to this restricted distribution as SBM(n,2, p, q). If the two communities

in the model are the same size, they become statistically indistinguishable, or “symmetric”. I

will sometimes highlight this setting by referring to it as 2-SSBM while calling the (potentially)

unbalanced alternative 2-SBM. Note that I might also write the partition of vertices between

communities in evidence as a sum of two terms. For example, the unbalanced 2-SBM of

Figure 6.1 has 200 vertices in the first community and 800 in the second, hence the appended

“(200 + 800)”. Balanced or unbalanced, the SBM experiments always use the indicator vector

of the smallest community as the piecewise-constant signal. For matters of graph signal

processing, I enforce a unitary edge weight between connected vertices in the SBM graphs.

Thus, their gradient matrix, D, only has entries valued −1, 0, or 1.

0.0

0.2

0.4

0.6

0.8

1.0

(a) Balanced 2-SSBM(500 + 500)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Unbalanced 2-SBM(200 + 800)

Figure 6.1 – Graphs drawn from the SBM
(
1000,2,4.5 log(1000)

1000 ,0.5 log(1000)
1000

)
model, varying the

relative community sizes. The vertex colors represent the indicator vector of the leftmost
community.

My use of community indicator vectors is inspired by one of the basic questions in the study

of Stochastic Block Models: can one retrieve the community partitions by looking at the edge

structure of graphs drawn from the distribution? Researchers like Abbe et al. [2, 1] have used

the Maximum a Posteriori (MAP) estimator as a tool to prove when this question can be

answered. Theorem 6.2.1 shows this solvability threshold for the parameters of the 2-SSBM.

7For example, let vi , v j be two vertices in the same community, C1, and write vi ∼ v j if these vertices are
connected. Then P({vi ∼ v j }) = p1.

8Take vi ∈C1 again, but v j in another community, C2. Then P({vi ∼ v j }) =Q12.
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Theorem 6.2.1 ([1, Thm. 7.1]). Exact recovery in the symmetric SBM
(
n,2, a logn

n ,b logn
n

)
is

solvable if and only if(p
a −

p
b
)2

> 2. (6.9)

To retrieve the community partitions, the graphs drawn from the SBM distribution have to

be at least connected 9. Abbe [1] points out that a +b > 2 is the parameter regime for which

the 2-SSBM graphs are connected with high probability. The theorem above implies then that

2(
p

ab−1) is the extra factor needed to go from connectivity to exact recovery. But Abbe’s result

concerns retrieving the community partitions when all we can observe is the edge structure

of the SBM graphs. When I sample the community indicator vectors, I effectively call upon

an oracle to reveal the true assignment of certain vertices. How does the recovery error of

the G -TV interpolation (P1) behaves for SBM distributions with parameter regimes in the

neighborhood of the one from Theorem 6.2.1?

Figure 6.2 shows an initial answer to that question for the 2-SSBM. There, I use uniform random

sampling (with replacement) to query the vertex community assignments. The number of

measurements varies from zero to the number of vertices 10. On the vertical axis, I vary the

intra-community connection parameter a, starting from the connectivity regime (a +b > 2) —

in the bottom — and passing by the solvability regime from Theorem 6.2.1 — in the middle. The

higher up on the vertical axis, the denser each community tends to be in terms of the number

of edges. The average number of edges connecting vertices between different communities

stays the same throughout. I measure the recovery error as a normalized 11 Euclidean distance

between the signal estimated by (P1) and the “ground-truth” indicator vector. The plot to the

right of the figure is a quantized version of the one to the left, presented so that we can better

distinguish the level sets in the recovery error.

Note the clear phase transition when the number of samples reaches a critical value. The

threshold happens earlier the higher up on the plot, where the number of edges within the

communities becomes progressively larger (on average) than the size of the indicator vector’s

jump-set. But even the bottom half of the plot exhibits very small recovery errors. This observa-

tion does not contradict Theorem 6.2.1 — of course — but simply attests the extra information

included in the measurements themselves. To allow comparisons with this initial plot, the

remaining SBM experiments in this chapter employ the SBM
(
1000,2, a log(1000)

1000 ,0.5 log(1000)
1000

)
distributions within the same parameter range, i.e.,with a taking values in the interval [2.5,6.5].

9Recall from Chapter 2 that a graph is connected if one can visit all the vertices by traveling only on the edges of
the graph.

10Note however that since the sampling is with replacement, having the number of measurements equal to the
number of vertices does not automatically imply zero recovery error because there can be redundant samples.

11The normalization factor is the inverse of the Euclidean norm of the ground-truth signal.
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Figure 6.2 – Phase transition for the error of (P1) in recovering the community indicator

vector of graphs drawn from the symmetric SBM
(
1000,2, a log(1000)

1000 ,0.5 log(1000)
1000

)
from uniform

random samples. Each pixel represents the median recovery error across 25 independent
trials.

