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Abstract

Some of the most important and challenging problems in science and engineering are inverse
problems. They allow us to understand phenomena that cannot be measured directly. Inverse
problems might not always have a unique or stable solution, or might not have any solution at
all; in these cases, they are called ill-posed. An example of an inverse problem in room acoustics
is simultaneous localization and mapping (SLAM) from sound. It is the central theme of this
thesis, and we address it from both a theoretical and practical viewpoint.

From a theoretical viewpoint, we show that our SLAM setup is ill-posed since the uniqueness
condition is not satisfied. From a practical viewpoint, we propose methods to constrain and
identify a solution set, and we use real experiments to confirm that such a constrained problem
is stable. The acoustic SLAM consists of jointly reconstructing the geometry of a room and
self-localizing. We show that it can be reformulated as the reconstruction of a set of points and
planes from their pairwise distances; to solve the problem, we introduce and study point-to-plane
distance matrices (PPDMs).

Our motivation for PPDMs comes from the need for a robust localization system in indoor
environments. Location-based services are integral parts of everyday life, yet to this date no
single technology can provide reliable indoor localization. Inspired by echolocation in animals,
we approach the problem with the following analogy: Imagine that a bat loses the directivity in
its sensing and becomes what we call an omnidirectional bat. It explores the room by moving
randomly and listening to the echoes of its chirps that are emitted in all directions, without
knowing their direction. Can it still map the room and localize itself without any prior knowledge
of the room geometry and its own trajectory? Our research shows that the answer is yes, but
not in all rooms. We emulate such a monaural and omnidirectional bat using a device equipped
with a collocated speaker and microphone. At di↵erent locations inside the room, the speaker
emits a pulse, and the microphone registers the room impulse response. The propagation times
of the first-order echoes directly reveal the (point-to-plane) distances between the device and
the walls. The problem is then to recover the locations of the device and the walls of the room
from their pairwise distances; in the PPDM framework, its solution corresponds to a particular
factorization of a PPDM.

Though perhaps the most popular, SLAM is not the only application of PPDMs. In fact, our
abstraction can be adapted and reused to solve other problems in acoustics, computer vision and
signal processing which appear quite di↵erent at first glance, but all rely on the factorization
of a low-rank matrix. One famous example of such a problem is structure from motion (SFM),
which aims at recovering a scene geometry and camera motion from images. A similar example
in acoustics is called structure from sound (SFS), and concerns the joint localization of sensors
and acoustic events. In both SFM and SFS, the idea is to factor a low-rank measurement matrix
into a product of a projection and a coordinate matrix, with problem-dependent constraints on
the projection matrix.

Finally, there are problems in which the projection matrix from SLAM, SFM or SFS is known,
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and the goal is to recover the coordinate matrix only. To solve these problems, we introduce an-
other low-rank matrix named coordinate di↵erence matrix (CDM). Possible applications include
phase retrieval of sparse signals, where the core problem can be stated as the recovery of points
from their unlabeled and noisy vector di↵erences, and optimal tournament design, where we rely
on CDMs to devise an active learning algorithm from pairwise comparisons.

In a nutshell, the proposed thesis revolves around the theory, algorithms and applications of
point-to-plane distance matrices and coordinate di↵erence matrices.

Keywords: point-to-plane distance matrices, simultaneous localization and mapping, echolo-
cation, sonar, inverse problems in Euclidean space, room geometry reconstruction, uniqueness
of reconstruction, echo labeling, room impulse response, low-rank matrix factorization, measure-
ment uncertainty, incomplete data, coordinate di↵erence matrices, Euclidean distance matrices,
vector geometry problems, structure from sound, multimodal sensor localization, ranking, phase
retrieval for sparse signals.



Résumé

Certains des problèmes les plus importants et di�ciles en sciences et en ingénierie sont les
problèmes inverses. Ils nous permettent de comprendre des phénomènes qui ne peuvent être
mesurés directement. Les problèmes inverses n’ont pas toujours de solution unique ou stable,
ou parfois il peuvent ne pas avoir de solution du tout ; dans ces cas, ils sont appelés mal-posés.
Un exemple de problème inverse en acoustique est la localisation et la cartographie simultanées
(SLAM, pour simultaneous localization and mapping) à partir de sons. C’est le thème central de
cette thèse, et nous l’abordons à la fois d’un point de vue théorique et pratique.

D’un point de vue théorique, nous montrons que la formulation SLAM est mal-posée car la
condition d’unicité n’est pas remplie. D’un point de vue pratique, nous proposons des méthodes
pour contraindre et identifier un ensemble de solutions, et nous utilisons des expériences réelles
pour confirmer la stabilité de ces problèmes contraints. Le problème du SLAM acoustique consiste
à conjointement reconstruire la géométrie d’une pièce et s’auto-localiser. Nous montrons qu’il
peut être reformulé comme la reconstruction d’un ensemble de points et de plans à partir de
leurs distances mutuelles ; pour résoudre le problème, nous introduisons et étudions des matrices
de distance point-à-plan (PPDMs, pour point-to-plane distance matrix ).

Notre motivation pour les PPDMs trouve sa source dans la nécessité d’un système de lo-
calisation robuste pour les environnements intérieurs. En e↵et, les services de localisation font
partie intégrante de la vie quotidienne, mais à ce jour aucune technologie ne peut fournir une
localisation fiable en intérieur. Inspiré par les capacités d’écholocation de certains animaux, nous
abordons le problème avec l’analogie suivante : imaginons qu’une chauve-souris perde la direc-
tivité de ses sens et devient ce que nous appelons une chauve-souris omnidirectionnelle. Elle
explore la pièce en se déplaçant au hasard et en écoutant les échos de ses si✏ements qui sont
émis dans toutes les directions, sans connâıtre la direction de leurs échos. Peut-elle toujours car-
tographier la pièce et se localiser sans aucune connaissance préalable de la géométrie de la pièce
et de sa propre trajectoire ? Nos recherches montrent que la réponse est oui, mais pas dans toutes
les pièces. Nous simulons une telle chauve-souris monaurale et omnidirectionnelle à l’aide d’un
robot équipé d’un haut-parleur et d’un microphone co-localisés. À di↵érents endroits de la pièce,
le haut-parleur émet une impulsion et le microphone enregistre la réponse impulsionnelle de la
pièce. Les temps de propagation des échos du premier ordre révèlent directement les distances
(point à plan) entre l’appareil et les murs. Le problème est alors de retrouver les positions de
l’appareil et les murs d’une pièce à partir de leurs distances mutuelles ; dans le cadre des PPDMs,
la solution correspond à la factorisation d’une PPDM.

Bien que peut-être la plus populaire, SLAM n’est pas la seule application des PPDMs. En fait,
notre abstraction peut être adaptée et réutilisée pour résoudre d’autres problèmes d’acoustique,
de vision par ordinateur et de traitement du signal qui paraissent assez di↵érents au premier
abord, mais qui reposent tous sur la factorisation d’une matrice de rang faible. Un exemple connu
d’un tel problème est la structure à partir de mouvement (SFM, pour structure from motion),
qui vise à reconstruire la géométrie d’une scène et les mouvements d’une caméra à partir d’une
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série d’images. Un exemple similaire en acoustique est appelé structure à partir du son (SFS,
pour structure from sound), et concerne la localisation conjointe de capteurs et d’événements
acoustiques. Dans les algorithmes SFM et SFS, l’idée est de factoriser une matrice de mesure de
rang faible en un produit d’une matrice de projection et une matrice de coordonnées, avec des
contraintes dépendantes du problème appliquées à la matrice de projection.

Enfin, nous pouvons envisager des problèmes pour lesquels la matrice de projection de SLAM,
SFM ou SFS est connue, l’objectif étant de retrouver uniquement la matrice de coordonnées. Pour
résoudre ces problèmes, nous introduisons une autre matrice de rang faible appelée matrice de
di↵érence de coordonnées (CDM, pour coordinate di↵erence matrix ). Les applications possibles
des CDMs incluent l’extraction de phase de signaux parcimonieux, où le problème principal peut
être reformulé comme la reconstruction de points à partir de leurs di↵érences mutuelles, ainsi
que la conception optimale de tournois sportifs, où nous utilisons les CDMs pour concevoir un
algorithme d’apprentissage actif à partir de comparaisons mutuelles.

En résumé, la thèse proposée s’articule autour de la théorie, des algorithmes et des applications
des matrices de distance point-à-plan et des matrices de di↵érence de coordonnées.

Mots-Clés : matrices de distance point-à-plan, localisation et cartographie simultanées,
écholocalisation, sonar, problèmes inverses dans l’espace euclidien, reconstruction de la géométrie
d’une pièce, unicité de la reconstruction, marquage d’écho, réponse impulsionnelle d’une pièce,
factorisation matricielle de rang faible, incertitude dans les mesures, données incomplètes, ma-
trices de di↵érence de coordonnées, matrices de distance euclidienne, problèmes de géométrie
vectorielle, structure à partir de sons, localisation de capteurs multimodaux, classement, extrac-
tion de phase pour signaux parcimonieux.
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Chapter 1

Introduction

Un tas de pierres cesse d’être un tas de pierres dès lors

qu’un seul homme le contemple avec, en lui, l’image d’une

cathédrale.

1

The Little Prince

Antoine de Saint-Exupery

Let us motivate the research presented in this thesis by the problem of simultaneous local-
ization and mapping in indoor environments. We consider a specific setup which imitates the
echolocation behavior of bats. Its simplicity allows us to make a connection with several seem-
ingly di↵erent problems in signal processing. In this chapter we formally describe these problems
and bring them together into a common framework with a little help from matrix algebra.

1.1 Bat-like simultaneous localization and mapping

The industrialization of the world changed the way people live and work; ever since then, the
majority of people spend most of their time indoors. As modern day humans in the era of science
and technology, we have only strengthened this trend: we expose ourselves to new and unknown
indoor environments more often than ever before. As academics, we often travel to conferences
that are held in large convention centers or universities. As creative and curious individuals, we
frequently visit museums, concert halls and libraries. As victims of capitalism, we spend our
time in shopping malls looking for a specific gadget or a piece of clothing. New environments are
often accompanied by an extra level of stress and uncertainty. For instance, consider a hospital
in which one needs to quickly find an emergency or a delivery room. In such circumstances,
the ability to e�ciently navigate in indoor environments becomes increasingly important, and a
reliable and accurate indoor positioning system (IPS) enhanced by location-based services would
be of great use.

The problem of outdoor positioning and navigation has largely been solved by the use of
global navigation satellite systems (GNSS), considered the de facto standard for accurate outdoor
navigation. However, signals from GNSS satellites are too weak to penetrate most buildings,

1A rock pile ceases to be a rock pile the moment a single man contemplates it, bearing within him the image
of a cathedral.

1
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making such systems ine↵ective for indoor localization. Many schemes have therefore been
envisioned for indoor localization, but as of today, no system is in widespread use. The diversity
of available technologies is large, and current systems require tailored solutions, dedicated local
infrastructure and customized units [122].

One of the reasons indoor localization remains a challenge despite numerous attractive ap-
plications is that many of the proposed approaches require considerable infrastructure. Even
if they take advantage of existing wireless systems to reduce the costs of equipment and in-
stallations, the solutions face the challenging problem of modeling radio propagation in indoor
environments. Di�culties arise from severe multipath from walls and furniture, low probability
of line-of-sight path availability, fast temporal changes, moving objects, and numerous obsta-
cles [116]. Supported by these arguments, we anticipate that the prevalent solution to indoor
localization shall neither rely on fixed infrastructure inside buildings, nor on any prior knowl-
edge of the floor plans. We reinforce this belief by a personal experience recounted below, where
having an infrastructure-free indoor localization system would have been of crucial importance.

Last winter I spent a few nights in small wooden hotel in the Swiss Alps. My room was on
the first floor, while the kitchen and the dining room were in the basement. One night, a fire
alarm woke me up and I quickly found my way out of the hotel. With several other guests, we
stood at the entrance of the hotel at the ground level, while the smoke was coming up the stairs
that connect the entrance with the kitchen. It was relieving to see that the firefighters arrived
quickly, but watching them walk downstairs to the hazy basement was frightening to all of us.

This got me thinking: What if there was a localization device, which the firefighter could carry
alongside a fire extinguisher? A device that could learn and display a map of the environment,
continuously share its location with other firefighters, detect and localize moving people, and
lead them to the exit. Clearly, such a device could not depend on the existing infrastructure
which would most likely be inoperative or burned in the fire. Also, the fire-induced smoke will
make vision-based solutions ine↵ective... One could maybe use an acoustic sonar system! The
presence of small water droplets does not significantly a↵ect the speed of sound [23], while the
temperature e↵ect can be easily taken into account in the modeling. By the time I concluded
my thoughts, the fire was extinguished and we could safely return to our rooms.2

Motivated by the above use case, we decided to approach the problem of infrastructure-free
indoor localization based on echolocation. The most well-known example is the bat: A bat
emits an ultrasonic vocalization through its mouth or nose. It then listens as the signal bounces
o↵ the surrounding objects and reflects back to its ears. By comparing the times of arrival
or loudness levels of echoes received at both ears, the bat accurately perceives distance and
direction of objects in its vicinity. The bat can create a mental picture with amazing precision,
locate, identify and capture tiny insects, and update this information with newly received echoes.
Remarkably, humans have also shown the ability to echolocate, in particular when having lost
their visual acuity. Some blind individuals produce palatal clicks and are able to learn about
their surroundings from the echoes.

Inspired by these exemplary cases of echolocation, we used the following analogy. Imagine
that a bat loses directivity in its sensing and becomes an omnidirectional bat. It explores the
room randomly and listens to echoes of its chirps that are emitted in all directions, without
knowing the direction of their echoes. Can it create the map of a room and localize itself
without any a priori knowledge of the room geometry? The research presented in this thesis
demonstrates that in most cases, the answer is yes, and the proposed algorithms show how it

2No one was hurt, except the overcooked beef and empty stomachs of a few hungry hotel guests.
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Figure 1.1: Overview of inverse problems in which measurements correspond to point-to-plane
or point-to-line distances. a) Indoor simultaneous localization and mapping; b) Structure from
sound; c) Sampling sinusoids at unknown locations; d) Structure from motion in 2D.

can be done. We emulate such a bat with a mobile device equipped with an acoustic sonar; it
consists of a single omnidirectional source and a collocated omnidirectional receiver. The source
emits acoustic pulses and the receiver registers echoes. We do not assume any prior knowledge
of the room geometry, nor rely on any infrastructure inside the room. The times of flight of the
first-order echoes recorded by the device correspond to point-to-line distances in 2D or point-to-
plane distances in 3D. The question analogous to that of the omnidirectional monaural bat is:
Can we use the point-to-plane distances to jointly localize the device and positions of the walls?

We thus consider indoor localization based on multipath with minimal equipment: one source
and one receiver. Such a model has two antagonistic e↵ects on the problem. On the one hand,
it discards all information about the angles or time di↵erence of arrivals, typically available with
sensor arrays, which makes the problem harder to solve. On the other hand, it enables a mathe-
matically simple and crisp problem statement, which appears in many other seemingly di↵erent
applications, as discussed below. Hence, our analyses, uniqueness results and reconstruction
algorithms find applications well beyond indoor localization in unknown indoor environments.
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1.2 Unified framework for a class of problems in distance ge-
ometry

There are several practical distance geometry problems that appear very di↵erent at first glance,
but can be recast into a common framework. In each, the goal is to reconstruct a set of points and
planes from their pairwise distances. Perhaps surprisingly, the problems illustrated in Fig. 1.1
are (almost) equivalent: simultaneous localization and mapping with an omnidirectional sonar,
structure from sound in the far field, sampling sinusoids at unknown locations, and structure
from motion with orthographic projection.3

Measurements in these four problems range from discrete samples and images to propagation
time of sound waves and echoes. In the previous section, we motivated the study of point-to-plane
distances with simultaneous localization and mapping (SLAM); below, we introduce the other
three equivalent problems, describe their setups, and make a connection between their original
measurements and point-to-plane distances.

Structure from sound. The term structure from sound (SFS) was first introduced and studied
by Thrun in 2006 [167]; previously, it was known as passive localization [21]. SFS addresses the
inverse problem of simultaneously localizing a set of microphones and a set of acoustic events
whose emission times are unknown. The sound sources are assumed to be in the far field, which
implies that the sound propagates as a small number of plane waves and that the incident angle of
each acoustic signal is the same for all microphones; this is illustrated in Fig. 1.1b. Microphones
are synchronized and register absolute times of acoustic events. As the absolute emission times
are unknown and di↵erent for every source, Thrun proposed to cancel them out by computing
relative propagation times with respect to the microphone closest to the source. These relative
propagation times are then arranged into a low-rank measurement matrix. The factorization
of the measurement matrix into a product of two matrices yields microphone locations and
directions of arrival of sound signals.

The solution to the SFS problem can be used for sensor array localization. Ad hoc arrays
have been employed in monitoring and measurements for decades, and the importance of accurate
calibration of their relative positions is evident in numerous applications. For example, in signal
processing, sensor arrays are often employed to measure physical phenomena. This includes wire-
less sensor networks measuring weather conditions [78], ultrasonic sensors detecting breast cancer
in ultrasound tomography [54], and room geometry estimation from a microphone array [49]. In
acoustics, accurate source localization [118], direction-of-arrival estimation [135, 153], source sep-
aration and noise reduction [62] rely on microphone arrays with precisely calibrated microphone
locations [14].

The connection between the measurement matrix and point-to-plane distances emerges from
the fact that the relative times of arrival are proportional to distances between microphones and
sources. With far field sources, these distances are indeed point-to-plane distances.

Sampling sinusoids at unknown locations. A set of sinusoids with the same period but di↵erent
unknown amplitudes and phases are sampled at unknown locations, as illustrated in Fig. 1.1c.
The inverse problem is to jointly reconstruct the sinusoids and sampling locations from a set of

3To be precise, structure from motion and sampling sinusoids at unknown locations are equivalent to other
problems only in 2D. Moreover, sampling sinusoids is more restricted; it has one less unknown, which in terms of
points and lines implies that all lines pass through the origin.
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samples. This is a specific case of the more general problem of irregular sampling at unknown
locations for bandlimited signals [120, 134]. Probably less obvious than for SFS, the measured
samples correspond to point-to-line distances in 2D. This will become clearer in Section 1.4.1.

Structure from motion. Structure from motion (SFM) is a widely-used technique in computer
vision. It is the inverse problem of simultaneous recovery of a scene geometry and camera
motions from a sequence of images. The scenes typically consist of objects and their images are
captured from di↵erent views, as illustrated in Fig. 1.1d. Every image in the sequence contains
orthographic projections of the objects. An elegant solution that attracted significant attention
was provided by Tomasi and Kanade in 1992 [169]. The authors proposed to arrange the stream
of images into a low-rank measurement matrix. Similarly to Thrun’s solution to SFS, the joint
recovery of camera rotations and objects in the scene is then achieved by a factorization of the
measurement matrix into a product of two matrices.

A large number of improvements to the original method have been published, making an
impact in a wide range of applications, including autonomous robot navigation and augmented
reality: some of them propose to handle missing entries [74, 79], and some focus on di↵erent
camera matrices or dynamic scenes consisting of multiple motions [31, 149, 170, 175, 180].

We can draw a connection between the measurement matrix and point-to-plane distances in
2D only. In that case, the original objects are 2D, while images are represented by 2D vectors.
This resembles a setup from the SFS problem. By projecting the 2D coordinates of objects onto
a vector, we obtain distances between the origin of that vector and the projected points. If we
consider the projection vector to be a normal vector of a line, then the measured distances indeed
correspond to point-to-line distances.

Known projection matrix. We live in a 3D world where even ordinary smartphones are nowa-
days equipped with 3D depth cameras [89], so admittedly—SFM in 2D with 1D “cameras” is
not a great achievement. On the other hand, it is easy to envision cases for which we know the
camera model and attempt to recover the coordinates of unknown objects.

An analogous case in the equivalent problem of indoor SLAM is the one for which we know
the room geometry and we want to localize a mobile device equipped with an omnidirectional
sonar. Such a problem is of practical interest as the floor plans of apartments, hospitals, schools,
and other relevant buildings are often available.

A related case in SFS occurs when the directions of arrival of sound signals are known: imagine
that we are in an anechoic chamber and we want to calibrate a geometry of a microphone array
using a fixed speaker. We can place the array on a turntable and rotate it multiple times to
emulate a setup with one fixed microphone array and multiple speakers in the far field. As we
control the rotation of the turntable, we have precise information about the incident angles of
the sound waves.

The information that is assumed to be known in the three described practical situations—the
camera rotations, the orientations of walls, and the sound directions—can be presented in a
matrix with unit-norm columns. We call it a projection matrix, and refer to the corresponding
columns as projection vectors. These examples inspired us to additionally investigate setups
in which projection vectors are known, and to consider measurements di↵erent from point-to-
plane distances. We realized that if we simply compute pairwise di↵erences of point-to-plane
distances associated to the same projection vector, we obtain coordinate di↵erences between pairs
of projected points. As a result, we uncovered a whole new set of inverse problems whose goal
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Figure 1.2: Overview of inverse problems in which measurements correspond to coordinate
di↵erences. a) Structure from motion in 3D; b) Multimodal sensor localization; c) Molecular
conformation reconstruction; d) Rankings in sports; e) Phase retrieval for sparse signals.

is to recover original points from their coordinate di↵erences, which belong to vector geometry
problems (VGPs). In this thesis, we present a common framework to address these problems.

1.3 Unified framework for a class of problems in vector geom-
etry

The term vector geometry was coined by Billinge [17] as an extension of distance geometry
to vector measurements. Unlike distance geometry problems (DGPs) where the dissimilarity
between points is given only by their pairwise distances, in VGPs the dissimilarity between points
is given both by their distance and the orientation of the di↵erence vector between them. As the
distances and orientations uniquely determine vectors of the same dimension as the embedding
space, the dissimilarities between the points in VGPs are nothing but their coordinate di↵erences.

To cover a wider spectrum of applications, we extend this formulation by considering coor-
dinate di↵erences in higher dimension than of the embedding space. This is encountered for
instance in SLAM and SFM as the number of walls and the number of images are typically much
larger than three in 3D. Moreover, we study both assigned VGPs (aVGPs) and unassigned VGPs
(uVGPs). In aVGPs, the indices of the pairs of points from which the measured di↵erences orig-
inate are known, so we say that the di↵erences are labeled, while in uVGPs one needs to jointly
infer the labeling with the points.
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In Fig. 1.2 we illustrate problems where measurements correspond to coordinate di↵erences
and show that the field of applications extends beyond SLAM, SFS and SFM with known pro-
jection matrices. In the following, we introduce four other equivalent problems, describe their
setups, and make a connection between their original measurements and coordinate di↵erences.

Multimodal sensor localization. We have shown that one can localize a sensor array by solving
the problem of SFS. In that case, the sensor locations are determined from the measurements
of several far field sources. However, as the external measurement equipment cannot always
be available, a number of solutions was proposed for self-localization of nodes in wireless sen-
sor networks. Some of them focus on the case when the nodes can only measure their pair-
wise distances [38, 46, 63, 132], while some methods consider only relative angles between the
nodes [29, 105, 141].

Setups leveraging both measurement modalities, illustrated in Fig. 1.2b, did not attract
as much attention. One example is an adaptation of a well-known multidimensional scaling
(MDS) algorithm, originally devised for distances between points, to work for vectors between
points [117]. We also showed that one can constructively combine distance and angle measure-
ments into coordinate di↵erences [91]: by recasting multimodal sensor localization as the problem
of recovering points from their pairwise coordinate di↵erences, we improve upon existing meth-
ods.

Molecular conformation reconstruction. Determining the three-dimensional structure of a pro-
tein is one of the most important and challenging problems in biology [3]. A common experi-
mental method for finding the parameters pertaining to molecular structure is nuclear magnetic
resonance (NMR) spectroscopy. NMR spectroscopy provides information about the distances
between the nuclei of two bonded atoms (covalent bond distances), as well as the shortest dis-
tances between two non-bonded atoms (van der Waals distances). Moreover, from the NMR
data one can extract values of the torsion angles [59]. A torsion angle is defined as the angle
between planes through two sets of three atoms having two atoms in common. In addition to the
distances and torsion angles, one can assume that the angles between three consecutive bonded
atoms (bond angles) are accurately known.

Many existing methods use Euclidean distance matrices consisting of bond lengths and van
der Waals distances to estimate molecular structure [27, 28, 66, 115]. Other approaches combine
distance measurements with information about torsion angles and cast the problem in torsion–
angle space to estimate the geometry [69, 70]. Similarly, there exist methods that rely on the tor-
sion angles to sequentially find the coordinates of the atoms through simple geometrical angular
relations, assuming a constant bond length and ignoring van der Waals distances [25, 138, 163].

We showed that one can constructively combine these di↵erent distance and angle measure-
ments into 3D coordinate di↵erences and cast the molecular conformation problem as point
reconstruction from pairwise coordinate di↵erences [92].

Rankings. Ranking teams based on their performance refers to arranging teams in a list, such
that better appear higher. One of the most widely used algorithms was proposed by Massey [121].
The connection of the proposed method with coordinate di↵erences in 1D is the following: arrange
the strengths of teams as points on a line, with greater strength corresponding to the higher
likelihood for a team to win a game. Then, the net scores of games can be interpreted as
coordinate di↵erences of points. Hence, by recovering points from their pairwise di↵erences, one
can reconstruct rankings from net scores.
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Phase retrieval for sparse signals. Phase retrieval (PR) is the problem of recovering the phase
information of a signal from the magnitude of its Fourier transform to enable the reconstruction
of the original signal. PR for sparse signals is equivalent to recovering a signal from its auto-
correlation function, as illustrated in Fig. 1.2e. Observe that the auto-correlation function of
points corresponds to their coordinate di↵erences. PR is more di�cult than molecular confor-
mation and ranking problems because the labels of coordinate di↵erences are not known. In fact,
the problem belongs to uVGPs, where the task of inferring the proper labeling for the di↵erences
is NP-hard [35]. Nevertheless, there exist e�cient approximation algorithms. We have proposed
a greedy algorithm that retrieves the labeling by iteratively selecting the point that is the most
likely to generate a subset of the measured di↵erences, so it jointly recovers the points and labels
their coordinate di↵erences [93].

1.4 The matrix tool box

Insights into the connections between these seemingly di↵erent problems would not be possible
without matrix algebra. In what follows, we formally introduce the matrices that link these
problems together.

1.4.1 Point-to-plane distance matrices

We define a point-to-plane distance matrix (PPDM),

D = 1q> �R

>
N , (1.1)

as the matrix that contains pairwise distances between points and planes in 3D, or points and
lines in 2D. The matrix N 2 RD⇥K is the projection matrix with unit-norm columns, R 2 RD⇥N

is the coordinate matrix whose columns are the coordinates in space, and q 2 RK is an unknown
o↵set vector, which contains the signed distances of the planes from the origin. We use D to
denote the dimensionality of the space. The matrix N is uniquely determined by K angles in
2D, and 2K angles in 3D.

The problems outlined in Section 1.2 can all be formulated as the following inverse problem:

Problem 1.1 (Inverse problem for PPDMs) Given D, recover the coordinates R, the
projections N and the absolute o↵set q, such that (1.1) holds.

A related question that naturally arises is also of importance:

Problem 1.2 (Uniqueness of PPDMs) Given D, can one uniquely recover R, N and q,
such that (1.1) holds?

As D can possibly be incomplete and noisy, we are also interested in a broader problem in
which the goal is to find R, N and q that minimize some error between 1q> �R

>
N and the
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Variable SLAM SFS Sampling sinusoids SFM

D 2 or 3 2 or 3 2 2

N

number of
measurement
locations

number of
microphones

number of
sinusoids

number of
features in
the scene

K

number
of walls

number of
acoustic sources

number of
sampling locations

number of
images

R

coordinates of
measurement
locations

coordinates of
microphones

amplitudes an
and phases ↵n,

an =
q

r

2

n,x + r

2

n,y

and ↵n = arctan r
n,x

r
n,y

coordinates
of features

N

unit normals
of walls

directions of
plane waves

sampling locations
directions of
image frames

q

distances of walls
from the origin

absolute emission
times

0
translations
of images

Table 1.1: Interpretation of PPDMs in di↵erent problems.

noisy and incomplete D. Moreover, measurements of point-to-plane distances can sometimes be
unassigned. For instance, in indoor SLAM we record room impulse responses (RIRs) whose early
reflections contain echoes and can be modeled as streams of Dirac delta pulses. By examining a
single RIR, one cannot tell which pulse belongs to which echo or wall, so the measurements are
unassigned. A corresponding problem can be stated as:

Problem 1.3 (Unassigned problem for PPDMs) Given permuted entries in every row of
D, recover R, N and q, such that (1.1) holds.

The interpretation of these matrices in the context of the four problems from Section 1.2 is
presented in Table 1.1, while Fig. 1.3 illustrates their setups and the relevant notation.

1.4.2 Coordinate di↵erence matrices

We define a coordinate di↵erence matrix (CDM),

C = x1> � 1x>
, (1.2)

as the matrix that contains pairwise coordinate di↵erences of one-dimensional points arranged in
the vector x 2 RN . For multidimensional setups, we extend points to D dimensions and consider
K � D frame vectors {'k}Kk=1

.
The problems outlined in Section 1.3 can all be formulated as one of the following two inverse

problems:
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Figure 1.3: Equivalence of problems. a) Simultaneous localization and mapping: An omnidi-
rectional speaker and microphone are mounted on a mobile device. The speaker emits a sound
at unknown locations rn and the microphone records its echoes from unknown walls k. The
directions of wall normals are denoted by ✓k, while the distances of the walls from the origin in
the illustrated case are 0. We measure propagation times of the first-order echoes and convert
them to distances between points and planes, dnk. b) Structure from sound: Microphones are
placed at unknown locations rn. Speakers emit a sound at unknown times with unknown inci-
dent angles ✓k. We measure the absolute occurrence times of the sound events and convert them
to relative distances between the microphones n and m projected onto incoming plane waves
k, snmk = dnk � dmk. c) Sampling sinusoids: Sinusoids with the same period 2⇡, but di↵erent
amplitudes an and phases ↵n are sampled at unknown locations ✓k. Samples dnk correspond
to point-to-plane distances from a). d) Structure from motion: Di↵erent features rn in the
2D scene are captured into images (vectors) of di↵erent orientation ✓k and translation qk from
the origin. In the local coordinate system of every image, we can measure coordinates of the
projected features. These coordinates correspond to point-to-plane distances dnk from a).
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Problem 1.4 (Inverse problem for 1D CDMs) Given C, recover the points x such
that (1.2) holds.

Problem 1.5 (Multidimensional CDMs) GivenD-dimensional coordinate-wise di↵erences
observed in the frame {'k}Kk=1

, recover the set of points that generated them.

As was the case for PPDMs, in practice we can often measure only a noisy subset of di↵erences
from which we want to find the points that are the most likely to give rise to such measurements.
Additionally, we might also need to solve an assignment problem, which in the context of CDMs
is stated as:

Problem 1.6 (Unassigned CDMs) Given D-dimensional coordinate-wise di↵erences ob-
served in the frame {'k}Kk=1

without knowing the indices of points from which the di↵erences
originate, recover the set of points that generated them.

Even though the answer is much simpler than for PPDMs, the uniqueness question is also of
practical interest:

Problem 1.7 (Uniqueness for CDMs) Given D-dimensional coordinate-wise di↵erences
observed in the frame {'k}Kk=1

, can one uniquely recover the set of points that generated
them?

We summarize the applications of CDMs in Table 1.2.

Variable Sensor localization
Molecular

conformation
Ranking Phase retrieval

d 2 or 3 3 1 N

N

number of
sensors

number of
atoms

number of
teams

dimensionality
of a signal

x

coordinates
of sensors

coordinates of
atoms

ratings of teams
coordinates of the
support points

Table 1.2: Interpretation of CDMs in di↵erent problems.
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1.5 Thesis outline and main contributions

This thesis revolves around the theory, algorithms and applications of PPDMs and CDMs. The
first two chapters are devoted to PPDMs: in Chapter 2 we answer the question of uniqueness,
while in Chapter 3 we propose an algorithm to factor a noisy and incomplete PPDM. The
practicality of PPDMs is evident in Chapter 3, where we apply the proposed algorithm to real
room impulse response measurements and solve a variant of indoor SLAM. In Chapter 4 we
adopt a probabilistic approach to indoor SLAM: we devise a robust algorithm which requires
only one entry per row of a PPDM and describe a robot that we built to execute the algorithm
in real environments. As Chapter 2 shows that some ambiguities can arise in localization from
PPDMs, in Chapter 5 we find a minimal number of receivers mounted on a sonar that guarantees
uniqueness; PPDMs are used as a key tool in this analysis. Finally, the last two chapters are
devoted to CDMs: in Chapter 6 we study various aspects of CDMs and propose reconstruction
algorithms, while in Chapter 7 we put the theory into practice and demonstrate four di↵erent
applications of CDMs.

Chapter 2—Point-to-Plane Distance Matrices: Uniqueness Question. We study the problem
of localizing a configuration of points and planes from the collection of their pairwise distances,
which models important practical problems, such as simultaneous localization and mapping from
acoustic echoes, and structure from sound. To fully understand and address localization from
point-to-plane distances, we need to answer two questions: 1) is the solution unique, and 2) how
to find it.

In this chapter we thoroughly study the question of uniqueness. Unlike in the case of lo-
calization from point-to-point distances, where with su�ciently many points the only possible
ambiguities are those of translation, rotation, and reflection, we show that localization from
PPDMs su↵ers from various ambiguities beyond the usual rigid body motions. These corre-
spond to certain continuous deformations of the points–planes system. We provide a complete
characterization of uniqueness, enumerate equivalence classes of configurations which lead to the
same distance measurements, and algebraically characterize the related transformations in both
2D and 3D.

Summary of Contributions in Chapter 2

• We introduce a new algebraic tool: point-to-plane distance matrices.

• We derive necessary and su�cient conditions for unique reconstruction of point–plane
configurations from their pairwise distances.

• We exhaustively identify the geometries of points and planes that cannot be distin-
guished given their PPDMs.

• In terms of SLAM, we refer to points–planes configurations as rooms and trajectories,
and, therefore, our theoretical results provide a fundamental understanding and con-
straints under which rooms and trajectories can be uniquely reconstructed from only
first-order echoes.
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Chapter 3—Point-to-Plane Distance Matrices in Practice: Room Reconstruction. In this
chapter, we answer the second part of the localization question, that is, how to estimate points
and planes from their pairwise distances. Even though this brings us a step closer to having a
practical solution for indoor SLAM, it is not yet enough; while PPDMs provide a good basic
model for SLAM from echoes with a collocated source and receiver, the full SLAM problem
presents a number of additional challenges. Therefore, in this chapter we also study the problem
of associating echoes to walls, dealing with missing echoes, and distinguishing first-order from
higher-order echoes.

We propose an algorithm to detect and label first-order echoes in RIRs. It is based on hav-
ing a noisy estimate of a trajectory to avoid a combinatorial approach to echo labeling. We
then convert the propagation times of the detected first-order echoes to distances between the
measurement locations (points) and walls of a room (planes). By arranging these distances in a
matrix we obtain a noisy and incomplete PPDM. We formulate the problem of reconstructing
the measurement locations and walls from such a PPDM as a constrained low-rank matrix fac-
torization with an unknown column o↵set. Our focus is on handling missing entries, particularly
when the PPDM does not contain a single complete column. This case has not received attention
in the literature and is not handled by existing algorithms, however it is prevalent in practice.
We showcase the application of our algorithm in practical experiments.

Summary of Contributions in Chapter 3

• We present an end-to-end pipeline for room reconstruction and indoor localization from
RIRs recorded by a mobile device at few unknown locations in an unknown room.

• In the first part, we devise an algorithm to detect the first-order echoes in RIRs and
match them with the walls from which they reflect.

• In the second part, we propose a novel factorization algorithm and show its advantages
over existing methods both in terms of accuracy and versatility.

• We demonstrate that the proposed approach is robust to noise using real measurements,
and that it can accurately reconstruct rooms and localize devices in practice.

Chapter 4—EchoSLAM: Simultaneous Localization and Mapping with Acoustic Echoes. In
this chapter, we again consider the problem of simultaneous localization and mapping from
RIRs. There are two main distinctions between the algorithm proposed in this chapter and the
one presented in Chapter 3. In Chapter 3, the solution is based on the assumption that we
can measure the first-order echoes from all walls in a room at all measurement locations. This
assumption can sometimes be violated for various reasons; for example, echoes from di↵erent
walls can arrive at the same time, so their peaks in a RIR collide, or the robot can be too
far from the wall, so the amplitude of the echo falls below the noise threshold. To avoid such
situations and design a robust and practical solution to acoustic SLAM, in this chapter we
propose to use only the collection of the first-order echoes from the nearest walls.

Another important distinction from the method presented in Chapter 3 concerns the estimates
of trajectories. In Chapter 3, we use this information only in the first step of the algorithm;
namely, to discriminate the first-order echoes from other peaks in a RIR and to label them with
the correct walls. In the new approach, a noisy knowledge of measurement locations is fully
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integrated in the algorithm: we rely on the robot’s control to predict its next location and use it
along with the measured echoes to jointly update the belief about its trajectory and the positions
of the walls. This continuous joint improvement of the estimates reduces error accumulation and
results in precise reconstruction, as confirmed by real experiments.

Summary of Contributions in Chapter 4

• We approach the problem from a Bayesian point of view and propose a particle-filter
based algorithm to address acoustic SLAM.

• Our sensing equipment and measurement model are minimal: one omnidirectional mi-
crophone and one omnidirectional speaker mounted on a robot collect echoes with the
shortest path at each location.

• We e�ciently solve the echo labeling problem by building and traversing the tree of
possible labels in depth-first order.

• We design and build a real three-wheeled robot equipped with a nearly collocated mi-
crophone and speaker, and use it to confirm the high accuracy of the proposed algorithm
with measured RIRs.

Chapter 5—A Binaural Bat Without a Sense of Direction Can Hear the Shape of Rooms.
In Chapter 2 we show that given the propagation times obtained by the collocated source and
receiver, there exist practically relevant configurations of rooms and trajectories that lead to
ambiguities. The question that arises naturally, and is addressed in this chapter, is to find the
smallest number of receivers for which these uncertainties are resolved. To obtain a complete “if
and only if” characterization, we find the constraints under which a unique solution to the SLAM
problem is guaranteed, and identify the ambiguities that a↵ect setups with fewer receivers. This
has important consequences for the design of SLAM systems that do not rely on fixed beacons
or odometry information.

Summary of Contributions in Chapter 5

• We show that the geometry of convex polyhedral rooms can be uniquely determined by
a collection of first-order echoes of signals emitted by a source and recorded by an array
of receivers mounted on a mobile robot.

• We establish conditions on the number of receivers, room geometry and robot trajecto-
ries under which uniqueness is guaranteed.

• Our theoretical findings establish a fundamental understanding of the constraints under
which one can achieve a unique solution to the SLAM problem without any preinstalled
beacons inside a room.

Chapter 6—Coordinate Di↵erence Matrices: Theory. We address the inverse problem of
localizing points from their pairwise coordinate di↵erences, which is tightly related but better
constrained than the localization from PPDMs. We introduce coordinate di↵erence matrices—
simple objects at the center of an e�cient optimization framework for point reconstruction,
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which also enable a thorough statistical analysis of the estimation errors. We first establish
a reconstruction scheme in 1D and show that our algorithm is optimal in the least-squares
sense. To cover a wider range of applications in which multidimensional di↵erence vectors are
available, we extend our algorithm and propose two alternative approaches to reconstruct the
point configurations in higher dimensions. The first method is optimal even in the presence of
noisy and partial measurements, while the main advantage of the second approach lies in its
e�ciency. Additionally, we also describe cases where the second method achieves an optimal
solution.

Summary of Contributions in Chapter 6

• We introduce a new algebraic tool: coordinate di↵erence matrices.

• We propose two algorithms to recover points in RD from their pairwise di↵erences
(either the di↵erences of their orthogonal coordinates or the di↵erences of their frame
coe�cients).

• We provide necessary and su�cient conditions on the number and structure of di↵erence
measurements needed for a successful reconstruction.

• We present a statistical analysis of the reconstruction errors.

Chapter 7—Coordinate Di↵erence Matrices: Applications. We demonstrate the value and
versatility of CDMs in a variety of real-world problems, interesting from both theoretical and
practical perspectives. More precisely, we apply the knowledge and algorithms devised in Chapter
6 to four practical problems: ranking of sports teams, sensor array calibration, source localization,
and phase retrieval.

In sports, how to rank teams based on their performance has been a long-standing question
with a number of proposed solutions, which di↵er in the modeling of the teams and the amount of
information used. The evaluation and the comparison of di↵erent approaches can be troublesome
in the absence of one absolute ground truth ranking. We therefore only aim to show that CDMs
can be leveraged in this application using real data.

