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Abstract

Abelian varieties are fascinating objects, combining the fields of geometry and
arithmetic. While the interest in abelian varieties has long time been of purely
theoretic nature, they saw their first real-world application in cryptography in the
mid 1980’s, and have ever since lead to broad research on the computational and the
arithmetic side. The most instructive examples of abelian varieties are elliptic curves
and Jacobian varieties of hyperelliptic curves, and they come naturally equipped
with some additional structure, called a principal polarization. Morphisms between
abelian varieties that respect both the geometric and the arithmetic structure are
called isogenies. In this thesis we focus on the computation of isogenies with cyclic
kernel between principally polarized abelian varieties over finite fields.

Keywords: abelian varieties, isogenies, polarizations, Mumford’s theory of theta
functions, public key cryptography, discrete logarithm problem

Résumé

Les variétés abéliennes sont des objets fascinants, combinant les domaines de
géométrie et d’arithmétique. Tandis que pendant longtemps les mathématiciens
s’intéressaient aux aspects purement théoriques des variétés abéliennes, leur appa-
rition dans des domaines pratiques tel que la cryptographie à clé publique dans les
années 1980 a mené à de vastes recherches du côté computationnel et arithmétique.
Les exemples de variétés abéliennes les plus instructives sont les courbes elliptiques
et les variétés Jacobiennes de courbes hyperelliptiques. Les deux sont naturelle-
ment dotées d’une structure supplémentaire, appelée une polarisation principale.
Les morphismes entre variétés abéliennes qui préservent les structures géométriques
et arithmétiques sont appelés isogénies. Nous nous intéressons dans cette thèse au
calcul d’isogénies de noyau cyclique entre des variétés abéliennes principalement
polarisées sur des corps finis.

Mots-clés : variétés abéliennes, isogénies, polarisations, théorie de Mumford sur
les fonctions thêta, cryptographie à clé publique, problème du logarithme discret

The author was supported by the Swiss National Science Foundation Grant 162999.





Remerciements

Tout d’abord j’aimerais remercier Dimitar de m’avoir encadré pendant ma thèse et
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de ma thèse j’ai également eu l’occasion de travailler avec Ben, Alina et Chloe et votre
enthousiasme et dynamisme m’a beaucoup enchanté. Le bâtiment des maths ne serait
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Introduction

Secure communication over an insecure channel requires the participants to possess a
common secret key. For centuries, a physical key exchange had to take place prior to
secure communication. In a world that is getting more and more connected, this barrier
became rapidly one of the biggest challenges in 20th century cryptography. The first
key exchange protocol over an insecure channel was proposed by Diffie and Hellman
in 1976 [DH76]. Two parties that had no prior knowledge of each other were henceforth
able to establish a common secret key. This was considered the birth of public-key cryp-
tography. The security of the key exchange protocol is based on the hardness of a certain
mathematical problem, commonly referred to as a one-way function. That is, a problem
which is computationally easy to establish, but very costly to reverse. The security of
the Diffie-Hellman protocol relies on the hardness of computing discrete logarithms in
finite cyclic groups. The Discrete Logarithm Problem (DLP) in the group G = 〈g〉 is:
given h ∈ G, find the exponent x such that h = gx. The hardness of the DLP de-
pends on the chosen group, e.g. it becomes trivial in Z/nZ, but is already much harder
in (Z/pZ)×. The fastest generic algorithm to solve the discrete logarithm problem is
Pollard’s rho algorithm [Pol78], which requires O(#G1/2) operations. Generic in the
sense that it exploits the group axioms only, and none of the additional structure of
the underlying group. If combined with the Pohling-Hellman algorithm [PH78], the
complexity is brought down to O(p1/2), where p is the largest prime factor of #G. In
the multiplicative group of a finite field, the index calculus algorithm and its variants
([Kra22, HR83, Jou13, BGGM15]) is the fastest known algorithm to solve the DLP.
From what we have said so far, it becomes clear the importance of being able to con-
struct cyclic groups of large order for which computing discrete logarithms is difficult
(i.e. for which no faster algorithm than Pollard’s algorithm is known). Koblitz suggested
in [Kob87] the use of the group of rational points of an elliptic curve over a finite field.
The efficient arithmetic on elliptic curves and the hardness of the DLP make it a popular
choice until nowadays. Indeed, apart from certain classes of curves, there is no known
attack, faster than the generic one. If E is an elliptic curve over Fq, then by the Hasse-
Weil bound the group of Fq-rational points on E is of order O(q). Assuming there exists
a prime-order subgroup of small index, Pollard’s algorithm solves the discrete logarithm
problem on this cyclic subgroup in roughly O(q1/2) operations. Working with elliptic
curves allows to have relatively small key sizes compared to other popular one-way func-
tions, such as e.g. factorization of integers. The existence of a bilinear pairing, efficient
algorithms for point counting and for isogeny computation gave rise to attacks on certain
families of elliptic curves (e.g. [MOV91]), however it also opened the door for further
cryptographic protocols based on elliptic curves (e.g. [Jou04, BLS01, BF01, DFJP14]).
Two years later, Koblitz suggested to consider the use of Jacobian varieties of hyper-
elliptic curves as well (see [Kob89]). Schemes based on the hyperelliptic curve discrete
logarithm problem benefit from smaller key sizes at same security level, compared to
their elliptic curve counterpart. Indeed, if H is a genus g hyperelliptic curve over Fq,
then the group of Fq-rational points on Jac(H) is of order O(qg). Assuming again we
dispose of a prime-order subgroup of small index, the generic algorithm solves the DLP
in O(qg/2) operations. However, there exists an index-calculus algorithm on hyperel-
liptic Jacobians ([GTTD05]) that has complexity O(q2−2/g), making the gain in key
size less significant when g increases. For curves of very large genus, there is an al-
gorithm that computes discrete logarithms in subexponential time ([ADH94]). While
the arithmetic on hyperelliptic Jacobians is efficient (Mumford coordinates and Cantor
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arithmetic, see e.g. [Gal12] and [CFA+12]), point counting and isogeny computation is
much harder than for elliptic curves, and there is still a lot to explore.

Jacobian varieties of hyperelliptic curves are abelian varieties, and they come nat-
urally equipped with some additional structure, called a principal polarization. In this
thesis we focus on the computation of isogenies between principally polarized abelian va-
rieties over finite fields. Working with the polynomial equations that define the abelian
variety is unfeasible in almost any case (except in dimension 1). We rather want to
exploit the theory of theta functions and projective embeddings induced by polariza-
tions. The theta functions can thus be considered as projective coordinates on the
variety, and it is with respect to these coordinates that we want to compute isogenies.
In the particular case of Jacobian varieties of hyperelliptic curves, there exist efficient
conversion formulas between the different coordinate systems (Mumford to theta), see
[vW98, Cos11, Rob10]. Isogenies allow us to transport the discrete logarithm problem
to a potentially weaker variety, hence if the isogeny is efficiently computable, this can
decrease the cost of computing discrete logarithms by an important factor. This be-
comes most relevant in dimension 3. The moduli space of principally polarized abelian
varieties of dimension 3 is 6-dimensional, and so is the moduli space of Jacobian vari-
eties of smooth genus 3 curves. A smooth genus 3 curves is either a hyperelliptic curve
or a plane quartic. The former case is rather rare, the moduli space of hyperelliptic
curves of genus 3 being of dimension 5. In the non-hyperelliptic case, there exists an
index-calculus algorithm ([Die06, DT08]) that has complexity O(q), where Fq is the
base field of the underlying curve. As a comparison, the algorithm from [GTTD05] for
hyperelliptic curves has complexity O(q4/3). Hence, efficiently computable isogenies in
dimension 3 (by which we mean with logarithmic dependency in the size of the base
field) can drastically weaken the security of cryptographic schemes based on the discrete
logarithm problem on hyperelliptic threefolds.

Isogenies that preserve the principal polarizability (and hence, that are expressible
in theta coordinates) are deeply linked to the existence of certain endomorphisms of the
abelian variety, as explained in Section 3. And the endomorphism determines the degree
of the isogeny. For example, if the abelian variety is of dimension g, and if ` is a prime
number different from the characteristic of the ground field, then isogenies associated
to the multiplication-by-`-endomorphism [`] are of degree `g, with kernel isomorphic
to (Z/`Z)g. These isogenies are computable (in theta coordinates for any principally
polarizable abelian variety, see [Rob10, CR11, LR12], and on Jacobian varieties of hy-
perelliptic curves using other techniques, see [CE15], [Mil17]). In the present thesis
we focus on the computation of isogenies with cyclic kernels that preserve principal
polarizability, whenever they exist (i.e. whenever the associated endomorphism exists).

This work results from a collaboration with A. Dudeanu, D. Jetchev and D. Robert.

Structure of the thesis. In Section 1 we study holomorphic line bundles on complex
tori and the associated global sections, called theta functions. We explain under what
condition a basis of theta functions allows to embed the torus into projective space, and
how this embedding behaves under isomorphism. In Section 2 we study abelian varieties
over fields of positive characteristic. The absence of the characterisation of an abelian
variety as the quotient of a vector space by a lattice makes it impossible to study line
bundles in the same manner as we do in the complex case. D. Mumford developed the
tools for studying theta functions and projective embeddings in the positive character-
istic case, and we present his results in Section 2. In Section 3 we study under what
condition the polarizability of an abelian variety descends under separable isogenies.
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The core of the thesis are Sections 4 and 5. In Section 4 we compute cyclic isogenies
that preserve principal polarizability from kernels. That is, given the theta coordinates
of an abelian variety and of a cyclic subgroup, we compute the theta coordinates of the
quotient abelian variety. The computed modular point allows then to gain information
about the target abelian variety, e.g. if it is the Jacobian variety of a hyperelliptic curve
or not, and if so, to compute a plane model of the curve. In Section 5 we evaluate
the isogeny on points, i.e. given the theta coordinates of a point on the variety, we
compute the theta coordinates of the image of the point. Again, in the case of a hy-
perelliptic Jacobian, we can use the conversion formulas between Mumford and theta
coordinates, making this algorithm practical. In Section 6 we analyse the complexities
of the algorithms from the previous sections. In Section 7 we give an example of a cyclic
isogeny computed with Magma. In Section 8 we present recent theoretical results about
isogeny graphs from [BJW17] (graphs whose vertices are isomorphism classes of abelian
varieties and whose edges are isogenies of a certain type) and say where and how the
explicit computation of cyclic isogenies comes to hand, making these results practical.

Contributions. When I started my PhD thesis, the problem of computing cyclic iso-
genies in theta coordinates was an ongoing research project by A. Dudeanu, D. Jetchev
and D. Robert. My contribution was to generalise the algorithm for the evaluation
of the isogeny on points (Section 5) to arbitrary dimension, while before they could
handle genus 2 only. Also, these new ideas allowed to remove quite restrictive assump-
tions (linked to the real multiplication algebra) and had a very beneficial effect on the
complexity of the evaluation algorithm.
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1 Complex abelian varieties

An abelian variety is a connected and complete algebraic group. Abelian varieties are
projective and the group law is commutative. If the variety is defined over the complex
numbers, then the group of points on the variety is a complex torus. However, not
every complex torus admits the structure of an algebraic variety. In this section we will
study holomorphic line bundles on complex tori, associated maps into projective space
and give a criterion for a complex torus to be algebraic. In a second step, we will study
isomorphisms of complex abelian varieties.

1.1 Line bundles on complex tori

1.1.1 Complex tori

A complex torus X = Cg/Λ of dimension g is by definition a quotient of Cg by a
lattice Λ ⊂ Cg, where Λ acts on Cg by translation. We denote by π the projection map
π : Cg → X. A complex torus of dimension one is called an elliptic curve. A choice of
a Z-basis λ1, . . . , λ2g of Λ leads to a complex g × 2g matrix

Π =

 λ1,1 . . . λ1,2g

...
. . .

...
λg,1 . . . λg,2g

 ,

where the jth column of Π is the vector of coefficients of λj with respect to the standard
basis of Cg. The matrix Π is called a period matrix for X. Note that one could define
the period matrix with respect to any C-basis of Cg. Two different choices of Z-bases
for Λ lead to two different period matrices Π1 and Π2, and one can pass from Π1 to Π2

by right-multiplication by an element of GL2g(Z).

A homomorphism of complex tori is a group homomorphism that is also a holomor-
phic map. An over-lattice Λ′ ⊃ Λ yields a homomorphism

Cg/Λ→ Cg/Λ′,

and if Π′ is a period matrix for Λ′ then the containment Λ ⊂ Λ′ means that a period
matrix Π for Λ is given by

Π = Π′R,

where R is a 2g × 2g matrix with integer coefficients. That is, if λ′1, . . . , λ
′
2g span

the lattice Λ′, then the elements of Λ can be expressed as Z-linear combinations of
λ′1, . . . , λ

′
2g. This observation has an interesting generalization to any homomorphism of

complex tori. Therefore, we first consider the following proposition from [BL04, Prop.
1.2.1].

Proposition 1.1. Let X = Cg/Λ and X ′ = Cg′/Λ′ be complex tori, and let f : X → X ′

be a homomorphism. Then there exists a unique C-linear map F : Cg → Cg′ satisfying
F (Λ) ⊂ Λ′ and making the following diagram commutative

Cg F //

π

��

Cg′

π′

��
X

f
// X ′.
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The above proposition gives rise to an injective group homomorphism

ρa : Hom(X,X ′) ↪→ HomC(Cg,Cg
′
), f 7→ ρa(f) = F,

called the analytic representation of Hom(X,X ′). The inclusion F (Λ) ⊂ Λ′ implies
that F restricts to a Z-linear map on Λ with values in Λ′, yielding the rational repre-
sentation of Hom(X,X ′),

ρr : Hom(X,X ′) ↪→ HomZ(Λ,Λ′), f 7→ ρr(f) = ρa(f)|Λ .

In the case X = X ′, the maps ρa and ρr are representations of the ring End(X).

Let X = Cg/Λ and X ′ = Cg′/Λ′ be complex tori, and let f : X → X ′ be a homomor-
phism. The C-linear map ρa(f) can be expressed as a matrix A ∈Matg′×g(C) with re-
spect to the standard bases of Cg and Cg′ . Let Π ∈Matg×2g(C) and Π′ ∈Matg′×2g′(C)
be some period matrices for X and X ′ respectively. The discrete subgroup ρa(f)(Λ)
of Cg′ is spanned by the columns of the matrix AΠ. But ρa(f)(Λ) is a subgroup of Λ′

and hence, we can express each column vector of AΠ as a Z-linear combination of the
columns of Π′, yielding a relation

AΠ = Π′R.

Here, R ∈Mat2g′×2g(Z) is the matrix of the rational representation ρr(f) with respect
to the Z-bases determining Π and Π′ respectively. This generalises the relation between
the period matrices Π and Π′ of the above example of the over-lattice. Moreover, if we
are in the case where g = g′ and ρa(f) is an automorphism of the vector space Cg, then
writing the period matrix Π′ with respect to the C-basis given by the column vectors
of A, we obtain a relation

Π = Π′R.

A homomorphism f satisfying the above conditions (g = g′ and ρa(f) bijective) is
called an isogeny. A more common, equivalent definition of an isogeny is a surjective
homomorphism of complex tori f : X → X ′ with finite kernel. We may always assume
that the matrix A of the analytic representation of an isogeny is the identity. Isogenies
always arise as quotients, i.e. if X is a complex torus and Γ ⊂ X is a finite subgroup,
then up to isomorphism of the target, the isogeny is given byX → X/Γ. The degree of an
isogeny is the order of its kernel. If n 6= 0 is an integer, then nX : X → X, x 7→ nx is an
isogeny of degree n2g, since the kernel equals 1

nΛ/Λ. An interesting property of isogenies
is that they define a symmetric (hence an equivalence) relation on the set of complex
tori. To be more precise, if f : X → X ′ is an isogeny and if e is the exponent of ker f ,
then there exists a unique isogeny g : X ′ → X such that g ◦ f = eX and f ◦ g = eX′ .

1.1.2 Holomorphic line bundles

Let X = Cg/Λ be a complex torus. The aim of this section is to describe the group
(Pic(X),⊗) of holomorphic line bundles on X. We first make an observation on the
trivial line bundle X × C → X, and try to mimic this idea to construct new line
bundles. The total space of the trivial line bundle is (Cg/Λ) × C. Hence, the first
factor is a quotient by Λ. By considering the trivial action of Λ on C (i.e. λ · t = t for
all λ ∈ Λ and t ∈ C), we may view the whole total space as a quotient by Λ. That
is, X×C = (Cg×C)/Λ, where λ ·(v, t) = (v+λ, t). Now, suppose that Λ acts on Cg×C
in a fancier way, e.g. as λ · (v, t) = (v + λ, a(λ,v)t), where a(λ,v) ∈ C× is a non-zero

6



complex number. This determines a function a : Λ × Cg → C×, and in order for the
above to be a group action, which means that the associativity must be guaranteed, the
function a(λ, v) must satisfy

a(λ1 + λ2, v) = a(λ1, v + λ2)a(λ2, v), (1.1)

for all λ1, λ2 ∈ Λ and v ∈ Cg. Relation (1.1) is called the cocycle relation. We restrict
ourselves from now on to functions a : Λ×Cg → C× satisfying the cocycle relation (1.1)
and that are holomorphic in Cg. These functions are called factors of automorphy. Un-
der multiplication, the factors of automorphy form an abelian group, which is denoted
by Z1(Λ, H0(O×Cg)). Here, H0(O×Cg) is the multiplicative group of nonvanishing holo-
morphic functions on Cg. Let us fix a factor of automorphy a ∈ Z1(Λ, H0(O×Cg)). The
action of Λ on Cg × C given by

λ · (v, t) = (v + λ, a(λ, v)t) (1.2)

is free and properly discontinuous, so that the quotient

La = (Cg × C)/Λ

is a complex manifold. The projection on the first factor p : La → X turns La into a
holomorphic line bundle on X.

Let h ∈ H0(O×Cg) be a nonvanishing holomorphic function on Cg, and let
a : Λ×Cg → C×, a(λ, v) = h(v+λ)/h(v) be the associated factor of automorphy. Then,

[(v, t)] 7→ [(v, h(v)t)]

induces an isomorphism between the trivial line bundle and the line bundle La deter-
mined by a, where the first equivalence class lives in Cg × C modulo the trivial action
of Λ, and the second equivalence class lives in Cg ×C modulo Λ acting via the factor a.
Factors of automorphy of this form are called boundaries, and form the multiplicative
subgroup B1(Λ, H0(O×Cg)) of Z1(Λ, H0(O×Cg)). The first cohomology group of Λ with
values in H0(O×Cg) is the quotient

H1(Λ, H0(O×Cg)) = Z1(Λ, H0(O×Cg))/B
1(Λ, H0(O×Cg)),

and its elements define isomorphism classes of holomorphic line bundles on X. As a
consequence of [BL04, Prop. B.1] and [BL04, Lem. 2.1.1], any holomorphic line bundle
on X can be described by a factor of automorphy.

Now that we have an explicit way to describe holomorphic line bundles on X via
factors of automorphy, we will turn our attention to the study of these factors. The
goal is to distinguish one canonical factor of automorphy in each class of factors, i.e. in
each isomorphism class of holomorphic line bundles. Using the exact sequence

0→ Z→ OX → O×X → 0,

where the arrow OX → O×X sends the holomorphic function g to the nonvanishing
holomorphic function e(2πig), and the associated long cohomology sequence, one can
associate to the holomorphic line bundle L on X a unique alternating Z-valued form
on Λ, called the first Chern class of L, and denoted by c1(L). If a : Λ × Cg → C×
is a factor of automorphy for L, which can always be written as a = e(2πig) with
g : Λ× Cg → C holomorphic in Cg, then the first Chern class of L determines the form

EL(λ1, λ2) = g(λ2, v + λ1) + g(λ1, v)− g(λ1, v + λ2)− g(λ2, v),
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with λ1, λ2 ∈ Λ and v ∈ Cg. Note that if a ∈ B1(Λ, H0(O×Cg)) is a boundary, then the
associated form on Λ is trivial. One can R-linearly extend the form EL to obtain an
alternating R-bilinear form EL : Cg × Cg → R. The forms arising as the first Chern
class of a holomorphic line bundle are characterized, among the alternating R-bilinear
forms on Cg, as the forms E : Cg × Cg → R satisfying

E(Λ,Λ) ⊂ Z and E(iv1, iv2) = E(v1, v2) for all v1, v2 ∈ Cg. (1.3)

The mappings

E 7→ H(v1, v2) := E(iv1, v2) + iE(v1, v2) and H 7→ E := ImH, (1.4)

with v1, v2 ∈ Cg, set up a 1-1 correspondence between the alternating R-bilinear forms E
satisfying (1.3) and the hermitian forms H satisfying ImH(Λ,Λ) ⊂ Z. Recall that a
form H : Cg × Cg → C is hermitian if it is linear in the first variable and satisfies

H(v1, v2) = H(v2, v1) for all v1, v2 ∈ Cg.

The additive group of hermitian forms H satisfying ImH(Λ,Λ) ⊂ Z is called the
Néron-Severi group NS(X), and we will deliberately switch between the point of view of
hermitian forms and alternating R-bilinear forms. Note that sending a holomorphic line
bundle to its first Chern class respects group laws, i.e. Pic(X)

c1−→ NS(X) is a morphism
of groups.

Now that we have seen how to obtain a hermitian form from a factor of automor-
phy, one might ask what additional information we have to add to a hermitian form
(satisfying ImH(Λ,Λ) ⊂ Z) in order to define a factor of automorphy. The answer is
a semicharacter. Let C1 = {z ∈ C : |z| = 1} be the circle group, and let H ∈ NS(X).
A semicharacter for H is a map χ : Λ → C1 that behaves almost like a character, but
takes into account the parity of ImH, i.e. that satisfies

χ(λ1 + λ2) = χ(λ1)χ(λ2)e(πi ImH(λ1, λ2)) for all λ1, λ2 ∈ Λ.

The semicharacters for 0 ∈ NS(X) are precisely the characters on Λ with values in C1,
i.e. Hom(Λ,C1). Clearly, if χ1 and χ2 are semicharacters for H1 and H2 respectively,
then χ1χ2 is a semicharacter for H1 +H2. This turns the set P(Λ) of pairs (H,χ), with
H ∈ NS(X) and χ a semicharacter for H, into an abelian group. The full description of
holomorphic line bundles on X is given by the following theorem [BL04, Thm. 2.2.3].

Theorem 1.2 (Appell-Humbert). There is an isomorphism

P(Λ)
∼−→ Pic(X).

Let us make the isomorphism from Theorem 1.2 explicit. For this we define a factor
of automorphy associated to (H,χ) ∈ P(Λ) as follows:

a(H,χ) : Λ× Cg → C×, (λ, v) 7→ χ(λ)e(πH(v, λ) +
π

2
H(λ, λ)). (1.5)

The map a(H,χ) satisfies the cocycle relation: for λ1, λ2 ∈ Λ and v ∈ Cg we have

a(H,χ)(λ1 + λ2, v) = χ(λ1 + λ2)e(πH(v, λ1 + λ2) +
π

2
H(λ1 + λ2, λ1 + λ2))

= χ(λ1)χ(λ2)e(πi ImH(λ1, λ2))e(πH(v, λ1 + λ2) +
π

2
H(λ1 + λ2, λ1 + λ2))

= χ(λ1)e(πH(v + λ2, λ1) +
π

2
H(λ1, λ1))χ(λ2)e(πH(v, λ2) +

π

2
H(λ2, λ2))

= a(H,χ)(λ1, v + λ2) · a(H,χ)(λ2, v).
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The action of Λ on Cg × C via a(H,χ), as described in (1.2), determines a holomor-
phic line bundle on X, that we denote by L(H,χ). Conversely, if L ∈ Pic(X) is a
holomorphic line bundle, then L determines a unique pair (H,χ), and we call a(H,χ)

the canonical factor of automorphy for L. Let us denote by Pic0(X) the kernel of the

homomorphism Pic(X)
c1−→ NS(X). Then, the isomorphism from Theorem 1.2 restricts

to an isomorphism
Hom(Λ,C1)

∼−→ Pic0(X).

We say that two line bundles L1 and L2 on X are algebraically equivalent if L1 ⊗
L−1

2 ∈ Pic0(X), i.e. if they determine the same hermitian form on Cg. An alge-
braic equivalence class of line bundles can thus naturally be identified with an element
of NS(X). Any v ∈ Cg determines a holomorphic translation map

tv̄ : X → X, x 7→ x+ v̄,

where v̄ = v mod Λ ∈ X, and we would like to know how the pullback of a holomorphic
line bundle on X by tv̄ behaves. Therefore, it is most beneficial to consider line bundles
of the form L(H,χ). The following lemma [BL04, Lem. 2.3.2] implies that pulling back
by translations does not change the algebraic equivalence class.

Lemma 1.3. For all L = L(H,χ) ∈ Pic(X) and all v ∈ Cg we have

t∗v̄L(H,χ) = L (H,χe(2πi ImH(v, ·))) .

Note that a different choice of representative of v̄ yields the same semicharacter. Next,
we would like to know how the pullback of a holomorphic line bundle by a homomor-
phism of complex tori behaves. For the proof of the following lemma, see [BL04, Lem.
2.3.4].

Lemma 1.4. Let X = Cg/Λ and X ′ = Cg′/Λ′ be complex tori and let f : X → X ′ be a
homomorphism. Then, for any L(H ′, χ′) ∈ Pic(X ′) we have

f∗L(H ′, χ′) = L(ρa(f)∗H ′, ρr(f)∗χ′).

1.2 Polarizations, theta functions and projective embeddings

1.2.1 The dual complex torus

Let X = Cg/Λ be a complex torus. The aim of this section is to define duality; a
contravariant functor from the category of complex tori to itself. Recall that Pic0(X)
is isomorphic to Hom(Λ,C1) - a real torus of dimension 2g. The question is if and
how one can realize Pic0(X) as a complex torus of dimension g. Therefore, consider the
space Ω = HomC(Cg,C) of C-antilinear forms l : Cg → C. This is clearly a g-dimensional
complex vector space. The set

Λ̂ = {l ∈ Ω : Im l(Λ) ⊂ Z}

is a lattice in Ω, and is equal to the kernel of the canonical surjective group morphism

Ω→ Hom(Λ,C1), l 7→ e(2πi Im l(·)). (1.6)

Hence,
Ω/Λ̂

∼−→ Pic0(X).
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We call Pic0(X), respectively the quotient Ω/Λ̂, the dual complex torus, and it is de-
noted by X̂. Given two complex tori X = Cg/Λ and X ′ = Cg′/Λ′, and a homomorphism
f : X → X ′, the pullback by f of holomorphic line bundles of Pic0(X ′) gives a homo-
morphism between the dual tori f̂ : X̂ ′ → X̂. The analytic representation of f̂ is given
by

ρa(f̂) : Ω
′ → Ω, l′ 7→ ρa(f)∗(l′) = l′ ◦ ρa(f).

Clearly, by the properties of the pullback, if g : X ′ → X ′′ is another morphism, then

ĝ ◦ f = f̂ ◦ ĝ. Also, îdX = id
X̂

and hence, duality is a contravariant functor. The duality
also preserves the property of being an isogeny, i.e. if f : X → X ′ is an isogeny, then
f̂ : X̂ ′ → X̂ is also an isogeny, and moreover deg f = deg f̂ .

To any line bundle L = L(H,χ) on X we can associate a map φL : X → X̂ from X
to its dual X̂ = Pic0(X) as follows: for any x ∈ X, according to Lemma 1.3, we have

t∗xL ⊗ L−1 = L (0, e(2πi ImH(vx, ·))) , (1.7)

where vx ∈ Cg is any lift of x. Hence, x 7→ t∗xL⊗L−1 defines a map X
φL−−→ X̂. Moreover,

observing that φL(x+ y) = L (0, e(2πi ImH(vx + vy, ·))), we have that φL : X → X̂ is a
homomorphism of complex tori. The homomorphism φL will turn out to be of crucial
importance for the construction of isogenies between abelian varieties over finite fields,
the main topic of this thesis. Therefore, let us recall some properties of φL. With (1.6)
and (1.7) in mind, it is easy to see that φH : Cg → Ω, v 7→ H(v, ·) is the analytic
representation of φL. As a direct consequence, φL is an isogeny if and only if H is
nondegenerate. Some other properties that are immediate from (1.7) are:

- φL only depends on the algebraic equivalence class of L; the semicharacter χ has
disappeared in the definition of φL(x);

- if L1,L2 ∈ Pic(X), then φL1⊗L2 = φL1 + φL2 .

If, as above, f : X → X ′ is a homomorphism, where X = Cg/Λ and X ′ = Cg′/Λ′, and
L′ = L(H ′, χ′) ∈ Pic(X ′) is a line bundle on X ′, then the composition

Cg ρa(f)−−−→ Cg
′ φH′−−→ Ω

′ ρa(f)∗−−−−→ Ω

is equal to the linear map

Cg
φρa(f)∗H′−−−−−−→ Ω, v 7→ (ρa(f)∗H ′)(v, ·).

Hence, the following diagram is commutative

X
f //

φf∗L′
��

X ′

φL′��

X̂ X̂ ′.
f̂

oo

(1.8)

For L = L(H,χ) ∈ Pic(X) we denote by K(L) ⊂ X the kernel of φL, that is

K(L) = {x ∈ X : t∗xL ∼= L}.
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Those are exactly the x ∈ X for which e(2πi ImH(vx, ·)) ≡ 1 on Λ (no matter the
lift vx ∈ Cg). In other words, if we denote by

Λ(L) := φ−1
H (Λ̂) = {v ∈ Cg : ImH(v,Λ) ⊂ Z},

then we have
K(L) = Λ(L)/Λ.

An important question that will naturally arise in a later part of this thesis (see
Section 2.1.1 ) is, under what condition, given an isogeny of complex tori f : X → X ′ and
a line bundle L = L(H,χ) ∈ Pic(X), there exists a line bundle L′ = L(H ′, χ′) ∈ Pic(X ′)
such that L = f∗L′. Looking at (1.8), a necessary condition is that ker f ⊂ kerφL =
K(L). Moreover, if x, y ∈ ker f , then ρa(f)(vx), ρa(f)(vy) ∈ Λ′ for any lifts vx and vy
of x and y respectively and thus,

ImH(vx, vy) = Im(ρa(f)∗H ′)(vx, vy) = ImH ′(ρa(f)(vx), ρa(f)(vy)) ∈ Z.

In other words, ImH takes integer values on π−1(ker f) = ρa(f)−1(Λ′).

Proposition 1.5. Let the isogeny f : X → X ′ and L = L(H,χ) ∈ Pic(X) be as above.
Then the following statements are equivalent:

i) there exists a line bundle L′ ∈ Pic(X ′) such that L = f∗L′;

ii) ImH(ρa(f)−1(Λ′), ρa(f)−1(Λ′)) ⊂ Z.

Proof. We have already seen that i) implies ii).
Suppose that ImH(ρa(f)−1(Λ′), ρa(f)−1(Λ′)) ⊂ Z. This means that the form (ρa(f)−1)∗H
takes integer values on Λ′, hence is an element of NS(X ′). LetM∈ Pic(X ′) be such that
c1(M) = (ρa(f)−1)∗H. Then, c1(f∗M) = H, or equivalently, L ⊗ f∗M−1 ∈ Pic0(X).
Since f : X → X ′ is an isogeny, the dual map f∗ : Pic0(X ′) → Pic0(X) is an isogeny
as well, hence surjective. Let N ∈ Pic0(X ′) be such that L ⊗ f∗M−1 = f∗N . Then
M⊗N ∈ Pic(X ′) satisfies i).

Remark 1.6. One should note that in this case, the line bundle L′ is unique up to
algebraic equivalence.

When we study abelian varieties over a finite field k, we do not have nice objects
such as hermitian forms, lattices, etc. at our disposal. However, we would like to give
a criterion similar to ii) of Proposition 1.5, in order to have an equivalent condition to
the descent of a line bundle under isogeny. As we will see in Section 2.1.1 , the line
bundle L allows us to define an alternating form on K(L) with values in k×, say eL,
and condition ii) from the above proposition can be understood as: ker f is an isotropic
subgroup for the pairing eL. As will turn out later, this is the right point of view.

1.2.2 Theta functions and polarizations

The aim of this section is to describe the global sections of a holomorphic line bundle
on a complex torus, called theta functions. These functions turn out to be paramount
for the computations in this thesis. The reason is that, for a well suited line bundle,
they allow us to embed complex tori (and later abelian varieties over finite fields) into
projective space. Hence, theta functions provide a system of coordinates, and it is
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precisely in these coordinates that we will express and manipulate abelian varieties,
and most importantly, compute isogenies.

Let X = Cg/Λ be a complex torus and let L be a holomorphic line bundle on X. Let
π : Cg → X be the natural projection. Let a : Λ× Cg → C× be a factor of automorphy
for L, i.e. L is isomorphic to the line bundle (Cg × C)/Λ, where Λ acts on Cg × C
by λ · (v, t) = (v + λ, a(λ, v)t). According to [BL04, Lem. 2.1.1], any holomorphic
line bundle on Cg is trivial. Hence, we might replace π∗L by Cg × C in the following
commutative diagram

Cg × C //

��

L = (Cg × C)/Λ

��
Cg // X.

(Note that the trivialization π∗L ∼−→ Cg × C depends on the choice of the factor of
automorphy for L.) A global section s ∈ Γ(X,L) (provided it exists) pulls back to a
section π∗s : Cg → Cg × C, that we might just see as a map π∗s : Cg → C. In order
for π∗s to make the above diagram commutative, it must satisfy

π∗s(v + λ) = a(λ, v)π∗s(v), for all v ∈ Cg and λ ∈ Λ.

Thus it makes sense to identify Γ(X,L) with the set of holomorphic functions θ : Cg → C
that satisfy

θ(v + λ) = a(λ, v)θ(v),

for all v ∈ Cg and λ ∈ Λ. We call such functions theta functions for the factor a.
On the other side, this identification heavily depends on the choice of the factor of
automorphy for L. Another choice of factor is necessarily of the form a′ = a · b, where
b ∈ B1(Λ, H0(O×Cg)) is a boundary. If b(λ, v) = h(v + λ)/h(v) with h ∈ H0(O×Cg), then

θ 7→ θ′ = θ · h

sets up a bijection between the theta functions for the factor a and the theta functions
for the factor a′.

A theta function cannot be considered as a function on the torus X, since it is not
invariant under translates by the lattice Λ (only constant functions are Λ-invariant).
However, if θ0, . . . , θN−1 are theta functions for the factor a, then

x 7→ (θ0(vx) : · · · : θN−1(vx)) ∈ PN−1
C ,

where vx ∈ Cg is any lift of x, determines a meromorphic map X → PN−1
C . This map is

defined at all points x where not all θi vanish simultaneously (observe that the vanishing
property of θi is identical on the whole coset vx + Λ). It is also clear that this map does
not depend on the choice of the factor of automorphy. In the next sections we will see
under what conditions the torus X can be embedded into projective space by means of
theta functions, and how to choose such an embedding in a canonical way. But first we
need to study theta functions more thoroughly.

Symplectic Spaces. Recall that a real symplectic vector space consists of a pair (V, e),
where V is a R-vector space and e : V × V → R is a symplectic pairing, i.e. e is bilin-
ear, alternating and nondegenerate. If V is finite-dimensional, it follows immediately
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that dimV is even, say 2n. One can always find a basis v1, . . . , vn, w1, . . . , wn of V with
respect to which the matrix of e is given by

J =

(
0 In
−In 0

)
.

Such a basis is called a symplectic basis. A linear map f : (V, e)→ (V, e) that preserves
the symplectic pairing, in the sense that f∗e = e, is called a symplectic map. It is easy
to see that f is necessarily injective, hence an automorphism. The group of symplectic
automorphisms of (V, e) is denoted by Sp(V, e). If F is the matrix of f with respect to
the above symplectic basis, then f∗e = e means that

t(Fv)J(Fw) = J, for all v, w ∈ V,

and by the nondegeneracy of e we have that

tFJF = J.

Define the symplectic group

Sp2n(R) = {M ∈Mat2n(R) : tMJM = J}.

The group Sp2n(R) is closed under transposition and we have the following char-

acterization of its elements: if M ∈ Mat2n(R) is given as M =

(
A B
C D

)
, with

A,B,C,D ∈Matn(R), then

M ∈ Sp2n(R)⇔
{

tAC, tBD symmetric and tAD − tCB = In
A tB, C tD symmetric and A tD −B tC = In.

The inverse of M =

(
A B
C D

)
∈ Sp2g(R) is given by

M−1 =

(
tD − tB
− tC tA

)
.

Decompositions. Let X = Cg/Λ be a complex torus and let L ∈ Pic(X) be a
holomorphic line bundle on X, with first Chern class H = c1(L) nondegenerate. Then,
ImH is nondegenerate too. We call such a line bundle a nondegenerate line bundle.
The free Z-module Λ equipped with ImH forms a symplectic space. One can always
find a basis λ1, . . . , λg, µ1, . . . , µg, called a symplectic basis of Λ for ImH, so that the
matrix of ImH with respect to this basis is given by(

0 ∆
−∆ 0

)
,

where ∆ = diag(δ1, . . . , δg) is a diagonal matrix. The vector δ = (δ1, . . . , δg) is called
the type of L or of ImH, and does not depend on the choice of the symplectic basis
of Λ. Moreover, we have δ1| · · · |δg. Since ImH is nondegenerate, δi 6= 0 for i = 1, . . . , g,
and by an eventual change of sign of the corresponding base vector, we may assume
that δi > 0 for all i = 1, . . . , g. The degree of L is defined to be degL = det ∆ =

∏g
i=1 δi.

The set of symplectic bases of Λ for ImH forms a torsor under the group

Sp∆
2g(Z) :=

{
M ∈Mat2g(Z) : tM

(
0 ∆
−∆ 0

)
M =

(
0 ∆
−∆ 0

)}
.
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The basis λ1, . . . , λg, µ1, . . . , µg induces a decomposition of the Z-module Λ as

Λ = Λ1 ⊕ Λ2,

where Λ1 and Λ2 are the isotropic (for ImH) free submodules Λ1 = 〈λ1, . . . , λg〉 and
Λ2 = 〈µ1, . . . , µg〉 respectively.

The real subvector spaces V1 = Λ1 ⊗Z R and V2 = Λ2 ⊗Z R of Cg are isotropic for
the form ImH, and form a direct sum decomposition

Cg = V1 ⊕ V2

of Cg, seen as R-vector space. Also, V1 and V2 are of maximal dimension among the
isotropic subspaces of Cg. Furthermore, the decomposition Cg = V1 ⊕ V2 induces a
decomposition

Λ(L) = Λ(L)1 ⊕ Λ(L)2,

where Λ(L)i = Λ(L)∩Vi for i = 1, 2. It is easy to see that 1
δ1
λ1, . . . ,

1
δg
λg forms a Z-basis

of Λ(L)1 and that 1
δ1
µ1, . . . ,

1
δg
µg forms a Z-basis of Λ(L)2. From the decomposition

of Λ(L) we obtain a decomposition

K(L) = K(L)1 ⊕K(L)2,

where K(L)i = Λ(L)i/Λi, for i = 1, 2. If we let Z(δ) :=
⊕g

i=1 Z/δiZ, then it is clear
that

K(L)1
∼= K(L)2

∼= Z(δ).

Observe that
deg φL = #K(L) = (degL)2.

Polarizations. Let X = Cg/Λ be a complex torus. Let L ∈ Pic(X) be a holomorphic
line bundle on X and suppose that H = c1(L) is positive definite. We call the algebraic
equivalence class of L, or equivalently the positive definite hermitian form H ∈ NS(X),
a polarization on X. By abuse of notation we sometimes call L itself a polarization. The
type of a polarization is the type of any representative. A polarization of type (1, . . . , 1) is
called a principal polarization. As will turn out later (see Theorem 1.11), a polarization
of a certain type is the right information we need to get an analytic embedding of the
torus X into projective space. By Chow’s theorem [Har77, Appendix B, Thm. 2.2], any
closed analytic subvariety of PNC is an algebraic variety, hence X is algebraic. This is the
reason why we call a complex torus X that admits a polarization H = c1(L) an abelian
variety. The pair (X,H), or equivalently (X,L), is called a polarized abelian variety. A
homomorphism of polarized abelian varieties f : (X,H)→ (X ′, H ′) is a homomorphism
of complex tori such that ρa(f)∗H ′ = H. If L is a polarization, then φL : X → X̂ is
an isogeny, called the polarization isogeny. Polarizations are of fundamental interest
for this thesis. As a first observation, we will see that in the polarized case, up to
isomorphism, one can always choose a decomposition of the lattice in a nice way.

Suppose that H is a polarization on X = Cg/Λ of type δ = (δ1, . . . , δg), and that
λ1, . . . , λg, µ1, . . . , µg is a symplectic basis of Λ for ImH, inducing the decompositions
Λ = Λ1 ⊕ Λ2 and Cg = V1 ⊕ V2 as in the previous paragraph. Clearly, V2 is of real
dimension g. But we have more.

Proposition 1.7. Every v ∈ Cg is of the form v = v2 + iv′2, for v2, v
′
2 ∈ V2.

14



Proof. Clearly, V2 ∩ iV2 is a complex subvector space of Cg on which ImH vanishes
(since V2 isotropic for ImH). By the correspondence (1.4), we also have that H vanishes
on V2∩iV2. But H is positive definite, and thus V2∩iV2 = {0}. Hence, the real subvector
space V2 + iV2 ⊂ Cg is of real dimension 2g.

By the above proposition, any R-basis of V2 spans Cg as a C-vector space and hence,
is a C-basis by dimension reason. In particular, 1

δ1
µ1, . . . ,

1
δg
µg is a C-basis of Cg. If

we denote by e1, . . . , eg the standard basis of Cg, then the isomorphism F : 1
δi
µi 7→ ei

induces an isomorphism of polarized abelian varieties

(X,H)
∼−→ (X ′, H ′), (1.9)

where X ′ = Cg/Λ′ and H ′ = (F−1)∗H. The lattice Λ′ = F (Λ) is given by ΩZg ⊕∆Zg,
where Ω is a complex g × g matrix and ∆ = diag(δ1, . . . , δg). Moreover, this is a
decomposition into isotropic submodules for ImH ′. It is well known that the matrix Ω
satisfies

tΩ = Ω and Im Ω positive definite. (1.10)

The set of such matrices is called the Siegel upper half-space

Hg := {Ω ∈Matg(C) : tΩ = Ω and Im Ω positive definite}.

For obvious reasons, we often call Ω ∈ Hg a period matrix. The form H ′ is given by

H ′(v, w) = tv(Im Ω)−1w̄. (1.11)

Example 1.8. Let X = C/Λ be an elliptic curve and let H be a principal polarization
on X. A choice of a symplectic basis of Λ for ImH induces an isomorphism (X,H)

∼−→
(X ′, H ′), where the elliptic curve X ′ is of the form

X ′ = C/τZ⊕ Z,

with τ ∈ H, the Poincaré upper half-space. Writing τ = τ1 + iτ2, the form H ′ is given
by

H ′(v, w) =
vw̄

τ2
.

For v = v1 + iv2 and w = w1 + iw2 we have

H ′(v, w) =
v1w1 + v2w2

τ2
+ i

v2w1 − v1w2

τ2
.

In particular, for the basis {τ, 1} of the lattice τZ⊕ Z we have

ImH ′(τ, 1) =
τ2

τ2
= 1.

At this point we do not worry too much about the choice of the symplectic basis
of Λ for ImH, but it is worth mentioning that Ω heavily relies on that choice. We will
study the consequences of distinct choices more thoroughly in Section 1.4.1.
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Characteristics. A decomposition of Λ or Cg only depends on the algebraic equiva-
lence class of L, and not on L itself. The advantage is that, once a decomposition is fixed,
we obtain an explicit description of all line bundles with first Chern class H = c1(L)
in terms of characteristics (elements c ∈ Cg modulo Λ(L)). Furthermore, if L is a
polarization, we can describe theta functions for L in terms of a decomposition plus a
characteristic, and obtain in a canonical way a system of theta functions that will allow
us (under certain circumstances) to embed the torus X = Cg/Λ into projective space.
Hence, we could think of a decomposition plus a characteristic as the sufficient data
to obtain projective coordinates on X. And most importantly, these notions have an
algebraic analogue, extensively studied in Section 2. We can then talk about canonical
coordinates on an abelian variety, and we refer to them as theta coordinates. A com-
patibility notion for the algebraic analogue of “decomposition plus characteristic” for
isogenous abelian varieties will lead to the key tool for the computation of isogenies in
theta coordinates.