6.2.2 Department indicator vectors in email-EU-core

The email-EU-core data 12 represents some email exchanges by people from a large European

research institution [80]. The institution is split into 42 departments, and each of the 1005

individuals in the dataset belongs to exactly one such department. An edge of unitary weight

connects two people in the network if they exchanged at least one email. As one could expect,

communication tends to stay restricted to within departments, so the network clusters are a

reflection of the departmental makeup. Thus, the department indicator vectors have small

jump sets, as edges across departments are fewer than within. But the number of people in

each department is relatively small, so to boost the chances of recovery under the baseline

uniform sampling design I pick as “ground-truth” signal for the email-EU-core dataset the

indicator vector of the union of the five largest departments. In doing so, the ground-truth

takes value 1 at about 38% of the vertices and value 0 at the rest 62%.

6.2.3 Party indicator vectors in swiss-national-council

I construct the swiss-national-council with data extracted from the 50th legislature in the

Swiss Database of Parliamentary Votes 13. I associate each council member to a feature vector

indicating how they voted in each of 3395 affairs accounted for at the time of writing. If they

voted Yes in some affair, the corresponding entry in the feature vector receives value 1; if

they voted No the entry gets value −1. Affairs for which the councilor did not register a vote

12http://snap.stanford.edu/data/email-Eu-core.html
13https://www.parlament.ch/en/ratsbetrieb/abstimmungen/abstimmungs-datenbank-nr
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(whatever the reason) get a value of 0. The idea underneath this numerical translation is to use

the feature vectors to compare the voting patterns of different council members. Investigating

which metric is best for this task is beyond the scope of this thesis, so I opt for the traditional

Euclidean distance.

The graph construction takes place directly at the level of the weighted adjacency matrix. Let

fi and f j be the feature vectors of councillors i and j . These councillors are then connected

with edge weight Wi j = exp
(−‖fi − f j‖2

2/σ2
)
, where σ is set as the mean distance between

feature vectors in the dataset. 14 Then, to enforce a sparse graph, I keep only the 25 largest

edge weights for each council member, setting the rest to 0 (while making sure that the

weight matrix remains symmetric). In the end, councilors that voted identically throughout

all the affairs get a unitary edge weight, whereas members that voted differently enough are

disconnected.

To put a signal on this graph, I went over the Swiss Parliament files listing the party affiliations

of all councilors since 1848. 15 Intuition tells us that members of the same party stand to

vote more similarly than people from different parties. So the party indicator vectors should

strongly correlate with the cluster structure of the graph I have constructed. I decided to use

as “ground-truth” for the experiments the indicator vector of the two largest right-wing parties

in the 50th legislature, UDC and FDP. By joining these two parties, the ground-truth signal

takes value 1 at around 46% of the vertices and 0 at the other 54%, an almost even split of

the National Council that improves the chances of recovery under uniform random sampling.

Meanwhile — because the two joined parties are to the right in political spectrum — this

concocted ground-truth should still have a sparse jump-set since the members of UDC and

FDP have different voting patterns than the mostly centrist and left-wing politicians in the

other half of the Council.

6.2.4 Image segmentation masks in BSDS300

The Berkeley Segmentation Dataset and Benchmark 16 contains 300 images, split into train

(100) and test (200) sets. Each of these images is accompanied by human-generated segmenta-

tion masks. What I call the BSDS300 dataset is a collection of graphs for each of the 300 images,

along with vector representations of the segmentation masks — interpreted as graph signals.

The first step in constructing a graph for each image is to identify each pixel in the image

with a vertex in the graph. 17 Then, I connect — with unitary edge weights — pixels that are

14Exponential kernels such as these are commonly used in Machine Learning and Data Science for similarity
computations. The exponential always outputs positive similarity values, and the negative exponent ensures that
these values decay quickly towards zero as the compared feature vectors become more distant.

15https://www.parlament.ch/en/ratsmitglieder
16https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
17To get graphs of manageable size for the experiments, I subsample the original images by a factor of 12 before

starting the graph construction. That is, I keep every 12th row and column of the original image, and use the pixels
of this lower-resolution version as the vertices of the graph.
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adjacent in the image. This first set of connections encodes “spatial similarity”: neighboring

pixels in the image are neighbors in the graph. The next set of connections encodes color

information via “patch similarity”. To understand it, let pi ∈ R147 be a vectorized, 7×7×3

patch containing the RGB values in the image neighborhood centered at pixel i . 18 These color

patches are used as feature vectors in the same way as voting data was in the construction of

the swiss-national-council graph. I compute edge weights Wi j = exp
(−‖pi −p j‖2

2/σ
)

for

each pair of pixels i and j , with σ set as the mean patch distance in the image. For the sake of

a sparse graph, I then set most of these weights to zero, except for the 3 largest attached to

each pixel. 19 The final step is to add the “spatial” and “patch” weight matrices, whose result

represents a hybrid graph that connects pixels either because they are next to each other in

the original image grid or because they are the center of similar color patches.