Next, we demonstrate the application of CDMs to position calibration of sensor arrays by
external sources. We formulate the problem as structure from sound with known incident angles
of the plane waves. We show that this additional knowledge can be used to construct an elegant
and optimal CDM-based algorithm for point recovery and apply it to real data.

When external sources are not available, we consider the self-localization of nodes in a sensor
network. We assume that the nodes can measure both distances and angles to a subset of other
nodes in the network, and we propose to combine these measurements into CDMs. This allows
us to localize sensors in closed form. We show that our point recovery algorithm outperforms
state-of-the-art methods for source localization.

Lastly, we demonstrate an application of CDMs in the phase retrieval problem, which at-
tempts to recover a signal from its auto-correlation function. Under the assumption that the
original signal is sparse, we propose an algorithm that solves the problem in three stages: 1)
we leverage the finite rate of innovation sampling theory to super-resolve the auto-correlation
function from a limited number of samples, 2) we design a greedy algorithm that identifies the
support of a sparse solution given the super-resolved auto-correlation function, 3) we recover the
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amplitudes of the signals given their locations and the measured auto-correlation function. In
this chapter, we focus on the second step of the algorithm and formulate it in terms of CDMs
as follows: given a complete set of unlabeled noisy entries of a CDM, arrange the entries in a
matrix that is the closest to a CDM.

Summary of Contributions in Chapter 7

• We apply CDMs to rank sport teams and showcase the application of our algorithm to
real NBA data.

• We apply the multidimensional generalization of CDMs to calibration of sensor arrays.
Using real acoustic measurements, we demonstrate the precision and e�ciency of our
algorithm.

• We apply CDMs to multimodal sensor localization. Numerical simulations show that
our algorithm outperforms the state-of-the-art in multimodal localization.

• We propose a three-step algorithm that resolves the phase retrieval problem on a con-
tinuous domain. We devise a greedy algorithm to solve the labeling problem in CDMs.
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Point-to-Plane Distance Matrices:
Uniqueness Question*
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A theory is the more impressive the greater the simplicity of

its premises is, the more di↵erent kinds of things it relates,

and the more extended its area of applicability.

Albert Einstein: Philosopher-Scientist

Albert Einstein

*The material in this chapter is the result of joint work of the author (MK) with Ivan Dokmanić (ID) and
Martin Vetterli (MV). Author contributions: MK, ID, and MV designed research; MK performed research and
wrote the chapter based on [95–97], which were written by herself.
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2.1 Introduction

Localization methods are traditionally based on geometric information (angles, distances, or
both) about known objects, often referred to as landmarks or anchors. Famous examples include
global positioning by measuring distances to satellites and navigation at sea by measuring an-
gles of celestial bodies. More recent work on simultaneous localization and mapping (SLAM)
addresses the case where the positions of landmarks are also unknown.

In this chapter, we address localization from distances to (unknown) planes instead of the
more extensively studied localization from distances to points. Concretely, given pairwise dis-
tances between a set of points and a set of planes, we wish to localize both the planes and
the points. It is clear that a single point does not allow unique localization. As we will show,
localization is in general possible with multiple points, but there are surprising exceptions.

Localization from point-to-plane distances models many practical problems. Our motivation
comes from indoor localization with sound. Imagine a mobile device equipped with a single
omnidirectional source and a single omnidirectional receiver that measures its distance to the
surrounding reflectors, for example by emitting acoustic pulses and receiving echoes. The times
of flight of the first-order echoes recorded by the device correspond to point-to-plane distances.
They could be used to pinpoint its location given the positions of the walls, but the problem is
harder and more interesting when we do not know where the walls are. A similar principle is used
by bats to echolocate, although we do not assume having any directional information. Another
problem that can be cast in this mold is the well-known “structure from sound” [167], where the
task is to localize a set of microphones from phase di↵erences induced by a set of unknown far
field sources.

In this chapter, we focus on uniqueness of reconstruction from point-to-plane distance matri-
ces (PPDMs). Unlike in the case of localization from points, where with su�ciently many points
the only possible ambiguities are those of translation, rotation, and reflection [48], our analysis
shows that localization from PPDMs exhibits additional ambiguities that correspond to certain
continuous deformations of the points–planes system.

2.1.1 Related work

The PPDM problem is related to the more standard multidimensional unfolding [154]: localiza-
tion of a set of points from distances to a set of point landmarks. There are several variations of
this problem that correspond to di↵erent assumptions on what is known: 1) given distances to
known landmarks, localize unknown points (i.e., estimate the unknown trajectory), 2) given dis-
tances to known points, reconstruct unknown landmarks (i.e., map the unknown environment),
3) estimate both unknown landmarks and unknown points from their pairwise distances.

The first variation is solved by simple multilateration when the association between the
landmarks and the received signals is known [8]. When the association is unknown, it must be
inferred jointly with the positions [111]. The second scenario is a topic of active research in signal
processing and room acoustics, where it is known as “hearing the shape of a room” [5, 44, 49].
Much of that work assumes that the geometry of the microphone array is known. Then, since
the source is fixed, the landmarks are modeled by points that correspond to virtual sources. In
the third scenario, when neither the landmarks nor the points are known, we obtain an instance
of SLAM. In general SLAM, the task is to simultaneously build some representation of the map
of the environment and estimate the trajectory. Di↵erent flavors of SLAM involve di↵erent
sensing modalities, but our interest is primarily in SLAM from reflections of sound or radio
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waves from walls, as well as solutions based on multiple sensor modalities that provide range
measurements [30, 55, 104, 125]. In this context, the “map” consists of the positions of the planar
reflectors.

Prior work on indoor localization mostly focuses on computational aspects. However, more re-
cent research in the context of 5G multipath-based positioning and mapping leverages geometry-
based stochastic models of the received signal to derive theoretical position error bounds [110,
124, 156, 179]. As an example, the Cramér-Rao bound on the estimation uncertainty for the
receiver position and orientation using a single transmitter in a multiple-input-multiple-output
(MIMO) system has been provided [156]. Moreover, it has been shown that the state of the agent
(pose, orientation and time synchronization) and the geometry of a room can be reconstructed
from at least three non-line-of-sight multipath components [124] .

In the context of localization and mapping from point-to-plane distances, prior studies have
also been primarily computational [90, 94, 101]. Several papers point out problems with unique-
ness [26, 95, 96, 140], but a complete study was up to now absent. Peng et al. consider a setup
like ours and show that the uniqueness of the mapping between the first-order echoes and the
room geometry is guaranteed for all polygons except parallelograms [140]. Boutin et al. show
that one can reconstruct a room from the first-order echoes from one omnidirectional speaker to
four non-planar microphones, located on a drone with generic position and orientation [26].

2.1.2 Main contributions and outline

An appeal of our setup with a collocated source and receiver is that it does not require any
preinstalled infrastructure. Unlike many other methods, localization from PPDMs corresponds to
range-only SLAM, as the omni-directionality assumption prevents us from having any knowledge
about the angles of arrival of echoes. Moreover, conventional approaches to SLAM rely on some
noisy estimate of the trajectory, which is not assumed to be available in our setup. We also do
not assume any motion model and allow for arbitrary configurations of waypoints.

We study uniqueness of reconstruction of points–planes configurations from their pairwise
distances. We derive conditions under which the localization is unique, and provide a complete
characterization of non-uniqueness by enumerating the equivalence classes of configurations that
lead to same PPDMs. Since we are motivated by SLAM, we refer to points–planes configurations
as rooms and trajectories. The conclusions, however, are general, and can be applied to any
problem where the measurements are modeled as point-to-plane distances.

2.2 Problem setup

Suppose that a mobile device carrying an omnidirectional source and an omnidirectional receiver
traverses a trajectory described byN waypoints {rn}Nn=1

. At every waypoint, the source produces
a pulse, and the receiver registers the echoes. In a collocated setup the propagation times of the
first-order echoes give the distances between the waypoints and walls. The distance dnk between
the nth waypoint and the kth wall is given by

dnk =
1

2
cs⌧nk, (2.1)

where cs is the speed of sound and ⌧nk is the propagation time of the first-order echo.
To describe a room, we consider K walls {Pk}Kk=1

(lines in 2D and planes in 3D) defined
by their unit normals nk 2 RD and any point pk 2 RD on the wall, where D 2 {2, 3} is the
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Figure 2.1: Illustration of N = 3 points {rn}Nn=1

and K = 4 walls {Pk}Kk=1

with the corre-
sponding PPDM.

dimension of the space. For any x 2 Pk we have hnk,xi = qk, where qk = hnk,pki is the distance
of the wall from the origin. We illustrate the setup in Fig. 2.1.

Given the distances between walls and waypoints,

dnk = dist(rn,Pk) = hpk � rn,nki = qk � hrn,nki, (2.2)

for n = 1, ..., N and k = 1, ...,K, we define

D

def

= [dnk]
N,K
n,k=1

2 RN⇥K

to be the point-to-plane distance matrix (PPDM); we always assume N � K. By setting
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, (2.3)

we can express a PPDM as

D = 1q> �R

>
N , (2.4)

where q is the vector of distances between the planes and the origin, columns of R 2 RD⇥N

are the waypoint coordinates, and columns of N 2 RD⇥K outward looking normal vectors of

the planes. Letting P

def

= [p
1

, . . . ,pK ], the vector q can be written as q = diag(P>
N), where

diag(M) denotes the vector formed from the diagonal of M .

Proposition 2.1 With D defined as above, we have

rank(D)  D + 1.
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Proof. Since rank(R>
N)  D and rank(1q>) = 1, the statement follows by the rank inequal-

ities. ⌅

This property (or its approximate version in the noisy case) is useful for 1) echo sorting, 2)
completing the matrix D and estimating the unobserved distances in real situations when echoes
come in and out of existence.

A pair of planes and waypoints defines a room-trajectory configuration

R =
⇣

{Pk}Kk=1

, {rn}Nn=1

⌘

,

and the corresponding PPDM D(R). In realistic convex configurations, all entries of the PPDM
(2.4) are non-negative. However, in our generalized definition of a room, the waypoints can lie
on either side of a wall, so we allow for signed distances.

Our central question is whether a given PPDM D(R) specifies a unique room-trajectory
configuration R, or, equivalently, whether the map R 7! D(R) is injective. In Section 2.3
we show that rotated, translated, and reflected versions of R trivially all give the same D, so
we consider them to be the same configuration (we consider the equivalence class of all room–
trajectory configurations modulo rigid motions and reflections).

We formalize the uniqueness question as follows:

Problem 2.2 Are there distinct room–trajectory configurations R1 =
⇣

�P1

k

 K

k=1

,

�

r

1

n

 N

n=1

⌘

and R2 =
⇣

�P2

k

 K

k=1

,

�

r

2

n

 N

n=1

⌘

which are not rotated, translated, and reflected versions of

each other, such that D(R1) = D(R2)?

2.3 Uniqueness of the reconstruction

Invariance to rigid motions. Let RT and RR denote translated and rotated/reflected versions
of a setup R, respectively. It is easy to see that if we translate, rotate or reflect walls of
the room together with their waypoints, the transformed setups will have the same PPDMs
D(R) = D(RT ) = D(RR): let c 2 RD be a translation vector and Q 2 RD⇥D an orthogonal
matrix, Q>

Q = I. Then,

D(RT ) = diag((P + c1>)>N)1> � (R+ c1>)>N

= diag(1c>N)1> + diag(P>
N)1> �R

>
N � 1c>N

= diag(P>
N)1> �R

>
N = D(R).

D(RR) = diag((QP )>QN)1> � (QR)>QN

= diag(P>
N)1> �R

>
N = D(R).

We therefore consider translated, rotated and reflected versions of R as the same R. Another
consequence of this invariance is that the absolute position and orientation of points and planes
cannot be recovered from distances only, and the corresponding D(D + 1)/2 degrees of freedom
need to be specified separately. For instance, we can fix the translation by translating all config-
urations R by �r

1

; we thus assume r

1

= 0 without loss of generality. As we will see later, this
simplifies the analysis.
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(2.5)

Beyond rigid motions. Perhaps surprisingly, in addition to the invariance to rigid transforma-
tions, there are many examples of rooms from Problem 2.2. The main tool in identifying the
sought equivalence classes is the following lemma.

Lemma 2.3 (Non-uniqueness criterion) Two room–trajectory configurations R0 =
⇣

�P0

k

 K

k=1

,

�

r

0

n

 N

n=1

⌘

and R =
⇣

{Pk}Kk=1

, {rn}Nn=1

⌘

have the same distance measurements,

D(R0) = D(R), if and only if

R

>
N = 0, (2.6)

where

R

def

=

"

R

0

�R

#

=

"

r

0

1

. . . r

0

N

�r

1

. . . �rN

#

, (2.7)

N

def

=

"

N

0

N

#

=

"

n

0

1

. . . n

0

K

n

1

. . . nK

#

. (2.8)

Proof. R0 and R have the same PPDM if and only if for every 1  k  K and 1  n  N ,

d

0

nk = dnk

() q

0

k � (r0n)
>
n

0

k = qk � r

>
n nk.

The fact that r

0

1

= r

1

= 0 for n = 1 implies that q

0

k = qk for every 1  k  K. Thus, in the
matrix form we have,

D(R0) = D(R)

() (R0)>N0 �R

>
N = 0

()
"

R

0

�R

#> "
N

0

N

#

= 0. ⌅
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From (2.6), it follows that given a PPDM D(R0), both R0 and R are valid solutions to
the problem of reconstructing rooms and trajectories from PPDMs. In other words, R0 and R
belong to the same equivalence class with respect to PPDMs, which we define as

⇥R0

⇤

def

=
�R 2 T ��D(R) = D(R0)

 

. (2.9)

Here, R0 is a generator of the class and T is a collection of all room-trajectory configurations
�{Pk}Kk=1

, {rn}Nn=1

�

, such that nk 2 RD with n

>
k nk = 1, qk 2 R, and rn 2 RD for 1  k  K,

1  n  N . From (2.9) and Lemma 2.3, it further follows that the equivalence class of room-
trajectory configurations can be specified as:

⇥R0

⇤

=
�R 2 T �� R>

N = 0
 

, (2.10)

where R contains the coordinates of the waypoints of the two equivalent rooms R0 and R,
while the columns of N are the wall normals of R0 and R; they are given in (2.7) and (2.8),
respectively.

We now characterize the equivalence classes (2.10) by analyzing R

>
N = 0. This relation is

satisfied when the columns of R are in the nullspace of N>. We parameterize the unit-norm

columns of N> =
h

N

0

>
N

>
i

as

n

0

k =

"

cos'0

k

sin'0

k

#

and nk =

"

cos'k

sin'k

#

(2.11)

in 2D, and

n

0

k =

2

6
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4

sin ✓0k cos'
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sin ✓0k sin'
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cos ✓0k
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7

5

and nk =

2
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4

sin ✓k cos'k

sin ✓k sin'k
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3

7

7

5

(2.12)

in 3D; N> is written out in (2.5). The wall normals N0 and N of the two room-trajectory con-

figurations R0 and R are uniquely determined by the angles
�

'

0

k

 K

k=1

and {'k}Kk=1

in 2D, or by

the pairs of angles
�

✓

0

k,'
0

k

 K

k=1

and {✓k,'k}Kk=1

in 3D, where '0

k,'k 2 [0, 2⇡) and ✓0k, ✓k 2 [0,⇡).

As the converse is also true—the matrix N uniquely determines the angles—we interchangeably
use both notations.

To find the configurations that are not uniquely determined by PPDMs, we impose linear
dependencies among the columns of N>: we select any r linearly independent columns of N>

and assume that the remaining columns are their linear combinations. Restricting the analysis
to a particular column selection does not reduce generality, as shown in Appendix 2.A.

In addition to these linear dependencies, the columns in (2.5) are also subject to non-linear
relationships due to the normalization constraint. Indeed, N> has K rows, 2D columns, and
only 2(D � 1)K free parameters. The combination of these linear and non-linear dependencies
determines the equivalence classes of the rooms and trajectories with respect to PPDMs. Our
goal is to characterize these classes.

Specifically, for every equivalence class we want to characterize reference rooms R0 that
identify the class, and a rule that generates other R with the same PPDM. Letting r = rank(N),
the analysis is performed for every r 2 {1, . . . , 2D � 1} in six steps. We introduce and explain
those steps on the case r = 2 in 2D, rather than r = 1 which gives degenerate solutions (we
analyze r = 1 subsequently).
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As we will see, most of the identified cases correspond to rooms that are in some sense
degenerate (for example, a “room” with all walls parallel), although as point–plane configurations
they are perfectly reasonable.

The analysis in Section 2.4 and Section 2.5 together with the fact that Lemma 2.3 is necessary
and su�cient proves that the union of all equivalence classes described in this chapter (see
Fig. 2.2) is in fact the set of all possible configurations that are not uniquely determined by
their PPDM. In other words, a room can be uniquely reconstructed from a PPDM (modulo rigid
motions) if and only if it does not belong to one of the classes illustrated in Fig. 2.2.

Theorem 2.4 In 2D, a room–trajectory configuration is not uniquely determined by its PPDM
if and only if at least one of the following holds: 1) waypoints are collinear, 2) all walls are
parallel (infinitely long corridors), 3) walls form a parallelogram possibly extended by parallel
walls (see Fig. 2.2).

In 3D, a room–trajectory configuration is not uniquely determined by its PPDM if and only
if at least one of the following holds: 1) K < 6, 2) waypoints are coplanar, 3) the configuration
is in one of the classes summarized in Fig. 2.2.

2.4 Classification of 2D configurations

We begin by the easier 2D analysis, i.e. D = 2. For N

> to have a nullspace, we must have
r 2 {1, 2, 3}. For all r the analysis is performed as a sequence of six steps, which we describe in
detail for r = 2.

2.4.1 2D rank-2: Parallelogram rooms

1. Linear dependence: We select r linearly independent columns of N

>, denoted ci 2 RK ,
i = 1, . . . , r, and denote the remaining columns of N> by ck 2 RK , k = r + 1, . . . , 2D. We let
ck for k > r be linear combinations of ck for k  r:

h

cr+1

. . . c

2D

i>
= T

h

c

1

. . . cr

i>
, (2.13)

for some T 2 R(2D�r)⇥r.

Concretely, for r = 2, we assume that the first two columns of N> are linearly independent,
while the third and the fourth column are their linear combinations. We prove in Appendix 2.A
that this particular choice of columns does not incur a loss of generality in this or any of the
other cases. From (2.5), for every k we have that

"

cos'k

sin'k

#

= T

"

cos'0

k

sin'0

k

#

, where T =

"

a b

c d

#

. (2.14)

2. Reparametrization: When r  D, we can rearrange the columns so that the right-hand side
of (2.13) contains the normals of the reference configuration R0, while the left-hand side has the
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Figure 2.2: An overview of the equiva-
lence classes of the room-trajectory con-
figurations with respect to PPDMs in
2D and 3D. The first row references the
class-defining equation; determines the
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class generator (wall orientations in the
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part describes transformations of the ref-
erence to equivalent walls and waypoints
and references corresponding equations;
“cstr” indicates additional constraints on
T . Where appropriate, we provide a
short description of the transformation.
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normals of the putative equivalent configuration R. In particular, we obtain

N

> = T

0
N

0

>
, (2.15)

where T 0 2 RD⇥D. T 0 can be decomposed as a product T 0 = QU of an orthogonal matrix Q and
an upper triangular matrix U . Q acts as a rotation, so without loss of generality we set Q = I

and T

0 = U . That is, we assume that the entries of T 0 below the diagonal are 0, which removes
the

�

D
2

�

rotational degrees of freedom. Since (2.15) contains a subset of equations from (2.13),
we propagate this change back to (2.13) by modifying the corresponding elements of T .

When r = D, the original system of equations (2.14) already has a form of (2.15). Therefore,
we only need to set c = 0 and obtain an upper triangular matrix,

T =

"

a b

0 d

#

.

3. Reference room: To find a reference room, we select an arbitrary T (respecting the zero entries
from step 2), and solve for the normals satisfying (2.13). From (2.14), we observe that

(a cos'0

k + b sin'0

k)
2 + (d sin'0

k)
2 = cos'2

k + sin'2

k = 1, (2.16)

so the angles of the reference room cannot be chosen arbitrarily. To find the values of {'0

k}Kk=1

with respect to free parameters a, b and d, we solve (2.16) and obtain

A cos2 (2'0

k) +B cos (2'0

k) + C = 0, (2.17)

where
A = (a2 � b

2 + d

2)2 + 4a2b2,

B = 2(a2 � b

2 + d

2)(a2 + b

2 + d

2 � 2),

C = (a2 + b

2 + d

2 � 2)2 � 4a2b2.

Let first A = 0. Then (2.17) has two solutions: a = 0, b2 = �d

2 and b = 0, a2 = d

2. The first
one implies that b = d = 0, which makes (2.14) inconsistent. The second one leads to T being a
reflection matrix:

T =

"

±1 0

0 ±1

#

or T =

"

±1 0

0 ⌥1

#

,

which is quotioned out in Problem 2.2.

For A 6= 0, we have

cos (2'0

k) =
�B ±p

B

2 � 4AC

2A
. (2.18)

There are eight solutions for '0

k, four of which satisfy (2.14). The valid solutions always come as
pairs ('0

1

,'

0

2

) = ('0

1

,'

0

1

+ ⇡) and ('0

3

,'

0

4

) = ('0

3

,'

0

3

+ ⇡).

4. Equivalent rooms: From (2.13), we identify the transformation that takes the normals of the
reference room to the normals of an equivalent room. The corresponding angles in the equivalent
room are computed from (2.14),

'k = f('0

k, sk, a, b, d) = arctan
d sin'0

k

a cos'0

k + b sin'0

k

+ sk⇡, (2.19)

where sk 2 {0, 1}.
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5. Corresponding trajectories: Next, we find the waypoints {r0n}Nn=1

and {rn}Nn=1

that lie in the
nullspace of N>. The nullspace is spanned by:

v

1

=
h

�a, �b, 1, 0
i>

, v

2

=
h

0, �d, 0, 1
i>

,

so the columns of R are of the form
"

r

0

n

�rn

#

= v

1

�

1

+ v

2

�

2

, (2.20)

where �
1

, �

2

2 R. The waypoints in the reference room are chosen without restrictions, while
the waypoints in the equivalent room are obtained by applying a non-rigid transformation

rn = (T>)
�1

r

0

n. (2.21)

This transformation corresponds to shearing followed by scaling. To show that, without loss
of generality we can consider a reference room to be rectangular, so that '0

1

= ⇡/2 and '0

2

= ⇡.
Then, (2.17) simplifies to A�B + C = 0 and A+B + C = 0 for k = 1 and k = 2, respectively,

which further implies that a2 + d

2 = 1 and b

2 = 1. The matrix (T>)
�1

can be factorized into a
product of a scaling matrix and a shear matrix as:

(T>)
�1

=

"

1

a 0

0 1

d

#"

1 0

± 1

a 1

#

,

with a

2 + d

2 = 1.

6. Equivalence class: The solutions of (2.18) suggest that we can construct a reference room by
arbitrarily choosing two wall normals, '0

1

and '0

3

, and solving the system of two equations (2.17)
with k 2 {1, 3}. This fixes two parameters (e.g., a and b) in T and leaves the third (e.g., d) free
to generate an infinite number of rooms equivalent to the reference room. Reference rooms are
not restricted to only two walls; we can have any number of additional walls parallel to those
determined by '0

1

and '0

3

, since they also satisfy (2.18).

A room-trajectory configuration R0 with walls {P0

k}Kk=1

= {(n0

k, q
0

k)}Kk=1

and waypoints
{r0n}Nn=1

is a generator of a class of room-trajectory configurations with identical PPDMs. The
wall normals n

0

k are chosen as described above and the waypoints are arbitrary, r0n 2 RD for
1  n  N . The above analysis defines the following equivalence class of room-trajectory con-
figurations with the same PPDMs:

h

R0

i

=
n

R ��'k = f('0

k, sk, a, b, c), a, b 2 R s.t. (2.17) holds, d 2 R, sk 2 {0, 1},

qk = q

0

k for 1  k  K, rn s.t. (2.20) holds for 1  n  N

o

. (2.22)

There are no constraints on the distances of walls from the origin in the reference room and
we can set q

0 arbitrarily. We note that this class includes parallelogram rooms for K = 4,
'

0

2

= '

0

1

+ ⇡ and '0

4

= '

0

3

+ ⇡.
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An example of three parallelogram configurations with the same PPDM is illustrated in
Fig. 2.3.

Figure 2.3: Parallelogram rooms with the same PPDM.

2.4.2 2D rank-1: Infinitely long corridors

1. Linear dependence: In 2D, setting rank(N) = 1 leads to degenerate rooms. To show that,
assume that every column of N> is a scaled version of the first column,

2

6
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4

sin'0

k

cos'k
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7

7

5

= T cos'0

k, where T =

2

6

6
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c

3

7

7

5

. (2.23)

2. Reparametrization: These dependencies can be partially expressed as a transformation of the
normals of the reference room to those of the equivalent room. From (2.23) we have:

"

cos'k

sin'k

#

= T

0

"

cos'0

k

sin'0

k

#

, where T

0 =

"

b 0

c 0

#

.

With c = 0, T 0 becomes upper triangular. This eliminates rotations. Propagating back to T , we
get:

T =
h

a, b, 0
i>

. (2.24)

3. Reference room: We see that (2.23) constrains the normals of the reference room, since

tan'0

k = a (2.25)

must hold for every k. That is, the wall normals of the reference room cannot be chosen arbi-
trarily. Letting sk 2 {0, 1}, we summarize both solutions to (2.25) as

'

0

k = f(sk, a) = arctan a+ sk⇡. (2.26)

For K � 2 walls, (2.26) implies that every '0

k can only assume two values. These correspond to
parallel walls since '0

i = '

0

k + ⇡ for si = 0 and sk = 1.

4. Equivalent rooms: From (2.23) and (2.24) we have 'k 2 {0,⇡} and

a

2 + 1 = b

2

. (2.27)

5. Corresponding trajectories: Though all rooms in this class have the same geometry, there are
infinitely many trajectories that lead to the same PPDM. To see this, imagine an infinite corridor
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with two parallel walls. The points on any line parallel to the walls cannot be discriminated from
distances to walls. Formally, a basis for the nullspace of N> is

v

1

=
h

�a 1 0 0
i>

,v

2

=
h

�b 0 1 0
i>

,v

3

=
h

0 0 0 1
i>

,

so the columns of R have to be of the form
"

r

0

n

�rn

#

= �

1

v

1

+ �

2

v

2

+ �

3

v

3

, (2.28)

where �
1

, �

2

and �
3

2 R. This further implies that the waypoints of the reference room
�

r

0

n

 N

n=1

and the y coordinates of {rn}Nn=1

in the equivalent rooms are independent and they can be chosen

arbitrarily. The x coordinates of {rn}Nn=1

are given by (2.28).

6. Equivalence class: This trivial case results in the equivalence class of room-trajectory configu-
rations, in which the rooms have parallel walls. They are generated by a reference room {P0

k}Kk=1

with the wall normals from (2.26), q0 2 RK , and arbitrary waypoints r0n 2 RD for 1  n  N ,
h

R0

i

=
n

R ��'k 2 {0,⇡} , a 2 R, b 2 R s.t. (2.27) holds, sk 2 {0, 1},

qk = q

0

k, for 1  k  K, rn s.t. (2.28) holds for 1  n  N

o

. (2.29)

Figure 2.4: Example of three equivalent infinitely long corridors.

2.4.3 2D rank-3: Linear trajectories

1. Linear dependence: We assume rank(N) = 3 so that

cos'k = T

2

6

6

4

sin'k

cos'0

k

sin'0

k

3

7

7

5

, where T =
h

a b c

i

. (2.30)

2. Reparametrization: As r > D, we cannot rewrite (2.30) such that the wall normals of R and
R0 are on the opposite sides of the equation, so we omit this step.

3. Reference room: From (2.30), we observe that the wall orientations of the reference room are
unconstrained.

4. Equivalent rooms: We can express the wall orientations 'k in the equivalent room as a function
of '0

k and entries in T ,

'k = f('0

k, sk, a, b, c) = sk arccos
b cos'0

k + c sin'0

kp
a

2 + 1
� arctan a, (2.31)

where sk 2 {�1, 1}.
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5. Corresponding trajectories: The nullspace of N> is spanned by v

1

=
h

�b �c 1 �a

i>
, so

the columns of R satisfy
"

r

0

n

�rn

#

= v

1

�, (2.32)

where � 2 R. This can be further rewritten as

rn = Sr

0

n and r

0

n,y =
c

b

r

0

n,x, (2.33)

where S is a scaling matrix with 1

b and �a
c on a diagonal, and r

0

n = [r0n,x, r
0

n,y]
>. This suggests

that the x and y coordinates of the waypoints in both rooms are dependent, and the trajectories
are linear.

6. Equivalence class: A room-trajectory configuration R0, with an arbitrary room {P0

k}Kk=1

and
a linear trajectory {r0n}Nn=1

satisfying (2.33), generates the following equivalence class:

h

R0

i

=
n

R ��'k = f('0

k, sk, a, b, c), a, b, c 2 R, sk 2 {�1, 1}, qk = q

0

k,

for 1  k  K, rn s.t. (2.32) holds for 1  n  N

o

. (2.34)

For any arbitrary room with K walls and a PPDM measured at collinear waypoints, we can
find another room with the same PPDM obtained at di↵erent collinear waypoints; an example
is shown in Fig. 2.5.

Figure 2.5: Example of equivalent rooms with linear trajectories.

2.5 Classification of 3D configurations

In 3D, we analyze the cases r 2 {1, 2, 3, 4, 5}.

2.5.1 3D rank-1: Infinitely long and tall corridors

1. Linear dependence: When rank(N) = 1 in 3D, five columns of N> are scaled version of a
single non-zero column,

2

6

6

6

6

6

6

6

4

sin ✓0k sin'
0

k

cos ✓0k

sin ✓k cos'k

sin ✓k sin'k

cos ✓k

3

7

7

7

7

7

7

7

5

= T sin ✓0k cos'
0

k, where T =

2

6

6

6

6

6

6

6

4

a

b

c

d

e

3

7

7

7

7

7

7

7

5

. (2.35)
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2. Reparametrization: The requirement (2.35) implies the following relationship between the
wall normals of the reference room and those of the equivalent room:

2

6

6

4

sin ✓k cos'k

sin ✓k sin'k

cos ✓k

3

7

7

5

=

2

6

6

4

c 0 0

d 0 0

e 0 0

3

7

7

5

2

6

6

4

sin ✓0k cos'
0

k

sin ✓0k sin'
0

k

cos ✓0k

3

7

7

5

,

As before, we set d = e = 0 to get an upper triangular matrix.

3. Reference room: From (2.35), it follows that

tan'0

k = a and tan ✓0k =
1

b cos'0

k

for every k. Then,
'

0

k = arctan a+ sk⇡,

✓

0

k =

(

arctan
p
a2

+1

b + tk⇡ sk = 0,

� arctan
p
a2

+1

b + tk⇡ sk = 1,

(2.36)

where sk, tk 2 {0, 1} are independent binary variables. That is, the reference room cannot be
chosen arbitrarily; the angles can only assume two values that yield parallel walls.

4. Equivalent rooms: From (2.35) we also find that sin'k = 0 and cos ✓k = 0, so the angle ✓k
takes a value of ⇡/2, while 'k is either 0 or ⇡, depending on the value of tk. This dependence
arises from the fact that

c =

8

<

:

b cos'k

q

a2
+b2+1

b2 tk = 0,

�b cos'k

q

a2
+b2+1

b2 tk = 1,
(2.37)

needs to be satisfied for every k for (2.35) to be consistent.

5. Corresponding trajectories: Analogously to the rank-1 case in 2D, the ambiguity in the recon-
struction is due to the multitude of consistent trajectories. Points in planes parallel to the walls
cannot be uniquely determined from distances to the walls. The nullspace of N> is spanned by
five vectors,

v

1

=
h

�a 1 0 0 0 0
i>

,

v

4

=
h

0 0 0 0 1 0
i>

,

v

2

=
h

�b 0 1 0 0 0
i>

, v

3

=
h

�c 0 0 1 0 0
i>

,

v

5

=
h

0 0 0 0 0 1
i>

,

so the columns of R are
"

r

0

n

�rn

#

= �

1

v

1

+ �

2

v

2

+ �

3

v

3

+ �

4

v

4

+ �

5

v

5

, (2.38)

where �
1

, �

2

, �

3

, �

4

and �
5

2 R. This implies that the waypoints
�

r

0

n

 N

n=1

in the reference room

and the y and z coordinates of {rn}Nn=1

in the equivalent rooms are independent and can be

chosen arbitrarily, whereas the x coordinates of {rn}Nn=1

are given by (2.38).
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6. Equivalence class: An equivalence class of these degenerate room-trajectory configurations
with parallel walls is generated by a reference room {P0

k}Kk=1

with the wall normals from (2.36),
q

0 2 RK , and arbitrary waypoints {r0n}Nn=1

,

h

R0

i

=
n

R ��'k 2 {0,⇡}, ✓k = ⇡/2, a, b 2 R, c 2 R s.t. (2.37) holds, sk 2 {0, 1}, tk 2 {0, 1},

qk = q

0

k, for 1  k  K, rn s.t. (2.38) holds for 1  n  N

o

.(2.39)

An example of such room-trajectory configurations is shown in Fig. 2.6.

Figure 2.6: Three equivalent infinitely long and tall corridors.

2.5.2 3D rank-2: Parallelepipeds without bases

1. Linear dependence: Assume that the first and the second column are linearly independent,
and the others are their linear combinations. Thus, for every wall k we have
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sin ✓k cos'k

sin ✓k sin'k
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, where T =
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g h

3

7

7

7

7

7

5

. (2.40)

2. Reparametrization: As before, (2.40) implies a relationship between the normals of the refer-
ence and the equivalent room,
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sin ✓k cos'k

sin ✓k sin'k
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6
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4
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g h 0
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4

sin ✓0k cos'
0

k

sin ✓0k sin'
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k

cos ✓0k

3
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5

. (2.41)

By setting e, g and h to 0, we obtain the desired upper triangular matrix and propagate this
change into T ,

T =

"

a c 0 0

b d f 0

#>

.

3. Reference room: The sum of the squares of the last three equations in (2.40) has to be 1 for
every wall k,

(c sin ✓0k cos'
0

k + d sin ✓0k sin'
0

k)
2 + (f sin ✓0k sin'

0

k)
2 = 1, (2.42)

so the reference room cannot be chosen arbitrarily. From (2.42), we can express ✓0k as a function
of '0

k and the entries of T .
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The first equation in (2.40) additionally constrains ✓0k and '0

k,

tan ✓0k = (a cos'0

k + b sin'0

k)
�1

. (2.43)

We obtain a quadratic equation with respect to cos(2'0

k),

(A2 +B

2) cos2(2'0

k)� 2AC cos(2'0

k) + (C2 �B

2) = 0, (2.44)

where

A = �a

2 + b

2 + c

2 � d

2 � f

2

,

B = 2(ab� cd),

C = a

2 + b

2 � c

2 � d

2 � f

2 + 2.

(2.45)

We first assume A

2 +B

2 6= 0 and solve (2.44) for '0

k,

cos (2'0

k) =
AC ±pA

2

C

2 � (A2 +B

2)(C2 �B

2)

A

2 +B

2

. (2.46)

We obtain four solutions for '0

k to (2.44) that satisfy (2.40). For each value of '0

k we can find
the corresponding ✓0k from (2.42) or (2.43). Valid solutions always generate two pairs of wall
normals: {✓0k,'0

k}2k=1

= {(✓0
1

,'

0

1

), (�✓0
1

,'

0

1

+ ⇡)} and {✓0k,'0

k}4k=3

= {(✓0
3

,'

0

3

), (�✓0
3

,'

0

3

+ ⇡)}.
Therefore, each reference room is made of two arbitrarily chosen walls and two walls parallel to
them, resulting in parallelepipeds without its two bases.

As the case of A2 +B

2 = 0 results in rather di↵erent geometries, it is analyzed separately in
Section 2.5.3.

4. Equivalent rooms: The corresponding angles in the equivalent room are computed from (2.40),

✓k = ⇡/2, 'k = g(✓0k,'
0

k, c, d, f) + sk⇡, (2.47)

where sk 2 {0, 1} and

g(✓0k,'
0

k, c, d, f) = arctan
f sin ✓0k sin'

0

k

c sin ✓0k cos'
0

k + d sin ✓0k sin'
0

k

.

5. Corresponding trajectories: The nullspace of N> is spanned by four vectors,

v

1

=
h

�a �b 1 0 0 0
i>

,

v

3

=
h

0 �f 0 0 1 0
i>

,

v

2

=
h

�c �d 0 1 0 0
i>

,

v

4

=
h

0 0 0 0 0 1
i>

,

so the waypoints in R are related as

"

r

0

n

�rn

#

= �

1

v

1

+ �

2

v

2

+ �

3

v

3

+ �

4

v

4

, (2.48)

where �
1

, �

2

, �

3

and �
4

2 R. It follows that the waypoints of the reference room are independent
and can be chosen arbitrarily, whereas the corresponding waypoints of the equivalent rooms are
given by (2.48).
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6. Equivalence class: We can set two wall orientations of a reference room by arbitrarily choosing
'

0

1

and '0

3

, and by computing ✓0
1

and ✓0
3

from (2.43). By solving the system of two equations (2.44)
with k 2 {1, 3}, we fix two parameters (e.g., c and d) and leave the third parameter (e.g., f) free
to generate new rooms equivalent to the reference. Walls parallel to those defined by (✓0

1

,'

0

1

) and
(✓0

3

,'

0

3

) are determined by (�✓0
1

,'

0

1

+ ⇡) and (�✓0
3

,'

0

3

+ ⇡). Recall that the solutions of (2.44)
always come in pairs (✓0k,�✓0k) and ('0

k,'
0

k + ⇡), so adding walls parallel to the two fixed ones
does not violate (2.44).

As usual, we can choose q

0 2 RK arbitrarily, and define an equivalence class of room-
trajectory configurations generated by {P0

k}Kk=1

as described above and arbitrary {r0n}Nn=1

as

h

R0

i

=
n

R ��'k = g(✓0k,'
0

k, c, d, f) + sk⇡, ✓k = ⇡/2, sk 2 {0, 1},
f 2 R, c, d 2 R s.t. (2.44) holds, qk = q

0

k,

for 1  k  K, rn s.t. (2.48) holds for 1  n  N

o

. (2.49)

An example is illustrated in Fig. 2.7.

Figure 2.7: Two parallelepipeds without bases with the same PPDM.

2.5.3 3D rank-2: Prisms without bases

In step 3 of the previous case, we studied A

2 +B

2 6= 0. Now we focus on A

2 +B

2 = 0 and omit
steps 1, 2 and 5 as they are identical to Section 2.5.2.

3. Reference room: The case of A2 +B

2 = 0 leads to A = B = C = 0 and (2.44) being satisfied
for any value of '0

k. By solving A = B = C = 0, we find explicit expressions for three dependent
parameters in T ,

c = ±
p

a

2 + 1, d = ± abp
a

2 + 1
, f = ±

r

b

2 � a

2

b

2

a

2 + 1
+ 1. (2.50)

Then, from arbitrarily chosen angles '0

k, and the parameters in T that satisfy (2.50), we
compute ✓0k from (2.42) or (2.43). Such a room consists of K walls parallel to a fixed line; this
means that every triplet of walls forms a prismatic surface, or equivalently, every wall intersects
the other two along lines.

To see this, observe that the rank of the coe�cient matrix N

0 is 2, while the rank of the
augmented matrix M

0,

M

0

>
=
h

N

0

>
q

i

, (2.51)
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can be 2 or 3. Indeed, the coe�cient matrix from (2.43) is

n

0

k =
1

p

1 + (a cos ✓0k + b sin ✓0k)
2

2

6

6

4

cos'0

k

sin'0

k

a cos'0

k + b sin'0

k

3

7

7

5

.

The third row of N0

>
is a linear combination of the first two rows so rank(N0) = 2. From (2.51)

it follows that rank(M0) = 3, except for a set of q of Lebesgue measure zero. A specific case of
rank(M0) = 2 occurs when the values of q are chosen so that all walls intersect in one line.

4. Equivalence rooms: The angles of the equivalent room ✓k and 'k are computed from (2.47).
We show that the equivalent room is a rotated version of the reference room.

The rotation ambiguity exists despite the reparametrization in step 2 because the normals in
any equivalent room lie in a plane (the xy-plane in the reference room). Then, transformation
of the normals of {P0

k}Kk=1

to those of {Pk}Kk=1

is determined by two angles, instead of three
for a general rotation. We can factor any upper triangular matrix into a product of a rotation
matrix around two axes and a square matrix by two Givens rotations [65]. Thus, T being
upper-triangular still allows for rotations specified by two angles.