Let X = Cg/Λ be a complex torus and let H ∈ NS(X) be a nondegenerate form.
Suppose that we have fixed a decomposition Cg = V1⊕V2, where V1 and V2 are isotropic
(for ImH) R-vector subspaces of dimension g. We define a map χ0 : Cg → C1 by

χ0(v) = e(πi ImH(v1, v2)),

where v = v1 +v2 with vi ∈ Vi. Denote again by χ0 the restriction of χ0 to Λ = Λ1⊕Λ2,
where Λi = Vi ∩ Λ. It is not hard to see that χ0 is a semicharacter for H and hence,
L0 = L(H,χ0) is a holomorphic line bundle on X. By Lemma 1.3, for each v ∈ Cg the
pullback by tv̄ of L0 is algebraically equivalent to L0. In terms of semicharacters, this
means that χ0e(2πi ImH(v, ·)) is a semicharacter for t∗v̄L0. The following proposition
shows that all line bundles algebraically equivalent to L0 are of this form.

Proposition 1.9. Let L and L′ be algebraically equivalent, nondegenerate line bundles
on X. Then there exists x ∈ X such that

L′ = t∗xL.

Proof. The line bundle L′ ⊗ L−1 is in Pic0(X). Since L is nondegenerate, the map
φL : X → X̂ = Pic0(X), x 7→ t∗xL ⊗ L−1 is an isogeny, hence surjective. Let x ∈ X
be such that L′ ⊗ L−1 = φL(x). Multiplying both sides by L we obtain the desired
result.

Moreover, it becomes clear from the above proof that translates of x by K(L) =
kerφL lead to the same result. In summary we have: for all line bundle L, algebraically
equivalent to L0, there exists a c ∈ Cg, uniquely determined up to translates by Λ(L0),
such that L = t∗c̄L0. We call c a characteristic of L with respect to the decomposition
Cg = V1 ⊕ V2. A decomposition plus a characteristic are thus sufficient to describe all
holomorphic line bundles on X in the same algebraic equivalence class.

Theta functions. Let us now turn our attention to the explicit construction of theta
functions. Let X = Cg/Λ be a complex torus and let L be a polarization on X of type
δ = (δ1, . . . , δg). Let H = c1(L) be the first Chern class of L, and suppose Cg = V1⊕V2

is a decomposition (into isotropic subspaces for ImH), induced by a decomposition
Λ = Λ1 ⊕ Λ2. By Proposition 1.7, V2 generates Cg as a C-vector space. Since ImH
vanishes on V2, the form H is symmetric on V2. We can C-bilinearly extend the form
H|V2×V2

to a symmetric bilinear form B : Cg × Cg → C. We will first define theta
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functions for the line bundle L0 = L(H,χ0) of characteristic 0 with respect to the fixed
decomposition of Cg. Let a(H,χ0)(λ, v) = χ0(λ)e(πH(v, λ) + π

2H(λ, λ)) be the canonical
factor of automorphy for L0 as in (1.5). Define a function θ0 : Cg → C as

θ0(v) = e
(π

2
B(v, v)

) ∑
λ∈Λ1

e
(
−π

2
(H −B)(λ, λ) + π(H −B)(v, λ)

)
. (1.12)

By [BL04, Lem. 3.2.4], the function θ0 is holomorphic on Cg and satisfies

θ0(v + λ) = a(H,χ0)(λ, v)θ0(v),

for all v ∈ Cg and λ ∈ Λ. We call θ0 a canonical theta function for L0. Here, the
word canonical is to indicate that θ0 is a theta function for the canonical factor of
automorphy a(H,χ0) of L0.

If we let c ∈ Cg be the characteristic of L (defined up to Λ(L0)-translates) with
respect to the decomposition Cg = V1 ⊕ V2, then L is given by L = t∗c̄L0. Recall that
χ = χ0e(2πi ImH(c, ·)) is a semicharacter for L, which in terms of factors of automorphy
means

a(H,χ)(λ, v) = a(H,χ0)(λ, v)e(2πi ImH(c, λ)). (1.13)

A simple pullback of θ0 by tc will not be a theta function for the factor a(H,χ), but only

for a B1(Λ, H0(O×Cg))-equivalent one. However, we can solve this issue by multiplying
the theta function t∗cθ

0 by the corresponding nonvanishing holomorphic function (the
one determining the boundary). Let θc : Cg → C be the function

θc(v) = e
(
−πH(v, c)− π

2
H(c, c)

)
θ0(v + c). (1.14)

Then, for v ∈ Cg and λ ∈ Λ we have

θc(v + λ) = e
(
−πH(v + λ, c)− π

2
H(c, c)

)
θ0(v + c+ λ)

= a(H,χ0)(λ, v + c)e(−πH(λ, c))e
(
−πH(v, c)− π

2
H(c, c)

)
θ0(v + c)

= a(H,χ0)(λ, v)e(πH(c, λ)− πH(λ, c))θc(v) (1.15)

= a(H,χ0)(λ, v)e(2πi ImH(c, λ))θc(v)

= a(H,χ)(λ, v)θc(v).

We call θc a canonical theta function for L. At line (1.15) we used the trivial computa-
tion a(H,χ0)(λ, v + c) = a(H,χ0)(λ, v)e(πH(c, λ)).

We have seen in (1.9) that the polarized abelian variety (X,H) is isomorphic to
(X ′ = Cg/Λ′, H ′), where the lattice Λ′ is of “nice” form. We want to describe theta func-
tions on X ′, since they are easier to handle. Let f : (X,H)

∼−→ (X ′ = Cg/Λ′, H ′) be the
isomorphism of polarized abelian varieties from (1.9), induced by a choice of a symplec-
tic basis for Λ. The lattice Λ′ = ρa(f)(Λ) is of the form Λ′ = ΩZg⊕∆Zg, where Ω ∈ Hg
is symmetric and with positive definite imaginary part, and ∆ = diag(δ1, . . . , δg).
Let H ′ = ρa(f

−1)∗H be the induced form on X ′, and let χ′0 = ρr(f
−1)∗χ0 and

χ′ = ρr(f
−1)∗χ. If we let L′0 = L(H ′, χ′0) and L′ = L(H ′, χ′), then it is clear

that L0 = f∗L′0 and L = f∗L′. The decomposition of Λ′ induces a decomposition
Cg = ΩRg ⊕ Rg of Cg into maximal isotropic subspaces for ImH ′, and c′ = ρa(f)(c) is
a characteristic for L′ with respect to this decomposition. Since ρr(f) is the restriction
of ρa(f) to Λ, we have that a(H,χ0) = (ρr(f)× ρa(f))∗a(H′,χ′0). Then,

ρa(f
−1)∗ : Γ(X,L0)

∼−→ Γ(X ′,L′0)

17



is an isomorphism between the theta functions on X for the factor a(H,χ0) and the theta
functions on X ′ for the factor a(H′,χ′0). The same holds if we replace L0 by L, L′0 by L′,
a(H,χ0) by a(H,χ) and a(H′,χ′0) by a(H′,χ′).

If we let B′ = ρa(f
−1)∗B, then it follows immediately from (1.11) that

B′(v, w) = tv(Im Ω)−1w.

Since Cg = ΩRg ⊕ Rg, every w ∈ Cg can be written in a unique way as w = Ωw1 + w2

with w1, w2 ∈ Rg and hence, Rew = (Re Ω)w1 +w2 and Imw = (Im Ω)w1. It is easy to
see that

(H ′ −B′)(v, w) = tv(Im Ω)−1(w̄ − w) = −2i tv(Im Ω)−1 Imw = −2i tvw1.

We can now deduce a more familiar description of theta functions, first the character-
istic 0 case and then for arbitrary characteristic:

(ρa(f−1)∗θ0)(v) = e
(π

2
B(ρa(f−1)(v), ρa(f−1)(v))

)
·
∑
λ∈Λ1

e
(
−π

2
(H −B)(λ, λ) + π(H −B)(ρa(f−1)(v), λ)

)
= e

(π
2
B′(v, v)

) ∑
λ′∈Λ′1

e
(
−π

2
(H ′ −B′)(λ′, λ′) + π(H ′ −B′)(v, λ′)

)
= e

(π
2
B′(v, v)

) ∑
Ωn∈ΩZg

e
(
−π

2
(H ′ −B′)(Ωn,Ωn) + π(H ′ −B′)(v,Ωn)

)
= e

(π
2
B′(v, v)

) ∑
n∈Zg

e
(
πi tnΩn+ 2πi tvn

)
(changing n↔ −n). (1.16)

The function
θ(v,Ω) :=

∑
n∈Zg

e
(
πi tnΩn+ 2πi tvn

)
(1.17)

is called the Riemann theta function. Since Ω is determined by the isomorphism f , which
in turn is determined by a choice of a symplectic basis for Λ, it does not seem to make
sense at first to consider Ω as a variable. Yet, when we will study the consequences
of different choices of symplectic bases, it is preferable to consider θ as a function
on Cg ×Hg. From the relation ρa(f

−1)∗θ0 = e
(
π
2B
′(·, ·)

)
θ(·,Ω) it follows that

e
(π

2
B′(v + λ, v + λ)

)
θ(v + λ,Ω) = a(H′,χ′0)(λ, v)e

(π
2
B′(v, v)

)
θ(v,Ω),

for all v ∈ Cg and λ ∈ Λ′. The function

(λ, v) 7→ e
(π

2
B′(v, v)

)
e
(π

2
B′(v + λ, v + λ)

)−1

is a boundary, hence θ(v,Ω) ∈ Γ(X ′,L′0) for the factor

eL′0(λ, v) := a(H′,χ′0)(λ, v)e
(π

2
B′(v, v)

)
e
(π

2
B′(v + λ, v + λ)

)−1
.

Writing λ = λ1 + λ2 = Ωn+ ∆m with n,m ∈ Zg, we have

eL′0(λ, v) = e
(
πi ImH ′(λ1, λ2) + π(H ′ −B′)(v, λ) +

π

2
(H ′ −B′)(λ, λ)

)
= e

(
πi tn∆m− 2πi tvn− πi t(Ωn+ ∆m)n

)
= e

(
−πi tnΩn− 2πi tvn

)
.
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In summary, the Riemann theta function θ(v,Ω) satisfies

θ(v + Ωn+ ∆m,Ω) = e
(
−πi tnΩn− 2πi tvn

)
θ(v,Ω),

for all v ∈ Cg and n,m ∈ Zg. We see that θ(·,Ω) is periodic with respect to Λ′2 = ∆Zg.
This property holds as well if the polarization is principal, i.e. of type δ = (1, . . . , 1).

Let us now study the image of θc under ρa(f
−1)∗. Recall that

θc(v) = e
(
−πH(v, c)− π

2
H(c, c)

)
θ0(v + c).

For c′ = ρa(f)(c) there exist unique a, b ∈ Rg such that c′ = Ωa+ b. We have

(ρa(f−1)∗θc)(v) = e
(
−πH(ρa(f−1)(v), c)− π

2
H(c, c)

)
θ0(ρa(f−1)(v) + c)

= e
(
−πH ′(v, c′)− π

2
H ′(c′, c′)

)
ρa(f−1)∗θ0(v + c′)

= e
(
−πH ′(v, c′)− π

2
H ′(c′, c′)

)
e
(π

2
B′(v + c′, v + c′)

)
·
∑
n∈Zg

e
(
πi tnΩn+ 2πi t(v + c′)n

)
= e

(
−π(H ′ −B′)(v, c′)− π

2
(H ′ −B′)(c′, c′) +

π

2
B′(v, v)

)
·
∑
n∈Zg

e
(
πi tnΩn+ 2πi tvn+ 2πi tc′n

)
= e

(
2πi tva+ πi t(Ωa+ b)a+

π

2
B′(v, v)

)
·
∑
n∈Zg

e
(
πi tnΩn+ 2πi tvn+ 2πi t(Ωa+ b)n

)
= e

(π
2
B′(v, v)− πi tba

)
·
∑
n∈Zg

e
(
πi t(n+ a)Ω(n+ a) + 2πi t(v + b)(n+ a)

)
.

We call

θ
[
a
b

]
(v,Ω) :=

∑
n∈Zg

e
(
πi t(n+ a)Ω(n+ a) + 2πi t(v + b)(n+ a)

)
(1.18)

the Riemann theta function with characteristic
[
a
b

]
. The theta functions ρa(f

−1)∗θc and

θ
[
a
b

]
(·,Ω) are related by

ρa(f
−1)∗θc = e

(π
2
B′(·, ·)− πi tba

)
θ
[
a
b

]
(·,Ω),

and

eL′(λ, v) := a(H′,χ′)(λ, v)e
(π

2
B′(v, v)

)
e
(π

2
B′(v + λ, v + λ)

)−1

is a factor of automorphy for θ
[
a
b

]
(·,Ω), equivalent to a(H′,χ′). We therefore have

θ
[
a
b

]
(v,Ω) ∈ Γ(X ′,L′). Writing λ = Ωn + ∆m and c′ = Ωa + b, with n,m ∈ Zg

and a, b ∈ Rg, it is easy to see that

eL′(λ, v) = eL′0(λ, v)e(2πi ImH ′(c′, λ))

= e
(
−πi tnΩn− 2πi tvn+ 2πi(ta∆m− tbn)

)
.
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The Riemann theta function with characteristic
[
a
b

]
satisfies

θ
[
a
b

]
(v + Ωn+ ∆m,Ω) = e

(
−πi tnΩn− 2πi tvn+ 2πi(ta∆m− tbn)

)
θ
[
a
b

]
(v,Ω),

(1.19)

for all v ∈ Cg and n,m ∈ Zg. The function θ
[

0
0

]
(·,Ω) is just the standard Riemann

theta function θ(·,Ω). Analogous to the relation between θc and θ0, see (1.14), the theta

functions θ
[
a
b

]
(·,Ω) and θ

[
0
0

]
(·,Ω) are related by

θ
[
a
b

]
(v,Ω) = e(πi taΩa+ 2πi ta(v + b))θ

[
0
0

]
(v + Ωa+ b,Ω). (1.20)

From (1.20) we can carefully verify that for a′, b′ ∈ Zg we have

θ
[
a+ a′

b+ b′

]
(v,Ω) = e(2πi tab′)θ

[
a
b

]
(v,Ω). (1.21)

More generally, for a′, b′ ∈ Rg, it follows from [BL04, Cor. 3.2.9] that

θ
[
a+ a′

b+ b′

]
(v,Ω) = e(πi ta′Ωa′ + 2πi ta′(v + b′ + b))θ

[
a
b

]
(v + Ωa′ + b′,Ω). (1.22)

As a direct consequence of (1.18) we have

θ
[
a
b

]
(−v,Ω) = θ

[
−a
−b

]
(v,Ω). (1.23)

In particular, if a, b ∈ Zg, we have

θ
[
a/2
b/2

]
(−v,Ω) = e(πi tab)θ

[
a/2
b/2

]
(v,Ω). (1.24)

Hence, theta functions of half-integer characteristics are either even or odd functions.

Depending on the parity of tab, we call θ
[
a/2
b/2

]
an even theta function or an odd theta

function respectively.

Bases of theta functions and projective embeddings. Given a polarization L =
L(H,χ) on X = Cg/Λ of type δ = (δ1, . . . , δg), we have seen how to construct one
canonical theta function for L. But there are more. For a fixed decomposition Cg =
V1 ⊕ V2, where V1 and V2 are isotropic for ImH, and given a characteristic c ∈ Cg
for L, we have seen in (1.14) that θc is a canonical theta function for L. Let us define
aL : Cg × Cg → C× as

aL(u, v) = χ0(u)e
(

2πi ImH(c, u) + πH(v, u) +
π

2
H(u, u)

)
.

It follows that aL|Λ×Cg = a(H,χ) is the canonical factor of automorphy for L. Recall
that K(L) = Λ(L)/Λ ⊂ X, where Λ(L) = {v ∈ Cg : ImH(v,Λ) ⊂ Z}. For w̄ ∈ K(L),
define the function

θcw̄ : Cg → C, v 7→ aL(w, v)−1θc(v + w), (1.25)

where w ∈ Λ(L) is an arbitrary lift of w̄. Using [BL04, Lem. 3.1.3 b)], it is easy to see
that the definition of θcw̄ does not depend on the choice of the lift of w̄.
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For v ∈ Cg and λ ∈ Λ we have

θcw̄(v + λ) = aL(w, v + λ)−1θc(v + λ+ w)

= aL(w, v)−1e(πH(λ,w))−1a(H,χ)(λ, v + w)θc(v + w)

= a(H,χ)(λ, v)e(π(H(w, λ)−H(λ,w)))aL(w, v)−1θc(v + w)

= a(H,χ)(λ, v)e(2πi ImH(w, λ))θcw̄(v)

= a(H,χ)(λ, v)θcw̄(v).

This shows that θcw̄ is a canonical theta function for L. We can use this construction
to determine a basis of Γ(X,L) of canonical theta functions for L. Recall that with
Λi = Vi ∩ Λ and Λ(L)i = Vi ∩ Λ(L), for i = 1, 2, we get a decomposition of K(L) as
K(L) = K(L)1 ⊕K(L)2, where K(L)i = Λ(L)i/Λi.

Theorem 1.10. The set {θcw̄ : w̄ ∈ K(L)1} is a C-basis of the vector space Γ(X,L) of
canonical theta functions for L.

For a proof we refer to [BL04, Thm. 3.2.7]. A decomposition of Cg plus a characteristic
of L with respect to this decomposition are thus sufficient to obtain a basis of Γ(X,L).
Fixing an ordering of K(L)1, say K(L)1 = {w̄0, . . . , w̄N−1}, where N = #K(L)1 =
δ1 · · · δg, determines a meromorphic map

ΦL : X → PN−1
C , x 7→ (θcw̄0

(vx) : · · · : θcw̄N−1
(vx)),

where vx ∈ Cg is any lift of x. We promised earlier to give a sufficient condition for ΦL
to be an embedding.

Theorem 1.11 (Lefschetz). Let L be a polarization on X of type δ = (δ1, . . . , δg). If
δ1 ≥ 2 then ΦL is defined on the whole of X, i.e. ΦL is a holomorphic map. If δ1 ≥ 3
then ΦL : X ↪→ PN−1

C is an embedding.

See [Lan82, Ch. VI, Thm. 6.1] or [Mum83, Ch. II, Thm. 1.3] for the proof. Of course,
the embedding ΦL depends on the choice of a basis of Γ(X,L). Two different choices of
bases are related by an automorphism of PN−1

C . A line bundle L is called very ample if
the associated map ΦL is an embedding. A line bundle L is called ample if L⊗r is very
ample for some r ≥ 1. As a consequence of Theorem 1.11, if L is a polarization then L⊗3

is very ample. In particular, if L is a principal polarization on X we can embed X
into P3g−1

C . If L is very ample then ΦL(X) is a closed analytic subvariety of PN−1
C and

by Chow’s theorem [Har77, Appendix B, Thm. 2.2], X is homeomorphic to an algebraic
subvariety of PN−1

C . The functions θcw̄0
, . . . , θcw̄N−1

are called theta coordinates on X. In
summary, if L is a polarization on X of type δ = (δ1, . . . , δg) with δ1 ≥ 3, then fixing
a decomposition of Cg and a characteristic c of L with respect to this decomposition
determines theta coordinates on the algebraic variety X in a canonical way.

We would like to know how the basis of Theorem 1.10 for the line bundle L0 of
characteristic 0 behaves under the isomorphism ρa(f

−1)∗ : Γ(X,L0)
∼−→ Γ(X ′,L′0). As

before, we have Λ′ = ΩZg ⊕ ∆Zg and hence, Λ(L′0) = Ω∆−1Zg ⊕ Zg. It follows that
K(L′0)1 = Ω∆−1Zg/ΩZg. We might identify K(L′0)1 with {Ω∆−1d}, where d runs over
a set of representatives of Zg/∆Zg. Let us fix w ∈ Λ(L0)1 inducing w̄ ∈ K(L0)1, and
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let w′ = Ω∆−1d = ρa(f)(w). We have

(ρa(f
−1)∗θ0

w̄)(v) = aL(w, ρa(f
−1)(v))−1θ0(ρa(f

−1)(v) + w)

= (ρa(f
−1)∗aL(w′, v))−1(ρa(f

−1)∗θ0(v + w′))

= χ′0(w′)−1e
(
−πH ′(v, w′)− π

2
H ′(w′, w′)

)
· e
(π

2
B′(v + w′, v + w′)

)
θ
[

0
0

]
(v + Ω∆−1d,Ω)

= e
(
−π(H ′ −B′)(v, w′)− π

2
(H ′ −B′)(w′, w′)

)
e
(π

2
B′(v, v)

)
· e(−πi t(∆−1d)Ω(∆−1d)− 2πi tv∆−1d)θ

[
∆−1d

0

]
(v,Ω) (by (1.20))

= e
(π

2
B′(v, v)

)
θ
[

∆−1d
0

]
(v,Ω).

Moreover, using (1.19) and the fact that e(2πi t(∆−1d)∆m) = 1, the theta function

θ
[

∆−1d
0

]
(v,Ω) satisfies

θ
[

∆−1d
0

]
(v + Ωn+ ∆m,Ω) = e

(
−πi tnΩn− 2πi tvn

)
θ
[

∆−1d
0

]
(v,Ω), (1.26)

for all n,m ∈ Zg. Hence,{
θ
[

∆−1d
0

]
(v,Ω) : d ∈ Repr(Zg/∆Zg)

}
(1.27)

is a basis of Γ(X ′,L′0) for the factor eL′0(Ωn+ ∆m, v) = e
(
−πi tnΩn− 2πi tvn

)
.

Let N = det ∆ = δ1 · · · δg and suppose that δ1 ≥ 3. Then, fixing an ordering
{d0, . . . , dN−1} of the representatives of Zg/∆Zg yields an embedding

ΦL′0 : X ′ ↪→ PN−1
C , x 7→

(
θ
[

∆−1d0

0

]
(vx,Ω) : · · · : θ

[
∆−1dN−1

0

]
(vx,Ω)

)
,

where vx ∈ Cg is any lift of x.

Example 1.12. Let X = Cg/ΩZg⊕Zg be a complex torus, where Ω ∈ Hg is in the Siegel
upper half-space. Let HΩ(v, w) = tv(Im Ω)−1w̄ be a principal polarization on X and
let LΩ be an ample line bundle on X with first Chern class HΩ and of characteristic 0
with respect to the decomposition Cg = ΩRg ⊕ Rg. By Lefschetz’s theorem (Theo-
rem 1.11), we can embed X into projective space by means of global sections of L⊗rΩ ,
for r ≥ 3. Let us compute a basis of Γ(X,L⊗rΩ ), following (1.12) and Theorem 1.10.
The first Chern class of L⊗rΩ is rHΩ, and the C-bilinear extension B : Cg × Cg → C of
rHΩ|Rg×Rg is given by B(v, w) = r tv(Im Ω)−1w. Also, (rHΩ − B)(v, w) = −2ri tvw1,
where w = Ωw1 + w2. Applying (1.12), we have that

θ0(v) = e
(π

2
B(v, v)

) ∑
Ωn∈ΩZg

e
(
rπi t(Ωn)n+ 2rπi tvn

)
(changing n↔ −n)

= e
(π

2
B(v, v)

)
θ
[

0
0

]
(rv, rΩ)

is a canonical theta function for L⊗rΩ . The function v 7→ e
(
π
2B(v, v)

)
determines a

boundary, so that θ
[

0
0

]
(rv, rΩ) ∈ Γ(X,L⊗rΩ ) for the factor

eL⊗rΩ
(Ωn+m, v) = e(−rπi tnΩn− 2rπi tvn), for all n,m ∈ Zg.
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Translates of θ
[

0
0

]
(rv, rΩ) by Ωa/r+ b/r (with a, b ∈ Zg) adjusted by some factor yield

new elements of Γ(X,L⊗rΩ ). Using (1.20) and Theorem 1.10 we can show that{
θ
[
a/r
0

]
(rv, rΩ)

}
a∈Repr(Zg/rZg)

forms a basis of Γ(X,L⊗rΩ ) for the factor eL⊗rΩ
.

1.3 Why do we care about theta functions?

A complex torus X is a complex manifold, but it need not be algebraic, i.e. it need
not be given as the locus of polynomial equations. However, if X admits a polarization
L ∈ Pic(X), then by Lefschetz’s Theorem 1.11, a suitable power of L induces an em-
bedding ΦL of X into projective space, and by Chow’s theorem [Har77, Appendix B,
Thm. 2.2], the torus X is an algebraic variety. But being an algebraic variety, how can
we find equations defining X? The embedding ΦL is given by a basis of theta functions,
and we can think of these functions as projective coordinates on the variety X. As such,
equations defining X can be expressed as relations among the theta functions. These
relations are called Riemman equations. We will not give the equations here. They can
be found in various books such as e.g. [BL04, Thm. 7.5.2] or [Mum66].

But there is more we can deduce from the Riemann equations. Since X is a group,
one can ask whether it is possible to perform group arithmetic in theta coordinates. To
be more precise, given x, y ∈ X, can we compute the projective coordinates ΦL(x+ y)
of x+y out of the coordinates ΦL(x) and ΦL(y) of x and y respectively? This will clearly
require to manipulate the coordinates of the projective points ΦL(x) and ΦL(y). This,
however, is very delicate, since a single coordinate is not a well-defined function (only
defined up to a scalar). Consider the affine cone X̃ ⊂ AN \ {0} above ΦL(X) ⊂ PN−1,
i.e. the set of affine points p−1(ΦL(X)), where p : AN \ {0} → PN−1 is the projection.
For x ∈ X, denote by x̃ ∈ X̃ a fixed affine lift of ΦL(x). We will talk more thoroughly
about affine cones in Section 2.2.2. Robert in [Rob10, §4.4] gives an algorithm

x̃+ y := chain add(x̃, ỹ, x̃− y, 0̃),

that computes an affine lift x̃+ y ∈ X̃ of x + y, given affine lifts x̃, ỹ, x̃− y, 0̃ ∈ X̃ of
x, y, x−y and 0 respectively. The lift x̃+ y is computed in a way that x̃+ y, x̃− y, x̃, ỹ, 0̃
satisfy the Riemann relations. So we can think of chain add as “solving” the Riemann
equations for x̃+ y. Using recursive calls to chain add, Robert defines an algorithm

m̃x+ y := chain multadd(m, x̃+ y, x̃, ỹ, 0̃),

that computes an affine lift of mx + y for m > 0, and it can easily be adapted to the
case m < 0 as

chain multadd(m, x̃+ y, x̃, ỹ, 0̃) := chain multadd(−m,−x̃+ y,−x̃,−ỹ, 0̃).

Here, −x̃ denotes a certain affine lift of −x. See Proposition 2.35 for more details.
Finally, Robert defines the algorithm

m̃x := chain mult(m, x̃, 0̃) = chain multadd(m, x̃, x̃, 0̃, 0̃),

that computes an affine lift of mx.

We conclude that working with theta coordinates allows us to deduce equations for
the abelian variety, as well as to perform arithmetic.
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1.3.1 Theta functions on Jacobian varieties

Let C be a smooth projective curve of genus g over C. Let
(
Jac(C),OJac(C)(Θ)

)
be the

Jacobian variety of C. We know that Jac(C) is isomorphic to the torus Cg/Λ, where
the period matrix of the lattice Λ is obtained by integrating g linearly independent
holomorphic 1-forms on 2g closed loops of C. Let L ∈ Pic(Cg/Λ) be the type (1, . . . , 1)-
line bundle (defining a principal polarization) corresponding to OJac(C)(Θ). Fixing
a symplectic basis of Λ for c1(L) yields a period matrix Ω ∈ Hg and a line bundle
LΩ ∈ Pic(Cg/ΩZg ⊕ Zg) such that

(
Jac(C),OJac(C)(Θ)

) ∼= (Cg/ΩZg ⊕ Zg,LΩ). Note
that the matrix of c1(LΩ) with respect to the standard basis of Cg is given by (Im Ω)−1.

The 1-dimensional C-vector space Γ(Cg/ΩZg⊕Zg,LΩ) is generated by θ
[

0
0

]
(v,Ω). Fixing

a basis of Γ(Cg/ΩZg⊕Zg,L⊗4
Ω ), we can embed the torus Cg/ΩZg⊕Zg into P4g−1

C . Similar
to the construction in Example 1.12, a basis of Γ(Cg/ΩZg ⊕ Zg,L⊗4

Ω ) is given by{
θ
[
d/4
0

]
(4v, 4Ω) : d ∈ Repr(Zg/4Zg)

}
.

We call them level-4 theta functions. The function θ
[
d/4
0

]
(4v, 4Ω) satisfies

θ
[
d/4
0

]
(4(v + Ωn+m), 4Ω) = e

(
−4πi tnΩn− 8πi tvn

)
θ
[
d/4
0

]
(4v, 4Ω),

for all n,m ∈ Zg. There exist different bases of Γ(Cg/ΩZg ⊕ Zg,L⊗4
Ω ) that are of great

importance to us. For d1, d2 ∈ Repr(Zg/2Zg), consider the function θ
[
d1/2
d2/2

]
(2v,Ω)

on Cg. Using (1.19), we have that

θ
[
d1/2
d2/2

]
(2(v + Ωn+m),Ω) = e

(
−4πi tnΩn− 8πi tvn

)
θ
[
d1/2
d2/2

]
(2v,Ω),

for all n,m ∈ Zg. The functions θ
[
d1/2
d2/2

]
(2v,Ω), for d1, d2 ∈ Repr(Zg/2Zg), are called

level-(2,. . . ,2) theta functions. They are related to the level-4 theta functions as follows:
for d1, d2 ∈ Repr(Zg/2Zg) and v ∈ Cg we have

θ
[
d1/2
d2/2

]
(2v,Ω) =

∑
d∈Repr(Zg/4Zg)
d≡d1 mod 2

e(πi tdd2)θ
[
d/4
0

]
(4v, 4Ω). (1.28)

This shows that {
θ
[
d1/2
d2/2

]
(2v,Ω) : d1, d2 ∈ Repr(Zg/2Zg)

}
forms another basis of Γ(Cg/ΩZg⊕Zg,L⊗4

Ω ), and we can thus embed Jac(C) into P4g−1
C

with level-(2, . . . , 2) theta functions. We call{
θ
[
d1/2
d2/2

]
(0,Ω) : d1, d2 ∈ Repr(Zg/2Zg)

}
the theta constants of level (2,...,2) associated to Ω (sometimes also called the theta
null values of level (2,...,2)). Working with level-(2, . . . , 2) theta functions comes with
the following advantages:

i) there exists a criterion on the level-(2, . . . , 2) theta constants to detect whether
the underlying abelian variety is the Jacobian variety of a hyperelliptic curve or
not. See Theorem 1.13 below.
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ii) in the case of a hyperelliptic Jacobian Jac(C), we can compute the 4th powers
of the level-(2, . . . , 2) theta constants directly from the Weierstrass points of the
curve. Moreover, this construction has a reciprocal construction, allowing us to
compute the Weierstrass points of C from the level-(2, . . . , 2) theta constants. See
Theorems 1.14 and 1.15 below.

iii) in the non-hyperelliptic genus 3 case (the variety is the Jacobian variety of a
smooth plane quartic C), we can compute the 4th powers of the level-(2, 2, 2)
theta constants from the bitangents of the curve. Conversely, given the level-
(2, 2, 2) theta constants, we can compute the bitangents of the curve C and hence,
a plane model of the curve. These are called Weber’s formula, dating back to 1876
from his work [Web76]. For a more modern treatment of the subject we refer to
[Gua11, Rit04, NR17, Fio16].

To address i) and ii) we need to introduce some notations. We follow [Mum84, Ch.
IIIa]. Let B = {1, 2, . . . , 2g + 1,∞} be an index set. For i = 1, . . . , g define:

ith position
↓

η′2i−1 = t(0, . . . , 0,
1

2
, 0, . . . , 0) ∈ 1

2
Zg,

η′′2i−1 = t(
1

2
, . . . ,

1

2
, 0, 0, . . . , 0) ∈ 1

2
Zg,

η′2i = t(0, . . . , 0,
1

2
, 0, . . . , 0) ∈ 1

2
Zg,

η′′2i = t(
1

2
, . . . ,

1

2
,
1

2
, 0, . . . , 0) ∈ 1

2
Zg,

and

η′2g+1 = t(0, . . . , 0) ∈ 1

2
Zg,

η′′2g+1 = t(
1

2
, . . . ,

1

2
) ∈ 1

2
Zg,

η′∞ = t(0, . . . , 0) ∈ 1

2
Zg,

η′′∞ = t(0, . . . , 0) ∈ 1

2
Zg.

For j ∈ B let

ηj = t(η′j , η
′′
j ) ∈ 1

2
Z2g,

and more generally for T ⊂ B let

ηT =
∑
j∈T

ηj ∈
1

2
Z2g.

Note that ηB ∈ Z2g, so that if we denote by T c the complement of T in B, we have
ηT = ηT c when considered in 1

2Z
2g/Z2g. The power set of B is a group under the

symmetric difference T ◦ S = (T ∪ S) \ (T ∩ S), and η induces a group isomorphism

η : {T ⊂ B : #T even}/T ∼ T c ∼−→ 1

2
Z2g/Z2g. (1.29)

Let us fix a period matrix Ω ∈ Hg. For T ⊂ B of even cardinality, denote by

θ[ηT ](2v,Ω)
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the level-(2, . . . , 2) theta function of characteristic (the representative of) ηT . By (1.24),
the parity of 4 tη′T ·η′′T determines the parity of θ[ηT ](2v,Ω) (recall that a theta function
with half-integer characteristics is either even or odd). Accordingly, we call a charac-
teristic ηT even or odd. Odd theta functions vanish at 0, and there are precisely 6 odd
theta functions in genus 2 and 28 odd theta functions in genus 3. As the next theorem
shows, a crucial geometric property of the abelian variety Cg/ΩZg ⊕Zg can be deduced
from the vanishing of the level-(2,...2) theta functions at 0.

Let U = {1, 3, . . . , 2g + 1} ⊂ B be the subset of odd indices. Combining [Mum84,
Cor. 6.7] and [Mum84, Thm. 9.1] we obtain the following key result.

Theorem 1.13. For Ω ∈ Hg, the following are equivalent:

• Cg/ΩZg⊕Zg is isomorphic as a principally polarized abelian variety to the Jacobian
variety of a hyperelliptic curve C over C of genus g;

• for all T ⊂ B of even cardinality,

θ[ηT ](0,Ω) = 0 if and only if #(U ◦ T ) 6= g + 1.

According to (1.20), the functions θ[ηT ](2v,Ω) and θ
[

0
0

]
(2v+ Ωη′T +η′′T ,Ω) differ by

a nonvanishing function. The property of being the Jacobian variety of a hyperelliptic

curve can thus be deduced from the vanishing of θ
[

0
0

]
(v,Ω) at certain 2-torsion points.

In the genus 2 case, the T ⊂ B, #T even, corresponding to odd characteristics ηT are

precisely the subsets of B satisfying #(U ◦T ) 6= 3. That is, θ
[

0
0

]
(v,Ω) vanishes precisely

at the 2-torsion points Ωη′T + η′′T for odd ηT ’s. In genus 3, however, besides the 28 odd
characteristics,

η{1,3,5,7} =
t(1

2
,
1

2
,
1

2
,
1

2
, 0,

1

2

)
is the only even characteristic for which #(U ◦ T ) 6= 4. Hence, we have

Ω ∈ H3 corresponds to a hyperelliptic Jacobian if and only if

θ
[

0
0

]
(
1

2
Ω(e1 + e2 + e3) +

1

2
(e1 + e3),Ω) = 0.

Let now C be a hyperelliptic curve of genus g over C, given by an affine plane model
y2 = f(x), where f is a polynomial of degree 2g + 2 without repeated roots. We know
that an automorphism of the projective line P1

C induces an isomorphism of hyperelliptic
curves, so that after sending one root of f(x) to ∞, we can suppose that C is given by
an equation y2 =

∏2g+1
i=1 (x−ai). The points P1 = (a1 : 0 : 1), . . . , P2g+1 = (a2g+1 : 0 : 1)

are the Weierstrass points of C. Let Ω ∈ Hg be a period matrix such that Jac(C) is
isomorphic to Cg/ΩZg⊕Zg as a principally polarized abelian variety. By Theorem 1.13,
for all T ⊂ B of even cardinality, satisfying #(U ◦ T ) = g + 1, we have

θ[ηT ](0,Ω) 6= 0.

Thomae’s formulae allow us to compute the 4th powers of the theta constants of
level (2, . . . , 2) from the Weierstrass points of the curve.

26



Theorem 1.14 (Thomae). There exists a constant c such that for all T ⊂ B \ {∞} of
even cardinality,

θ[ηT ](0,Ω)4 =


c · (−1)#(U∩T ) ·

∏
i∈U◦T

j∈(U◦T )c−{∞}

(ai − aj)−1 if #(U ◦ T ) = g + 1

0 if #(U ◦ T ) 6= g + 1.

The theorem was proven by Thomae in [Tho70]. In fact, Thomae evaluated the constant
as well (see [Mum84, §8]). Note that T ⊂ B \ {∞} is not an obstruction to (1.29) being
an isomorphism, since either T or T c is contained in B \ {∞} and ηT = ηT c . There
exists a reciprocal construction to Thomae’s formulae.

Theorem 1.15. Let i, j, k ∈ B \ {∞} be three distinct indices. Let V ⊂ B \ {∞} of
cardinality g + 1 be such that i, j ∈ V and k /∈ V . We have

ak − aj
ak − ai

= (−1)4 tη′k(η′′j +η′′i ) θ[ηU◦V ◦{j,∞}](0,Ω)2θ[ηU◦V ◦{i,k}](0,Ω)2

θ[ηU◦V ◦{i,∞}](0,Ω)2θ[ηU◦V ◦{j,k}](0,Ω)2
.

For a proof we refer to [vW98]. Note that U ◦ (U ◦ V ◦ {j,∞}) = V ◦ {j,∞} is of
cardinality g+ 1, so that the corresponding theta constant is non-zero. The same holds
for V ◦ {i, k}, V ◦ {i,∞} and V ◦ {j, k}.
Remark 1.16. By Torelli’s theorem, the principally polarized abelian variety(
Jac(C),OJac(C)(Θ)

)
uniquely determines the curve C (up to isomorphism). From The-

orem 1.15 we see that in order to recover an equation of the underlying curve in the
hyperelliptic case, it suffices to know the squares of the level-(2, . . . , 2) theta constants.
It is a well known fact (see e.g. [Cos11]) that the squares of the level-(2, . . . , 2) theta
functions form a generating family for the space Γ(Cg/ΩZg ⊕ Zg,L⊗2

Ω ) of level-2 theta
functions. The squares of the level-(2, . . . , 2) theta null values and the level-2 theta null
values thus contain the same geometric information about Ω. However, as Lefschetz’s
theorem suggests, we should require level at least 3 in order to embed the Jacobian vari-
ety of the curve into projective space. Indeed, the level-(2, . . . , 2) theta functions embed
Jac(C) into P4g−1

C , but the level-2 theta functions (or equivalently, the squares of the
level-(2, . . . , 2) theta functions) only embed the Kummer variety KJac(C) = Jac(C)/± 1
into projective space, and not the Jacobian variety itself. We deduce the surprising fact
that, for hyperelliptic Jacobians, we can determine the curve from the Kummer variety
only. This fact is highly non-general, but can be explained by the following observation:
the inversion [−1] on Jac(C) is induced by the hyperelliptic involution of the curve.
And KJac(C) is precisely Jac(C) modulo [−1], so somehow we can see the Kummer va-
riety as the curve modulo the hyperelliptic involution. But the hyperelliptic involution
of C leaves the Weierstrass points (and hence the equation of the curve) invariant, so
it does not surprise that the Kummer variety determines the curve.

Thomae’s formulae and its reciprocal formulae are implemented in the Magma package
AVIsogenies (http://avisogenies.gforge.inria.fr) for genus 2 and over finite fields.
Moreover, if working on the Jacobian variety of a hyperelliptic curve, one can convert
between Mumford and theta coordinates (implemented in AVIsogenies for genus 2). For
more details we refer to [vW98, Cos11, Rob10].
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1.4 Moduli spaces

1.4.1 Polarized abelian varieties of type ∆

Let X = Cg/Λ be a complex torus and let L ∈ Pic(X) be a polarization on X of type δ =
(δ1, . . . , δg). LetH = c1(L) be the first Chern class of L and let ∆ = diag(δ1, . . . , δg). We
call (X,L), or equivalently (X,H), a polarized abelian variety of type ∆ (or of type δ).
We have seen in (1.9) how a choice of a symplectic basis λ1, . . . , λg, µ1, . . . , µg of Λ for
ImH determines a matrix Ω ∈ Hg and an isomorphism (X,H)

∼−→ (Cg/ΩZg⊕∆Zg, HΩ)
of polarized abelian varieties of type ∆, where (Im Ω)−1 is the matrix of HΩ with respect
to the standard basis of Cg. In this section we want to study the impact on Ω of the
choice of the symplectic basis of Λ. Let λ′1, . . . , λ

′
g, µ
′
1, . . . , µ

′
g be another symplectic basis

of Λ for ImH. Let (λ1, . . . , λg, µ1, . . . , µg) and (λ′1, . . . , λ
′
g, µ
′
1, . . . , µ

′
g) in Matg×2g(C)

be the period matrices associated to those bases. There exists a matrix R ∈ GL2g(Z)
such that

(λ1, . . . , λg, µ1, . . . , µg) = (λ′1, . . . , λ
′
g, µ
′
1, . . . , µ

′
g) ·R.

Moreover, both bases being symplectic, it follows that tR
(

0 ∆
−∆ 0

)
R =

(
0 ∆
−∆ 0

)
,

i.e. R ∈ Sp∆
2g(Z). For convenience we may write

R =
t(

A B
C D

)
,

with g×g blocks A,B,C and D in Matg(Z). The basis λ′1, . . . , λ
′
g, µ
′
1, . . . , µ

′
g induces an

isomorphism (X,H)
∼−→ (Cg/Ω′Zg ⊕∆Zg, HΩ′) of polarized abelian varieties of type ∆,

for some Ω′ ∈ Hg. Consider the composite isomorphism

X

xx ''
Cg/ΩZg ⊕∆Zg

f

∼= // Cg/Ω′Zg ⊕∆Zg.

It is not hard to see that R is the rational representation of f . The isomorphism f is
characterized by the relation

ρa(f) · (Ω,∆) = (Ω′,∆) ·R,

or equivalently {
ρa(f)Ω = Ω′ tA+ ∆ tB
ρa(f)∆ = Ω′ tC + ∆ tD.

It follows that
Ω = tΩ = (AΩ′ +B∆)(∆−1CΩ′ + ∆−1D∆)−1.

Define the subgroup

G∆ :=

{(
1g

∆

)−1
tR

(
1g

∆

)
: R ∈ Sp∆

2g(Z)

}
⊂ GL2g(Q).

ForM ∈ G∆ it follows directly from the definition that tM ∈ Sp2g(Q) and since Sp2g(Q)

is closed under transposition, we have G∆ ⊂ Sp2g(Q). Again, if for R ∈ Sp∆
2g(Z) we

use the more convenient notation R =
t
(

A B
C D

)
, then we have

G∆ =

{(
A B∆

∆−1C ∆−1D∆

)
:
t
(

A B
C D

)
∈ Sp∆

2g(Z)

}
⊂ Sp2g(Q).
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Let (
A B
C D

)
· Ω = (AΩ +B)(CΩ +D)−1

denote the usual action of Sp2g(R) on Hg. From the above it becomes clear that a
different choice of symplectic basis of Λ for ImH results in a G∆-action on the associated
period matrix Ω ∈ Hg. To be more precise:

Proposition 1.17. Let λ1, . . . , λg, µ1, . . . , µg and λ′1, . . . , λ
′
g, µ
′
1, . . . , µ

′
g be symplectic

bases of Λ for ImH and let Ω,Ω′ ∈ Hg be the corresponding induced period matrices.