Each segmentation mask in the Berkeley dataset is seen as a piecewise-constant signal for

the graph of the image that the mask segments. Step-by-step, I assign an arbitrary integer to

each segment in the mask. Then — for example —, if a pixel in the original image belongs

to segment number 7, its corresponding vertex in the graph gets a signal value of 7. This

process goes for each vertex until we have a piecewise-constant graph signal that represents

the segmentation of the original image. This signal should have a corresponding small jump-

set because the spatial and color information encoded in the graph structure should correlate

with the image segmentation. After all, humans often select as segments continuous objects

with homogeneous colors. The edges connecting pixels within the same segment should then

be more numerous than the ones across.

6.2.5 Data summary

For future reference, the table on the next page summarizes some key characteristics of the

datasets used in this chapter. The number of vertices in the SBM models is fixed, but since

they represent distributions of random graphs, I give their corresponding edge counts as

expected values. There is a range of values to these expected values because I use SBM models

with varying intra-community connection probabilities. The BSDS300 line is special in the

sense that there is a different ground-truth signal for each image in the dataset, hence the

range of values in the number of edges in the signal’s jump-set. As a final note, the complete,

undirected graph on 1000 vertices has 499500 edges, so all the graphs in these four datasets

are comparatively edge-sparse.

18If i is a border pixel, use some form of padding to obtain the patch.
19This is approximately what happens, because the weight matrix has to be symmetric as well in the end.
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6.3 Graph Total Variation (G -TV) vs. Dirichlet form

In Chapter 3, I argued for minimizing the G -TV semi-norm ‖Dz‖1 against the the Dirichlet form

‖Dz‖2
2 in the recovery of piecewise-constant signals. Back then, I used representer theorems to

show that the solutions of G -TV decoders depend less on the measurement matrix than their

Dirichlet form counterparts. Here I will reinforce this argument by plotting how the recovery

error in the two settings varies as we increase the number of vertex measurements that we

take. To control for the effect of the sampling design, the sampled vertices are always chosen

uniformly at random (with replacement) throughout this section.

Let us look first at the behavior of error when recovering the community indicator vector on

SBM graphs. Figure 6.3 shows the difference between G -TV and Dirichlet form interpolation

considering unbalanced 2-SBM(200 + 800) graphs. Similarly to the first SBM plot in Figure 6.2,

the vertical axes vary the intra-community connection probability — moving upwards yields

denser communities —, and the horizontal axes vary the number of uniform random sam-

ples of the signal. On the one hand, there is a sharp phase transition on the G -TV column,

reminiscent of the one in Figure 6.2 for the 2-SSBM(500 + 500) dataset. But this time the

transition curve is more to the right, a consequence of the size imbalance in the communities

of 2-SBM(200 + 800). Under uniform random sampling, one needs to sample more often to get

enough information on the smallest community. On the other hand, the recovery error in the

Dirichlet form column decreases smoothly as one gathers more and more samples. Even if its

error level-sets are almost indifferent to the density of connections within the communities,

their smooth decrease is not fast enough to reach the lowest error levels of the G -TV plot.

All in all, G -TV interpolation seems to rely more on the contrast between the ground-truth’s

jump-set and the rest of the edges in the graph; what impacts most the Dirichlet form decoder

are the measurement constraints.
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Figure 6.3 – Effect of the decoder’s objective on the interpolation error when recovering
the indicator vector of the smallest community on 2-SBM(200 + 800) graphs from samples
taken uniformly at random. Left column: ‖Dz‖1 (Graph Total Variation semi-norm). Right
column: ‖Dz‖2

2 (Dirichlet form). Each pixel on the top row represents the median, across 25
independent trials, of the normalized Euclidean distance from the recovered vector to the
ground-truth. The bottom row has quantized versions of the plots from the top row, to better
discern the error level-sets.

If we do the same comparison now using the swiss-national-council data, some of the

same behaviors arise, but with interesting twists. See Figure 6.4. The G -TV recovery error

transitions sharply, but now this happens in two stages. My hypothesis for this behavior is that

it is an artifact of the way I assembled the ground-truth signal. Although the UDC and FDP

parties have a joint voting pattern that distinguishes them from the rest of the Council, these

parties themselves do not vote identically in every affair. I suppose that the first drop in the

error comes when the decoder approximately accounts for the largest, UDC component of

the ground truth; the second drop would come when enough members of FDP are sampled
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as belonging to the same signal piece as UDC. The error in Dirichlet form interpolation does

not change in stages; it decreases smoothly and is even smaller than the G -TV error in the

beginning, just as in the previous experiment. The surprising observation this time is the error

curves of the two decoders catching up at some point and proceeding to decrease smoothly at

the same rate. The recovery errors to the right of the plot are still considerably large, but this

might just be an indication that there are many councilors in the blue part of the ground-truth

that vote very similarly to the UDC or FDP members. In other words, the large interpolation

error is possibly a consequence of a large jump-set for the ground-truth signal.
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Figure 6.4 – Effect of the decoder’s objective on the interpolation error when recover-
ing the indicator vector of the two largest right-wing parties (UDC and FDP) in the
swiss-national-council graph from samples taken uniformly at random. Red curve: ‖Dz‖1

(Graph Total Variation semi-norm). Blue curve: ‖Dz‖2
2 (Dirichlet form). Each point on the

curves represents the median, across 51 independent trials, of the normalized Euclidean
distance from the recovered vector to the ground-truth.