We introduce a matrix R = (rij)3i,j=1

such that
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5

for 1  k  K.

Together with (2.41), we obtain

c = r

11

+ ar

13

, d = r
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+ br

13

, 0 = r
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+ ar

23

,

f = r
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+ br

23

, 0 = r
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+ ar

33

, 0 = r
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+ br

33

,

so we can rewrite R as

R =
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5

h

a b �1
i

. (2.52)

To see that R is a rotation, note that from A = B = C = 0, (2.52), and (2.45), the columns of
R are orthonormal.

5. Corresponding trajectories: The dependence of the corresponding waypoints is given in (2.48)
with an additional constraint on the parameters in (2.50). Intuitively, any waypoint that lies on
a line parallel to walls generates the same PPDM.

6. Equivalence classes: It follows that two equivalent rooms in the rank-2 case in 3D with
A

2+B

2 = 0 have identical geometries, but could have di↵erent waypoints lying on a line parallel
to all walls; see Fig. 2.8.
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Figure 2.8: Two prisms without bases with the same PPDM. a) The rooms are identical, but
the waypoints di↵er. b) A bird’s eye view. The configurations from this angle seem identical.

2.5.4 3D rank-3: Miscellaneous geometries

1. Linear dependence: The practically relevant shoebox rooms generate configurations that are
not uniquely determined by PPDMs. For rank(N) = 3,

2

6

6

4

sin ✓k cos'k

sin ✓k sin'k

cos ✓k
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, where T =

2
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4

a b c

d e f

g h i

3

7

7

5

. (2.53)

2. Reparametrization: As usual, we make T upper triangular matrix by setting d, g and h to 0.

3. Reference room: Since in (2.53) we have three equations with four angles for every wall k, we
can express ✓0k, ✓k and 'k in terms of an arbitrarily chosen angle '0

k and the parameters in T .
Squaring and summing (2.53) gives

0 = (A2 +B

2) sin2(2✓0k) + 2(A+ 2C)B sin(2✓0k) + 4C(A+ C), (2.54)

where
A = a

2 cos2 '0

k + (b2 + e

2) sin2 '0

k + 2ab sin'0

k cos'
0

k � C � 1,

B = ac cos'0

k + (bc+ ef) sin'0

k,

C = c

2 + f

2 + i

2 � 1.

To find ✓0k, we solve (2.54) and obtain

cos(2✓0k) = x

1

or cos(2✓0k) = x

2

, (2.55)

with

x

1,2 =
A(A+ 2C)±B

p
B

2 � 4AC � 4C2

A

2 +B

2

. (2.56)

We first consider A

2 + B

2 6= 0, while the case of A2 + B

2 = 0 is analyzed separately in
Section 2.5.5. Analogously to the rank-2 case in 2D or 3D, not all solutions to (2.55) satisfy (2.53);
the four valid values of ✓0k are identified by verifying

1 = (a sin ✓0k cos'
0

k + b sin ✓0k sin'
0

k + c cos ✓0k)
2 + (e sin ✓0k sin'

0

k + f cos ✓0k)
2 + i

2 cos2 ✓0k, (2.57)

for 1  k  K. Contrary to the rank-2 case in 2D or 3D, the values of A,B and C in (2.55)
depend on '0

k and the solutions to (2.55) vary for di↵erent walls k. We denote them ✓

0

k,1, ✓
0

k,2,
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✓

0

k,3 and ✓0k,4, where ✓
0

k,1 and ✓0k,2 are computed from x

1

, while ✓0k,3 and ✓0k,4 from x

2

. They satisfy
✓

0

k,2 = ✓

0

k,1 + ⇡ and ✓0k,4 = ✓

0

k,3 + ⇡.

For some fixed parameters in T , there are infinitely many ways to arrange the walls of
the reference room. The angles {'0

k}Kk=1

are chosen from [0, 2⇡), while {✓0k}Kk=1

are computed
from (2.55) and (2.56). For any arbitrarily chosen '

0

k, there are four values of ✓0k that sat-
isfy (2.57), ✓0k,1 . . . , ✓

0

k,4. This allows us to create up to four di↵erent walls for one fixed value of
'

0

k. For example, in one case, for a chosen '0

k we can pick only one value ✓0k,j
k

, 1  jk  4, and

create wall normals {✓0k,j
k

,'

0

k}Kk=1

. Such rooms have di↵erent angles for every wall. In another

case, some rooms can have one value '0

k associated to four walls, {✓0k,1,'0

k}K/4
k=1

, {✓0k,2,'0

k}K/4
k=1

,

{✓0k,3,'0

k}K/4
k=1

and {✓0k,4,'0

k}K/4
k=1

.

We denote the number of independent walls (i.e., di↵erent values of '0

k) by K

0

. We can
create reference rooms for any K

0

and given T by the procedure described above. However, as
the parameters in T need to be fixed to compute ✓0k from '

0

k, for every reference room there is
only one equivalent room, computed from (2.53).

A result that is in line with our previous analysis occurs for K
0

< 6. Then, we can construct
a reference room with any K

0

walls {✓0k,'0

k}K0
k=1

. Furthermore, we can add walls parallel to these
K

0

walls without additionally constraining (2.57), so we can have up to K = 2K
0

< 12 walls in
the reference room. Then, we can solve the system of K

0

equations (2.57) with 1  k  K

0

to
find K

0

dependent parameters in T , and generate new equivalent rooms from (2.53) by changing
the remaining 6�K

0

free parameters in T .

4. Equivalent rooms: The transformation to equivalent rooms is the same for all reference rooms
and we find it from (2.53),

✓k = tkf(✓
0

k, i), 'k = g(✓0k,'
0

k,T ) + sk⇡, (2.58)

where

f(✓0k, i) = arccos(i cos ✓0k),

g(✓0k,'
0

k,T ) = arctan
e sin ✓0k sin'

0

k + f cos ✓0k
sin ✓0k(a cos'

0

k + b sin'0

k) + c cos ✓0k
,

tk 2 {�1, 1} and sk 2 {0, 1}. The choice of tk uniquely determines sk, such that (2.53) is
satisfied.

5. Corresponding trajectories: The nullspace of N> is spanned by three vectors in all of the
aforementioned cases,

v

1

=
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�a, �b, �c, 1, 0, 0
i>

,v
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=
h

0, �e, �f, 0, 1, 0
i>
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=
h
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i>

.

Then,
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n

�rn

#

= v

1

�

1

+ v

2

�

2

+ v

3

�

3

, (2.59)

where �
1

, �

2

and �

3

2 R. The waypoints in one room are chosen arbitrarily and a non-rigid
transformation T

> is applied to compute the waypoints in the equivalent room, r0n = T

>
rn.
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6. Equivalence class: An equivalence class of room-trajectory configurations with respect to
PPDM is given as

h

R0

i

=
n

R ��'k = g(✓0k,'
0

k,T ) + sk⇡, ✓k = tkf(✓
0

k, i), a, b, c, e, f, i 2 R

s.t. (2.57) holds, tk 2 {�1, 1}, sk 2 {0, 1} s.t. (2.53) holds,

qk = q

0

k, for 1  k  K, rn s.t. (2.59) holds for 1  n  N

o

, (2.60)

where the waypoints in the reference room are chosen arbitrarily, while the reference room
{P0

k}Kk=1

can have at most K
0

< 6 arbitrarily chosen walls and K

0

walls parallel to them.

Two room-trajectory configurations that correspond to K

0

= K = 6 are shown in Fig. 2.9.
The angles {'0

k}Kk=1

of the reference room (left) and the parameters in T are chosen arbitrarily,
while ✓0k

j

for j = 1, . . . , 4 are computed from (2.55) and (2.56). For every k, only one value of

{✓0k
j

}Kk=1

is assigned to the wall k. For such a reference room, there is only one equivalent room
(right), with wall normals from (2.58).

Figure 2.9: A pair of equivalent rooms in 3D.

An example of an arbitrarily chosen room with five walls (K
0

= K = 5) together with the
two rooms from the same equivalence class (2.60) is shown in Fig. 2.10.

Figure 2.10: Rooms with less than six walls in 3D that belong to the same equivalence class.

Fig. 2.11 illustrates an example of arbitrarily chosen three pairs of parallel walls in a room,
K

0

= 3, together with the two rooms from the same equivalence class (2.60).

Figure 2.11: An example of equivalent rooms with three pairs of parallel walls.

2.5.5 3D rank-3: Two sets of parallel walls

There is another equivalence class arising from rank(N) = 3 for A

2 + B

2 = 0 and cos'0

k 6= 0.
One can show that these constraints lead to rooms with arbitrarily chosen angles ✓0k and constant
values for '0

k (up to a shift by ⇡), i.e., rooms with all walls parallel to a line. An analysis similar
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to that in Section 2.5.3 shows that the rooms in the same equivalence class are simply rotated
versions of the reference room.

3. Reference room: We continue with A

2+B

2 = 0 which implies A = B = C = 0, and in addition
we assume that cos'0

k = 0. We omit steps 1, 2 and 5 as they are identical to Section 2.5.3. From
B = 0, it follows that

ac = 0 and bc+ ef = 0. (2.61)

From (2.61), we conclude that either a 6= 0, c = 0, or a = 0, c 6= 0, or a = c = 0. The last two
cases are not of our interest as a = 0 implies that the x coordinates of r0n are 0, and the points
lie in the yz-plane. Such a degenerate trajectory is covered in our next case, rank(N) = 4, so
we do not study it further here. A similar observation can be made for a 6= 0, c = 0, e = 0; the
y coordinates of r0n are proportional to their x coordinates, so the points lie in a plane, which
corresponds to rank(N) = 4.

A new equivalence class arises for a 6= 0, c = 0, f = 0. From C = 0, we obtain that i = ±1,
while A = 0 defines '0

k,

(a cos'0

k + b sin'0

k)
2 + e

2 sin2 '0

k = 1. (2.62)

By introducing u = tan '0
k

2

and z = u2�1

u , we can find the solutions of (2.62) in terms of z,

z

1,2 =
2ab± 2

p�a

2

e

2 + a

2 + b

2 � e

2 � 1

a

2 � 1
,

from which we can express the four solutions of '0

k,

'

0

k = 2arctan
zi ±

p

z

2

i + 4

2
,

for i 2 {1, 2}. We observe that the normals computed from z

1

generate rooms with walls parallel
to a certain line `

1

. Analogously, the normals generated by z

2

are parallel to another line `
2

.
Therefore, to construct the reference room, we can arbitrarily choose two values '0

1

and '0

2

from
[0, 2⇡) and K values of the angle {✓0k}Kk=1

from [0,⇡). Then, we match K

1

values of {✓0k}K1
k=1

with '0

1

and the remaining K

2

= K �K

1

values of {✓0k}K2
k=K1+1

with '0

2

. This results in a room
with the two sets of walls, where all walls in one set are parallel to a line. We can then solve the
system of two equations (2.62) for '0

1

and '0

2

, to find the values of two parameters (e.g. a and
b) and leave the third one (e.g. e) free to generate equivalent rooms.

4. Equivalent room: We find the equivalent rooms from (2.53) by the same computations as in
Section 2.5.4.

6. Equivalence class: The equivalence class also corresponds to the one in Section 2.5.4 with c =
0, f = 0 and i = ±1. The free parameter e generates equivalent room-trajectory configurations,

h

R0

i

=
n

R ��'k = g(✓0k,'
0

k, sk, a, b, c = 0, e, f = 0), ✓k = f(✓0k, tk, i = ±1),

tk, sk 2 {0, 1} s.t. (2.53) holds, a, b 2 R s.t. (2.62) holds, e 2 R,

qk = q

0

k, for 1  k  K, rn s.t. (2.59) holds for 1  n  N

o

, (2.63)

where the waypoints in the reference room are chosen arbitrarily, while the reference room is
constructed from two sets of walls, with walls within each set being parallel to a line.
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Note that the walls computed from z

1

do not have to enclose any specific shape, as long as they
are equally inclined to all the walls obtained from z

2

.
An interesting realistic room that belongs to this class is a room made up of four parallel walls

that are perpendicular to the ceiling and the floor. By tilting the ceiling and the floor (changing
the value of e), we can generate infinitely many equivalent rooms with respect to PPDM, see
Fig. 2.12.

Figure 2.12: Equivalent rooms with two groups of walls enclosing a prismatic surface.

2.5.6 3D rank-4: Planar trajectories

1. Linear dependence: To achieve rank(N) = 4, we assume that the fourth and the fifth column
of N are linear combinations of the remaining four,

"

sin ✓k cos'k

sin ✓k sin'k

#

= T

2

6

6

6

6

6

4

sin ✓0k cos'
0

k

sin ✓0k sin'
0

k

cos ✓0k

cos ✓k

3

7

7

7

7

7

5

, where T =

"

a b c d

e f g h

#

. (2.64)

2. Reparametrization: As r > D, we cannot rewrite (2.64) so that the normals of R and R0 are
on di↵erent sides.

3. Reference room: In (2.64) we have two equations with four unknown angles for every k. Since

the system is underdetermined, we can choose
�

✓

0

k,'
0

k

 K

k=1

arbitrarily.

4. Equivalent rooms: We solve (2.64) for ✓k and 'k, and express their dependence on ✓0k, '
0

k and
the parameters in T ,

✓k = skf(✓
0

k,'
0

k,T ), 'k = tkh(✓
0

k,'
0

k,T ), (2.65)

where sk, tk 2 {�1, 1}, and

f(✓0k,'
0

k,T ) = arccos
�dGa � hGe ±

p
G

1 + d

2 + h

2

, h(✓0k,'
0

k,T ) = arccos
d cos ✓k +Ga

sin ✓k
,

and we introduced the following shortcuts:

Ga := a sin ✓0k cos'
0

k + b sin ✓0k sin'
0

k + c cos ✓0k,

Ge := e sin ✓0k cos'
0

k + f sin ✓0k sin'
0

k + g cos ✓0k,

G := (dGa + hGe)
2 � (1 + d

2 + h

2)(G2

a +G

2

e � 1).



2.5 Classification of 3D configurations 41

5. Corresponding trajectories: The nullspace of N> is spanned by two vectors,

v

1

=
h

�a, �b, �c, 1, 0, �d

i>
,v

2

=
h

�e, �f, �g, 0, 1, �h

i>
,

so the nth row of R is
"

r

0

n

�rn

#

= v

1

�

1

+ v

2

�

2

, (2.66)

where �
1

, �

2

2 R. From (2.66) we have that one coordinate of the waypoints r0n and rn is a linear
combination of the remaining two, meaning that the waypoints lie in a plane.

6. Equivalence class: An equivalence class of room-trajectory configurations generated by R0

with an arbitrary room {P0

k}Kk=1

and a planar trajectory {r0n}Nn=1

is given as:

h

R0

i

=
n

R �� ✓k = skf(✓
0

k,'
0

k,T ),'k = tkh(✓
0

k,'
0

k,T ), a, b, c, d, e, f, g, h 2 R,

sk, tk 2 {0, 1}, qk = q

0

k for 1  k  K, rn s.t. (2.66) holds for 1  n  N

o

. (2.67)

We conclude that for arbitrarily chosen wall normals of the reference room, we can always find
another room with identical distance measurements, as long as the trajectories in both rooms
are planar, as in Fig. 2.13.

Figure 2.13: Rooms with planar trajectories and the same PPDM.

2.5.7 3D rank-5: Linear trajectories

1. Linear dependence: Finally, let rank(N) = 5, so that one column of N> is a linear combina-
tion of the remaining independent columns,

cos ✓k = T

2

6

6

6

6

6

6

6

4

sin ✓k cos'k

sin ✓k sin'k

sin ✓0k cos'
0

k

sin ✓0k sin'
0

k

cos ✓0k

3

7

7

7

7

7

7

7

5

, whereT =
h

a b c d e

i

. (2.68)

2. Reparametrization: Since r > D, this step is a no-op.

3. Reference room: From (2.68), we can choose walls of the reference room arbitrarily.
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4. Equivalent rooms: Furthermore, we can express ✓k as a function of 'k, ✓0k, '
0

k and the param-
eters in T ,

✓k = f('k, ✓
0

k,'
0

k, sk,T ), (2.69)

where
h('k, a, b) = a cos'k + b sin'k,

g('k, ✓
0

k,'
0

k,T ) = arccos
d sin ✓0k sin'

0

k + e cos ✓0k + c sin ✓0k cos'
0

k
p

h(a, b,'k)2 + 1
,

f('k, ✓
0

k,'
0

k, sk,T ) = skg('k, ✓
0

k,'
0

k,T )� arctanh('k, a, b),

with sk 2 {�1, 1}.
5. Corresponding trajectories: The nullspace of N> is spanned by

v

1

=
h

�c, �d, �e, �a, �b, 1
i>

,

so the columns of R have to be of the form
"

r

0

n

�rn

#

= v

1

�, (2.70)

where � 2 R. The above equation can be rewritten as rn = Sr

0

n, where S is a scaling matrix

with �a
c , � b

d and 1

e on a diagonal. Moreover, x and y coordinates of the waypoints
�

r

0

n

 N

n=1

are
only scaled values of the z coordinates, so the trajectories are linear.

6. Equivalence class: A room-trajectory configuration R0 with arbitrary wall normals {P0

k}Kk=1

and a linear trajectory {r0n}Nn=1

generates the following equivalence class with respect to PPDMs:

h

R0

i

=
n

R �� ✓k = f('k, ✓
0

k,'
0

k, sk,T ),'k 2 [0, 2⇡} , a, b, c, d, e 2 R, sk 2 {�1, 1},

qk = q

0

k, for 1  k  K, rn s.t. (2.70) holds for 1  n  N

o

. (2.71)

We conclude that for any arbitrarily chosen room, we can always find another room with
the same PPDM, as long as the trajectories in both rooms are linear. While linear trajectories
may seem a special case of the previous one, the room transformations are rather di↵erent. One
example of such configurations is illustrated in Fig. 2.14.

Figure 2.14: Rooms with linear trajectories and the same PPDM.
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2.6 Implications on practical development of SLAM algorithms

The analysis in Section 2.4 and Section 2.5 shows that we cannot always uniquely reconstruct
points and planes from their pairwise distances. In practice, this indicates that solving the
problem of simultaneous localization and mapping with a mobile device that measures its distance
from the walls of a room does not have a unique solution in all environments. Here we discuss
two directions to reduce the solution space: by adding constraints on the room geometry or by
adding constraints on the trajectory of the device.

2.6.1 Constraints on room geometries

As shown in the analysis, linear and planar trajectories introduce additional ambiguities in the
room reconstruction, so one should avoid them. Let us thus assume in this discussion that a
trajectory is non-linear in 2D and non-planar in 3D, and provide an overview of rooms that
cannot be uniquely reconstructed from the distance measurements.

In 2D, this concerns only parallelogram rooms. We showed in Section 2.4.1 that they have
one degree of freedom to generate new rooms within the same equivalence class. Hence, if one
knows that the reconstruction takes places in a rectangular room, it is su�cient to fix one angle
of the room to be the right angle and obtain a unique reconstruction and localization.

In 3D, rooms from Section 2.5.2 are not uniquely determined by the distance measurements;
we call them parallelepipeds without bases. It is clear that in reality, “rooms” without ceiling and
floor are not common, but it can happen that the ceiling and the floor are covered by materials
that are not reflective (for example, metal mesh system for the ceiling and carpets on the floor),
so that the device cannot measure its distance from the ceiling and the floor by radio or sound
waves. Similar to parallelograms, we showed that the rooms from the same equivalence class can
be generated by changing one degree of freedom, and thus, if one knows that the reconstruction
takes places in a room with a rectangular floor plan, it is su�cient to fix one angle of the room
to be the right angle and obtain a unique reconstruction and localization.

A similar argument is valid for the rooms from Section 2.5.5 that can be constructed from
two independent sets of walls, where all walls within a set are parallel to a line. If one set is floor
and ceiling and the other comprises side walls, we get familiar, realistic rooms. If one knows that
the floor is perpendicular to the side walls, it is su�cient to fix the angle between two sets of
walls to be the right angle to get uniqueness.

Lastly, it is not possible to identify uniqueness conditions for the rooms in Section 2.5.4, but
they can be constrained using trajectory information discussed in Section 2.6.2. In conclusion,
most rooms we know from daily life belong to one of the three cases mentioned above: par-
allelograms, parallelepipeds without bases, and two sets of walls parallel to a line. For these
rooms, uniqueness is guaranteed already if we fix one degree of freedom, for example one angle.
However, as these three cases do not cover all rooms a↵ected by non-unique reconstruction, in
the following we discuss the possibility of adding constraints on trajectories instead of rooms.

2.6.2 Constraints on trajectories

In addition to constraining rooms, it might be natural to constrain trajectories. In practice, vari-
ous techniques can be used to get a noisy estimate of the motion of the device, such as odometry,
and acquire some knowledge about the trajectories. If this information was noiseless and the
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Figure 2.15: Room-trajectory configurations equivalent to a rectangular room for di↵erent noise
levels in the motion model. We consider independent Gaussian noise on the length and angle of
the vectors between two waypoints. The noiseless case in a) shows that there is only one room-
trajectory configuration for the given PPDM and the noiseless measurement of the trajectory.
The more noise we assume in the motion model, the more room-trajectory configurations become
feasible. Di↵erent values of signal-to-noise ratio (SNR) of lengths and angles are illustrated from
b) to g). The opacity of the rooms and trajectories is proportional to the probability of their
realization. All values are in decibels.

trajectories were non-planar, we could uniquely reconstruct all rooms from the distance measure-
ments and known trajectories [94]. Even when noisy, these additional measurements constrain
the plausible reconstructions to a neighborhood of the correct one in the room–trajectory space.
This is illustrated in Fig. 2.15.

2.7 Conclusion

We derived necessary and su�cient conditions for unique reconstruction of point–plane con-
figurations from their pairwise distances. Our analysis hinges on a new algebraic tool called
point-to-plane distance matrix. We exhaustively identify the geometries of points and planes
that cannot be distinguished given their PPDMs.

Our motivation comes from the challenging problem of multipath-based simultaneous local-
ization and mapping and our study has consequences for practical indoor localization problems.
Picture an unknown room with no preinstalled infrastructure and a mobile device equipped with
a single omnidirectional source and a single omnidirectional receiver. The distance measure-
ments between the points and planes are given as the time-of-flights of the first-order echoes
recorded by the device. Therefore, our theoretical results provide a fundamental understanding
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and constraints under which rooms can uniquely be reconstructed from only first-order echoes.
While our analysis here starts with the PPDM, preparing the PPDM in real scenarios puts

forward additional challenges, namely PPDM completion and denoising, and echo sorting. The
next chapter includes the development and implementation of computational tools for localization
from noisy, incomplete, and unlabeled PPDMs.
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2.A Equivalent analysis for di↵erent choices of columns

For all D and r we worked with a particular selection of r independent columns. We prove here
that this choice can be made without loss of generality. We will call the particular column choice
in Sections 2.4 and 2.5 the original choice.

First note that there is symmetry between reference and equivalent rooms. For example, for
r = 1 in 2D, given the original choice of r independent columns we have

h

sin'k, cos'0

k, sin'
0

k

i>
=
h

a, b, c

i>
cos'k. (2.72)

We can swap the normals {'0

k}Kk=1

and {'k}Kk=1

for every k, and obtain a new, symmetric choice
of r independent columns

h

sin'0

k, cos'k, sin'k

i>
=
h

a, b, c

i>
cos'0

k. (2.73)

The two systems (2.72) and (2.73) give the same equivalence class.
A similar conclusion follows if the new choice is obtained by rearranging the order of the

coordinates of the normals. Again, for r = 1 in 2D we have that

h

cos'0

k, cos'k, sin'k

i>
=
h

a, b, c

i>
sin'0

k

can be transformed to the studied case of (2.23). Indeed, by applying a rotation by ⇡/2 to the
normals of the reference room, we obtain a new reference room which satisfies (2.23), but rotated
configurations are considered to be equivalent.

In the following we show that any choice of r independent columns not covered by the two
previous examples can be transformed into one of the cases analyzed in Sections 2.4 and 2.5 (for
r = 2 in 2D and r 2 {2, 3, 4} in 3D).

1. 2D rank-2. By symmetry, it is su�cient to show that
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can be transformed into (2.14). For c 6= 0, it follows directly:
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For c = 0 we have tan'0
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d , addressed in (2.23).

2. 3D rank-2. By symmetry, we only analyze
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and transform it into (2.40) as
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for d 6= 0. If d = 0 and b 6= 0, a substitution sin ✓k cos'k = 1

b (cos ✓
0

k � a sin ✓0k cos ✓
0

k) from the
first equation of (2.74) into the last two equations of (2.74) gives a system equivalent to (2.40).
For b = d = 0, we get constant normals, discussed in (2.35).

3. 3D rank-3. Again, we only analyze
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and show that we can transform it into (2.53). Indeed, for i 6= 0,
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For i = 0, g 6= 0 or i = g = 0, h 6= 0 we can substitute either sin ✓0k cos'
0

k or sin ✓0k sin'
0

k from
the last equation of (2.75) into the first two equations of (2.75), getting (2.64). The same holds
for i = g = h = 0, with an additional constraint cos ✓0k = 0 on the reference normals.

4. 3D rank-4. Let us assume
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Thanks to symmetry, this is the only case of our interest and we transform it to the well-studied
system (2.64) for e 6= 0:
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If e = 0 and h 6= 0, substituting cos ✓k from the second into the first equation of (2.76) gives (2.64).
By similar substitutions for e = h = 0, f 6= 0, and e = f = h = 0, g 6= 0, we get (2.68).
Finally, e = f = h = g = 0 also corresponds to r = 5 in 3D, with an additional constraint
sin ✓0k cos'

0

k = 0.





Chapter 3

Point-to-Plane Distance Matrices in
Practice: Room Reconstruction*

No theory is good unless it permits, not rest, but the greatest

work. No theory is good except on condition that one use it

to go on beyond.

André Gide

3.1 Introduction

Our primary motivation for studying point-to-plane distance matrices (PPDMs) in Chapter 2
comes from simultaneous localization and mapping (SLAM). Location-based services have be-
come an integral part of our daily life but no single technology can provide reliable indoor posi-
tioning; thus, we propose a solution which leverages echoes. The goal of this chapter is to show
that multipath propagation has a great potential and can be used for indoor positioning [44].

*The material in this chapter is the result of joint work of the author (MK) with Gilles Baechler (GB),
Mihailo Kolundžija (MKo), Ivan Dokmanić (ID) and Martin Vetterli (MV) [90, 98]. Author contributions: MK,
ID, and MV designed research; MK and MKo devised the echo labeling algorithm from Section 3.3 and undertook
real experiments; MK and GB devised the reconstruction algorithm from Section 3.4; MK performed research,
implemented all algorithms, ran simulations, processed experimental data, created all figures and wrote the
chapter. She would like to express her sincere gratitude to Mihailo Kolundžija for his constructive and valuable
feedback which helped to improve the chapter, and his constant support.
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One can distinguish between two approaches to acoustic geometry reconstruction problems.
The first category includes methods that address the problem from a distance geometry view-
point; they are based on geometric information obtained from multipath propagation. In the
second category we have probabilistic algorithms; they gradually build the map of the room and
simultaneously localize the measurement device or a robot within the map. In this thesis, we
explore both directions: in the present chapter we rely on the distance geometry of reflections,
while in Chapter 4 we consider a probabilistic model. We present the related literature review
in the two chapters accordingly.

In both cases, our goal is to make the solution broad and suitable for various setups, so we
investigate polygonal rooms of unknown geometries and assume that there is no preinstalled
infrastructure to serve as anchors. Moreover, we consider a mobile device with a very basic
measurement equipment—one omnidirectional loudspeaker and one omnidirectional microphone.
By using such a device to measure room impulse responses (RIRs) along its trajectory, we can
obtain propagation times of first-order echoes and convert them to distances between waypoints
and walls. Thus, from the acoustic measurements we create PPDMs. While PPDMs present a
good basic model for SLAM from echoes, the full SLAM raises a number of additional challenges
such as distinguishing first-order from higher-order echoes and associating echoes to walls; these
problems are addressed in this chapter.

In the most common probabilistic formulations of SLAM, an initial noisy estimate of the
trajectory is required for algorithms to work. In our geometric approach, however, we can
assume that the trajectory of a device or its kinematics are a priori completely unknown: the
entries of PPDMs are computed only from the propagation times of the first-order echoes. Hence,
an algorithm for the factorization of PPDMs jointly recovers rooms and trajectories solely from
the corresponding point-to-plane distances. But to obtain the desired distances, one first needs
to detect first-order echoes in RIRs and match them with the walls from which they originate,
that is, label them, which is a hard problem when the trajectory is unknown. There exists a
combinatorial solution to the labeling problem [49]. In this chapter, however, we show that if
we do have some estimate of the trajectory, we can propose a more e�cient algorithm to label
first-order echoes in measured RIRs, create PPDMs from their propagation times, and jointly
recover rooms and localize the device.

3.1.1 Related work

Acoustic room reconstruction as a distance geometry problem. Methods in this category typ-
ically assume a set of microphones or speakers with fixed locations, so that the echoes correspond
to virtual beacons and their time delays carry geometric information about the system comprised
of sources, receivers and a room. The time delays are converted to range measurements, and the
problem is recast as retrieving original point configurations in a multidimensional space from a
set of pairwise Euclidean distances, which has been thoroughly studied [42, 61, 71, 137, 154].

The described geometric formulation is adopted by many existing solutions to the room
reconstruction problem [5, 39, 44, 45, 49, 81, 128, 144, 146, 147, 166]. Most of these techniques
rely on fixed microphone or source arrays, and/or known relative positions within the array.
In the case of a single channel impulse response [47, 128], the proposed methods require the
measurements of all first- and second-order echoes, which is di�cult in practice. Other related
methods assume rooms to be known and exclusively focus on indoor localization from multipath
reflections [85, 86, 123]. We are interested in joint reconstruction of rooms and trajectories
with a single mobile device; similar setups have been already studied [102, 140]. Kuang et al.
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present a single-antenna anchor-free positioning from acoustic echoes [102]. They assume that
emitter is also unknown, but fixed, and jointly reconstruct its location together with the receiver’s
trajectory and the room geometry under a far-field approximation. The work of Peng et al. [140]
assumes a single collocated source and receiver, but the presented method only works in 2D with
noiseless distance measurements and known echo labeling.

Low-rank matrix factorization. Many seemingly di↵erent problems can be formulated as a
PPDM factorization. A famous example in computer vision is “structure from motion” (SFM)—
recovery of scene geometry and camera motion from images [169]. Thrun has adapted the
original SFM algorithm to the joint localization of microphones and acoustic events with unknown
emission times, and named it “structure from sound” (SFS) [167]. When the microphones are
synchronized and the sources are in the far field, the times of arrival of the acoustic events can
be arranged in a matrix that is essentially a PPDM: it is a low-rank measurement matrix that
can be factorized into a product of a coordinate matrix and a column-unitary projection matrix.

The main shortcoming of the Thrun’s algorithm [167] is the inability to handle missing data.
Similarly, the ellipsoid time di↵erence of arrival (TDOA) method [178] requires not only a set of
measurements with no missing values but also exactly three receivers in the plane. A thorough
study of this factorization problem is presented by Kuang et al. [101]. The authors implement the
original SFS algorithm [167] in 3D and analyze its failure modes. In addition, they propose two
minimization strategies—an alternating optimization and a solution relying on the Levenberg–
Marquardt algorithm—and evaluate them with regard to accuracy and convergence rate.

3.1.2 Main contributions

As all the aforementioned techniques fail without at least one complete row in a PPDM, we
propose an iterative algorithm that can handle these cases and factorize a noisy and incomplete
PPDM both in 2D and 3D.

In this chapter we show that acoustic SLAM with a single collocated source and receiver can be
cast as localization of points and planes from PPDMs. To transform RIRs to PPDMs, we propose
a method that jointly detects first-order echoes in RIRs and assigns them to reflecting walls. To
transform noisy and incomplete PPDMs to room-trajectory configurations, we formulate an
optimization problem to find the best estimates with respect to the mean squared error. This
method can be applied to any of the abovementioned problems (e.g. SFM and SFS). We run a
number of numerical simulations to show that our formulation not only works in a regime where
existing algorithms fail, but also outperforms them in terms of accuracy. We test our end-to-end
pipeline of algorithms using real data and demonstrate that the proposed approach is e�cient
and robust to noise in indoor environments.

3.2 Problem setup

As in Chapter 2, we consider the room to be a polygon with K sides in 2D or a polyhedron with
K faces in 3D, where the sides and faces model walls in a room. We use notation from Chapter 2:
a wall Pk is defined by its unit normal nk 2 Rm and the distance qk of the wall from the origin.

According to the image source model [4, 24], we represent reflections inside a room as signals
produced by mirror images of the real sources across the walls. Sound propagation is modeled
with a family of RIRs, where each RIR hn(t) is idealized as a train of Dirac delta pulses produced
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by the real source and its images, and recorded by the microphone,

hn(t) =
X

`�0

a`�(t� ⌧n`).

The propagation times of echoes are denoted by ⌧n`. The received magnitudes a` depend on the
wall absorption coe�cients and the distance of the image source from the microphone1.

When the RIRs are collected by a collocated microphone and loudspeaker along N waypoints
of the trajectory, {rn}Nn=1

, the propagation times of the first-order echoes reveal the distances
between the measurement locations (points rn) and walls (planes Pk), as observed in Chapter 2.
Given the set of propagation times {⌧nk}N,K

n=1,k=1

of the first-order echoes, we can compute these

point-to-plane distances {dnk}N,K
n=1,k=1

by (2.1). In Chapter 2, we assumed that they have been
given to us in a form of a PPDM D,

D = 1q> �R

>
N , (3.1)

where q,R and N are defined in (2.3), and we focused on the question of uniqueness: whether a

given PPDMD(R) uniquely specifies the room-trajectory configurationR =
⇣

{Pk}Kk=1

, {rn}Nn=1

⌘

that generates it. We proved that the answer is negative even beyond rigid transformations; we
provided all equivalence classes of rooms and trajectories that lead to the same PPDMs.

This is however not a concern in this chapter. Here we consider any room from the same
equivalence class to be a correct solution and turn our focus towards real-world conditions. We
aim to reconstruct room-trajectory configurations from a given set of noisy RIRs recorded by
a collocated microphone and loudspeaker at several locations inside a room. If we can detect
first-order echoes in the RIRs and correctly assign them to the reflecting walls, and if we can
factorize a noisy and incomplete PPDM, then we can jointly reconstruct rooms and trajectories
from the RIRs. The above problems are illustrated in Fig 3.1 and formalized below.

Problem 3.1 Given a collection of room impulse responses, find a PPDM e

D whose entries
are the distances of waypoints to the walls.

Problem 3.2 Given a noisy and incomplete PPDM e

D, estimate the room-trajectory configu-
ration R, such that its PPDM D(R) is close to eD in some chosen norm.

We propose a two-step algorithm to solve Problem 3.1 and Problem 3.2. In Section 3.3, we
address Problem 3.1. We first devise a method to detect first-order echoes in RIRs and associate
them with the walls from which they originate. Then, we simply construct a PPDM e

D from the
propagation times of the detected first-order echoes. In Section 3.4 we find a room-trajectory
configuration R from the created e

D, which solves Problem 3.2. We validate the performance of
the algorithm on simulated data in Section 3.5 and demonstrate the applicability of our solution
to real-world measurements in Section 3.6.

1We assume flat fading, that is, all frequency components of the signal have the same magnitude of attenuation.
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PPDM 

Figure 3.1: An overview of the room-trajectory reconstruction algorithm from the measure-
ments of room impulse responses. a) Collocated omnidirectional source and receiver, embodied
as a bat, traverse an unknown room. At randomly chosen waypoints r

1

, . . . , r

4

, the source
emits a pulse and the receiver records RIRs. From RIRs, we detect the pulses that correspond
to the first-order echoes and compute their propagation times ⌧nk, for every n = 1, . . . , 4 and
k = 1, . . . , 6. b) The propagation times reveal the distances between the bat and the walls,
dnk = cs⌧nk/2, with the speed of sound cs, arranged in a PPDM D. c) We factorize the matrix
D as D = 1q> � R

>
N , to find the unknown walls {Pk}6k=1

specified by N and q, and the
waypoints {rn}4n=1

specified by R.

3.3 From RIRs to PPDMs

In the following, we propose a room model and formulate an e�cient and robust algorithm that
simultaneously detects and labels first-order echoes in RIRs.

Considerations on measurement setup and room model. We consider a room that consists
of a floor, ceiling and any number of side walls. Most real rooms have side walls perpendicular
to the floor and ceiling, so we model our rooms as such.

In practical setups, the microphone and the loudspeaker are mounted together on a mobile
platform or a robot of a fixed height. This is also the case in our experiments (for more details
about the experimental platform see Section 3.6.1). The fact that the z-coordinate in R does not
change allows us to fix some degrees of freedom in the reconstruction and achieve a unique solution
for some equivalence classes. Moreover, it makes it easy to detect the first-order reflections from
the floor and the ceiling; their propagation times are the same at every waypoint, so they appear
at the same position in every measured RIR.

By assuming both that the side walls are perpendicular to the floor and ceiling, and that the
height of our measurement device does not change along the trajectory, the practical problem
e↵ectively becomes 2D. This means that for every wall k, we only need to find two parameters:
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Figure 3.2: Left : One room with four di↵erent realizations of the trajectory {r
1

, r

2

, r

3

}. Right :
RIRs that correspond to the room-trajectory configurations from the left side, and simplified such
that they contain only first-order echoes. For di↵erent trajectories from a) to d), the RIRs are
identical. The colors of the pulses match with the colors of the walls from which the echoes
reflect.

the distance from the origin, qk, and the angle of the wall normal, 'k.

Echo labeling: uniqueness claim. Imagine a simple problem in which we know the geometry
of a room and we have a set of distances that correspond to the first-order echoes. Our only task
is to match these distances with the walls. If our room is for instance a parallelogram and we do
not have any information about the trajectory, it is impossible to uniquely resolve the labeling
problem and localize the waypoints. The reason is that there exist multiple points inside the
room with the same set of distances. An example with four equivalent configurations is given in
Fig. 3.2; without knowing the association between the first-order echoes and the walls, all these
configurations constitute a valid solution.

We can resolve this ambiguity with additional a priori knowledge. For example, if there is a
constraint on the maximum distance between two consecutive waypoint, `max, we can use the
triangle inequality to upper bound the di↵erence of the propagation times of two consecutive
first-order echoes from the same wall k: cs|⌧n,k � ⌧n+1,k|  2`max. This can significantly reduce
the set of ambiguous solutions in the labeling problem. For example, in Fig. 3.2 we can constrain
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Figure 3.3: Image source model for first-order echoes with collocated microphone and loud-
speaker. Sound rays at the measurements n and n+ 1 are shown in the same color for the same
wall. For every two consecutive steps, the robot’s waypoints, together with their image sources,
define isosceles trapezoids with sides of the same length—the length of the robot’s step.

the distance between two consecutive waypoints to be smaller than the value of `max = kr
1

�r

3

k
from Fig. 3.2a. Then, we can eliminate all rooms illustrated in Fig. 3.2 except Fig. 3.2a; this is
the only room for which |dn,k � dn+1,k| < `max for every n = 1, 2, 3 and k = 1, 2, 3, 4.

Under the assumption that the robot’s step krn�rn+1

k is known up to some uncertainty, we
claim that given the propagation times of the first-order echoes, we can almost always correctly
assign them to the corresponding walls. This is based on the fact that the robot’s waypoints rn
and rn+1

, together with their image sources, define isosceles trapezoids with sides of the same
length, equal to the length of the robot’s step. This is illustrated in Fig. 3.3. As the length of
the step is known up to some uncertainty, there is only one way to arrange the given propagation
times, {⌧n�1,k}Kk=1

and {⌧n,k}Kk=1

, to obtain such isosceles trapezoids.
In practice, we can use di↵erent means, such as odometry, control and motion sensors, to

measure not only the distance between two waypoints, but also the orientation. Given noisy
lengths and orientations, we can estimate a piecewise linear trajectory of the robot, and use it to
detect and label first-order echoes in the measured RIRs. In the following sections we propose
an algorithm to convert RIRs to PPDMs. It consists of 1) eliminating the echoes from the floor
and ceiling, 2) extracting the most prominent peaks from RIRs, and 3) reconstructing the walls.

3.3.1 Elimination of echoes from the floor and ceiling

We assume that we are given a set of recorded RIRs aligned such that the maximum amplitude
of every RIR (i.e., the peak that corresponds to the direct sound) is at position t = 0.