Let R =
t
(

A B
C D

)
∈ Sp∆

2g(Z) be such that

(λ1, . . . , λg, µ1, . . . , µg) = (λ′1, . . . , λ
′
g, µ
′
1, . . . , µ

′
g) ·R.

Then, the matrices Ω and Ω′ are related by

Ω =

(
A B∆

∆−1C ∆−1D∆

)
· Ω′ = (AΩ′ +B∆)(∆−1CΩ′ + ∆−1D∆)−1.

Next, we want to study under what condition two polarized abelian varieties of
type ∆ are isomorphic. Since any polarized abelian variety of type ∆ is isomorphic to
a variety (Cg/ΩZg ⊕ ∆Zg, HΩ) for some Ω ∈ Hg, it suffices to study the condition on
two period matrices Ω,Ω′ ∈ Hg for the existence of an isomorphism of polarized abelian
varieties of type ∆

f : (Cg/ΩZg ⊕∆Zg, HΩ)
∼−→ (Cg/Ω′Zg ⊕∆Zg, HΩ′).

Symplectic bases of the lattices ΩZg ⊕ ∆Zg and Ω′Zg ⊕ ∆Zg for ImHΩ and ImHΩ′

are given by Ωe1, . . . ,Ωeg, δ1e1, . . . , δgeg and Ω′e1, . . . ,Ω
′eg, δ1e1, . . . , δgeg respectively.

Since HΩ = ρa(f)∗HΩ′ , it follows that

ρa(f)(Ωe1), . . . , ρa(f)(Ωeg), ρa(f)(δ1e1), . . . , ρa(f)(δgeg)

is another symplectic basis of Ω′Zg ⊕∆Zg for ImHΩ′ . The rational representation of f
relates the two period matrices for Cg/Ω′Zg ⊕∆Zg by

(ρa(f)(Ωe1), . . . , ρa(f)(δgeg)) = (Ω′e1, . . . , δgeg) · ρr(f)

and hence, ρr(f) ∈ Sp∆
2g(Z). We can thus apply Proposition 1.17. In summary we have:

Proposition 1.18. Let Ω,Ω′ ∈ Hg define the polarized abelian varieties of type ∆
(Cg/ΩZg ⊕ ∆Zg, HΩ) and (Cg/Ω′Zg ⊕ ∆Zg, HΩ′) respectively, and suppose that there
exists an isomorphism of polarized abelian varieties

f : (Cg/ΩZg ⊕∆Zg, HΩ)
∼−→ (Cg/Ω′Zg ⊕∆Zg, HΩ′).

Then:

- the rational representation ρr(f) is in Sp∆
2g(Z);

- if for convenience we write ρr(f) =
t
(

A B
C D

)
, we have

Ω = (AΩ′ +B∆)(∆−1CΩ′ + ∆−1D∆)−1.
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Moreover, the analytic representation of f is given by

ρa(f) = t(∆−1CΩ′ + ∆−1D∆).

Example 1.19. Consider the case of elliptic curves. Let τ, τ ′ ∈ H be such that there
exists an isomorphism of elliptic curves

f : C/τZ⊕ Z ∼−→ C/τ ′Z⊕ Z.

(We omit writing the principal polarizations in this picture, but they are there and f
respects them.) The analytic representation of f is given by scalar multiplication,
say mλ with λ ∈ C×, and we have the relations{

λ · τ = aτ ′ + b
λ · 1 = cτ ′ + d.

Written differently:

λ · (τ, 1) = (τ ′, 1) ·
(
a c
b d

)
,

and
(

a c
b d

)
∈ SL2(Z) = Sp2(Z) since f is supposed to preserve the polarizations. It

follows that

τ =

(
a b
c d

)
· τ ′ = aτ ′ + b

cτ ′ + d

and mcτ ′+d is the analytic representation of f .

Discrete subgroups of Sp2g(R) act properly and discontinuously on Hg and hence,
the quotient

A∆ := Hg/G∆

is a complex analytic space of dimension g(g+1)
2 . But we have just shown that isomor-

phism classes of polarized abelian varieties of type ∆ are in one to one correspondence
with G∆-orbits of the action Sp2g(R) y Hg and therefore:

Proposition 1.20. A∆ is a moduli space for polarized abelian varieties of type ∆.

1.4.2 Polarized abelian varieties of type ∆ with invariant theta null values

Fix a type ∆ = diag(δ1, . . . , δg), and suppose δ1 ≥ 3. Any Ω ∈ Hg determines a
polarized abelian variety (XΩ := Cg/ΩZg ⊕ ∆Zg, HΩ) of type ∆, where the form HΩ

is given by the matrix (Im Ω)−1 with respect to the standard basis e1, . . . , eg of Cg.
Conversely, any polarized abelian variety of type ∆ is, up to isomorphism, of this form.
Consider the decomposition Cg = ΩRg ⊕ Rg and let LΩ be the line bundle with first
Chern class HΩ and of characteristic 0 with respect to this decomposition. By (1.27),{

θ
[

∆−1d
0

]
(v,Ω) : d ∈ Repr(Zg/∆Zg)

}
is a basis of Γ(XΩ,LΩ) for the factor eLΩ

(Ωn+∆m, v) = e
(
−πi tnΩn− 2πi tvn

)
, for all

n,m ∈ Zg. An ordering {d0, . . . , ddet ∆−1} of Repr(Zg/∆Zg) determines an embedding

ΦLΩ
: XΩ ↪→ Pdet ∆−1

C , x 7→
(
θ
[

∆−1d0

0

]
(vx,Ω) : · · · : θ

[
∆−1ddet ∆−1

0

]
(vx,Ω)

)
,
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where vx ∈ Cg is any lift of x.

In the preceding section we have seen that G∆-orbits ofHg characterize isomorphism
classes of polarized abelian varieties of type ∆. As Theorems 1.14 and 1.15 suggest, the
theta functions of certain level evaluated at 0XΩ

(called the theta constants or the theta
null values) contain important geometric information about the abelian variety XΩ.
However, within a G∆-orbit, the theta coordinates can appear in completely different
fashion. We would like to find a subgroup of G∆ with the property that the theta null
values remain (projectively) unchanged within its orbits.

Let R =
t
(

A B
C D

)
∈ Sp∆

2g(Z) with associated M =
(

A B∆
∆−1C ∆−1D∆

)
∈ G∆. For

simplicity write ΩM := M · Ω = (AΩ + B∆)(∆−1CΩ + ∆−1D∆)−1, and consider the
isomorphism

f : XΩM = Cg/ΩMZg ⊕∆Zg ∼−→ XΩ = Cg/ΩZg ⊕∆Zg

of polarized abelian varieties of type ∆. The rational representation of f is R, and the
analytic representation of f is ρa(f) = t(∆−1CΩ + ∆−1D∆). First, let us observe that
the symplectic basis ΩMe1, . . . ,ΩMeg,∆e1, . . . ,∆eg of ΩMZg ⊕∆Zg for ImHΩM is sent
to

ρa(f)(ΩMei) = t(∆−1CΩ + ∆−1D∆) tΩMei = (Ω tA+ ∆ tB)ei

ρa(f)(∆ei) = t(∆−1CΩ + ∆−1D∆)∆ej = (Ω tC + ∆ tD)ei,

for i = 1, . . . , g, using the fact that tΩM = ΩM and tΩ = Ω. The labelling of the theta
functions in Γ(XΩM ,LΩM ) arises from the bijection of Repr(Zg/∆Zg) with K(LΩM )1 =
ΩM∆−1Zg/ΩMZg, and for the theta functions in Γ(XΩ,LΩ) the labelling arises from
the bijection of Repr(Zg/∆Zg) with K(LΩ)1 = Ω∆−1Zg/ΩZg. Both the decompositions
of K(LΩM ) and of K(LΩ) are induced by the decompositions of Cg as Cg = ΩMRg⊕Rg
and Cg = ΩRg ⊕ Rg respectively. But the isomorphism f does not preserve these

decompositions, unless B = C = 0g ∈Matg(Z) and R =
t
(

A
∆ tA−1∆−1

)
∈ Sp∆

2g(Z)

with A ∈ GLg(Z). However, since the labelling of the theta functions depends on
the decompositions of K(LΩM ) and of K(LΩ) respectively and not on the ones of Cg,
we can require the weaker condition on f to preserve the decompositions of K(LΩM )
and K(LΩ). Moreover, to determine an embedding of XΩM and XΩ into projective space
by means of theta functions, one must also specify an ordering of the theta functions.
Hence, we would like f to respect this ordering. In other words, we require that

f(
1

δi
ΩMei) =

1

δi
Ωei and f(

1

δi
∆ei) =

1

δi
∆ei, for i = 1, . . . , g. (1.30)

Here, · denotes an element on the quotient XΩM and XΩ respectively. A necessary and
sufficient condition for (1.30) to be satisfied is that

A− Ig, B,C,D − Ig ∈ ∆ ·Matg(Z).

For if A = Ig + ∆NA, B = ∆NB, C = ∆NC and D = Ig + ∆ND with NA, NB, NC ,
ND ∈Matg(Z), then

ρa(f)(
1

δi
ΩMei) =

1

δi
Ωei +

1

δi
(Ω tNA∆ei + ∆ tNB∆ei)︸ ︷︷ ︸

∈ΩZg⊕∆Zg
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and

ρa(f)(
1

δi
∆ei) =

1

δi
∆ei +

1

δi
(Ω tNC∆ei + ∆ tND∆ei)︸ ︷︷ ︸

∈ΩZg⊕∆Zg

,

for all i = 1, . . . , g.

For N,N ′ ∈Matg(Z) we write N ≡ N ′ mod ∆ if N −N ′ ∈ ∆ ·Matg(Z). Define

Γ(∆) :=

{
R =

t
(

A B
C D

)
∈ Sp∆

2g(Z) : A,D ≡ Ig mod ∆, and B,C ≡ 0g mod ∆

}
,

which is a subgroup of Sp∆
2g(Z). Then we have:

Proposition 1.21. The isomorphism f with rational representation R =
t
(

A B
C D

)
∈

Sp∆
2g(Z) preserves the decompositions of K(LΩM ) and K(LΩ) and respects the ordering

of their elements if and only if R ∈ Γ(∆).

Define by

G∆(∆) :=

{(
1g

∆

)−1
tR

(
1g

∆

)
: R ∈ Γ(∆)

}

the corresponding subgroup of G∆. Another way to state Proposition 1.21 is:

Proposition 1.22. The G∆(∆)-orbits of the Sp2g(R) y Hg-action are characterized
by the isomorphism classes of polarized abelian varieties of type ∆, where the induced
decomposition of K(LΩ) and the ordering of its elements is preserved.

So far, we know that isomorphisms that come from the G∆(∆)-action onHg preserve
certain decompositions and orderings. But there is one major obstruction to having
invariant theta null values within such an orbit that we have not discussed yet. The theta

functions θ
[

∆−1d
0

]
(·,Ω) ∈ Γ(XΩ,LΩ) do not behave nicely under isomorphisms arising

from the G∆(∆)-action. To be more precise, given M =
(

A B∆
∆−1C ∆−1D∆

)
∈ G∆(∆),

a period matrix Ω ∈ Hg and the isomorphism f : XΩM
∼−→ XΩ, where we again write

ΩM = M · Ω, the pullback ρa(f
−1)∗ : Γ(XΩM ,LΩM )

∼−→ Γ(XΩ,LΩ) does not behave the
way we might think it does. In other words,

ρa(f
−1)∗θ

[
∆−1d

0

]
(v,ΩM ) = θ

[
∆−1d

0

]
( t(∆−1CΩ + ∆−1D∆)−1v,ΩM ) 6= θ

[
∆−1d

0

]
(v,Ω),

even though f sends 1
δi

ΩMei 7→ 1
δi

Ωei, for all i = 1, . . . , g, and hence, sends ΩM∆−1d 7→
Ω∆−1d. The reason is that

f∗LΩ � LΩM ,

the former line bundle being of characteristic 0 with respect to the decomposition Cg =
ρa(f

−1)(ΩRg)⊕ρa(f−1)(Rg) and the latter being of characteristic 0 with respect to the
decomposition Cg = ΩMRg ⊕ Rg. The following technical Lemma (see [BL04, Lem.
8.4.1]) tells us how to fix this issue. For a matrix N ∈Matg(R), denote by (N)0 ∈ Rg
the vector of diagonal elements of N .

32



Lemma 1.23. Let L ∈ Pic(XΩ) be a line bundle with first Chern class HΩ. Suppose L
is of characteristic c ∈ Cg with respect to the decomposition Cg = ΩRg ⊕ Rg. Let

M =
(

A B
C D

)
∈ G∆ induce the isomorphism f : XΩM

∼−→ XΩ. Then, f∗L is of

characteristic

c′ = ρa(f
−1)c+

1

2
ΩM∆(C tD)0 +

1

2
(A tB)0

with respect to the decomposition Cg = ΩMRg ⊕ Rg.
More precisely, if we write c = Ωc1 + c2 with c1, c2 ∈ Rg, then

c′ = ΩMc
′
1 + c′2

with

c′1 = Dc1 − Cc2 +
1

2
∆(C tD)0

c′2 = −Bc1 +Ac2 +
1

2
(A tB)0.

According to Lemma 1.23, the characteristic of the line bundle f∗LΩ with respect to
the decomposition Cg = ΩMRg⊕Rg is given by 1

2ΩM∆(∆−1C∆ tD∆−1)0 + 1
2(A∆ tB)0.

The next theorem, called the symplectic transformation formula, allows us to describe
the pullback ρa(f

−1)∗ : Γ(XΩM ,LΩM )
∼−→ Γ(XΩ,LΩ). It was first given by Igusa in

[Igu72, Ch. 5, Thm. 2]. A proof can also be found in [Mum83, Ch. II.5] and [BL04,
Thm. 8.6.1].

Theorem 1.24. Let M =
(

A B
C D

)
∈ Sp2g(Z) and let Ω ∈ Hg. For all c = Ωc1 + c2 ∈

Cg and v ∈ Cg we have

θ
[
c′1
c′2

]
( t(CΩ +D)−1v,ΩM ) = κ(M) det(CΩ +D)

1
2 e(πi tv(CΩ +D)−1Cv)

· e(πi( t(Dc1 − Cc2)(−Bc1 +Ac2 + (A tB)0)− tc1c2))θ
[
c1
c2

]
(v,Ω),

where κ(M) ∈ C1 is a constant depending only on M , and c′1, c
′
2 are as in Lemma 1.23.

Back to our initial problem, which is to find a subgroup of G∆ with the property
that the theta null values remain unchanged within its orbits. Let Ω ∈ Hg, M ∈ G∆

and write ΩM := M · Ω. The theta null values associated to XΩM = Cg/ΩMZg ⊕∆Zg
are {

θ
[

∆−1d
0

]
(0,ΩM ) : d ∈ Repr(Zg/∆Zg)

}
and the theta null values associated to XΩ = Cg/ΩZg ⊕∆Zg are{

θ
[

∆−1d
0

]
(0,Ω) : d ∈ Repr(Zg/∆Zg)

}
.

Let us consider M =
(

A B
C D

)
=
(

Ig + ∆NA ∆NB∆
NC Ig +ND∆

)
∈ G∆(∆) with NA, NB, NC ,

ND ∈ Matg(Z). The isomorphism f : XΩM
∼−→ XΩ sends K(LΩM )1 to K(LΩ)1 and

preserves the ordering of their elements. But as mentioned earlier, the theta null values
behave badly under the pullback ρa(f

−1)∗. We have

G∆(∆) ⊂ Sp2g(Z),

and therefore we can apply the transformation formula from Theorem 1.24.
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For c = Ω∆−1d we have

θ
[
D∆−1d+ 1

2
∆(C tD)0

−B∆−1d+ 1
2

(A tB)0

]
(0,ΩM ) = θ

[
∆−1d+NDd+ 1

2
∆(NC(Ig + ∆ tND))0

−∆NBd+ 1
2

(∆(Ig +NA∆) tNB∆)0

]
(0,ΩM )

= κ(M) det(CΩ +D)
1
2 e(πi(− td(Ig + tND∆)NBd︸ ︷︷ ︸

= t(D∆−1d)(B∆−1d)

))

· e(πi td∆−1(Ig + ∆ tND)(∆(Ig +NA∆) tNB∆)0︸ ︷︷ ︸
= t(D∆−1d)(A tB)0

)θ
[

∆−1d
0

]
(0,Ω). (1.31)

We would like to get to the situation where

θ
[

∆−1d
0

]
(0,ΩM ) = λ(Ω,M) · θ

[
∆−1d

0

]
(0,Ω), (1.32)

for λ(Ω,M) ∈ C× a constant that does only depend on Ω and M , and not on d. Let us
first address the left-hand side of (1.31). Recall that for a, b ∈ Rg, a′, b′ ∈ Zg and Ω ∈ Hg
we have

θ
[
a+ a′

b+ b′

]
(·,Ω) = e(2πi tab′)θ

[
a
b

]
(·,Ω). (1.33)

For θ

[
∆−1d+NDd+ 1

2
∆(NC(Ig + ∆ tND))0

−∆NBd+ 1
2

(∆(Ig +NA∆) tNB∆)0

]
(0,ΩM ) to be equal to θ

[
∆−1d

0

]
(0,ΩM ) we impose

i) NDd+ 1
2∆(NC(Ig + ∆ tND))0 ∈ Zg,

ii) −∆NBd+ 1
2(∆(Ig +NA∆) tNB∆)0 ∈ Zg and

iii) td∆−1(−∆NBd+ 1
2(∆(Ig +NA∆) tNB∆)0) ∈ Z (this is the term tab′ from (1.33)).

For i) it suffices that

(C tD)0 = (NC(Ig + ∆ tND))0 ≡ 0 mod 2,

where the congruence means that (C tD)0 ∈ 2Zg. For ii) it suffices that

(A tB)0 = (∆(Ig +NA∆) tNB∆)0 ≡ 0 mod 2.

But as will turn out soon, for (1.32) to hold we need the stricter condition

(∆−1A tB∆−1)0 = ((Ig +NA∆) tNB)0 ≡ 0 mod 2.

And iii) follows from ii), observing that

(∆(Ig +NA∆) tNB∆)0 = ∆2((Ig +NA∆) tNB)0.

Denote by

G∆(∆)0 :=

{(
A B
C D

)
∈ G∆(∆) : (∆−1A tB∆−1)0 ≡ (C tD)0 ≡ 0 mod 2

}
.

It is not hard to verify that G∆(∆)0 is a subgroup of G∆(∆), and for M =
(

A B
C D

)
∈

G∆(∆)0 we have

θ
[
D∆−1d+ 1

2
∆(C tD)0

−B∆−1d+ 1
2

(A tB)0

]
(0,ΩM ) = θ

[
∆−1d

0

]
(0,ΩM ).
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Addressing the right-hand side of (1.31), the term

t(D∆−1d)(A tB)0 = td∆−1(Ig + ∆ tND)(∆(Ig +NA∆) tNB∆)0

= td(∆−1 + tND)∆2((Ig +NA∆) tNB)0

is in 2Z, provided M ∈ G∆(∆)0. It remains to show that t(D∆−1d)(B∆−1d) = td(Ig +
tND∆)NBd is in 2Z. Recall that for M =

(
A B
C D

)
∈ Sp2g(Z) we have

M−1 =

(
tD − tB
− tC tA

)
.

If M ∈ G∆(∆)0, then so is M−1, and therefore (Ig + tND∆)NB = ∆−1 tDB∆−1 is a
matrix with even diagonal entries. Moreover, tDB and ∆−1 tDB∆−1 are symmetric
matrices. One can easily show that for a symmetric matrix S ∈Matg(Z) and d ∈ Zg,
the integers tdSd and t(S)0d are of same parity. It follows that td(Ig + tND∆)NBd is
even. In summary we have shown:

Theorem 1.25. For any Ω ∈ Hg, M =
(

A B
C D

)
∈ G∆(∆)0 and d ∈ Repr(Zg/∆Zg),

the following equality holds:

θ
[

∆−1d
0

]
(0,ΩM ) = κ(M) det(CΩ +D)

1
2 θ
[

∆−1d
0

]
(0,Ω).

Here, we write ΩM = M · Ω, and κ is a constant depending only on M .

Since G∆(∆)0 is a subgroup of G∆, its action on Hg is also properly discontinuous
and hence, the quotient

A∆(∆)0 := Hg/G∆(∆)0

is a complex analytic space. Moreover, G∆(∆)0 contains the group(
1g

∆

)−1
tΓ(2δg)

(
1g

∆

)
,

where Γ(2δg) = {R ∈ Sp∆
2g(Z) : R ≡ I2g mod 2δg} is a principal congruence subgroup

of Sp∆
2g(Z). This shows that G∆(∆)0 is of finite index in G∆.

Proposition 1.26. A∆(∆)0 is a moduli space for polarized abelian varieties of type ∆
with invariant (projective) theta null values. Moreover, the embedding G∆(∆)0 ↪→ G∆

induces a finite cover A∆(∆)0 → A∆ of the moduli space of polarized abelian varieties
of type ∆.

1.4.3 Embedding moduli spaces into projective space

Fix a type ∆ = diag(δ1, . . . , δg), and suppose δ1 ≥ 2. Fix once and for all an ordering
{d0, . . . , ddet ∆−1} of Repr(Zg/∆Zg). According to Theorem 1.11 (Lefschetz),

ψ∆ : Hg → Pdet ∆−1
C , Ω 7→

(
θ
[

∆−1d0

0

]
(0,Ω) : · · · : θ

[
∆−1ddet ∆−1

0

]
(0,Ω)

)
is a well defined map. Moreover, ψ∆ is holomorphic by [BL04, §8.7]. Theorem 1.25
implies that ψ∆ is constant on G∆(∆)0-orbits of Ω ∈ Hg. Hence, ψ∆ factors via Hg →
A∆(∆)0. Let us denote by

ψ∆ : A∆(∆)0 → Pdet ∆−1
C

the induced holomorphic map. [BL04, Thm. 8.10.1] gives a criterion for ψ∆ to be an
embedding.
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Theorem 1.27. If δ1 ≥ 4 and 2|δ1 or 3|δ1, then

ψ∆ : A∆(∆)0 ↪→ Pdet ∆−1
C

is an analytic embedding.

In particular, if the hypotheses of Theorem 1.27 are satisfied, then any M ∈ G∆ that
preserves the theta null values, in the sense that

θ
[

∆−1d
0

]
(0,ΩM ) = λ(Ω,M) · θ

[
∆−1d

0

]
(0,Ω)

for all Ω ∈ Hg and d ∈ Repr(Zg/∆Zg), where λ(Ω,M) is a constant that does not
depend on d, is necessarily an element of G∆(∆)0.

An important consequence of Theorem 1.27 is that A∆(∆)0, as well as A∆, are

quasi-projective algebraic varieties of dimension g(g+1)
2 over C, see [BL04, Rem. 8.10.4].

The most important case where Theorem 1.27 applies is that of ∆ = 4 · Ig. Since 4 · Ig
is a scalar matrix, we have Sp

4·Ig
2g (Z) = Sp2g(Z) and

G4·Ig =

{(
A 4B
C/4 D

)
:
t
(

A B
C D

)
∈ Sp2g(Z)

}
.

Note that for non-scalar ∆’s, the group Sp∆
2g(Z) need not be closed under transposition

and hence,
(

A B
C D

)
need not be in Sp∆

2g(Z). In the case ∆ = 4 · Ig however, we can

omit the transpose sign, and write

G4·Ig =

{(
A 4B
C/4 D

)
:

(
A B
C D

)
∈ Sp2g(Z)

}
.

In the sequel, let us write 4 instead of 4 · Ig. We have

G4(4) =

{(
A 4B
C/4 D

)
∈ G4 :

(
A B
C D

)
≡ I2g mod 4

}
and

G4(4)0 =

{(
A 4B
C/4 D

)
∈ G4(4) : (

1

4
A tB)0 ≡ (

1

4
C tD)0 ≡ 0 mod 2

}
,

or equivalently

G4(4)0 =

{(
A 4B
C/4 D

)
∈ G4(4) : (A tB)0 ≡ (C tD)0 ≡ 0 mod 8

}
.

Note that matrices M ∈ G4(4) induce isomorphisms

Cg/ΩMZg ⊕ 4Zg ∼−→ Cg/ΩZg ⊕ 4Zg

that restrict to the identity on the 4-torsion.

To any Ω ∈ Hg we associate the polarized abelian variety (XΩ = Cg/ΩZg⊕4Zg, HΩ),
where HΩ(v, w) = tv(Im Ω)−1w̄. Let LΩ be the line bundle with first Chern class HΩ

and of characteristic 0 with respect to the decomposition Cg = ΩRg ⊕ Rg. A basis of
Γ(XΩ,LΩ) is given by the theta functions{

θ
[
d/4
0

]
(v,Ω) : d ∈ Repr(Zg/4Zg)

}
.
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David Mumford (in [Mum83]) and other authors associate to Ω the polarized abelian
variety (Cg/ΩZg ⊕ Zg, 4HΩ) instead, and as we have seen in Section 1.3.1,{

θ
[
d/4
0

]
(4v, 4Ω) : d ∈ Repr(Zg/4Zg)

}
is a basis of Γ(Cg/ΩZg ⊕ Zg,L⊗4

Ω ). The only difference is that in our setup we “put
the information of the type 4 · Ig in the lattice”, i.e. consider the lattice ΩZg ⊕ 4Zg
with polarization HΩ, while Mumford “puts the information of the type 4 · Ig in the
polarization”, i.e. considers the lattice ΩZg ⊕ Zg with polarization 4HΩ. But those
constructions are essentially equivalent, and it is merely a matter of taste. Let Ω′ := Ω

4
and let

f : XΩ = Cg/ΩZg ⊕ 4Zg ∼−→ Cg/Ω′Zg ⊕ Zg

be the isomorphism induced by the linear isomorphism Cg
· 1
4−→ Cg. The isomorphism

ρa(f
−1)∗ : Γ(XΩ,LΩ)

∼−→ Γ(Cg/Ω′Zg ⊕ Zg,L⊗4
Ω′ ) is given by

ρa(f
−1)∗θ

[
d/4
0

]
(v,Ω) = θ

[
d/4
0

]
(4v,Ω) = θ

[
d/4
0

]
(4v, 4Ω′).

We know that the theta null values
{
θ
[
d/4
0

]
(0,Ω)

}
for (XΩ,LΩ) are invariant un-

der the G4(4)0-action (up to a projective factor), hence so are the theta null values{
θ
[
d/4
0

]
(0, 4Ω′)

}
for (Cg/Ω′Zg ⊕Zg,L⊗4

Ω′ ). But for M =
(

A 4B
C/4 D

)
∈ G4(4)0, we have

M · 4Ω′ = (A(4Ω′) + 4B)(C/4(4Ω′) +D)−1 = 4(AΩ′ +B)(CΩ′ +D)−1.

Let us define

Γn :=

{
M =

(
A B
C D

)
∈ Sp2g(Z) : M ≡ I2g mod n

}
and

Γn,2n :=

{(
A B
C D

)
∈ Γn : (A tB)0 ≡ (C tD)0 ≡ 0 mod 2n

}
.

Then, Γn is a principal congruence subgroup of Sp2g(Z) and Γn,2n is a congruence
subgroup, since it contains Γ2n. Also, note that isomorphisms of the form Cg/ΩMZg ⊕
Zg ∼−→ Cg/ΩZg⊕Zg, induced by some M ∈ Γn, restrict to the identity on the n-torsion.

Proposition 1.28. Let Ω ∈ Hg and let (Cg/ΩZg ⊕ Zg,L⊗4
Ω ) be a polarized abelian

variety of type 4 · Ig. Fix an ordering {d0, . . . , d4g−1} of Repr(Zg/4Zg). Then, the
projective point (

θ
[
d0/4

0

]
(0, 4Ω) : · · · : θ

[
d4g−1/4

0

]
(0, 4Ω)

)
∈ P4g−1

C

remains unchanged in the Γ4,8-orbit of Ω.

Combining Proposition 1.28 and Theorem 1.27 gives the important result:

Theorem 1.29. Fix an ordering {d0, . . . , d4g−1} of Repr(Zg/4Zg). Then,

ψ′4·Ig : Hg → P4g−1
C , Ω 7→

(
θ
[
d0/4

0

]
(0, 4Ω) : · · · : θ

[
d4g−1/4

0

]
(0, 4Ω)

)
induces an analytic embedding of the moduli space Hg/Γ4,8 into P4g−1

C .
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Recall from Section 1.3.1 the level-(2,...,2) theta functions{
θ
[
d1/2
d2/2

]
(2v,Ω) : d1, d2 ∈ Repr(Zg/2Zg)

}
.

They form another basis of Γ(Cg/ΩZg ⊕ Zg,L⊗4
Ω ) and hence, the projective point(

θ
[
d1/2
d2/2

]
(0,Ω)

)
d1,d2∈Repr(Zg/2Zg)

∈ P4g−1
C

remains invariant under the Γ4,8-action onHg as well. Here, we suppose that an ordering
of Repr(Zg/2Zg)×Repr(Zg/2Zg) is fixed. The resulting projective factor (i.e. the one
that appears when replacing Ω by a Γ4,8-equivalent Ω′) is the same as for the projective
point from Proposition 1.28. Applying Theorem 1.24 to the second and the fourth
powers of the level-(2,...,2) theta functions, one can show that(

θ
[
d1/2
d2/2

]
(0,Ω)2

)
d1,d2∈Repr(Zg/2Zg)

remains invariant under the Γ2,4-action on Hg and(
θ
[
d1/2
d2/2

]
(0,Ω)4

)
d1,d2∈Repr(Zg/2Zg)

remains invariant under the Γ2-action on Hg.
We can give a more concrete description/interpretation of this invariance in the case

of a hyperelliptic curve C over C. Let g be the genus of C, and suppose C is given by an
affine plane model y2 = f(x), where f is a polynomial of degree 2g + 1. The 2-torsion
subgroup of the Jacobian variety Jac(C) of C is entirely characterized by the Weierstrass
points of the curve C. Hence, an ordering {a1, . . . , a2g+1} of the roots of f determines
an ordering of Jac(C)[2]. If Jac(C) = Cg/Λ, then any choice of a symplectic basis
of Λ determines a period matrix Ω ∈ Hg and an isomorphism (of principally polarized
abelian varieties) Jac(C) ∼= Cg/ΩZg ⊕ Zg =: XΩ. The 2-torsion points of XΩ can thus
be expressed by the Weierstrass points of C, but the way to do so depends on the choice
of the symplectic basis of Λ. How can we handle this ambiguity? A Γ2-isomorphism
XΩM

∼−→ XΩ, for some M ∈ Γ2 (coming from a different choice of symplectic basis of Λ),
restricts to the identity on the 2-torsion. Hence, our way to express the 2-torsion points
of XΩ in terms of the roots of f remains unchanged under such an isomorphism. On the
other side, Thomae’s formulae (Theorem 1.14) allow us to compute the fourth powers
of the theta constants of XΩ directly from the roots of f , i.e. directly from the 2-torsion
points of XΩ. By what we have said earlier, the fourth powers of the theta constants
are invariant (up to a projective factor) under the Γ2-action on Hg. So, both the way
of expressing the 2-torsion points in terms of the roots of f and the way of computing
the theta constants from the roots of f are “Γ2-invariant”.

Conversely, for the reciprocal formulae (Theorem 1.15), we see that the right-hand
side is Γ2,4-invariant, whereas the left-hand side is computed from the 2-torsion of XΩ.
But Γ2,4 ⊂ Γ2 leaves the 2-torsion invariant.
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2 Abelian varieties over fields of positive characteristic

The goal of this section is to study embeddings of polarized abelian varieties over arbi-
trary fields into projective space by means of theta functions. As we have seen in the
complex case, a decomposition of Cg plus a characteristic are sufficient to determine a
basis of theta functions in a canonical way. The algebraic analogue to this data is called
a theta structure and was first introduced by Mumford in [Mum66]. Fixing a polarized
abelian variety together with a theta structure yields a basis of theta functions in a
canonical way. Hence, if the line bundle is very ample, these canonical theta functions
allow us to embed the abelian variety into projective space.

For this section we consider k a fixed algebraically closed field of positive characteristic p.
For a further treatment of the subject we refer to [Mum66] and [Rob10].

2.1 The theta group and theta structures

Let X be an abelian variety of dimension g over the field k. The Picard group Pic(X)
is the group of isomorphism classes of line bundles L on X equipped with the tensor
product ⊗. The set of (isomorphism classes of) line bundles L on X such that t∗xL ∼= L
for all point x ∈ X(k) is a subgroup of Pic(X) and is denoted by Pic0(X).

Remark 2.1. In the complex case, Lemma 1.3 tells us that t∗xL ∼= L for all x ∈ X if and
only if H = c1(L) = 0, so that our algebraic definition of Pic0(X) coincides with the

definition of Pic0(X) being the kernel of Pic(X)
c1−→ NS(X).

Two line bundles L1 and L2 on X are said to be algebraically equivalent if L1⊗L−1
2 ∈

Pic0(X). The tensor product respects algebraic equivalences and we define the Néron-
Severi group NS(X) as the group of algebraic equivalence classes of line bundles on X.
A polarization on X is an algebraic equivalence class of an ample line bundle L on X
(see Section 1.2.2 for the definition of ample). By abuse of notation we will often call L
itself a polarization.

Analogous to the complex case there exists an abelian variety X̂ over k, called the
dual abelian variety of X, with the property that X̂(k) ∼= Pic0(X) (see [Mum70, §8]).
To any L ∈ Pic(X) we can associate a morphism

φL : X → X̂ (2.1)

via the map
X(k)→ Pic0(X), x 7→ t∗xL ⊗ L−1,

and φL is a homomorphism by the Theorem of the Square (see [Mum70, §6, Cor. 4]).
Define

K(L) := kerφL = {x ∈ X(k) : t∗xL ∼= L}.
It is easy to see that algebraically equivalent line bundles yield the same morphism
X → X̂ and hence, the same subgroup K(L). It is well known that L is ample if and
only if K(L) is finite and dimk Γ(X,L⊗n) > 0 for all n ≥ 1. An ample line bundle L on X
is called a principal polarization if the induced isogeny φL : X → X̂ is an isomorphism.

From now on we will always suppose that L is ample. We call degL := dimk Γ(X,L)
the degree of L, and for all n ≥ 1 we have dimk Γ(X,L⊗n) = degL · ng. Moreover,
the morphism φL is an isogeny of degree deg φL = (degL)2, and we will call it the
polarization isogeny associated to L. We call L an ample line bundle of separable type
if p = char(k) 6 |degL. In this case φL is a separable morphism, and thus we have

#K(L) = (degL)2.
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2.1.1 Mumford’s theta group

From here on, we will always suppose that L ∈ Pic(X) is an ample line bundle of
separable type. We have seen that K(L) is precisely the set of points x ∈ X(k) for
which the line bundles t∗xL and L are isomorphic. But this isomorphism is not unique.
As an example, composing it with an automorphism of L yields a different isomorphism.
It was Mumford’s great idea (in a series of papers [Mum66, Mum67a, Mum67b]) to study
not only K(L), but pairs of elements of K(L) together with isomorphisms.

Definition 2.2. The Mumford theta group is

G(L) = {(x, φx) : x ∈ K(L), φx : L ∼−→ t∗xL},

under the group law: for (x, φx), (y, φy) ∈ G(L),

L φx−→ t∗xL
t∗xφy−−−→ t∗x(t∗yL) = t∗x+yL

is an isomorphism L ∼−→ t∗x+yL. Hence, we define

(x, φx) · (y, φy) = (x+ y, t∗xφy ◦ φx).

The neutral element is (0, idL) and the inverse of (x, φx) under this group law is

(−x, t∗−xφ−1
x ). The forgetful map G(L)

ρG(L)−−−→ K(L), (x, φx) 7→ x is surjective, with
kernel the automorphisms of L, i.e. multiplication by non-zero scalars. Hence, we have
an exact sequence

0→ k× → G(L)→ K(L)→ 0,

where k× → G(L) is given by a 7→ (0,ma), where ma is the multiplication-by-a auto-
morphism of L.

If L and L′ define the same polarization on X then by [Mum70, §8, Thm. 1] there
exists c ∈ X(k) such that L′ ∼= t∗cL. Let ψ : L′ ∼−→ t∗cL denote one such isomorphism.
Then

G(L)
∼−→ G(L′), (x, φx) 7→ (x, t∗xψ

−1 ◦ t∗cφx ◦ ψ),

where

L′ ψ−→ t∗cL
t∗cφx−−−→ t∗c(t

∗
xL) = t∗x(t∗cL)

t∗xψ
−1

−−−−→ t∗xL′,

defines an isomorphism between the corresponding theta groups. Hence, we have iso-
morphic exact sequences

0 // k× //

id
��

G(L)

��

// K(L) //

id
��

0

0 // k× // G(L′) // K(L′) = K(L) // 0.

The central exact sequence 0→ k× → G(L)→ K(L)→ 0 is non-split, since G(L) is
a non-commutative group. Nevertheless, a central question when studying Mumford’s
theta group is: for what subgroups K ⊂ K(L) does the projection ρG(L) : G(L)→ K(L)
admit a section above K. Let us give an example where the splitting occurs, before
addressing the general case in Lemma 2.8. Let f : X → Y be a separable isogeny
between two abelian varieties, and letM∈ Pic(Y ) be a line bundle on Y . By [Mum70,
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§7, Thm. 4] you might want to replace Y by the isomorphic variety X/ ker f . Suppose
moreover that there exists an isomorphism α : f∗M ∼−→ L. Then for x ∈ ker f we have

L α−1

−−→ f∗M = (f ◦ tx)∗M = t∗x(f∗M)
t∗xα−−→ t∗xL,

which shows that
ker f ⊂ K(L).

But we can say more in this situation. Consider the map

ker f → G(L), x 7→ (x, t∗xα ◦ α−1), (2.2)

which is injective, and it is not hard to see that this map does not depend on the choice
of the isomorphism α. A quick verification shows that

t∗x+yα ◦ α−1 = t∗x(t∗yα ◦ α−1) ◦ (t∗xα ◦ α−1),

which means ker f ↪→ G(L) is a group morphism. Hence, we have a section of G(L) →
K(L) above ker f , or equivalently a subgroup k̃er f ⊂ G(L) isomorphic to ker f via ρG(L).

Be aware that for arbitrary K ⊂ K(L) there need not exist a lifting K̃ ⊂ G(L) of K
into G(L) and hence, there need not exist a line bundle M on Y = X/K such that
f∗M ∼= L, where f : X → X/K is the projection isogeny. As Grothendieck’s descent
theory tells us, the splitting of G(L) → K(L) above K is equivalent to the descent of
the line bundle L under the projection X → X/K. Before stating the result, let us
define the following.

Definition 2.3. A level subgroup K̃ of G(L) is a subgroup that is isomorphic to its
image K = ρG(L)(K̃) ⊂ K(L). Equivalently, K̃ is a level subgroup if k× ∩ K̃ = {0}.

A level subgroup K̃ determines the subgroup K ⊂ K(L), and we sometimes say that K̃
is a level subgroup above K. Also, note that level subgroups are commutative. The
main theorem about the descent of line bundles under isogenies is due to Grothendieck.

Theorem 2.4. Let X be an abelian variety and let L be an ample line bundle of separable
type on X. Let K be a (necessarily finite) subgroup of K(L), and let f : X → Y = X/K
be the associated separable isogeny. Then there is a 1-1 correspondence between pairs
(M, α), where M is a line bundle on Y and α : f∗M ∼−→ L an isomorphism, and level
subgroups K̃ above K. Moreover, the line bundle M is ample and of separable type.

Proof. For the equivalence between the existence of pairs (M, α) and level subgroups K̃,
we refer to [Gro60, §8, Thm. 1.1]. The fact that M is ample is proven in [Gro61, §3,
Thm. 2.6.2]. We know that the following diagram is commutative

X
f //

φL
��

Y

φM
��

X̂ Ŷ ,
f̂

oo

and hence,
deg φL = (deg f)2 · deg φM.

It follows that
degL = deg f︸ ︷︷ ︸

#K

· degM. (2.3)

But L is of separable type and hence, p = char(k) 6 |degM.
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A simplified version in the complex case is taken care of by Proposition 1.5.

Let us see if we can relate G(M) and G(L) in the above situation. The first obser-
vation is that f does not send K(L) to K(M), simply by cardinality reason. Yet, the
inverse image behaves nicer in this situation.

Proposition 2.5. We have f−1(K(M)) ⊂ K(L).

Proof. Let α as above be the isomorphism α : f∗M ∼−→ L. Let y ∈ K(M), so that there
exists an isomorphism ψy : M ∼−→ t∗yM, and let x ∈ X(k) be such that f(x) = y. Then
we have

L α−1

−−→ f∗M f∗ψy−−−→ f∗(t∗yM) = t∗x(f∗M)
t∗xα−−→ t∗xL,

hence x ∈ K(L) and t∗xα ◦ f∗ψy ◦ α−1 is an isomorphism L ∼−→ t∗xL.

Denote by
G(L)∗ := {(x, φx) ∈ G(L) : f(x) ∈ K(M)}

the elements of G(L) above f−1(K(M)). Then there exists a map

αf : G(L)∗ → G(M), (2.4)

given as follows : let (x, φx) ∈ G(L)∗, where x ∈ f−1(K(M)) and φx : L ∼−→ t∗xL.
Let y = f(x) and let ψy : M ∼−→ t∗yM be any isomorphism from M to t∗yM. Then φx
and t∗xα ◦ f∗ψy ◦ α−1 differ by an automorphism of L, which is the multiplication-by-a
map ma, for some a ∈ k×. Sending

αf : (x, φx) ∈ G(L)∗ 7→ (y, ψy ◦ma) ∈ G(M),

where now ma denotes the multiplication-by-a map on M, is a well defined map. It is
not hard to see that αf is a surjective group homomorphism, and we have the following
commutative diagram

G(L)∗
αf //

ρG(L)

��

G(M)

ρG(M)

��
f−1(K(M))

f
// K(M).

Proposition 2.6. Given the descent datum (M, α), or equivalently the corresponding
level subgroup K̃ above K := ker f , the surjection αf induces an isomorphism

G(L)∗/K̃
∼−→ G(M).

Proof. We only need to show that kerαf = K̃. The isomorphism α : f∗M ∼−→ L is
determined by the property to make

L

α−1 &&

φw // t∗wL

f∗M = t∗w(f∗M)

t∗wα

77

a commutative diagram for all (w, φw) ∈ K̃. But (x, φx) ∈ G(L)∗ is in the kernel of αf
if and only if x ∈ ker f and φx arises as the composite t∗xα ◦ f∗ idM ◦α−1 = t∗xα ◦ α−1,
which means that (x, φx) ∈ K̃.
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Moreover, see [Mum66, §1, Prop. 2], the subgroup G(L)∗ equals the centralizer Z(K̃)
of K̃ in G(L), where K = ker f . Hence, we have an isomorphism

Z(K̃)/K̃
∼−→ G(M),

induced by αf .

As mentioned earlier, the property of admitting a level subgroup need not be true
for all subgroups K ⊂ K(L). In fact, we would like to give a criterion for the existence
of a level subgroup without involving any descent theory of line bundles. It turns out
that K(L) admits a symplectic pairing and that the subgroups K ⊂ K(L) that do admit
a level subgroup are precisely the isotropic subgroups of K(L).

For x, y ∈ K(L), let x̃, ỹ ∈ G(L) be arbitrary lifts of x and y respectively. Define
the commutator pairing

eL(x, y) := x̃ỹx̃−1ỹ−1.

Lifts of elements of K(L) are only defined up to scalars (i.e. up to elements of the
form (0,ma) for a ∈ k×), but since k× is contained in the center of G(L) the form eL

is well defined. Moreover, x̃ỹx̃−1ỹ−1 being in the kernel of G(L)
ρG(L)−−−→ K(L), we can

see eL(x, y) as an element of k×. It is immediate that eL is an alternating bilinear
pairing on K(L). According to [Mum66, §1, Thm. 1], the center of G(L) is actually
equal to k×, or equivalently the form eL is non-degenerate. We have:

Proposition 2.7. (K(L), eL) is a symplectic space.