6.4 Effects of the sampling design for G -TV interpolation

At the end of Chapter 5, I gave an explicit expression for an optimal vertex-sampling design

when working with the G -TV interpolation problem (P1). It prescribes sampling probabilities

π that minimize Γ(S ,π), a functional that also depends on the jump-set S := supp(Dx) of

the signal-to-be-recovered. This optimization program is easy to state, but hard to implement,

all due to the indirect definition of the objective as Γ(S ,π) := max{Θ(S ,π),Υ(S ,π)}. Out

of the two random matrix moment estimates in the definition of Γ, it is Θ the one with the

simplest expression. I will thus ignoreΥ in this section and investigate sampling designs that

minimize different upper bounds toΘ, comparing their behavior with the baseline uniform

random sampling.
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To define the designs we will enquire into, recall Definition 5.4.1 and consider the following

succession of upper bounds forΘ(S ,π):

Θ(S ,π) = max
i∈[n]

max
k∈[N ]

∥∥∥∥ẽ>k

[
D

(
In − 1
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)
D+

]>
PS

∥∥∥∥
1

≤ max
k∈[N ]

∥∥∥ẽ>k
[
DD+]> PS

∥∥∥
1
+max

i∈[n]
max
k∈[N ]

1

πi

∥∥∥ẽ>k
[
Dei e>i D+]>

PS

∥∥∥
1

≤
p

N +max
i∈[n]

max
k∈[N ]

1

πi

∣∣ẽ>k (D+)>ei
∣∣ ·∥∥e>i D>PS

∥∥
1

=
p

N +max
i∈[n]

max
k∈[N ]

∥∥(D+)>ei
∥∥∞ · ‖PS Dei‖1

πi
(6.10)

≤
p

N +‖PS ‖1→1︸ ︷︷ ︸
=|S |

·max
i∈[n]

max
k∈[N ]

∥∥(D+)>ei
∥∥∞ · ‖Dei‖1

πi
. (6.11)

The sampling design π minimizing the bound in (6.10) is the one that satisfies

πi =
∥∥(D+)>ei

∥∥∞ · ‖PS Dei‖1∑n
j=1

∥∥(D+)>e j
∥∥
∞ ·

∥∥PS De j
∥∥

1

,∀i ∈ [n]. (6.12)

I call it the “jump-set coherence” design, because it depends on the jump-set S — through

PS — and on the coherence 20 between D and the standard basis vectors in Rn . 21 Note that

this design is not necessarily practical, since it requires — a priori — knowing the jump-set of

the “ground-truth” graph signal. Another sampling design arises when we minimize the looser

bound in (6.11):

πi =
∥∥(D+)>ei

∥∥∞ · ‖Dei‖1∑n
j=1

∥∥(D+)>e j
∥∥
∞ ·

∥∥De j
∥∥

1

,∀i ∈ [n]. (6.13)

It no longer depends on the jump-set of x, but still has the coherence terms. I name this design

“naive coherence”, because it is a consequence of naively controlling the jump-set S via its

cardinality. Getting rid of the jump-set, though, has practical benefits: as long as we know the

graph (represented in D) we can implement the naive coherence design. There is no need to

consider the inaccessible ground-truth signal. But there are other designs that are simple to

implement; uniform random sampling being arguably the simplest. Naive coherence sampling

only makes sense for our purposes if it implies a successful G -TV interpolation using fewer

measurements than under uniform random sampling, and not many more than under the

jump-set coherence design. I contrast these three sampling strategies — summarized on Table

6.2 — in the set of experiments that follows. Check Figure 6.5 for an illustrative example of

these three sampling designs in action.

20I use “coherence” here in the sense of Compressed Sensing.
21Recall that our sampling matrix is a stack of standard basis vectors, so the quantified coherence is really

between the analysis and measurement operators.
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6.4. Effects of the sampling design for G -TV interpolation

Sampling design Expression (∀i ∈ [n])

Uniform πi = 1/n

Naive coherence πi ∝
∥∥(D+)>ei

∥∥∞ · ‖Dei‖1

Jump-set coherence πi ∝
∥∥(D+)>ei

∥∥∞ · ‖PS Dei‖1

Table 6.2 – Summary of the sampling designs compared in the experiments. The expressions
refer to the sampling probabilities π = (π1, . . . ,πn) used in the CSWR(π) model for vertex-
sampling of graph signals (see Section 2.2).
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Figure 6.5 – Toy realization of the sampling designs. The graph and signal on the left are
repurposed from Figure 2.2 in Chapter 2, and we will assume that all the edges have unitary
weight. The only edge belonging to the signal’s jump-set is the one between vertices v3 and v4,
highlighted by the grey vertical plane. In this setting, I depict on the right half of the figure the
vertex sampling probabilities prescribed by each of the sampling designs compared in this
section’s experiments. The uniform sampling design assigns the same likelihood to all vertices.
The naive coherence design tends to sample more often the poorly connected vertices. This
last property is also observed for the jump-set coherence design, but vertices that are not
endpoints of edges in the jump-set are sampled with probability zero.
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Chapter 6. A numerical tour