We assume that the height of the robot is fixed, so the echoes from the floor and ceiling arrive
with the same time delays in all RIRs. We denote them by ⌧f and ⌧c, respectively. In other
words, we have ⌧f = ⌧f1 = . . . = ⌧f

N

and ⌧c = ⌧c1 = . . . = ⌧c
N

. To estimate the delays ⌧f and ⌧c,
we average all RIRs; this reduces the noise and amplifies the amplitude of the reflections from
the floor and ceiling relative to other echoes. As the peak with the largest amplitude corresponds
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Figure 3.4: a) A squared room impulse response measured at a certain waypoint, where the
reflections from the floor and ceiling have been removed. b) Peaks selected from the RIR by
applying the variant of the MUSIC algorithm [114]. Red diamonds indicate the locations of the
estimated peaks, while the black dashed lines denote the ground truth locations of the first-order
echoes from four walls.

to the direct sound, we detect two next largest peaks in the averaged RIRs and associate them
to the floor and ceiling.

Before we eliminate the peaks at ⌧f and ⌧c from every RIR, we need to verify that there is
no other echo overlapping with them. To do so, we extract short windows around ⌧f and ⌧c in
the original and averaged RIRs. A high discrepancy between the two windowed signals is a good
indicator that there is another pulse nearby or overlapping with the floor or ceiling reflection.
We therefore keep it, as it is potentially a first-order echo from a wall. On the contrary, if we
observe that the shapes of the windowed signals are similar, we deduce that no other echo is
present, and we remove the detected pulse from the RIR as it belongs to the floor or ceiling.

3.3.2 Extraction of the most prominent peaks

The goal of this step is to obtain the times of arrival of the most prominent peaks in RIRs. We
apply the variant of the Multiple Signal Classification (MUSIC) algorithm [114] summarized in
Appendix 3.A. This method assumes that every RIR consists of M complex exponentials in the
presence of Gaussian noise and relies on eigenspace decomposition of the Toeplitz matrix, whose
columns are constructed by translates of the squared samples of RIRs in the Fourier domain.
The algorithm transforms the recorded RIR into a stream of M Dirac pulses, where some belong
to first-order echoes, some to higher-order echoes and some are spurious peaks. We are interested
only in their propagation times, ⌧nm. We arrange them in a vector ⌧n = [⌧n1, . . . , ⌧nM ] for every
waypoint n = 1, . . . , N , and we construct a matrix T = [⌧n]Nn=1

2 RN⇥M . Observe that in the
noiseless case, all entries of a PPDM are also in csT /2.

To initialize the MUSIC algorithm, we need to provide a number of peaks to be detected,
M . For the next step of our proposed approach, losing a peak from a first-order echo is much
more critical than having spurious peaks. Therefore, we keep M large and select up to M = 30
strongest pulses in each recording. Fig. 3.4 illustrates an example of a squared RIR along with
its MUSIC estimate and the picked times of flight.
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Figure 3.5: Influence of a wall’s slope on the measured propagation times of the first-order
echoes. a) The trajectory is made of N = 17 waypoints. x-coordinates rn,x are distributed
uniformly between �2 and 2, while the y-coordinates are rn,y = sin(rn,x). The wall normals are
distributed uniformly between '

1

= ⇡/4 and '
6

= ⇡. The distance of walls from the origin is
the same for all walls (qk = 4). b) Projections proj'1

R of the trajectories onto six walls.

3.3.3 Reconstruction of the walls

This section describes the core of our reconstruction algorithm that transforms RIRs to PPDMs.
It detects first-order echoes in the stream of Diracs from the previous step and labels these echoes
with the matching walls, creating a PPDM e

D. To lay down the main idea of the algorithm, we
first assume to have information about the noiseless, ground truth trajectoryR = [r

1

, r

2

, . . . , rN ].
Later we relax this assumption and build up the algorithm to take into account the noise on
trajectories.

3.3.3.1 Noiseless trajectory

To illustrate the underlying idea, let us first look at the example presented in Fig. 3.5. It shows
the time-of-flight measurements of the first-order echoes computed for a fixed trajectory and
six walls with di↵erent slopes. The trajectory consists of N = 17 waypoints rn = [rn,x, rn,y]>

defined by rn,x = �2+(n�1)/4 and rn,y = sin(rn,x). The wall normals are distributed uniformly
between '

1

= ⇡/4 and '

6

= ⇡, as depicted in Fig. 3.5a. By projecting the trajectory R onto
wall normals,

'

1

= ⇡/4 : proj'1
R =

⇣

� 2 +
n� 1

4

⌘

cos
⇡

4
+ sin

⇣

� 2 +
n� 1

4

⌘

sin
⇡

4
,

'

2

= 2⇡/5 : proj'2
R =

⇣

� 2 +
n� 1

4

⌘

cos
2⇡

5
+ sin

⇣

� 2 +
n� 1

4

⌘

sin
2⇡

5
,

. . .

'

6

= ⇡ : proj'6
R = 2� n� 1

4
,
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we obtain 6 unique vector components of R in the directions of 'k, denoted by proj'
k

R and
illustrated in Fig. 3.5b. The relation between proj'

k

R and the propagation time ⌧nk of the
first-order echo reflected from the wall k and recorded at the waypoint rn is:

⌧nk = 2(qk � proj'
k

rn)/cs. (3.2)

Imagine now that you are given the propagation times {⌧n1}Nn=1

that correspond to the
distances between the waypoints {rn}Nn=1

and the first wall, and you need to identify which
of the 6 candidate walls is the most likely to give rise to such measurements. An idea based
on (3.2) would be to first minimize the disparity between the measurements {⌧n1}Nn=1

and the
precomputed projections proj'

k

R to eliminate an unknown o↵set qk for every k = 1, . . . , 6, and
then to pick k with the smallest disparity. This is indeed an outline of our algorithm, formally
defined in the following.

In practice, we do not have a set of candidate walls to choose from. Instead, we propose to
uniformly sample the space of possible angles of the wall normals 'k 2 (0, 2⇡] as:

'̄` = `⌦s for ` = 1, . . . , L,

where L 2 N and ⌦s 2 R is a sampling period such that L⌦s = 2⇡. We precompute the
corresponding projections proj'̄

`

R for every '̄` as:

proj'̄
`

R =
h

cos '̄` sin '̄`

i

R. (3.3)

In the simple case when '̄j is precisely the angle of the wall normal k,

'̄j = 'k, (3.4)

we can find the exact values (up to a shift) of proj'̄
j

R in the measured propagation times of the
first-order echoes,

q � proj'̄
j

rn 2 cs⌧n/2 for q 2 R and every n = 1, . . . , N. (3.5)

The criterion in (3.5) is satisfied for every pair (j, k) for which (3.4) is true; therefore, if we
use (3.5) to find the correct walls '̄j , we do not have to know their number in advance.

In practice, the measurements T are noisy, and our space of discrete angles {'̄`}L`=1

is finite,
so we cannot rely on the criterion in (3.5). Instead, we propose to measure the cumulative
mismatch e` between the projections proj'̄

`

R and the closest measured propagation times in T .
For every waypoint rn projected onto '̄`, the nearest peak in T with respect to the `2-norm is
found by minimizing |cs⌧nm/2� (q � proj'̄

`

rn)|2 over ⌧n1, . . . , ⌧nM for some fixed q. Therefore,
the mismatch e` can be computed as:

e` = min
q

N
X

n=1

min
⌧
n1,...,⌧nM

|cs⌧nm/2� (q � proj'̄
`

rn)|2, (3.6)

for every `. The algorithm is summarized in Algorithm 3.1.
The estimated walls are those for which the mismatch is the smallest. More precisely, we

refer again to the MUSIC algorithm [114] and apply it to e = [e
1

, e

2

, . . . , eL] to detect K smallest
minima in e. The indices `

1

, . . . , `K indicate the positions of these K local minima in e. Hence,
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Algorithm 3.1 Reconstruction of the walls.

Input: R, T
Output: errors e

1

, e

2

, . . . , eL

Define a set of discrete angles '̄ = ['̄
1

, '̄

2

, . . . , '̄L] with '̄` = `⌦s for ` = 1, . . . , L, where
L 2 N and ⌦s 2 R are such that L⌦s = 2⇡.
Repeat for every '̄` in '̄:

Compute proj'̄
`

R from (3.3).
Compute e` from (3.6).

return e

1

, e

2

, . . . , eL

the angles of the wall normals with the smallest error are '
V

= ['̄`1 , . . . , '̄`
K

]>, or given as normal
vectors in matrix form,

N

V

=

"

cos '̄`1 cos '̄`2 . . . cos '̄`
K

sin '̄`1 sin '̄`2 . . . sin '̄`
K

#

.

The values of q that minimize (3.6) for every '̄`
k

are denoted by q`1 , . . . , q`K and they reveal the
estimated distances of the walls from the origin, q

V

= [q`1 , . . . , q`K ]>.
Remark that in Algorithm 3.1 we do not only estimate the walls, but we also detect the

first-order echoes in RIRs and label them with their associated walls in the following way. For
every estimated wall '

V

k 2 '

V

, we obtain proj
'

V

k

R from (3.3) with '̄` = '

V

k, and together with

q

V

k 2 q

V

, in (3.6) we compute:

e⌧nk = argmin
⌧
n1,...,⌧nM

|cs⌧nm/2� (q
V

k � proj
'

V

k

rn)|2, (3.7)

for every n. Hence, for every wall k and every waypoint rn, we find the best matching propagation
time in ⌧n as e⌧nk. In other words, for every peak in every RIR we can tell if it is a first-order
echo, and if so, which is the associated wall of reflection. Note that we can associate one peak to
di↵erent walls; this is a desired behavior as it can happen that the robot is equally far from several
walls, so that the corresponding echoes collide. By arranging the values of the propagation times
in a matrix, we construct a PPDM e

D as eD = [cse⌧nk/2]
N,K
n=1,k=1

.

3.3.3.2 Noisy estimate of the trajectory

In real-world scenarios, the sensors are subject to errors, so the estimated trajectory is di↵erent
from the true path that the device takes. We propose to enhance Algorithm 3.1 to be more
robust to noise.

We use vn = rn�rn�1

to denote the true motion vectors between two consecutive waypoints
rn�1

and rn and assume that they are corrupted by i.i.d Gaussian noise, evn = vn+zn, where zn ⇠
N (0,�2

vI). As we estimate r

V

n simply as r

V

n = r

V

n�1

+ evn, this corresponds to having Gaussian
noise N (0, n�2

vI) on the waypoints directly, which is a realistic model: the error accumulates
over time, so the uncertainty of the device’s location is larger for every new waypoint.

To gain some intuition for how the noise is hindering the proposed algorithm, we generate P

realizations of the trajectory,

e

R

[p] = R+
h

0 z

1

z

1

+ z

2

. . .

PN�1

n=1

zn

i

, (3.8)
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run Algorithm 3.1 for each e

R

[p] and observe the returned errors e

[p] = [e[p]
1

, e

[p]
2

, . . . , e

[p]
L ]. We

compare them to e = [e
1

, e

2

, . . . , eL], the errors computed by Algorithm 3.1 for the ground truth
trajectory R. We apply the MUSIC algorithm to find the K smallest minima in e

[p] and e. Our
experiments with real RIRs are illustrated in Fig. 3.6; they show the following:

Observation 3.3 The positions of the K smallest local minima of e

[p] are close to the K

smallest local minima of e for reasonable amounts of noise �v.2 In other words, Algorithm 3.1
finds the correct first-order echoes in RIRs when the generated trajectories are not too far from
the ground truth trajectory.

When we increase the amount of noise added to the trajectory, we achieve two opposite e↵ects
on the errors returned by Algorithm 3.1. In the first case, the noisy trajectory is such that no
rooms match the geometry implied by the measured propagation times:

Observation 3.4 With high �v we generate realizations of the trajectory for which the propa-
gation times of the first-order echoes are far from the measured propagation times, so the error
is large for every potential wall '̄`.

In the second case, we are less lucky; the noisy trajectory is such that some second-order
echoes of the ground truth trajectory are close to the first-order echoes of the noisy trajectory:

Observation 3.5 With high �v we generate realizations of the trajectory for which the first-
order echoes from some “ghost” wall are close to the measured propagation times of the second-
order echoes. Even though this case occurs rarely, the errors returned by Algorithm 3.1 for
such trajectories have small local minima; they are of the same order as the errors computed
for the ground truth trajectory.

With the intuition gained from the experiments, we propose to extend Algorithm 3.1 and
improve its accuracy for noisy trajectories by performing the following steps:

1. For a given noisy estimate eR, we generate P realizations eR[p] by (3.8), where we replace
R with e

R.

2. For every realization eR[p], we run Algorithm 3.1 and obtain the errors e[p] = [e[p]
1

, . . . , e

[p]
L ].

3. We select aP trajectories with the smallest ke[p]k, where 1/P < amin < a < amax < 1,
and we average them.

4. The locations of the K smallest local minima of the averaged error reveal the wall normals,
'

V

= ['̄`1 , . . . , '̄`
K

]>.

2The observation is made for �v < 4 cm. Knowing that mobile robots can provide much better precision,
this is a rather high amount of noise for many measurement methods. For instance, a real robot used in the
experimental part of Chapter 4 achieves �v < 0.5 cm.
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Figure 3.6: Errors computed by Algorithm 3.1 for three di↵erent noise levels. The ground truth
angles are indicated with dashed lines and their values are written above the graphs. The angles
for which the error is among the four smallest local minima are marked with ⇥. a) �v = 1.7 cm.
This case is described in Observation 3.3. The four smallest local minima are very close to the
ground truth values. b) �v = 5.1 cm. This case is described in Observation 3.5. We can see that
the smallest local minimum is not close to the ground truth values; it corresponds to the ghost
wall at '̄ ⇡ 4.2 rad. c) �v = 7.5 cm. This case is described in Observation 3.4. The error is large
for every possible wall normal '̄`.

We propose to pick amax ⇡ 0.5 as we want to compute the average of the errors that have
small local minima and our Observation 3.3 confirms that this is the case for the trajectories
that are close to the ground truth trajectory. Observation 3.5 however shows that there are
trajectories that can be far from the ground truth trajectory but have a small value of ke[p]k;
this indicates the presence of ghost walls. To generate one such trajectory by (3.8) is not very
likely. Hence, even though they might have small ke[p]k, they are rare. To average out the ghost
walls, we propose to set amin ⇡ 0.2.

Our experiments show that the K smallest local minima of the averaged errors ē` =
1

aP

P

e

[p]
`

are indeed close to the correct K walls in a room, where the terms in the sum correspond to aP

trajectories with the smallest ke[p]k and a = 0.2. More details about our experimental setup and
results are provided in Section 3.6.3.

Now that we have estimates of the angles '
V

of the wall normals, we can find the corresponding
o↵sets q

V

from (3.6). For the computed '̄` = '

V

k and q

V

k 2 q

V

, we construct a PPDM e

D as in
Section 3.3.3.1 and provide it as an input to the next stage of our two-step approach.

3.4 From PPDMS to rooms and trajectories

In this section, we turn our focus to Problem 3.2 and assume that we are given a PPDM e

D. In
the noiseless case, the room-trajectory configuration can be recovered from only a few distance
measurements by solving polynomial equations (2.2). In practice however, noisy entries are
common and solving polynomial equations might be problematic. Additionally, the algebraic
approach makes it di�cult to incorporate any prior knowledge we might have about the room
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or the trajectory. It is easy to imagine scenarios where some information from inertial sensors is
available, and the algebraic approach provides no simple way to integrate it.

3.4.1 Optimization formulation

To address these shortcomings, we formulate the joint recovery as an optimization problem and
we aim to estimate a room-trajectory configuration that best fits given measured distances. More
precisely, we describe our problem as a low-rank matrix factorization: given noisy and incomplete
PPDM e

D, we want to jointly recover the waypoints R

V

, the wall normals in a column-unitary
matrix N

V

and the distances of the walls from the origin q

V

, such that

R

V

,N

V

, q

V

= argmin
R,N ,q

�

� e

D �W � �1q> �R

>
N

�

�

�

2

. (3.9)

A binary mask W = [wnk]
N,K
n,k=1

2 RN⇥K indicates the known entries of a PPDM by 1, so the

noisy and incomplete eD is defined as eD = W � (D + Z), where the entries of Z 2 RN⇥K are
independent noise realizations and � is the Hadamard product.

Even thought the algorithm from the previous section always provides complete PPDMs eD,
we do not want to restrict a solution to Problem 3.2 to work with complete matrices only. As
a matter of fact, we study an identical optimization formulation (3.9) in our previous work [90],
which arose from a distinct problem where the missing measurements are common—the problem
of localizing a set of microphones together with a set of external acoustic events, emitted at
unknown times and unknown locations. Therefore, to broaden the range of PPDM applications,
we develop a general solution to PPDM factorization in the presence of missing entries and noise.

Similarly, the algorithm from the previous section does not only compute PPDMs, but it
also provides estimates of walls for a given estimate of a trajectory. To keep the solution to
Problem 3.2 general, we develop an iterative algorithm that can factorize PPDMs in both cases
of known and unknown initial estimates of the walls and trajectories. When the estimates are
known, we can leverage that information by initializing the algorithm with N

V

and eR; otherwise,
we initialize the matrices randomly.

Problem 3.2 can be abstracted as the recovery of the point coordinates from a subset of their
orthogonal projections on unknown lines or planes. A particular instance of this abstraction is
when the planes pass through the origin; this is equivalent to setting q = 0 in (3.1):

D = �R

>
N . (3.10)

It has been shown that (3.1) can be reduced to (3.10) at the expense of losing one measure-
ment [101, 167]. Indeed, one can easily eliminate 1q> by choosing an arbitrary waypoint rm to
be the origin, rm = 0, and by subtracting the mth row of eD from all rows in e

D:

dmk = dist(rm,Pk) = qk � r

>
mnk = qk.

Then,

D � 1q> = �R

>
N =

2

6

6

6

6

6

6

6

6

6

4

d

11

� dm1

d

12

� dm2

. . . d

1K � dmK

...
...

. . .
...

0 0 . . . 0
...

...
. . .

...

dN1

� dm1

dN2

� dm2

. . . dNK � dmK

3

7

7

7

7

7

7

7

7

7

5

, (3.11)
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where the mth column of R is 0. Therefore, after fixing rm = 0 and the substraction (3.11),
we can remove a zero-row from D� 1q> and factorize it to jointly recover the remaining N � 1
waypoints inR and theK wall normals inN . There are a number of techniques for solving (3.10).
One way is to compute the singular value decomposition (SVD) e

D = U⌃V > and perform
the gradient descent algorithm to find the matrix C 2 RD⇥D such that R

V

= U⌃C�1 and
N

V

= CV

>, where D denotes the dimension of the space [167]; this ensures that the columns of
N

V

are unit-norm. The main limitation of SVD-based methods is that they require the complete
measurement matrix e

D.
When e

D is incomplete, but contains at least one complete row, the algorithm proposed by
Kuang et al. [101] can be used to jointly estimate R

V

and N

V

. The challenge of missing data
becomes apparent when the distances of walls from the origin q

V

have to be estimated jointly
with R

V

and N

V

, which is the case when no rows of eD contain all elements. As the existing
solutions cannot deal with that case, we provide an algorithm to resolve it.

In our previous work [90], we studied such an optimization problem and proposed to consider
pairwise di↵erences between the rows of D to eliminate the dependence of measurements on q.
We construct the measurement tensor S 2 RN⇥N⇥K with relative distances snmk = dnk � dmk.
When the measurements eD are incomplete and corrupted with noise, we obtain an incomplete
and noisy tensor as well, denoted eS, where esnmk = ⌫nmk(ednk � edmk). The element ⌫nmk is equal
to 1 when both distances ednk and edmk are measured, and 0 otherwise. It can be expressed as
the product of the two corresponding elements of the mask W , ⌫nmk = wnkwmk.

By observing the pairwise di↵erences eS, we eliminate q and reformulate (3.9) as

R

V

,N

V

=argmin
R,N

K
X

k=1

N
X

n,m=1

�

esnmk � ⌫nmkn
>
k ⇢nm

�

2

(3.12)

s.t. knkk2 = 1,

where ⇢nm = rn � rm.

3.4.2 Proposed method in 2D

For simplicity, we first analyze the 2D case; the generalization to 3D is detailed in Section 3.4.3.
The cost function defined in (3.12) is non-convex with many local minima. We can however find
the global minimizer of (3.12) over N for fixed R, and analogously, the optimal solution of R
for fixed N . Therefore, we propose to alternate between estimates R

V

and N

V

, where at each step
R

V

and N

V

are optimized separately keeping the other one fixed.
Recall that the matrix N in 2D, defined in (2.11), is uniquely determined by the angles

{'k}Kk=1

, and vice versa, from N we can unambiguously compute {'k}Kk=1

. To derive the

optimal R
V

for fixed N

V

, we take the first derivative of the cost function in (3.12) with respect
to x and y coordinate of rn, and set the resulting equations to 0. We use � to represent the
flattened matrix R

V

, � = [r
V

1,x, . . . , r
V

N,x, r
V

1,y, . . . , r
V

N,y]. The system of equations is then written
as

"

M

xx
M

xy

M

xy
M

yy

#

� =

"

p

x

p

y

#

or M� = p, (3.13)
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Algorithm 3.2 Proposed room reconstruction algorithm.

Input: Incomplete noisy measurement matrix e

D, mask matrix W , convergence criterion ✏.
Optional: initial matrices R0 and '

0.
Output: R

V

and N

V

that minimize (3.12).
Let ⌫nmk = wnkwmk.
Let esnmk = (ednk � e

dmk)⌫nmk.
If R0 and '

0 not provided, randomly initialize R

0 and '

0.

Repeat for each iteration i until kS
Vi � S

Vi�1k2F < ✏:

Step 1. For fixed '

Vi�1, find R

Vi
by solving the linear system (3.13).

Step 2. For fixed R

Vi
, find '

Vi by solving (3.14).
Step 3. s

Vi
nmk = ⌫nmk

�

⇢

Vi
nm,x cos'

Vi
k + ⇢

Vi
nm,y sin'

Vi
k

�

.

return R

V

, '
V

where the entries of M⇤⇤ 2 RN⇥N and p

⇤ 2 RN are given as:

M

xx
nm =

(

PK
k=1

PN
m=1

⌫nmk cos2 'k if n = m

�PK
k=1

⌫nmk cos2 'k, otherwise
,

M

yy
nm =

(

PK
k=1

PN
m=1

⌫nmk sin
2

'k if n = m

�PK
k=1

⌫nmk sin
2

'k otherwise
,

M

xy
nm = M

yx
mn =

(

PK
k=1

PN
m=1

⌫nmk cos'k sin'k if n = m

�PK
k=1

⌫nmk cos'k sin'k otherwise
,

p

x
n =

K
X

k=1

N
X

m=1

esnmk⌫nmk cos'k,

p

y
n =

K
X

k=1

N
X

m=1

esnmk⌫nmk sin'k.

Therefore, by solving the linear system in (3.13), we can recover R
V

.
The second step of the algorithm estimates N

V

for fixed R

V

by following the same idea as in
the first step. The problem decouples over k, so we can solve it for every k separately. We set
the first derivatives of the cost function in (3.12) with respect to 'k to 0:

sin'k

N
X

n,m=1

esnmk⇢nm,x � 1

2
sin 2'k

N
X

n,m=1

⌫nmk(⇢
2

nm,x � ⇢

2

nm,y)

� cos'k

N
X

n,m=1

esnmk ⇢nm,y + cos 2'k

N
X

n,m=1

⌫nmk⇢nm,x⇢nm,y = 0, (3.14)

where ⇢nm = [⇢nm,x, ⇢nm,y]>. By replacing trigonometric functions with complex exponentials
and substituting bk = e

j'
k , we obtain quartic polynomials in bk. To find the global solution, we

evaluate the cost function for all four roots and choose bk that yields the smallest value.
We iteratively alternate between these two steps and refine our estimates of N

V

and R

V

. This
procedure is summarized in Algorithm 3.2. We use superscript i to denote the values of the
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estimates at iteration i. The algorithm stops when kS
Vi � S

Vi�1k2F falls below some threshold ✏.

After having recovered R

V

and N

V

, we estimate q

V

by solving

q

V

= argmin
q

�

� e

D �W � �1q> �R

V>
N

V

�

�

�

2

,

using the weighted least square method.
The proposed algorithm is an instance of more general alternating optimization problems,

where the variables are partitioned in two subsets and the optimal solution is estimated for
each subset separately at every iteration. Such algorithms are ubiquitous and their properties
are well-studied [15, 67]. It was shown that this class of algorithms is locally, Q-linearly (i.e.,
quotient-linearly) convergent to some value x⇤, which means that there exists r 2 (0, 1) such that
|x

k+1�x⇤|
|x

k

�x⇤|  r for all k su�ciently large [16]. Note that this does not imply a global convergence
of the algorithm.

3.4.3 Generalization to 3D

The generalization to 3D is straightforward; the most significant modification takes place in step
2 of Algorithm 3.2. To ensure that the columns of N have unit norms, we represent them in
spherical coordinates as in (2.12).

Step 1 of Algorithm 3.2 is adjusted by fixing both vectors ' = ['
1

, . . . ,'K ] and ✓ =
[✓

1

, . . . , ✓K ]. Then, the minimization over R is formalized as in (3.13), with M having an
additional column and row. Their values can be computed analogously to the 2D case by replac-
ing the polar coordinates in N with the spherical coordinates. Step 2 however becomes slightly
more complicated, as we need to take derivatives over two angles, 'k and ✓k. We perform a
similar substitution as in the 2D case, but instead of obtaining one quatric equation, we get
two bivariate polynomials of degree 8. To find the roots, we use the Broyden’s first Jacobian
approximation [172].

3.5 Numerical simulations and the performance evaluation

In this section, we numerically evaluate and quantify the performance of Algorithm 3.2 by using
the root mean squared error (RMSE) with respect to: 1) the noiseless measurement matrix D,
2) the ground truth waypoints R, and 3) the ground truth corners of a room. The RMSE(D)
quantifies the consistency of the algorithms and it is computed as:

RMSE(D) =

s

PN
n=1

PK
k=1

�

d

V

nk � dnk

�

2

NK

.

The RMSE of the waypoints and the corners of a room determine the capacity to accurately
estimate the trajectories and room geometries, which is typically the goal. After the reconstruc-
tion algorithm, we first perform a Procrustes transformation to align the recovered points with
the ground truth, and then find the error as:

RMSE(R) =

s

PN
n=1

krVn � rnk2
N

.
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Figure 3.7: a) Comparison of the proposed method with the SVD-based approach and the
alternating optimization for di↵erent values of input SNR and a complete PPDM. b) Likelihood
of the algorithms to work for an randomly created maskW with a given number of measurements.
Each experiment is an average of 1000 realizations.

Our experiments are conducted for three di↵erent configurations of missing entries in D: 1) D
is complete, 2) there are missing entries, but at least one row of D is complete, 3) there are
missing entries and no complete rows.

In Section 3.5.1 and Section 3.5.2 we examine the performance of our algorithm against
the most relevant existing methods for the first two cases. We perform numerical simulations on
randomly generated setups: the matrix N can be any projection matrix with unit-norm columns,
while R and q are unconstrained. The goal of Section 3.5.3 is to apply the proposed algorithm
to the joint estimation of rooms and trajectories, and illustrate the accuracy of our algorithm
for di↵erent noise levels.

3.5.1 Complete matrices

We first turn to the complete case and compare our algorithm with the SVD-based estimator
proposed by Thrun [167], and the alternating optimization (AO) algorithm by Kuang et al. [101].
The SVD-based algorithm only handles this case, while the AO method can work in the presence
of missing entries but with at least one complete row.

As mentioned in Section 3.4.2, the proposed algorithm, as well as the two above-mentioned
solutions, does not always converge to a global minimum. Besides, the estimates obtained by AO
and the proposed algorithm depend on the initial values of R and '. As the convergence of both
methods is within a few steps (in the order of milliseconds for about 30 measurements), we can
a↵ord to repeat the estimation several times with di↵erent initializations to avoid local minima.
In the experiment below, we run the iterative algorithms ten times and keep the solution with
the lowest cost. We empirically observed that AO has a stronger tendency than our algorithm
to get trapped in local minima.

We assume to have N = 6 points and K = 5 lines in 2D. The measurement matrix D is
corrupted with Gaussian noise such that the input signal-to-noise ratio (SNR) ranges from 0 to
36 dB. The dependency of the RMSE(D) on the input SNR is shown in Fig. 3.7a. Our algorithm
outperforms both the SVD-based approach and AO, even though the SVD-based approach was
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Figure 3.8: Performance of the proposed method and the alternating optimization for di↵erent
input SNR and number of missing entries. Reported errors are averaged over 300 realizations.
The proposed algorithm achieves lower RMSE(D) and RMSE(R) for all combinations of input
SNR and missing entries.

tailored exclusively for complete matrices.

3.5.2 Missing entries

Number of entries. Next, we compare the algorithms when some entries are missing. For
a successful reconstruction, the arrangement of the measurements in e

D has to satisfy several
conditions. As previously mentioned, AO needs a complete row, while our di↵erence-based
algorithm does not work with less than two entries per column. Moreover, both algorithms
require a connected e

D. We say that a matrix is connected when there exists a path between any
two entries ednk and edml, such that every entry in the path shares a common column or a row
with the previous entry. More precisely, AO requires a connected matrix obtained from e

D after
removing its complete row.

For a given number of measurements M , we repeatedly create random masks W with M

non-zero entries and verify whether the matrices eD satisfy the above conditions. This gives
us an estimate of the likelihood for the algorithms to work with M entries, as illustrated in
Fig. 3.7b. In addition, we observe that the smallest possible M for our algorithm is 2K when
N  K +1 and K +N � 1 otherwise, or equivalently, at least two entries per column. Similarly,
the threshold for AO is 2K +N � 2, since with less measurements it is impossible to construct
a connected matrix after removing a complete row from e

D. These thresholds separate success
from failure modes for our algorithm and AO, as indicated in Fig. 3.7b.
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Figure 3.9: Dependence of the reconstruction errors on the noise level �d added to the entries
of a PPDM. The configurations consist of N = 6 waypoints and K = 4 or K = 6 walls in 2D
and 3D, respectively. For each �d, we ran 5000 experiments.

Performance comparison. In Fig. 3.8, we compare the performance of the two algorithms
for varying levels of noise and number of measurements. Again, our method achieves lower
RMSE(D) and RMSE(R) for all combinations of input SNR and missing entries. Fig. 3.8a also
suggests that the reconstruction is stable and the RMSE(D) increases with the amount of noise
in the same manner as in Fig. 3.7. Interestingly, we notice that the RMSE(D) values are not
a↵ected by the number of missing entries; indeed, they remain fairly constant along the x-axis.
This is not the case for the RMSE(R), which grows significantly as the number of measurements
decreases. In other words, even though it is always possible to find a low-rank matrix D

V

that
is consistent with the observed measurements, it is not guaranteed that its factorization is close
in any way to the original point configuration; this is especially true as e

D becomes sparser.
Moreover, we observe that both algorithms can sometimes yield an estimate that is far from
the original points, causing outliers in RMSE(R). In Fig. 3.8b we discarded the experiments
resulting in an RMSE(R) larger than a certain threshold value ⇣.

The success of the reconstruction is depicted by transparency, where a high failure rate
translates to a more transparent value. In Fig. 3.8a, the reconstruction is considered successful
when e

D is connected, as explained earlier and depicted in Fig. 3.7b. To assess the success in
Fig. 3.8b, we also take into account the percentage of outliers (errors larger than ⇣). We observe
that our approach surpasses AO with respect to RMSE(D) and RMSE(R) both in performance
and the amount of missing entries.

3.5.3 Room reconstruction and trajectory estimation

To evaluate and illustrate the e↵ect of noise on the success of the room reconstruction, we
performed a number of numerical simulations in 2D and 3D. We assume N = 6 waypoints and
K = 4 walls in 2D, and N = 6 waypoints and K = 6 walls in 3D. To increase the probability
that K walls enclose a convex polyhedral room, instead of generating arbitrary planes, we set-up
the experiment in the following way: we construct a rectangle in 2D and a rectangular prism
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Figure 3.10: Several realizations of reconstructed rooms and waypoints for di↵erent levels of
noise �d in meters. The walls of the original room are depicted in black, and the ground truth
waypoints have black strokes. The walls of the reconstructed rooms are transparent blue, while
the reconstructed waypoints are transparent. Top: A 2D trapezoidal room. Bottom: A 3D room
with the trapezoid floor plan (same dimensions as in 2D), and the walls perpendicular to the
floor and the ceiling.

(shoebox) in 3D, whose sizes reflect realistic environments (the area of a room is about 30 m2,
and the height is 2.6 m). We generate the waypoints inside the room uniformly at random. Then,
we perturb the wall normals and the locations of the waypoints to randomize each experiment
while preserving the requirement that one can hear all first-order echoes at every waypoint, i.e.,
that the room is convex.

We compute the PPDM of every generated room-trajectory configuration and corrupt its ele-
ments with i.i.d. Gaussian noise N (0,�2

d). In Fig. 3.9 we show the dependence of the algorithm’s
performance on �d, where �d ranges from 0 to 10 cm.

In Fig. 3.10, we visualize reconstruction errors for fixed room-trajectory configurations in
2D and 3D. To replicate the environment in which we conduct real experiments, we assume
that the walls are perpendicular to the floor and the ceiling. Moreover, the floor plan has a
shape of a trapezoid identical to the 2D case, and the height of the room is 2.6 m. This room
belongs to a class of rooms found in Section 2.5.5, so it is not uniquely specified by the distance
measurements. To solve the ambiguity, we consider that all the waypoints have the same z-
coordinate, that is, the height of the device does not change along the trajectory. Fig. 3.10
illustrates several realizations of reconstructed rooms and waypoints for di↵erent noise levels �d.
As a reference, we also indicate dimensions of the room and plot the original (noiseless) setup.

3.6 Real experiments

We validate Algorithm 3.1 and Algorithm 3.2 experimentally in a classroom on our campus.
In the following, we introduce the setup, describe the acquisition of ground truth data and
demonstrate the performance of our algorithms on real room impulse responses.
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Figure 3.11: Illustration of the rooms and trajectories from the real experiments. Numbers
n = 1, 2, 3, . . . inside each room index the order of the waypoints rn.

3.6.1 Setup

We conducted experiments in two rooms, depicted in Fig. 3.11a and Fig. 3.11b. Room 1 was
rectangular. The wall denoted by A is a drywall, the wall C is covered with a whiteboard, while
the walls B and D are made of glass. Room 2 was trapezoidal: we built a wall across room 1
made of classroom desks to replace wall D.

In both cases, we used a small cylindrical wireless speaker Veho 360 for room response mea-
surements. Its height is 6.5 cm and a diameter is 5.5 cm. The room responses were recorded with
an omnidirectional microphone located just above the loudspeaker. Such a collocated setup was
placed roughly at half of the room height, so that the first order echoes from the floor and the
ceiling overlapped. In order to measure high quality RIRs, we calibrated the setup in an anechoic
chamber by using the same (nearly) collocated setup and by playing the same exponential sine
sweep as in the room. This response was then used to recover the room impulse responses by
deconvolving it from the signals recorded in the room. We applied the deconvolution algorithm
developed by Scheibler et al. [151].

The Veho 360 has dual drivers facing opposite directions. To simulate a desired omnidi-
rectional behaviour, at each waypoint we measured the room response twice: we played an
exponential sine sweep 10 s long with frequencies ranging from 1 Hz to 24 kHz and a sampling
frequency of fs = 48 kHz, and repeated the measurement at the same location after rotating the
loudspeaker by 90�. We summed up the recordings from both orientations in order to discard
the directivity information.

3.6.2 Ground truth measurement

To obtain reliable ground truth data, we placed two reference points on each wall and used a
laser distance meter to measure pairwise distances between all waypoints R and eight reference
points gi 2 R2, G = {g

1

, g

2

, . . . , g

8

}. We also measured distances between the reference points
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Figure 3.12: Measured RIRs. Information about the propagation times of the first-order echoes
is present and accurate in the recorded RIRs, but it is available only after resolving the echo
detection and echo labeling problems. a) Recorded RIRs at N = 22 locations in the trapezoidal
room. b) Expected propagation times of the first-order echoes computed from the ground truth
measurements of the trajectory and the room. In a) we colored the first-order echoes, i.e., the
peaks whose propagation times are the closest to the ground truth data from b), and we used
the same colors to match the echoes and the walls. Observe that in every recording we can find
a peak in a very small neighborhood of the given ground truth propagation time.

and the two closest walls, which enabled us to estimate the geometry of a room and find initial
locations of the reference points G. The initial guess for the ground truth waypoints R was
computed by trilateration: with three randomly selected reference points as anchors and the
measured distances between these reference points and rn, for every n.

To improve the initial estimates, we used an alternating coordinate descent method proposed
by Dokmanic et al. [48]. It minimizes the well-known s-stress cost function [164], i.e., it aims to
find the estimates of the points R and G, such that their squared distances best match a set of
squared measured distances. Since our trilateration algorithm produces a good approximation
of R and G, the alternating coordinate descent converges fast.

3.6.3 Results

We tested the proposed algorithms in the rectangular and trapezoidal rooms from Fig. 3.11. To
provide insight into their performance, we illustrate step-by-step the intermediate results for the
trapezoidal room.
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Figure 3.13: The gray signals are obtained from RIRs by removing the reflection from the
floor and ceiling, and by extracting the 30 most prominent peaks. Their propagation times are
given in ⌧n and they are input to Algorithm 3.1, which detects the first-order echoes, estimates
their propagation times {e⌧n}Nn=1

, and labels them with the corresponding walls. The first-order
echoes are marked with ⇥, while their association to di↵erent walls is shown in di↵erent colors.
The ground truth propagation times are indicated by colored dots.

Fig. 3.12a shows the room impulse responses measured at N = 22 waypoints. RIRs are
depicted in black, while the colored peaks pinpoint the first-order echoes. In every recording
we can find all peaks that correspond to the first-order echoes, but in some, the peaks are far
and their amplitudes are low (e.g. reflections from the wall C from the step n = 8 to n = 12).
Propagation times of the first-order echoes computed from the ground truth measurements are
shown in Fig. 3.12b. These ground truth values coincide well with the recordings; hence, with
robust echo detection and echo labeling algorithms we can transform RIRs into point-to-plane
distances that are close to the noiseless, ground truth values.

Noiseless trajectory. The result of applying Algorithm 3.1 on the real measurements of RIRs
with R being equal to the ground truth trajectory is visualized in Fig. 3.13. The gray signals
are the outcome of the processing methods in Section 3.3.1 and Section 3.3.2; they consist of the
most prominent peaks extracted from the measured RIRs. The colored dots identify the ground
truth propagation times from Fig. 3.12b, while the propagation times {e⌧n}Nn=1

of the detected
first-order echoes computed by (3.7) are marked with ⇥. Same colors of the peaks at di↵erent
waypoints link echoes from the same walls. We can observe that the estimated propagation times
are well aligned with the ground truth data, while the labeling is exact.

In Fig 3.14a we plot the output of Algorithm 3.1. The four angles for which the error is the
smallest almost perfectly overlap with the ground truth angles of the walls; the average error is
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Figure 3.14: Output of Algorithm 3.1 for the a) noiseless and b) noisy estimate of R. The
ground truth angles of the wall normals are indicated with dashed lines. The angles for which the
error is among the four smallest local minima are marked with ⇥. a) The output of Algorithm 3.1
for a noiseless trajectory R and discrete angles '̄` = ⌦s`, with ⌦s = 0.18� and ` = 1, . . . , 2000.
The `2-norm of the error between the ground truth and the estimated angles is 0.756�, i.e., 0.189�

per angle. b) The average of the errors estimated by Algorithm 3.1 for 0.2P trajectories with
the smallest ke[p]k among all P trajectories. The `2-norm of the error between the estimated
and the true angles is 1.651�, i.e., 0.413� per angle.
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Figure 3.15: Reconstruction of the room-trajectory configuration from the real measurements.
The rooms with black walls indicate the ground truth, while the blue walls and waypoints
represent the estimates. The blue dotted lines depict the trajectory.
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0.189� per angle.
We used Algorithm 3.2 to further refine the reconstruction of the room, but instead of ran-

domly initializing waypoints and walls, we set R

0 = R and '

0 = '

V

. Moreover, after every

iteration i, we ensured that the estimate of the trajectory R

Vi
does not diverge from the ground

truth trajectory by setting R

Vi
= R. Fig. 3.15 illustrates the final estimates of the two rooms.

The average distances between two waypoints are 46.85 cm and 44.44 cm in the rectangular and
trapezoidal room, respectively. We observe that the estimation errors of both rooms are within
a few centimeters: in the rectangular room, the RMSE of the room’s corners is 5.9 cm, while in
the trapezoidal room, it is 2.5 cm.