As for any group admitting a symplectic form, there exist subgroupsK(L)1 andK(L)2

of K(L), both isotropic for eL, forming a symplectic decomposition

K(L) = K(L)1 ⊕K(L)2

of K(L). Via eL we have the identificationK(L)2
∼= Hom(K(L)1, k

×), and we callK(L)i
for i = 1, 2 a maximal isotropic subgroup of K(L). Now the existence result for level
subgroups can be rephrased as follows.

Lemma 2.8. A subgroup K ⊂ K(L) admits a level subgroup if and only if it is isotropic
for eL.

Proof. Let K̃ be a level subgroup above K. For x, y ∈ K we can choose lifts x̃, ỹ in K̃.
But K̃ is commutative, hence eL(x, y) = 1. Conversely, let us see how to determine a
level subgroup above an isotropic subgroup K. Let x ∈ K and suppose x is of order l.
Let x̃ ∈ G(L) be any lift of x. Then x̃l is in the kernel of ρG(L) and is therefore a scalar.

Let a be an lth root of x̃l, so that the element x̃/a above x is of order l. Decompose K as
a product of cyclic groups and repeat this lifting procedure for each of the generators.
Since eL is trivial on K, the lifts of these generators commute with each other and
hence, generate a subgroup of G(L) isomorphic to K.

Hence, if (X,L) is a polarized abelian variety and K ⊂ K(L) is an isotropic subgroup
for eL, then there exists an ample line bundleM on Y = X/K that satisfies f∗M∼= L,
where f : X → Y is the projection isogeny. Moreover, the line bundle M is unique up
to algebraic equivalence.
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2.1.2 The Heisenberg group and theta structures

Let L be an ample line bundle of separable type on X. If K(L) = K(L)1 ⊕K(L)2 is
a symplectic decomposition of K(L) with respect to the commutator pairing eL, and if
δ1 | δ2 | · · · | δg are the elementary divisors of K(L)i for i = 1, 2, then as abstract groups
we have the isomorphisms

K(L)1
∼= K(L)2

∼= Z(δ),

where δ = (δ1, . . . , δg) and where we write Z(δ) :=
⊕g

i=1 Z/δiZ. We say that L (or the
polarization it defines) is of type δ = (δ1, . . . , δg). Note that L is a principal polarization
if and only if it is of type (1, . . . , 1).

Given a tuple δ = (δ1, . . . , δg) ∈ Zg with δ1 | · · · | δg, let

K(δ) := Z(δ)⊕ Ẑ(δ),

where Ẑ(δ) = Hom(Z(δ), k×). Then K(δ) is equipped with the standard symplectic
pairing eδ coming from duality, i.e.

eδ((x1, y1), (x2, y2)) =
y2(x1)

y1(x2)
∈ k×.

Definition 2.9. The Heisenberg group H(δ) is the group with underlying set
k× ×K(δ) and with group law

(a1, x1, y1) · (a2, x2, y2) = (a1a2y2(x1), x1 + x2, y1 + y2),

for all a1, a2 ∈ k×, x1, x2 ∈ Z(δ) and y1, y2 ∈ Ẑ(δ).

The Heisenberg group is a central extension of K(δ) by k×, i.e. it fits into the central
exact sequence

0→ k× → H(δ)→ K(δ)→ 0,

where a ∈ k× 7→ (a, 0, 0) ∈ H(δ) and H(δ) → K(δ) is the projection onto K(δ). The
inverse of (a, x, y) ∈ H(δ) is given by

(a, x, y)−1 = (a−1y(x),−x,−y),

and a quick computation shows that eδ((x1, y1), (x2, y2)) is the commutator of any lifts
of (x1, y1) and (x2, y2) to H(δ) respectively. The elements of Autk×(H(δ)), i.e. the
automorphisms of H(δ) that restrict to the identity on k×, are called metaplectic auto-
morphisms.

The most important concept Mumford introduced in [Mum66] is the link between
the somehow hard to interpret theta group associated to an ample line bundle and the
more abstract and canonical Heisenberg group.

Definition 2.10. A theta structure ΘL of type δ is an isomorphism of central extensions

ΘL : H(δ)
∼−→ G(L),

which is the identity on k×.
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When a line bundle L is fixed and hence, when there is no ambiguity about the type,
we will call ΘL simply a theta structure. A theta structure ΘL : H(δ)

∼−→ G(L) induces
an isomorphism ΘL : K(δ)

∼−→ K(L), and the following diagram commutes

0 // k× //

id
��

H(δ)

ΘL
��

// K(δ) //

ΘL
��

0

0 // k× // G(L) // K(L) // 0.

Since both the pairings on K(δ) and on K(L) are given by the respective commutators,
and since ΘL pulls back commutators, ΘL is actually a symplectic isomorphism.

Once a theta structure ΘL : H(δ)
∼−→ G(L) is fixed we obtain a symplectic decompo-

sition of K(L) as
K(L) = ΘL(Z(δ))⊕ΘL(Ẑ(δ)),

and we call it the induced symplectic decomposition. Denote by

K(L)1 := ΘL(Z(δ)) and K(L)2 := ΘL(Ẑ(δ))

the induced maximal isotropic subgroups of K(L). But there is actually more informa-
tion contained in a theta structure. There is a canonical map (of sets) sδ : K(δ)→ H(δ)
given by (x, y) 7→ (1, x, y), and it becomes a morphism of groups when restricted to any
isotropic subgroup of K(δ). Then, via the theta structure ΘL, the section sδ induces a
section

sK(L) : K(L)→ G(L) (2.5)

of ρG(L). The two subgroups Z(δ) and Ẑ(δ) of K(δ) are isotropic, hence restricting the
section sK(L) to K(L)1 and K(L)2 yields two group sections

sK(L)1
: K(L)1 → G(L) and sK(L)2

: K(L)2 → G(L).

We denote by
K̃(L)i := sK(L)i(K(L)i)

the corresponding level subgroup, for i = 1, 2. Note that the sections sK(L)1
and sK(L)2

determine the section sK(L), since for any z ∈ K(L), written z = z1+z2 with zi ∈ K(L)i,
we have

sK(L)(z) = sK(L)2
(z2) · sK(L)1

(z1).

Proposition 2.11. A theta structure ΘL : H(δ)
∼−→ G(L) induces a symplectic isomor-

phism ΘL : K(δ)
∼−→ K(L) and level subgroups above the induced maximal isotropic sub-

groups of K(L). Conversely, any symplectic isomorphism ΘL : K(δ)
∼−→ K(L) together

with group sections of ρG(L) above ΘL(Z(δ)) and ΘL(Ẑ(δ)) induces a theta structure

ΘL : H(δ)
∼−→ G(L) in a unique way.

We have seen that in the complex case, a decomposition of Cg into maximal isotropic
subspaces and a characteristic c of L with respect to this decomposition are sufficient
to obtain a basis of theta functions in a canonical way. And, provided L satisfies
the condition of Lefschetz’s Theorem 1.11, the theta functions can be considered as
projective coordinates on the abelian variety. We will show in the next section that,
given a polarized abelian variety (X,L), a theta structure ΘL is the right information
to add in order to obtain theta functions on X in a canonical way.
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2.2 Theta functions

For this section we assume that L is a very ample line bundle of separable type δ on X,
so that there exists a canonical embedding X ↪→ P(Γ(X,L)). A choice of a k-basis
of Γ(X,L) then induces an isomorphism P(Γ(X,L))

∼−→ Pd−1
k , where d = degL, and we

obtain an embedding
X ↪→ Pd−1

k .

A different choice of basis results in a PGLd(k)-action on Pd−1
k . In order to fix one

embedding we need to fix canonical coordinates on X (i.e. a canonical basis for Γ(X,L)).
This choice will come precisely from the choice of a theta structure. Once we have fixed
a theta structure ΘL on (X,L), we get canonical theta functions {θΘL

i : i ∈ Z(δ)}
forming a basis for the space of global sections Γ(X,L). We will get this canonical basis
via the representation theory of the Heisenberg group H(δ).

2.2.1 The Schrödinger representation

Let V (δ) be the vector space of k-valued functions on Z(δ). It is well known that the
H(δ)-action on V (δ) given by

((a, x, y) · f)(u) = aeδ((u, 0), (0, y))f(u+ x) = ay(u)f(u+ x), (2.6)

for (a, x, y) ∈ H(δ), f ∈ V (δ) and u ∈ Z(δ), is an irreducible representation, called
the Schrödinger representation. We can easily see that k× ↪→ H(δ) acts by its natural
character. As the next result shows, this representation is unique.

Theorem 2.12. V (δ) is the unique irreducible representation of H(δ) where k× acts by
its natural character. Let V be any representation of H(δ) where k× acts in this way.
Let K̃ ⊂ H(δ) be any maximal level subgroup (a level subgroup above a maximal isotropic

subgroup of K(δ)), and let r = dimk V
K̃ , where V K̃ is the subspace of K̃-invariants.

Then,

V ∼=
r⊕
i=1

V (δ).

For a proof we refer to [Mum66, Prop.2]. The Mumford theta group G(L) acts on the
space Γ(X,L), where the action is given by

(x, φx) · s = t∗−x(φx ◦ s).

Note that t∗−x(φx ◦ s) is indeed an element of Γ(X,L), since the following diagram
commutes

t∗−x(t∗xL) = L // t∗xL

X

t∗−x(φx◦s)
OO

t−x
// X.

φx◦s
OO

Roughly speaking, we can say that the element (x, φx) acts on s by the translate t−x
plus some correcting factor. A scalar a ∈ k× acts by (0,ma) · s = ma ◦ s, and as the
following result shows, this representation is irreducible.

Proposition 2.13. If L is an ample line bundle of separable type, then Γ(X,L) is an
irreducible G(L)-representation.
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Proof. Let K ⊂ K(L) be a maximal isotropic subgroup for eL, and let K̃ ⊂ G(L) be
any level subgroup above K. Consider the isogeny f : X → X/K, and let (M, α) be
the descent datum associated to K̃, i.e. M is an ample line bundle on X/K and α is an
isomorphism α : f∗M ∼−→ L. By maximality of K we have that #K = degL. Thus, M
is of degree 1, which means dimk Γ(X/K,M) = 1. But f∗ maps the sections ofM onto

the K̃-invariant sections of L, i.e. dimk Γ(X,L)K̃ = 1.

Let ΘL : H(δ)
∼−→ G(L) be a fixed theta structure. We can see Γ(X,L) as a H(δ)-

representation via ΘL, and by Theorem 2.12 and Proposition 2.13, the representa-
tions V (δ) and Γ(X,L) are isomorphic. Thus there exists a unique (up to a scalar
multiple) H(δ)-equivariant isomorphism ϕ : V (δ) → Γ(X,L). The space V (δ) has a
canonical basis given by the Kronecker delta functions {δi : i ∈ Z(δ)},

j ∈ Z(δ) 7→ δi(j) =

{
1 if i = j,

0 otherwise.

Composing with the isomorphism ϕ yields a basis for Γ(X,L){
θΘL
i := ϕ(δi) | i ∈ Z(δ)

}
. (2.7)

Hence, fixing a theta structure on (X,L) yields a unique (up to a scalar multiple)
basis for Γ(X,L). Fixing once and for all an ordering {i0, . . . , id−1} of Z(δ), where
d = degL = #Z(δ), we get a projective embedding

X ↪→ Pd−1
k , x 7→ (θΘL

i0
(x) : · · · : θΘL

id−1
(x)).

Notation 2.14. Since we will keep the ordering of the elements of Z(δ) fixed, we will
subsequently write the embedding as x 7→ (θΘL

i (x))i∈Z(δ). Moreover, via the symplectic

isomorphism ΘL, we may consider indexing the theta functions by K(L)1, i.e. consider
the embedding

x 7→ (θΘL
i (x))i∈K(L)1

.

Definition 2.15. The functions {θΘL
i : i ∈ K(L)1} are called theta coordinates. More-

over, we call
(θΘL
i (0))i∈K(L)1

the (projective) theta null point associated to (X,L,ΘL).

Let us describe the action of the theta group G(L) on the theta coordinates explic-
itly, using the Schrödinger representation (2.6). Let (z, φz) ∈ G(L) and let (a, x, y) =
Θ−1
L ((z, φz)) ∈ H(δ). For i ∈ Z(δ) we will denote the corresponding ΘL(i) ∈ K(L)1 by i

as well, and it will be clear from the context if we talk about an element of Z(δ) or an
element of K(L)1. First, observe that

((a, x, y) · δi)(u) = ay(u)δi(u+ x) = ay(u)δi−x(u) = ay(i− x)δi−x(u).

Moreover,
y(i− x) = eδ((i− x, 0), (0, y)) = eL(i− z1, z2),

where z = z1 + z2 with respect to the decomposition K(L) = K(L)1 ⊕K(L)2 induced
by the theta structure ΘL. Finally, the action of the Mumford theta group on the theta
coordinates is given by
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(z, φz) · θΘL
i = ϕ((a, x, y) · δi) = ϕ(ay(i− x)δi−x)

= aeL(i− z1, z2)θΘL
i−z1 .

As we have said before, the action of (z, φz) on Γ(X,L) can roughly be seen as
an action above translation by −z. To be more precise, for any point x ∈ X(k) with
projective coordinates (θΘL

i (x))i∈K(L)1
, the point x− z has projective coordinates

x− z 7→ (eL(i− z1, z2)θΘL
i−z1(x))i∈K(L)1

.

To make sense of this, the ith coordinate of x− z is given by the (i− z1)th coordinate
of x times some factor. In particular, translates of x by K(L)1 result in permutations of
the theta coordinates, while translates of x by K(L)2 result in dilatations of the theta
coordinates.

Remark 2.16. From the above it becomes clear that, given the projective theta coordi-
nates of some point x ∈ X(k), and given any z ∈ K(L), we can compute the projective
theta coordinates of the point x − z using the (z, φz)-action on the coordinates of x,
where (z, φz) ∈ G(L) is any lift of z.

2.2.2 Affine theta coordinates

Theta functions are global sections of ample line bundles, and as such they are not well
defined functions with values in k. This is why they yield projective coordinates only.
Yet, when we want to compute isogenies, we will have to evaluate and manipulate theta
functions individually, and we can only do this by considering them as functions taking
values in k. Instead of working with a projective point of theta functions evaluated
at x ∈ X(k), we will have to fix an affine lift of it and work with the “affine theta
coordinates”. This, however, will turn out to be very delicate since in many applications
we need those affine lifts to be “compatible” in a certain sense, and it is not easy to fix
compatible affine lifts.

Let (X,L,ΘL) be a polarized abelian variety with theta structure. Suppose that L
is very ample and of separable type δ. Let{

θΘL
i : i ∈ K(L)1

}
be a basis of theta functions as in (2.7), and suppose an ordering of Z(δ) (which deter-
mines an ordering of K(L)1 via ΘL) is fixed. This yields the embedding

X ↪→ Pd−1
k , x 7→ (θΘL

i (x))i∈K(L)1
,

where d = degL. Let p : Adk \ {0} → Pd−1
k be the natural projection map and consider

the affine cone
X̃ := p−1(X),

where we view X as a subset of Pd−1
k via the above embedding.

Definition 2.17. For x ∈ X(k) we denote by x̃ ∈ X̃ an affine lift of (θΘL
i (x))i∈K(L)1

.

We denote by θΘL
i (x̃) the ith coordinate of x̃ and we call{

θΘL
i (x̃) : i ∈ K(L)1

}
the affine theta coordinates of x (for the fixed lift).
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The main difficulty when working with affine coordinates is that there is no natural
way to define a section of X̃ → X. Even when fixing a lift x̃ of some x ∈ X(k), there is
no general way this would determine a lift of an arbitrary y ∈ X(k). However, it is true
that for some subsets of X, fixing one affine lift determines lifts for the whole subset.
This is closely related to Remark 2.16 of the previous section.

Proposition 2.18. Let x ∈ X(k) with fixed affine lift x̃ = (θΘL
i (x̃))i∈K(L)1

. Then, for
every z ∈ K(L), the coordinates

θΘL
i (x̃+ z) := eL(i+ z1,−z2)θΘL

i+z1
(x̃), for all i ∈ K(L)1,

are affine theta coordinates for an affine lift of x + z, that we denote by x̃+ z. Here,
z = z1 + z2 with respect to the decomposition K(L) = K(L)1 ⊕K(L)2 induced by ΘL.

Proof. This can be seen when acting on θΘL
i by sK(L)(−z), where sK(L) is the section

from (2.5).

Notation 2.19. Let x̃ be an affine lift of a point x ∈ X(k), and let z ∈ K(L). Then we
will denote by

z � x̃ := x̃+ z

the affine lift x̃+ z of x + z from Proposition 2.18. Be careful, this is not an action!
The lift (z + z′) � x̃ is not equal to z � (z′ � x̃) in general. The reason being that the
section sK(L) is not a group morphism. However, it determines an action above isotropic
subgroups of K(L).

Notation 2.20. For an affine point x̃ ∈ X̃ and for ξ ∈ k×, we will denote by ξ · x̃ the
coordinate-wise multiplication by ξ, i.e.

θΘL
i (ξ · x̃) = ξ · θΘL

i (x̃), for all i ∈ K(L)1.

2.2.3 The isogeny theorem

The main tool we will use for computing isogenies is the isogeny theorem, relating the
theta coordinates of the source variety to the theta coordinates of the target variety.
But this is only possible in a very precise setup.

Let f : (X,L) → (Y,M) be a separable isogeny of polarized abelian varieties with
kernel K = ker f . Let δL and δM be the separable types of the line bundles L and M
respectively. Suppose f∗M and L are isomorphic, and let α : f∗M ∼−→ L be one such
isomorphism. We then have a map between the spaces of global sections

α ◦ f∗ : Γ(Y,M)→ Γ(X,L).

We have seen that theta structures induce bases for the above vector spaces, and we
would like to express α◦f∗ in terms of these bases. For this we need to define the notion
of compatibility of theta structures with respect to the isogeny f . Let ΘL and ΘM
be theta structures on (X,L) and (Y,M) respectively. Recall that a theta structure
ΘL : H(δL)

∼−→ G(L) contains the information of

- a symplectic isomorphism ΘL : K(δL)
∼−→ K(L), yielding the maximal isotropic

subgroups K(L)1 = ΘL(Z(δL)) and K(L)2 = ΘL(Ẑ(δL));

49



- a section of sets sK(L) : K(L) → G(L) that is a group morphism when restricted
to any isotropic subgroup. Knowing sK(L) is actually equivalent to knowing two
group sections sK(L)i : K(L)i → G(L), for i = 1, 2 (or equivalently two level

subgroups K̃(L)i = sK(L)i(K(L)i) ⊂ G(L)).

The same holds for ΘM : H(δM)
∼−→ G(M). Let K̃ ⊂ G(L) be the level subgroup

corresponding to the descent datum (M, α). Then, for ΘL and ΘM to be f -compatible,
they need to satisfy the following conditions:

i) the kernel K of f is compatible with the symplectic decomposition of K(L);

ii) the symplectic decompositions of K(L) and K(M) are f -compatible;

iii) the descent datum is compatible with the theta structure ΘL;

iv) the sections sK(L)i : K(L)i → G(L) and sK(M)i : K(M)i → G(M) are compatible
for i = 1, 2.

Let us make the above points more precise. Recall the morphism αf : Z(K̃) → G(M)

from Section 2.1.1, where Z(K̃) is the centralizer of K̃ in G(L), inducing an isomorphism

Z(K̃)/K̃
∼−→ G(M).

Definition 2.21. i) We say that K = ker f is compatible with the decomposition
K(L) = K(L)1 ⊕K(L)2 if

K = (K(L)1 ∩K)⊕ (K(L)2 ∩K).

ii) In this case, we say that the decompositions K(L) = K(L)1⊕K(L)2 and K(M) =
K(M)1 ⊕K(M)2 are f -compatible if

K(M)i = f(K(L)i) ∩K(M), for i = 1, 2.

iii) We say that the descent datum (M, α) is compatible with the theta structure ΘL
if the level subgroups K̃ and sK(L)(K) above K agree, i.e. if

K̃ = sK(L)(K).

iv) If the above compatibilities are satisfied, we say that the sections sK(L)i and

sK(M)i for i = 1, 2 (or equivalently the corresponding level subgroups K̃(L)i and

K̃(M)i) are f -compatible if

αf (K̃(L)i ∩ Z(K̃)) = K̃(M)i, for i = 1, 2.

The compatibility of the sections can be seen as commutative diagrams of group
morphisms

Z(K̃)
αf // G(M)

K(L)i ∩ f−1(K(M))
f
//

sK(L)i

OO

K(M)i

sK(M)i

OO
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for i = 1, 2. Note that these diagrams only make sense if conditions i) - iii) are satisfied,
i.e. if z ∈ K = ker f can be written as z = z1 + z2, with zi ∈ K(L)i ∩K, and

zi 7→ sK(L)i(zi) ∈ K̃ = kerαf

for i = 1, 2.

An element z ∈ f−1(K(M)) can be written in a unique way as z = z1 + z2 with
zi ∈ K(L)i ∩ f−1(K(M)), for i = 1, 2, and f(z) ∈ K(M) can be written in a unique
way as f(z) = f(z)1 + f(z)2 with f(z)i ∈ K(M)i, for i = 1, 2. By condition ii) we have

f(zi) = f(z)i.

The sections sK(L) and sK(M) satisfy

sK(L)(z) = sK(L)2
(z2) · sK(L)1

(z1) ∈ Z(K̃)

and
sK(M)(f(z)) = sK(M)2

(f(z)2) · sK(M)1
(f(z)1) ∈ G(M),

and since αf is a group morphism, the compatibility condition of the sections is equiv-
alent to the commutative diagram of sets

Z(K̃)
αf // G(M)

f−1(K(M))
f

//

sK(L)

OO

K(M).

sK(M)

OO

Be careful, the vertical arrows are not group morphisms.

Definition 2.22. We call

f : (X,L,ΘL)→ (Y,M,ΘM)

an isogeny of polarized abelian varieties with theta structure if f : X → Y is a separable
isogeny, f∗M∼= L and if ΘL and ΘM are f -compatible theta structures.

The polarized abelian varieties with theta structure (X,L,ΘL) and (Y,M,ΘM)
are endowed with canonical projective coordinates. Provided the theta structures are
compatible, the following theorem, called the isogeny theorem, tells us how to compute
the isogeny X → Y in theta coordinates.

Theorem 2.23 (Isogeny theorem). Let f : (X,L,ΘL) → (Y,M,ΘM) be an isogeny of
polarized abelian varieties with theta structure. There exists a scalar λ ∈ k×, such that
for all x ∈ X(k) and i ∈ K(M)1 we have

θΘM
i (f(x)) = λ ·

∑
j∈K(L)1

f(j)=i

θΘL
j (x). (2.8)

Proof. We refer to [BL04, Thm. 6.5.1] for the complex case and for arbitrary fields we
refer to [Mum66, §1, Thm. 4].
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In addition, we can state an affine version of the isogeny theorem. Suppose that we
have an isogeny of polarized abelian varieties with theta structure

f : (X,L,ΘL)→ (Y,M,ΘM).

We know that ΘL and ΘM define affine coordinates on X̃ and Ỹ above X and Y
respectively. Theorem 2.23 tells us that an affine lift

f̃ : X̃ → Ỹ

of f can be given as follows: for x̃ ∈ X̃ with coordinates x̃ = (θΘL
i (x̃))i∈K(L)1

we

define f̃(x̃) ∈ Ỹ to be the affine point with coordinates

θΘM
i (f̃(x̃)) =

∑
j∈K(L)1

f(j)=i

θΘL
j (x̃) (2.9)

for all i ∈ K(M)1. Then f̃(x̃) is indeed above the image of f(x) under the projective
embedding of Y .

Proposition 2.24. Given a polarized abelian variety with theta structure (X,L,ΘL)
and K ⊂ K(L) isotropic and compatible with the decomposition of K(L) induced by ΘL,
there exists an induced polarized abelian variety with theta structure (Y = X/K,M,ΘM).
Moreover, ΘL and ΘM are f -compatible, where f : X → Y is the projection isogeny.

Proof. The level subgroup K̃ := sK(L)(K) ⊂ G(L) determines a line bundleM on Y and

an isomorphism α : f∗M ∼−→ L. To define a theta structure ΘM : H(δM) → G(M), it
suffices by Proposition 2.11 to define a symplectic isomorphism ΘM : K(δM)→ K(M)
and group sections of ρG(M) above K(M)1 := ΘM(Z(δM)) and K(M)2 := ΘM(Ẑ(δM)).

We define the symplectic isomorphism ΘM : K(δM) → K(M) as follows: for each
x ∈ K(δM) ⊂ K(δL) set

ΘM(x) := f(ΘL(x)) ∈ K(M).

Then, the symplectic decomposition K(M) = K(M)1 ⊕ K(M)2 induced by ΘM is
f -compatible with the symplectic decomposition of K(L) induced by ΘL.

For i = 1, 2, and z ∈ K(M)i, let z′ ∈ f−1(z) be any point in the inverse image. Define
the group section sK(M)i : K(M)i → G(M) as

sK(M)i(z) = αf (sK(L)i(z
′)) ∈ G(M).

The following diagram can be helpful

Z(K̃)
αf // G(M)

f−1(K(M)i)
f

//

sK(L)i

OO

K(M)i.

sK(M)i

OO

Since kerαf is precisely the level subgroup K̃ = sK(L)(K), the definition of sK(M)i

does not depend on the choice of z′. This defines a theta structure ΘM on (Y,M),
f -compatible with ΘL and hence, an isogeny of polarized abelian varieties with theta
structure

f : (X,L,ΘL)→ (Y,M,ΘM).
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2.2.4 Product line bundles and product theta structures

Let (X,L,ΘL) be a polarized abelian variety of separable type δ = (δ1, . . . , δg) with theta
structure, and let r ≥ 1 be a nonnegative integer . There is a natural polarization L?r
on Xr defined as

L?r = p∗1L ⊗ · · · ⊗ p∗rL,

where pi : X
r → X is the projection of the ith factor, for i = 1, . . . , r. A polarization

(or ample line bundle) L′ on the variety Xr is called a product polarization if L′ is
isomorphic to L?r for some polarization L on X. According to [Mum66, §3, Lem.1], we
have

G(L?r) ∼= G(L)r/{(a1, . . . , ar) : ai ∈ k× ↪→ G(L), a1 · · · ar = 1}.

The isomorphism is induced by the map G(L)r → G(L?r) sending

((x1,L
φx1−−−→ t∗x1

L), . . . , (xr,L
φxr−−−→ t∗xrL)) 7→ ((x1, . . . , xr),L?r

p∗1φx1⊗···⊗p
∗
rφxr−−−−−−−−−−−−−→ t∗(x1,...,xr)

L?r).

The type δ?r of L?r is

δ?r =

δ1, . . . , δ1︸ ︷︷ ︸
r

, δ2, . . . , δ2︸ ︷︷ ︸
r

, . . . , δg, . . . , δg︸ ︷︷ ︸
r

 ∈ Zgr,
since Z(δ?r) ∼= Z(δ)r. The group K(δ?r) ∼= K(δ)r is equipped with the symplectic
pairing

eδ?r((z1, . . . , zr), (z
′
1, . . . , z

′
r)) = eδ(z1, z

′
1) · · · eδ(zr, z′r) ∈ k×,

and the Heisenberg group H(δ?r) is defined in the same way as in Definition 2.9. The
theta structure ΘL : H(δ)→ G(L) induces in a natural way a k×-isomorphism

(ΘL)?r : H(δ?r)→ G(L?r),

given by

(a, (x1, y1), . . . , (xr, yr)) 7→ (a ·ΘL(1, x1, y1), . . . ,ΘL(1, xr, yr)).

Note that we can actually put the scalar a in any coordinate, not necessarily the first.
The canonical coordinates for (Xr,L?r, (ΘL)?r) are then given by

θ
(ΘL)?r

i (x) = θΘL
i1

(x1)⊗ · · · ⊗ θΘL
ir

(xr), (2.10)

where i = (i1, . . . , ir) ∈ K(L)r1 = K(L?r)1 and x = (x1, . . . , xr) ∈ Xr(k). A theta
structure on (Xr,L?r) is called an r-fold product theta structure if it arises via the above
construction, for some polarized abelian variety with theta structure (X,L,ΘL), and we
will commonly denote it by (ΘL)?r. The notion of r-fold product theta structures will
turn out to be very important for our algorithm of isogeny computation. The following
lemma will be useful in the sequel.

Lemma 2.25. A theta structure Θ: H(δ?r)→ G(L?r) is of product form if and only if
the induced symplectic isomorphism Θ: K(δ?r)→ K(L?r) is of product form.

Proof. Let Θ: H(δ?r) → G(L?r) be a theta structure and suppose that the induced
symplectic isomorphism Θ: K(δ?r)→ K(L?r) is of product form. Denote by ϑ : K(δ)→
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K(L) the restriction of Θ to a single factor, i.e. Θ = ϑ× · · · × ϑ. Let (x, y) ∈ K(δ) and
z = ϑ(x, y) ∈ K(L). Then Θ sends

(1, (x, y), . . . , (x, y)) 7→ ((z, φ1), . . . , (z, φr)),

where φ1, . . . , φr are isomorphisms L ∼−→ t∗zL. There exist scalars a2, . . . , ar ∈ k× such
that φ2 = a2 · φ1, . . . , φr = ar · φ1. Define ϑ : H(δ)→ G(L) pointwise by

(1, x, y) 7→ (z, r
√
a2 · · · r

√
ar · φ1).

One carefully checks that ϑ is well defined, is a k×-isomorphism and that Θ is equal to
the r-fold product ϑ?r of ϑ.

2.3 Totally symmetric line bundles and symmetric theta structures

We assume in this section that char(k) 6= 2. Let (X,L) be a polarized abelian variety
of separable type δ = (δ1, . . . , δg). A priori, there is no way to fix a particular choice of
a representative in the algebraic equivalence class of L. One way to overcome this is to
introduce the notions of symmetric and totally symmetric line bundles.

Definition 2.26. A line bundle L on X is called symmetric if [−1]∗L ∼= L.

As the next proposition shows, symmetric line bundles are quite frequent.

Proposition 2.27. In every algebraic equivalence class of ample line bundles there exits
a symmetric line bundle.

Proof. Let L be an ample line bundle on X. It is easy to see that L−1 ⊗ [−1]∗L ∈
Pic0(X), i.e. L−1⊗ [−1]∗L ∼= L0 for some L0 ∈ Pic0(X). But X̂(k) is a divisible group,
see [EvdGM, Cor. 5.10], hence there exists L′0 ∈ Pic0(X) such that (L′0)⊗2 = L0. We
then have [−1]∗L⊗ (L′0)−1 ∼= L⊗L′0. Since L′0 ∈ Pic0(X), it satisfies (L′0)−1 = [−1]∗L′0,
and therefore L ⊗ L′0 is symmetric.

Suppose that L is symmetric and fix an isomorphism ψ : L ∼−→ [−1]∗L. For all x ∈ X(k)
we have isomorphisms on the fibers

ψ(x) : L(x)
∼−→ ([−1]∗L)(x) = L(−x).

In particular, ψ induces an automorphism ψ(0) : L(0)
∼−→ L(0), which is given by mul-

tiplication by a constant. Up to rescaling ψ, we can assume that ψ(0) is the identity.
We then call ψ a normalized isomorphism.

Let L be a symmetric line bundle on X and let ψ : L ∼−→ [−1]∗L be the normalized

isomorphism. If x ∈ X[2] then L(x)
ψ(x)−−−→ L(−x) = L(x) is an automorphism and

hence, ψ(x) is given by multiplication by a scalar. This defines a map

eL∗ : X[2]→ k×.

Proposition 2.28. We have the following properties:

- eL∗ (x) ∈ {±1};

- eL⊗L
′

∗ = eL∗ · eL
′
∗ for all symmetric line bundles L and L′ on X;
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- If f : X → Y is a homomorphism and if M is a symmetric line bundle on Y ,
then f∗M is symmetric and

ef
∗M
∗ (x) = eM∗ (f(x)), for all x ∈ X[2].

- Let us denote by e2 the Weil-pairing on X[2]× X̂[2]. Let y0 ∈ X̂[2] correspond to
the line bundle L0 ∈ Pic0(X). Then L0 is symmetric and

eL0
∗ (x) = e2(x, y0)

for all x ∈ X[2].

Proof. For a proof see [Mum66, p. 304-305].

Definition 2.29. A symmetric line bundle L is called totally symmetric if eL∗ (x) = 1
for all x ∈ X[2].

The notion of totally symmetric line bundles is useful for making a canonical choice of
a line bundle within an algebraic equivalence class.

Proposition 2.30. Let L be an ample line bundle on X of separable type δ and sup-
pose 2 | δ1, or equivalently X[2] ⊂ K(L). Then there exists a unique totally symmetric
line bundle in the algebraic equivalence class of L.

Proof. It is a well known fact that X[2] ⊂ K(L) implies that the line bundle L is the
square of a line bundle L′ ∈ Pic(X). See [BL04, Lem. 2.5.6] for the complex case
and [Rob10, Cor. 3.2.3] for arbitrary characteristic. Then L′ ⊗ [−1]∗L′ is algebraically
equivalent to L and is totally symmetric, since for all x ∈ X[2] we have

e
L′⊗[−1]∗L′
∗ (x) = eL

′
∗ (x) · e[−1]∗L′

∗ (x) = eL
′
∗ (x) · eL′∗ (−x) =

(
eL
′
∗ (x)

)2
= 1.

Let M be another totally symmetric line bundle in the same equivalence class, and let
L0 ∈ Pic0(X) be such that M = L′ ⊗ [−1]∗L′ ⊗ L0. Then L0 is necessarily symmetric
(i.e. if y0 ∈ X̂(k) corresponds to L0, then y0 ∈ X̂[2]), and L0 must satisfy

1 = eL0
∗ (x) = e2(x, y0), for all x ∈ X[2].

But e2 is non degenerate and hence, y0 = 0.

Corollary 2.31. If f : (X,L) → (Y,M) is an isogeny of polarized abelian varieties
(i.e. f∗M is algebraically equivalent to L) and if L and M are totally symmetric, then
f∗M∼= L.

Proof. The line bundle f∗M is totally symmetric by Proposition 2.28, and by Proposi-
tion 2.30 it is isomorphic to L.

Totally symmetric line bundles also appear as pullbacks of line bundles of certain
quotients of X.

Definition 2.32. The quotient KX := X/± 1 of X by the involution [−1] is called the
Kummer variety of X. We denote by π : X → KX the natural projection.

Then we can show (see [Mum66, §2, Prop. 1]) that the line bundle L on X is totally
symmetric if and only if it is of the from π∗M for some line bundle M on KX .
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Symmetric theta structures. Suppose that L is symmetric, of type δ, and let
ψ : L ∼−→ [−1]∗L be the normalized isomorphism. For (z, φz) ∈ G(L) consider the
composite

L ψ−→ [−1]∗L [−1]∗φz−−−−−→ [−1]∗(t∗zL) = t∗−z([−1]∗L)
t∗−zψ

−1

−−−−−→ t∗−zL.

This determines an automorphism of order 2

γ−1 : G(L)→ G(L), (z, φz) 7→
(
−z, (t∗−zψ−1) ◦ ([−1]∗φz) ◦ ψ

)
.

Consider the following automorphism of the Heisenberg group

γ−1 : H(δ)→ H(δ), (α, x, y) 7→ (α,−x,−y),

which is also of order 2.

Definition 2.33. A theta structure ΘL : H(δ)
∼−→ G(L) on (X,L) is called symmetric if

γ−1 ◦ΘL = ΘL ◦ γ−1.

The reason why symmetric theta structures are of importance to us is that, in case L
is totally symmetric, a symmetric theta structure on (X,L) can be seen as something
intermediate between a symplectic isomorphism K(2δ)

∼−→ K(L⊗2) and a symplectic
isomorphism K(δ)

∼−→ K(L). We already know that a theta structure H(δ)
∼−→ G(L)

induces a symplectic isomorphism K(δ)
∼−→ K(L). On the other hand, a particularity

of symmetric theta structures is that a symplectic isomorphism K(2δ)
∼−→ K(L⊗2)

induces in a unique way a symmetric theta structure H(δ)
∼−→ G(L). Moreover, these

correspondences are onto, meaning that every symplectic isomorphism K(δ)
∼−→ K(L) is

induced by a symmetric theta structure H(δ)
∼−→ G(L), and every such theta structure

is induced by a symplectic isomorphism K(2δ)
∼−→ K(L⊗2). These are Remarks 2 - 4 of

[Mum66, p. 318 - 319]. Stated a little different we have:

Proposition 2.34. Let L be a totally symmetric line bundle on X of type δ. Let
Θ: K(δ)

∼−→ K(L) be a symplectic isomorphism. In order to fix a symmetric theta
structure on (X,L) that induces Θ it suffices to fix a symplectic isomorphism K(2δ)

∼−→
K(L⊗2) that restricts to Θ on K(δ).

For the above proposition we identify K(δ) with a subgroup of K(2δ) in the following
way: the element (x1, . . . , xg) ∈ Z(δ) is sent to (2x1, . . . , 2xg) ∈ Z(2δ), whereas for each

y ∈ Ẑ(δ) there exists a unique y′ ∈ Ẑ(2δ) such that y′(x) = y(2x) for all x ∈ Z(2δ), and
we send y to y′.

Symmetric theta structures are also very handy when it comes to computing the
pullback [−1]∗ on the theta coordinates. One can carefully verify that, if L is a totally
symmetric line bundle on X and if ΘL is a symmetric theta structure, then

[−1] : (X,L,ΘL)→ (X,L,ΘL)

is an isogeny of polarized abelian varieties with theta structure. Hence, we can apply
the isogeny theorem 2.23 to [−1], and by [Mum66, p. 331] we obtain

[−1]∗θΘL
i = θΘL

−i , (2.11)

for all i ∈ K(L)1.

Proposition/Definition 2.35. Let L be a totally symmetric line bundle on X and
let ΘL be a symmetric theta structure. Let x ∈ X(k) with fixed affine lift x̃ = (θΘL

i (x̃))i∈K(L)1
.

Then, a lift −x̃ of −x is given by

θΘL
i (−x̃) = θΘL

−i (x̃), for all i ∈ K(L)1.
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3 Polarizability of the quotient of an abelian variety by a
finite subgroup

Starting from a principally polarized abelian variety (X,L0), we want to give a criterion
on the finite subgroups of X to decide whether the quotient variety admits a principal
polarization “compatible” with the natural projection isogeny or not. As we have seen
in Theorem 2.4, if L is an ample line bundle of arbitrary type on X, then the finite
subgroups K ⊂ K(L) for which the quotient admits a polarization compatible with the
projection isogeny are precisely those subgroups admitting a level subgroup K̃ ⊂ G(L).
And by Lemma 2.8, this can be rephrased as K being an isotropic subgroup of K(L)
for the commutator pairing eL. But this criterion cannot be applied to the principal
polarization L0 since the group K(L0) is trivial. Yet, we will see how to create new
polarizations on X from totally positive real endomorphisms of X. For this section we
let k be a fixed algebraically closed field that is either C or of positive characteristic p.

3.1 Recalls

Let us recall some well known notions and results. For any prime number `, the ring of
`-adic integers Z` is the ring

Z` = lim
←−
Z/`nZ,

where the inverse limit is over the positive integers n and the transition maps are given
by the natural projections Z/`n+1Z→ Z/`nZ.

Let X be an abelian variety of dimension g over k. Suppose that the prime number `
is different from char(k). The `-adic Tate module of X is

T`X = lim
←−

X[`n],

where the inverse limit is again over the positive integers n and the transition maps are

given by X[`n+1]
[`]−→ X[`n]. One can show that T`X is a free Z`-module of rank 2g.

Let Y be another abelian variety over k and denote by Hom(X,Y ) the additive group of
all maps X → Y that are at the same time morphisms of algebraic varieties and group
morphisms. Any α ∈ Hom(X,Y ) induces in a natural way a Z`-linear map

T` α : T`X → T`Y,

and this defines an injective homomorphism of groups

Hom(X,Y )→ HomZ`(T`X,T`Y ).

Moreover, it is even true that

Hom(X,Y )⊗ Z` → HomZ`(T`X,T`Y ) (3.1)

is injective for any prime ` 6= char(k).

For an integer m not divisible by char(k), there is a nondegenerate pairing, called
the Weil pairing,

em : X[m]× X̂[m]→ µm(k),

where µm(k) is the cyclic group of mth roots of unity in k. Combined with any homo-
morphism λ : X → X̂, this becomes a pairing

eλm : X[m]×X[m]→ µm(k), eλm(x, x′) = em(x, λ(x′)).
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If ` is a prime number different from char(k), then we can define a pairing

e` : T`X × T`X̂ → Z`(1), e`((xn), (x′n)) = (e`n(xn, x
′
n)),

where Z`(1) = lim
←−

µ`n(k) with transition maps µ`n+1(k)
(·)`−−→ µ`n(k). Combined with a

homomorphism λ : X → X̂, we obtain a pairing

eλ` : T`X × T`X → Z`(1), eλ` (x, x′) = e`(x, λ(x′))

(λ seen as an element of HomZ`(T`X,T`X̂)). It is not hard to show that if L ∈ Pic(X),

then eφL` is skew-symmetric, where φL : X → X̂ is the homomorphism associated to L
from (2.1). By [Mil86, Prop. 16.6] the converse is true as well.

Proposition 3.1. Suppose char(k) 6= 2, and let ` be a prime number different from char(k).
A homomorphism λ : X → X̂ is of the form φL for some L ∈ Pic(X) if and only if
eλ` : T`X × T`X → Z`(1) is skew-symmetric.

Note that in this case, L⊗2 is algebraically equivalent to the pullback of the Poincaré
sheaf P by (1, λ) : X → X × X̂.

3.2 Real endomorphisms

Let (X,L0) be a principally polarized abelian variety of dimension g over k. Composition
of endomorphisms turns End(X) into a ring. It is well known that End(X) has no zero
divisors and is a free abelian group of finite rank (follows from (3.1)). The ring End(X)
possesses an anti-involution, called the Rosati involution

(·)† : End(X)→ End(X),

defined as
α 7→ α† = φ−1

L0
◦ α̂ ◦ φL0 .

Here, φL0 : X → X̂ is an isomorphism since L0 is a principal polarization. We have the
following properties: for all α, β ∈ End(X) and m ∈ Z,

(α+ β)† = α† + β†, (α ◦ β)† = β† ◦ α†, (α†)† = α, [m]† = [m].

The Rosati involution naturally appears when pulling back L0 by an endomorphism
of X.

Lemma 3.2. For any endomorphism α ∈ End(X) we have

φα∗L0 = φL0 ◦ α† ◦ α.

Proof. We have already seen that

φα∗L0 = α̂ ◦ φL0 ◦ α.

But then
φα∗L0 = φL0 ◦ φ−1

L0
◦ α̂ ◦ φL0︸ ︷︷ ︸
=α†

◦α.
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An endomorphism α ∈ End(X) is called a real endomorphism (sometimes also called
a symmetric endomorphism) if it satisfies α = α†. The set of real endomorphisms is
denoted by End+(X) and forms an additive subgroup of End(X). For every endomor-
phism α ∈ End(X) there exists a monic polynomial Pα(t) ∈ Z[t] of degree 2g satisfying
Pα(n) = deg([n]X − α), for all n ∈ Z. The polynomial Pα is called the characteristic
polynomial of α. An element α ∈ End+(X) is called totally positive if the roots of Pα
are positive, and we denote by End++(X) ⊂ End+(X) the subset of totally positive
real endomorphisms.

If L is any line bundle on X, then φ−1
L0
◦ φL is an endomorphism of X, depending

only on the algebraic equivalence class of L. This defines an injective homomorphism
of abelian groups

NS(X)→ End(X), [L] 7→ φ−1
L0
◦ φL.

Indeed, if φ−1
L0
◦ φL = [0], then K(L) = kerφL = X, which means L ∈ Pic0(X).

Proposition 3.3. Suppose char(k) 6= 2. An endomorphism α ∈ End(X) is of the form
φ−1
L0
◦ φL for some L ∈ Pic(X) if and only if α is symmetric (with respect to L0). In

other words, we have an isomorphism of abelian groups

NS(X)
∼−→ End+(X).