Let us resume the experiments by revisiting the SBM datasets. Figure 6.6 shows the recovery

error of G -TV interpolation under the three sampling designs, contrasting balanced and unbal-

anced community settings. We have already seen the plots from the first column, but note how

similar they are with the ones from the second column. The sample complexity for a correct

output in (P1) under naive coherence sampling is the same as if the vertices were sampled

uniformly at random. The naive control over the ground-truth’s jump-set is not enough to

change the phase transition profile, a conclusion made all the more convincing once we exam-

ine the figure’s third column. The change is subtle for the balanced 2-SSBM(500 + 500) dataset

but very pronounced for the unbalanced case. Recovering the indicator vector unbalanced

2-SBM(200 + 800) graphs is the naturally hard setting for the uniform sampling strategy since

the sampled vertices have only a one-in-four chance of belonging to the smallest commu-

nity; in the balanced graphs, every other sample belongs to either community. The jump-set

coherence design seems to regularize the unbalanced signals, making the phase transition

of their recovery look like the one for the symmetric SBM under uniform random sampling.

The underlying cause of this regularization is found upon examining expression (6.12): only

the vertices connected to edges on the ground-truth’s jump-set are sampled with probability

larger than zero.
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Figure 6.6 – Impact of three sampling designs on the recovery error of G -TV interpolation for
the community indicator vectors of SBM graphs. Each pixel represents the median error over
25 independent trials. Each plot is paired with its quantized version highlighting some error
level-sets.
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Chapter 6. A numerical tour

We can draw similar conclusions for the effects of the three sampling designs using the

“real-world” datasets email-EU-core and swiss-national-council, but we find also some

surprises. Figure 6.7 shows that once again the naive coherence design behaves just as poorly

as uniform random sampling; the red curves are more intriguing.
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Figure 6.7 – Impact of three sampling designs on the recovery error of G -TV interpolation for
the signals of the email-EU-core and swiss-national-council datasets. Each point in the
plot represents the median error over 51 independent trials.
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6.4. Effects of the sampling design for G -TV interpolation

On the plots of Figure 6.7, the jump-set coherence design reaches smaller recovery errors

than the ones of the two others, but when the measurements are very few this design’s er-

ror becomes the largest. I think this has to do with how well the ground-truth’s jump-set

reflects the natural partitions of the graph. When the G -TV decoder has very few measure-

ments, it must rely almost only on the graph structure to do the interpolation. For the SBM

datasets this dependence was not detrimental because the signals being recovered were the

indicator vectors of the natural communities in the graphs. For the email-EU-core and

swiss-national-council datasets I defined the ground-truth based only on an intuitive

idea of how the respective graphs would cluster. When sampling a few vertices, only at the

signal transitions, the jump-set coherence design may lack the sample variety of the other

designs that influences the G -TV decoder to settle for a less-than-natural partition of the

graph. In the end, however, the role of the graph in recovery problems like ours is to inform

the composition of the signal; very rarely in practice does the graph encode exactly a signal of

interest. The fact that the jump-set coherence design reaches — globally — lower error levels

than the other two designs is more important. After all, the error values to the left of the plot

are all very large. To the right — as the number of samples increases—, the jump-set coherence

design even results in exact recovery for the swiss-national-council data, hinting that the

voting patterns of the Swiss National Councillors reflect their political leaning better than the

email exchanges in the email-EU-core reflect the institution’s departmental makeup.

To finish off, let us sweep the BSDS300 dataset and compare the error curves for the three

sampling designs when recovering the segmentation mask graph signals. Figure 6.8 displays

these side-by-side, with a gray curve for each image in the dataset.
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Figure 6.8 – Impact of three sampling designs on the recovery error of G -TV interpolation for
the segmentation masks in BSDS300. Each grey curve on each of the three plots corresponds
to an image in the dataset. Each point in these curve records the median error over 15
independent trials. The red curve traces the point-wise average the grey ones.

Note first that not every image in the dataset admits a sharp phase transition in the recovery

107



Chapter 6. A numerical tour

error. For some, the error drops suddenly at a critical number of samples; for others, the

error decreases smoothly and remains large even when a lot of pixels are queried. For the

first time in our experiments one could argue that there is some improvement in using the

naive coherence design over uniform random sampling, but not enough to justify its use. The

jump-set coherence design leads to exact recovery for some segmentation masks, but for others,

the recovery error remains fairly large despite the use of unfair knowledge about the ground-

truth jump-set in the sampling design. Let us examine the images associated with extremes of

this behavior to see where this disparity comes from. The left column of Figure 6.9 shows the

image whose segmentation mask leads to the smallest recovery error under jump-set coherence

sampling; the right column shows the image with the largest respective error. The larger error

seems to have to do with the presence of several small pieces in the image’s segmentation.

Even when the sampling design is restricted to query only vertices belonging to the jump-set,

it can still miss samples from some of the several small segments.