Noisy estimate of the trajectory. Finally, we illustrate the application of the extended Al-
gorithm 3.1 for the noisy measurement of the trajectory. We used a tape and a protractor to
measure the distance and the angle between every two consecutive waypoints, from which we
computed noisy motion vectors {evn}Nn=2

. By fixing the first waypoint to the origin r

V

1

= 0,
we obtained the trajectory R

V

from r

V

n = r

V

n�1

+ evn. We assumed �v = 4 cm, since the value
is large enough to incorporate the noise of our measurement equipment. Next, we generated
P realizations eR[p] and used Algorithm 3.1 to find the corresponding errors, as described in
Section 3.3.3.2. In our experiment, we chose a = 0.2; from Fig. 3.14b, we can observe that
by averaging the errors of 0.2P trajectories with the smallest ke[p]k we get correct estimates of
the wall normals. Similarly to the noiseless case, the four smallest local minima almost perfectly
overlap with the true angles. The `2-norm of the error between the estimated and the true angles
is 1.65126�, i.e., 0.4128� per angle.

3.6.4 Discussion

Our experiments show that the proposed algorithms precisely reconstruct room geometries and
trajectories when we can detect all first-order echoes in all room impulse responses. Here we
discuss two drawbacks to the proposed idea. They have no e↵ect on the algorithm when the
measurements are noiseless, but can become critical when the amount of noise or the dimensions
of a room exceed a certain threshold.

Disadvantage of the sequential approach. One problematic situation for our sequential ap-
proach is already exposed in Observation 3.5. A large level of noise on the trajectory can
contribute to misclassification of some second-order echoes as first-order echoes. The iterative
algorithm in the second step does not handle outliers; it jointly minimizes over K walls of a room.
If the peaks associated to one wall do not correspond to its first-order echoes, the reconstructed
room will not have a correct shape even for the remaining K�1 walls. Therefore, the error from
the first step propagates through the next steps of the algorithm without any chance of being
detected and fixed.

Missing echoes. In the measured RIRs it is common that some echoes have the same propa-
gation times such that their peaks overlap, or that the robot is too far from the wall, so that the
amplitude of the echo falls below the noise threshold. The overlap of the echoes is not a problem
in the proposed approach since we can select the same peak to be a first-order echo several times
and assign it to multiple walls. On the contrary, even though Algorithm 3.2 can handle missing
entries, Algorithm 3.1 and its extended version cannot; in every RIR they identify peaks that are
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the closest to the first-order echoes of a given trajectory. As such, they always provide a complete
set of propagation times {e⌧n}Nn=1

of the detected first-order echoes for every '̄`, ` = 1, . . . , L.
These weaknesses of the algorithm motivate us to approach the problem from a probabilistic
perspective in Chapter 4 and gradually build a room after every new RIR measurement.

3.7 Conclusion

In this chapter, we addressed the practical SLAM problem that motivated the study of point-to-
plane distance matrices in the previous chapter. As earlier, we assumed a mobile device equipped
with a single omnidirectional loudspeaker and a single omnidirectional microphone that measures
room impulse responses at several locations inside a room, and tries to recover the unknown room
geometry, as well as to localize itself inside of it.

We proposed an end-to-end pipeline of algorithms that solves the room reconstruction prob-
lem from a few measurements of room impulse responses obtained by a mobile device in real
environments. Point-to-plane distances play an important role in the intermediate step of the
pipeline, which has two main stages: 1) algorithms that receive room impulse responses as in-
put, process them, measure the propagation times of the detected and labeled first-order echoes,
and output an incomplete and noisy PPDM, and 2) an iterative algorithm for low-rank matrix
factorization, which receives a PPDM as an input and outputs the reconstructed room geometry
along with the trajectory of the device.

We showed through extensive numerical simulations that our iterative method in the second
stage of the pipeline outperforms existing solutions, while at the same time allowing a larger
number of missing entries in the measurement matrices. To show the robustness and reliability
of the first part of the pipeline, we undertook real experiments in two distinct rooms. We
demonstrated that the algorithms accurately reconstruct the rooms and trajectories, even in the
presence of noise and unlabeled data.
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3.A Summary of the MUSIC algorithm

The variant of the MUSIC algorithm [114] that we used to detect the K most prominent peaks
in a RIR requires building a Toeplitz matrix from the discrete Fourier Transform F [m] of the
RIR f [`]:

F [m] =
L
X

`=0

f [`]e�
2⇡j

L

m`
.

The columns of the Toeplitz matrix are constructed by translating the data samples {F [m]} as:

T =
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F [K] F [K � 1] . . . F [0]
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where H denotes a conjugate transpose of the matrix. We next compute the singular value
decomposition (SVD) of T to separate the components relative to the K largest singular values
from the others:

T = Us⌃sV
>
s +Un⌃nV

>
n ,

where the subscript s indicates that the range space of Us is the signal space, while the subscript

n indicates that the range space of Un is the noise space. The orthogonal projector onto the
noise subspace is constructed as Pn = UnU

>
n .

Finally, we find the desired importance factor ↵(t) of all arrival times t 2 [0, 2⇡
�

!

] from:

↵(t) =
1

kPne
j!tk ,

where ! is a vector with K consecutive frequencies on a grid of spacing �!. The locations of the
K values of ↵(t) with the largest magnitude correspond to the locations of the K most prominent
peaks in the RIR f [`].



Chapter 4

EchoSLAM: Simultaneous
Localization and Mapping with
Acoustic Echoes*

In theory, there is no di↵erence between theory and practice.

But in practice, there is.

remark overheard at a computer science conference

Jan L. A. van de Snepscheut

*The material in this chapter is the result of joint work of the author (MK) with Yassine Ahaggach (YA).
Author contributions: MK designed research, devised and implemented all algorithms, performed numerical
simulations, and wrote the chapter. MK created all figures except Fig. 4.12b, which was created by YA. Sections 4.3
and 4.4 are written based on [94], which was written by MK. Section 4.7.1 is written based on [1], which was
written by YA. YA designed and built the robot, and assisted MK with real experiments.
The author would like to thank Gilles Baechler for his detailed and valuable comments on earlier versions of this
chapter. His advice and thoroughness significantly contributed to the chapter, and thanks to his sharp eye many
“the”s got converted to “a”s, and many “a”s mysteriously disappeared from where they should not have been in
the first place.
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4.1 Introduction

In this chapter we formulate a probabilistic approach to joint reconstruction of rooms and trajec-
tories from room impulse responses (RIRs) recorded by a robot equipped with a single omnidirec-
tional source and receiver. We name the proposed algorithm EchoSLAM. In comparison with the
two-step method from the previous chapter, this new approach o↵ers a more robust solution as
it relies only on the first-order echo from the nearest wall at every waypoint. Another important
distinction from the previous method concerns the estimates of trajectories. In Chapter 3, we
use this information only in the first step of the algorithm to discriminate the first-order echoes
from other peaks in a RIR and to label them with the correct walls. In the new approach, we
jointly update the belief of the trajectory and the positions of the walls.

4.1.1 Related work

Di↵erent flavors of simultaneous localization and mapping (SLAM) involve di↵erent sensing
modalities, but our interest is primarily SLAM from reflections of sound or radio waves from
walls, as well as solutions based on multiple sensor modalities [30, 55, 104, 125]. The existing
literature can be broadly categorized into three groups.

In the first group, a mobile robot is equipped with a microphone array or multimodal sensors,
and it aims to localize multiple interfering sound sources inside a reverberant environment [57,
58, 77, 87, 139]. These methods often require high-end equipment [55] or precise calibration of
microphone positions in the array, sometimes combined with beamforming techniques [87, 139].

The second group involves more recent works that rely on simpler mobile devices equipped
with either a source or a receiver [45, 85, 86, 107, 109, 112, 123]. To recover rooms, the devices
leverage multipath wave propagation from static anchors, and the fact that the echoes correspond
to range measurements from virtual anchors. Combined with Bayesian techniques, such as belief
propagation that jointly performs data association and estimates the state of the mobile agent
and the environment, this leads to robust SLAM [107]. Beyond timing, valuable information
is contained in the amplitude statistics of the multipath components [108]. Shih et al. present
a setup in which the mobile agent is a commodity smartphone acting as a receiver, while the
source is fixed at an unknown location; their approach handles unlabeled, missing and spurious
echoes in realistic environments [158]. However, in very large spaces the number of missing
echoes exceeds the operational capabilities of the method. Another notable drawback is that the
reconstruction accuracy depends not only on the receiver’s trajectory, but also on the position
of the static anchors.

The third group, which we address here, comprises setups with no fixed beacons inside rooms,
and a mobile robot capable of only rudimentary sensing (equipped with a source and one or two
receivers). This group has received the least attention even though it is appealing from a cost
and technological perspective. It has been shown that the distances between the smartphone and
the nearby walls revealed from the short-range scans by a sound source and two microphones
on a smartphone can be used to reconstruct the geometry of walls [143, 181]. However, the
method proposed by Zhou et al. requires the user to walk a full loop closely to the walls, hold
a smartphone in a specific position and perform a particular measurement gesture that is prone
to error [181]. The system presented by Pradhan et al. resolves these drawbacks and achieves
much smaller reconstruction error [143]. In both papers however, the algorithms build the map
of the room based on the estimated user’s locations without correcting them. As the locations
are estimated by dead-reckoning, they are not exact and the error propagates to the next steps.
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Moreover, the microphones of a smartphone are directional, so the algorithms require information
about the phone’s orientation at every measurement. Steckel et al. [162] and Schouten et al. [155]
present a low-cost radar sensor (a biomimetic sonar) with one emitter and two receivers that
relies on the echolocation-related transfer function (ERTF) to realize a robotic platform capable
of autonomous navigation through an unknown environment. Schouten et al. propose an ERTF
that combines the radiation pattern of the emitter and the directivity pattern of the receiver to
derive the arrival directions of echoes [155]. Combined with the estimated distances to reflectors,
the system can precisely reconstruct 3D rooms and localize the robot. This is unlike our proposed
algorithm, in which we assume to have one emitter and one receiver, and where omnidirectionality
precludes any a priori knowledge about the angles of arrival of echoes. On the one hand, this
renders the problem harder, but on the other hand, the solution is of lower cost.

4.1.2 Main contributions

In this chapter we present the EchoSLAM algorithm that overcomes many limitations of the
abovementioned methods. In particular,

• it only assumes a minimal and low-cost sensing equipment: one omnidirectional microphone
and one omnidirectional speaker mounted on a robot,

• it does not require static speakers or anchors,

• it does not pose constraints on room geometries,

• it does not require the number of walls to be known,

• it does not expect a complete set of first- or higher-order echoes in RIRs; it relies only on
one (the first) echo from every RIR,

• it jointly updates estimated locations of the robot and estimated geometry of a room with
every new measurement,

• it provides an e�cient and robust labeling algorithm,

• it achieves almost real-time execution time.

4.1.3 Outline

To lay down the main ideas of EchoSLAM, we build up gradually from a simpler model. We
first assume that the measurements are not corrupted by noise and we propose a deterministic
solution based on elementary trigonometry in Section 4.3. The underlying idea is that every wall
is tangent to the circles with centers in the waypoints and radii being equal to the propagation
times of the first-order echoes scaled by one-half of the speed of sound. Given the waypoints
and first-order echoes, finding the positions of the walls is therefore straightforward; to localize
a wall, we only need to find a common tangent to a given set of circles.

In Section 4.4 we generalize the problem setup by assuming a noisy trajectory, and we intro-
duce a simple probabilistic approach to estimate the walls. Its main benefit is that we can show
that the algorithm converges to the correct solution when the robot explores the space randomly.

In real-world scenarios, however, we do not have noiseless information about the robot’s
waypoints, nor do we have the noiseless measurements of the first-order echoes. To address
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wall

Figure 4.1: Setup with collocated loudspeaker and microphone mounted on a robot. Distances
from the wall are denoted by �n and shown in purple, while the motion vectors vn are in blue.
The position of the wall k is unique assuming noiseless measurements and nonlinear trajectories.

these challenges, we explicitly model the noise in the measured RIRs and the robot’s motion
in Section 4.5. Inspired by FastSLAM [127], we use a particle filter approach to represent the
posterior over the robot’s waypoints and room geometry. We empirically observe that this more
sophisticated algorithm works well in the presence of noise. To demonstrate its accuracy and
e�ciency in real environments, we test the algorithm on a modular three-wheel robot of our own
production and confirm the excellent performance of the algorithm.

4.2 Problem setup

As in the previous chapters, we have a robot with a collocated microphone and loudspeaker that
explores a room along a trajectory following a set of waypoints r

1

, r

2

, . . . , rN . At every waypoint
rn, we measure a room impulse response from which we can extract the first peak that appears
after the direct sound. Its propagation time ⌧n corresponds to the round-trip time of the signal
produced by the loudspeaker, reflected from the nearest wall, and registered by the microphone.
From ⌧n, we compute the distance between the waypoint and its nearest wall, �n = cs⌧n/2.
Given a point-to-plane distance matrix D from (2.4), we can define �n as:

�n = min
k2{1,...,K}

Dnk for every n = 1, . . . , N.

In addition to �n, we assume that we can also measure the robot motion vectors, vn, at every n.
The case of collocated microphone and loudspeaker is illustrated in Fig. 4.1.

Since the source and the microphone are collocated, it is not possible to discriminate between
translated, rotated and reflected variants of the room about the robot. We resolve this ambiguity
by fixing the initial robot’s position r

1

at the origin and the orientation of the first step to 0.

4.2.1 Motion model

To compute the robot’s locations over time, we use the control input. For many real robots
(including our platform, see Section 4.7.1), this yields very accurate position estimates. The
control uses the relative motion information, which in our case consists of a rotation angle e�n
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and a translation e`n. We use a tilde (e· ) to distinguish between the ground truth motion of the
robot, vn(`n,�n), and our belief of its motion (i.e., input control commands), evn(e`n, e�n).

Given the robot’s position rn�1

and the control evn at step n � 1, we can predict the next
robot’s location rn,

rn = rn�1

+ e`n
h

cos e�n sin e�n

i>
,

where we assume that both parameters e`n and e�n are corrupted by independent Gaussian noise,

e

`n ⇠ N (`n,�
2

` ), e

�n ⇠ N (�n,�
2

�). (4.1)

4.2.2 Measurement model

The robot moves inside the room and acquires information about its environment by recording
the room impulse responses at di↵erent locations along its trajectory. From every recorded RIR,
we first remove the direct sound and echoes from the ceiling and the floor. Most of the rooms have
ceilings parallel to the floor and the height of the robot does not change, so the reflections from
the ceiling and the floor arrive with the same time delay in all RIRs, which makes their detection
and elimination easy. Then, we extract only the first peak; it corresponds to the first-order
echo from the nearest wall and reveals the distance of the robot from the nearest wall. Again,
as we use a single omnidirectional loudspeaker to play the sound and a single omnidirectional
microphone to record the RIR, it is not a priori possible to obtain any information about the
orientation of the wall from which the echo reflected.

We define a probabilistic measurement model for those range measurements based on exper-
imental results with a real robot. To incorporate the uncertainties of our omnidirectional sonar,
we model the measurements with a conditional probability distribution p(�n | rn,P), where rn

is the location of the robot and P = {Pk}Kk=1

is the set of walls. We assume that the measure-
ments have Gaussian distributions, �n ⇠ N (dnk,�2

� ), where the mean dnk is equal to the true
distance between rn and the nearest wall in P, and the standard deviation �� is constant for all
n = 1, . . . , N :

p(�n | rn,P) =
1

��

p
2⇡

exp

✓

� (�n � dnk)2

2�2

�

◆

. (4.2)

4.3 Deterministic case: noiseless motion, noiseless distances

We first assume that both the trajectory and the measured distances are noiseless. In other
words, e`n = `n, e�n = �n and �n = dnk, or, �` = �� = �� = 0.

We focus on the wall k of the room and explain how to localize it with reference to Fig. 4.1.
Without loss of generality, we assume that the wall k is the nearest wall for all selected waypoints
{rn}Nn=1

. Given the noiseless motion vectors, we calculate the robot’s position at any step n as
rn =

Pn
i=2

vi.

Proposition 4.1 We can uniquely determine the wall k from three noiseless measurements
obtained at non-collinear waypoints as a line passing through the points xnk:

xnk = rn +
�

2

n

kunkk2unk ± �n

pkunkk2 � �

2

n

kunkk2
"

0 1

�1 0

#

unk, (4.3)
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where

pk =
�

1

�

1

� �

2

r

2

� �

2

�

1

� �

2

r

1

is an intersection point of the outer tangents of two circles with centers r
1

and r

2

and radii �
1

and �
2

, and
unk = pk � rn.

Proof. The vector between the image source and the robot’s waypoint is given by

ynk = r

0
nk � rn = 2

⌦

pk � rn,nk

↵

nk

for all n. The direction of ynk is perpendicular to the wall and the length of ynk equals twice
the distance between the robot and the wall. The only line that satisfies both conditions for all
n is the common tangent of the circles with centroids at rn and radii �n given by (4.3). ⌅

As Fig. 4.1 shows, having only two measurements gives two solutions for the wall—there are
two common tangents of two circles such that the centroids are on the same side of the tangents.
They are shown as a black line and a dashed gray line in the figure. Assuming that the robot
does not move along a line, three measurements are su�cient to get a unique solution.

4.4 Probabilistic case: noisy motion, noiseless distances

Now, we slightly relax our assumption from the previous section and suppose that the distance
measurements are noiseless �� = 0, while the motion vectors between consecutive waypoints are
corrupted by Gaussian noise as in (4.1). We introduce a simple estimator to gain insight into
the wall localization problem.

We model the wall as a line with unknown slope tan ✓k and distance from the origin qk. As in
the previous section, we assume that the wall k is the closest to all selected waypoints {rn}Nn=1

.
As this includes r

1

= 0, the distance of the wall from the origin is known and equal to qk = �

1

.
In the procedure described below, we propose to estimate ✓k for every pair of consecutive

measurements �n�1

and �n, and the noisy motion vector evn(e`n, e�n). We can further refine this
estimate by simply averaging independent estimators after every robot’s step, which by the law
of large numbers converges to the true wall.

Proposition 4.2 Assume that `n = ` for every n. We define the estimator of ✓k for each
measurement n as:

✓̂

n
k = �n + arcsin

 

�n � �n�1

`

!

= �n + arcsin

 

e

`n sin(✓k � e�n)
`

!

,

and the final estimate of ✓k after N measurements as:

✓̂

1:N
k =

1

N

N
X

n=1

✓̂

n
k .
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Then, ✓̂1:Nk is unbiased when �n is uniformly distributed on the circle.

Proof. The ratio e`n/` is distributed as N (1,�2

`/`
2) for all n, while ✓k � e�n ⇠ N (✓k � �n,�

2

�).

Then, one can verify that the bias of ✓̂nk depends only on the parameter �n. Therefore, we rewrite
it as ✓̂nk = ✓k + f(�n), where f(·) is periodic with zero mean over the period. We observe that

E(✓̂1:Nk ) = E
⇣ 1

N

N
X

n=1

(✓k + f(�n)
⌘

= ✓k +
1

N

N
X

n=1

E(f(�n)),

and the uniform distribution of �n on the interval [0, 2⇡] provides that E(f(�n)) = 0 for every
n, so that E(✓̂1:Nk ) = ✓k. ⌅

The physical meaning is as follows: the estimator is positively biased if the robot walks
towards the wall E(✓̂1:Nk )� ✓k � 0, and negatively biased if the robot walks away from the wall
E(✓̂1:Nk )� ✓k  0. These biases cancel out for a robot that picks its direction at random. As we
assume that the robot performs a random walk, the values of �n are uniformly distributed on
the circle, and one can verify that the function has zero mean. Thus E(f(�n)) = 0. By the law
of the large numbers, the sequence of estimates ✓̂nk converges to the real value ✓k.

4.5 EchoSLAM: noisy motion, noisy distances

Now we consider realistic conditions in which the measurements of the robot’s positions and the
room impulse responses are noisy. We propose a probabilistic algorithm called EchoSLAM to
estimate the posterior of the trajectory and walls,

p({rn}Nn=1

,P | {�n}Nn=1

, {vn}Nn=2

),

given a sequence of motion vectors {vn}Nn=2

and the distance measurements {�n}Nn=1

.

4.5.1 Map: a probabilistic description of the walls

The map of the environment that we want to recover is a 2D room P defined as a set of K walls,
P = {P

1

,P
2

, . . . ,PK}. It belongs to the category of feature-based maps, where features are the
walls that we want to localize. Every wall Pk is a line uniquely determined by two parameters:
the angle of its incline ✓k 2 [�⇡/2,⇡/2), and the signed distance from the origin qk, where the
sign of qk indicates if the intercept of the line is positive or negative.

In our probabilistic approach, building the map of the environment requires to estimate the
probability of every wall defined with the tuple (✓k, qk) to generate the measurement �n for a

given rn. We denote the corresponding probability distribution by f

(n)
⇥

(✓k, qk).

To find f

(n)
⇥

(✓k, qk), let us use the Cartesian form of lines

y = tan ✓kx+ qk

p

1 + tan2 ✓k.
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The distance of the line from the origin is |qk|, while its distance from rn = [rn,x, rn,y]> is:

dnk = |sin ✓krn,x � cos ✓krn,y + qk| . (4.4)

By assuming the measurement model from Section 4.2.2, we can substitute the value of dnk

from (4.4) into (4.2), and obtain

f

(n)
⇥

(✓k, qk) =

⌘

��

p
2⇡

8

>

>

>

>

<

>

>

>

>

:

exp

 

�1

2�2
�

�

qk + sin ✓krn,x � cos ✓krn,y � �n

�

2

!

for sin ✓krn,x � cos ✓krn,y + qk � 0,

exp

 

�1

2�2
�

�

qk + sin ✓krn,x � cos ✓krn,y + �n

�

2

!

for sin ✓krn,x � cos ✓krn,y + qk < 0,

(4.5)
where ⌘ is a normalization factor.1

For the values of the noise level �� present in the real experiments, we can simplify the
computations by well-approximating (4.5) as:

f

(n)
⇥

(✓k, qk) =
⌘

��

p
2⇡

exp

 

��qk + sin ✓krn,x � cos ✓krn,y � �n

�

2

2�2

�

!

+

⌘

��

p
2⇡

exp

 

��qk + sin ✓krn,x � cos ✓krn,y � �n

�

2

2�2

�

!

.

Given the waypoint rn and the measurement �n, f
(n)
⇥

(✓k, qk) is a probability distribution of lines
to be the nearest wall to rn. The two terms in the sum (4.5) are due to positive and negative
arguments of the absolute value in (4.4).

Fig. 4.2 illustrates f

(n)
⇥

(✓k, qk) for two di↵erent waypoints rn. Clearly, when rn is in the
origin, the most likely walls are at the distance �n from the origin, qk = ±�n for any ✓k. For
rn = [2, 0]> the distance of the most likely walls from the origin is either

qk = � sin ✓krn,x + cos ✓krn,y + �n = �2 sin ✓k + 0.6 (the upper curve), or

qk = � sin ✓krn,x + cos ✓krn,y � �n = �2 sin ✓k � 0.6 (the lower curve).

In the noiseless case, these two equations represent the distance of the tangents to the circle with
center rn = [2, 0]> and radius �n = 0.6 from the origin. In the noisy case, the width of the curves
is proportional to the amount of the measurement noise.

To reconstruct the map, we need to compute f

(1:N)

⇥

(✓k, qk) = p(Pk | {ri}Ni=1

, {�i}Ni=1

), the
distribution of a wall k at step N given all past robot’s positions {ri}Ni=1

and measurements

{�i}Ni=1

. With the closed-form expression for f (n)
⇥

(✓k, qk), it is not hard to do this recursively: we

obtain f

(1:n)
⇥

(✓k, qk) from f

(1:n�1)

⇥

(✓k, qk) by incorporating a new measurement �n. The details
are given in Section 4.5.4.

4.5.2 Particle filter approach to SLAM

The idea of our algorithm comes from the work of Montemerlo et al. [127], in which they propose
to use particle filters to represent the posterior over robot’s locations and landmarks. Similarly,

1Throughout the chapter we reuse the same symbol ⌘ to indicate that the function needs to be normalized to
1 to be a probability density function; hence, the normalization factor ⌘ in di↵erent equations can have di↵erent
values.
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Figure 4.2: Above: Probability distributions f

(n)
⇥

(✓k, qk) of walls (✓k, qk) that generate the

measurement �n for two di↵erent values of rn. If rn =
⇥

0 0
⇤>

, f (n)
⇥

(✓k, qk � 0) = �f

(n)
⇥

(✓k, qk <

0) for every (✓k, qk), and f

(n)
⇥

(✓k = ↵

1

, qk) = f

(n)
⇥

(✓k = ↵

2

, qk) for any ↵

1

and ↵

2

. Below :
An example of mapping four lines from a Cartesian coordinate system to their locations in
f

(n)
⇥

(✓k, qk). The lines are marked with the corresponding colors and symbols. They are chosen
such that the pink and purple lines are the two most likely walls for ✓ = 0, whereas yellow and
blue are the most likely for ✓k = 1.

we use particle filters to model the posterior over robot’s locations and walls: in our case, each
particle contains the estimated robot locations and a set of distributions for every wall in the
room.

Particle methods are a set of powerful simulation-based methods which rely on samples to
approximate probability density distributions. The key idea is to represent the posterior by a set
of random state samples drawn from that posterior. They are a subset of Sequential Monte Carlo
methods and they generalize the traditional Kalman filtering; they can be applied to non-linear
models with non-Gaussian errors, and they are computationally tractable for higher dimensional
problems [6, 50].
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Advantages of particle filters. We list several advantages of the particle approach to SLAM
over other methods:

1. The FastSLAM algorithm is the first to recognize and exploit the fact that knowledge of
the robot’s trajectory renders the individual landmark measurements independent [130].
This observation allows to decompose the SLAM problem into a robot localization problem
and K independent landmark estimation problems. More formally, we factor the posterior
over the entire trajectory {rn}Nn=1

and the room geometry P = {Pk}Kk=1

as:

p({rn}Nn=1

,P | {�n}Nn=1

, {vn}Nn=2

) = p({rn}Nn=1

| {�n}Nn=1

, {vn}Nn=2

)

K
Y

k=1

p(Pk | {rn}Nn=1

, {�n}Nn=1

).

2. Particle filters can cope with non-linear robot motion models as they approximate distribu-
tions by a finite number of drawn samples. Therefore, they do not require any assumptions
on the density functions and they can represent multimodal beliefs.

3. The data association, i.e., identifying a landmark that is observed in a given step and
associating it to the measurement, is made on a per-particle basis, so the filter can maintain
multiple data associations simultaneously. If we sample over all data associations, we can
obtain an approximation of its full posterior. This is one of the key advantages of FastSLAM
over other methods which track only a single data association at any point in time [168].
In the algorithm proposed in this chapter, we take this idea even further.

Distinctions from FastSLAM. Before we get into the details of the algorithm, we introduce
the particularities of our problem setup in comparison to the original FastSLAM formulation.

1. Posterior of landmark estimates: Every particle in the FastSLAM algorithm contains a
set of Kalman filters for every landmark in the map. They are defined with mean and
covariance. The landmark estimates are updated by an Extended Kalman Filter (EKF).

In our problem, the landmarks are walls. This introduces two important distinctions from
the standard solutions: 1) As a set of circles can have two common tangents, one on
each side, one particle can have two di↵erent posterior distributions associated to the same
landmark (wall). In practice, this occurs when the robot follows a linear trajectory, or close
to linear in the noisy case. For every new measurement we need to compute two separate
distributions (one for the lines for which the waypoints are on their left side, and another one
for the lines for which the waypoints are on their right side2) and update the wall estimates
independently for each side. 2) The dimensionality of our measurements is lower than that
of the walls, so we cannot rely on EKF to update the posterior distributions of walls.
Instead, we derive exact expressions for the distributions after every new measurement,
and approximate them by fitting Gaussian functions.

2. Data association: In the typical particle filter approach, every particle contains a sequence
of labels which indicate the order of the measured landmarks. When a new measurement
is added, only one landmark is associated to it, for example by maximizing the probability
that it has generated the measurement. There exist numerous other methods [127].

2We can tell if a point is on the left or the right side of the line because the slopes of lines are determined by
tan ✓k for ✓k 2 [�⇡/2,⇡/2). Therefore, we have directed lines with the direction vector [cos ✓k, sin ✓k]>.
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Figure 4.3: In a) and b) r

1

and r

2

are associated to the first wall, while r

3

is associated to
the second wall. There are two common tangents P

1,1 and P
1,2 around r

1

and r

2

that could be
the wall P

1

; they are illustrated in red. In a) r
3

is located on the other side of P
1,2, while in b)

the distance of r
3

from P
1,2 is smaller than �

3

(the distance of r
3

from the wall P
2

). In both
cases, P

1,2 cannot be part of the solution set, so we remove it. In c) and d) r

1

, r
2

and r

3

are
associated to the first wall, while r

4

is associated to the second wall. There is only one common
tangent to r

1

, r
2

and r

3

which defines the wall P
1

. In c) r
4

is located on the other side of P
1

,
while in d) the distance of r

3

from P
1

is smaller than �
4

(the distance of r
3

from P
2

). In both
cases, the wall P

1

cannot exist along with the waypoints {rn}4n=1

, so we discard the solution (we
set the weight of the particle to zero). There can be multiple reasons for this inconsistency: for
example, we wrongly associate P

1

to r

3

. Labeling that matches r

1

and r

2

with the first wall,
and r

3

and r

4

with the second wall results in the valid case (the walls plotted with dashed lines).

In our problem, the data association refers to echo labeling, and the number of landmarks
is very small compared to visual SLAM, where thousands of landmarks are observed in
every frame. We therefore do not have to associate only one wall to the measured echo; we
can construct several data associations for every given particle and track all the solutions.

3. Additional restrictions: There are several problem-related constraints that can reduce the
set of solutions or make the particles impossible: 1) All waypoints have to be on the same
side of all walls. 2) There is no wall closer to a waypoint than the wall associated to that
waypoint. If one of these constraints is not satisfied, we remove the wall that violates the
constraint. If this causes some waypoints to not have an associated wall anymore, we reject
the particle. We illustrate these cases in Fig. 4.3.

Particles in EchoSLAM. At the core of our EchoSLAM algorithm are the P particles,

Yn = {Y [1]

n , Y

[2]

n , . . . , Y

[P ]

n }.

They are samples of a posterior distribution over the entire trajectory {ri}ni=1

and the room
geometry P = {Pk}Kk=1

up to step n. In other words, every particle represents a hypothesis of
the actual state of the system at step n.

At the current step n, each particle Y

[p]
n contains the estimated robot locations {r[p]i }ni=1

,
parameters of one or two distributions for every wall in a room, a sequence of labels of the
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observed walls c

[p]
n = [c[p]

1

, c

[p]
2

, . . . , c

[p]
n ], and a weight w

[p]
n . Each hypothesis has an associated

weight or importance factor, which represents its likelihood to happen. Therefore, particles with
large weights are near the modes of the posterior distribution, while those with small weight are
near the tails [165].

Recall that the possibility of having two di↵erent probability distributions for the same wall
k arises from the fact that the waypoints can be (nearly) colinear, so the lines on both sides of
the trajectory have non-zero probabilities to be a wall. If the trajectory is nonlinear, the two
probability distributions di↵er. We model the wall distributions as Gaussians with means µ[p]

k1,n

and µ

[p]
k2,n

2 R2, and covariance matrices ⌃[p]
k1,n

and ⌃[p]
k2,n

2 R2⇥2. To shorten the notation, we use

µ

[p]
k,n = {µ[p]

k1,n
, µ

[p]
k2,n

} and ⌃[p]
k,n = {⌃[p]

k1,n
,⌃[p]

k2,n
}. When all lines on one side become improbable

(i.e., their probability falls below a certain threshold), we discard the corresponding mean and

covariance, and keep the parameters of the other distribution, µ[p]
k,n = µ

[p]
k
j

,n and ⌃[p]
k,n = ⌃[p]

k
j

,n,
where j = 1 or j = 2. The entire structure of a particle is shown below:

Y

[p]
n =

⇣

{r[p]i }ni=1

, µ

[p]
1,n,⌃

[p]
1,n, . . . , µ

[p]
K,n,⌃

[p]
K,n, c

[p]
n , w

[p]
n

⌘

.

To initialize the algorithm, we assume that all particles at n = 1 are equally likely, w[p]
1

= 1/P ,

and we label the wall that corresponds to the first measurement as 1, c

[p]
1

= [1] for every
p = 1, . . . , P . We place all particles at the global coordinate system’s origin, r

1

= [0, 0]>,
which fixes the translation of the estimated trajectories. To fix the rotation and reflection, we
assume that the robot’s local coordinate system is such that its initial orientation is aligned with
the x-axis of the global coordinate system.

After every new measurement of the room impulse response, we obtain a new control vn and
measurement �n associated with the wall cn. To incorporate those measurements and update
the posterior over robot’s waypoints and room geometry, we propose the EchoSLAM algorithm
which consists of three steps that we repeat at every n:

1. prediction,

2. measurement update,

3. computation of the importance weight followed by resampling.

In the prediction step, we estimate our belief of the robot’s new location using the robot’s
kinematics by generating particles based on the motion model. After we obtain the distance
measurement from the nearest wall, for every particle and its estimate of the wall, we compute
the probability of that measurement; it is proportional to the displacement of the robot’s true
location compared to our belief of where the robot is, and this is represented by the importance
factor. In the measurement update step, we then use the measurement to update our belief of
where the walls are. In the last step, we draw with replacement from the set of existing particles
a set of new particles, where the probability of drawing a particle corresponds to its normalized
importance weight.

We have already developed a fundamental analytical framework for the three steps in the
previous sections. In Sections 4.5.3, 4.5.4 and 4.5.5 we discuss them in more detail and put the
algorithm to work. We assume that the labeling is known, i.e., we know the index of the wall
from which the first echo originates; in Section 4.5.6 we devise an algorithm which allows us to
relax this assumption.
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Figure 4.4: Sampling from the motion model for di↵erent noise parameters. The start location
is denoted by r

1

, and the green line represents the robot input control actions. The 200 particles
in every step approximate the robot’s belief at di↵erent points in time. The values of �` are in
meters and �� in radians.

4.5.3 Prediction

For every step n, we create an empty set of particles Yn. To generate new locations r

[p]
n , we

sample from p(rn | r[p]n�1

,vn) as follows: For a particle p in Yn�1

, we obtain ˆ̀
n and �̂n from

ˆ̀
n ⇠ N (e`n,�2

` ) and �̂n ⇠ N (e�n,�2

�), where
e

`n and e�n are introduced in Section 4.2.1. Then,

according to the motion model from Section 4.2.1, we compute r

[p]
n = r

[p]
n�1

+ ˆ̀
n[cos �̂n, sin �̂n]>,

and add r

[p]
n along with the previous waypoints {r[p]i }n�1

i=1

to Yn. We repeat this for every
p = 1, . . . , P .

The noise levels �2

` and �2

� are in general unknown to us. In real experiments, we estimated
these values by assessing the robot’s precision with repetitive forward/backward motions and
rotation. In simulations, we initialize �2

` and �

2

� with the values estimated from these real
measurements, and incrementally add more noise to test the robustness of our algorithm.

Fig. 4.4 illustrates particles obtained from the motion model with the described method. It
is clear that the uncertainty grows as a non-sensing robot moves; to reduce the noise we have to
exploit the sensor measurements.
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4.5.4 Measurement update

Before we process a new measurement �n, we expand the sequence of labels c[p]n�1

with the index
of the wall that is the closest to rn. We denote it by cn and construct a new sequence of labels
by appending cn at the end of c[p]n�1

. Then, for every particle p we add c

[p]
n to Yn.

If the wall k is not the closest to the robot at step n, i.e., k 6= cn, its posterior remains
unchanged,

⇣

µ

[p]
k,n,⌃

[p]
k,n

⌘

=
⇣

µ

[p]
k,n�1

,⌃[p]
k,n�1

⌘

.

Otherwise, we incorporate the newest measurement �n by updating the posterior of the wall k.
The update formula depends on the number of previous steps at which we have already observed
an echo from the wall k. We di↵erentiate three cases: 1) If it is the first measurement from the
wall k, the procedure is trivial: we skip the measurement update and resampling (no-op), and
continue with motion prediction for n + 1. 2) If it is the second measurement, we explain in
Section 4.5.4.1 how to compute the wall distributions and show that the resulting distributions
can be approximated by Gaussians. 3) The case with three and more measurements is discussed
in Section 4.5.4.2.

4.5.4.1 Two measurements

Let rm
k

and rs
k

be two waypoints associated to the same wall k, cm
k

= cs
k

= k. Indices mk and
sk indicate the steps in which we observe the wall k for the first and the second time, in order. As
the knowledge of the trajectory renders the individual wall estimates independent, we are allowed
to translate and rotate waypoints associated to one wall separately from waypoints associated to
another wall. Thus, without loss of generality, we can assume that we translate and rotate rm

k

and rs
k

, such that for every wall k they lie at the origin and on the x-axis, respectively, while
preserving their relative distance. In the following, we consider therefore that rm

k

= [0, 0]> and
rs

k

= [rx, 0]>, and rely on this assumption in all measurement update formulas. After the last

step of the algorithm, we need to translate and rotate the estimated wall parameters q
V

k and ✓
V

k

to undo the initial translation and rotation of rm
k

and rs
k

and align them with their original
coordinates.

Next, recall that we use the sign of qk to indicate if a wall intersects the y-axis above or below
the origin. Together with that convention, the assumption that rm

k

= [0, 0]> and rs
k

= [rx, 0]>

guarantees that the wall distributions f

(1:s
k

)

⇥

(✓k, qk) after two measurements are bimodal: one
mode is for the lines that are above the origin (qk � 0), and one for the lines that are below
(qk < 0), see Fig. 4.5a.

To see that, observe that in the noiseless case the nearest walls to rm
k

and rs
k

are the
outer common tangents to circles with centers rm

k

and rs
k

and radii �m
k

and �s
k

(we assume
that the circles belong to non-degenerate cases, i.e., krs

k

� rm
k

k > �m
k

+ �s
k

or |�m
k

� �s
k

| 
krs

k

� rm
k

k < �m
k

+ �s
k

). In the presence of noise, more lines become potential walls, and the
resulting distributions are centered around the outer tangents—the only possible walls in the
noiseless case.

A property that the wall distribution is bimodal is essential for the algorithm as it allows us
to approximate distributions with Gaussians and store only their means and covariance matrices
in the particle filter. An example of a wall distribution for two waypoints that do not lie on
the x-axis is illustrated in Fig. 4.5b; it is multimodal with sharp transitions around ±⇡/2. Our
assumption that ry = 0 permits such cases to happen.
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Figure 4.5: a) For r

1

=
⇥

0 0
⇤>

, r

2

=
⇥

0.762 0
⇤>

, �
1

= 0.6, �
2

= 0.3 and �� = 0.1,

we illustrate possible walls with the most likely ones in black. Its distribution f

(1:2)

⇥

(✓k, qk)
is bimodal, where each mode is centered around the outer tangent of two circles. b) Here,

r

1

=
⇥

0 0
⇤>

, r
2

=
⇥

0.3 0.7
⇤>

, �
1

= 0.6, �
2

= 0.3 and �� = 0.1. The corresponding distribution

f

(1:2)

⇥

(✓k, qk) has sharp transitions around ±⇡/2, and it is multimodal. The reason is that some
of the lines for which r

1

is on the left side have positive and some negative intercept, as they
emerge from di↵erent outer tangents by adding measurement noise.

Given two measurements �m
k

and �s
k

, the probability distribution of the wall k is a normalized

product (f (m
k

)

⇥

· f (s
k

)

⇥

)(✓k, qk):

f

(1:s
k

)

⇥

(✓k, qk)

= (f (m
k

)

⇥

· f (s
k

)

⇥
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=
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�
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)2

2�2

�

!
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exp
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k
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2�2

�

!#

,

(4.6)

where f

(m
k

)

⇥

(✓k, qk) and f

(s
k

)

⇥

(✓k, qk) are computed from (4.5).

Observe that f (1:s
k

)

⇥

(✓k, qk) is a distribution with four modes, which is not in accordance with
our claim that the wall distributions have at most two modes. The reason is that two modes
correspond to the outer tangents of two circles with centers rm

k

and rs
k

, and radii �m
k

and
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�s
k

, while the other two modes correspond to the inner tangents of the same two circles. As
all waypoints have to be inside the room, lines that cross a trajectory between two waypoints
cannot be valid walls, so we set f

(1:s
k

)

⇥

(✓k, qk) to 0 for the lines (✓k, qk) associated to the inner
tangents.

To formally check if rm
k

and rs
k

are on the same side of a line through x

1

and x

2

, directed
as x

2

�x

1

, we need to compute the sign of the cross products (x
2

�x

1

)⇥ (rk �x

1

) for k = mk

and k = sk. In our case, we fix the directions of the walls by setting

x

1

=
h

0 q
k

cos ✓
k

i>
and x

2

=
h

x x tan ✓k + q
k

cos ✓
k

i>
with x > 0,

so we obtain

sgn(rm
k

) = sgn(qk) and sgn(rs
k

) = sgn
⇣

rx tan ✓k +
qk

cos ✓k

⌘

.