Proof. We know by Proposition 3.1 that the homomorphism λ = φL0 ◦ α : X → X̂ is
of the form φL for some L ∈ Pic(X) if and only if eλ` is skew-symmetric, where ` is a
prime number different from char(k). For x, x′ ∈ T`X we have

eλ` (x, x′) = e`(x, φL0 ◦ α(x′))

= e
φL0
` (x, α(x′))

= e
φL0
` (α(x′), x)−1 by Proposition 3.1

= e`(α(x′), φL0(x))−1

= e`(x
′, α̂ ◦ φL0(x))−1 by [Mil86, Lem. 16.2 b)].

If α is symmetric, i.e. α = α† = φ−1
L0
◦ α̂ ◦ φL0 , then

e`(x
′, α̂ ◦ φL0(x))−1 = e`(x

′, φL0 ◦ α(x))−1 = eλ` (x′, x)−1

and eλ` is skew-symmetric. Conversely, if eλ` is skew-symmetric, then

e`(x, φL0 ◦ α(x′)) = e`(x, α̂ ◦ φL0(x′))

for all x, x′ ∈ T`X, and by the nondegeneracy of e` we deduce that φL0 ◦α = α̂◦φL0 .

One might ask how the isomorphism from Proposition 3.3 behaves when restricted to
polarizations.

Proposition 3.4. Suppose char(k) 6= 2. Let X be a principally polarized abelian va-
riety over k. The isomorphism NS(X)

∼−→ End+(X) induces a bijection between the
polarizations on X and the set End++(X) of totally positive real endomorphisms. More-
over, a polarization of degree d is sent to a totally positive real endomorphism of de-
gree d2. In particular, principal polarizations correspond to totally positive symmetric
units of End(X).

Proof. We refer to [BL04, Prop. 5.2.4] for the complex case and to [Mum70, §21] for
positive characteristic.
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3.3 Principal polarizability of quotients of abelian varieties

Suppose now either k = C or k is an algebraically closed field of characteristic p 6= 2.
Let (X,L0) be a principally polarized abelian variety of dimension g over k. Let β ∈
End++(X) be a totally positive real endomorphism. We know from Proposition 3.4

that φL0 ◦ β : X → X̂ is the polarization isogeny of some ample line bundle Lβ0 on X.

Furthermore we have kerβ = K(Lβ0 ) and hence, for isotropic subgroups K ⊂ kerβ (for

the commutator pairing eLβ0
) we can descend the ample line bundle Lβ0 to an ample line

bundle on Y = X/K. Motivated by this observation we can now give the criterion for
the principal polarizability of quotients of X by finite subgroups.

Proposition 3.5. Let (X,L0) be a principally polarized abelian variety over k. Let
K ⊂ X(k) be a finite subgroup-scheme, and let f : X → Y = X/K be the corresponding
separable isogeny. Then, Y admits a principal polarization if and only if there exists a
totally positive real endomorphism β ∈ End++(X) such that K is a maximal isotropic
subgroup of kerβ for the commutator pairing eLβ0

(see above).

Proof. By the above discussion and Grothendieck’s descent theory (Theorem 2.4) we
know that if β is a totally positive real endomorphism of X, and K ⊂ kerβ is isotropic
for eLβ0

, then Lβ0 descends under f to an ample line bundle M0 on Y . The maximality

of K means that
#K(Lβ0 ) = # kerβ = (#K)2,

i.e.
deg f = #K = degLβ0 .

By (2.3) it follows that degM0 = 1, hence M0 is a principal polarization.

Conversely, suppose thatM0 is a principal polarization on Y . Consider the following
diagram:

X

φL0 ��

X
βoo

��

f // Y

φM0��

X̂ Ŷ .
f̂

oo

Then the composite
β := φ−1

L0
◦ f̂ ◦ φM0 ◦ f︸ ︷︷ ︸

=φf∗M0

is an endomorphism of X. From Proposition 3.4 it follows that β is a totally positive
real endomorphism (the pullback of a polarization by an isogeny is again a polarization).

If we set Lβ0 = f∗M0, then by (2.2) and Lemma 2.8, the group K is isotropic inside

K(Lβ0 ) = kerβ for the commutator pairing eLβ0
. Comparing degrees, we see that

deg β = deg f̂ · deg f = (#K)2,

i.e. K is maximal isotropic inside kerβ.
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3.4 Ordinary and simple abelian varieties over finite fields

We present some facts about abelian varieties over finite fields, following [Wat69] and
[Oor07]. For this section we fix k a finite field of size q = pn. Let X be an abelian
variety of dimension g over k (not necessarily polarized). Let Endk(X) be the ring of
endomorphisms of X that are defined over k, and denote by End0(X) = Endk(X)⊗ZQ
the endomorphism algebra of X. It is well-known that End0(X) is a semisimple Q-
algebra. We say that X is k-simple if it does not admit a proper abelian subvariety
over k. In the sequel we will say “simple” when we mean “k-simple” (note that the
property of not admitting proper subvarieties could get lost over an extension of k,
as opposed to “absolutely simple” where the property is preserved under base change).
Denote by πX ∈ Endk(X) the k-Frobenius endomorphism ofX. IfX is simple then πX is
a Weil q-number, i.e. πX is an algebraic integer and for every embedding ψ : Q(πX)→
C we have |ψ(πX)| =

√
q. By the Honda-Serre-Tate theory, Weil q-numbers (up to

conjugacy) are in bijection with k-isogeny classes of simple abelian varieties over k.
Also, End0(X) is a division ring, hence a simple Q-algebra, and its center equals Q(πX).
When it comes to degrees we have

2g = [End0(X) : Q(πX)]
1
2 · [Q(πX) : Q]. (3.2)

We say that X is ordinary if X[p](k̄) ∼= (Z/pZ)g. If X is ordinary and simple
then Endk(X) is commutative. Hence, End0(X) is a field of degree 2g over Q. If π ∈ Q
is any Weil q-number conjugate to πX , then End0(X) is isomorphic to Q(π). The field
K = Q(π) is a CM-field, i.e. it admits a totally real subfield K0 ⊂ K of degree g
over Q (every embedding ψ0 : K0 → C satisfies ψ0(K0) ⊂ R) and K/K0 is quadratic
and totally imaginary (for every ψ : K → C we have ψ(K) 6⊂ R). The totally real
subfield K0 is generated by π + q

π over Q and the minimal polynomial of π over K0 is
t2−(π+ q

π )t+q ∈ K0[t]. If X admits a principal polarization, then π ·π† = q and hence,

K0 = Q(π + π†).
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4 Computing cyclic isogenies in theta coordinates

In this section we compute the theta coordinates of the quotient of a principally polarized
abelian variety by a rational cyclic subgroup from the theta coordinates of the original
variety and of a generator of the subgroup.

Let k = Fq be a finite field of characteristic p > 2, and let k̄ be a fixed algebraic
closure of k. Let (X,L0) be an ordinary and simple principally polarized abelian variety
of dimension g over k. By Proposition 2.27, we can suppose without loss of generality
that L0 is symmetric. The endomorphism algebra Endk(X) ⊗Z Q is isomorphic to the
CM-field K = Q(π) of degree 2g over Q, where π is a Weil q-number whose conjugacy
class represents the k-isogeny class of X. Let K0 = Q(π+π†) be the totally real subfield
of K of degree g over Q, and assume that the conductor gap [OK0 : Z[π + π†]] is odd.
Let ` ≥ 3 be an odd integer coprime to p · [OK0 : Z[π + π†]]. Suppose we are given a
totally positive real endomorphism β ∈ End++(X) of degree `2, whose kernel kerβ is
isomorphic to a product of two cyclic groups of order `. By Proposition 3.4, the isogeny
φL0 ◦ β : X → X̂ is the polarization isogeny of some ample line bundle Lβ0 on X, and

we can assume Lβ0 symmetric (again by Proposition 2.27). Let G ⊂ K(Lβ0 ) = kerβ be
a Gal(k̄/k)-stable cyclic subgroup-scheme of order `. Let t ∈ G(k̄) be a fixed generator
of G. Let Y := X/G be the quotient abelian variety and let

f : X → Y

be the associated separable isogeny of kernel G. Since G is Gal(k̄/k)-stable, both the
abelian variety Y and the isogeny f are rational. By [Rob10, Prop. 4.2.12] there exists

a level subgroup G̃ ⊂ G(Lβ0 ) of G such that Lβ0 descends to a symmetric ample line
bundle M0 on Y . Moreover, M0 is of degree 1 and hence, (Y,M0) is a principally
polarized abelian variety.

For this section we fix n = 2 or n = 4 and define the totally symmetric ample line
bundles L := L⊗n0 and M :=M⊗n0 . Let ΘL be a symmetric theta structure on (X,L),
and let {

θΘL
i : i ∈ K(L)1

}
be the induced basis of theta functions of Γ(X,L). We have to suppose furthermore
that we know the scalar by which π acts on t and that we know how to evaluate
endomorphisms on the 2n-torsion. This is the case if either of the following holds:

- we know an affine lift π̃ : X̃ → X̃ of the Frobenius π and we know how to lift
End(X[2n]) to End(X̃[2n]), i.e. given an endomorphism α : X[2n] → X[2n], we

know how to compute an affine lift α̃ : X̃[2n]→ X̃[2n] of α, where the coordinates
on the affine cone X̃ are with respect to (X,L,ΘL), or

- we work on the Jacobian variety of a hyperelliptic curve. If this is the case we can
use the formulas of [vW98] and [Cos11] to convert between theta and Mumford
coordinates. This works because L = L⊗n0 , for n = 2 or n = 4.

In this section we want to describe an algorithm that, given

i) an affine lift 0̃X = (θΘL
i (0̃X))i∈K(L)1

of 0X (that we will call an affine theta null
point for (X,L,ΘL)),

ii) an affine lift t̃ = (θΘL
i (t̃))i∈K(L)1

of a generator t of G,
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computes an affine theta null point

0̃Y = (θΘM
j (0̃Y ))j∈K(M)1

for (Y,M,ΘM), where ΘM is a symmetric theta structure on (Y,M) as defined in
Section 4.5.1.

Remark 4.1. According to Remark 1.16, if (Y,M0) is isomorphic to the Jacobian variety
of a hyperelliptic curve, then n = 2 is enough for recovering an equation of the curve
from the coordinates of 0̃Y . Hence, for dimension 2 we can set n = 2. However, in the
non-hyperelliptic genus 3 case, we need n = 4 to compute an affine model of the plane
quartic from the coordinates of 0̃Y (see e.g. [NR17]).

In Section 5 we will suppose that, in addition, we are given

iii) an affine lift x̃ = (θΘL
i (x̃))i∈K(L)1

of a point x ∈ X(k) of order N coprime to

` · [OK0 : Z[π + π†]],

and compute an affine lift

f̃(x) = (θΘM
j (f̃(x)))j∈K(M)1

of f(x). We can say that we compute the isogeny f in theta coordinates, i.e. compute

f̃ : X̃ \ {points of order not coprime to ` · [OK0 : Z[π + π†]]} → Ỹ ,

where the affine coordinates on the cones X̃ and Ỹ are given by ΘL and ΘM respectively.

4.1 Applying the isogeny theorem to f

Suppose we are given an affine theta null point 0̃X for (X,L,ΘL) and an affine lift t̃
of a fixed generator t of G. We want to explain how to compute an affine theta null
point 0̃Y for (Y,M,ΘM), for a certain theta structure ΘM on (Y,M). The only tool
we have at our disposal to relate theta coordinates of isogenous varieties is the isogeny
theorem (Theorem 2.23, or its affine version (2.9)). The isogeny f does not pull back
the polarization M to L, since deg f∗M = deg f · degM 6= degL, so there is no
straightforward way to apply the isogeny theorem. However, if we let Lβ := (Lβ0 )⊗n,
then

f : (X,Lβ)→ (Y,M)

is an isogeny of polarized abelian varieties that satisfies f∗M ∼= Lβ. In order to apply
the isogeny theorem, we have to endow the polarized abelian varieties with f -compatible
theta structures. We explain in Section 4.2 what it means to extend ΘL to a symmetric
theta structure ΘLβ on (X,Lβ), compatible with the descent datum G̃ ⊂ G(Lβ), and
how to do so. By Proposition 2.24, the theta structure ΘLβ determines a symmetric
f -compatible theta structure Θ′M on (Y,M). We could then try to apply the isogeny
theorem to the isogeny of polarized abelian varieties with theta structure

f : (X,Lβ,ΘLβ )→ (Y,M,Θ′M).

The problem is that this requires one to know an affine theta null point for (X,Lβ,ΘLβ ),
which we do not. For a comparison, the affine point 0̃X has ng coordinates, whereas a
theta null point for (X,Lβ,ΘLβ ) has ng` coordinates. There is no obvious way to obtain
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the remaining coordinates. One idea is to search for an endomorphism u ∈ End(X) that
satisfies ūu = β and then apply the isogeny theorem to

u : (X,Lβ,ΘLβ )→ (X,L,ΘL).

But there is no reason such a u exists, and even if it does, the isogeny theorem applied
to u allows us to compute the theta coordinates for (X,L,ΘL) from the theta coordinates
for (X,Lβ,ΘLβ ). We could try to invert this, but it is hopeless since the isogeny theorem
yields ng linear equations that we would have to solve for ng` unknowns. We will follow
a different approach for computing an affine theta null point for (Y,M,ΘM), that we
will explain in the forthcoming sections.

4.2 The β-contragredient isogeny

An idea to overcome the obstruction encountered in the previous section is to apply the
isogeny theorem to the β-contragredient isogeny f ′ instead. Since ker f ⊂ kerβ, there
exists a unique rational isogeny f ′ : Y → X, called the β-contragredient isogeny, such
that f ′ ◦ f = β (the proof is similar to that of [EvdGM, Prop. 5.12]). Denote again by
β := f ◦ f ′ the corresponding endomorphism of Y .

Proposition 4.2.
φ(f ′)∗L0

= φM0 ◦ β.

Proof. Let γ ∈ End(Y ) be the endomorphism γ := φ−1
M0
◦ φ(f ′)∗L0

, so that we have

φ(f ′)∗L0
= φM0 ◦ γ.

By Lemma 3.2 and the fact that β is a real endomorphism, we have

φβ∗L0 = φL0 ◦ β2.

On the other hand,

φβ∗L0 = φf∗((f ′)∗L0) = f̂ ◦ φ(f ′)∗L0
◦ f = f̂ ◦ φM0 ◦ γ ◦ f = f̂ ◦ φM0 ◦ f ◦ γ

= φf∗M0 ◦ γ = φL0 ◦ β ◦ γ.

But φL0 is an isomorphism and End(X) has no zero divisors, and therefore γ = β.

Let Mβ
0 be a symmetric ample line bundle in the algebraic equivalence class de-

termined by φM0 ◦ β (exists by Proposition 3.4), and let Mβ := (Mβ
0 )⊗n. The line

bundle Mβ is totally symmetric and algebraically equivalent to the totally symmetric
line bundle (f ′)∗L, hence they are isomorphic. We have an isogeny of polarized abelian
varieties

f ′ : (Y,Mβ)→ (X,L)

and an isomorphism α : (f ′)∗L ∼−→Mβ. Let ΘL be the fixed symmetric theta structure
on (X,L) from above. We want to define a symmetric theta structure ΘMβ on (Y,Mβ)
that is f ′-compatible with ΘL. We will do so by first defining a symmetric theta
structure Θ on (Y,M), and then extend it (in the sense of Definition 4.3) to a symmetric
theta structure ΘMβ on (Y,Mβ).

Note that the theta group G(M) is isomorphic to the subgroup ρ−1
G(Mβ)

(K(M))

of G(Mβ), where ρG(Mβ) : G(Mβ) → K(Mβ) is the forgetful map (indeed, both are

isomorphic to the abstract group H(δM)). Fix ψ : G(M)
∼−→ ρ−1

G(Mβ)
(K(M)) one such

isomorphism.
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Definition 4.3. Let Θ: H(δM) → G(M) be a theta structure and let ψ be as above.
An extension of Θ is a theta structure ΘMβ : H(δMβ )→ G(Mβ) that satisfies

ΘMβ |H(δM) = ψ ◦Θ.

The theta structure Θ. We present an ad-hoc construction of the theta structure Θ.
Since in a second step we would like to extend Θ to a theta structure on (Y,Mβ) that
is f ′-compatible with ΘL, some care has to be taken.

The isogeny f ′ restricts to an isomorphism K(M) = Y [n]
∼−→ K(L) = X[n], and we

define
K(M)i := (f ′)−1(K(L)i) ∩K(M), for i = 1, 2.

The subgroups K(M)1 and K(M)2 are isotropic for eM and form a symplectic decom-
position K(M) = K(M)1 ⊕ K(M)2. Indeed, we have eMβ = (f ′)∗eL, and it follows
that K(M)i is isotropic for eMβ , for i = 1, 2. But the symplectic pairings eM and eMβ

come from the commutators in the respective theta groups, and eM can be seen as the
restriction of eMβ to ρ−1

G(Mβ)
(K(M)) (the commutator pairing is independent of the lift

to the theta group).

The types δM and δL are the same, hence ΘL induces a symplectic isomorphism

Θ: K(δM)
∼−→ K(M)

via f ′. By Proposition 2.11, in order to define Θ it suffices to define group sections
sK(M)i : K(M)i → G(M), for i = 1, 2. We have to be careful in the way we define these
sections.

Let us denote by G′ the kernel of f ′. The isomorphism α : (f ′)∗L ∼−→Mβ determines

a level subgroup G̃′ ⊂ G(Mβ). Recall the morphism αf ′ : G(Mβ)∗ → G(L) from (2.4),
where G(Mβ)∗ is the subgroup of G(Mβ) above (f ′)−1(K(L)). By Proposition 2.6,

αf ′ induces an isomorphism G(Mβ)∗/G̃′
∼−→ G(L). To define the sections sK(M)1

and
sK(M)2

, we need the following proposition.

Proposition 4.4. We have an isomorphism G(Mβ)∗/G̃′ ∼= ρ−1
G(Mβ)

(K(M)).

Proof. It suffices to show that G(Mβ)∗ is isomorphic to ρ−1
G(Mβ)

(K(M)) × G̃′. Since

(f ′)−1(K(L)) = K(M) ∪ G′, we have ρ−1
G(Mβ)

(K(M)) ⊂ G(Mβ)∗ by definition. The

group G(Mβ)∗ is the centralizer of G̃′ in G(Mβ), and it is easy to see that it is generated

by the subgroups ρ−1
G(Mβ)

(K(M)) and G̃′. The intersection ρ−1
G(Mβ)

(K(M))∩ G̃′ is trivial

(the elements are above n-torsion points and `-torsion points respectively), and G(Mβ)∗

is therefore isomorphic to the direct product ρ−1
G(Mβ)

(K(M))× G̃′.

The horizontal arrows in the following diagram (for i = 1, 2) are isomorphisms, so we
define sK(M)i : K(M)i → G(M) to be the vertical dotted arrow

G(M)
ψ // ρ−1

G(Mβ)
(K(M)) ∼= G(Mβ)∗/G̃′ // G(L)

K(M)i = (f ′)−1(K(L)i)
f ′

//

sK(M)i

OO

K(L)i.

sK(L)i

OO
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The symplectic isomorphism Θ plus the sections sK(M)1
, sK(M)2

yield a symmetric theta
structure

Θ: H(δM)
∼−→ G(M).

Extending Θ. Given (Y,M,Θ) as above, we want to extend Θ to a symmetric theta
structure on (Y,Mβ). In a second step, we will say how to do so while remaining

compatible with the descent datum G̃′, and therefore being f ′-compatible with ΘL.

Lemma 4.5. There exists a symmetric theta structure ΘMβ on (X,Mβ) that extends Θ.

Proof. Observe that M and Mβ are of type δM = (n, . . . , n) ∈ Zg and δMβ =
(n, . . . , n, `n) ∈ Zg respectively. Also,

K(M) = Y [n]

and
K(Mβ) = K(Mβ)[n]⊕K(Mβ)[`] = Y [n]⊕K(Mβ)[`].

Hence, we have K(δM) ⊂ K(δMβ ) and K(M) ⊂ K(Mβ) and the symplectic isomor-
phism Θ: K(δM)

∼−→ K(M) can be extended to a symplectic isomorphism

ΘMβ : K(δMβ )
∼−→ K(Mβ).

Let

sK(M)i : K(M)i → G(M)
ψ
↪−→ G(Mβ), for i = 1, 2,

be the two group sections induced by Θ, where K(M)1 = Θ(Z(δM)) and K(M)2 =
Θ(Ẑ(δM)). The n-torsion part ofK(Mβ)1 = ΘMβ (Z(δMβ )) andK(Mβ)2 = ΘMβ (Ẑ(δMβ ))
equals K(M)1 and K(M)2 respectively. Hence, in order to define group sections

sK(Mβ)i : K(Mβ)i → G(Mβ), for i = 1, 2,

it remains to show how to lift the `-torsion part of K(Mβ)1 and K(Mβ)2. But this
can be done in the same way as in Lemma 2.8. By Proposition 2.11, the symplectic
isomorphism ΘMβ plus the two group sections sK(Mβ)1

, sK(Mβ)2
determine a theta

structure ΘMβ on (Y,Mβ). By [Mum66, §2, Rem. 2], we can suppose that ΘMβ is
symmetric.

Henceforth, we will work with the following convention: when extending Θ to a
symplectic isomorphism ΘMβ : K(δMβ )

∼−→ K(Mβ), we extend the `-torsion part in
such a way that

K(Mβ)2[`] = G′ = ker f ′.

And we can extend the section sK(M)2
to a section sK(Mβ)2

: K(Mβ)2 → G(Mβ), i.e.,

lifting the `-torsion part of K(Mβ)2, in such a way that

sK(Mβ)2
(G′) = G̃′ ⊂ G(Mβ).

Simply choose a generator t′ ∈ G′ and define sK(Mβ)2
(t′) as the unique element of G̃′

above t′. Imposing this choice on sK(Mβ)2
does not change the fact that ΘMβ is a

symmetric theta structure. Indeed, Mβ is totally symmetric and by [Rob10, Prop.

4.2.12], the level subgroup G̃′ is what Mumford (in [Mum66]) calls a symmetric level

subgroup. Finally, since G̃′ = sK(Mβ)(G
′), the theta structures ΘMβ and ΘL are f ′-

compatible and
f ′ : (Y,Mβ,ΘMβ )→ (X,L,ΘL)

is an isogeny of polarized abelian varieties with theta structure.
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4.2.1 Applying the isogeny theorem to f ′

Recall that we have as an input of the algorithm the polarized abelian variety with
symmetric theta structure (X,L,ΘL), a theta null point 0̃X and an affine lift t̃ of a
fixed generator t ∈ G(k̄), both in theta coordinates determined by ΘL. Moreover, we
have defined a f ′-compatible symmetric theta structure ΘMβ on (Y,Mβ) that satisfies
G′ = ker f ′ ⊂ K(Mβ)2. We can apply the isogeny theorem to

f ′ : (Y,Mβ,ΘMβ )→ (X,L,ΘL),

stating that there exists a constant λ ∈ k̄×, such that for all y ∈ Y (k̄) and i ∈ K(L)1

we have
θΘL
i (f ′(y)) = λ ·

∑
j∈K(Mβ)1

f ′(j)=i

θ
ΘMβ

j (y).

The isogeny f ′ in affine coordinates

f̃ ′ : Ỹ → X̃ (4.1)

sends an affine lift ỹ of y to the affine lift f̃ ′(ỹ) of f ′(y), given by

θΘL
i (f̃ ′(ỹ)) =

∑
j∈K(Mβ)1

f ′(j)=i

θ
ΘMβ

j (ỹ),

for all i ∈ K(L)1. But f ′ is injective on K(Mβ)1, since ker f ′ ⊂ K(Mβ)2. Hence,

θΘL
i (f̃ ′(ỹ)) = θ

ΘMβ

j (ỹ), (4.2)

where j ∈ K(Mβ)1[n] is the unique element of K(Mβ)1 that satisfies f ′(j) = i.

Remark 4.6. This allows us to “partially invert” the isogeny theorem in the sense that:
knowing the affine theta null point 0̃X for (X,L,ΘL), Equation (4.2) fixes an affine theta
null point 0̃Y for (Y,Mβ,ΘMβ ) and gives ng out of the ng` affine coordinates of 0̃Y .
Writing each j ∈ K(Mβ)1 as j = jn + j`, with jn ∈ K(Mβ)1[n] and j` ∈ K(Mβ)1[`],

we obtain precisely the ng affine coordinates θ
ΘMβ

j (0̃Y ) for which j` = 0.

However, there is no obvious way we could obtain the remaining ng(` − 1) affine
coordinates of 0̃Y .

Wish scenario. Suppose for a moment we were in the situation where we knew the
affine theta null point 0̃Y for (Y,Mβ,ΘMβ ) induced by 0̃X and f̃ ′ as in Remark 4.6 (i.e.
we knew all the ng` affine coordinates). This would then determine affine lifts for every
element in G = ker f . For a comparison, there are ` elements in G, each admitting ng

affine theta coordinates for (X,L,ΘL).

The symplectic decomposition of K(Mβ)[`] = kerβ induced by ΘMβ is

K(Mβ)[`] = K(Mβ)1[`]⊕G′,

and since f ◦ f ′ = β, the isogeny f ′ restricts to an isomorphism

K(Mβ)1[`]
∼−→ G.
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Let t be the fixed generator of G and let τ := (f ′)−1(t) ∈ K(Mβ)1[`]. We can use the
action of the theta group G(Mβ) on the affine theta coordinates for (Y,Mβ,ΘMβ ) to
obtain affine lifts of t, 2t, . . . , (`− 1)t for (X,L,ΘL). By Proposition 2.18,

τ̃ := τ � 0̃Y

(see Notation 2.19) is an affine lift of τ for (Y,Mβ,ΘMβ ) with jth coordinate given by

θ
ΘMβ

j (τ̃) = θ
ΘMβ

j+τ (0̃Y ),

for all j ∈ K(Mβ)1. By (4.2), the ng coordinates θ
ΘMβ

j (τ̃) with j ∈ K(Mβ)1[n]

determine an affine lift t̃ = f̃ ′(τ̃) of t, with ith affine coordinate (for i ∈ K(L)1) given
by

θΘL
i (t̃) = θ

ΘMβ

j (τ̃) = θ
ΘMβ

j+τ (0̃Y ), (4.3)

where j is the unique element of K(Mβ)1[n] that satisfies f ′(j) = i. Continuing this

way, we obtain affine lifts 2̃t, . . . , ˜(`− 1)t of 2t, . . . , (` − 1)t respectively, with affine
coordinates

θΘL
i (2̃t) = θ

ΘMβ

j+2τ (0̃Y ), (4.4)

...

θΘL
i ( ˜(`− 1)t) = θ

ΘMβ

j+(`−1)τ (0̃Y ),

for all i ∈ K(L)1. Again, for i ∈ K(L)1 we write j ∈ K(Mβ)1[n] for the unique element
of K(Mβ)1 that satisfies f ′(j) = i. Written more compactly, we have

t̃ = f̃ ′(τ � 0̃Y ), 2̃t = f̃ ′(2τ � 0̃Y ), . . . , ˜(`− 1)t = f̃ ′((`− 1)τ � 0̃Y ).

Back to reality. Unfortunately we are not given the theta null point 0̃Y for (Y,Mβ,ΘMβ ),
but only the theta null point 0̃X for (X,L,ΘL). Yet, we have seen that 0̃X fixes a theta

null point 0̃Y , which in return fixes affine lifts t̃, . . . , ˜(`− 1)t of t, . . . , (`−1)t respectively.
This motivates the following definition.

Definition 4.7. Let 0̃X be a fixed theta null point for (X,L,ΘL) (e.g. the input of
the algorithm). Let 0̃Y be the corresponding theta null point for (Y,Mβ,ΘMβ ) from
Remark 4.6, i.e. the unique lift 0̃Y of 0Y that satisfies 0̃X = f̃ ′(0̃Y ). For 1 ≤ u ≤ `− 1,
the affine lift f̃ ′(uτ � 0̃Y ) of ut is called the compatible lift and is denoted by

ũtc = f̃ ′(uτ � 0̃Y ).

The advantage of knowing the compatible lifts is that if we were given 0̃X and

t̃c, . . . , ˜(`− 1)tc, we could “patch” the coordinates together (in the sense of (4.3) and (4.4))
and obtain the theta null point 0̃Y . In our case, the input of the algorithm provides us
with an (arbitrary) affine lift t̃ of the generator t of G. There is absolutely no reason
this lift should be equal to the compatible lift t̃c. We can compute lifts of 2t, . . . , (`−1)t
using chain mult from Section 1.3, but again, there is no reason these lifts should be

equal to the compatible lifts 2̃tc, . . . , ˜(`− 1)tc. Hence, we cannot simply patch together
the `-times ng affine coordinates and hope to get the theta null point 0̃Y .
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The fact of not knowing 0̃Y seems to be a serious problem for the further steps of
the algorithm. Yet, we will see that the compatible lifts satisfy a certain property (they
are excellent lifts, in the sense of [Rob10]) and that we can compute them up to `th
roots of unity. To be more precise, for all 1 ≤ u ≤ `− 1, we can compute the lift

ζu
2

t · ũtc,

where ζt is some unknown `th root of unity. This still does not allow us to obtain a
theta null point for (Y,Mβ,ΘMβ ), but as will turn out in Section 4.4.2, we will not
need to know the exact value of ζt to be able to compute a theta null point for (Y,M),
the desired output of the algorithm.

4.3 Endomorphisms of Y r

So far, we have considered the isogeny f ′ : (Y,Mβ,ΘMβ ) → (X,L,ΘL). This did not
allow us to obtain a theta null point 0̃Y for (Y,Mβ,ΘMβ ). However, as we will explain
in Section 4.4.1, we can compute the `-times ng affine coordinates

θ
ΘMβ

j (0̃Y ) = θΘL
i (0̃X), (4.5)

ζt · θ
ΘMβ

j+τ (0̃Y ) = θΘL
i (ζt · t̃c),

...

ζ
(`−1)2

t · θΘMβ

j+(`−1)τ (0̃Y ) = θΘL
i (ζ

(`−1)2

t · ˜(`− 1)tc),

where 0̃Y is the affine lift of 0Y from Definition 4.7, ζt is an unknown `th root of unity,
j runs over K(Mβ)1[n] and i = f ′(j) runs over K(L)1. We will show in Section 4.4.2
how to get rid of the ambiguity due to ζt.

For the rest of this section, let us suppose we knew a theta null point 0̃Y for
(Y,Mβ,ΘMβ ). We could then, similar to the idea in Section 4.1, try to apply the
isogeny theorem to an endomorphism u ∈ End(Y ) that satisfies ūu = β. Indeed, we
then have u∗M∼=Mβ. But such an endomorphism need not exist, so we cannot rely on
it. Instead, we use an idea appearing in [CR11] and motivated by Zarhin’s trick [Mil86,
Rem. 16.12], used to show that for any abelian variety X, the abelian variety (X× X̂)4

is principally polarizable. Note that for any integer r ≥ 1, the endomorphism β induces
an endomorphism β×r : Y r → Y r of the r-fold product Y r. Choosing r > 1 allows
to search for an endomorphism F ∈ End(Y r) that satisfies F̄F = β×r. If for exam-
ple r = 4, we know by [Sie21] that any totally positive element of OK0 is the sum of
four squares of algebraic numbers in the same field, i.e. there exist α1, . . . , α4 ∈ K0

that satisfy β = α2
1 + · · · + α2

4 (see Algorithm 1). In general, the αi’s need not be
integral and hence, need not be in End+(Y ). Yet, assuming they yield endomorphisms
of the `-torsion and the n-torsion subgroups (which is the case since [OK0 : Z[π + π†]]
is assumed coprime to `n, i.e. the denominators of the αi’s are coprime to `n), one can
take F to be the endomorphism whose matrix MF ∈ Mat4(End+(Y )) corresponds to
left multiplication by α1 + α2i+ α3j + α4k on the Hamilton quaternions over K0, i.e.

MF =

α1 −α2 −α3 −α4

α2 α1 −α4 α3

α3 α4 α1 −α2

α4 −α3 α2 α1

 .

We then have F̄F = β×4, since MF̄ = tMF and tMF ·MF = βI4.
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In case β can be written as the sum of two squares of algebraic numbers, β = α2
1+α2

2,
we take F ∈ End(Y 2) to be the endomorphism whose matrix is

MF =

(
α1 −α2

α2 α1

)
.

Let r = 2 or r = 4 and let F ∈ End(Y r) be such that F̄F = β×r. It is easy to see
that F ∗M?r

0 has polarization isogeny φF ∗M?r
0

= φM?r
0
◦ β×r = φ

(Mβ
0 )?r

and hence,

F ∗M?r ∼= (Mβ)?r,

both being totally symmetric. Consider the r-fold product theta structure Θ(Mβ)?r

on (Y r, (Mβ)?r) determined by ΘMβ as in Section 2.2.4. Then, Θ(Mβ)?r is easily seen
to be symmetric and by [Rob10, Rem. 4.2.15], it is also compatible with the descent
datum associated to M?r and the isomorphism F ∗M?r ∼= (Mβ)?r. Let Θ′M?r be the
induced F -compatible theta structure on (Y r,M?r) as in Proposition 2.24. By [Rob10,
Rem. 4.2.15], the theta structure Θ′M?r is symmetric as well. We have an isogeny of
polarized abelian varieties with theta structure

F : (Y r, (Mβ)?r,Θ(Mβ)?r)→ (Y r,M?r,Θ′M?r).

The isogeny theorem applied to F states that there exists λ ∈ k×, such that for all y =
(y1, . . . , yr) ∈ Y r(k) and k ∈ K(M?r)1 we have

θ
Θ′M?r

k (F (y)) = λ ·
∑

τ∈K((Mβ)?r)1[`]
F (τ )=0

θ
Θ

(Mβ)?r

j+τ (y) = λ ·
∑

τ∈K((Mβ)?r)1[`]
F (τ )=0

r∏
s=1

θ
ΘMβ

js+τs
(ys),

where j = (j1, . . . , jr) ∈ K((Mβ)?r)1[n] is the unique element of K((Mβ)?r)1 that
satisfies F (j) = k. Here, we have used the fact that K((Mβ)?r)1 = K((Mβ)?r)1[n] ⊕
K((Mβ)?r)1[`], that k ∈ Xr[n] and that kerF ⊂ Y r[`]. Specializing to y = 0Y r , we
obtain

θ
Θ′M?r

k (0Y r) = λ ·
∑

τ∈K((Mβ)?r)1[`]
F (τ )=0

r∏
s=1

θ
ΘMβ

js+τs
(0Y ).

The affine version of F
F̃ : Ỹ r → Ỹ r

is given by

θ
Θ′M?r

k (F̃ (ỹ)) =
∑

τ∈K((Mβ)?r)1[`]
F (τ )=0

r∏
s=1

θ
ΘMβ

js+τs
(ỹs), (4.6)

and in particular

θ
Θ′M?r

k (0̃Y r) =
∑

τ∈K((Mβ)?r)1[`]
F (τ )=0

r∏
s=1

θ
ΘMβ

js+τs
(0̃Y ). (4.7)

Hence, (4.7) allows us to compute a theta null point 0̃Y r for (Y r,M?r,Θ′M?r). Yet,
there are two major obstacles that we have to overcome:
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i) As mentioned at the beginning of this section, we do not know the theta null
point 0̃Y for (Y,Mβ,ΘMβ ). We know ` “parts” of it, each up to an unknown root
of unity, see (4.5). Hence, when trying to evaluate the right-hand side of (4.7),

what we substitute for θ
ΘMβ

js+τs
(0̃Y ) is the (js + τs)th coordinate we have at our

disposal, which differs from the correct value by an `th root of unity. We will
show in Section 4.4.2 that we can still correctly compute 0̃Y r this way.

ii) There is no reason the theta structure Θ′M?r is of product form, i.e. an r-fold
product theta structure. If it were the product of say Θ′M (a theta structure
on (Y,M)), then the coordinates for Θ′M?r would be given by

θ
Θ′M?r

k = θ
Θ′M
k1
⊗ · · · ⊗ θΘ′M

kr
,

for all k = (k1, . . . , kr) ∈ K(M?r)1, and one could easily obtain the (projective)
theta coordinates for a single factor (Y,M,Θ′M). What we do in Section 4.5 is to
seek for a metaplectic automorphism of H(δM?r) that turns Θ′M?r into product
form and then apply the symplectic transformation formula to the theta coordi-
nates for (Y r,M?r,Θ′M?r). If the new theta structure on (Y r,M?r) is the r-fold
product of say ΘM, then we can obtain the (projective) theta coordinates of 0Y
for (Y,M,ΘM).

4.3.1 Computing α1, . . . , αr

We give an algorithm for the case g = 2 and r = 4. In this case, β is a totally positive
element in the real quadratic number field K0, and NK0/Q(β) = `. Let T = TK0/Q(β) ∈
Z be the trace of β. Then β is a root of the polynomial x2 − Tx + ` ∈ Z[x]. Let
a1, . . . , a4 ∈ Z≥0 be integers satisfying a2

1 + · · ·+a2
4 = `. Since β is real, we have T 2 > 4`,

and thus |T | > 2
√
` ≥ 2a1. Moreover, β is totally positive and hence, we have T > 0.

Let b1, · · · , b4 ∈ Z≥0 be such that b21 + · · ·+ b24 = T − 2a1. We have

(a1 − β)2 + a2
2 + a2

3 + a2
4 = `− 2a1β + β2

= `− Tβ + β2 + (b21 + · · ·+ b24)β

= (b21 + · · ·+ b24)β.

If we let

M =

a1 − β −a2 −a3 −a4

a2 a1 − β −a4 a3

a3 a4 a1 − β −a2

a4 −a3 a2 a1 − β

 ∈Mat4(K0), (4.8)

then the linear isomorphism
K4

0 → K4
0 , c 7→Mc

sends an element of squared norm ‖c‖2 to an element of squared norm

‖Mc‖2 = ((a1 − β)2 + a2
2 + a2

3 + a2
4)‖c‖2 = (b21 + · · ·+ b24)β‖c‖2.

Here, the word squared norm is used for the sum of the squares of a vector in K4
0 ,

and should not be confused with the norm NK0/Q on K0. It suffices then to find a

vector c ∈ K4
0 of squared norm ‖c‖2 = 1

b21+···+b24
. The columns of the matrix

N =

b1 −b2 −b3 −b4
b2 b1 −b4 b3
b3 b4 b1 −b2
b4 −b3 b2 b1

 ∈Mat4(K0) (4.9)
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are pairwise orthogonal, and of squared norm b21 + · · ·+ b24. Hence, the columns of N−1

are pairwise orthogonal too and of squared norm 1
b21+···+b24

. Taking c to be the first

column of N−1, we have Mc ∈ K4
0 and ‖Mc‖2 = β. That is, β is a sum of four squares.

Algorithm 1 Computing α1, . . . , α4 in case [K0 : Q] = 2

Require: β ∈ OK0 totally positive
Ensure: α1, . . . , α4 ∈ K0 satisfying β = α2

1 + · · ·+ α2
4

1: compute a1, . . . , a4 ∈ Z≥0 such that a2
1 + · · ·+ a2

4 = NK0/Q(β)
2: compute b1, . . . , b4 ∈ Z≥0 such that b21 + · · ·+ b24 = TK0/Q(β)− 2a1

3: compute N−1 ∈Mat4(K0), where N is as in (4.9)
4: return Mc, where M is as in (4.8) and c is the first column of N−1

4.4 Computing the theta null point 0̃Y r for (Y r,M?r,Θ′M?r)

This section is about how to correctly compute the right-hand side of (4.7). Let 0̃X
and t̃ be the affine lifts given as input of the algorithm, both in theta coordinates
for (X,L,ΘL). Here, t is a fixed generator of the kernel G of f , L is a totally symmetric
line bundle of type δL = (n, . . . , n) on X, for n = 2 or n = 4, and ΘL is a symmetric
theta structure on (X,L). Let (Y,Mβ,ΘMβ ) be the polarized abelian variety with theta
structure from Section 4.2.1, and let

f ′ : (Y,Mβ,ΘMβ )→ (X,L,ΘL)

be the β-contragredient isogeny of polarized abelian varieties with theta structure.

Recall the algorithm chain mult(m, x̃, 0̃X) from [Rob10, §4.4] and Section 1.3 that,
given m ∈ Z, an affine lift x̃ and a theta null point 0̃X for (X,L,ΘL), computes an affine
lift of mx. The compatible lift t̃c of t, as defined in Definition 4.7, satisfies a certain
property, following [Rob10, §7.4].

Definition 4.8. A lift x̃ of x ∈ X[`] is called excellent with respect to (X,L,ΘL, 0̃X) if

chain mult(m+ 1, x̃, 0̃X) = − chain mult(m, x̃, 0̃X),

where ` = 2m+ 1 and the lift − chain mult(m, x̃, 0̃X) is as in Proposition 2.35.

By [LR12, Lem. 3.10], for any u ∈ Z and λ ∈ k̄× we have

chain mult(u, λ · x̃, 0̃X) = λu
2 · chain mult(u, x̃, 0̃X).

To compute an excellent lift of t, we look for a scalar λt ∈ k̄× such that λt · t̃ is excellent.
Using that

chain mult(m+ 1, λt · t̃, 0̃X) = λ
(m+1)2

t · chain mult(m+ 1, t̃, 0̃X)

and
chain mult(m,λt · t̃, 0̃X) = λm

2

t · chain mult(m, t̃, 0̃X),

the lift λt · t̃ is excellent if

λ`t · chain mult(m+ 1, t̃, 0̃X) = − chain mult(m, t̃, 0̃X).

This determines λ`t uniquely. Hence, for any `th root λt of λ`t, the lift λt · t̃ is excellent.
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Algorithm 2 Computing an excellent lift of t

Require: lifts t̃ and 0̃X of t and 0X for (X,L,ΘL) respectively
Ensure: an excellent lift t̃e with respect to (X,L,ΘL, 0̃X)
1: compute chain mult(m, t̃, 0̃X) and chain mult(m+ 1, t̃, 0̃X), where ` = 2m+ 1
2: compute the scalar κ ∈ k̄× such that

κ · chain mult(m+ 1, t̃, 0̃X) = − chain mult(m, t̃, 0̃X),

where − chain mult(m, t̃, 0̃X) is as in Proposition 2.35
3: compute λt ∈ k̄× such that λ`t = κ
4: return λt · t̃

We will analyse the complexity of Algorithm 2 in Section 6.

4.4.1 The compatible lifts are excellent lifts

We will show that the compatible lift t̃c = f̃ ′(τ � 0̃Y ) is an excellent lift with respect
to (X,L,ΘL, 0̃X), and that for all 2 ≤ u ≤ `− 1, we have

ũtc = chain mult(u, t̃c, 0̃X).

Hence, when computing an excellent lift t̃e of t, it will differ from t̃c by some `th root
of unity ζt, i.e.

t̃e = ζt · t̃c.

Let us recall Lemma 3.9 and Corollaries 3.16 and 3.17 from [LR12].

Lemma 4.9. Let f̃ ′ : Ỹ → X̃ be the affine version of f ′ : (Y,Mβ,ΘMβ ) → (X,L,ΘL)
as in (4.1). Let 0̃X be a fixed theta null point for (X,L,ΘL) and let 0̃Y be the unique
theta null point for (Y,Mβ,ΘMβ ) that satisfies f̃ ′(0̃Y ) = 0̃X . For all z, z′ ∈ K(Mβ)

and ỹ, ỹ′, ỹ − y′ ∈ Ỹ , we have

i) −(z � 0̃Y ) = (−z) � 0̃Y ;

ii) (z+z′) � chain add(ỹ, ỹ′, ỹ − y′, 0̃Y ) = chain add(z � ỹ, z′ � ỹ′, (z−z′) � ỹ − y′, 0̃Y );

iii) f̃ ′(chain add(ỹ, ỹ′, ỹ − y′, 0̃Y )) = chain add(f̃ ′(ỹ), f̃ ′(ỹ′), f̃ ′(ỹ − y′), 0̃X).

We can show:

Lemma 4.10. Let z ∈ K(Mβ) and let u ∈ Z≥0. Then, for any ỹ, ỹ′, ỹ + y′ ∈ Ỹ , we
have

chain mult(u, z � ỹ, 0̃Y ) = uz � chain mult(u, ỹ, 0̃Y )

and

chain multadd(u, z � ỹ + y′, z � ỹ, ỹ′, 0̃Y ) = uz � chain multadd(u, ỹ + y′, ỹ, ỹ′, 0̃Y ).