Smallest recovery error

Largest recovery error

Figure 6.9 – Segmentation mask signals in the BSDS300 dataset that yield the smallest and
largest recovery errors when taking m = n samples (with replacement) under the jump-set
coherence design.
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6.5 Summary

The thorough study of a recovery program should not ignore the issues involved in its practical

use. Fortunately, the G -TV decoders in (P1) and (P1-η) can be implemented numerically

in efficient ways. The one I presented is based on a single primal-dual proximal splitting

procedure whose iterations required, in the end, operations that can be made cheaper the

sparser the graph is. Upon convergence, the estimated solution can be close or far to the

true underlying signal, depending on the number of vertex-samples taken. I have shown that

when the ground-truth is the indicator vector of a graph cluster, the recovery error of G -TV

interpolation undergoes a sharp phase transition with respect to the number of samples. The

threshold happens earlier the denser are the clusters. In contrast, the error under Dirichlet

form interpolation when recovering these signals decreases smoothly and slowly, depending

more on the actual number of measurements than on the edge structure of the graph.

Putting into practice the optimal sampling design for G -TV interpolation also has issues of

its own. To simplify the complicated objective of the optimal design, I proposed for it two

progressively looser upper bounds, whose optimizers gave rise to two sampling designs. Both

are a form of coherence sampling, familiar in Compressed Sensing, but one of them also uses

information from the jump-set of the ground-truth signal. I compared these two designs

with the baseline uniform random sampling, concluding that some information about the

ground-truth’s jump-set must be used to change the phase transition profile of the recovery

error in G -TV interpolation; naive coherence sampling behaves just as poorly as uniform

random sampling. The practical issue that remains is how to account for the jump-set in the

sampling designs without actually resorting to the — unknowable — ground-truth signal?
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Appendix 6.A More on primal-dual proximal splitting

In this appendix I sketch, in a little more detail than in the main text, the proximal splitting

approach for numerically solving programs like the G -TV decoders (P1) and (P1-η). We may

consider here more general optimization problems of the type

min
z∈Rn

f (z)+ g (Dz)+h(z), (Pstd)

where f :Rn →R, g :RN →R and h :Rn →R are convex functions, the latter of which is also

differentiable (with a Lipschitz-continuous gradient).

The proximity operator of a convex function f :Rn →R is the map

z 7→ prox f (z) = arg min
v∈Rn

1

2
‖z−v‖2

2 + f (v). (6.14)

The problem on the right-hand side admits a unique solution for every z ∈ Rn . One can

interpret proximity operators as generalizing projections. Indeed, take f to be the convex

indicator function of a set C , i.e.,, the functions defined by

z 7→ ιC (z) =
{

0, if z ∈C ,

+∞ otherwise
.

Then, for any z ∈Rn , the vector prox f (z) is exactly the orthogonal projection of z onto C [17,

Table 2, entry i]. Just like orthogonal projections, proximity maps allow us to split the space

into complementary halves. Given a convex function f , the so-called Moreau decomposition

of any v ∈Rn is given by

v = prox f (v)+prox f ∗ (v) ,

where f ∗ is the Fenchel conjugate of f , a function defined as v 7→ sup
u∈Rn

〈u,v〉− f (u).

But perhaps the two most important properties of prox f — in what concerns iterative solvers —

are its firm non-expansiveness and the fact that its fixed point set matches the set of minimizers

of f [17]. The gradient descent map w 7→ w−γ∇h(w) can also be non-expansive (with a proper

choice of step size γ) and, similarly to the proximity map, its fixed point set is equal to the set

of minimizers of h. Proximal splitting techniques take advantage of these two properties to

solve problems of the type min
z

f (z)+h(z) with alternating calls to the gradient of h (forward

step) and proximal operator of f (backward step). In rough terms, the iterations look like the

ones below and repeat until z stops changing noticeably, coming close enough to a minimizer

of the sum f (·)+h(·).
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z ← z−γ∇h(z) . Forward step

. . .

z ← proxγ f (z) . Backward step

Adding g to the objective changes things a bit, because the domain of this function is different

from that of f and h. Primal-dual proximal splitting methods address this situation by working

simultaneously with two variables, called the primal z ∈ Rn and the dual d ∈ Rn . The direct

linear map z 7→ Dz and its transpose, d 7→ D>d connect the primal and dual domains between

the forward and backward steps:

(z,d) ← (
z−γ∇h(z)−γD>d,d+γDz

)
. Forward step

. . .

(z,d) ←
(
proxγ f (z) ,proxγg∗ (d)

)
. Backward step

The specific primal-dual proximal splitting method used in this chapter comes from Ko-

modakis and Pesquet [39, Algorithm 6]. I reproduce all of its steps in Algorithm 4, but note

that at its core the algorithm consists of forward gradient steps, backward proximity steps,

and a linear connection between primal and dual spaces via matrix D. The paper of Ko-

modakis and Pesquet lists other numerical solvers for (Pstd), but the one in Algorithm 4 has

more intuitive step size parameters and allows the computation of prox f and proxg in parallel.