For every wall (✓k, qk) for which rm
k

and rs
k

are on the opposite sides of the wall, we set its
probability to 0:

f

(1:s
k

)

⇥

(✓k, qk) =

(

0 sgn(rm
k

) 6= sgn(rs
k

),

f

(1:s
k

)

⇥

(✓k, qk) otherwise.
(4.7)

In conclusion of the above analysis, the normalized distribution f

(1:s
k

)

⇥

(✓k, qk) computed
by (4.6) and corrected by (4.7) reveals probabilities of lines to be a wall k, given two distances
�m

k

and �s
k

measured at the waypoints 0 and [rx, 0]>.

Gaussian approximation. We argue that f (1:s
k

)

⇥

(✓k, qk) can be well approximated with a Gaus-
sian mixture. To back up our claim, we show that it is practically impossible to distinguish
between the original distribution and its approximation, unless the noise is unrealistically large.
The main advantage of using Gaussian approximations instead of the original f (1:s

k

)

⇥

(✓k, qk) is
that it allows us to store only their means and covariance matrices in the particle filter, which
greatly reduces the space and time complexity.

To shorten the notation in this section, we set mk = 1 and sk = 2. We show that the
probability distribution of a wall f (1:2)

�

(�k, qk), obtained from f

(1:2)

⇥

(✓k, qk) by the change of
variable �k = sin ✓k, is a Gaussian mixture with two components. We apply �k = sin ✓k and
rewrite (4.6) as

f

(1:2)

�

(�k, qk) =
⌘

2⇡�2

�

"

exp

 

� (qk � �

1

)2 + (qk + rx�k � �

2

)2

2�2

�

!

+exp

 

� (qk � �

1

)2 + (qk + rx�k + �

2

)2

2�2

�

!

+exp

 

� (qk + �

1

)2 + (qk + rx�k � �

2

)2

2�2

�

!

+exp

 

� (qk + �

1

)2 + (qk + rx�k + �

2

)2

2�2

�

!#

.

(4.8)

The arguments of the exponential functions in the first two terms of (4.8) can be split into partial
fractions as:

(qk � �

1

)2 + (qk + rx�k ± �

2

)2

2�2

�

=
(qk � �

1

)2

�

2

�

+

�

�k + �1±�2
r
x

�

2

2

r2
x

�

2

�

+
(qk � �

1

)
�

�k + �1±�2
r
x

�

1

r
x

�

2

�

.

(4.9)
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Figure 4.6: I: For a given pair of waypoints r
1

and r

2

, and measurements �
1

= �

2

, we illustrate
the probabilities of lines to be the nearest wall to r

1

and r

2

. Darker colors indicate higher values.
PDFs f

(1:2)

⇥

(✓k, qk) are shown in II and their approximations by Gaussian distributions in III.
As the most likely lines are centered around ✓k = 0, the approximation is more accurate than
for any other value of ✓k 2 (0,⇡).

Since a bivariate normal probability density function (PDF) is defined as

g(�k, qk)=
1

2⇡�
�

�Q

p

1�⇢2 exp
"

� 1

2(1� ⇢

2)

 

(�k�µ

�

)2

�

2

�

+
(qk � µQ)2

�

2

Q

� 2⇢(� � µ

�

)(qk � µQ)

�

�

�Q

!#

,

by making the following substitutions in (4.9)

µ

�

= �

1

, �

�

= ��, µQ =
�

1

⌥ �

2

rx
, �Q = �

p
2

rx
��, ⇢ =

p
2

2
,

we prove that the first two terms of (4.8) are bivariate Gaussian functions. The proof is analogous
for the last two terms.

As observed earlier in this section, two of these terms correspond to the outer tangents of the
two circles, while the other two terms correspond to the inner tangents, so we can discard them.
We conclude that the probability distribution of a wall f (1:2)

�

(�k, qk) is a Gaussian mixture with
two components: one component is the PDF of lines that are above the origin, and the other
component is the PDF of lines below the origin. Adding a third measurement from the same
wall often resolves this ambiguity.
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Figure 4.7: Plots represent probabilities of lines to be a wall, as in Fig. 4.6. The di↵erence
is that �

2

> �

1

, which induces subtle discrepancy between the original distributions and their
Gaussian approximations. However, this becomes noticeable only for larger values of ��.

By reverting to the original variables, this result implies that f

(1:2)

⇥

(✓k, qk) is well approxi-
mated with a Gaussian shape for small values of ✓k, as we can apply the small-angle approx-
imation �k = sin ✓k ⇡ ✓k. As ✓k grows and approaches ⇡/2, the approximation becomes less
accurate. Two examples are illustrated in Fig. 4.6 and Fig. 4.7. The second row of figures
presents the original distributions f

(1:2)

⇥

(✓k, qk), while the third row shows their Gaussian ap-
proximations. As the angles of the most probable lines in Fig. 4.6 are close to zero (�

1

= �

2

), the
original distributions are accurately approximated by Gaussians. In Fig. 4.7 we can notice the
di↵erence between the original distributions and their approximations, in particular for larger
values of the noise level ��. Based on our experimental evaluation of the robot accuracy, �� does
not exceed the value of 5 cm, which is used in the implementation of our algorithm. Therefore,
the Gaussian approximation does not degrade the performance of our algorithm for di↵erent
values of ✓k, assuming practical values of ��  5 cm.

4.5.4.2 Adding new measurements

Unlike FastSLAM, we cannot take advantage of the Gaussian approximation of p(Pk | {ri}n�1

i=1

,

{�i}n�1

i=1

, {ci}n�1

i=1

) to e�ciently compute p(Pk | {ri}ni=1

, {�i}ni=1

, {ci}ni=1

). The reason is that
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Figure 4.8: Plots I and III illustrate probabilities of lines to be a wall for steps from n = 2 to
n = 5, where darker colors correspond to higher values. II and IV depict PDFs f

(1:n)
⇥

(✓k, qk).
The waypoints {rn}4n=1

in I are almost linear, resulting in two non-zero PDFs, one for each
side of the trajectory. At n = 5, the waypoint r

5

and the measurement �
5

are such that the
probability of all lines with qk < 0 becomes 0. In III this happens at n = 3, so the wall cannot
have a negative intercept. Also, we can observe that every additional measurement makes the
PDF of lines with qk � 0 narrower.

when a measurement is of lower dimensionality than the coordinates of a landmark, it is impos-
sible to use the standard EKF measurement update [168]. As this is the case for our distance
measurement �n and the wall coordinates (✓k, qk), we cannot profit from the computational ben-

efits of EKFs; instead, we compute the posterior f

(1:n�1)

⇥

(✓k, qk) from its Gaussian parameters

stored in the particle filter and combine it with f

(n)
⇥

(✓k, qk) from (4.5) to obtain a new posterior
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f

(1:n)
⇥

(✓k, qk). The details are provided below.

In the previous section we derived the distribution f

(1:n�1)

⇥

(✓k, qk) for two measurements from
the same wall. It is bimodal and centered around the outer tangents. As each mode is associated
to lines that are on one side of the waypoints, adding new measurements renders one of them
less likely than the other, until no walls on that side are possible (unless the robot moves on a
line).

Here we propose an algorithm to update f

(1:n�1)

⇥

(✓k, qk) with a new measurement. As the
first two waypoints associated to the same wall k lie in the origin and on the x-axis, respectively,
f

(n)
⇥

(✓k, qk) needs to be computed for a translated and rotated rn, such that its relative position
with respect to the first two waypoints does not change.

We translate rn by �rm
k

and rotate the new point rn � rm
k

by � arctan
r

s

k

,y

�r

m

k

,y

r

s

k

,x

�r

m

k

,x

around

the origin. We denote it by r

0
n. Then, for the given measurement �n and r

0
n, we compute the

wall distribution f

(n)
⇥

(✓k, qk) from (4.5). We incorporate the new measurement by multiplying

the estimated distribution with the previous posterior f (1:n�1)

⇥

(✓k, qk),

f

(1:n)
⇥

(✓k, qk) = ⌘f

(1:n�1)

⇥

(✓k, qk)f
(n)
⇥

(✓k, qk). (4.10)

We finally approximate f

(1:n)
⇥

(✓k, qk) by a normal distribution, and add its mean and covariance
matrix to the particle filter Yn. Examples of wall distributions after five steps are shown in
Fig. 4.8.

4.5.5 Resampling

Resampling is a common technique in particle filtering to correct for a mismatch between the
proposal and the target distribution. The proposal distribution is the one at which particles are
generated,

p({r[p]i }ni=1

| {�i}n�1

i=1

, {vi}ni=2

, {ci}n�1

i=1

)

= p(r[p]n | r[p]n�1

,vn)p({r[p]i }n�1

i=1

| {�i}n�1

i=1

, {vi}n�1

i=2

, {ci}n�1

i=1

),

while the target distribution takes into account the newest measurement �n,

p({r[p]i }ni=1

| {�i}ni=1

, {vi}ni=2

, {ci}ni=1

).

The weight or the importance factor w[p]
n is the quotient of the target and the proposal distribution

and it corresponds to the probability of the measurement �n given the particle r

[p]
n :

w

[p]
n ⇡ p({r[p]i }ni=1

| {�i}ni=1

, {vi}ni=2

, {ci}ni=1

)

p({r[p]i }ni=1

| {�i}n�1

i=1

, {vi}ni=2

, {ci}n�1

i=1

)

⇡ p(�n | {r[p]i }ni=1

, {�i}n�1

i=1

, {v[p]
i }ni=2

, {ci}ni=1

)p({r[p]i }ni=1

| {�i}n�1

i=1

, {v[p]
i }ni=2

, {ci}ni=1

)

p({r[p]i }ni=1

| {�i}n�1

i=1

, {vi}ni=2

, {ci}n�1

i=1

)

⇡ p(�n | r[p]n , cn)p({r[p]i }ni=1

| {�i}n�1

i=1

, {v[p]
i }ni=2

, {ci}n�1

i=1

)

p({r[p]i }ni=1

| {�i}n�1

i=1

, {vi}ni=2

, {ci}n�1

i=1

)

= ⌘p(�n | r[p]n , cn).
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To calculate w

[p]
n , we need to further transform p(�n | r[p]n , cn), and obtain:

w

[p]
n = ⌘

X

P
c

n

p(�n | Pc
n

, r

[p]
n , cn)p(Pc

n

| {r[p]i }n�1

i=1

, {�i}n�1

i=1

, {ci}n�1

i=1

), (4.11)

where p(Pc
n

| {r[p]i }n�1

i=1

, {�i}n�1

i=1

{ci}n�1

i=1

) is known from the previous step,

p(Pc
n

| {r[p]i }n�1

i=1

, {�i}n�1

i=1

{ci}n�1

i=1

) ⇠ N (µ[p]
c
n

,n�1

,⌃[p]
c
n

,n�1

),

while p(�n | Pc
n

, r

[p]
n , cn) can be computed from (4.2) with dnk =dist(r[p]n ,Pc

n

). By drawing

with replacement P particles from Yn according to the weights w[p]
n , we approximate the desired

target distribution.
After the resampling step, the robot is ready to receive new control commands, move, and

record a RIR, while our EchoSLAM algorithm accordingly iterates over the prediction, mea-
surement update and resampling steps. The algorithm stops after the robot has visited N

locations and measured N RIRs. The final estimates of the walls and robot’s waypoints are
then simply taken from the particle in YN with the largest weight, denoted by p̂. The robot’s
waypoints are {r[p̂]n }Nn=1

, while the parameters of the walls are obtained from [✓
V

k, q
V

k] = µ

[p̂]
k,N .

Recall however that ✓
V

k and q

V

k correspond to the walls estimated for the rotated and translated
waypoints of the trajectory, as discussed in Section 4.5.4.1. To obtain the correct values, we
need to rotate ✓

V

k such that the first two waypoints associated to k recover their original orienta-
tion. Observe that by rotating waypoints around the origin for some angle �k, the corresponding
distribution f

(1:N)

⇥

(✓k, qk) only circulary shifts around ✓k for the same angle �k. In our case,

�k = arctan
r

s

k

,y

�r

m

k

,y

r

s

k

,x

�r

m

k

,x

. To translate the rotated waypoints and align them with their original

coordinates, we need to adjust the estimated value of q
V

k; this is done by simple trigonometry.
This procedure concludes our discussion of the EchoSLAM algorithm with known labeling:

we have found the trajectory of a robot and the walls of a room that are the most likely to
generate the measured distances. Its summary is provided in Algorithm 4.1.

4.5.6 Unknown echo labeling

Given a recording of a room impulse response, we can easily extract the first echo and measure
its propagation time to obtain the distance of the robot from the nearest wall. But for the
EchoSLAM algorithm to work, we also need to know from which wall the detected echo originates.
The problem of determining the correct mapping of measurements to landmarks is commonly
referred to as the data association or correspondence problem; we also use the more specific term
of echo labeling.

Echo labeling. Echo labeling is performed on a per-particle basis as di↵erent particles can
observe di↵erent walls at the same step n. The main di↵erence between our setup and standard
SLAM problems is that the number of walls is very small in comparison to the number of
landmarks typically observed in the map. Instead of choosing only one (the most likely) label for
every particle at every n, we propose a branch and prune algorithm that builds a tree of possible
label sequences for every particle.

Let us consider the tree corresponding to the particle Y

[p]
n . The number of walls at step n

of the algorithm is denoted by Kn, Kn = max c[p]n . As long as we can provide Kmax such that
Kmax � K, the exact number of walls K can be unknown. Every node of depth n in the tree
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Algorithm 4.1 The main building block of EchoSLAM with the given labeling

Input: �n, cn, vn, Yn�1

1: Yn = Ø
2: for p = 1 to P do

3: r

[p]
n ⇠ p(rn | r[p]n�1

,vn)

4: create c

[p]
n by appending cn to c

[p]
n�1

5: for k = 1 to K, such that k 6= cn do

6:

⇣

µ

[p]
k,n,⌃

[p]
k,n

⌘

=
⇣

µ

[p]
k,n�1

,⌃[p]
k,n�1

⌘

7: end for

8: k = cn

9: if wall k observed for the first time then

10: no-op
11: else if wall k observed for the second time then

12: translate rm
k

and rs
k

by �rm
k

13: rotate rs
k

� rm
k

by � arctan
r

s

k

,y

�r

m

k

,y

r

s

k

,x

�r

m

k

,x

14: initialize the posterior f (1:s
k

)

⇥

(✓k, qk) with (4.6)

15: compute µ

[p]
k,n and ⌃[p]

k,n of its Gaussian approximation
16: else

17: translate rn by �rm
k

18: rotate rn � rm
k

by � arctan
r

s

k

,y

�r

m

k

,y

r

s

k

,x

�r

m

k

,x

to obtain r

0
n

19: compute f

(n)
⇥

(✓k, qk) by (4.5) where rn is replaced with r

0
n

20: update the posterior f (1:n)
⇥

(✓k, qk) by (4.10)

21: compute µ

[p]
k,n and ⌃[p]

k,n of its Gaussian approximation
22: end if

23: if {r[p]i }ni=1

on the same side of all walls and dist(r[p]n ,Pc
n

)  dist(r[p]n ,Pj) for all j =
1, . . . ,K, j 6= cn then

24: compute w

[p]
n by (4.11)

25: else

26: w

[p]
n = 0

27: end if

28: Y

[p]
n =

⇣

{r[p]i }ni=1

, µ

[p]
1,n,⌃

[p]
1,n, . . . , µ

[p]
K,n,⌃

[p]
K,n, c

[p]
n , w

[p]
n

⌘

29: add Y

[p]
n to Yn

30: end for

31: Y

0
n = Ø

32: repeat

33: draw Y

[p]
n with probability w

[p]
n and add it to Y

0
n

34: until length(Y 0
n) = P

35: set the weight of all particles in Y

0
n to 1/P

36: return Y

0
n

represents a sequence of labels that could have given rise to the measured distances �
1

, �

2

, . . . , �n,
based on the probabilistic criteria described below. The reason why we create a tree of labels
instead of selecting only one path at every n is that for a given sequence cn�1

, we can sometimes
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associate several di↵erent labels to �n, where all of them yield a valid solution at n. Expanding
cn�1

with di↵erent labels is akin to creating several child nodes of the node cn�1

. It is clear
that we do not have to create a child node for every label in every node; to decide which labels
are feasible for some chosen node at level n � 1, we do the following. First, among all existing
wall estimates k = 1, . . . ,Kn�1

at step n � 1, we find the one that maximizes the probability

p(�n | Pk, r
[p]
n , k) of measuring �n, and we denote it by cn. If there are two distributions associated

to one wall, we select the one with the higher probability j = argmaxj2{1,2} p(�n | Pk
j

, r

[p]
n , kj).

Then, by using c

[p]
n := [c[p]n�1

, k] to denote the operation of adding a label k at the end of the

current sequence of labels c

[p]
n�1

, we compute c

[p]
n given c

[p�1]

n based on the following threshold-
based criteria:

• If p(�n | Pc
n

, r

[p]
n , cn) > ⌧m, we create a single child node of the current node and label it

with c

[p]
n := [c[p]n�1

, cn].

• If p(�n | Pk, r
[p]
n , k)  ⌧m for every k = 1, . . . ,Kn�1

, we might have a measurement from
a yet-unobserved wall. Hence, we increase the number of walls by one Kn = Kn�1

+ 1,

create a single child node of the current node, and label it with c

[p]
n := [c[p]n�1

,Kn].

• If p(�n | Pk, r
[p]
n , k)  ⌧m for every k = 1, . . . ,Kn�1

, we create a child node for every k that

appears exactly once in c

[p]
n�1

, and label it with c

[p]
n := [c[p]n�1

, k].

• For every 1  k  Kn�1

for which ⌧` < p(�n | Pk, r
[p]
n , k)  ⌧m, we create a child node and

label it with c

[p]
n := [c[p]n�1

, k].

We set a high value for ⌧m to ensure that we match only one wall k with the measure-
ment �n when the confidence about their correspondence is high. However, as the measurement
noise a↵ects estimated wall positions Pk and the estimated robot location r

[p]
n , the value of

p(�n | Pc
n

, r

[p]
n , cn) can fall below the threshold ⌧m even for the correct labeling. To reduce the

possibility of losing a valid solution because of being too restrictive in pruning the branches, for
every wall k that satisfies ⌧` < p(�n | Pk, r

[p]
n , k)  ⌧m, we also create a branch. Moreover, we

have to create branches for all walls that have been observed only once, as we have no informa-
tion about them. We create new labels only when all existing walls are unlikely to be the correct
matches.

We store the sequences of labels of all child nodes in a list C [p]
n , and we branch by choosing

the most likely child node. If that choice does not lead to a feasible solution, we step back
up the tree and choose the next most likely sequence of labels. The solution tree is therefore
traversed depth-first. We give priority to the label k with the highest value of p(�n | Pk, r

[p]
n , k),

and furthermore, we give priorities to the labels associated to the existing walls over a new label.
In terms of implementation, we represent a tree as a list, so we simply append the sequences of
labels with higher priority at the end. When branching, we always select the last added sequence
from the list.

The algorithm constructs a tree for every particle p independently: it returns a list of possible
sequences of labels at step n, and the current number of walls Kn. We summarize these steps in
Algorithm 4.2 and illustrate it with an example in Fig. 4.9.

EchoSLAM with unknown labeling. To provide a complete solution to the EchoSLAM algo-
rithm with unknown echo labeling, we need to merge Algorithm 4.2 with Algorithm 4.1. For
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Figure 4.9: An example of a tree for an echo labeling problem with Kmax = 3. The blue
numbers indicate the order of created nodes. The branching conditions that are satisfied in
every node are listed next to the arrows.
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Algorithm 4.2 Echo labeling

Kmax is a global variable

Input: Kn�1

, Y

[p]
n�1

, r

[p]
n , �n

1: pmax = 0
2: for k = 1 to Kn�1

do

3: if Y

[p]
n�1

contains two wall distributions for k then

4: p(�n | Pk, r
[p]
n , k) = max{p(�n | Pk1 , r

[p]
n , k

1

), p(�n | Pk2 , r
[p]
n , k

2

)}
5: end if

6: if p(�n | Pk, r
[p]
n , k) > pmax then

7: pmax = p(�n | Pk, r
[p]
n , k)

8: cn = k

9: end if

10: end for

11: if pmax > ⌧m then

12: create c

[p]
n by appending cn to c

[p]
n�1

13: return [c[p]n ],Kn�1

14: else

15: C

[p]
n = Ø

16: Kn = Kn�1

+ 1

17: create c

[p]
n by appending Kn to c

[p]
n�1

18: add c

[p]
n to C

[p]
n

19: for k = 1 to Kn�1

do

20: if p(�n | Pk, r
[p]
n , k) > ⌧` or

⇣

P

c
i

2c

[p]
n�1

1
(c

i

==k)

⌘

= 1 then

21: create c

[p]
n by appending k to c

[p]
n�1

22: add c

[p]
n to C

[p]
n

23: end if

24: end for

25: return C

[p]
n ,Kn

26: end if

some chosen node cn�1

, Algorithm 4.2 returns a sequence of labels C

[p]
n of all child nodes that

are feasible for the given measurement �n and particle Y

[p]
n�1

. By putting the sequences of all
particles p = 1, . . . , P without repetition in a new list, we obtain Cn. Then we introduce a global
labeling tree ⌥, which represents a union of the labeling trees of all particles. Given �n and
{Y [p]

n�1

}Pp=1

, the node corresponding to cn�1

in ⌥ has one child node for every sequence in Cn.
At n = 1, ⌥ has only one node and its associated sequence of labels is equal to [1].

We propose to create copies of particle sets in every node. More precisely, when we create a
child node, we create a copy of the particle set of its parent, and extend the old sequence of labels
with a new label. During the measurement update and resampling, we update the parameters
of the walls and the trajectory for every child independently. By doing so, we store the states
of the estimates in every node, which allows us to traverse the tree depth-first and return to
nodes at lower depths. We use cn as a superscript for Yn to uniquely identify particle sets of the
same depth but of di↵erent label sequences, Y c

n

n . The complete EchoSLAM with unknown echo
labeling is stated in Algorithm 4.3, with the main functionality in Algorithm 4.4.
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Algorithm 4.3 The main building block of EchoSLAM with unknown labeling

Labeling tree ⌥ and particle sets Y c

n

n are global variables

Input: �n, vn, cn�1

1: Yn�1

:= Y

c

n�1

n�1

(⇤)

2: Cn = Ø
3: for p = 1 to P do

4: r

[p]
n ⇠ p(rn | r[p]n�1

,vn)

5: invoke Algorithm 4.2 and assign the returned values to C

[p]
n and Kn

6: for ci 2 C

[p]
n do

7: if ci 62 Cn then

8: add ci to Cn

9: Y

c

i

n = Ø
10: for p = 1 to P do

11: copy Y

[p]
n�1

to Y

c

i

,[p]
n , and add new r

[p]
n and ci:

Y

c

i

,[p]
n =

⇣

{r[p]i }ni=1

, µ

[p]
1,n�1

,⌃[p]
1,n�1

, . . . , µ

[p]
K,n�1

,⌃[p]
K,n�1

, ci, w
[p]
n�1

⌘

12: add Y

c

i

,[p]
n to Y

c

i

n

13: end for

14: end if

15: end for

16: end for

17: append Cn to ⌥
18: remove the last sequence from Cn and assign it to c

19: n := length(c)
20: Yn�1

:= Y

c

n
(⇤)

21: Yn =Ø
22: for p = 1 to P do

23: do lines 5 to 29 from Algorithm 4.1
24: end for

25: do lines 31 to 35 from Algorithm 4.1 and assign the returned particle set to Y

c

n

26: return c

(⇤) The particle filter which is being processed is now part of the global particle set, so we assign
it to the local variable Yn�1

for the consistent notation with previous algorithms.

4.6 Simulations

To demonstrate that the proposed algorithm works well in simulations, we illustrate the results
for various setups, ranging from the noiseless case and known labeling to the noisy measurements
and unknown labeling.

We construct a room to be a right-angled trapezoid as in Fig. 4.10. The lengths of the walls
that are bases of the trapezoid are 8 m (lower) and 6 m (upper), while the lateral sides are 6 m
(left) and 6.32 m (right). The trajectory is piecewise linear, described as a sequence of motion
vectors, {vn(`n,�n)}Nn=2

. The lengths of the steps range from 0.7 to 2.7 m.
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Algorithm 4.4 The complete EchoSLAM algorithm with unknown labeling

1: c

1

= [1]
2: ⌥ = [c

1

]
3: for p = 1 to P do

4: Y

c1,[p]
1

=
�

r

[p]
1

:= [0, 0]>, c[p]
1

:= c

1

, w

[p]
1

:= 1/P
�

5: end for

6: Y

c1
1

= {Y c1,[1]
1

, Y

c1,[2]
1

, . . . , Y

c1,[P ]

1

}
7: for n = 2 to N do

8: send a control vn to the robot
9: record and process a RIR, and compute �n from the propagation time of the first peak

10: repeat

11: invoke Algorithm 4.3 with �n, vn and cn�1

12: until the length of the returned sequence of labels is n
13: assign the returned sequence of labels to cn

14: end for

15: find the particle p̂ in Y

c

N

N with the largest weight

16: apply a rigid transformation to {r[p̂]n }Nn=1

and {µ[p̂]
k,N}Kk=1

, such that it transforms the way-
points to their original coordinates

17: display the estimated trajectory and the walls

Noiseless case. Fig. 4.10 illustrates the noiseless case, �� = 0, �` = 0 and �� = 0, with the
known labeling. All four walls of the room are correctly estimated after 13 steps. Many repeated
experiments have shown that in this simple case, the walls and the trajectory are always correctly
estimated after only a few steps.

Unknown labeling and noisy distance measurements. Now we add one level of di�culty to
the problem by assuming that the labeling is not known and �� = 5 cm, while keeping the
motion vectors noiseless, �` = 0 and �� = 0. Our simulations show that the estimated rooms
are very close to the original room: we ran 50 experiments with di↵erent trajectories in the same
trapezoid room, and computed the root mean squared errors (RMSE) of the estimated corners’
locations. The average error of all experiments is 7.2 cm per corner. We observe that the labels
of the estimated room do not always perfectly match the ground truth labels; however, the
wrong labels do not noticeably a↵ect the accuracy of the reconstruction. The reason is that the
measurements are wrongly assigned only when the robot is almost equally apart from the two
closest walls. Therefore, when the trajectory is known, the reconstruction error is only due to
the noisy distance measurements and it is not corrupted by mistakes in the labeling algorithm.

Unknown labeling and noisy motion and distance measurements. In the most general case,
all measurements are considered to be noisy and the labeling is unknown. Fig. 4.11 shows
estimated rooms and trajectories after every step of the robot in the experiment with the following
parameters: �� = 5 cm, �` = 1 cm, �� = 0.05 rad, P = 30, N = 20, Kmax = 4. The values
assumed in our noisy setup are conservative. For a comparison, the corresponding values obtained
with our real mobile robot are �` = 0.27 cm and �� = 0.024 rad (we report these values in
Section 4.7.1). As the labeling is unknown, Algorithm 4.4 branches and explores di↵erent label
sequences. In Fig. 4.11 we plot all particles from the particle set that terminates our algorithm,
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Figure 4.10: An example of one execution of the EchoSLAM algorithm with known labeling
and noiseless measurements. The room and the trajectory are correctly estimated after a few
steps.

i.e., the particle set for which we reach the maximum depth of the labeling tree. This means the
labeling from that particle set is feasible; indeed, in the presented case the labeling is correct at
all waypoints.

4.7 Experimental results

In this section we demonstrate our end-to-end algorithm in practice, which creates a 2D floor
plan with the robot’s trajectory from the recorded room impulse responses.

4.7.1 Hardware

We designed a modular mobile robot with the main characteristics of being accurate, easily
controllable and allowing a quick retrieval of the experimental data.

Robot design. The robot’s architecture is composed of three layers. The electronic and the
mehanical layer perform electrical and mechanical functions that are shared among di↵erent
applications (power supply, control and localization of the robot), while the experiment setup
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Figure 4.11: An example of one execution of the EchoSLAM algorithm with unknown labeling
and noisy measurements, with �� = 5 cm, �` = 1 cm, �� = 0.05 rad. The numbers in the
right upper corner enumerate the steps. The benefit of resampling is evident if we compare for
example step n = 6 and n = 18; a black arrow is pointing towards the waypoints of interest.
At n = 6 we generated new particles according to our motion model. In the following steps we
incorporated new measurements and improved our estimates of the walls, which in turn helped
us to improve the noisy estimates of the trajectory. At n = 18, the distribution of the particles
generated at n = 6 is much narrower and centered around the ground truth waypoints. The
last figure shows the particle with the highest weight, along with the overlaying ground truth
room-trajectory configuration in green.
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Layer for the
experiment setup

Specific

G
eneric

Electronic layer Mechanical layer

Computational layer
Raspberry PI

Figure 4.12: a) Schematic diagram of the robot three-layer architecture. b) Overall model of
the mobile robot. c) Constructed robot with mounted loudspeaker and microphone.
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Figure 4.13: Main components of every layer.

layer is specific to the application (microphone and loudspeaker for the EchoSLAM algorithm).
The idea is to achieve a scalable, inter-operable system, where each layer can be replaced, mod-
ified and upgraded independently while maintaining the normal functionality of the robot. A
schematic diagram and model of the robot architecture are shown in Fig. 4.12. Below we describe
the main components and their functions, while the detailed list of layers elements can be found
in Fig. 4.13.

The electrical layer is comprised of three modules:

• Power supply. The solution is based on a rechargeable battery pack with a battery man-
agement system and a level indicator. The components from the outer layer are either low
consumption components (5V), which are powered through the step down voltage regula-
tor, or high consumption components (12V), which are directly powered from the battery
pack and turned on and o↵ by the electrical relay. Such a configuration enables stable and
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Figure 4.14: Operation principle of a stepper motor. A permanent magnet is used for a rotor,
represented as a green arrow. Coils are put on four stators denoted by x, x0, y and y

0, which
control the rotation of the motor: when the electric current is poured into x

0 and y

0, the magnet
is in the position illustrated in a). By applying an electric current to the coils x and y

0, the
magnet rotates by 90� clockwise and its state is shown in b). By energizing the coils in order
outlined in e), the rotor turns clockwise.

e�cient power supply.

• Sensors. Long-range sensors are used for distance and proximity sensing in the obstacle
avoidance module. The inertial measurement unit (IMU) is constituted of a gyroscope,
an accelerometer and a magnetometer. The temperature sensor measures the ambient
temperature, which alters the speed of sound.

• Control. The robot is equipped with motor drivers that run the stepper motors. The
drivers are controlled by a microcontroller.

The mechanical layer is made of two modules:

• A di↵erential drive. Our di↵erential wheeled robot is driven by two scooter wheels coupled
to stepper motors. A caster ball is used as free rolling ball to provide stability to the system
and o✏oad the motors.

• A structural module. The mechanical modularity of the robot is represented through the
base. It is a plate with a fixed number of holes distributed in a parametric way. The holes
allow to assemble various mounts (e.g. Raspberry PI mount, stepper motor mounts) and
connect di↵erent components of the robot. Vibration dampeners are also used to reduce
the vibrations of the stepper motors.

In the current version of the robot, the experiment setup layer can collect data and per-
form tasks for two di↵erent applications: the EchoSLAM algorithm and Wi-Fi based indoor
localization. Our EchoSLAM algorithm requires a USB sound card, loudspeaker, microphone,
mechanical rotating platform and a servo motor, while the Wi-Fi based localization needs an
RTT access point and phone mounts.

Assessment of the robot’s positioning performance. The choice of stepper motors benefits
both resolution and accuracy. The working principle behind stepper motors is illustrated in
Fig. 4.14. The rotor, represented as a green arrow in Fig. 4.14, aligns itself with the magnetic
field generated by energizing a coil or a couple of coils in the desired direction. Thus, by energizing
the coil in a continuous sequence, we can rotate the rotor in discrete steps. To accurately hold



108 EchoSLAM: Simultaneous Localization and Mapping with Acoustic Echoes

a certain position, we can stop the sequence at any given time and keep the corresponding coil
energized. Our stepper motor has 200 steps per revolution, which corresponds to 1.8� resolution.
To increase the resolution and achieve smoother movement, we use microstepping. It is based on
the idea that energizing several coils with di↵erent voltages at the same time creates additional
intermediate stable magnetic field directions.

Three types of motions are tested to assess the accuracy and precision of the robot: trans-
lation, rotation and circular motion. We compare the executed trajectory with the given com-
mands. As we use a microstepping factor of 16 (i.e., increase the number of steps per revolution
by a factor of 16), a stepper with 200 steps per revolution and a scooter wheel of nominal diameter
100 mm, the achieved resolution is �d = ⇡ ⇤ 100 ⇤ 1.8

360

⇤ 1

16

⇡ 0.098 mm.
To evaluate the translation accuracy, we asked the robot to move forward by 50 cm and

backwards by 50 cm, and we repeated the experiment 20 times. With the implemented stepper
motor technology, the accuracy and precision should not change for di↵erent distances travelled
by the robot, in particular for the range of distances used in our EchoSLAM algorithm (50 to 200
cm). When the robot was asked to move forward by 50 cm, on average it moved 50.295 cm with
a standard deviation of 0.248 cm. Similarly, when the robot was asked to move backward by
50 cm, on average it moved 50.305 cm with a standard deviation of 0.294 cm. We can conclude
that the system is precise and accurate for linear translations and that the noise level used in
our numerical simulations is high and conservative compared to the real experiments.

To evaluate the accuracy of the rotation and circular motion for a given radius, we repeated
a number of similar tests. We varied the value of the rotational angle as well as of the radius.
All runs showed that there is minimal shift of the rotation center, and resulted in an average
standard deviation of 0.024 rad.

4.7.2 Algorithm in practice

The robot described in the previous section is used to reconstruct a classroom on our campus by
performing Algorithm 4.4. We undertook the experiments in the same rectangular room as in
Chapter 3 and recorded acoustic measurements with the same cylindrical wireless speaker, Veho
360. Ground truth waypoints are obtained by measuring the distances between the measurement
locations and the reference points with a laser meter as in Section 3.6.2.

The simplicity and usability of the robot is illustrated in Fig. 4.15. Many meters of cables,
several microphones, stands, adapters and sound mixer are replaced with a single robot 30 cm
long and wide. The robot is easily controllable: to move it to the next location, we need to
provide a pair of values (`n,�n), where `n is the length of the step, and �n is the relative angle
with respect to the current orientation. Those values are then translated to commands called
G-Code that can be interpreted and executed by the robot. Instead of sending a command after
every movement of the robot, the experiment can be fully automated if we provide a complete
trajectory {(`n,�n)}Nn=2

at the beginning of the experiment. Then, for every n, the robot moves
by vn = [`n cos�n, `n sin�n]>, stops, plays a sweep, records the response, increases n by 1 and
repeats such behavior. We can retrieve every recording instantaneously through a web-based
interface and process it in real-time. During our experiments, however, we paused a robot after
every measurement to mark its ground truth location on the floor.

Room impulse responses recorded at N = 20 locations inside of the room are shown in
Fig. 4.16. To extract the most prominent peaks, we apply a variant of the MUSIC algorithm [114],
which we already used in Chapter 3. Contrary to algorithms in Chapter 3, Algorithm 4.4 requires
only one first-order echo in every RIR, so their detection is flawless; observe in Fig. 4.16 that
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Figure 4.15: Comparison of the measurement setup before and after the development of the
robot. a) Standard installation. b) Look, no cables!
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Figure 4.16: The RIRs recorded by the robot at N = 20 waypoints. Red dots indicate locations
where we expect to see the first echo from the nearest wall computed from the ground truth.
We can observe that the first peak in every recorded RIR is (almost) perfectly aligned with its
expected location and there are no false positive or false negative echoes.

the first peak in every RIR is indeed the first echo from the nearest wall, and its amplitude is
significantly higher than from any other peak in the RIR.

We provide the propagation times of the detected first peaks to Algorithm 4.4, along with the
control commands that were executed by the robot to move in the space. Given only those mea-
surements without the labels, Algorithm 4.4 precisely reconstructs the room and the trajectory,
as illustrated in Fig. 4.17b. The average error for the corners and waypoints is 8.3 cm and 6.5
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Figure 4.17: Room reconstruction and robot localization with unknown labeling, given the
measurements provided by the real robot. a) One execution of the modified EchoSLAM al-
gorithm, in which the trajectory was not updated jointly with the walls. The trajectory was
estimated directly from the controls given to the robot, and based on such a trajectory, we com-
puted the distributions of the walls. We can notice that the estimation error accumulates over
time, both for the walls and the waypoints. The average error for the corners in the room is
11.9 cm, while for the waypoints it is 6.8 cm. b) One execution of the presented EchoSLAM
algorithm. In comparison with a), it clearly visualizes an advantage of jointly updating the tra-
jectory estimates along with the walls. The average error for the corners and the waypoints is
8.3 and 6.5 cm, respectively.

cm, respectively. To demonstrate the benefit of jointly updating the room trajectory with the
walls estimates, we now modify Algorithm 4.4 and pretend to believe that the robot’s motion is
noiseless, so that the waypoints are simply obtained from the control commands rn =

Pn
i=2

vi.
In such a scenario, we get the error of 11.9 cm for the vertices and 6.8 cm for the waypoints; this
is illustrated in Fig. 4.17a. When comparing the reconstructed rooms and waypoints in Fig. 4.17a
and b, we can observe that in Fig. 4.17a the error accumulates with new steps and every wall
that is observed later in the process has a larger o↵set from its ground truth value. On the other
hand, in Fig. 4.17b we correct our belief of the trajectory with every new measurement, and
recover the waypoints and the walls that are very close to the ground truth.
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4.8 Conclusion

In this chapter we developed a robust real-time system to solve the SLAM problem with a single
omnidirectional sonar mounted on a robot. We proposed EchoSLAM, a particle-based solution
that reconstructs side walls of 3D rooms from acoustic measurements obtained at several locations
inside unknown rooms.

Our algorithm showed many advantages compared to the existing approaches: it can leverage
only range-measurements between the robot and walls, without any angular information, and
it does not require a full set of first- or higher-order echoes; to the contrary, it needs only the
first echo from the nearest wall. Our experiments confirmed that the corresponding peak is
always very prominent in room impulse responses, even when they are recorded with cheap
o↵-the-shelf 360 speakers. To the best of our knowledge, there are no other devices or robots
capable of localizing themselves in unknown environments from the RIRs recorded by only one
omnidirectional source and receiver.

We also devised a labeling algorithm to match the detected echoes with the walls from which
they reflect. The proposed echo labeling method is flexible: by changing the values of two
parameters, at every measurement we can vary between running an exhaustive search over all
labels and selecting only the most likely label. The former always finds the correct labeling, but
is considerably slower that the latter, which has a higher risk of picking a wrong label, but runs
almost in real-time. The proposed branch and prune method therefore allows users to specify
the desired speed–robustness trade-o↵ by simply configuring the two parameters.

To evaluate and use EchoSLAM in real environments, we built a three-wheel modular robot.
It can precisely follow a given piecewise linear trajectory, and after every segment play a sine
sweep and record the room impulse. The results of our experiment conducted in a classroom
on our campus demonstrate that the room geometry and robot’s measurement locations are
precisely recovered from the echoes of the nearest walls with unknown labels. Future work
involves more systematic evaluation of the system by performing more extensive numerical and
real world experiments.
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A Binaural Bat Without a Sense of
Direction Can Hear the Shape of
Rooms

If you refuse to take account of theory, then you have forgot-

ten that practice is often an o↵spring of theory.

Simply Transcribed: Quotations from Writings

Fausto Cercignani
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5.1 Introduction

In all the previous chapters we considered a collocated omnidirectional source and receiver
mounted together on a mobile robot that follows a trajectory inside an unknown room. In
Chapter 3 and Chapter 4 we proposed algorithms to recover rooms and trajectories from the
first-order echoes recorded by the robot by leveraging the kinematics measurements. However, if
we have no information about the kinematics, i.e. no constraints on the trajectory, our analysis
in Chapter 2 shows that propagation times of the first-order echoes cannot uniquely determine
the room geometry and localize the robot.

In 2D, this happens only in some special rooms or with particular trajectories. For exam-
ple, we cannot distinguish parallelograms obtained by shearing and scaling a rectangular room.
Moreover, given the first-order echoes measured along a linear trajectory, we can find infinitely
many rooms of various shapes with the same first-order echoes. In 3D, this is a common problem
for much wider set of rooms and trajectories, as well as for any room with less than six walls.