Proof. Let us first recall that chain mult(u, ỹ, 0̃Y ) is defined as

chain mult(u, ỹ, 0̃Y ) = chain multadd(u, ỹ, ỹ, 0̃Y , 0̃Y ),
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and that we compute chain multadd(u, ỹ, ỹ, 0̃Y , 0̃Y ) recursively as

chain multadd(u, ỹ, ỹ, 0̃Y , 0̃Y ) (4.10)

= chain add(chain multadd(u− 1, ỹ, ỹ, 0̃Y , 0̃Y ), ỹ, chain multadd(u− 2, ỹ, ỹ, 0̃Y , 0̃Y ), 0̃Y ).

Hence, we can write chain mult(u, ỹ, 0̃Y ) recursively as

chain mult(u, ỹ, 0̃Y ) = chain add(chain mult(u− 1, ỹ, 0̃Y ), ỹ, chain mult(u− 2, ỹ, 0̃Y ), 0̃Y ).

Note that we have

chain mult(0, ỹ, 0̃Y ) = 0̃Y ,

chain mult(1, ỹ, 0̃Y ) = ỹ,

chain mult(2, ỹ, 0̃Y ) = chain add(ỹ, ỹ, 0̃Y , 0̃Y ).

We prove the first claim by induction on u. For u = 1 we have

chain mult(1, z � ỹ, 0̃Y ) = z � ỹ = z � chain mult(1, ỹ, 0̃Y ).

Assume that the statement is true for all v ≤ u, and write

chain mult(u+ 1, z � ỹ, 0̃Y )

= chain add(chain mult(u, z � ỹ, 0̃Y ), z � ỹ, chain mult(u− 1, z � ỹ, 0̃Y ), 0̃Y )

= chain add(uz � chain mult(u, ỹ, 0̃Y ), z � ỹ, (u− 1)z � chain mult(u− 1, ỹ, 0̃Y ), 0̃Y )

= (u+ 1)z � chain add(chain mult(u, ỹ, 0̃Y ), ỹ, chain mult(u− 1, ỹ, 0̃Y ), 0̃Y )

= (u+ 1)z � chain mult(u+ 1, ỹ, 0̃Y ).

This proves the induction hypothesis. The proof for chain multadd is similar, except
that we use (4.10).

We are now able to prove the key result:

Proposition 4.11. The compatible lift t̃c of t is an excellent lift with respect to (X,L,ΘL, 0̃X),
and for all 2 ≤ u ≤ `− 1, we have

ũtc = chain mult(u, t̃c, 0̃X).

It follows that 2̃tc, . . . , ˜(`− 1)tc are excellent lifts too.

Proof. Let 0̃Y be the unique theta null point for (Y,Mβ,ΘMβ ) that satisfies f̃ ′(0̃Y ) =
0̃X . Then, for 1 ≤ u ≤ `− 1, the compatible lift ũtc of ut is defined as

ũtc = f̃ ′(uτ � 0̃Y ),

where τ ∈ K(Mβ)1[`] is the unique element of K(Mβ)1 that satisfies f ′(τ) = t (recall
that ker f ′ ⊂ K(Mβ)2). Write ` = 2m+1 and observe that (m+1)τ � 0̃Y = (−mτ) � 0̃Y .
This follows from `τ = 0 and the fact that τ � 0̃Y is an action when restricted to an eMβ -
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isotropic subgroup of K(Mβ). We have

chain mult(m+ 1, t̃c, 0̃X) = chain mult(m+ 1, f̃ ′(τ � 0̃Y ), 0̃X)

= f̃ ′(chain mult(m+ 1, τ � 0̃Y , 0̃Y )) by Lemma 4.9 iii)

= f̃ ′((m+ 1)τ � chain mult(m+ 1, 0̃Y , 0̃Y )) by Lemma 4.10

= f̃ ′((−mτ) � 0̃Y )

= f̃ ′(−(mτ � chain mult(m, 0̃Y , 0̃Y ))) by Lemma 4.9 i)

= f̃ ′(− chain mult(m, τ � 0̃Y , 0̃Y )) by Lemma 4.10

= − chain mult(m, f̃ ′(τ � 0̃Y ), 0̃X) by Lemma 4.9 iii)

= − chain mult(m, t̃c, 0̃X),

and therefore t̃c is an excellent lift for (X,L,ΘL, 0̃X). Moreover, for 2 ≤ u ≤ `− 1, we
have

ũtc = f̃ ′(uτ � 0̃Y )

= f̃ ′(uτ � chain mult(u, 0̃Y , 0̃Y ))

= f̃ ′(chain mult(u, τ � 0̃Y , 0̃Y )) by Lemma 4.10

= chain mult(u, f̃ ′(τ � 0̃Y ), 0̃X) by Lemma 4.9 iii)

= chain mult(u, t̃c, 0̃X).

The last assertion follows from the fact that for all v ∈ Z≥0,

chain mult(v, chain mult(u, t̃c, 0̃X), 0̃X) = chain mult(u, chain mult(v, t̃c, 0̃X), 0̃X).

4.4.2 Independence of the choice of excellent lifts

Recall that so far we have applied the isogeny theorem to the isogenies of polarized
abelian varieties with theta structure

f ′ : (Y,Mβ,ΘMβ )→ (X,L,ΘL)

and
F : (Y r, (Mβ)?r,Θ(Mβ)?r)→ (Y r,M?r,Θ′M?r),

and that we want to compute a theta null point 0̃Y r for (Y r,M?r,Θ′M?r), following (4.7)
as

θ
Θ′M?r

k (0̃Y r) =
∑

τ∈K((Mβ)?r)1[`]
F (τ )=0

r∏
s=1

θ
ΘMβ

js+τs
(0̃Y ),

for all k ∈ K(M?r)1, where j = (j1, . . . , jr) ∈ K((Mβ)?r)1[n] is the unique element of
K((Mβ)?r)1 that satisfies F (j) = k. Knowing the theta null point 0̃Y for (Y,Mβ,ΘMβ )

would require us to know the compatible lifts t̃c, 2̃tc, . . . , ˜(`− 1)tc of t, 2t, . . . , (` − 1)t
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respectively, which we do not. However, if we compute an excellent lift t̃e of t with
respect to (X,L,ΘL, 0̃X), then it will differ from t̃c by an unknown `th root of unity ζt,

t̃e = ζt · t̃c
chain mult(2, t̃e, 0̃X) = ζ22

t · 2̃tc
...

chain mult(`− 1, t̃e, 0̃X) = ζ
(`−1)2

t · ˜(`− 1)tc.

In theta coordinates this reads as

θΘL
f ′(j)(t̃e) = ζt · θ

ΘMβ

j+τ (0̃Y )

θΘL
f ′(j)(chain mult(2, t̃e, 0̃X)) = ζ22

t · θ
ΘMβ

j+2τ (0̃Y )

...

θΘL
f ′(j)(chain mult(`− 1, t̃e, 0̃X)) = ζ

(`−1)2

t · θΘMβ

j+(`−1)τ (0̃Y ),

where j runs through K(Mβ)1[n]. Writing τ = (τ1, . . . , τr) ∈ K((Mβ)?r)1[`] as τ =
(u1τ, . . . , urτ), with 0 ≤ u1, . . . , ur ≤ `− 1, we compute the sum

∑
τ∈K((Mβ)?r)1[`]

F (τ )=0

r∏
s=1

θ
ΘMβ

js+τs
(0̃Y )

by substituting θΘL
f ′(js)

(chain mult(us, t̃e, 0̃X)) for θ
ΘMβ

js+τs
(0̃Y ). In particular, what we

compute is the sum ∑
τ∈K((Mβ)?r)1[`]

F (τ )=0

ζ
u2

1+···+u2
r

t · θΘMβ

j1+u1τ
(0̃Y ) · · · θΘMβ

jr+urτ
(0̃Y ).

It remains to show that
u2

1 + · · ·+ u2
r ≡ 0 mod `,

for all (u1, . . . , ur) coming from a τ = (u1τ, . . . , urτ) ∈ K((Mβ)?r)1[`] ∩ kerF . We
prove the case r = 4. The case r = 2 can be proven in a similar way.

Lemma 4.12. We have

K((Mβ)?4)1[`] ∩ kerF = { tMF (τ1, τ2, 0, 0) : τ1, τ2 ∈ K(Mβ)1[`]}.

Proof. Observe that K((Mβ)?4)1[`] is a rational subgroup, since isomorphic to G4 via
the rational morphism (f ′)×4. Then, π preserves K(Mβ)1[`] and hence, F and F̄
are endomorphisms of K((Mβ)?4)1[`] (since we assumed [OK0 : Z[π + π†]] coprime
to `, the endomorphisms αi, when written as polynomials in π, have denominators
coprime to `). Moreover, one can easily verify that MF · tMF = βI4. We then have
F̄ (K((Mβ)?4)1[`]) ⊂ kerF ∩K((Mβ)?4)1[`] and we conclude by cardinality reason.

For τ1, τ2 ∈ K(Mβ)1[`], we have

tMF (τ1, τ2, 0, 0) = (α1(τ1)+α2(τ2),−α2(τ1)+α1(τ2),−α3(τ1)−α4(τ2),−α4(τ1)+α3(τ2)).
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Write τ1 = u1τ and τ2 = u2τ , with 0 ≤ u1, u2 ≤ `− 1, and for s = 1, . . . , 4, let as be the
integer given by the action of αs on τ , i.e. 0 ≤ as ≤ `− 1 and as satisfies

αs(τ) = asτ. (4.11)

Hence, we can write

K((Mβ)?4)1[`] ∩ kerF

= {((a1u1 + a2u2)τ, (−a2u1 + a1u2)τ, (−a3u1 − a4u2)τ, (−a4u1 + a3u2)τ) : 0 ≤ u1, u2 ≤ `− 1}.

But

(a1u1 +a2u2)2 +(−a2u1 +a1u2)2 +(−a3u1−a4u2)2 +(−a4u1 +a3u2)2 = (a2
1 + · · ·+a2

4)(u2
1 +u2

2)

and a2
1 + · · · + a2

4 is a multiple of `, since it is given by the scalar of the action
of β = α2

1 + · · ·+ α2
4 on τ . Summarizing the above we have:

Proposition 4.13. Let t̃e be an excellent lift of t with respect to (X,L,ΘL, 0̃X). We

can compute a theta null point 0̃Y 4 for (Y 4,M?4,Θ′M?4) as follows: let k ∈ K(M?4)1

and let j = (j1, . . . , j4) ∈ K((Mβ)?4)1[n] be the unique element of K((Mβ)?4)1 that
satisfies F (j) = k. Then, we have

θ
Θ′M?4

k (0̃Y 4) =
∑

0≤u1,u2≤`−1

θΘL
f ′(j1)(chain mult(a1u1 + a2u2, t̃e, 0̃X))

· θΘL
f ′(j2)(chain mult(−a2u1 + a1u2, t̃e, 0̃X))

· θΘL
f ′(j3)(chain mult(−a3u1 − a4u2, t̃e, 0̃X))

· θΘL
f ′(j4)(chain mult(−a4u1 + a3u2, t̃e, 0̃X)).

4.5 Modification of Θ′M?r on (Y r,M?r) via a metaplectic automorphism

From the theta null point 0̃Y r for the symmetric theta structure Θ′M?r on (Y r,M?r)
from Section 4.4 we cannot automatically recover a theta null point for (Y,M). We could
do so if Θ′M?r were of the form ΘM ?ΘM?(r−1) , for theta structures ΘM and ΘM?(r−1)

on (Y,M) and (Y r−1,M?(r−1)) respectively.

In order to obtain information about a single polarized factor (Y,M), we need to
modify Θ′M?r via a suitably chosen metaplectic automorphism (an automorphism of the
corresponding Heisenberg group) so that it has the above form. In our case we will
seek for an automorphism of H(δM?r) that turns Θ′M?r into a theta structure of the
form (ΘM)?r, where ΘM is a symmetric theta structure on (Y,M). We explain how to
do that now.

Lemma 4.14. There exists a metaplectic automorphism M ∈ Autk×(H(δM?r)) such
that the theta structure Θ′M?r ◦M is a product theta structure.

Proof. Since M is totally symmetric, there exists a symmetric theta structure ΘM
on (Y,M). We can then form the (r-fold) product theta structure (ΘM)?r = ΘM ?
· · · ? ΘM on (Y r,M?r). Define M := Θ′−1

M?r ◦ (ΘM)?r, which is clearly an element
of Autk×(H(δM?r)) and satisfies the above property.
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4.5.1 Explicit computation of a metaplectic automorphism M

For simplifying notation in this section, we will writeM2 forM⊗2, (Mβ)2 for (Mβ)⊗2,
etc. Lemma 4.14 shows that Θ′M?r can be transformed into a product theta struc-
ture via an automorphism M ∈ Autk×(H(δM?r)), but does not provide such an M .
By Proposition 2.34, to determine a symmetric theta structure H(δM?r) → G(M?r)
it suffices to provide a symplectic isomorphism K(2δM?r) → K((M?r)2). Observe
that K(2δM?r) = K((2δM)?r) = K(2δM) × · · · × K(2δM) and that K((M?r)2) =
K((M2)?r) = K(M2)× · · · ×K(M2). We have the following proposition.

Proposition 4.15. Suppose that a symplectic isomorphism K(2δM?r) → K((M?r)2)
is of product form. Then, the induced symmetric theta structure H(δM?r)→ G(M?r) is
also of product form.

Proof. Observe that the induced symplectic isomorphism K(δM?r) → K(M?r) is of
product form, then use Lemma 2.25.

We will now explain how to find the symplectic isomorphismK(2δM?r)→ K((M?r)2)
that turns Θ′M?r into a product theta structure. Consider the polarization (Mβ)2

on Y . It determines a symplectic pairing e(Mβ)2 on K((Mβ)2) ⊂ Y [2`n], which

equals eMβ when restricted to K(Mβ) ⊂ Y [`n]. Let {x1, . . . , xg, x̂1, . . . , x̂g} be any
symplectic basis of K((Mβ)2)[2n] = Y [2n] for e(Mβ)2 above the symplectic basis of

K(Mβ)[n] induced by ΘMβ . By “above” we mean that {2x1, . . . , 2xg, 2x̂1, . . . , 2x̂g} is
equal to the basis induced by ΘMβ . We can then form an r-fold product symplec-
tic basis on K(((Mβ)?r)2)[2n] = Y r[2n] for the pairing e((Mβ)?r)2 , that we will for

simplicity denote by {xi, x̂i}gri=1. Let yi = F (xi) and ŷi = F (x̂i), for i = 1, . . . , gr.
The basis {yi, ŷi}gri=1 of K((M?r)2) = Y r[2n] is not of product form, but is sym-
plectic for the pairing e(M?r)2 . Also, let {ei, êi}gri=1 be the r-fold product basis on

K((L?r)2) = Xr[2n] given by ei = (f ′)×r(xi) and êi = (f ′)×r(x̂i), for i = 1, . . . , gr.

The basis {ei, êi}gri=1 is symplectic for the pairing e(L?r)2 . Finally, let {di, d̂i}gri=1 be

the basis of K(((Lβ)?r)2)[2n] = Xr[2n] determined by the property f×r(di) = yi and

f×r(d̂i) = ŷi, for i = 1, . . . , gr (using the fact that ker f ⊂ X[`]). The basis {di, d̂i}gri=1 is
symplectic for the pairing e((Lβ)?r)2 but is not of product form. The following diagram
might be helpful.

{ei, êi} : r-fold, symplectic for e(L?r)2

��

{xi, x̂i} : r-fold, symplectic for e((Mβ)?r)2
(f ′)×roo

F

��
{di, d̂i} : non r-fold, symplectic for e((Lβ)?r)2

f×r
// {yi, ŷi} : non r-fold, symplectic for e(M?r)2

Analogous to the definition of the endomorphism F ∈ End(Y r) of Section 4.3, we can
define an endomorphism F ∈ End(Xr) via the matrix

MF =

α1 −α2 −α3 −α4

α2 α1 −α4 α3

α3 α4 α1 −α2

α4 −α3 α2 α1


in case r = 4 and via the matrix

MF =

(
α1 −α2

α2 α1

)
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in case r = 2. A simple diagram chasing shows that the dotted vertical arrow is

F ◦ (β×r)−1,

so the non r-fold basis {di, d̂i}gri=1 of Xr[2n] can be computed from the basis {ei, êi}gri=1.
Note that the basis {xi, x̂i}gri=1 is above the symplectic basis of K((Mβ)?r)[n] induced by
the theta structure Θ(Mβ)?r , and that the basis {yi, ŷi}gri=1 is above the symplectic basis

of K(M?r) induced by the theta structure Θ′M?r . Now, if S(M?r)2 ∈ Sp(K((M?r)2)) is a
symplectic automorphism such that the basis {S(M?r)2(yi), S(M?r)2(ŷi)}gri=1 of K((M?r)2)
is of product form, then the induced symmetric theta structure from Proposition 4.15 is
also of product form. That is, there exists a symmetric theta structure ΘM on (Y,M)
so that the theta structure H(δM?r)→ G(M?r) determined by the basis
{S(M?r)2(yi), S(M?r)2(ŷi)}gri=1 is equal to (ΘM)?r.

To find the symplectic automorphism S(M?r)2 in practice we have to work on Xr

instead, i.e. look for a symplectic automorphism S((Lβ)?r)2 ∈ Sp(K(((Lβ)?r)2)[2n]) that

turns the basis {di, d̂i}gri=1 into a product basis.

Lemma 4.16. Suppose that S((Lβ)?r)2 ∈ Sp(Xr[2n]) is a symplectic automorphism (for

the pairing e((Lβ)?r)2 restricted to Xr[2n]) such that the basis {S((Lβ)?r)2(di), S((Lβ)?r)2(d̂i)}gri=1

is an r-fold product basis of Xr[2n]. Then, the basis {S(M?r)2(yi), S(M?r)2(ŷi)}gri=1 is an
r-fold product symplectic basis of K((M?r)2) = Y r[2n] for e(M?r)2, where S(M?r)2 =
f×r ◦ S((Lβ)?r)2 ◦ (f×r)−1 ∈ Sp(K((M?r)2)).

Proof. Write

S(M?r)2(yi) = f×r(S((Lβ)?r)2(di)) and S(M?r)2(ŷi) = f×r(S((Lβ)?r)2(d̂i)).

Since {S((Lβ)?r)2(di), S((Lβ)?r)2(d̂i)}gri=1 is an r-fold product basis, so is {S(M?r)2(yi), S(M?r)2(ŷi)}gri=1.

For N ∈ GL2g(Z/2nZ) we denote by ∆(N) the image of N under the block-wise
diagonal embedding

∆: GL2g(Z/2nZ) ↪→ GL2gr(Z/2nZ).

To compute such an S((Lβ)?r)2 ∈ Sp(Xr[2n]) in practice, we do the following:

Algorithm 3 Computing S((Lβ)?r)2 ∈ Sp(Xr[2n])

Require: the r-fold product symplectic basis {ei, êi}gri=1 of Xr[2n] for e(L?r)2

Ensure: a symplectic automorphism S((Lβ)?r)2 ∈ Sp(Xr[2n]) that turns {di, d̂i}gri=1 into
a product basis

1: compute MF◦(β×r)−1 ∈ GL2gr(Z/2nZ), the matrix corresponding to the action of
F ◦ (β×r)−1 on {ei, êi}gri=1, i.e. the one corresponding to the change of basis from

{ei, êi}gri=1 to {di, d̂i}gri=1

2: for N ∈ GL2g(Z/2nZ) do
3: if ∆(N)M−1

F◦(β×r)−1 ∈ Sp2gr(Z/2nZ), where the symplectic group

Sp2gr(Z/2nZ) ⊂ GL2gr(Z/2nZ) is defined with respect to the pairing(
Igr

−Igr

)
for the standard basis of (Z/2nZ)2gr then

4: return S((Lβ)?r)2 := ∆(N)M−1
F◦(β×r)−1

5: end if
6: end for
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We will analyse the complexity of Algorithm 3 in Section 6. The symplectic auto-
morphism S((Lβ)?r)2 determines a symplectic automorphism S(M?r)2 , which by Propo-
sition 4.15 determines a symmetric r-fold product theta structure

(ΘM)?r : H(δM?r)→ G(M?r),

where ΘM is a symmetric theta structure on (Y,M). As a next step, we have to
apply the symplectic transformation formula for the metaplectic automorphism M :=

Θ′−1
M?r ◦ (ΘM)?r to the basis of theta functions {θΘ′M?r

k }k∈K(M?r)1
to obtain a basis of

theta functions
{θ(ΘM)?r

κ = θΘM
κ1
⊗ · · · ⊗ θΘM

κr }κ∈K(M?r)1

for (Y r,M?r, (ΘM)?r).

4.5.2 Applying the symplectic transformation formula

By the work of Candelori [Can16] (especially Theorem 4.2.1) the symplectic transforma-
tion law for analytic theta functions (Theorem 1.24) holds for algebraic theta functions
as well. For simplicity of the exposition, suppose we work on one factor of Y as opposed
to Y r. Recall that M is an nth power of a symmetric principal polarization on Y , for
n = 2 or n = 4, hence a totally symmetric ample line bundle. Let Θ′M be a symmetric
theta structure on (Y,M) with induced basis

{θΘ′M
i : i ∈ K(M)1}.

Let M ∈ Autk×(H(δM)) be a metaplectic automorphism and let ΘM = Θ′M ◦M be the
resulting symmetric theta structure on (Y,M), with induced basis

{θΘM
j : j ∈ K(M)1}.

Note that the symplectic decompositions on K(M) induced by Θ′M and ΘM are not
the same. Hence, writing K(M)1 is ambiguous, one has to be clear what decomposition
of K(M) is understood (i.e. from what theta structure this decomposition is induced).

Unfortunately, the bases {θΘ′M
i } and {θΘM

j } are not well suited for the transformation
law. We treat the case n = 2 and n = 4 separately.

The case n = 4. In Section 1.3.1 we have introduced the notion of level-4 and level-
(2, . . . , 2) theta functions for two particular bases of Γ(Cg/ΩZg ⊕Zg,L⊗4

Ω ), where LΩ is
a principal polarization on Cg/ΩZg⊕Zg. The two bases are linked by the linear change
of coordinates (1.28). This motivates to define an algebraic analogue of level-(2, . . . , 2)
theta functions for Γ(Y,M) with respect to Θ′M (and similarly with respect to ΘM).

Let Y [4] = K(M)1 ⊕ K(M)2 be the symplectic decomposition induced by Θ′M.
Multiplication by 2 gives a surjection on Y [2] and hence, we have a decomposition
Y [2] = K1 ⊕K2, where Kν = [2]K(M)ν , for ν = 1, 2. For i ∈ Y [2] we can distinguish
one particular element î ∈ Y [4] satisfying [2]̂i = i (in general, such an element is defined

up to Y [2] only). Namely, if i = Θ
′
M(ι) then ι ∈ 2K(δM), hence it makes sense to

consider ι/2 ∈ K(δM), and put î = Θ
′
M(ι/2). Recall that K(δM) = Z(δM) ⊕ Ẑ(δM),

where Z(δM) =
⊕g

i=1 Z/4Z, since the type of M is δM = (4, . . . , 4) ∈ Zg.
For i1 ∈ K1 and i2 ∈ K2 we define the algebraic level-(2, . . . , 2) theta function with

characteristic i1, i2 as

θ
Θ′M
i1,i2

:=
∑
i′1∈K1

eM(−i′1, i2)θ
Θ′M
î1+i′1

. (4.12)
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The family

{θΘ′M
i1,i2

: i1 ∈ K1, i2 ∈ K2}

forms a basis of Γ(Y,M) for Θ′M. One can go back from level-(2, . . . , 2) to level-4 via

θ
Θ′M
i =

1

2g

∑
i2∈K2

eM(i− 2̂i, i2)θ
Θ′M
2i,i2

(4.13)

for all i ∈ K(M)1. Recall that the field k is of characteristic p > 2.

If M is a metaplectic automorphism of H(δM), denote by S ∈ Sp(K(M)) the
induced symplectic automorphism of K(M) for eM. Letting ΘM = Θ′M ◦M , the auto-
morphism S converts between the bases of K(M) induced by Θ′M and ΘM respectively.

With respect to the basis of K(M) induced by Θ′M, we can write S =
t(
A B
C D

)−1
∈

Sp2g(Z/4Z). For i1 ∈ K1, i2 ∈ K2, let j1, j2 ∈ Y [2] be given by

j1 = Di1 − Ci2 + Θ
′
M(2(C tD)0) (4.14)

j2 = −Bi1 +Ai2 + Θ
′
M(2(A tB)0),

where (·)0 denotes the vector of diagonal elements. Rephrasing Theorem 1.24 for alge-
braic level-(2, . . . , 2) theta functions:

Theorem 4.17. Let Θ′M and ΘM be two symmetric theta structures on (Y,M), and
let M ∈ Autk×(H(δM)) be the metaplectic automorphism such that ΘM = Θ′M ◦M . Let

S ∈ Sp(K(M)) be the induced symplectic automorphism, and write S =
t(
A B
C D

)−1
∈

Sp2g(Z/4Z) with respect to the symplectic basis of K(M) induced by Θ′M.

Then, for all y ∈ Y (k̄), there exists a constant λ ∈ k̄× (depending only on y and S)
such that for all i1 ∈ K1, i2 ∈ K2,

θΘM
j1,j2

(y) = λ · eM(Di1 − Ci2,−Bi1 +Ai2 + Θ
′
M((A tB)0))eM(i1, i2)−1θ

Θ′M
i1,i2

(y),

where j1 and j2 are as in (4.14).

Knowing how the level-(2, . . . , 2) basis {θΘM
j1,j2
} is related to the level-(2, . . . , 2) ba-

sis {θΘ′M
i1,i2
}, we can describe the symplectic transformation formula from the basis {θΘ′M

i }
to the basis {θΘM

j } in three steps:

i) Use the level-4 to level-(2, . . . , 2) base change formula for algebraic theta func-
tions (4.12).

ii) Apply the symplectic transformation formula for algebraic theta functions (The-
orem 4.17).

iii) Use the level-(2, . . . , 2) to level-4 base change formula for algebraic theta func-
tions (4.13).

The case n = 2. The case n = 2 is more subtle since we do not have a convenient basis
such as the level-(2, . . . , 2) theta functions at hand. However, the squares of the level-
(2, . . . , 2) theta functions form a generating family for Γ(Y,M). So, on one side we have

the basis {θΘ′M
i : i ∈ K(M)1} (of level-2 theta functions) and on the other side we have
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the generating family {(θΘ′M
i1,i2

)2 : i1 ∈ K(M)1, i2 ∈ K(M)2}. These two families are
related, and we refer to [Cos11, (3.12) and (3.13)] for the conversion formulas. Hence,

the symplectic transformation from the basis {θΘ′M
i } to the basis {θΘM

j } is again done
in three steps:

i) Use the conversion formula to go from the level-2 basis {θΘ′M
i } to the family of

squares of level-(2, . . . , 2) theta functions.

ii) Apply the symplectic transformation formula for algebraic theta functions (The-
orem 4.17). It is perfectly applicable to the squares of the level-(2, . . . , 2) theta
functions as well.

iii) Use the reciprocal conversion to go from the squares of level-(2, . . . , 2) theta func-
tions to the basis {θΘM

j }.
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Algorithm 4 Computing a theta null point of Y = X/G for (M,ΘM)

Require: β ∈ End++(X) of degree `2, and lifts t̃, 0̃X of t and 0X for (X,L,ΘL) respec-
tively, where t ∈ kerβ is of order ` and G = 〈t〉 is Gal(k̄/k)-stable

Ensure: a lift 0̃Y of 0Y for (Y,M,ΘM)
1: compute an excellent lift t̃e of t with respect to (X,L,ΘL, 0̃X), see Algorithm 2
2: compute α1, . . . , αr ∈ K0 such that β = α2

1 + · · ·+ α2
r , see Algorithm 1

3: compute 0 ≤ a1, . . . , ar ≤ `− 1 such that for all s = 1, . . . , r,

αs(t) = ast

(knowing that αs ∈ Q(π) with denominators coprime to `, it suffices to know the
scalar by which π acts on t)

4: if r = 2 then
5: for each k ∈ K(M?2)1, let j = (j1, j2) ∈ K((Mβ)?2)1[n] be the unique element of

K((Mβ)?2)1 that satisfies F (j) = k; compute θ
Θ′
M?2

k (0̃Y 2) as

θ
Θ′M?2

k (0̃Y 2) =
∑

0≤u≤`−1

θΘL
f ′(j1)(chain mult(a1u, t̃e, 0̃X))

· θΘL
f ′(j2)(chain mult(−a2u, t̃e, 0̃X))

6: else if r = 4 then
7: for each k ∈ K(M?4)1, let j = (j1, . . . , j4) ∈ K((Mβ)?4)1[n] be the unique element

of K((Mβ)?4)1 that satisfies F (j) = k; compute θ
Θ′
M?4

k (0̃Y 4) as

θ
Θ′M?4

k (0̃Y 4) =
∑

0≤u1,u2≤`−1

θΘL
f ′(j1)(chain mult(a1u1 + a2u2, t̃e, 0̃X))

· θΘL
f ′(j2)(chain mult(−a2u1 + a1u2, t̃e, 0̃X))

· θΘL
f ′(j3)(chain mult(−a3u1 − a4u2, t̃e, 0̃X))

· θΘL
f ′(j4)(chain mult(−a4u1 + a3u2, t̃e, 0̃X))

8: end if
9: compute the r-fold product symplectic basis {ei, êi}gri=1 of Xr[2n] for e(L?r)2 in theta

coordinates, using the action of the theta group G(L?r) on Γ(Xr,L?r)
10: compute S((Lβ)?r)2 ∈ Sp(Xr[2n]) that turns the basis {di, d̂i}gri=1 into a product

basis, see Algorithm 3 (either if we know how to lift End(X[2n]) to End(X̃[2n]), or
using the theta to Mumford conversion when working on the Jacobian variety of a
hyperelliptic curve)

11: let M ∈ Autk×(H(δM?r)) be the metaplectic automorphism induced by S((Lβ)?r)2

that turns Θ′M?r into an r-fold product theta structure (ΘM)?r; apply the symplec-

tic coordinate change from Section 4.5.2 to
{
θ

Θ′M?r

k (0̃Y r )
}
k∈K(M?r)1

to obtain the

coordinates
{
θ

(ΘM)?r

κ (0̃Y r )
}
κ∈K(M?r)1

for (ΘM)?r

12: return fix (κ1, . . . , κr) ∈ K(M?r)1 such that θ
(ΘM)?r

κ (0̃Y r) 6= 0 and return(
θΘM
κ (0̃Y )

)
κ∈K(M)1

,

where
θΘM
κ (0̃Y ) := θΘM

κ (0̃Y ) · θΘM
κ2

(0̃Y ) · · · θΘM
κr (0̃Y )

for all κ ∈ K(M)1
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We analyse the complexity of Algorithm 4 in Section 6.

Theorem 4.18. Algorithm 4 computes a theta null point 0̃Y for (Y,M,ΘM).

Proof. Observe that the a1, . . . , ar computed at step 3. are equal to the a1, . . . , ar
from (4.11). By Proposition 4.13, step 5. or step 7. correctly computes

(
θ

Θ′M?r

k (0̃Y r )
)
k∈K(M?r)1

.

Then, as explained in Section 4.5.2, step 11. computes the coordinates{
θ
(ΘM)?r

κ (0̃Y r ) = θ
ΘM
κ1 (0̃Y ) · · · θΘM

κr (0̃Y )
}
κ∈K(M?r)1

of 0Y r for the product theta structure (ΘM)?r

and hence, step 12. outputs an affine theta null point 0̃Y for (Y,M,ΘM).
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5 Evaluating the cyclic isogeny on points

In Section 4 we explained how to compute the k-rational principally polarized abelian
variety Y = X/G. To be more precise, we showed how to compute a theta null point 0̃Y
for (Y,M,ΘM), given a theta null point 0̃X and an affine lift t̃ for (X,L,ΘL), where t
is a generator of G. Here, the totally symmetric ample line bundles M and L are
nth tensor powers of the symmetric principal polarizations M0 and L0 on Y and X
respectively, with n = 2 or n = 4. Also, ΘM and ΘL are symmetric theta structures on
(Y,M) and (X,L) respectively. In this section we will show how to evaluate the isogeny
f : X → Y on points.

Let x ∈ X(k) be a point of order N and suppose that N is coprime to ` · [OK0 :
Z[π + π†]]. Let 0̃X and t̃ be as above and suppose we are given an affine lift x̃
of x for (X,L,ΘL). We will explain how to compute one affine lift ỹ of y = f(x)
for (Y,M,ΘM). This defines a map

f̃ : X̃ \ {points of order not coprime to ` · [OK0 : Z[π + π†]]} → Ỹ ,

where the affine coordinates on the cones X̃ and Ỹ are given by ΘL and ΘM respectively.

5.1 Applying the isogeny theorem to f ′ and F

Similar to the ideas of Section 4, we will apply the isogeny theorem to the isogenies of
polarized abelian varieties with theta structure

f ′ : (Y,Mβ,ΘMβ )→ (X,L,ΘL)

and
F : (Y r, (Mβ)?r,Θ(Mβ)?r)→ (Y r,M?r,Θ′M?r).

Setting y = f(x), we want to compute an affine lift
(
θ

Θ′M?r

k ( ˜y, 0, . . . , 0)
)
k∈K(M?r)1

of

(y, 0, . . . , 0) and then modify Θ′M?r by the same metaplectic automorphism of H(δM?r)
as in Section 4.5 to obtain affine coordinates

θ
(ΘM)?r

κ ( ˜y, 0, . . . , 0) = θΘM
κ1

(ỹ) · θΘM
κ2

(0̃Y ) · · · θΘM
κr (0̃Y ),

where ΘM is a symmetric theta structure on (Y,M). The affine version of the isogeny
theorem for F states that for all y = (y1, . . . , yr) ∈ Y r(k̄) with affine lift ỹ for

(Y r, (Mβ)?r,Θ(Mβ)?r), an affine lift F̃ (y) of F (y) for (Y r,M?r,Θ′M?r) is given by

θ
Θ′M?r

k (F̃ (y)) =
∑

τ∈K((Mβ)?r)1[`]
F (τ )=0

r∏
s=1

θ
ΘMβ

js+τs
(ỹs), for all k ∈ K(M?r)1, (5.1)

where j = (j1, . . . , jr) ∈ K((Mβ)?r)1[n] is the unique element of K((Mβ)?r)1 that
satisfies F (j) = k. In our case, we want to apply (5.1) to a point (y1, . . . , yr) that
satisfies F (y1, . . . , yr) = (y, 0, . . . , 0). To obtain affine lifts ỹ1, . . . , ỹr of y1, . . . , yr for
(Y,Mβ,ΘMβ ), we apply the affine version of the isogeny theorem for f ′, stating that
for all s = 1, . . . , r and for all i ∈ K(L)1,

θΘL
i (f̃ ′(ys)) = θ

ΘMβ

j (ỹs), (5.2)
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where j ∈ K(Mβ)1[n] is the unique element of K(Mβ)1 that satisfies f ′(j) = i. We en-
counter the same problem as in Section 4.2.1, that is, the left-hand side of (5.2) provides
us with ng coordinates only, as opposed to the ng` coordinates of ỹs for (Y,Mβ,ΘMβ ).
We will explain in Section 5.1.2 how to deal with this issue.

Let us explain how to find (y1, . . . , yr).

Proposition 5.1. Let (x1, . . . , xr) = F̄ (x, 0, . . . , 0) ∈ Xr(k) and let y1, . . . , yr ∈ Y (k)
be such that x1 = f ′(y1), . . . , xr = f ′(yr). Then,

F (y1, . . . , yr) = (y, 0, . . . , 0).

Proof. First observe that F̄F = FF̄ = β×r. We have

F (x1, . . . , xr) = β×r(x, 0, . . . , 0) = (f ′)×r(y, 0, . . . , 0)

and hence,

β×r(F (y1, . . . , yr)) = F (f(x1), . . . , f(xr)) = f×r(F (x1, . . . , xr)) = β×r(y, 0, . . . , 0).

But β×r is injective on points of order coprime to `.

5.1.1 Compatible lifts and suitable lifts

Following Proposition 5.1, consider x1 = α1(x), x2 = −α2(x) (in case r = 2) and
x1 = α1(x), x2 = −α2(x), x3 = −α3(x), x4 = −α4(x) (in case r = 4). Suppose we
know affine lifts x̃1, . . . , x̃r of x1, . . . , xr for (X,L,ΘL) (e.g., since x is rational and
α1, . . . , αr ∈ Q(π) have denominators coprime to N by assumption, α1, . . . , αr act on x
by scalar multiplication, so that we can compute x̃1, . . . , x̃r). Let y1, . . . , yr be such that
x1 = f ′(y1), . . . , xr = f ′(yr). Similar to Remark 4.6, the isogeny theorem (5.2) fixes
affine lifts ỹ1, . . . , ỹr of y1, . . . , yr for (Y,Mβ,ΘMβ ) and yields ng out of ng` coordinates
for each of the ỹs.

Remark 5.2. If f ′(ys) = xs, then f ′(ys + t′) = xs for all t′ ∈ ker f ′ = K(Mβ)2[`].
And if ỹs is an affine lift of ys for (Y,Mβ,ΘMβ ), then by Proposition 2.18, an affine

lift of ys + t′ is given by t′ � ỹs. On the other side, θ
ΘMβ

j (ỹs) = θ
ΘMβ

j (t′ � ỹs) for all

j ∈ K(Mβ)1[n]. Hence, when choosing ys, we do not have to worry about ker f ′.

If we knew the ng` coordinates for each of the ỹ1, . . . , ỹr, we could use (5.1) to

compute the affine point
(
θ

Θ′M?r

k ( ˜y, 0, . . . , 0)
)
k∈K(M?r)1

. Unfortunately we are not in this

situation, but we do a similar observation to that in Section 4.2.1: if t is the fixed
generator of G and if τ is the unique element of K(Mβ)1[`] that satisfies f ′(τ) = t, then
the action of the theta group G(Mβ) on Ỹ and the affine version of the isogeny theorem
for f ′ yield affine lifts

x̃s + t = f̃ ′(τ � ỹs), x̃s + 2t = f̃ ′(2τ � ỹs), . . . , ˜xs + (`− 1)t = f̃ ′((`− 1)τ � ỹs)

of xs + t, . . . , xs + (`− 1)t, for each s = 1, . . . , r.

Definition 5.3. Let x ∈ X(k) and y ∈ Y (k) be such that x = f ′(y) (not necessarily
the input of the algorithm). Let x̃ be a fixed affine lift of x for (X,L,ΘL). Let ỹ be the
unique affine lift of y for (Y,Mβ,ΘMβ ) that satisfies x̃ = f̃ ′(ỹ). For 1 ≤ u ≤ `− 1, the
affine lift f̃ ′(uτ � ỹ) of x+ ut is called the compatible lift and is denoted by

x̃+ utc = f̃ ′(uτ � ỹ).
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Knowing the lift x̃s and the compatible lifts x̃s + tc, . . . , ˜xs + (`− 1)tc, for all s =

1, . . . , r, is sufficient to compute
(
θ

Θ′M?r

k ( ˜y, 0, . . . , 0)
)
k∈K(M?r)1

, but is not a necessary

condition. Similar to Section 4.4.1, where we showed that the compatible lift t̃c is
an excellent lift with respect to (X,L,ΘL, 0̃X), we will show that the compatible lifts

x̃1 + tc, . . . , x̃r + tc satisfy some compatibility condition, and that we can compute them
up to `th roots of unity.

Definition 5.4. Let x ∈ X(k) (not necessarily the input of the algorithm) and let x̃ be
a fixed affine lift of x for (X,L,ΘL). Let t̃ and 0̃X be affine lifts for (X,L,ΘL) (e.g. the
input of the algorithm). We call an affine lift x̃+ t of x+ t suitable for t̃, x̃ and 0̃X if

chain multadd(`, x̃+ t, t̃, x̃, 0̃X) = x̃.

The computation of a suitable lift of x+ t is similar to the computation of excellent
lifts in Section 4.4: we take any lift x̃+ t and search for a scalar λx+t ∈ k̄× such that
λx+t · x̃+ t is suitable. Using [LR12, Lem. 3.10], we obtain that in order for λx+t · x̃+ t
to be suitable, we need

λ`x+t · chain multadd(`, x̃+ t, t̃, x̃, 0̃X) = x̃.

This determines λ`x+t uniquely. Hence, for any `th root λx+t of λ`x+t, the lift λx+t · x̃+ t

is suitable for t̃, x̃ and 0̃X .

Algorithm 5 Computing a suitable lift of x+ t

Require: lifts x̃, t̃, x̃+ t and 0̃X of x, t, x+ t and 0X for (X,L,ΘL) respectively
Ensure: a suitable lift x̃+ t of x+ t for t̃, x̃ and 0̃X
1: compute chain multadd(`, x̃+ t, t̃, x̃, 0̃X)
2: compute the scalar κ ∈ k̄× such that

chain multadd(`, x̃+ t, t̃, x̃, 0̃X) = κ · x̃

3: compute λx+t ∈ k̄× such that λ`x+t = κ

4: return λx+t · x̃+ t

We will analyse the complexity of Algorithm 5 in Section 6. Let us now show that the
notion of suitable lift is the correct notion.

Proposition 5.5. Let x ∈ X(k) and y ∈ Y (k) be such that x = f ′(y) (not necessarily
the input of the algorithm) and let x̃ be a fixed affine lift of x for (X,L,ΘL). Let 0̃X
be a fixed theta null point for (X,L,ΘL) and let t̃c be the compatible lift of t (see
Definition 4.7). Then, the compatible lift x̃+ tc of x + t is suitable for t̃c, x̃ and 0̃X ,
and for all u = 2, . . . , `− 1 we have

x̃+ utc = chain multadd(u, x̃+ tc, t̃c, x̃, 0̃X).

Proof. Let 0̃Y and ỹ be the lifts of 0Y and y for (Y,Mβ,ΘMβ ) fixed by f̃ ′, 0̃X and x̃
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respectively. Then, for all 2 ≤ u ≤ ` we have

chain multadd(u, x̃+ tc, t̃c, x̃, 0̃X)

= chain multadd(u, f̃ ′(τ � ỹ), f̃ ′(τ � 0̃Y ), f̃ ′(ỹ), f̃ ′(0̃Y ))

= f̃ ′(chain multadd(u, τ � ỹ, τ � 0̃Y , ỹ, 0̃Y )) by Lemma 4.9 iii)

= f̃ ′(uτ � chain multadd(u, ỹ, 0̃Y , ỹ, 0̃Y )) by Lemma 4.10

= f̃ ′(uτ � ỹ).

In particular, if u = ` then
f̃ ′(`τ � ỹ) = f̃ ′(ỹ) = x̃,

and for all other u we have
f̃ ′(uτ � ỹ) = x̃+ utc.

In general, we do not know the compatible lift of x + t. However, we would like to
apply a similar idea to the one in Section 4.4.2, i.e. starting with an arbitrary lift x̃+ t
of x+ t, if we make it suitable for t̃c, x̃ and 0̃X , then it will differ from x̃+ tc by an `th
root of unity. The problem is that we do not know the compatible lift t̃c of t either.
The following proposition will be helpful.

Proposition 5.6. Let t̃ (not necessarily excellent), x̃ and 0̃X be fixed affine lifts of t, x
and 0X for (X,L,ΘL) respectively. Let x̃+ t be an affine lift of x + t. Then, x̃+ t is
suitable for t̃, x̃ and 0̃X if and only if x̃+ t is suitable for ζ · t̃, x̃ and 0̃X , for any `th
root of unity ζ.

Proof. This is a direct consequence of [LR12, Lem. 3.10], saying that

chain multadd(`, x̃+ t, ζ · t̃, x̃, 0̃X) = ζ`(`−1) · chain multadd(`, x̃+ t, t̃, x̃, 0̃X).

5.1.2 Choice of lifts of xs + ust

In this section we explain our choice of lifts of x1, . . . , xr. Our idea is based on the
Chinese Remainder Theorem. Let x̃, t̃ and 0̃X be fixed affine lifts of x, t and 0X
for (X,L,ΘL) respectively. Suppose that the lifts x̃ and 0̃X satisfy

chain mult(N, x̃, 0̃X) = 0̃X .