Algorithm 4 FBF primal-dual iterations for solving (Pstd)

1: z0 ← 0 ∈Rn . Initial primal variable
2: d0 ← 0 ∈RN . Initial dual variable
3: repeat

4: pick γn ∈
(
0, 1

1+‖D‖2+ρ
)

. Step size

5:
(
w1,n , w2,n

)← (
zn −γn

[∇h(zn)+D>dn
]

, dn +γnDzn
)

. Forward step

6:
(
p1,n , p2,n

)← (
proxγn f

(
w1,n

)
, proxγn g∗

(
w2,n

))
. Backward step

7:
(
q1,n , q2,n

)← (
p1,n −γn

[∇h(p2,n)+D>p2,n
]

, p2,n +γnDp1,n
)

. Forward step
8: (zn+1, dn+1) ←

(
zn −w1,n +q1,n , dn −w2,n +q2,n

)
.Update primal/dual variables

9: until convergence
10: return zn+1

Algorithms 2 and 3 in the main text are straightforward specializations of Algorithm 4. To see

that this is true, first identify g with ‖ ·‖1 :RN →R. Then the proximal mapping of its Fenchel

conjugate is given by

w 7→proxγn g∗ (w)

= w−proxγn g (w)

= w− softγn (w).
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Note that I used the Moreau decomposition, along with the fact that proxγn‖·‖1
is the soft

thresholding operator softγn (w) [17, Table 2, entry ii]. Next, in the interpolation problem

related to Algorithm 2, we have h ≡ 0 and so ∇h ≡ 0. The interpolation constraint is expressed

via function f with the convex indicator function ι{z∈Rn :PΩz=PΩx}(·). Its proximity map is the

same as the orthogonal projection onto set {z ∈Rn : PΩz = PΩx}:

w 7→proxγn f (w)

= arg min
{z∈Rn :PΩz=PΩx}

‖z−w‖2

= (In −PΩ)w+PΩx.

For the regression problem, we can express the constraints using a differentiable function,

h(·) = ρ
2 ‖PΩ(·)−y‖2

2. Its corresponding gradient map is z 7→ ∇h(z) = ρP>
ΩPΩz−y = ρPΩz−y.

There is no need for another function in the objective, so we may set f ≡ 0, which finishes the

specialization of Algorithm 4 into Algorithm 3.
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7 Conclusions

I want to stand as close to the edge as I can without going

over. Out on the edge you see all kinds of things you can’t

see from the center.

— Kurt Vonnegut, Player Piano

To find the missing values, we first connected the dots. Discrete signals are often informed

by the similarity of its support points. Groups of friends tend to watch the same movies;

politicians that vote alike tend to be in the same party. Those similarities can be concisely

represented through a network, and the original signal becomes a graph signal. Still, I have

shown at the beginning of this thesis how to express the sampling and analysis of graph signals

in the familiar language of linear algebra. The graph gradient matrix, D, arose as the analysis

operator for piecewise-constant signals, that is, those that have few edge-variations. Matrix A,

representing vertex-sampling, was formed by stacking independent random rows from the

standard basis in Rn , according to two alternative sampling models — Ber(π) and CSWR(π).

To figure the whole from its samples, we exploited a signature feature. For piecewise-constant

graph signals, a good potential signature is the count of edges across which the signal varies.

Among all possible ways to “count” the edge differences, I contrasted the Graph Total Varia-

tion (G -TV) and the Dirichlet form. Both theoretically and numerically, I argued that G -TV

minimization is less sensitive to the sampling operator. In particular, its recovery error drops

suddenly close to zero as long as the number of measurements is large enough.

To reveal the best sampling design, we minimized the sample complexity. I explored two

approaches to study the recovery conditions under G -TV minimization. The “direct” path of

Chapter 4 is the more general — dealing automatically with noisy samples — but I was forced

to leave it without a punchline. What blocked it was the lack of knowledge on the coordinate
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structure of the decent cone D (‖D · ‖1,x). The “dual” path of Chapter 5 was more fruitful,

revealing the number of measurements required for exact G -TV interpolation as a function of

the sampling probabilities π= (π1, . . . ,πn). What followed was an explicit expression for the

optimal vector π.

To realize the practical issues, we finally took a numerical tour. Implementing the decoders

was fairly easy; implementing the optimal sampling design is less so. Nevertheless, we saw

how an approximation of the optimal design can visibly change the phase transition profile

of the recovery error in G -TV interpolation. But this approximate design has to depend on

the ground-truth signal’s jump-set, knowledge of which is unobtainable a priori. Indeed —

for all the different datasets of Chapter 6 —, the naive coherence design behaved just as well

as uniform random sampling, while the jump-set coherence alternative moved the sample

complexity threshold towards lower measurement levels.

I leave the readers with two lists that summarize what we have learned in this thesis and what

we still have to learn about sampling and subsequent G -TV recovery of piecewise-constant

graph signals.

7.1 Takeaways

• Piecewise-constant signals and the geometry of BG−T V . The extreme “points” of the

Graph Total Variation (G -TV) ball are essentially indicator vectors of vertex subsets.