5.1.1 Main contributions

In this chapter we show that placing additional receivers on a robot enables a unique reconstruc-
tion of almost all rooms and trajectories. We also prove that for certain rooms, a mobile setup
without any fixed infrastructure inside a room is not su�cient for the unique localization: we
identify rooms in which we can never uniquely localize the robot regardless of the number of its
sources and receivers. As such “rooms” are either of an infinite length or height, they are not of
practical interest. For the others, we determine the smallest number of receivers that uniquely
specify rooms and trajectories with the first-order echoes. We show that we need at least two
receivers in 2D and three in 3D, and we identify the problems that arise with fewer receivers.

5.1.2 Outline

The problem setup is introduced in Section 5.2. As the analysis and the results di↵er for 2D
and 3D, we derive them separately. For the 2D setup in Section 5.3, we first assume to have one
source and one receiver, but unlike our analysis in Chapter 2, the source and the receiver are not
collocated. In Section 5.3.1 we examine all room-trajectory configurations that su↵er from non-
uniqueness in reconstruction with the collocated setup, and we show that a non-collocated setup
resolves some of these ambiguities, while some other appear. In Section 5.3.2 we prove that
by adding one receiver, we can uniquely specify room-trajectory configurations. Analogously,
we divide Section 5.4 concerning the 3D setup in two parts: in Section 5.4.1 we identify cases
when one source and two receivers cannot uniquely determine room-trajectory configurations,
while in Section 5.4.2 we add one receiver and prove that this resolves all ambiguities in the
reconstruction.

5.2 Problem setup

We assume a robot that autonomously moves inside an unknown room. An omnidirectional
acoustic source and omnidirectional receiver(s) are mounted on the robot. We denote the number
of receivers by M � 1 and we aim to find the smallest M that guarantees unique localization
of the robot and reconstruction of the room. The only available information are the first-order
echoes of the pulses emitted and recorded by the robot.
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Figure 5.1: A room with K = 4 walls {Pk}Kk=1

. The trajectory consists of N = 3 waypoints
{sn}Nn=1

. The waypoints are the locations of the source, while the receiver’s locations are marked

with {r(1)n }Nn=1

. The image sources are shown for k = 4. We illustrate the sound propagation

path from sn to r
(1)

n for every n and k, where the echoes from the same wall are indicated by the
same color. On the right, we depict the corresponding measurement matrix �(1).

The robot’s trajectory is defined by N waypoints {sn}Nn=1

, where sn 2 RD is the location of
the source at the nth waypoint and D is the dimension of the space. The orientation of the robot
can change at each waypoint n = 1, . . . , N , and it is given by un = [cos↵n, sin↵n]> with respect
to some reference direction. There are M receivers with a known relative geometry mounted on
the robot. Each receiver m = 1, . . . ,M is determined by its distance `(m) and the orientation
�

(m) from the source, with �(1) = 0. Then, the position of the mth receiver at the nth waypoint
r

(m)

n is computed from
r

(m)

n = sn + `

(m)

u

(m)

n , (5.1)

where u

(m)

n = [cos (↵n + �m), sin (↵n + �m)]>.
We describe a room with K planar walls {Pk}Kk=1

and reuse the same notation as in the
previous chapters, i.e., Pk = (nk, qk), where nk 2 RD is the unit normal and qk is the distance of
the wall from the origin. At every waypoint, the source produces a pulse and M receivers register
the direct path of the sound and its reflections from the walls. In the image source model [4, 24]
we replace the reflections from the walls with signals produced by image sources; they are mirror
images of the real source across the corresponding walls. For a first-order echo and the kth wall,
the image source esnk of the real source sn is given as esnk = sn + 2

�

(pk � sn)>nk

�

nk, where
pk 2 RD is any point on the kth wall. We illustrate the notation for m = 1, N = 3 and K = 4
in Fig. 5.1.

The propagation time ⌧ (m)

nk of the sound wave from the source sn to the receiver r(m)

n reflected

once from the kth wall is proportional to the distance �(m)

nk between the image source esnk and
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r

(m)

n ,

⌧

(m)

nk =
�(m)

nk

cs
=

kesnk � r

(m)

n k
cs

,

where cs is the speed of sound.
We can thus find the distances �(m)

nk by measuring the times of arrival of the first-order
echoes. We assume that we can match echoes with their reflecting walls, so that their distances
have been given to us in a form of a matrix �(m) 2 RN⇥K with

�(m) = [�(m)

nk ]N,K
n=1,k=1

.

In this chapter we extend the notion of room-trajectory configurations R introduced in Chap-
ter 2. As we lose the symmetry of the collocated setup considered in the previous chapters, we
have to include the information about the robot’s orientation un; thus, a room-trajectory configu-
ration is defined as R =

�{P}Kk=1

, {(sn,un)}Nn=1

�

, and the corresponding distance measurements

are given by {�(m)

R }Mm=1

.

In the following, we address the question whether a collection of {�(m)

R }Mm=1

uniquely de-
termines a room-trajectory configuration R that generates it and find the smallest M for which
it does. As it is clear that rotated, reflected and translated versions of R all give the same
{�(m)

R }Mm=1

, we consider them to be the same configuration. We formalize the uniqueness prob-
lem below:

Problem 5.1 What is the smallest M for which the probability of a unique recovery of room-
trajectory configuration R�{P}Kk=1

, {(sn,un)}Nn=1

�

from a collection of {�(m)

R }Mm=1

is equal to
one for all {P}Kk=1

and all {sn}Nn=1

?

In our analysis the uniqueness is considered under the following assumption:

Assumption 1 The orientations un of the robot are picked independently at random for every
n = 1, . . . , N following a non-degenerate probability density function.

We remark that certain ambiguities in the reconstruction remain even with an arbitrarily
large number of sources and receivers; this means that some information is irremediably lost and
cannot be recovered from the first-order echoes. This happens only in some specific rooms, which
are not of practical interest (e.g. infinitely long corridors and infinitely tall prisms). As results
di↵er for 2D and 3D, we analyze them separately.

5.3 Two-dimensional setup

We begin with the 2D case, where the walls are lines and their unit normals are parametrized as
nk = [cos'k, sin'k]>, with 'k 2 [0, 2⇡) for every k.

In Chapter 2, we proved that a single collocated source and receiver do not uniquely determine
rooms and trajectories. The minimal modification of such a setup is to keep M = 1 and move the
receiver away from the source. We consider this case in Section 5.3.1 and show that while some
ambiguities are resolved, new ones arise. We therefore increase the number of receivers to M = 2
in Section 5.3.2 and prove that such setups uniquely specify room-trajectory configurations.
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Figure 5.2: One source sn and one non-collocated receiver r(1)n at the nth waypoint. Vector nk

is the outward-pointing wall normal and esnk is the image source corresponding to the first-order
echo. The blue lines represent the reference direction.

5.3.1 2D: One receiver

Consider a source and receiver mounted on a robot at distance `; an example with one wall is
illustrated in Fig. 5.2. The measurement �(1)

nk between the image source esnk and the receiver

r

(1)

n = sn + `un is given as

(�(1)

nk )
2 = kesnk � r

(1)

n k2 = 4d2nk � 4dnk`n
>
k un + `

2

, (5.2)

where dnk = qk � n

>
k sn is the distance of sn from the kth wall.

While the separation of the source and receiver resolves one of the main ambiguities of the
collocated setup—non-unique reconstruction of parallelogram rooms—it does not come without
cost. The width of infinitely long corridors and trajectories in rectangular rooms are not uniquely
determined by (5.2). We analyze these cases from Section 5.3.1.1 to Section 5.3.1.4.

5.3.1.1 Rectangular rooms

Rectangular rooms are uniquely specified by�(1), but the waypoints are not; given a rectangular
room, there are four source-receiver pairs at distance ` with the same �(1).

To show this, denote sn = [sn,x, sn,y]> and substitute the wall normals of a rectangular room,

n

1

=

"

0

1

#

,n

2

=

"

�1

0

#

,n

3

=

"

0

�1

#

,n

4

=

"

1

0

#

, (5.3)

into (5.2). We obtain

(�(1)

n1 )
2 = 4(q

1

� sn,y)
2 � 4(q

1

� sn,y)` sin↵n + `

2

,

(�(1)

n2 )
2 = 4(q

2

+ sn,x)
2 + 4(q

2

+ sn,x)` cos↵n + `

2

,

(�(1)

n3 )
2 = 4(q

3

+ sn,y)
2 + 4(q

3

+ sn,y)` sin↵n + `

2

,

(�(1)

n4 )
2 = 4(q

4

� sn,x)
2 � 4(q

4

� sn,x)` cos↵n + `

2

,

(5.4)

for every n = 1, . . . , N .



118 A Binaural Bat Without a Sense of Direction Can Hear the Shape of Rooms

Figure 5.3: Distinct waypoints in the same rectangular room can measure the same dis-
tances �(1)

R = �
(1)

R0 , where R =
�{P}Kk=1

, {(sn,un)}Nn=1

}� is illustrated in a), while R0 =
�{P}Kk=1

, {(s0n,u0
n)}Nn=1

}� can be any room-trajectory configuration from b) to d). Identical
measurements in two setups are marked with the same color.

The system (5.4) does not change if we replace the robot’s orientation and the coordinates
(↵n, sn,x, sn,y) with one of the following triples: (2⇡ � ↵n, sn,x, sn,y + ` sin↵n), (⇡ � ↵n, sn,x +
` cos↵n, sn,y) or (⇡+↵n, sn,x + ` cos↵n, sn,y + ` sin↵n). This implies that the waypoints cannot
be reconstructed uniquely from �(1), but the set of possible room-trajectory configurations is
finite, unlike with a collocated source and receiver. An example is illustrated in Fig. 5.3.

5.3.1.2 Infinitely long corridors

If a collocated source and receiver are placed in a corridor of infinite length, the distance between
a waypoint and two walls uniquely determines the width of the corridor. This is not the case
for a non-collocated setup; an example of two corridors with the same �(1) but di↵erent widths
and waypoints is given in Fig. 5.4.

We describe corridors of infinite length with the normals n

1

and n

3

from (5.3). Then, the

two measured distances correspond to �(1)

n1 and �(1)

n3 from (5.4). Without loss of generality, we
assume that the origin lies on one wall, i.e. q

3

= 0 and q

1

= w, where w is the width of the
corridor. From (5.2) we obtain

(�(1)

n1 )
2 = 4(w � sn,y)

2 � 4(w � sn,y)` sin↵n + `

2

,

(�(1)

n3 )
2 = 4s2n,y + 4sn,y` sin↵n + `

2

.

(5.5)

For fixed ` and some chosen value of w, we can compute the values of sn,y and ↵n for the
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Figure 5.4: Two infinitely long corridors with di↵erent widths w and w

0 and same distances
�

(1)

R =�(1)

R0 . Identical measurements are marked with the same color.

given measurements �(1)

n1 and �(1)

n3 from (5.5) independently for every n = 1, . . . , N . We can
therefore vary the value of w within a certain interval,1 and reproduce any number of infinitely
long corridors of di↵erent widths and trajectories, but the same measurements �(1)

n1 and �(1)

n3 .

5.3.1.3 Parallelogram rooms

Contrary to the case of a collocated source and receiver, with a non-collocated setup we can
uniquely distinguish parallelogram rooms given the first-order echoes. We prove this by contra-
diction. We first take a parallelogram room {Pk}4k=1

, set the origin at the intersection of the walls

k = 2 and k = 3, so that q

2

= q

3

= 0, and compute �(1)

R for some randomly chosen waypoints
and orientations {(sn,un)}Nn=1

. Then we assume that there exists a shear factor that transforms
{Pk}4k=1

into a distinct parallelogram {P 0
k}4k=1

with waypoints and orientations {(s0n,u0
n)}Nn=1

,

such that �(1)

R0 =�
(1)

R ; our goal is to find R0 for which R0 6= R.
Without loss of generality, let {Pk}4k=1

enclose a rectangle (5.3), and let the normals of
{P 0

k}4k=1

be

n

0
1

=

"

0

1

#

,n

0
2

=

"

cos'0

sin'0

#

,n

0
3

=

"

0

�1

#

,n

0
4

= �
"

cos'0

sin'0

#

, (5.6)

where '0 62 {0,⇡}. The measurements in the rectangular and parallelogram rooms are computed
from (5.2) by replacing the values of the wall normals with (5.3) and (5.6), respectively. When

1The width w cannot take arbitrary real values because the system of quadratic equations does not always
have a solution.
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the measurements in the two rooms are identical, we have:

(q
1

� sn,y)
2 � (q

1

� sn,y)` sin↵n = (q0
1

� s

0
n,y)

2 � (q0
1

� s

0
n,y)` sin↵

0
n, (5.7)

s

2

n,y + sn,y` sin↵n = s

02
n,y + s

0
n,y` sin↵

0
n, (5.8)

s

2

n,x + sn,x` cos↵n = s

2

n + sn` cos(↵
0
n � '

0), (5.9)

(q
4

� sn,x)
2 � (q

4

� sn,x)` cos↵n = (q0
4

+ sn)
2 + (q0

4

+ sn)` cos(↵
0
n � '

0), (5.10)

where sn = s

0
n,x cos'

0 + s

0
n,y sin'

0.
A set of distances measured at the nth waypoint adds four equations of the form (5.7)–(5.10)

with three new unknowns (s0n,x, s
0
n,y,↵

0
n) to the system. Such an overdetermined system is not

necessarily inconsistent; indeed, with q

0
1

= q

1

, q

0
4

= q

4

, sn,x = �sn and sn,y = s

0
n,y it has

solutions. From (5.7) and (5.8) it follows that sin↵0
n = sin↵n, while (5.9) and (5.10) imply that

cos↵n = � cos(↵0
n � '

0) for every n = 1, . . . , N . Combined, we have either that

'

0 2 {0,⇡}, ↵

0
n = ↵n =

'

0 + ⇡

2
or ↵

0
n = ⇡ � ↵n =

'

0

2
.

We can therefore find a parallelogram that satisfies �(1)

R0 = �
(1)

R if ↵n = ↵

1

or ↵n = ⇡ � ↵

1

for
every n, which occurs with probability 0 under Assumption 1.

To find the solution to (5.7)–(5.10) in general, we can first determine s

0
n,y and ↵0

n from (5.7)
and (5.8) up to horizontal and vertical reflections as in Section 5.3.1.1. We can then rewrite (5.9)
and (5.10) as quadratic equations in one variable, s0n,x, with the leading coe�cients of cos2 '0.
However, the coe�cients in front of the linear term are not identical; their di↵erence is 2q0

4

cos'0.
As two quadratic equations in one variable have a solution when all coe�cients are proportional,
it follows that q0

4

= 0 or '0 = ±⇡/2.
The above results prove that there do not exist two distinct parallelogram rooms in which

we can obtain the same first-order echoes under the Assumption 1. In other words, �(1)

R0 =�
(1)

R
implies R0 = R. On the other hand, the presented example for which the system (5.7)–(5.10) is
consistent shows that if a robot does not change its orientation, or it rotates only by 180�, then
we cannot uniquely recover parallelogram rooms from the measured �(1).

5.3.1.4 Linear trajectories

Given a collocated source and receiver, we showed in Chapter 2 that for any arbitrary room with
K walls and distances measured along any linear trajectory inside the room, there exists another
room with the same distances obtained at di↵erent collinear waypoints.

Here we derive a result for triangular rooms, K = 3. We show that there exist linear
trajectories along which the robot can measure the same�(1) as in some other rooms of di↵erent
shapes (for the proof see Appendix 5.A). In other words, there exist equivalence classes of rooms
and trajectories with respect to�(1). An example of two rooms from the same class is illustrated
in Fig. 5.5. This however does not exclude the existence of linear trajectories for which the
measured �(1) uniquely specifies the room-trajectory configuration. Though our claim for the
non-collocated setup is not as strong as for the collocated setup, the provided result shows that
collinear waypoints can cause ambiguities in the reconstruction.
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Figure 5.5: Two rooms with di↵erent geometries and same distances �(1)

R = �
(1)

R0 . The
trajectory in the room on the left is linear. Identical measurements are marked with the same
color.

5.3.2 2D: Two receivers

We now assume two receivers and a source mounted on a robot. As illustrated in Fig. 5.6, the
source sn is the midpoint of the segment whose endpoints are receivers r(1)n and r

(2)

n ,

r

(1)

n = sn + `un, r

(2)

n = sn � `un, (5.11)

for every n = 1, . . . , N .
The distances �(1)

nk and �(2)

nk that correspond to the propagation times of the first-order echoes

recorded by r

(1)

n and r

(2)

n are given by

(�(1)

nk )
2 = kesnk � r

(1)

n k2 = 4d2nk � 4dnk`n
>
k un + `

2

, (5.12)

(�(2)

nk )
2 = kesnk � r

(2)

n k2 = 4d2nk + 4dnk`n
>
k un + `

2

. (5.13)

Instead of studying (5.12) and (5.13) directly, we refer to their sum and di↵erence,

(�(2)

nk )
2 + (�(1)

nk )
2 = 8d2nk + 2`2, (5.14)

(�(2)

nk )
2 � (�(1)

nk )
2 = 8dnk`n

>
k un. (5.15)

As we will see, (5.14) and (5.15) lead to forms from Chapter 2 and facilitate the analysis.
Let the columns of S 2 RD⇥N andU 2 RD⇥N contain the robot’s waypoints and orientations,

respectively, S
def

= [s
1

, . . . , sN ],U
def

= [u
1

, . . . ,uN ]. Let the columns ofN 2 RD⇥K be the outward

looking normal vectors of walls, N
def

= [n
1

, . . . ,nK ], and q

def

= [q
1

, . . . , qK ]> 2 RK be the vector
of distances between the walls and the origin. Furthermore, recall from Chapter 2 that the
point-to-plane distance matrix (PPDM) D is defined as D = 1q> � S

>
N , (2.2).

With this notation in hand, and by using the apostrophe 0 to denote the corresponding vectors
and matrices in a room-trajectory configuration R0, we can rewrite (5.14) and (5.15) in matrix
form and state the following lemma:
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Figure 5.6: One source sn and two receivers r(1)n and r

(2)

n provide the distance measurements
�(1)

nk and �(2)

nk . They are proportional to the propagation times of the pulses produced by sn,

reflected from the wall k, and recorded by r

(1)

n and r

(2)

n .

Lemma 5.2 Two room-trajectory configurations R and R0 in 2D generate the same set of
distances {�(m)

R }2m=1

and {�(m)

R0 }2m=1

if and only if

D = D

0 and (5.16)

U

>
N = 0, (5.17)

where

U

def

=

"

U

�U

0

#

=

"

u

1

. . . uN

�u

0
1

. . . �u

0
N

#

, (5.18)

N

def

=

"

N

N

0

#

=

"

n

1

. . . nK

n

0
1

. . . n

0
K

#

. (5.19)

Proof. Assume that for some R and R0 we have �(m)

R =�(m)

R0 for m 2 {1, 2}. Equivalently,

�
(1)

R +�(2)

R =�(1)

R0 +�
(2)

R0 ,

�
(1)

R ��(2)

R =�(1)

R0 ��(2)

R0 .

(5.20)

By substituting (5.14) and (5.15) into (5.20), and together with dnk � 0 for every n = 1, . . . , N
and k = 1, . . . ,K, we obtain (5.16) and (5.17). ⌅

As in Chapter 2 we already studied (5.16) in detail, the advantage of rewriting (5.12)
and (5.13) as (5.14) and (5.15) is now evident. In Chapter 2 we proved that two room-trajectory
configurations have the same PPDM if and only if S>

N = 0, where

S

def

=

"

S

�S

0

#

=

"

s

1

. . . sN

�s

0
1

. . . �s

0
N

#

.
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The two conditions (5.16) and (5.17) are similar: (5.16) requires that the columns of S are in
the nullspace of N>, while (5.17) requires that the columns of U are in the nullspace of N>.

To check the existence of configurations that are not uniquely specified by {�(m)

R }2m=1

, we first
need to impose linear dependencies among the columns ofN>, and then find the waypoints S and
orientations U that lie in the nullspace. By letting r = rank(N), we select r linearly independent
columns ofN> and assume that the remaining columns are their linear combinations. In addition
to these linear dependencies, the columns of N> are subject to non-linear constraints; recall that
the rows of N> contain unit normals nk and n

0
k which introduce non-linear relationships among

the columns.
The solutions to those linear and non-linear equations determine the room-trajectory con-

figurations that are not uniquely specified by {�(m)

R }2m=1

. The absence of solutions is there-
fore desired; it proves that two distinct room-trajectory configurations cannot have the same
{�(m)

R }2m=1

.
In Chapter 2 we provided a thorough analysis of the nullspace of N

> and identified all
configurations that satisfy (5.16), i.e. S>

N = 0. More precisely, we first found the basis of the
nullspace ofN> by solving the aforementioned system of linear and non-linear constraints. Then,
we determined S such that its columns lie in the nullspace; as there are no other constraints on
S, the solution always existed. Now we have to incorporate an additional condition (5.17) to the
previous analysis. It states that the columns of U are also in the nullspace of N>, but contrary
to (5.16), the normalization constraint on the columns of U narrows the solution space.

In the following we show that the system of (5.16) and (5.17) either does not have a solution or
it happens with probability 0 under Assumption 1, and hence, the room-trajectory configurations
are uniquely defined by the first-order echoes recorded by two receivers. As the nullspace of N>

is already computed for every r = {1, 2, 3} in Section 2.4, we start from that result and focus
our analysis on incorporating the condition U

>
N = 0.

5.3.2.1 Rank-1: Infinitely long corridors

We assume that rank(N) = 1, so that every column of N> is a scaled version of the first column,
2

6

6

4

sin'0
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4
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b

0

3

7

7

5

cos'0
k. (5.21)

Recall from Section 2.4.2 that solutions to (5.21) give infinitely long corridors which are uniquely
defined by S

>
N = 0, but their waypoints are not. The nullspace of N> is spanned by three

vectors,

e

1

=
h

�a 1 0 0
i>

, e

2

=
h

�b 0 1 0
i>

, e
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=
h

0 0 0 1
i>

,

so for the columns of U to lie in the nullspace of N>, they have to be of the form

"
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0
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=
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4
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, (5.22)
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where �
1

,�

2

and �
3

2 R. By setting a = 0 and b = 1, we fix the rotation between two equivalent
corridors, and together with (5.22) we obtain

cos↵n = cos↵0
n, (5.23)

which implies ↵n = ↵

0
n or ↵n = ⇡ � ↵

0
n.

The columns of S also satisfy
"

sn

�s

0
n

#

= µ

1

e

1

+ µ

2

e

2

+ µ

3

e

3

, (5.24)

where µ

1

, µ

2

and µ

3

2 R. This further implies that the coordinates of {sn}Nn=1

and the x coor-

dinates of {s0n}Nn=1

can be chosen arbitrarily, while the y coordinates of {s0n}Nn=1

are computed
from (5.24).

These results prove that two receivers and one source cannot be uniquely localized in infinitely
long corridors: if 1) we translate the robot along the line parallel to the walls by (5.24), or 2)
we reflect the robot across the line perpendicular to the walls by (5.23), we obtain the same
first-order echoes. Note however that 1) and 2) are valid for a robot with any number of sources
and receivers. A mobile setup without any external sensor or a fixed landmark su↵ers from
localization ambiguities in infinitely long corridors for any M � 1.

5.3.2.2 Rank-2: Parallelogram rooms

Let rank(N) = 2, so that
"

cos'k

sin'k

#

=

"

a b

0 d

#"

cos'0
k

sin'0
k

#

. (5.25)

From Section 2.4.1 we know that (5.25) defines infinitely many distinct parallelograms that
satisfy S

>
N = 0, so the condition (5.16) is not su�cient to uniquely specify room-trajectory

configurations. A basis for the nullspace N

> is

e

1

=
h

�a �b 1 0
i>

, e

2

=
h

0 �d 0 1
i>

,

so the columns of U are related as
"

un

�u

0
n

#

= e

1

�

1

+ e

2

�

2

, (5.26)

where �
1

,�

2

2 R. We can rewrite (5.26) as
"

cos↵n

sin↵n

#

=

"

a 0

b d

#"

cos↵0
n

sin↵0
n

#

, (5.27)

for n = 1, . . . , N . For some arbitrarily chosen a, b and d, the solution to (5.27) shows that

we can find two distinct parallelograms with the same {�(m)

R }2m=1

only if un and u

0
n happen

with probability 0 under Assumption 1. More precisely, from (5.27) we can compute the robot’s
orientation at two waypoints (e.g. ↵

1

and ↵
2

), while for n = 3, . . . , N we must have ↵n = ↵

1

,
↵n = ↵

1

+ ⇡, ↵n = ↵

2

or ↵n = ↵

2

+ ⇡ for the system to be consistent. This happens with
probability 0 under Assumption 1.
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5.3.2.3 Rank-3: Linear trajectories

For rank(N) = 3 we assume that one column of N> is a linear combination of the remaining
independent columns,

cos'k =
h

a b c

i

2

6

6

4

sin'k

cos'0
k

sin'0
k

3

7

7

5

. (5.28)

As shown in Section 2.4.3, (5.28) implies that we can find infinitely many distinct rooms that
satisfy S

>
N = 0 when the corresponding robot’s trajectory is linear.

The nullspace of N> is spanned by one vector e
1

=
h

�b �c 1 �a

i>
, so the columns of

U are of the form [un,�u

0
n]

> = �e

1

, where � 2 R. Rewritten as

2

6

6

4

sin↵n

cos↵0
n

sin↵0
n

3

7

7

5

=

2

6

6

4

b

c

�a

3

7

7

5

cos↵0
n,

we recognize the form of (5.21) for which the solution exists only for ↵n = ↵

1

or ↵n = ↵

1

+ ⇡,
and ↵0

n = ↵

0
1

or ↵0
n = ↵

0
1

+ ⇡, for every n = 1, . . . , N .
On the one hand, these constant values for the robot’s orientation occur with probability 0

under Assumption 1 and prove that two distinct rooms have two distinct sets of measurements
{�(m)

R }2m=1

obtained at linear trajectories with arbitrarily chosen robot’s orientations. On the
other hand, the result shows that with one source and two receivers we cannot uniquely recon-
struct rooms of arbitrary shapes if the robot moves in linear trajectory and it does not change
its direction along the path.

The conducted analysis proves the following theorem:

Theorem 5.3 Consider a mobile robot with one acoustic source whose waypoints and orienta-
tions are picked independently at random in a 2D room. Two is the minimal number of receivers
for which equivalence classes of room-trajectory configurations with respect to first-order echoes
recorded by these receivers have measure 0.

In Table 5.1 we summarize all the results on uniqueness in room reconstruction and robot’s
localization in 2D. The table illustrates the outcome of moving from a collocated to a non-
collocated setup with one source and one receiver, and the advantage of introducing a second
receiver.

5.4 Three-dimensional setup

In 3D, the walls are represented as planes with normals parametrized in spherical coordinates,
nk = [sin ✓k cos'k, sin ✓k sin'k, cos ✓k]> where 'k 2 [0, 2⇡) and ✓k 2 [0,⇡).

We start with M = 2 and investigate if (5.16) and (5.17) are su�cient for a unique recon-
struction of room-trajectory configurations in 3D. While this is the minimal number of receivers
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Table 5.1: Uniqueness in room reconstruction and robot’s localization in 2D for di↵erent M .
Symbols 3 and 7 indicate if the reconstruction is unique or not, respectively.

M = 1⇤ M = 1 M = 2

room loc. room loc. room loc.

infinitely long corridors, r = 1 3 7 7 7 3 7

parallelogram rooms, r = 2 7 7 3 7 3 3

linear trajectories, r = 3 7 7 7 7 3 3

⇤ Collocated source and receiver; results derived in Chapter 2.

Figure 5.7: a) One source sn and two receivers {r(m)

n }2m=1

provide measurements {�(m)}2m=1

which are not su�cient for a unique reconstruction of room-trajectory configurations in 3D. b)

One source sn and three receivers {r(m)

n }3m=1

ensure a unique reconstruction of room-trajectory
configurations in 3D.

that ensures uniqueness in 2D, Section 5.4.1 proves that this is not the case in 3D. We increase
the number of receivers to M = 3 in Section 5.4.2 and show that this resolves all ambiguities in
the reconstruction.

5.4.1 3D: Two receivers

We take the setup from Section 5.3.2 and place it in a 3D room. The receiver’s locations are
given by (5.11), where un = [sin↵n cos�n, sin↵n sin�n, cos↵n]>. An example of one wall and
one waypoint is illustrated in Fig. 5.7a.

To confirm that the case of M = 2 does not uniquely specify room-trajectory configurations
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from {�(m)}2m=1

defined by (5.12) and (5.13), we consider rank(N) = 2 and assume that
2
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6

6

6

6

4

cos ✓0k

sin ✓k cos'k

sin ✓k sin'k

cos ✓k

3
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7

7

7

7
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=
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a b

c d

0 f

0 0
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7

7

7

7

5

"

sin ✓0k cos'
0
k

sin ✓0k sin'
0
k

#

. (5.29)

In Section 2.5.2, we show that we can find infinitely many “rooms” that satisfy (5.29). These
“rooms” are described by two pairs of parallel walls without the ceiling and the floor. The
nullspace of N is spanned by four vectors

e

1

=
h

�a �b 1 0 0 0
i>

,

e

3

=
h

0 �f 0 0 1 0
i>

,

e

2

=
h

�c �d 0 1 0 0
i>

,

e

4

=
h

0 0 0 0 0 1
i>

,

so the columns of U are
"

un

�u

0
n

#

= �

1

e

1

+ �

2

e

2

+ �

3

e

3

+ �

4

e

4

, (5.30)

where �
1

,�

2

,�

3

and �
4

2 R. We can further rewrite (5.30) as

"

sin↵n cos�n

sin↵n sin�n

#

= T
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6

6

6

6

4

sin↵0
n cos�

0
n

sin↵0
n sin�

0
n

cos↵0
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cos↵n

3

7

7

7

7

7

5

, where T =

"

c 0 0 �a

d f 0 �b

#

, (5.31)

and obtain two equations with four unknown angles for every n = 1, . . . , N . In such an underde-
termined system, we can pick any values for {↵n,�n}Nn=1

and compute {↵0
n,�

0
n}Nn=1

. In a “room”
without ceiling and floor we can therefore pick a robot trajectory and orientations at random,
measure the distances {�(m)}2m=1

, and find a multitude of sheared “rooms” without ceiling and
floor with the same {�(m)}2m=1

from (5.29) and (5.31). The reconstruction with one source and
two receivers is thus not unique in 3D.

5.4.2 3D: Three receivers

Consider a setup from the previous section enhanced by a new noncollinear receiver, as illustrated
in Fig. 5.7b. We denote its location by r

(3)

n and together with (5.11) have

r

(1)

n = sn + `un, r

(2)

n = sn � `un, r

(3)

n = sn + `vn.

Here, vn is a unit vector determining the orientation of r(3)n , vn = [sin �n cos �n, sin �n sin �n,
cos �n]>, such that for every n = 1, . . . , N , we have

u

>
n vn = C, where C 2 R. (5.32)

In addition to �(1)

nk and �(2)

nk from (5.12) and (5.13), we obtain the measurements of �(3)

nk that

correspond to the times of flight of the first-order echoes between sn and r

(3)

n ,

(�(3)

nk )
2 = kesnk � r

(3)

n k2 = 4d2nk + `

2 � 4dnk`n
>
k vn. (5.33)
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By combining (5.33) with (5.16) and (5.17), we can establish the following lemma:

Lemma 5.4 Two room-trajectory configurations R and R0 in 3D generate the same set of
distances {�(m)

R }3m=1

and {�(m)

R0 }3m=1

if and only if

D = D

0
,

U

>
N = 0, and

V

>
N = 0, (5.34)

where D is defined by (2.2), U by (5.18), N by (5.19) and

V

def

=

"

V

�V

0

#

=

"

v

1

. . . vN

�v

0
1

. . . �v

0
N

#

.

Proof. The proof follows from (5.33) and (5.16). ⌅

A new constraint (5.34) specifies that the columns of V have to be in the nullspace of N>, so
the existence of room-trajectory configurations that satisfy Lemma 5.4 also relies on the nullspace
of N>. We can reuse the analysis from Section 2.5, and extend it by requiring U

>
N = 0 and

V

>
N = 0.

5.4.2.1 Rank-1: Infinitely long and tall corridors

When rank(N) = 1 in 3D, five columns of N> are scaled version of a single column,
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5

sin ✓0k cos'
0
k. (5.35)

Normals that satisfy (5.35) define rooms with parallel walls to which we refer as infinitely long
and tall corridors (see Section 2.5.1). They are uniquely defined by S

>
N , but their waypoints

are not. Such a result holds even if we arbitrarily increase the number of receivers. To see that,
let us find the nullspace of N . It is spanned by five vectors

e

1

=
h

�a 1 0 0 0 0
i>

,

e
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=
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0 0 0 0 1 0
i>

,

e
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=
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, e
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,

so the columns of U have to be of the form
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e

5

, (5.36)
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where �
1

,�

2

,�

3

,�

4

and �
5

2 R. From (5.36) we have

c sin↵0
n cos�

0
n = sin↵n cos�n + a sin↵n sin�n + b cos↵n. (5.37)

By setting a = b = 0 and c = 1 we only fix the rotation of R and from (5.37) we get that

sin↵n = sin↵0
n, cos�n = cos�0

n, or

sin↵n = � sin↵0
n, cos�n = � cos�0

n.
(5.38)

There are four solutions to (5.38):

u

0
n =

h

sin↵n cos�n sin↵n sin�n cos↵n

i>
, or

u

0
n =

h

sin↵n cos�n sin↵n sin�n � cos↵n

i>
, or

u

0
n =

h

sin↵n cos�n � sin↵n sin�n cos↵n

i>
, or

u

0
n =

h

sin↵n cos�n � sin↵n sin�n � cos↵n

i>
,

(5.39)

which are related by reflection. Moreover, the columns of V have to be of the same form as (5.36),
so we can repeat the derivation from (5.36) to (5.39) for V . The four values of v0

n are analogous
to the expressions in (5.39), where ↵n and �n are replaced by �n and �n, respectively. Therefore,
we can find di↵erent setups that satisfy (5.16), (5.17), (5.34) and (5.32) for every n, which proves
that three receivers and one source cannot uniquely recover robot’s orientations in infinitely long
and tall corridors.

This result is not surprising; equivalently to the 2D case, this nonuniqueness occurs for any
setup regardless of the number of sources and receivers: 1) we can always translate the setup
along the plane parallel to the walls, and 2) we can always reflect the setup across the planes
perpendicular to the walls, and obtain the same first-order echoes.

5.4.2.2 Rank-2: Parallelepipeds and prisms without bases

We considered rank(N) = 2 in Section 5.4.1 to prove that one source and two receivers are
not su�cient to uniquely reconstruct room-trajectory configurations from the first-order echoes.
Here we show that the additional constraint (5.34) resolves this ambiguity.

For (5.34) to be satisfied for r = 2, we assume that

"
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5

, (5.40)

where T is given in (5.31).
Moreover, the locations of the third receivers in the two rooms satisfy

u

>
n vn = C and u

0>
n v

0
n = C

0
, (5.41)

so they have one degree of freedom for every n in every room.
From (5.31), (5.40) and (5.41), we then obtain 10 equations with eight unknowns for every

n = 1, . . . , N . This overdetermined system of equations is inconsistent for arbitrarily chosen un

and u

0
n, and it has a solution only with probability 0 under Assumption 1.
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5.4.2.3 Rank-3: Miscellaneous geometries

For rank(N) = 3, we have
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. (5.42)

This case is studied in Section 2.5.4, where we obtain that rooms of miscellaneous geometries,
including the practically relevant shoebox rooms and all rooms with less than six walls, are not
uniquely defined by (5.16).

The nullspace of N is spanned by three vectors
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where �
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2 R. This can further be written as
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which is analogous to (5.42) and solved in Section 2.5.4. There are two results: ↵n is a function
of arbitrarily chosen �n, or, ↵n is chosen arbitrarily, while �n is a constant. In any case, either
one of the angles is constrained, which occurs with probability 0 under Assumption 1.

5.4.2.4 Rank-4: Planar trajectories

The case of rank(N) = 4 assumes
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In Section 2.5.6 we solve (5.43) and find infinitely many distinct rooms that satisfy (5.16) if the
robot’s trajectory is planar.

The nullspace of N> is spanned by two vectors

e
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=
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�a �b �c 1 0 �d

i>
, e
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=
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�e �f �g 0 1 �h
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,
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so the columns of U satisfy
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To solve (5.44), we refer to the analogous form (5.29) solved in Section 2.5.2. It has two distinct
solutions: ↵n and �n are constants, or, ↵n is a function of an arbitrarily chosen �n. Since un

cannot be chosen at random for every n, we conclude that this case happens with probability 0
under Assumption 1 even without the third receiver.

5.4.2.5 Rank-5: Linear trajectories

Finally, let rank(N) = 5, so that one column of N> is a linear combination of the remaining
independent columns,
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In Section 2.5.7 we show that from (5.45) we can find infinitely many distinct rooms that sat-
isfy (5.16) if the robot’s trajectory is linear.
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Analogously to (5.35), this system has solutions only for the constant values of {↵n,�n}Nn=1

and
{↵0

n,�
0
n}Nn=1

. As this happens with probability 0 under Assumption 1, we do not have to carry
out an analysis for the third receiver.

The results provided in this section prove the following theorem:
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Figure 5.8: The only room geometries that cannot be uniquely reconstructed from the first-
order echoes recorded by two receivers: a) “rooms” with two pairs of parallel walls, b) “rooms”
with any number of walls parallel to a line.

Table 5.2: Uniqueness in room reconstruction and robot’s localization in 3D for di↵erent M .
Symbols 3 and 7 indicate if the reconstruction is unique or not, respectively.

M = 1⇤ M = 2 M = 3

room loc. room loc. room loc.

r = 1 3 7 3 7 3 7

r = 2 7 7 7 7 3 3

r = 3 7 7 3 3 3 3

r = 4 7 7 3 3 3 3

r = 5 7 7 3 3 3 3

⇤ Collocated source and receiver; results derived in Chapter 2.

Theorem 5.5 Consider a mobile robot with one acoustic source whose waypoints and orienta-
tions are picked at random in a 3D room. Three is the minimal number of receivers for which
equivalence classes of room-trajectory configurations with respect to first-order echoes recorded
by these receivers have measure 0.

It is noteworthy that the third receiver is required to ensure uniqueness in the 3D reconstruc-
tion only for the case of r = 2. In Section 2.5.2 and Section 2.5.3 we showed that this corresponds
to “rooms” with two pairs of parallel walls and “rooms” with any number of walls parallel to
a line, illustrated in Fig. 5.8. Any other room in 3D can be uniquely identified by one source
and two receivers mounted on a robot, as proved for r 2 {1, 3, 4, 5}. Furthermore, any robot’s
trajectory can be uniquely deduced by three receivers, unless the robot moves in infinitely long
and tall corridors, i.e. r = 1, which does not allow unique localization of mobile robots with
any number of sources and receivers. All the results on uniqueness in room reconstruction and
robot’s localization in 3D are summarized in Table 5.2.
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5.5 Conclusion

We showed that geometries of convex polyhedral rooms can be uniquely described by the first-
order echoes recorded by a few omnidirectional receivers. We established conditions on the
number of receivers, room geometry and robot trajectories under which the first-order echoes
define a room and trajectory uniquely.

Our characterization is complete in the sense that uniqueness is guaranteed for a robot with
two receivers in 2D and three receivers in 3D, while the setups with fewer receivers are proven to
su↵er from various ambiguities. Throughout the analysis the uniqueness in considered under the
assumption that the robot changes its direction arbitrarily. We however identify room-trajectory
configurations which are uniquely specified by first-order echoes even without this assumption, as
well as those for which the assumption is the essential enabler of uniqueness. Finally, we showed
that there exist rooms in which it is impossible to uniquely localize a robot from its first-order
echoes with any number of sources and receivers.