(We can easily modify x̃ in order to satisfy the above.) Suppose that, in addition, we
are given a lift of x+ t for (X,L,ΘL). For example, if we work on the Jacobian variety
of a hyperelliptic curve, then we can use the formulas of [vW98] and [Cos11] to convert
between theta and Mumford coordinates. If we have converted the points x and t from
theta to Mumford coordinates, we compute x+ t and convert back to theta coordinates.
This works because L = L⊗n0 , for n = 2 or n = 4.

Let 0̃Y and ỹ be the unique affine lifts of 0Y and y for (Y,Mβ,ΘMβ ) that satisfy

f̃ ′(0̃Y ) = 0̃X and f̃ ′(ỹ) = x̃.
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It follows immediately that chain mult(N, ỹ, 0̃Y ) = 0̃Y . The lifts 0̃Y and ỹ determine
compatible lifts t̃c = f̃ ′(τ � 0̃Y ) and x̃+ tc = f̃ ′(τ � ỹ) of t and x+t respectively, where τ
is the unique element of K(Mβ)1[`] that satisfies f ′(τ) = t.

Let t̃e be the excellent lift of t with respect to (X,L,ΘL, 0̃X) computed in Sec-
tion 4.4.2. From our initial lift of x+ t we compute a lift x̃+ t that is suitable for t̃e, x̃
and 0̃X . By Proposition 5.6, the lift x̃+ t is suitable for t̃c, x̃ and 0̃X as well. Hence, it
differs from x̃+ tc by an unknown `th root of unity ζx+t, i.e.

x̃+ t = ζx+t · x̃+ tc.

Let ỹ + τ be the lift of y + τ induced by f̃ ′ and x̃+ t. It is not hard to see that

ỹ + τ = ζx+t · (τ � ỹ).

Let
c[·,·] : Z/NZ× Z/`Z

∼−→ Z/N`Z, (a, u) 7→ c[a,u]

be the inverse of the projection morphism. For s = 1, . . . , r, let as,x be the inte-
ger (mod N) such that xs = αs(x) = as,xx. Define lifts of x1, . . . , xr as

x̃s := chain mult(c[as,x,0], x̃+ t, 0̃X), for s = 1, . . . , r. (5.3)

Indeed, x + t is a point of order N` and c[as,x,0] is congruent to as,x modulo N and

congruent to 0 modulo `. The lifts x̃1, . . . , x̃r and f̃ ′ fix lifts ỹ1, . . . , ỹr of y1, . . . , yr, and
using the compatibility of the affine isogeny f̃ ′ with chain mult, it is not hard to see
that

ỹs = chain mult(c[as,x,0], ỹ + τ , 0̃Y ), for all s = 1, . . . , r.

Knowing the lifts ỹ1, . . . , ỹr, or equivalently knowing the compatible lifts

{ ˜xs + ustc : s = 1, . . . , r, us = 1, . . . , `− 1},

where

˜xs + ustc = f̃ ′(usτ � ỹs) = f̃ ′(usτ � chain mult(c[as,x,0], ỹ + τ , 0̃Y )), (5.4)

we could substitute their coordinates in the right-hand side of (5.1) and compute the

affine point
(
θ

Θ′M?r

k ( ˜y, 0, . . . , 0)
)
k∈K(M?r)1

. But of course we are not in the situation

where we know the lifts ỹ1, . . . , ỹr. We have the following key result.

Proposition 5.7. Let 0̃X and x̃ be fixed affine lifts of 0X and x for (X,L,ΘL) respec-
tively, and suppose chain mult(N, x̃, 0̃X) = 0̃X . Let t̃e be a fixed excellent lift of t with
respect to (X,L,ΘL, 0̃X) and let x̃+ t be a fixed suitable lift of x + t for t̃e, x̃ and 0̃X .
It differs from the compatible lift x̃+ tc by an `th root of unity ζx+t. Let x̃1, . . . , x̃r be
the lifts of x1, . . . , xr as defined in (5.3). For s = 1, . . . , r and us = 1, . . . , `− 1, define
a lift of xs + ust as

˜xs + ust := chain mult(c[as,x,us], x̃+ t, 0̃X). (5.5)

Then, we have

˜xs + ust = ζ
u2
s

x+t · ˜xs + ustc,

where the compatible lift of xs + ust is as in (5.4).
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Proof. Observe that for s = 1, . . . , r,

ỹs = chain mult(c[as,x,0], ỹ + τ , 0̃Y ) = chain mult(c[as,x,0], ζx+t · (τ � ỹ), 0̃Y )

= chain mult(c[as,x,0], τ � ỹ, 0̃Y ) by [LR12, Lem. 3.10], since c[as,x,0] ≡ 0 mod `

= chain mult(c[as,x,0], ỹ, 0̃Y ) by Lemma 4.10, since c[as,x,0] ≡ 0 mod `.

Now,

˜xs + ust = chain mult(c[as,x,us], x̃+ t, 0̃X)

= chain mult(c[as,x,us], f̃
′(ỹ + τ), 0̃X)

= f̃ ′(chain mult(c[as,x,us], ỹ + τ , 0̃Y ))

= f̃ ′(chain mult(c[as,x,us], ζx+t · (τ � ỹ), 0̃Y ))

= f̃ ′(ζ
c2
[as,x,us]

x+t · chain mult(c[as,x,us], τ � ỹ, 0̃Y ))

= f̃ ′(ζ
u2
s

x+t · (usτ � chain mult(c[as,x,us], ỹ, 0̃Y )))

(since c[as,x,us] ≡ us mod `, and Lemma 4.10)

= ζ
u2
s

x+t · f̃ ′(usτ � chain mult(c[as,x,0], ỹ, 0̃Y ))

(since chain mult(N, ỹ, 0̃Y ) = 0̃Y )

= ζ
u2
s

x+t · f̃ ′(usτ � ỹs) (by the above)

= ζ
u2
s

x+t · ˜xs + ustc.

Hence, when substituting θΘL
f ′(js)

(chain mult(c[as,x,us], x̃+ t, 0̃X)) for θ
ΘMβ

js+τs
(ỹs) in

∑
τ∈K((Mβ)?r)1[`]

F (τ )=0

r∏
s=1

θ
ΘMβ

js+τs
(ỹs),

where j1, . . . , jr ∈ K(Mβ)1[n] and τ = (τ1, . . . , τr) = (u1τ, . . . , urτ), with 1 ≤ u1, . . . , ur ≤
`− 1, we actually compute∑

τ∈K((Mβ)?r)1[`]
F (τ )=0

ζ
u2

1+···+u2
r

x+t · θΘMβ

j1+u1τ
(ỹ1) · · · θΘMβ

j1+u1τ
(ỹr). (5.6)

Let us consider the case r = 4. The case r = 2 is easier and can be proven in a
similar way. In Lemma 4.12 we have seen that

K((Mβ)?4)1[`] ∩ kerF = { tMF (τ1, τ2, 0, 0) : τ1, τ2 ∈ K(Mβ)1[`]}.

Write τ1 = u1τ and τ2 = u2τ with 0 ≤ u1, u2 ≤ ` − 1, and for s = 1, . . . , 4, let as,τ be
the integer (mod `) given by the action of αs on τ , i.e. as,τ satisfies

αs(τ) = as,ττ. (5.7)

We then have

K((Mβ)?4)1[`] ∩ kerF

= {((a1,τu1 + a2,τu2)τ, (−a2,τu1 + a1,τu2)τ, (−a3,τu1 − a4,τu2)τ, (−a4,τu1 + a3,τu2)τ) : 0 ≤ u1, u2 ≤ `− 1}.
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Proposition 5.8. Let 0̃X and x̃ be fixed affine lifts of 0X and x for (X,L,ΘL) respec-

tively, and suppose chain mult(N, x̃, 0̃X) = 0̃X . Let t̃e be a fixed excellent lift of t with

respect to (X,L,ΘL, 0̃X) and let x̃+ t be a fixed suitable lift of x+t for t̃e, x̃ and 0̃X . We

can compute an affine lift
(
θ

Θ′M?4

k ( ˜y, 0, 0, 0)
)
k∈K(M?4)1

of (y, 0, 0, 0) for (Y 4,M?4,Θ′M?4)

as follows: let k ∈ K(M?4)1 and let j = (j1, . . . , j4) ∈ K((Mβ)?4)1[n] be the unique
element of K((Mβ)?4)1 that satisfies F (j) = k. Then, we have

θ
Θ′M?4

k ( ˜y, 0, 0, 0) =
∑

0≤u1,u2≤`−1

θΘL
f ′(j1)(chain mult(c[a1,x,a1,τu1+a2,τu2], x̃+ t, 0̃X))

· θΘL
f ′(j2)(chain mult(c[a2,x,−a2,τu1+a1,τu2], x̃+ t, 0̃X))

· θΘL
f ′(j3)(chain mult(c[a3,x,−a3,τu1−a4,τu2], x̃+ t, 0̃X))

· θΘL
f ′(j4)(chain mult(c[a4,x,−a4,τu1+a3,τu2], x̃+ t, 0̃X)).

Proof. By (5.6) it suffices to show that (a1,τu1 +a2,τu2)2 +(−a2,τu1 +a1,τu2)2 +(−a3,τu1−
a4,τu2)2 + (−a4,τu1 + a3,τu2)2 ≡ 0 mod `. But

(a1,τu1+a2,τu2)2+(−a2,τu1+a1,τu2)2+(−a3,τu1−a4,τu2)2+(−a4,τu1+a3,τu2)2 = (a2
1,τ+· · ·+a2

4,τ )(u2
1+u2

2)

and a2
1,τ + · · · + a2

4,τ is a multiple of `, since it is given by the scalar of the action

of β = α2
1 + · · ·+ α2

4 on τ .

5.2 Modification of Θ′M?r via a metaplectic automorphism

We encounter the same problem than in Section 4.5, that is, the symmetric theta struc-

ture Θ′M?r on (Y r,M?r) is not of product form and hence, the affine point
(
θ

Θ′M?r

k ( ˜y, 0, . . . , 0)
)
k∈K(M?r)1

from Section 5.1.2 does not allow us to recover the theta coordinates of y = f(x) for a
single factor (Y,M).

Let M ∈ Autk×(H(δM?r)) be the metaplectic automorphism from Section 4.5.1 that
transforms the theta structure Θ′M?r on (Y r,M?r) into a symmetric product theta
structure (ΘM)?r, where ΘM is a symmetric theta structure on (Y,M). Similar to Sec-

tion 4.5.2, we apply the symplectic transformation formula to
{
θ

Θ′M?r

k ( ˜y, 0, . . . , 0)
}
k∈K(M?r)1

and obtain {
θ(ΘM)?r

κ ( ˜y, 0, . . . , 0) = θΘM
κ1

(ỹ) · θΘM
κ2

(0̃Y ) · · · θΘM
κr (0̃Y )

}
κ∈K(M?r)1

.
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Algorithm 6 Evaluating the isogeny f on points

Require: lifts x̃, t̃ and 0̃X of x, t and 0X for (X,L,ΘL) respectively, where x ∈ X(k) is
a point of order N (coprime to ` · [OK0 : Z[π+π†]]), and t is a generator of G = ker f

Ensure: a lift ỹ of y = f(x) for (Y,M,ΘM)
1: modify x̃ so that it satisfies chain mult(N, x̃, 0̃X) = 0̃X
2: compute an excellent lift t̃e of t with respect to (X,L,ΘL, 0̃X), see Algorithm 2
3: compute a lift of x+ t for (X,L,ΘL) (e.g. using the theta to Mumford coordinate

conversion when working on the Jacobian variety of a hyperelliptic curve)
4: compute a lift x̃+ t of x+ t that is suitable for t̃e, x̃ and 0̃X , see Algorithm 5
5: let α1, . . . , αr be as in step 2. of Algorithm 4; compute 0 ≤ a1,x, . . . , ar,x ≤ N − 1

and 0 ≤ a1,t, . . . , ar,t ≤ `− 1 such that for all s = 1, . . . , r,

αs(x) = as,xx and αs(t) = as,tt

(knowing that αs ∈ Q(π) with denominators coprime to N and `, it suffices to know
the scalar by which π acts on t)

6: if r = 2 then
7: for each k ∈ K(M?2)1, let j = (j1, j2) ∈ K((Mβ)?2)1[n] be the unique element of

K((Mβ)?2)1 that satisfies F (j) = k; compute θ
Θ′
M?2

k (ỹ, 0) as

θ
Θ′M?2

k (ỹ, 0) =
∑

0≤u≤`−1

θΘL
f ′(j1)(chain mult(c[a1,x,a1,tu], x̃+ t, 0̃X))

· θΘL
f ′(j2)(chain mult(c[a2,x,−a2,tu], x̃+ t, 0̃X))

8: else if r = 4 then
9: for each k ∈ K(M?4)1, let j = (j1, . . . , j4) ∈ K((Mβ)?4)1[n] be the unique element

of K((Mβ)?4)1 that satisfies F (j) = k; compute θ
Θ′
M?4

k ( ˜y, 0, 0, 0) as

θ
Θ′M?4

k ( ˜y, 0, 0, 0) =
∑

0≤u1,u2≤`−1

θΘL
f ′(j1)(chain mult(c[a1,x,a1,tu1+a2,tu2], x̃+ t, 0̃X))

· θΘL
f ′(j2)(chain mult(c[a2,x,−a2,tu1+a1,tu2], x̃+ t, 0̃X))

· θΘL
f ′(j3)(chain mult(c[a3,x,−a3,tu1−a4,tu2], x̃+ t, 0̃X))

· θΘL
f ′(j4)(chain mult(c[a4,x,−a4,tu1+a3,tu2], x̃+ t, 0̃X))

10: end if
11: take the same metaplectic automorphism M ∈ Autk×(H(δM?r))

as in step 11. of Algorithm 4 and apply the symplectic coordi-

nate change to
{
θ

Θ′M?r

k ( ˜y, 0, . . . , 0)
}
k∈K(M?r)1

to obtain the coordinates{
θ

(ΘM)?r

κ ( ˜y, 0, . . . , 0)
}
κ∈K(M?r)1

for the product theta structure (ΘM)?r

12: return fix (κ1, . . . , κr) ∈ K(M?r)1 such that θ
(ΘM)?r

κ ( ˜y, 0, . . . , 0) 6= 0 and return(
θΘM
κ (ỹ)

)
κ∈K(M)1

,

where
θΘM
κ (ỹ) := θΘM

κ (ỹ) · θΘM
κ2

(0̃Y ) · · · θΘM
κr (0̃Y )

for all κ ∈ K(M)1
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We analyse the complexity of Algorithm 6 in Section 6.

Theorem 5.9. Algorithm 6 computes an affine lift ỹ of y = f(x) for (Y,M,ΘM).

Proof. Observe that the a1,t, . . . , ar,t computed at step 5. are equal to the a1,τ , . . . , ar,τ

from (5.7). By Proposition 5.8, step 7. or step 9. correctly computes
(
θ

Θ′M?r

k ( ˜y, 0, . . . , 0)
)
k∈K(M?r)1

.

Then, as explained in Section 4.5.2, step 11. computes the coordinates{
θ
(ΘM)?r

κ ( ˜y, 0, . . . , 0) = θ
ΘM
κ1 (ỹ) · θΘM

κ2 (0̃Y ) · · · θΘM
κr (0̃Y )

}
κ∈K(M?r)1

of (y, . . . , 0) for the product theta

structure (ΘM)?r and hence, step 12. outputs an affine lift ỹ of y for (Y,M,ΘM).
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6 Complexity analysis

The algorithms from Sections 4 and 5 depend on the following parameters:

- the degree ` of the isogeny f : X → Y ,

- the level n = 2 or n = 4 of the theta functions that we use in the computation,
i.e. the integer n where L = L⊗n0 ,

- the dimension g of the abelian variety X,

- the parameter r = 2 or r = 4,

- the order N of the point x ∈ X(k),

as well as on the sizes of the fields

- k = Fq, the field of definition of X,

- k0, the field of definition of the affine theta coordinates of 0X ,

- kt, the field of definition of the affine theta coordinates of t,

- kx, the field of definition of the affine theta coordinates of x,

- kx+t, the field of definition of the affine theta coordinates of x+ t.

Remark 6.1. If (X,L0) is the Jacobian variety of a hyperelliptic curve C over Fq, we can
explicitly determine the fields k0, kt, kx and kx+t. Suppose that the Weierstrass points
of C have coordinates in Fqd . Then k0 is equal to Fqnd . In general, if x′ ∈ X(Fqd′ ) is
any Fqd′ -rational point on the Jacobian variety of C, then the theta coordinates of x′

will be elements of the composite field of Fqnd and Fqd′ . Since x is Fq-rational we have
that kx = k0 = Fqnd , and if l is the smallest integer such that X[`] ⊂ X(Fql), then kt is
the composite field of Fqnd and Fql . In this case, the `th roots of unity form a subgroup

of F×
ql

, hence an excellent lift t̃e of t will also have coordinates in kt. Finally, by the same
arguments we have that kx+t = kt and that a suitable lift of x+ t will have coordinates
in kx+t.

Denote by M(k),S(k),A(k) and D(k) the costs of multiplication, squaring, addition
and division in the field k respectively, and idem for the fields k0, kt, kx and kx+t.
Following [Rob10, 4.4.11] and [Rob10, 4.4.13], a chain addition for affine points with
coordinates in kt has complexity

(ng + 2g)M(kt) + (ng + 2g)S(kt) + ngD(kt) + (4n)gA(kt),

and a chain multiplication chain mult(m, t̃, 0̃X) requires at most 2 log(m) chain addi-
tions, with a slightly different complexity of

(ng + 2g)M(kt) + ngS(kt) + ngD(kt) + (4n)gA(kt)

each.

Complexity analysis of Algorithm 1. The complexity of this algorithm is negligi-
ble, it depends only on the complexities of writing ` as the sum of two or four squares
of integers respectively, and inverting a 4× 4 rational matrix.
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Complexity analysis of Algorithm 2. The complexity is dominated by the chain
multiplication, which requires

2 log(`/2) · ((ng + 2g)M(kt) + ngS(kt) + ngD(kt) + (4n)gA(kt))

operations, as well as taking an `th root of κ.

Complexity analysis of Algorithm 3. First, we need to evaluate the r endomor-
phisms α1, . . . , αr on the 2n-torsion basis {e1, . . . , eg, ê1, . . . , êg} of X[2n]. This com-
putation depends on g, n and log q and is independent of `. It is very fast, supposing
we work on the Jacobian variety of a hyperelliptic curve and use the theta to Mumford
coordinate conversion. Then the loop is over a group of order

# GL2g(Z/2nZ) =

{
2(2g)2 ·# GL2g(Z/2Z) if n = 2

22(2g)2 ·# GL2g(Z/2Z) if n = 4

see [Han06, Cor. 2.8], but ifN ∈ GL2g(Z/2nZ) satisfies ∆(N)M−1
F◦(β×r)−1 ∈ Sp2gr(Z/2nZ),

then N ′N also satisfies ∆(N ′N)M−1
F◦(β×r)−1 ∈ Sp2gr(Z/2nZ) for all N ′ ∈ Sp2g(Z/2nZ),

so that we can expect the loop to stop after roughly

# GL2g(Z/2nZ)

# Sp2g(Z/2nZ)

iterations. Knowing that

# Sp2g(Z/2nZ) =

{
22g2+g ·# Sp2g(Z/2Z) if n = 2

22(2g2+g) ·# Sp2g(Z/2Z) if n = 4

and

# GL2g(Z/2Z)

# Sp2g(Z/2Z)
= 2g(2g−1)

g−1∏
i=0

(
1− 1

22i+1

)
,

we can expect the loop to stop after roughly

22g(2g−1)
g−1∏
i=0

(
1− 1

22i+1

)
iterations in case n = 2, and after roughly

23g(2g−1)
g−1∏
i=0

(
1− 1

22i+1

)
iterations in case n = 4.

Complexity analysis of Algorithm 4. For steps 1. and 2. see the complexities of
Algorithms 1 and 2. If we work on the Jacobian variety of a hyperelliptic curve C over k,
then the excellent lift t̃e will have coordinates in kt. For step 3., if we know the scalar
by which π acts on t (which is easy to determine when working on the Jacobian variety
of a hyperelliptic curve), then this step is brought down to a computation in Z/`Z. For
steps 5. and 7., we first precompute

chain mult(2, t̃e, 0̃X), . . . , chain mult(`− 1, t̃e, 0̃X).
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Since t̃e is excellent, it suffices to compute the lifts chain mult(2, t̃e, 0̃X), . . . , chain mult(m+
1, t̃e, 0̃X), the remaining ones being determined by them. Since chain mult is defined re-
cursively using chain add, we can compute chain mult(2, t̃e, 0̃X), . . . , chain mult(m+
1, t̃e, 0̃X) with m chain additions, i.e. to a total cost of

`/2 · ((ng + 2g)M(kt) + (ng + 2g)S(kt) + ngD(kt) + (4n)gA(kt)).

Next, for each of the ngr elements k ∈ K(M?r)1, computing the right-hand side of
the formula requires `r/2 times (r − 1) multiplications and one addition in the field kt,
leading to a total cost of

ngr`r/2((r − 1)M(kt) + A(kt)). (6.1)

For step 9., computing the symplectic basis {e1, . . . , eg, ê1, . . . , êg} of X[2n] is rapid,
using the action of the theta group G(L) on Γ(X,L). For step 10., see the complexity
analysis of Algorithm 3. For step 11., if n = 2 we have to do the conversion from
level-2 to the squares of level-(2, . . . , 2), then the symplectic transformation formula
and finally the reciprocal conversion from the squares of level-(2, . . . , 2) to level-2, and
if n = 4 we have to do the change of basis from level-4 to level-(2, . . . , 2), then the
symplectic transformation formula and finally the change of basis from level-(2, . . . , 2)
to level-4. This, at first sight, seems to require 22gr multiplications of elements of kt by
nth roots of unity and 25gr additions in kt if n = 2 and 26gr additions in kt if n = 4.
However, the theta null point 0̃Y r for (ΘM)?r contains no more information than the
theta null point of 0Y for ΘM (0̃Y r is just the theta null point of the r-fold product of
(Y,M,ΘM)). Hence, knowing ng coordinates of 0̃Y r as opposed to knowing all the ngr

coordinates is sufficient. And this performs step 12. at the same time. This observation
brings down the number of operations of steps 11. and 12. to ng2gr multiplications of
elements of kt by nth roots of unity and ng22gr additions in kt. Overall, the cost of
Algorithm 4 is dominated by (6.1) of steps 5. and 7.

Complexity analysis of Algorithm 5. The complexity is dominated by the chain
multiplication, which requires

2 log(`) · ((ng + 2g)M(kx+t) + ngS(kx+t) + ngD(kx+t) + (4n)gA(kx+t))

operations, as well as taking an `th root of κ.

Complexity analysis of Algorithm 6. The chain multiplication in step 1. requires

2 log(N) · ((ng + 2g)M(kx) + ngS(kx) + ngD(kx) + (4n)gA(kx))

operations, followed by the computation of some Nth root. For step 2., see the com-
plexity of Algorithm 2 or take the excellent lift t̃e computed at step 1. of Algorithm 4.
Step 3. is not costly when working on the Jacobian variety of a hyperelliptic curve, and
requires one chain addition otherwise. For the computation of the suitable lift of x+ t
in step 4., see the complexity of Algorithm 5 above. For step 5., if we know the scalar
by which π acts on t (which is easy to determine when working on the Jacobian variety
of a hyperelliptic curve), then this step is brought down to a computation in Z/`Z. For
steps 7. and 9., as opposed to steps 5. and 7. of Algorithm 4, we do not precompute
all the chain multiplications, since there would be a total of N` precomputations to
perform, out of which at most ngr`r/2r would be needed (which is way less, supposing
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that N � ngr`r/2−1r). Hence, for each k ∈ K(M?r)1 we compute `r/2 times r chain
multiplications of size at most N`, followed by (r− 1) multiplications and one addition,
resulting in a total cost of

ngr`r/2 · [2r log(N`)((ng + 2g)M(kx+t) + ngS(kx+t) + ngD(kx+t) + (4n)gA(kx+t))

+ (r − 1)M(kx+t) + A(kx+t)]. (6.2)

By the same observation as in the analysis of Algorithm 4, we can perform steps 11.

and 12. in ng2gr multiplications of elements of kx+t by nth roots of unity and ng22gr

additions in kx+t. Overall, the cost of Algorithm 6 is dominated by (6.2) of steps 7.

and 9.
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7 Implementation

We have implemented the algorithm from Section 4 in Magma and have computed the
following example: let H be the hyperelliptic genus 2 curve over F23 given by the affine
equation

H : y2 = x5 + x4 + 3x3 + 22x2 + 19x,

and let J = Jac(H) be its Jacobian variety. Then J is ordinary and simple and the
(irreducible) characteristic polynomial of the Frobenius endomorphism πJ is given by
χπJ (z) = z4+14z2+529. The endomorphism algebra End0(J) = End(J)⊗ZQ is isomor-
phic to the quartic CM-field K = Q(π) = Q[z]/(χπJ ), and the totally real subfield K0 ⊂
K, corresponding to the Rosati-stable elements of End0(J), is generated over Q by π+π†

(it is isomorphic to Q(
√

2)). The real endomorphism β = −38(πJ + π†J) + 215 is to-
tally positive and of K0/Q-norm 17 (i.e. a degree 172-endomorphism). Consider the
17-torsion point t = (x2 + u1x+ u0, v1x+ v0) ∈ J(F2316), where

u1 = 10a15 + 9a14 + 17a13 + 5a12 + 14a11 + 19a10 + 14a9 + 14a8 + 5a7 + 22a6 + a5 + 19a4 + 13a3 + 2a2 + 15a+ 7,

u0 = 6a15 + 11a14 + 17a13 + 19a12 + 10a11 + a10 + 21a9 + 15a8 + 18a7 + 21a6 + 5a5 + 18a4 + 4a3 + 6a2 + 3a+ 19,

v1 = 19a15 + 11a14 + 18a13 + 3a12 + 20a11 + 11a10 + 8a9 + a8 + 19a7 + 5a6 + 14a5 + 3a4 + 4a3 + 10a2 + 22a+ 22,

v0 = a15 + 10a14 + 11a13 + 22a12 + 3a11 + 14a10 + 21a9 + 5a8 + 9a7 + 17a5 + 20a4 + 6a3 + 8a2 + 13a+ 5

and a satisfies a16 + 19a7 + 19a6 + 16a5 + 13a4 + a3 + 14a2 + 17a + 5 = 0. The
subgroup G = 〈t〉 is Galois-stable, since πJ(t) = [6]t, and we have β(t) = 0. We
have computed the quotient J/G, which is isomorphic as a principally polarized abelian
surface to the Jacobian variety J ′ of the hyperelliptic curve H ′ over F23 with affine plane
model

H ′ : y2 = 5x6 + 18x5 + 18x4 + 8x3 + 20x.

Indeed, the characteristic polynomial of the Frobenius endomorphism πJ ′ equals χπJ ,
but H and H ′ have Cardona-Quer-Nart-Pujola invariants (c.f. [CNP05] and [CQ05])
given by [16, 12, 17] and [18, 5, 0] respectively and hence, the Jacobians J and J ′ are
non isomorphic (as principally polarized abelian surfaces). The computation took 363.2
seconds on a 2.3 GHz Intel Core i7 CPU with 8 GB memory.

Since χπJ = χπJ′ we know that J and J ′ are F23-isogenous. But can we be sure
the isogeny is the one we computed? It has been verified by E. Milio that indeed, J
and J ′ are isogenous by an isogeny of degree 17. He did so by first computing the
Igusa invariants of the curves, from which he did then compute the Gundlach invariants
(those are invariants of the k̄-isomorphism class of the curve, with Jacobian variety
having real multiplication by Q(

√
2), see [MR17]). The 17-modular polynomial (as

defined in [MR17]) vanishes when evaluated at the Gundlach invariants of H an H ′ and
hence, J and J ′ are 17-isogenous.

You must be warned: on most examples I ran my code I was confronted to a serious
problem and the output failed. I managed to locate and identify the problem, but have
not yet managed to resolve it. There is, however, a small number of examples (including
the above) where the code runs well. I am still trying hard to resolve this issue. For
any additional information, please get in touch with me.

101



102



8 Isogeny graphs

Let k be a fixed finite field of size q = pr. For abelian varieties X and Y over k, being
k-isogenous is an equivalence relation. Tate’s isogeny theorem [Tat66] gives a criterion
for X and Y to be k-isogenous, and it can be verified by comparing the characteristic
polynomials of the k-Frobenius endomorphisms πX and πY on the Q`-vector spaces
V`X = T`X ⊗Z` Q` and V`Y = T`Y ⊗Z` Q` respectively, where ` is any prime number
different from p. Knowing that X and Y are k-isogenous, there are many situations
where one would like to find an explicit isogeny between them (e.g. in the area of
Isogeny Based Cryptography, see [DFJP14] and [DF17]). Various attempts have been
made in dimension 1 [Gal99, DG16, BJS14], yet it remains a very difficult problem.
In higher dimension this becomes even less clear, due to our lack of understanding
of the “structure” of isogeny classes. To gain better understanding of this structure,
isogeny classes are commonly modelled as graphs. Isogenous varieties share the same
endomorphism algebra, whereas their endomorphism ring need not be the same (e.g. if
the endomorphism algebra is isomorphic to the CM-fieldQ(π) for some Weil q-number π,
then any order containing π and q

π occurs as the endomorphism ring of an abelian variety
in this isogeny class, see [Wat69, Thm. 7.4]). Hence, one would like to study those
graphs with a special focus on the variation of the endomorphism ring under isogeny.
A complete description of such graphs for genus 1 has been presented by D. Kohel in
his thesis [Koh96], and more recent results on the structure of isogeny graphs in higher
dimension have been presented by [IT14, BJW17, Mar18]. We will henceforth focus on
the results of [BJW17]. While their results deliver a description of the structure of such
graphs, our results from Sections 4 and 5 will come to hand for the explicit computation
of the edges in certain isogeny graphs.

8.1 Preliminaries

Let X be an abelian variety of dimension g over k. Let k̄ be a fixed algebraic closure
of k. We suppose that X is ordinary, i.e. X[p](k̄) ∼= (Z/pZ)g, where p = char(k). For
simplicity we will denote the base change Xk̄ = X ⊗k k̄ by X again. We also suppose
that X is absolutely simple, i.e. it does not admit a proper abelian subvariety over k̄.
According to [Wat69, Thm. 7.2], any (a priori k̄-) endomorphism of X is defined over k,
that is

Endk(X) = Endk̄(X).

For an ordinary and absolutely simple abelian variety X defined over k, we can thus
unambiguously write End(X). Note that the result of [Wat69] has to be understood
with care, the way it is stated is misleading: he requires X to be simple, which by
[Oor07] (the remark below Exercise 18.11) is not enough. One should require X to be
absolutely simple.

Let π ∈ Q be a Weil q-number whose conjugacy class represents the k-isogeny class
of X (Honda-Serre-Tate theory). That is, the k-Frobenius endomorphism πY of any
k-isogenous abelian variety Y/k has the same minimal polynomial over Q as π, and vice
versa, if Y is an abelian variety over k whose k-Frobenius is conjugate to π, then Y
is k-isogenous to X. The endomorphism algebra End(X) ⊗Z Q is isomorphic to the
CM-field K = Q(π), and we may choose the isomorphism such that πX 7→ π.

If Y is an abelian variety defined over k̄ that is k̄-isogenous to X, then

End(X)⊗Z Q = Endk̄(X)⊗Z Q ∼= Endk̄(Y )⊗Z Q
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and hence, Endk̄(Y )⊗ZQ is again isomorphic to the CM-field K. Clearly, Y is ordinary
and k̄-simple. If Y is defined over k, then Y is absolutely simple, and we have Endk(Y ) =
Endk̄(Y ). The k-Frobenius πX of X and the k-Frobenius πY of Y are conjugate (X
and Y share the same endomorphism algebra), hence Y is actually k-isogenous to X.
In this case we can say even more: if f : X → Y is a k-isogeny, and g : X → Y is any
other isogeny, then f−1 ◦ g ∈ Endk̄(X) ⊗Z Q = Endk(X) ⊗Z Q and hence, g is defined
over k. To summarise:

Proposition 8.1. Let X be an ordinary and absolutely simple abelian variety defined
over k. If Y is also defined over k and k̄-isogenous to X, then all the isogenies between X
and Y are defined over k.

The isomorphism End(X)⊗ZQ
∼−→ K = Q(π) induces an embedding Endk̄(Y ) ↪→ K

of the endomorphism ring of any k̄-isogenous abelian variety Y , and the embedding does
not depend on the choice of an isogeny X → Y . We can thus unambiguously denote
by O(Y ) the order of K corresponding to Endk̄(Y ) for any abelian variety Y in the
k̄-isogeny class of X. If Y is defined over k, then from what we have said above, Y
is absolutely simple and O(Y ) corresponds to Endk(Y ). Under this identification we
have πY 7→ π. Let K0 be the totally real subfield of K of degree g over Q. Define
the real order O0(X) = O(X) ∩K0. We say that X has complex multiplication (CM)
by O(X) and real multiplication (RM) by O0(X). Tensoring with Z`, for ` a prime
number different from char(k), we obtain the local CM order O(X)⊗Z Z` and the local
RM order O0(X)⊗ZZ` of X at `. This allows us to transfer the study of endomorphisms
of X to the study of endomorphisms of the `-adic Tate module T`X. If X → Y is an
isogeny of `-power degree, then for any prime number `′ 6= ` one has

O(X)⊗Z Z`′ = O(Y )⊗Z Z`′ (8.1)

(see [BJW17, Prop. 3.4]). Hence, it makes sense to consider graphs of isogenies of fixed
prime-power degree, and study the local variation of the endomorphism ring under such
isogenies.

Notation 8.2. Let ` be a fixed prime number different from the characteristic of k. Let
K` = K ⊗Q Q` and K0,` = K0 ⊗Q Q` be the local complex and real multiplication
algebras. Denote by oK = OK ⊗Z Z` and oK0 = OK0 ⊗Z Z` the maximal orders of K`

and K0,` respectively. Also, denote by o(X) = O(X)⊗Z Z` and o0(X) = O0(X)⊗Z Z`
the local CM and RM orders of X.

We can give a more explicit description of K`,K0,`, oK , oK0 , etc. For more details, we
refer to [Neu99, Ch. II]. Let F be a number field, fix ` a prime number and suppose
it factors in F as `OF = le11 · · · lerr . Each prime ideal li above ` induces a valuation
vli : F → Z ∪ {∞} on F , where for any x ∈ F×, vli(x) is the exponent of li in the
factorization of the fractional ideal xOF , and 0 7→ ∞. We can then define a non-
archimedean absolute value

| · |li : F → R≥0, x 7→ q
−vli (x)

i ,

where qi = `fi with fi = [OF /li : Z/`Z] the inertia degree of li. Denote by Fli the
completion of the valued field (F, | · |li). It is a finite extension of Q` and we have
[Fli : Q`] ≤ [F : Q]. The absolute value | · |li extends to an absolute value on Fli

(since R is complete), and we will again denote it by | · |li . There is a second, equivalent
definition of | · |li on Fli , involving the norm map NFli

/Q` : Fli → Q` and the `-adic
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absolute value | · |` on Q`. Namely, for all x ∈ F , one has

|x|li = |NFli
/Q`(x)|`.

The ring of integers of Fli is

OFli
= {x ∈ Fli : |x|li ≤ 1} = {x ∈ Fli : NFli

/Q`(x) ∈ Z`}.

It is a DVR with unique maximal ideal

Li = {x ∈ Fli : |x|li < 1},

and a generator is any $ ∈ Li of maximal absolute value. In fact, we have

Li = liOFli

and hence, the ideals of OFli
are of the form lmi OFli

, for some m ≥ 0. It is a well-known
result that

OFli
/Li ∼= OF /li ∼= F`fi

(compatibility of local and global inertia degrees) and that

`OFli
= Leii

(compatibility of local and global ramification indices). One then easily deduces the
local fundamental identity

[Fli : Q`] = eifi.

Consider the localization OF,li = {ab : a, b ∈ OF , b /∈ li} ⊂ F of OF at li. We have

OF,li = {x ∈ F : vli(x) ≥ 0}

and one can show that OFli
is the completion of OF,li inside Fli with respect to | · |li .

More generally, Lmi is the completion of lmi OF,li inside Fli with respect to | · |li .
The inclusion F ↪→ Fli induces a homomorphism F ⊗QQ` → Fli via a⊗ b 7→ ab and

hence, we have a canonical homomorphism F ⊗QQ` → Fl1 ⊕· · ·⊕Flr . The ever-present
Chinese Remainder Theorem ensures that this is an isomorphism, i.e.

F` := F ⊗Q Q`
∼−→ Fl1 ⊕ · · · ⊕ Flr .

Restricting to OF ⊗Z Z`, we have

oF := OF ⊗Z Z`
∼−→ OFl1

⊕ · · · ⊕ OFlr
.

For all j 6= i, the ideal liOFlj
is the whole of OFlj

, since it is not of the form Lmj = lmj OFlj

for some m ≥ 0. We deduce that

oF /lioF = OFli
/Li ∼= OF /li ∼= F`fi . (8.2)

Moreover, we have
`oF = Le11 ⊕ · · · ⊕ Lerr (8.3)

and
oF /`oF = OFl1

/Le11 ⊕ · · · ⊕ OFlr
/Lerr .

105



8.2 Applications

What we have encountered in Sections 4 and 5 are isogenies from principally polarized
abelian varieties with cyclic kernels which are maximal isotropic inside kerβ for the
commutator pairing eLβ0

, where β is some totally positive real endomorphism. Call these

isogenies β-cyclic isogenies. In view of Proposition 3.5, β-cyclic isogenies preserve the
principal polarizability, in the sense that the target variety of a β-cyclic isogeny is again a
principally polarizable abelian variety. The existence of such isogenies is strongly linked
to the existence of totally positive real endomorphisms. Multiplication by a positive
integer n is a totally positive real endomorphism, hence maximal isotropic subgroups of
the n-torsion subgroup of X yield isogenies that preserve principal polarizability. To be
more precise, if L0 is a principal polarization on X and ` is a prime number different
from char(k), then any isogeny with kernel a maximal isotropic subgroup of X[`] for

the Weil pairing e
φL0
` on X[`] induced by L0 (which in this case coincides with the

commutator pairing eL`0
on K(L`0)) preserves the principal polarizability.

Definition 8.3. Let (X,L0) be a principally polarized abelian variety over k, and let `
be a prime number different from char(k). An isogeny f : X → Y is called an (`, . . . , `)-

isogeny if ker f is a maximal isotropic subgroup of X[`] for the Weil pairing e
φL0
` (or

equivalently for the commutator pairing eL`0
).

Richelot in [Ric37a] and [Ric37b] computed (2, 2)-isogenies between abelian sur-
faces. More recently, [Smi09] has given a method to compute (2, 2, 2)-isogenies from
Jacobian varieties of genus 3 hyperelliptic curves. More generally, (`, . . . , `)-isogenies
can be computed in theta coordinates from any principally polarized abelian variety
due to [Rob10, CR11, LR12], and from Jacobian varieties of hyperelliptic genus 2 and 3
curves C via the explicit evaluation of some G-invariant functions on Jac(C), where G
is the kernel of the isogeny, see [CE15] and [Mil17].

There are many applications where one would like to find a path of computable
isogenies to reach an abelian variety with maximal complex multiplication. And for
this it is sufficient to be able to find a path of prime-power degree isogenies to an
abelian variety with maximal local complex multiplication (since maximal locally at
all prime numbers implies maximal globally, and there are only finitely many prime
numbers for which the local CM order is non-maximal). We will see in Section 8.4.3 if
and how a principally polarizable abelian surface with maximal local CM is reachable by
a path of computable isogenies. Among the applications of reaching isogenous varieties
with maximal complex multiplication we can cite:

- Random self-reducibility of the discrete logarithm problem in genus 2. Let X be
an ordinary and absolutely simple principally polarizable abelian surface over k.
Suppose that the endomorphism algebra of X is isomorphic to the CM-field K,
and that the endomorphism ring of X is isomorphic to the maximal orderOK . The
ideal class group Cl(OK) acts freely and transitively on the set of isomorphism
classes of abelian varieties isogenous to X and with same endomorphism ring,
by the so-called CM-action, see [Wat69]. If one wants to restrict to isogenies
preserving the principal polarizability, then one has to consider a certain subgroup
of Cl(OK), namely the image P(OK) of the natural projection of the Shimura class
group on the ideal class group Cl(OK). Recall the Shimura class group

S = {(a, α)|a a fractional ideal of OK , α ∈ K0 totally positive, and aā = αOK}/ ∼,
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with component wise multiplication, and the equivalence is modulo the subgroup
given by the (vOK , vv̄) with v ∈ K× and vv̄ ∈ K0 totally positive. The orbit P(X)
of the CM-action of P(OK) on X is a set of of k-isomorphism classes of principally
polarizable abelian surfaces isogenous to X and with same endomorphism ring. By
[JW19, Thm. 1.1] one can construct expander graphs on P(X), where the edges
are cyclic isogenies of bounded prime degree. Hence, they are β-cyclic isogenies,
and computable by the results from Sections 4 and 5. Then by [JW19, Thm. 1.3]
we obtain the random self-reducibility of the discrete logarithm in genus 2 under
GRH. That is, if there is a polynomial time algorithm (in log #k) that can solve
the DLP for a positive proportion of vertices in P(X), then there is a probabilistic
algorithm of polynomial runtime that can solve the DLP on all vertices of P(X).

- Computation of an explicit isogeny between two given isogenous principally polar-
ized abelian surfaces. The same expander properties from the previous point can
be applied to find an explicit isogeny between two given isogenous principally po-
larized abelian surfaces. First compute a path to isogenous surfaces with maximal
endomorphism ring and then do a random walk, using the CM-action of P(OK).
Again, the isogenies to be computed for this random walk are β-cyclic isogenies.
For more details we refer to [JW19, §5].

- The CM-method. This method aims to generate hyperelliptic curves of genus 2
over finite fields with good cryptographic security parameters. First compute
the Igusa invariants of such a curve, and then use Mestre’s algorithm [Mes91] to
construct a model of the curve. There are three different approaches for com-
puting the Igusa invariants of such a curve: 1) complex analytic techniques
[vW99, Wen03, Str10]; 2) p-adic lifting techniques [CKL08, CL09, GHK+06];
3) techniques based on the Chinese Remainder Theorem (the CRT method)
[EL10, FL08, BGL11]. The CRT method requires one to find an ordinary abelian
surface whose endomorphism ring is the maximal order. Hence, starting from a
random abelian variety, one would like to compute a path of isogenies to reach
one with maximal endomorphism ring.

- Computation of endomorphism rings of abelian surfaces over finite fields, see
[Bis15] and [Spr19].

8.3 l-isogeny graphs

Let us now present some results of [BJW17]. Fix a k̄-isogeny class of g-dimensional
ordinary and simple abelian varieties over k̄ that admits at least one abelian variety X0

defined over k (it is then absolutely simple). Fix an isomorphism End(X0)⊗Z Q
∼−→ K

to the CM-field K = Q(π), where π is a Weil q-number that represents the k-isogeny
class of X0, in such a way that πX0 7→ π. Let K0 be the totally real subfield of K of
degree g over Q. Recall the conductor f of an order O in a number field F is defined as
f = {x ∈ F : xOF ⊂ O}.

Definition 8.4. Let X be an abelian variety in this isogeny class. Let ` be a prime
number different from char(k) and let l be a prime ideal of OK0 above `. Suppose l is
coprime to the conductor of O0(X). An l-isogeny from X is an isogeny whose kernel is
a proper O0(X)-stable subgroup of X[l ∩ O(X)].

Remark 8.5. An l-isogeny is a priori defined over k̄, and is of degree N(l).
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Let l be a prime ideal of OK0 above the prime number ` 6= char(k). According to
[BJW17, Prop. 3.1 (ii)], if X → Y is an l-isogeny, then o0(X) ⊂ o0(Y ). In particular,
having maximal local real multiplication is preserved under l-isogenies.