These indicators are basic elements for a sparse description of piecewise-constant graph

functions. On the one hand, the solutions of G -TV minimization will thus tend to be

sparse combinations of vertex-subset indicator vectors. On the other hand, the extreme

points of the solution set can be represented by a selection of columns from the pseudo-

inverse D+. Piecewise-constant graph signals that are “compatible” with the graph

structure require relatively few atoms from D+ in its description. Compatible signals

can be potentially recovered by G -TV minimization using only a few vertex samples.

• Optimal sampling design for G -TV interpolation. The sampling probabilities that

minimize the recovery threshold for G -TV interpolation depend on vertex-induced

perturbations of the projection operator DD+, restricted to the jump-set S := supp(Dx)

of the signal x to be recovered.

• Importance of the jump-set in the sample complexity threshold. Attempting to write

the sample complexity of G -TV decoders as simply proportional to the jump-set’s

cardinality might incur in vacuous bounds. This is true, first, because |S | in piecewise-

constant graph signals can be much larger than the signal’s dimension and, yet, these

signals can still be successfully recovered from relatively few measurements. Second,

a sampling design based on this naive control over the jump-set induces the same

recovery error profile as if the vertices were sampled uniformly at random.
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7.2 Open problems

• A direct certificate for G -TV recovery. Knowing more about the coordinate structure of

the descent cone D (‖D · ‖1,x) — whenever x is a piecewise-constant graph signal — can

lead to a high-probability lower bound on the minimum q-gain functional. Such a result

would be more powerful than the certificate from Chapter 5, because it would imply

robustness guarantees for the noisy regression problem (P1-η). In fact, it would even

be useful in more general settings where the measurements undergo some non-linear

transformation before becoming available [57].

• Practical sampling designs. The optimization program in Corollary 5.4.1.1 is explicit

but not practical a priori. I used a simplified version of it in Chapter 6 but even then the

sampling design that performed well was the one that required knowing the signal-to-

be-sampled before even sampling it. We are thus left with a modeling problem. The

optimal design depends on the action of the projection operator PS , but knowing this

operator is tantamount to knowing the jump-set S of the signal we want to recover. How

much is it possible to assume, in practice, about the actions of PS without explicitly

knowing S ?

115





A Bernstein inequalities

Many of the random objects encounter in this thesis can be written as a sum of independent

random variables. The terms of the sum have bounded moments, so the sum itself takes on

values close to its expectation with high probability. This concentration phenomenon can be

quantified in terms of the Bernstein-type inequalities that I present here.

Lemma A.0.1 (Scalar Bernstein inequality [6, p.117]). . Let X1, . . . , Xn be independent random

variables, taking values in R, and such that, for each i ∈ [n],

• E (Xi ) = 0,

• σ2 := 1
n

∑n
i=1E

(
X 2

i

)<∞,

• |Xi | ≤ B <∞.

Then, ∀t > 0, the tails of the sum Sn := X1 +·· ·+Xn behave as

P ({|Sn | ≥ tn}) ≤ 2exp

(−3n

8
min

{
t 2

σ2 ,
t

B

})
. (A.1)

Lemma A.0.2 (Vector Bernstein inequality [47, p.164]). Let X1, . . . , Xn be independent random

vectors in a Banach space equipped with norm ‖ ·‖, such that, for each i ∈ [n],

• E (Xi ) = 0,

• σ2 := 1
n

∑n
i=1E

(‖Xi‖2
)<∞,

• ‖Xi‖ ≤ B <∞.

Then, ∀t > 0, the tails of the sum Sn := X1 +·· ·+Xn behave as

P ({‖Sn‖ ≥ tn}) ≤ 2exp

(−3n

8
min

{
t 2

σ2 ,
t

B

})
. (A.2)
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Lemma A.0.3 (Matrix Bernstein inequality [73, Thm. 1.6.2]). Let X1, . . . , Xn ∈Cd1×d2 be inde-

pendent random matrices, and denote by ‖ · ‖ the spectral norm (maximal singular value).

Assume that, for each i ∈ [n],

• E (Xi ) = 0,

• σ2 := max
{∥∥∑n

i=1E
(
Xi X ∗

i

)∥∥ ,
∥∥∑n

i=1E
(
X ∗

i Xi
)∥∥}<∞,

• ‖Xi‖ ≤ B <∞.

Then, ∀t > 0, the tails of the sum Sn := X1 +·· ·+Xn behave as

P ({‖Sn‖ ≥ tn}) ≤ (d1 +d2)exp

(−3n

8
min

{
t 2

σ2 ,
t

B

})
. (A.3)

Remark: The main difference between the matrix Bernstein inequality and the other two

instances is the presence of a dimensional factor (d1 +d2) which cannot be removed in the

general case. As a consequence, there is a limited range of t for which the matrix Bernstein

inequality is informative [73, p. 77]. Additionally, Tropp highlights that the definition of the

variance term σ2 through a maximum of two terms reflects the existence of two different

squares for a general matrix M, namely M>M and MM>. A scalar s ∈R has only one square, so

only one second moment to consider.
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