Definition 8.6. An l-isogeny graph is a graph Wl whose vertices are isomorphism classes
of abelian varieties in the fixed k̄-isogeny class having maximal local real multiplication
(i.e. the local endomorphism rings contain oK0). There is a an edge of multiplicity m
from a vertex with representative X to a vertex with representative Y if there are m
distinct subgroups G ⊂ X that are kernels of l-isogenies such that X/G ∼= Y .

Remark 8.7. If there is an l-isogeny X → Y , then the contragredient isogeny Y → X
need not be an l-isogeny. That is, an l-isogeny graph is a directed graph in general.
However, if l is principal (generated by a real but not necessarily totally positive endo-
morphism) then the contragredient isogeny of an l-isogeny is again an l-isogeny.

A full description of the connected components of the graph Wl, with a precise
criterion for these components to be volcanoes, is given by [BJW17, Thm. 4.3]. As we
know from [BJW17, Thm. 2.1], every order of K` that contains oK0 is of the form

of := oK0 + foK ,

for some unique oK0-ideal f. Moreover, the conductor of of is foK .

Let l be a prime of K0 above `. The local CM order of a vertex X in the l-isogeny
graph Wl can thus be identified with an ideal of oK0 and hence, one can define the
level vl(X) of X as the valuation at l of the unique oK0-ideal f such that o(X) = of.
Note that if c is the conductor of o(X), then f = c ∩ oK0 .

Definition 8.8. An edge X → Y in the l-isogeny graph Wl is called l-ascending
if vl(Y ) = vl(X) − 1. It is called l-descending if vl(Y ) = vl(X) + 1 and l-horizontal
otherwise.

Let us recall [BJW17, Prop. 4.10]:

Proposition 8.9. Suppose X has local CM order of, for some oK0-ideal f. There are
N(l) + 1 kernels of l-isogenies from X. The target varieties of l-descending l-isogenies
have local CM order olf, and the l-descending kernels are permuted simply transitively by
the action of (of/olf)

×. The other l-isogenies are l-ascending if vl(X) > 0, in which case
the target varieties have local CM order ol−1f, and l-horizontal otherwise, in which case
the target varieties have local CM order of. More precisely, if vl(X) > 0 there are N(l)
l-descending l-kernels from X and a unique l-ascending l-kernel. If vl(X) = 0, then:

i) If l is inert in K, all N(l) + 1 l-kernels are l-descending;

ii) If l splits in K into two prime ideals L1 and L2, there are two l-horizontal l-
kernels, namely X[L1] and X[L2], and N(l)− 1 l-descending ones;

iii) If l ramifies in K as L 2, there is one l-horizontal l-kernel, namely X[L ], and
N(l) l-descending ones.

In particular, Proposition 8.9 tells us that an l-isogeny can not modify the valuation
of the local CM order of X (or to be more precise, of the corresponding oK0-ideal) at any
prime l′ of K0 above ` different from l. That is, vl′(X) = vl′(Y ) for any two connected
vertices X and Y in the graph Wl. This, together with (8.1), we see that all vertices in
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a connected component of Wl of the same level share a common global endomorphism
ring. We can thus divide a connected component V of Wl into subgraphs Vi of vertices
with same level i ≥ 0, or equivalently with same global endomorphism ring. Also, if X
is a vertex in Vi, for some i > 0, then there is always a path of l-ascending l-isogenies
to a vertex Y in V0. That is, one can reach an abelian variety Y whose local CM order
is not divisible by l (this is again an abuse of notation; we actually mean the oK0-ideal
corresponding to o(X) is not divisible by l). Repeating this for all primes l′ of K0

above `, we can reach an abelian variety with local CM order oK .

Definition 8.10. If X is a vertex in Vi, for some i > 0, let G be the unique l-ascending
l-kernel from Proposition 8.9. We call prl(X) = X/G ∈ Vi−1 the l-predecessor of X,
and denote by upl

X : X → prl(X) the canonical l-ascending projection.

Be aware that Proposition 8.9 counts the number of l-kernels from a given vertex
in Wl, and not the number of edges in this graph. Two distinct kernels might lead to
isomorphic quotients, which can happen for l-horizontal and for l-descending isogenies.
For the exact number of edges in any connected component of Wl, we refer to [BJW17,
Thm. 4.3] (this number depends only on the level and not on the vertex itself). We
would like to point out that if the units of the global CM order of any vertex in V0 are
real (i.e. are in OK0), then the number of descending edges is exactly the number of
l-descending kernels from Proposition 8.9. For example, in dimension 2, the field K is
a primitive quartic CM-field, and provided K 6= Q(ζ5), we have O×K = O×K0

. It follows
that the number of descending edges from each vertex in Wl is given by the number of
l-descending kernels from Proposition 8.9.

This gives us a way to navigate in any fixed connected component V of the graph Wl.
In particular, if a vertex X is in Vi, for i > 0, then upl

X is the unique edge connecting
to Vi−1 and all the other edges connect to Vi+1 (no horizontal ones). If X is in V0,
then depending on the splitting of l in K there are 0, 1 or 2 horizontal edges from X,
the remaining ones connecting to V1. The horizontal structure of V0 can be described
as the Cayley graph of the subgroup of Pic(OV0) generated by the prime ideals of OV0

above l (only if l not inert), see [BJW17, Thm. 4.3]. Here, the order OV0 of K denotes
the common global CM order of the vertices in V0. To be more precise, if L is a
prime ideal of OV0 above l, then the edge L in the Cayley graph corresponds to the
edge X → X/X[L ] in the l-isogeny subgraph V0. It becomes clear that one has to
exclude the inert case, since X → X/X[l] is not an l-isogeny.

Rationality. So far, all the vertices and all the edges we have considered were over k̄.
Suppose X is defined over k and is in Vi, for some i ≥ 0. Under the identification of
End(X) with the order O(X) ⊂ K, the k-Frobenius πX is sent to π. All vertices in Vi
share O(X) as a common endomorphism ring. Let Y be another vertex in Vi. Then Y
is of the form X/G for some finite subgroup G ⊂ X[`∞], and O(Y ) = O(X). Hence, we
have π ∈ o(Y ) = o(X/G), and by [BJW17, Prop. 3.1], the kernel G is defined over k.
It follows that Y is defined over k. The same argument works for Y in Vj , for j ≤ i,
observing that o(X) ⊂ o(Y ) (follows from Proposition 8.9). Hence, all the vertices and
all the edges from Vi upwards are defined over k.

Proposition 8.11. Starting from an ordinary and absolutely simple abelian variety X
defined over k, the path to level 0 consists of k-rational l-isogenies only.
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8.4 Dimension 2

From an arbitrary principally polarizable abelian surface it is almost always possible
to find a path of computable isogenies to reach a principally polarizable surface with
maximal local complex multiplication. We will explain this in the forthcoming sections.

8.4.1 (`, `)-isogeny graphs with non-maximal local real multiplication

Let X0 be an ordinary and absolutely simple abelian surface over k, and fix ` a prime
number different from char(k). The endomorphism algebra of X0 is isomorphic to
a quartic CM-field K. We are interested in the k̄-isogeny class of X0. Let X be a
principally polarizable abelian surface in this class. In this section we suppose that the
real endomorphism ring O0(X) of X is not maximal locally at `. Since K0 is a real
quadratic number field, its orders are of the form Z + fOK0 , for some integer f , and
the conductor of such an order is fOK0 . The corresponding local order is the order
on := Z` + `noK0 of K0,`, where n = v`(f) is the valuation of f at `.

Fix L0 a principal polarization on X. Any maximal isotropic subgroup G ⊂ X[`] for

the commutator pairing eL`0
(or equivalently for the Weil pairing e

φL0
` ) induces an (`, `)-

isogeny f : X → Y = X/G and a unique principal polarization M0 on Y that satisfies
φf∗M0 = φL0 ◦ [`]. Conversely, any (`, `) isogeny for eL`0

is, up to isomorphism of the

target, of this form. It is worth noticing that the kernels G ⊂ X[`] of (`, `)-isogenies
from X depend on the choice of the principal polarization. A subgroup G might be
isotropic for eL`0

but need not be so if one changes polarization.

Suppose that o0(X) = on, for some n > 0. An (`, `)-isogeny X → Y is called
RM-ascending if o0(X) ( o0(Y ). It is called RM-descending if o0(Y ) ( o0(X) and it
is called RM-horizontal if o0(X) = o0(Y ). A priori, (`, `)-isogenies are defined over k̄,
and the number of (`, `)-isogenies from X with respect to L0 is `3 + `2 + `+ 1. We now
state [BJW17, Thm. 6.3]:

Theorem 8.12. Suppose o0(X) = on with n > 0. The kernels of (`, `)-isogenies from X

(for the Weil pairing e
φL0
` ) are:

i) A unique RM-ascending one, whose target variety has local RM order on−1,

ii) `2 + ` RM-horizontal ones,

iii) `3 RM-descending ones, whose target varieties have local RM order on+1.

In particular, we see that an (`, `)-isogeny can change the local RM level by at most 1.
The kernel G ⊂ X[`] of the unique RM-ascending (`, `)-isogeny from Theorem 8.12 does
not depend on the choice of a principal polarization on X (it is given in a “canonical”
form, see [BJW17, Prop. 7.6]). Moreover, G is defined over the same field as X.

Definition 8.13. The RM-predecessor of X is the abelian surface prRM(X) = X/G,
where G is the unique RM-ascending kernel from X. We denote by upRM

X : X →
prRM(X) the canonical projection. If L0 is a principal polarization on X, denote
by prRM(L0) the unique principal polarization on prRM(X) induced by L0 via upRM

X .

With this being said:

Proposition 8.14. Starting from a principally polarizable ordinary and simple (abso-
lutely simple if defined over k) abelian surface X, for all prime ` 6= char(k) where the
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local RM order of X is not maximal, there is a path of (`, `)-isogenies to a principally
polarizable abelian surface with maximal real multiplication locally at `. This path does
not depend on the choice of a principal polarization on X. Moreover, if X is defined
over k, then all the isogenies in the path are defined over k.

8.4.2 (`, `)-isogeny graphs with maximal local real multiplication

Let us again fix the k̄-isogeny class of X0, where X0 is as in Section 8.4.1. Let X be a
principally polarizable abelian surface in this isogeny class, and fix ` a prime number
different from char(k). By Proposition 8.14, we can suppose without loss of generality
that the RM order of X is maximal locally at `. We would like to apply the results
from Section 8.3 to study (`, `)-isogenies from X that preserve the maximal local real
multiplication (RM-horizontal). Fix L0 a principal polarization on X. There are a total
of `3 + `2 + ` + 1 kernels of (`, `)-isogenies from X with respect to L0. Fix l a prime
ideal of OK0 above `.

The inert case. Suppose first that ` is inert in K0. We can use Proposition 8.9 to
describe `OK0-isogenies. There are `2 + 1 such `OK0-isogenies. If, moreover, the kernel

of an `OK0-isogeny is isotropic for the Weil pairing e
φL0
` , then it is an (`, `)-isogeny. The

following is [BJW17, Thm. 6.4 (i)]:

Theorem 8.15. Let L0 be a principal polarization on X, and suppose X has maximal
real multiplication locally at `. If ` is inert in K0, then the `2 + 1 kernels of `OK0-

isogenies are (`, `)-isogenies for the pairing e
φL0
` . Conversely, among the `3 + `2 + `+ 1

(`, `)-isogenies from X for e
φL0
` , the only RM-horizontal ones are the `2 + 1 `OK0-

isogenies, the remaining `3 + ` (`, `)-isogenies are RM-descending with local RM order
of the target surface given by Z` + `oK0.

Theorem 8.15 tells us that being the kernel of an (`, `)-isogeny that preserves the local
maximal real multiplication is independent of the choice of a polarization, and that
Proposition 8.9 applies. In particular, the `OK0-predecessor pr`OK0

(X) of X is inde-

pendent of the choice of a principal polarization on X and up
`OK0
X : X → pr`OK0

(X) is

an (`, `)-isogeny.

Proposition 8.16. Starting from a principally polarizable ordinary and simple (abso-
lutely simple if defined over k) abelian surface X, and a prime number ` 6= char(k)
that is inert in K0 and such that the RM order of X is maximal locally at `, there is
a path of (`, `)-isogenies to a principally polarizable abelian surface with maximal com-
plex multiplication locally at `. This path does not depend on the choice of a principal
polarization on X. Moreover, if X is defined over k, then all the isogenies in the path
are defined over k.

The split case. Suppose now ` splits in K0 as `OK0 = l1l2. The li-isogenies, for i =
1, 2, can be described via Proposition 8.9. If we compose an l1-isogeny with an l2-
isogeny, or vice versa, we obtain an isogeny of degree `2 with kernel a subgroup of
X[l1l2 ∩O(X)] = X[`], and there are a total of `2 + 2`+ 1 such isogenies. If the kernel

of such a composition is isotropic for the Weil pairing e
φL0
` , then it is an (`, `)-isogeny.

The following is [BJW17, Thm. 6.4 (ii)]:
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Theorem 8.17. Let L0 be a principal polarization on X, and suppose X has maximal
real multiplication locally at `. Suppose ` splits in K0 as `OK0 = l1l2. The `2 + 2` + 1
compositions of an l1-isogeny with an l2-isogeny, or vice versa, are (`, `)-isogenies for

the pairing e
φL0
` . Conversely, among the `3 + `2 + `+ 1 (`, `)-isogenies from X for e

φL0
` ,

the only RM-horizontal ones are the compositions of an l1-isogeny with an l2-isogeny, or
vice versa, the remaining `3 − ` (`, `)-isogenies are RM-descending with local RM order
of the target surface given by Z` + `oK0.

Theorem 8.17 tells us that being the kernel of an (`, `)-isogeny that preserves the local
maximal real multiplication is independent of the choice of a polarization. However,
it is not immediately clear how to use the structural results from Proposition 8.9 for
l1-isogenies and l2-isogenies to navigate in the isogeny class of X with (`, `)-isogenies
only, and hopefully reach a variety with maximal local CM order.

The ramified case. If ` ramifies in K0 as `OK0 = l2, then a composition of two
l-isogenies is an isogeny of degree `2 with kernel a subgroup of X[l2 ∩ O(X)] = X[`].
There are a total of `2 + `+ 1 such isogenies, some kernels of l-isogenies being counted

multiple times. If the kernel of such a composition is isotropic for the Weil pairing e
φL0
` ,

then it is an (`, `)-isogeny. The following is [BJW17, Thm. 6.4 (iii)]:

Theorem 8.18. Let L0 be a principal polarization on X, and suppose X has maximal
real multiplication locally at `. Suppose ` ramifies in K0 as `OK0 = l2. The `2 + ` + 1

compositions of two l-isogenies are (`, `)-isogenies for the pairing e
φL0
` . Conversely,

among the `3 + `2 + ` + 1 (`, `)-isogenies from X for e
φL0
` , the only RM-horizontal

ones are the compositions of two l-isogenies, the remaining `3 (`, `)-isogenies are RM-
descending with local RM order of the target surface given by Z` + `oK0.

Theorem 8.18 tells us that being the kernel of an (`, `)-isogeny that preserves the local
maximal real multiplication is independent of the choice of a polarization. However,
it is not immediately clear how to use the structural results from Proposition 8.9 for
l-isogenies to navigate in the isogeny class of X with (`, `)-isogenies only, and hopefully
reach a variety with maximal local CM order.

8.4.3 Going up

Let X be a principally polarizable abelian surface in the previously fixed isogeny class
(ordinary and simple). Let ` be a prime number different from char(k), and let L0 be a
principal polarization on X. We are interested in finding a path of (`, `)-isogenies (the

first one being with respect to the Weil pairing e
φL0
` ) and β-cyclic isogenies to reach the

maximal local complex multiplication order whenever possible.

The inert case. If ` is inert in K0, then Propositions 8.14 and 8.16 tell us that there
is a path of (`, `)-isogenies to a principally polarizable abelian surface with maximal CM
order locally at `. The path does not depend on the choice of a principal polarization
on X. Moreover, if X is defined over k, then all the isogenies in the path are defined
over k. The split and ramified cases are a bit more subtle.

The split case. Using Proposition 8.14, we can suppose that X has maximal real
multiplication locally at `. Suppose ` splits in K0 as `OK0 = l1l2. The local CM order
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of X is of the form of = oK0 + foK , for some oK0-ideal f = ln1 l
m
2 , where n,m are nonneg-

ative integers. The target surface prl1(X) of the unique l1-ascending l1-isogeny upl1
X has

local CM order given by oln−1
1 lm2

, and the target surface prl2(prl1(X)) of the unique l2-

ascending l2-isogeny upl2
prl1 (X) from prl1(X) has local CM order given by oln−1

1 lm−1
2

. But

this composition is an (`, `)-isogeny. Assuming without loss of generality that n ≤ m,
continuing this way we have a path of (`, `)-isogenies to a principally polarizable abelian
surface with local CM order olm−n2

(hence at l1-level 0). Set m′ = m−n. If l1 is not inert

in K, then there exist l1-horizontal l1-isogenies. Composing an l1-horizontal l1-isogeny
with the l2-ascending l2-isogeny upl2 , we reach a principally polarizable abelian sur-
face with maximal CM order locally at ` with m′ additional (`, `)-isogenies. However,
if l1 is inert in K, then there are no l1-horizontal l1-isogenies. We can still compose
an l1-descending l1-isogeny with upl2 , followed by the composition of upl1 with upl2 ,
and get a path of two (`, `)-isogenies to a principally polarizable abelian surface with
local CM order o

lm
′−2

2
. Finally, we observe that if m′ is even, or equivalently if n + m

is even, then we can reach a principally polarizable abelian surface with maximal CM
order locally at ` with a path of (`, `)-isogenies. As a conclusion, the only case when we
cannot reach a principally polarizable abelian surface with maximal CM order locally
at ` with a path of (`, `)-isogenies in the split case is when m + n is odd and both l1
and l2 are inert in K. In this case the largest reachable local CM orders are oK0 + l1oK
and oK0 + l2oK . The above described path of (`, `)-isogenies does not depend on the
choice of a principal polarization on X. By Proposition 8.11, if X is defined over k,
then all li-isogenies are defined over k, for i = 1, 2 and hence, all the (`, `)-isogenies
are defined over k, except if o(X) = olm2 , l1 is inert in K and none of the l1-descending
l1-isogenies from X is defined over k, or if o(X) = oln1 , l2 is inert in K and none of the
l2-descending l2-isogenies from X is defined over k

The ramified case. Suppose again that X has maximal real multiplication locally
at `. If ` ramifies in K0 as `OK0 = l2, then the local CM order of X is of the form
of = oK0 + foK , for some oK0-ideal f = ln, where n is some nonnegative integer. The
composition upl

prl(X) ◦ upl
X is an (`, `)-isogeny to a principally polarizable abelian sur-

face with local CM order oln−2 . Continuing this way, provided n is even, we reach a
principally polarizable abelian surface with maximal CM order locally at ` with a path
of (`, `)-isogenies. If n is odd and we are at a principally polarizable abelian surface
with local CM order ol, and if l is not inert in K, then l-horizontal l-isogenies exist and a
composition of such an isogeny with upl is an (`, `)-isogeny to a principally polarizable
abelian surface with maximal CM order locally at `. As a conclusion, the only case
when we cannot reach a principally polarizable abelian surface with maximal CM order
locally at ` with a path of (`, `)-isogenies in the ramified case is when n is odd and l is
inert in K. In this case the largest reachable local CM order is oK0 + loK . The above
described path of (`, `)-isogenies does not depend on the choice of a principal polariza-
tion on X. By Proposition 8.11, if X is defined over k, then all l-isogenies are defined
over k and hence, all the (`, `)-isogenies are defined over k.

Going to the maximal local CM order with (`, `) and β-cyclic isogenies. Using
the results from the previous paragraphs, suppose we have computed a path of (`, `)-
isogenies to a principally polarizable abelian surface X with maximal local RM order
and with local CM order oK0 + loK , where l is a prime of K0 above ` (in the split
or in the ramified case), and that there is no path of (`, `)-isogenies to a principally
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polarizable abelian surface with local CM order oK . There is, however, the l-ascending
l-isogeny upl

X : X → prl(X), and prl(X) has maximal local complex multiplication oK .
If l is principal, generated by a totally positive element β ∈ OK0 of K0/Q-norm `
(corresponds to a degree `2-endomorphism of X), we may consider the (β)-ascending

(β)-isogeny up
(β)
X . Let L0 be a principal polarization on X. The kernel of up

(β)
X is

cyclic of order `, hence maximal isotropic inside kerβ for the commutator pairing eLβ0
,

and up
(β)
X is a β-cyclic isogeny. Moreover, we see that this isogeny does not depend on

the choice of a principal polarization on X. By the results from Sections 4 and 5, we

can compute up
(β)
X .

Proposition 8.19. Let X be an ordinary and simple (absolutely simple if defined
over k) principally polarizable abelian surface. Let ` be a prime number different from
char(k). Suppose that ` is inert in K0 or that at least one prime ideal of K0 above `
is generated by a totally positive element β ∈ OK0. Let L0 be a principal polarization
on X. Then, there is a path of (`, `)-isogenies (the first one being with respect to the

Weil pairing e
φL0
` ) from X, followed by at most one β-cyclic isogeny to a principally

polarizable abelian surface with maximal complex multiplication locally at `. This path
does not depend on the choice of a principal polarization on X. Moreover, if X is defined
over k, then all the isogenies are defined over k.

Suppose now X has local CM order oK0 + loK and l is not generated by a totally
positive element of OK0 . Suppose however that there exists an ideal m /OK0 , coprime
to l, such that lm is generated by a totally positive element β ∈ OK0 . Let L0 be a
principal polarization on X. Subject to the following conditions, we can still reach an
abelian surface with maximal local complex multiplication with a computable β-cyclic
isogeny:

i) the maximal isotropic subgroups of kerβ for eLβ0
are cyclic;

ii) for all p | m, the surface X is at p-level 0 in the p-isogeny graph, and the prime p
is not inert in K.

Namely, if m factors in K0 as m = pe11 · · · perr , then the l-ascending l-isogeny upl
X ,

composed with e1 p1-horizontal p1-isogenies, e2 p2-horizontal p2-isogenies, and so on, is
a β-cyclic isogeny X → Y for the commutator pairing eLβ0

, and Y has maximal complex

multiplication locally at `. Condition ii) only ensures that we do not decrease the p-
level of X at any prime p 6= l, and can safely be weakened. Condition i) is verified if
for example all the prime factors of m are above distinct prime numbers (and different
from `), have inertia degree 1 and exponent 1 in the factorization of m. If condition i)
cannot be fulfilled, e.g. if a maximal isotropic subgroup of kerβ contains a subgroup
isomorphic to Z/rZ × Z/rZ, for some prime number r 6= `, then the computation of a
cyclic isogeny has to be preceded by an (r, r)-isogeny.

8.5 Perspectives in dimension 3

In dimension 3 the situation is more delicate. While the theory of l-isogenies can still
be applied when the abelian threefold has maximal local real multiplication, it is not
known if one can always reach such a variety with (`, `, `)-isogenies only, starting from an
arbitrary principally polarizable abelian threefold. The latter problem is the subject of
an ongoing research project of the author with D. Jetchev, C. Martindale, E. Milio and
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B. Wesolowski. Among the applications of an algorithm that finds a computable path of
isogenies to reach an abelian variety with maximal complex multiplication presented in
Section 8.2, the random self-reducibility of the discrete logarithm problem in dimension 3
becomes particularly interesting. Namely, using the transitive action of P(OK) (the
projection of the Shimura class group on Cl(OK)) on the set of k-isomorphism classes of
principally polarizable ordinary and absolutely simple abelian threefolds with maximal
endomorphism ring, one can combine a random walk on this horizontal graph (using
β-cyclic isogenies of prime degree only) with descending (`, `, `)-isogenies to reach a
uniformly random principally polarizable abelian threefold. With reasonable heuristic
assumptions on the proportion of quartic Jacobians in the fixed isogeny class, this path
has a high probability to end at a non-hyperelliptic Jacobian. Note that it is important
to compute the β-cyclic isogenies at maximal endomorphism level, otherwise a non-
negligible proportion of varieties in the isogeny class would not be reachable via the
above described random path.

8.5.1 (`, `, `)-isogeny graphs with maximal local real multiplication

Let k be a finite field of size q and consider a k̄-isogeny class of ordinary and simple
abelian threefolds that admits some variety X0 defined over k. Fix an isomorphism
End(X0)⊗ZQ

∼−→ K to the sextic CM-field K = Q(π), where π is a Weil q-number that
represents the k-isogeny class of X0, and let K0 be the totally real cubic subfield of K.

Let ` be a prime number different from the characteristic of k, and suppose it factors
in K0 as `OK0 = le11 · · · lerr . Starting from a principally polarizable threefold X with
maximal real multiplication locally at ` in this isogeny class, one would like to know
that a certain combination of li-isogenies is an (`, `, `)-isogeny, similar to the case of
dimension 2 described in Section 8.4.2 (as you might guess, it will be a combination of e1

l1-isogenies, with e2 l2-isogenies, etc). This, applied to the li-ascending li-isogenies upli ,
as defined in Definition 8.10, is then a computable (`, `, `)-isogeny. And similarly, a
combination of li-descending li-isogenies is a computable (`, `, `)-isogeny.

We can prove this, similar to [BJW17] for dimension 2, using `-adic techniques.
Let V` := T`X ⊗Z` Q`, where T`X is the `-adic Tate module of X. We know that V`
is a Q`-vector space of dimension 6, and T`X is a Z`-lattice in V`. Also, V` is a K` =
K ⊗Q Q`-module of rank one (this is Tate’s theorem). The bridge between the study
of `-power degree isogenies from X and the `-adic vector space V` is that neighbor
lattices of T`X in V` (for the containment “⊂”) can naturally be identified with finite
subgroups of X[`∞], yielding the isogenies. Elements of T`X are sequences (Pn)n≥1

with Pn ∈ X[`n] and `Pn+1 = Pn for all n ≥ 1, and elements of V` are of the form
(Pn)n≥1 ⊗ `−m, with m ∈ Z≥0. Via

(Pn)n≥1 ⊗ `−m 7→ (Pn+m)n≥1,

we obtain an identification of V` with the set of sequences (Qn)n≥1 with Qn ∈ X[`∞] and
`Qn+1 = Qn for all n ≥ 1. Under this identification, T`X corresponds to the sequences
satisfying Q1 ∈ X[`]. The projection

(Qn)n≥1 7→ `Q1

induces an isomorphism
V`/T`X

∼−→ X[`∞](k̄)

and hence,

{finite subgroups of X[`∞](k̄)} ↔ {Z`-lattices in V` containing T`X}.
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Fix l a prime of K0 above `. We want to define l-isogenies (as in Definition 8.4) in the
`-adic setting, for abelian threefolds with maximal local real multiplication. Let Λ ⊂ V`
be a Z`-lattice and denote by

o(Λ) = {α ∈ K` : αΛ ⊂ Λ}

the stabiliser of Λ for the K`-action. Tate’s theorem states that

o(T`X) = o(X) = O(X)⊗Z Z`,

where O(X) ⊂ K is the CM-order of X corresponding to Endk̄(X). Suppose now
throughout that the stabiliser of Λ contains oK0 , i.e. Λ is an oK0-module. It is not hard
to show that Λ is an o(Λ)-module of rank one (the proof is similar to that of [BJW17,
Lem. 7.7]). From this it follows that Λ is a free oK0-module of rank 2.

Since Λ is oK0-stable, we have lΛ ⊂ Λ and hence, Λ/lΛ is an oK0/loK0-module,
i.e. an oK0/loK0

∼= OK0/l-vector space of dimension 2. The oK0/loK0-vector subspaces
of Λ/lΛ can naturally be identified with oK0-stable lattices Γ satisfying lΛ ⊂ Γ ⊂ Λ.

Definition 8.20. The set of l-neighbors of Λ is

Ll(Λ) = {lΛ ⊂ Γ ⊂ Λ : Γ an oK0-stable Z`-lattice and Γ/lΛ of oK0/loK0-dimension one}.

Next, we want to define (`, `, `)-neighbors in the `-adic setting (for a comparison,
see Definition 8.3). Let L0 be a principal polarization on X. The symplectic pairing

e
φL0
` : T`X × T`X → Z` from Section 3.1 (here, the target group is written additively)

extends to a symplectic pairing on V`, that we will denote by

〈·, ·〉 : V` × V` → Q`.

For α ∈ K` and x, y ∈ V` we have 〈αx, y〉 = 〈x, α†y〉. In particular, for α ∈ K0,` we
have 〈αx, y〉 = 〈x, αy〉.

Lemma 8.21. For all α, β ∈ K0,` and all x ∈ V` we have

〈αx, βx〉 = 0.

Proof. This follows from 〈αx, βx〉 = 〈x, αβx〉 = 〈x, βαx〉 = 〈βx, αx〉 = −〈αx, βx〉.

Recall that for a Z`-lattice Λ in V`, the dual lattice of Λ is defined as

Λ∗ = {x ∈ V` : 〈x,Λ〉 ⊂ Z`}.

The lattice T`X is self-dual, i.e. (T`X)∗ = T`X, following from the fact that V` =
T`X ⊗Z` Q` and that L0 is a principal polarization.

Lemma 8.22. For any self-dual Z`-lattice Λ ⊂ V`, the quotient Λ/`Λ is a symplectic
Z`/`Z` ∼= Z/`Z-vector space of dimension 6 for the pairing

〈x+ `Λ, y + `Λ〉 = 〈x, y〉 mod `Z`.

Proof. The containment Λ ⊂ Λ∗ ensures that indeed, 〈Λ,Λ〉 ⊂ Z`. For the nonde-
generacy, suppose that x ∈ Λ is such that 〈x, y〉 ∈ `Z` for all y ∈ Λ. It follows that
`−1x ∈ Λ∗ = Λ and hence, x ∈ `Λ.
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Definition 8.23. The set of (`, `, `)-neighbors of a self-dual Z`-lattice Λ ⊂ V` is

L (Λ) = {`Λ ⊂ Γ ⊂ Λ : Γ a Z`-lattice and Γ/`Λ maximal isotropic in Λ/`Λ}.

We can give a formula for the number of (`, `, `)-neighbors of Λ.

Proposition 8.24. The number of maximal isotropic subspaces of a symplectic Z/`Z-
vector space of dimension 6 is

3∏
i=1

(`i + 1) = `6 + `5 + `4 + 2`3 + `2 + `+ 1.

Proof. Let (V, 〈·, ·〉) be a symplectic Z/`Z-vector space of dimension 6, and let
{λ1, λ2, λ3, µ1, µ2, µ3} be a symplectic basis of V for 〈·, ·〉. The set of symplectic bases
of V for 〈·, ·〉 is a principal homogenous space under the action of Sp(V, 〈·, ·〉), and via
{λ1, . . . , µ3} we might identify Sp(V, 〈·, ·〉) with Sp6(Z/`Z). We have a decomposition
V = 〈λ1, λ2, λ3〉 ⊕ 〈µ1, µ2, µ3〉 into maximal isotropic subspaces. Given any maximal
isotropic subspace M of V , a basis of M can be completed to a symplectic basis of V ,
see e.g. [dG06, Thm. 1.15]. Hence, Sp6(Z/`Z) acts transitively on the set of maximal
isotropic subspaces. In order to compute the number of maximal isotropic subspaces, it

suffices to identify the stabilizer of 〈λ1, λ2, λ3〉. A symplectic matrix γ =

(
A B
C D

)
∈

Sp6(Z/`Z) stabilizes 〈λ1, λ2, λ3〉 if and only if C = 0. And γ =

(
A B
0 D

)
is symplectic

if and only if A ∈ GL3(Z/`Z), D = (tA)−1 and A tB is symmetric. Let us count the
number of such matrices. The matrix A is in GL3(Z/`Z), so there are `3

∏3
i=1(`i − 1)

possible choices. For each choice of A we can choose B ∈ Mat3(Z/`Z) with the only
constraint that A tB is symmetric. We carefully verify that this leaves us with the
freedom of choosing 3·4

2 coefficients of B, as if we would require B itself to be symmetric.

Hence, there are total of `6 choices for B. Since # Sp6(Z/`Z) = `3
2 ∏3

i=1(`2i − 1), the
number of maximal isotropic subspaces of V is given by∏3

i=1(`2i − 1)∏3
i=1(`i − 1)

=
3∏
i=1

(`i + 1).

We now show that a combination of l-isogenies from T`X (depending on the splitting
of ` in K0) is an (`, `, `)-isogeny. We will only treat the cases ` inert in K0, ` totally split
and `OK0 = l1l2, the remaining cases being similar. Suppose throughout that Λ ⊂ V` is
a self-dual Z`-lattice with maximal local real multiplication, i.e. oK0 ⊂ o(Λ).

The inert case. The local real multiplication algebra K0,` is the completion of K0

with respect to the absolute value | · |`OK0
induced by the prime ideal `OK0 . Moreover,

by (8.2) we have that oK0/`oK0
∼= OK0/`OK0

∼= F`3 .

Proposition 8.25. The set of (`, `, `)-neighbors of Λ with maximal local real multipli-
cation is equal to the set of `oK0-neighbors of Λ.

Proof. Since Λ/`Λ is a symplectic F`-vector space of dimension 6, it is of cardinality `6.
But it is also an oK0/`oK0

∼= F`3-module and by cardinality reason, it is an F`3-vector
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space of dimension 2. The lattices `Λ ⊂ Γ ⊂ Λ that are oK0-stable are naturally
identified with F`3-vector subspaces of Λ/`Λ. An isotropic F`3-subspace of Λ/`Λ must
be of dimension 0 or 1 and hence, maximal isotropic subspaces are F`3-lines. Conversely,
all F`3-lines are isotropic by Lemma 8.21 (hence maximal isotropic).

The totally split case. Suppose that `OK0 = l1l2l3. The local real endomorphism
algebraK0,` is the direct sum of the completions ofK0 with respect to the absolute values
| · |l1 , | · |l2 and | · |l3 respectively. Moreover, for i = 1, 2, 3, we have oK0/lioK0

∼= Z/`Z.

Proposition 8.26. For any {i, j, k} = {1, 2, 3}, an element of Lli(Llj (Llk(Λ))) is an
(`, `, `)-neighbor of Λ with maximal local real multiplication.

Proof. Let Γ ∈ Ll3(Ll2(Ll1(Λ))) (as will become clear from the proof, the order of
the indices is not relevant). By definition, Γ is oK0-stable. Let us show that Γ is
an (`, `, `)-neighbor of Λ. There exist oK0-stable lattices Γ1,Γ2 such that

l1Λ ⊂ Γ1 ⊂ Λ and Γ1/l1Λ is an F`-line
l2Γ1 ⊂ Γ2 ⊂ Γ1 and Γ2/l2Γ1 is an F`-line
l3Γ2 ⊂ Γ ⊂ Γ2 and Γ/l3Γ2 is an F`-line.

We deduce that

Γ1 = Z`γ1 + l1Λ for some γ1 ∈ Γ1

Γ2 = Z`γ2 + l2Γ1 for some γ2 ∈ Γ2

Γ = Z`γ + l3Γ2 for some γ ∈ Γ.

Let $1 be a generator of the principal ideal l1oK0 (to be more rigorous, we should
write ($1, 1, 1) for a generator of l1oK0). Let $2 and $3 be generators of l2oK0 and l3oK0

respectively, and observe that ($1$2$3) = `oK0 by (8.3). We may suppose without
loss of generality that $1$2$3 = `. We have

Γ = Z`γ + Z`$3γ2 + Z`$2$3γ1 + `Λ.

In order for Γ/`Λ to be isotropic, it suffices to show that

〈γ,$3γ2〉 ≡ 〈γ,$2$3γ1〉 ≡ 〈$3γ2, $2$3γ1〉 ≡ 0 mod `Z`.

For this, let us first show that

〈γ2, $2$3γ1〉 ≡ 0 mod `Z`. (8.4)

Since γ2 ∈ Γ2 ⊂ Γ1, there exist a ∈ Z` and z ∈ Λ such that γ2 = aγ1 +$1z. Then

〈γ2, $2$3γ1〉 = 〈aγ1, $2$3γ1〉+ 〈$1z,$2$3γ1〉 = 0 + 〈z, `γ1〉 ≡ 0 mod `Z`.

With the same argument one shows that

〈$3γ2, $2$3γ1〉 ≡ 0 mod `Z`.

To show that 〈γ,$2$3γ1〉 ≡ 0 mod `Z`, we observe that γ ∈ Γ ⊂ Γ2 and hence, there
exist b, c ∈ Z` and z′ ∈ Λ such that

γ = bγ2 + c$2γ1 +$1$2z
′.
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But 〈c$2γ1, $2$3γ1〉 = 0, and by (8.4) we know that 〈bγ2, $2$3γ1〉 ≡ 0 mod `Z`.
Moreover, since $1$2$3 = `, we have 〈$1$2z

′, $2$3γ1〉 ≡ 0 mod `Z`. Finally, to
show that 〈γ,$3γ2〉 ≡ 0 mod `Z` it suffices to show that 〈c$2γ1, $3γ2〉 ≡ 0 mod `Z`.
But γ2 = aγ1 +$1z and hence,

〈c$2γ1, $3γ2〉 = 〈c$2γ1, a$3γ1〉+ 〈c$2γ1, $1$3z〉 ≡ 0 mod `Z`.

The case `OK0 = l1l2. Suppose without loss of generality that l1 is of inertia degree 1
and that l2 is of inertia degree 2. The local real endomorphism algebra K0,` is the
direct sum of the completions of K0 with respect to the absolute values | · |l1 and | · |l2
respectively. By (8.2) we have oK0/l1oK0

∼= Z/`Z and oK0/l2oK0
∼= F`2 . We deduce

that oK0 can be written as oK0 = Z` + Z`α+ l2oK0 , for some α ∈ oK0 .

Proposition 8.27. For any {i, j} = {1, 2}, an element of Lli(Llj (Λ)) is an (`, `, `)-
neighbor of Λ with maximal local real multiplication.

Proof. Let Γ ∈ Ll2(Ll1(Λ)) (the second case is similar). By definition, Γ is oK0-stable.
There exists a oK0-stable lattice Γ1 such that

l1Λ ⊂ Γ1 ⊂ Λ and Γ1/l1Λ is an F`-line
l2Γ1 ⊂ Γ ⊂ Γ1 and Γ/l2Γ1 is an F`2-line.

We deduce that

Γ1 = Z`γ1 + l1Λ for some γ1 ∈ Γ1

Γ = (Z` + Z`α)γ + l2Γ1 for some γ ∈ Γ.

As before, we let $1 and $2 be generators of the principal ideals l1oK0 and l2oK0 respec-
tively. They satisfy ($1$2) = `oK0 and we may choose $1 and $2 such that $1$2 = `.
We can write

Γ = Z`γ + Z`αγ + Z`$2γ1 + `Λ.

Let us show that 〈γ,$2γ1〉 ≡ 0 mod `Z`, the proof for 〈αγ,$2γ1〉 being similar.
Since γ ∈ Γ ⊂ Γ1, we can write γ = aγ1 + $1z for some a ∈ Z` and z ∈ Λ. But
then

〈γ,$2γ1〉 = 〈aγ1, $2γ1〉+ 〈$1z,$2γ1〉 = 0 + 〈z, `γ1〉 ≡ 0 mod `Z`.

8.5.2 Going up

Let (X,L0) be a principally polarized abelian threefold in the previously fixed isogeny
class (ordinary and simple), and suppose it has maximal real multiplication locally `.
Suppose ` factors in K0 as `OK0 = le11 · · · lerr . From the previous section we know that a
composition of e1 l1-isogenies with e2 l2-isogenies, etc., is an (`, `, `)-isogeny from X for

the Weil pairing e
φL0
` , preserving the maximality of the local real multiplication order.

In particular, this can be applied to the isogenies upl1 , . . . ,uplr . With the exact same
reasoning as in Section 8.4.3, we can show that using (`, `, `)-isogenies only, we can
reach a principally polarized abelian threefold X ′ with local complex multiplication oK
or oK0 + lioK , for some 1 ≤ i ≤ r. Let L′0 be the principal polarization on X ′ induced
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by L0 and this ascending path. Provided li is principal and of norm `, generated by a to-
tally positive real endomorphism β, the (β)-isogeny up(β) has a cyclic, maximal isotropic
kernel inside kerβ for the commutator pairing e(L′0)β , hence is a β-cyclic isogeny. That
is, the path of isogenies to a principally polarized abelian threefold with maximal local
complex multiplication is computable.

If li is not generated by a totally positive real endomorphism, there is still a situation
where we are able to reach a principally polarized abelian threefold with maximal local
complex multiplication with a computable isogeny, analogous to dimension 2. Namely,
if there exists an ideal m / OK0 , coprime to li, such that lim is generated by a totally
positive element β ∈ OK0 , and such that the following conditions hold:

i) the maximal isotropic subgroups of kerβ for e(L′0)β are cyclic;

ii) for all p | m, the threefold X ′ is at p-level 0 in the p-isogeny graph, and the prime p
is not inert in K.

The li-ascending isogeny upli , composed with p-horizontal p-isogenies (for p the prime
factors of m), is a computable β-cyclic isogeny. Hence, we can reach a principally
polarized abelian threefold with maximal complex multiplication locally at `. As in
dimension 2, condition ii) only ensures that we do not decrease the p-level of X ′ at
any prime p 6= li, and can be weakened. Condition i) is verified if for example all
the prime factors of m are above distinct prime numbers (and different from `), have
inertia degree 1 and exponent 1 in the factorization of m. If condition i) cannot be
fulfilled, e.g. if a maximal isotropic subgroup of kerβ contains a subgroup isomorphic
to Z/rZ×Z/rZ×Z/rZ, for some prime number r 6= `, then the computation of a cyclic
isogeny has to be preceded by an (r, r, r)-isogeny.

8.5.3 Application to the discrete logarithm problem in dimension 3

Until nowadays, little is known about the proportion of hyperelliptic and non-hyperelliptic
Jacobians in a randomly chosen k̄-isogeny class of ordinary and simple abelian three-
folds. And even if one would make reasonable assumptions on the proportions (e.g.
based on the dimensions of the moduli spaces of hyperelliptic and non-hyperelliptic
genus 3 curves), the distribution of the hyperelliptic and quartic Jacobians inside the
isogeny class is not known. This makes it practically impossible to construct an explicit
isogeny path from a hyperelliptic Jacobian over k to a quartic Jacobian over k in a de-
terministic way, which would decrease the complexity for the computation of a discrete
logarithm from O(#k4/3) to O(#k), see [Die06, DT08] and [GTTD05]. Yet, one can
follow a random path and try to estimate the probability of reaching a quartic Jacobian.
Let X be a principally polarized abelian threefold in the isogeny class. Let K be a fixed
sextic CM-field, isomorphic to the endomorphism algebra of X. Up to isomorphism,
the endomorphism ring of any variety isogenous to X is contained in OK . We want
the endpoint of a random path of computable isogenies starting from X to be uniform
among the isogeny class. To achieve this, we cannot simply compute random isogenies.
The reason being that the orders of OK corresponding to the endomorphism rings of
two (`, `, `)-isogenous or β-isogenous varieties satisfy some “neighbor relation”. To get
rid of this restrictive neighbor relation, we first need to compute a deterministic path
to a variety with maximal endomorphism ring OK . Only after this has been achieved,
we can start randomizing the path. There are only finitely many prime numbers at
which the local endomorphism ring of X is not maximal. If for all these prime numbers
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we are in the situation described in Section 8.5.2, i.e. we are able to compute a path
of (`, `, `)-isogenies and β-cyclic isogenies to a principally polarized abelian threefold
with maximal local complex multiplication, then we have a path of computable isoge-
nies to a principally polarized abelian threefold X ′ with maximal global endomorphism
ring. If we denote by P(OK) the projection of the Shimura class group on Cl(OK),
then the P(OK)-orbit of X ′ under the CM-action is the set of all isomorphism classes of
principally polarizable abelian threefolds with maximal endomorphism ring. By [JW19,
Thm. 1.1], one can construct expander graphs on the P(OK)-orbit of X ′, where the
edges are l-isogenies of bounded prime degree. Hence, they are β-cyclic isogenies. To
obtain a uniform endpoint of a random path starting from X, one first computes the
deterministic path to X ′, then does a random walk on the set of isomorphism classes of
principally polarized abelian threefolds with endomorphism ring OK using the transitive
CM-action, and finally computes random descending (`, `, `)-isogenies.
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