These theoretical findings provide a fundamental understanding of the constraints under
which one can achieve a unique solution to the range-only simultaneous localization and mapping
problem without fixed beacons.
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5.A Linear trajectories in 2D

Consider a room with three walls {Pk}K=3

k=1

, where translation and rotation are fixed by q

1

= 0,
q

2

= 0 and n

1

= [0, 1]>. Let the waypoints {sn}Nn=1

lie on the wall k = 1, sn,y = 0 for
n = 1, . . . , N , while the receiver’s locations are given by (5.1). Here we analyze setups with only

one receiver, so we can omit the superscript (1) denoting its index, rn = r

(1)

n .
Now consider a second room of a di↵erent shape {P 0

k}K=3

k=1

with fixed rotation n

0
1

= [0, 1]>

and translation q

0
1

= 0, s0
1,x = 0. The proof that the two rooms can have the same measurements

�R = �R0 is based on the observation that every wall k is a tangent to the circles centered at
{s0n}Nn=1

with radii {d0nk}Nn=1

. Therefore, every wall k is given by

cos'0
k(x� s

0
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0
n,y) = d

0
nk, (5.46)

where d

0
nk is computed from (5.2),
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0
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and the fact that �0
nk = �nk. From (5.46) it also follows that
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0
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0
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As sn,y = 0 implies that �2

n1 = `

2 for every n, the waypoints s0n satisfy
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For s0n,y 6= 0 we obtain r

0
n,y = 0; thus, all receivers {r0n}Nn=1

must lie on the wall k = 1 and

s

0
n,y = �` sin↵0

n. (5.49)

Given �R, we now construct walls P 0
2

and P 0
3

di↵erent than in the original room {Pk}3k=2

,
such that �R0 = �R. Let us start with k = 2. We can set the wall arbitrarily by choosing '0
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and ↵0
1

from [0, 2⇡). They determine d0
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by (5.47) and s

0
1,y by (5.49), such that �0
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distance of the wall from the origin is q0
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.
For the fixed wall ('0

2

, q

0
2

), we can find the coordinates of the second waypoint that satisfy
�0

22

= �
22

. Observe that we can choose ↵0
2

arbitrarily from [0, 2⇡) and compute s0y,2 from (5.49).
These values determine the distance d

0
22

by (5.47), from which we obtain s

0
x,2 in (5.48). Hence,

the waypoints s0
1

and s

0
2

are the centers of the circles whose common tangent is the wall k = 2
and the radii d0

12

and d

0
22

are such that �0
12

= �
12

and �0
22

= �
22

.
By letting s

0
1

and s

0
2

be also the centers of the circles with radii d0
13

and d

0
23

, respectively, we
can find their common tangent, which is the wall k = 3. We solve the system of two tangent
equations from (5.46) with k = 3, n = 1 and k = 3, n = 2, and have

s

0
x,2 cos'

0
3

+ (s0y,2 � s

0
1,y) sin'

0
3

= d

0
13

� d

0
23

.

By replacing d

0
13

and d

0
23

with their definitions in (5.47), we ensure that �0
13

= �
13

and �0
23

=
�

23

, and obtain one equation from which we compute '0
3

. As the explicit expression is rather
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unwieldy, we do not present it here. The distance of the wall from the origin is q

0
3

= d

0
13

+
s

0
1,y sin'

0
3

.
From the two fixed walls P 0

2

= ('0
2

, q

0
2

) and P 0
3

= ('0
3

, q

0
3

), we can now find the waypoints s0n
for every n = 3, . . . , N for which �0

n2 = �n2 and �0
n3 = �n3. We do so by solving the system of

two equations with two unknowns s0n,x and ↵0
n:

s

0
n,x cos'

0
2

� ` sin↵0
n sin'

0
2

= d

0
n2 � d

0
12

+ s

0
1,y sin'

0
2

s

0
n,x cos'

0
3

+ ` sin↵0
n sin'

0
3

= d

0
n3 � d

0
13

+ s

0
1,y sin'

0
3

,

where d

0
n2 and d

0
n3 are defined by (5.47). Finally, from ↵

0
n we get s0n,y by (5.49).

We showed that given�R measured at collinear waypoints in a room with three walls, we can
construct a di↵erent room such that �R0 = �R. Remark that, di↵erently from the collocated
setup, the trajectory in the equivalent room does not have to be linear.





Chapter 6

Coordinate Di↵erence Matrices:
Theory*

vs. vs. vs.
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Experience arises together with theoretical assumptions not

before them, and an experience without theory is just as in-

comprehensible as is (allegedly) a theory without experience.

Against Method

Paul Karl Feyerabend

*The material in this chapter is the result of joint work of the author (MK) with Gilles Baechler (GB),
Frederike Dümbgen (FD), Goolnosh Elhami (GE), Marta Mart́ınez Cámara (MMC) and Martin Vetterli (MV).
Author contributions: MK, GB, GE, MMC and MV designed the project. MK, GB, FD and GE proposed
CDMs and derived their properties (Section 6.2). MK and GB derived and implemented the point recovery in 1D
(Section 6.3), and proposed the vector-form approach (Section 6.4.1). MK derived the generalization to higher
dimensions (Section 6.4.2), and performed the overall statistical analysis (Section 6.5). MK, FD and GB put
CDMs in perspective with EDMs (Section 6.6). MK created all figures and graphs, as well as the code to generate
the graphs. MK wrote the chapter based on [92], which was written by MK, GB, GE and FD.
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6.1 Introduction

In Chapter 2 we introduced a point-to-plane distance matrix (PPDM), that is a matrix whose
entries are simply distances between the points and planes. We showed that PPDM presents a
good model for simultaneous localization and mapping, as its factorization allows us to jointly
reconstruct the unknown walls of a room (planes) and the unknown measurement locations
(points).

In this chapter, we address a more restricted and easier instance of simultaneous localization
and mapping—indoor localization in known environments. This problem happens to be related to
a number of other seemingly unrelated ones. For example, imagine that you are given the scores
of sport teams participating in a tournament and you are asked to rank them. If you are more
inclined towards acoustics, imagine that you need to calibrate the geometry of a microphone
array. Even though they appear very di↵erent at first glance, these three problems can be
solved with a common tool that we describe and analyze in this chapter. The key is to recast
these problems into a common framework, in which the goal is to recover a set of points from
their pairwise coordinate di↵erences. Although we motivate the use of coordinate di↵erences
in indoor localization, sport rankings and sensor array calibration, their applications extend to
more general ranking problems such as movie and commercial product ratings, as well as other
fields such as phase retrieval, calibration in circular tomography devices, and source localization,
to name a few.

A vast and mature literature looks at a framework similar to ours, where the task is to re-
trieve points from their pairwise Euclidean distances. This problem belongs to distance geometry
problems (DGPs), where a common scheme is to arrange these distances in a Euclidean distance
matrix (EDM) [48]. Several cost functions and optimization methods have been proposed for
recovering a point set from its EDM, and in particular the cases of missing and noisy measure-
ments have been treated [42, 61, 71, 137]. There exist thorough surveys on EDMs and distance
geometry [99, 115, 129]. The interest in EDMs resides in its wealth of its applications (wireless
sensor networks, dimensionality reduction, molecular conformation, localization, robotics), as
well as in the beauty of the related mathematical theory. For example, in wireless sensor net-
works, we can obtain the distance estimation between pairs of nodes from the signal strengths or
the times of arrival of the packets sent by other nodes, and rely on those distances to reconstruct
the network topology [2, 20, 43]. The molecular conformation problem is another instance of
a distance problem [66, 75], where the interatomic distances obtained from nuclear magnetic
resonance (NMR) data are used to recover the molecular structures.

In many applications however, more information than mere Euclidean distances between
pairs of points is available. For instance, NMR spectroscopy in addition to distances provides
the relative orientation of the atoms induced from bond and torsion angles [152]. In Chapter 7,
we showcase several other applications in which we can measure length and orientation of the
vectors between points, or directly obtain multidimensional di↵erence vectors.

6.1.1 Main contributions

As adapting EDM-based approaches for additional angular information is not straightforward,
in this chapter we propose and study a new framework suitable for a class of distance geometry
problems extended to vector measurements, known as vector geometry problems (VGPs), which
has recently attracted growing interest [17]. To establish and further develop the foundations
of VGPs, and inspired by EDMs, we propose to introduce new objects that we call coordinate
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di↵erence matrices (CDMs). Similar to their Euclidean distance counterpart, CDMs contain
di↵erences between the coordinates of pairs of points.

We put CDMs in perspective with respect to EDMs in terms of properties, characteristics
and algorithms. We propose methods to recover points from a variable number of coordinate
di↵erences and discuss the uniqueness and optimality of the solutions. We provide conditions on
the number and structure of measurements for the recovery to be well-defined, as well as perform
statistical analyses of the reconstruction errors.

The main building block for point recovery in any dimension is the CDM constructed from
one-dimensional point sets: givenD-dimensional di↵erence vectors betweenD-dimensional points,
we can simply create one CDM for each coordinate, and recover the coordinates of the points
independently. If we are given the di↵erence vectors of the points projected onto K � D frame
vectors, we can rely on the same idea to obtain a suboptimal but e�cient approach. Interestingly,
we show that this method in certain cases also leads to an optimal solution, even in the presence
of noise and missing measurements.

To summarize, the main contribution of this chapter is to lay down important mathematical
concepts for vector geometry problems by introducing and thoroughly studying CDMs. In the
next chapter, we will solve a variety of applications which can be formulated as coordinate
di↵erence problems and demonstrate the practical relevance of the CDM theory.

6.1.2 Outline

In Section 6.2 we introduce CDMs and study their properties. We provide a simple 1D point
recovery algorithm in Section 6.3, while in Section 6.4 we propose two algorithms for the point
recovery in higher dimensions: one which is optimal in the least-squares sense, and one which
is computationally more e�cient. We also identify cases in which these two algorithms coincide
and conduct an error analysis in Section 6.5. We put CDMs in perspective with EDMs in Sec-
tion 6.6 and compare their properties, required minimum number of measurements, uniqueness
of reconstruction, and their usefulness and applicability in problems other than point recovery.

6.2 Coordinate di↵erence matrices

Consider N one-dimensional points x = [x
1

, . . . , xN ]> 2 RN . We define a coordinate di↵erence
matrix C 2 RN⇥N with entries Cij = xi�xj as the matrix that contains the pairwise coordinate
di↵erences of points in x. It can be expressed as

C = x1> � 1x>
, (6.1)

where 1 is the all-one vector.
In Table 6.1, we provide a non-exhaustive list of properties of CDMs that are leveraged later

to reconstruct a point set from a given CDM (for derivations, see Appendix 6.A). These ten
properties are necessary conditions for a matrix C to be a CDM. It is worth mentioning that the
special case of equally spaced points results in the CDM being a Toeplitz matrix. For example,
if the points are integers on the interval [`, `+N ], for ` 2 Z, their corresponding CDM is of the
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Properties Description

P.1 Rank-2 rank(C) = 2 for N > 1

P.2 Triangle equality Cij = Cik + Ckj 8i, j, k
P.3 Skew-symmetry C = �C

>

P.4 Hollowness diag(C) = 0

P.5 Zero-sum 1>
C1 = 0

P.6 Columns as a solution set CDM of x = {Cij | 8i  N} is C

P.7 Row averaging 9c 2 R such that x+ c1 = 1

NC1

P.8 Translation invariance x and x+ c have the same CDM C

P.9 Imaginary eigenvalues Re(�i) = 0 for i = {1, 2}
P.10 Anti-symmetric eigenvalues �

1

= ��
2

Table 6.1: Properties of CDMs.

form:
2
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6

6

6

6

4

0 1 2 3 . . . N

�1 0 1 2 . . . N � 1
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...
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�N �(N � 1) �(N � 2) �(N � 3) . . . 0

3

7

7

7

7

7

5

.

Additionally, one of the ten necessary conditions from Table 6.1 is also a su�cient condition:

Proposition 6.1 A matrix C is a CDM if and only if its elements satisfy the triangle equality
Cij = Cik + Ckj for all triples (i, j, k).

Proof. The triangle equality of a matrix C implies both hollowness and skew-symmetry: Cij =
Cii + Cij ensures that Cii = 0, while Cii = Cij + Cji = 0 implies Cij = �Cji. Combining the
triangle equality with the skew-symmetry, we can express all elements as Cij = Cik � Cjk. We
define x = [C

1k, C2k, . . . , CNk]>, so that we can rewrite Cij as Cij = xi � xj for every i and j;
therefore, C is of the form (6.1), which concludes our proof. ⌅

An alternative way to check if the su�cient condition is satisfied is based on the close relation
between CDMs and consistent positive reciprocal matrices. For more details, see Appendix 6.B.

6.3 Recovering point embeddings from CDMs

When recovering points from a CDM, we might not know all its entries. To take into account
missing entries, we introduce a symmetric weight matrix W with non-negative entries, where
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Wij = 0 indicates that the entry (i, j) is missing. Moreover, Wij > 0 denotes the importance
of each di↵erence Cij and it can encompass for example multiple measurements of the same
di↵erence or the certainty about each measurement. To simplify the notation, we adopt the
convention that Wii = 0 for all i.

In addition to be missing, the measured di↵erences can also be noisy; in that regard, we
introduce the noise matrix Z, whose entries are independent noise realizations. We define an
incomplete and noisy CDM as:

e

C = (C +Z) �W . (6.2)

In case we have multiple measurements between the points xi and xj , the elements eCij and Zij

are the weighted average of the measurements and the noise realizations, respectively.
The inverse problem that arises naturally from (6.1) and (6.2) is formalized as follows:

Problem 6.2 Given a set of noisy one-dimensional di↵erences eCij for some i, j, recover the
set of points {xi}Ni=1

whose pairwise di↵erences best match the measurements.

6.3.1 Reconstruction algorithm

To solve Problem 6.2, we propose to estimate the points from a measured subset of their pairwise
di↵erences as:

b

x = argmin
x

f(x) = argmin
x

�

�

�

W � (x1> � 1x> � e

C)
�

�

�

2

F
.

The function f(x) is convex and di↵erentiable, so global minima correspond to its stationary
points. Setting the gradient to zero, we obtain the linear system Ax = e

v, where A = ⇤ �W ,
e

v = ( eC �W )1 and the entries of ⇤ are given by

⇤ij =

(

PN
k=1

Wik i = j,

0 otherwise.
(6.3)

The matrix A has a particular structure and belongs to the class of so-called M-matrices [83,
142]. We study its invertibility in the following section.

6.3.2 Invertibility of A

Let us define the weighted graph G = (x,W ), where vertices are represented by the points x

and their connecting edges are given by W . In general, graphs provide an interesting alternative
representation for CDMs, but in the scope of this chapter we solely leverage them to study the
invertibility of A.

Observe that A is the Laplacian matrix of its corresponding graph G, as it is the di↵erence
of the degree matrix ⇤ and the adjacency matrix W . Hence, rank(A) is at most N � 1 [72] and
it is not invertible.

This result is not surprising; indeed, Property P.8 states that we can recover the original
points only up to a translation. Without loss of generality, we arbitrarily fix x

1

= 0 to anchor
the translation. To that end, we remove the first entry of x and ev and denote the new vectors
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by x

0 and ev0. Similarly, we remove the first row and column of A to get A0, and we define the
matrices ⇤0, W 0 and e

C

0 analogously. This yields the following linear system:

A

0
x

0 = ev0
. (6.4)

6.3.2.1 Complete CDM

In the special case where we measure all pairwise di↵erences and assign them the same weight—
we call it a complete CDM—an analytic solution for (A0)�1 exists. Indeed, with ⇤0 = (N � 1)I
and W

0 = 11> � I, we obtain

(A0)
�1

=

✓

I � 11> � I

N � 1

◆�1

1

N � 1
=

I + 11>

N

. (6.5)

This can be easily verified by computing:
✓

I � 11> � I

N � 1

◆✓

N � 1

N

�

I + 11>�
◆

= I.

To recover x from a complete CDM, we substitute (6.5) into (6.4):

b

x

0 = (A0)
�1

e

v

0 =
I + 11>

N

e

C

01 =
1

N

e

C

01+ c1,

where c = 1

N

P

ij
e

C

0
ij is a constant that only translates the solution; this result confirms Property

P.7. We conclude that the optimal point recovery in the complete case corresponds to a simple
average of the rows of a CDM.

6.3.2.2 Incomplete and weighted CDM

In the following, we study the invertibility of A0 when some entries of the CDM are missing
or/and they have di↵erent assigned weights.

We say that the CDM C is connected if and only if its underlying graph G is connected, or
in other words, if for all indices i 6= j there is a path of indices i

1

, i

2

, . . . , im such that Wii1 6=
0,Wi1i2 6= 0, . . . ,Wi

m�1im 6= 0,Wi
m

j 6= 0. According to Kirchho↵’s matrix tree theorem [32], the
number of spanning trees of G is given by (G) = detA0. Obviously, G is connected if and only
if (G) 6= 0, or equivalently, if and only if A0 is nonsingular.

Observe that A

0 is weakly diagonally dominant, as
PN

j=1

Wij � PN
j=2

Wij for every row i.
When C is connected, then A

0 is reducible and for at least one row i we have a strict inequality
PN

j=1

Wij >

PN
j=2

Wij ; hence, A0 is irreducibly diagonally dominant. This proves the same
result as above, that A

0 is nonsingular [148], but it provides two additional insights: it shows
that we can solve (6.4) in nearly-linear time in N [161], and it enables us to express the inverse
of A0 by the Neumann series:

Theorem 6.3 For a connected matrix C, the inverse of the corresponding matrix A

0 is given
by the Neumann series

(A0)�1 =

 1
X

k=0

((⇤0)�1

W

0)k
!

(⇤0)�1

. (6.6)
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a) measurements b) incomplete CDM d) reconstructed pointsc) vectorized form

=

=

Figure 6.1: An instance of Problem 6.2. a) Assume that we can measure a subset of noisy 1D
di↵erences between the points. b) We arrange them in a CDM and use it either directly, or c)
its vectorized form to d) reconstruct the points that give rise to measurements.

Proof. Let � = (⇤0)�1

W

0, so that A

0 = ⇤0(I � �), and denote the eigenvalues of � by �i.
According to Gershgorin circle theorem [64],

|�i|  1

ni

X

j 6=i,j�2

Wij =
1

ni

0

@

X

j 6=i

Wij �Wi1

1

A = 1� 1

ni
Wi1  1.

As A0 is invertible for connected C, ⇤0 and I � � do not have zero eigenvalues, so �i 6= 1. We
conclude that |�i| < 1 and we can invert A0 using (6.6). ⌅

In Appendix 6.C we confirm that the infinite sum (6.6) converges to (6.5) in the case of
complete measurements.

The invertibility of A0 enables us to reconstruct the points x from (6.4) as

x =

"

0

(A0)�1

e

v

0

#

. (6.7)

Clearly, we cannot apply (6.7) when C is not connected. What we can do in such a case is
recover the points by invoking (6.7) within each connected component of C. As the recovered
connected components can shift independently, we have an infinite number of solutions.

6.4 Generalization to higher dimensions

In practice, we can often measure the di↵erences between multidimensional points projected onto
some measurement directions; examples of such setups are given in Section 7.3 and Section 7.4.
This naturally motivates a generalization of CDMs to higher dimensions.

6.4.1 Vector form in 1D

Before discussing the multidimensional case, we introduce an alternative way to represent a CDM
by arranging its entries in a vector d 2 RM , where M denotes the total number of measurements.
Then, dm = xi�xj are the pairwise di↵erences between the points, andm is indexing the observed
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entries of the flattened CDM. To assign the di↵erence dm to the pair of points xi and xj , we
introduce a sparse measurement matrix B 2 RM⇥N with Bmi = 1, Bmj = �1 and 0 otherwise.
Using this notation, we can write

Bx = d. (6.8)

In the case of noisy measurements, we define ed = d+ z, where z contains independent noise
realizations. In the case of multiple measurements, B has identical rows for every repeated
measurement and ed contains all of their realizations. An instance of Problem 6.2, both in matrix
and vectorized form, is illustrated in Fig. 6.1.

Recall that in Section 6.3 we defined W to be a non-negative matrix whose entries are the
weights of each di↵erence measurement. To be aligned with such a definition, we should allow not
only multiple measurements of each di↵erence (identical rows in B), but also di↵erent weights
for these measurements. To do so, we can simply scale rows of B and e

d with the same factors.
To keep the notation clean, in the rest of the chapter we assume that B and ed encompass these
weights.

We can estimate x by solving the normal equations, B>
Bx = B

>
e

d. Due to translation
ambiguity, a system is non-invertible. We resolve it by removing the first column of B to get B0,
which corresponds to setting x

1

= 0. This brings us to our well-studied problem (6.4), where
A

0 = B

0>
B

0, ev0 = B

0>
e

d

0 and the points are reconstructed as:

b

x

0 = (B0)† ed = ((B0)>B0)�1(B0)> ed. (6.9)

Such a problem definition is not novel; it appears in the broad literature on statistical ranking
from pairwise comparisons. For instance, Massey used it to rank a collection of sport teams
based on their scores [121], or Osting et al. to design tournaments that maximally improve the
informativeness of a ranking for a given number of future comparisons [133]. The reason why
we introduce it here is twofold: 1) As we are the first to show the connection of (6.8) with
CDMs, the existing problems that rely on (6.8) [121, 133] might find it useful to be recast to
the CDM framework and take advantage of the devised properties, bounds on the reconstruction
error, more e�cient implementations, and connections to other applications. 2) The vector form
proves to be beneficial in the error analysis.

6.4.2 Vector form in higher dimension

We extend points and their pairwise di↵erences to D dimensions and consider K � D frame vec-
tors {'k}Kk=1

arranged in a matrix that is the analysis operator of the frame,�
0

= ['
1

,'

2

, . . . ,'K ]> 2
RK⇥D [174]. Then, we formulate the generalization of Problem 6.2 and expand the formulation
introduced in Section 6.4.1:

Problem 6.4 Given a subset of noisy D-dimensional coordinate-wise di↵erences observed in
the frame {'k}Kk=1

, recover the set of points whose pairwise di↵erences best match the mea-
surements.

We assume that we measure Mk di↵erences in each frame direction k, k = 1, . . . ,K and
construct the measurement matrix Bk 2 RM

k

⇥N and the vector of di↵erences edk 2 RM
k for every

k, analogously to B and ed in (6.8). The total number of di↵erences is denoted by M =
PK

k=1

Mk.
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Figure 6.2: An example of the point recovery in 2D. a) The simple case of the Cartesian
coordinate system. We use dk,m for k = 1, 2 and m = 1, 2, 3, to indicate the measured pairwise
di↵erences between the Cartesian coordinates of the points {xn}3n=1

. b) A frame with K = 3
vectors. We assume to measure dk,m for k = 1, 2, 3 and m = 1, 2, 3, and we want to recover
{xn}3n=1

.

We define the operator T (Bk, k,K) that takes a matrix Bk and generates a matrix in RM
k

⇥NK

such that we interleave K � 1 zero columns between the columns of Bk, append k � 1 zero
columns before the first column of Bk and K � k columns after the last column of Bk. For
example,

T
 "

1 �1 0

1 0 �1

#

, 2, 3

!

=

"

0 1 0 0 �1 0 0 0 0

0 1 0 0 0 0 0 �1 0

#

.

Then, we can formalize Problem 6.4 as follows:

2

6

6

6

6

6

4

T (B
1
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T (B
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, 2,K)
...

T (BK ,K,K)
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7
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x
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x
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xN
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=

2

6
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e

d

1

e

d

2

...

e

dK

3

7

7

7

7

7
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, (6.10)

or in matrix form
B�x = e

d, (6.11)

where ed 2 RM contains all M measured K-dimensional di↵erences in all frames stacked in one
vector, � 2 RNK⇥ND has the matrices �

0

on its diagonal, and x 2 RDN is the vector of all N
D-dimensional points xn that we aim to recover, n = 1, . . . , N .

Fig. 6.2 presents a simple example of three points in a 2D space to illustrate the notation and
clarify the above expressions. In Fig. 6.2a, we plot a basic case of K = D = 2, where d

1

and d

2

simply contain the di↵erences of the Cartesian coordinates between the points. For example, for
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xn = [xn,1, xn,2]>, the di↵erence vectors are

d

1

=
h

x

3,1 � x

1,1 x

2,1 � x

3,1 x

2,1 � x

1,1

i>
and d

2

=
h

x

1,2 � x

2,2 x

3,2 � x

1,2 x

3,2 � x

2,2

i>
.

In Fig. 6.2b we consider K = 3 frame vectors, {'k}Kk=1

. For every k, we identify the pairs of
points whose pairwise di↵erences are measured, and we construct the measurement matrices Bk.
To obtain a matrix equation (6.11), which allows us to reconstruct the Cartesian coordinates of
points {xn}Nn=1

from {dk}Kk=1

, we need to apply the operator T on Bk for every k = 1, 2, 3. For
the given example in Fig. 6.2b and k = 1, these matrices are:

B

1

=

2

6

6

4

�1 0 1

0 1 �1

�1 1 0

3

7

7

5

, T (B
1

, 1, 3) =

2

6

6

4

�1 0 0 0 0 0 1 0 0

0 0 0 1 0 0 �1 0 0

�1 0 0 1 0 0 0 0 0

3

7

7

5

.

One can then analogously find T (B
2

, 2, 3) and T (B
3

, 3, 3), and by direct multiplication verify
that (6.11) is satisfied for the presented noiseless case.

6.4.3 Optimal solution

Analogously to (6.8), the system (6.11) is non-invertible, so we fix the first coordinate of every
dimension to zero. This corresponds to removing the first K columns of B, as well as the
first K rows and D columns of �, resulting in the new matrices B

0 2 RM⇥(N�1)K and �0 2
R

(N�1)K⇥(N�1)D, respectively. Then, we can reconstruct the canonical coordinates of the points
as

b

x

0 = (B0�0)† ed. (6.12)

This approach is optimal in the least-squares sense.

6.4.4 Splitting algorithm

To reduce the complexity of the solution, we propose and study an alternative approach that
decomposes Problem 6.4 into many instances of Problem 6.2 of smaller dimension. We divide
the multidimensional problem into K one-dimensional CDM recovery problems, and estimate
the points from their di↵erences separately in each frame direction. Therefore, we first recover
the expansion coe�cients of the points for each frame vector, given by (B0)† ed, and then we find
their canonical coordinates by a simple change of basis:

b

x

0 = (�0)†(B0)† ed. (6.13)

Note that in a more e�cient implementation, (6.13) is solved in two steps. The computation
of (B0)† ed in the first step is divided into K independent problems, each giving an estimate of
fk 2 RK , fk = (B0

k)
†
e

dk. Then, the canonical coordinates of the estimated points bx0 are in the
columns of (�0

0

)†F , where F 2 RK⇥N contains vectors fk in its columns. Besides the reduction
in the size of the problem, the main benefit of this formulation is that we can take advantage of
the structure ofB0

k to solve the problem faster: indeed, as mentioned in Section 6.3.2.2, (B0
k)

>
B

0
k

is irreducibly diagonally dominant, which enables us to solve the linear system in nearly-linear
time. The splitting formulation also allows for the method to be easily parallelized.
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6.4.5 Uniqueness and number of solutions

Given a set of coordinate di↵erences, there is an infinite number of valid point sets which are
generated by translating the original point set. Here, we refer to a problem with a non-unique
solution when at least two di↵erent point sets that are not translated versions of each other are
both valid solutions.

For the multidimensional point reconstruction to be possible, we need to extend the connec-
tivity requirement. At the coordinate level, every point needs to be connected with the others by
at least D frame measurements. Since we have N points and therefore at least N�1 connections,
the minimum number of measurements is D(N � 1). When using the splitting algorithm, this
requirement is more restrictive: we require that the CDM corresponding to every frame vector
is connected, and hence, we need at least (N � 1)K measurements. We summarize the results
on the uniqueness and number of solutions in the following proposition.

Proposition 6.5 The CDM problem in 1D can have either one or infinite number of solutions.
It has one solution if and only if the CDM is connected. The CDM problem in D dimensions
can have either one solution or an infinite number of solutions. If the CDMs of at least D

independent frame vectors are connected, a unique solution exists.

Note that the uniqueness condition for D > 1 is su�cient, but not necessary. The study of
the exact number of solutions is tightly connected with the (global) graph rigidity problem and
to the best of our knowledge, no trivial solution exists at this point.

6.5 Reconstruction error

In this section, we analytically compute the expected value and variance of the estimation error
of the points. For the multidimensional case, we derive the gap in the reconstruction accuracy
between the optimal solution and the splitting algorithm. We perform numerical simulations
to validate the theoretical analysis and illustrate the dependence of the estimation error on the
amount of noise, the number of missing measurements and the number of frame vectors.

6.5.1 1D setup

We can rewrite (6.9) as bx0 = x

0+(B0)†z, where z ⇠ N (0,�2

I). As bx0 and x

0 containN�1 points,
we have to prepend the removed leading zero to bx0 and x

0, and align them before computing the
estimation error. More precisely, to achieve the smallest `2 error, we set their centroids to the
origin by using the centering matrix J = I � 1

N 11> 2 RN⇥N and J

0 2 RN⇥N�1 obtained from
J by removing its first column. We compute the centered point sets as bxc = J

0
b

x

0 and xc = J

0
x

0.
Their di↵erence is the desired estimation error vector, given as ec = J

0(bx0
c � x

0
c). Thus,

ec ⇠ N (0,⌃
e

c

), with ⌃
e

c

= �

2

J

0 �(B0)>B0��1

(J 0)>.

It follows that the reconstructed points bxc are also normally distributed with mean xc and
covariance matrix ⌃

e

c

.
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We define the estimation error ✏ as the mean squared error (MSE) between b

xc and xc,
✏ = 1

N keck2, and we can find its expected value from:

E [✏] =
�

2

N

tr
⇣

J

00 �(B0)>B0��1

⌘

, (6.14)

where we leverage the cyclic invariance of the trace and use J

00 to denote J without the first
column and row, J 00 = (J 0)>J 0.

This proves that the expected value of the error depends on the noise level �2 and the structure
of measurements. To better understand the latter, we further rewrite (6.14) as:

E [✏] =
�

2

N



tr
⇣

(A0)�1

⌘

� 1

N

1>(A0)�11

�

=
�

2

N

1
X

k=0



tr
⇣

�

W

0(⇤0)�1

�k
(⇤0)�1

⌘

� 1

N

1>�
W

0(⇤0)�1

�k
(⇤0)�11

�

def

=
�

2

N

1
X

k=0

fk(W
0
,⇤0),

where (A0)�1 is from (6.6).
To ease the notation, in this section we use ⇤0

i instead of ⇤0
ii. The expression fk(W 0

,⇤0)
simplifies for k = 0 and k = 1 to N�1

N

PN�1

i=1

⇤0
i
�1 and � 1

N

PN�1

i,j=1

W

0
ij⇤

0
i
�2, respectively. For

k � 2, we have

fk(W
0
,⇤0) =

N�1

X

i,j=1

1

⇤0
i

X

m1,...,mk�1

�

Qk�2

`=0

W

0
m

`

,m
`+1

��

NW

0
i,m

k�1
� (N � 1)W 0

m
k�1,j

�

Qk�1

`=0

⇤0
m

`

, (6.15)

where the second sum is over all k � 1-tuples (m
1

, . . . ,mk�1

) with 1  m`  N � 1 for ` =
1, . . . , k � 1, and m

0

= i.
In what follows, we use (6.15) to prove that the smallest error is achieved when the mea-

surements are equally distributed among pairs of points. Let us consider any W

a with the
corresponding ⇤a defined by (6.3). From the first row, we take two weights W a

1j and W

a
1k such

that W a
1j > W

a
1k, and we choose � such that 0 < �  (W a

1j �W

a
1k)/2.

Additionally, let us define the matrix W

b such that it is equal to W

a except for W

b
1j =

W

b
j1 = W

a
1j � � and W

b
1k = W

b
k1 = W

a
1k + �. Using (6.3), we also associate the matrix ⇤b to

W

b. Furthermore, let us construct W

a0 and W

b0 from W

a and W

b by removing their first
column and row.

Remark that W

b brings the measurements closer to being uniformly distributed. Our goal
is to show that W

b leads to a lower estimation error than W

a. To see this, observe that, on
the one hand, W a0 = W

b0, but on the other hand ⇤b
j = ⇤a

j � �, ⇤b
k = ⇤a

k + � and ⇤b
i = ⇤a

i

for i 6= j, i 6= k. As a consequence, since the numerators in (6.15) depend only on the weights,
they are identical for both W

a0 and W

b0, and only their denominators di↵er. From (6.15) we
can therefore compute the di↵erence of fk(W a0

,⇤a0) and fk(W b0
,⇤b0) as

fk(W
a0
,⇤a0)� fk(W

b0
,⇤b0)

=
N�1

X

i,j=1

X

m1,...,mk�1

h(W 0)

 

1

⇤a
i
0Qk�1

`=0

⇤a
m

`

0 �
1

⇤b
i
0Qk�1

`=0

⇤b
m

`

0

!

,

(6.16)
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Figure 6.3: CDM estimation error ✏. We consider N = 30 points drawn independently and
uniformly from [0, 1] and assume Gaussian noise on the di↵erences with 0-mean and a variance
of �2. a) Dependence of ✏ on number of measurements M for fixed �. b) Dependence of ✏ on �
for fixed M .

where h(·) is used to shorten the expressions of the numerators in (6.15).
As 0  ⇤b

j � ⇤b
k < ⇤a

j � ⇤a
k and

PN
i=1

⇤a
i =

PN
i=1

⇤b
i , it is not hard to show that (6.16)

is positive for every k. In other words, we have shown that if we rearrange the entries of the
first row in W such that they are more uniform and that the variance of ⇤ is smaller, then
the estimation error decreases. With a derivation analogous to the above, we can show that the
contrary is also true; by rearranging the entries of the first row of W such that the variance in
W and ⇤ increases, then the estimation error also increases. As we can arbitrarily swap rows
in W , as long as we swap their corresponding columns, the entries in the first row of W can
be associated to any point i = 1, . . . , N . Therefore, the above proof is general and valid for any
i. In fact, we can show that by maximizing expression (6.16) over the entries in ⇤b0, the global
maximum is achieved when ⇤b

1

0
= . . . = ⇤b

N�1

0
; these values are equal to the sum of all entries

in W

a divided by N � 1.
Lastly, we provide expressions for the best and the worst arrangements of measurements with

the total sum of the weights fixed to L(N2 �N), L 2 N. As shown above, the smallest error is
achieved when Wij = L for every (i, j), i 6= j,

✏min =
�

2

N

1
X

k=0

N tr(W k)� 1>
W

k1

N(L(N � 1))k+1

=
�

2

N

L(N � 1)

L(N � 1) + 1
.

On the other extreme, the largest error occurs when there exists p for which Wpj = Wjp = LN/2
for every j, j 6= p, while Wij = 0 for every other entry (i, j), i 6= p,

✏max =
�

2

N

tr((⇤0)�1)� 1

N

1>(⇤0)�11 = �

2

2(N � 1)2

LN

3

.

Simulation results. The dependence of the error on the noise level and number of measurements
is illustrated in Fig. 6.3. The number of measured di↵erences spreads from the minimum required
for reconstruction, M = N � 1, to the complete case, M = N(N � 1)/2. We compute the error
✏ for multiple realizations of the matrix B, i.e. di↵erent connectivities between the points, and
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take their average to estimate the expected value of ✏ defined in (6.14). It is clear that the error
increases with the amount of noise and number of missing entries.

6.5.2 Multidimensional setup

We extend the statistical analysis from Section 6.5.1 to the multidimensional setting and provide
a closed-form expression for the di↵erence in the estimation errors of the optimal and the splitting
algorithm.

We assume that we add independent Gaussian noise to all the di↵erences, such that ed ⇠
N (d, 2�2

I). Analogous to the 1D in Section 6.5.1, we first estimate the partial point sets bx0
o and

b

x

0
s from (6.12) and (6.13), aligned such that their first points are 0. To generalize the centering

matrix J

0 to D dimensions, we apply the operator T (J 0
, D, k), such that

J

0
D =

2

6

6

6

6

6

4

T (J 0
, 1, D)

T (J 0
, 2, D)
...

T (J 0
, D,D)

3

7

7

7

7

7

5

2 RDN⇥D(N�1)

.

Then, it follows that the centered estimated points, bxo = J

0
Dbx

0
o and bxs = J

0
Dbx

0
s have Gaussian

distributions with following parameters:

b

xo ⇠ N (x,⌃bx
o

), where ⌃bx
o

= �

2

JD(B�)†((B�)†)>(JD)>,

b

xs ⇠ N (x,⌃bx
s

), where ⌃bx
s

= �

2

JD�
†
B

†(B†)>(�†)>(JD)>.
(6.17)

For a less cluttered notation, in (6.17) and the rest of the section, we omit the prime symbol 0

on JD,B,�.
We define the estimation error vectors of the optimal and splitting algorithms as eo = b

xo�x

and es = b

xs � x, respectively. The expectations of the mean-squared errors are E
h

1

N keok2
i

=

1

N tr (⌃bx
o

) and E
h

1

N kesk2
i

= 1

N tr (⌃bx
s

).

Simulation results. We consider Gaussian noise with 0-mean and � = 0.01 added to the dif-
ference measurements, and we assume the complete case in 2D, such that both approaches are
optimal. Then, for a given pair (N,K), we generate K directions of frame vectors uniformly
at random from [0, 2⇡) and the complete measurements matrix B. Fig. 6.4 shows that the
estimation error decreases with the number of frame vectors K and the number of points N .

6.5.3 The cost of splitting

To evaluate the performance of the proposed splitting algorithm with respect to the optimal
solution, we define the cost of splitting c, as the normalized squared norm of the di↵erence
between the two estimators, c = 1

N kbxo � bxsk2. We can compute the expected cost of splitting
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Figure 6.4: Estimation error ✏ in 2D. We assume complete CDM for every frame vector and
Gaussian noise with 0-mean and � = 0.01 on the measurements. a) Dependence of ✏ on N for
fixed K. b) Dependence of ✏ on K for fixed N .

as:
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(6.18)

where  (�,B) = �†(B>
B)�1(�†)> � (�>

B

>
B�)�1.

As the splitting approach leads to a more e�cient algorithm, identifying cases in which we
can apply the splitting algorithm and still obtain an optimal solution is valuable. From (6.18) it
follows that the cost is equal to 0 if (B�)† = �†

B

†, or equivalently, if  (�,B) = 0. For B and
� defined in (6.10), we prove that there are two practical cases for which E [c] = 0: 1) K = D

and 2) Bk = B

0

for every k = 1, . . . ,K.

6.5.3.1 Case K = D

When the number of frame vectors is the same as the dimension of the space, � is invertible,
thus �† = ��1. The splitting algorithm results in the optimal solution:

b

xo = (B�)† ed

= (�>
B

>
B�)�1�>

B

>
e

d

= ��1(B>
B)�1

B

>
e

d = b

xs.

6.5.3.2 Case Bk = B0 for every k

Assume that all measurement matrices for every frame direction are equal to the matrix B

0

.
For instance, this is the case when we observe all pairwise di↵erences on all frame vectors k. We
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Figure 6.5: The cost of splitting c in 2D. We consider the setup of N = 6 points and assume
Gaussian noise with 0-mean and � = 0.01 on the measurements. a) Dependence of c on Mk for
fixed K. b) Dependence of c on K for fixed Mk.

change the order of the entries in e

d and the order of the corresponding rows in B, so that we
can write B = B

0

⌦ I, where ⌦ is the Kronecker product. Note that this does not influence the
estimation of the points. In addition, we also have � = I ⌦�

0

. Then, it is easy to show that
the optimal solution is equal to the solution of the splitting algorithm:
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Simulation results. To visualize the di↵erence between the two approaches, in Fig. 6.5 we plot
the cost of splitting (6.18) for di↵erent number of measurements Mk and di↵erent number of
frame vectors K. We consider N = 6 two-dimensional points, so the number of measurements
ranges from the smallest value Mk = N�1 = 5 to the complete case Mk = N(N�1)/2 = 15. To
simplify the experiment, we assume that Mk is the same for every direction k, i.e. CDMs have
the same number of measured di↵erences. As shown in Section 6.5.3.1 and Section 6.5.3.2, the
cost is equal to 0 for K = D = 2 and for the complete case; Fig. 6.5 confirms these two special
cases. In addition, we observe that the cost decreases with Mk and K.

6.6 Comparison of CDMs with EDMs

In this section, we relate the introduced framework of CDMs with the more mature field of EDMs.
The EDM and the CDM theories arise in similar applications, but one can be more useful than
the other depending on the measured information. CDMs can be used to solve assigned vector
geometry problems, while EDMs play an important role in assigned distance geometry problems,
which are harder by nature (the di↵erence vectors are collapsed into one dimension). Oftentimes,
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Properties CDM EDM

Rank rank(C) = 2 rank(E) = D + 2

Triangle (in)equality Cij = Cik + Ckj

p

Eij 
p
Eik +

p

Ekj

Symmetry C = �C

>
E = E

>

Hollowness diag(C) = 0 diag(E) = 0

Invariance to translations all rigid motions

Table 6.2: Comparison of CDMs C and EDMs E.

EDM is the tool of choice simply because the coordinate information is not available by design;
however, due to its popularity, the EDM framework is sometimes used where CDMs would
be more adequate, precise and e�cient. The molecular conformation application is one such
example: even though coordinate information is available through di↵erent angle measurements,
more focus was given to distance-based methods to this date [17]. We compare below CDMs and
EDMs with respect to: 1) matrix properties, 2) minimal number of observed entries required
for the reconstruction, 3) uniqueness of the reconstruction, and 4) applications other than point
recovery.

There are some obvious algebraic di↵erences between CDMs and EDMs, summarized in Ta-
ble 6.2. The rank of both matrices is independent of the number of points: for CDMs constructed
for 1D points, the rank is equal to 2, while for EDMs of D-dimensional points it is equal to D+2.
Furthermore, the entries of CDMs satisfy the triangle equality, while the elements of EDMs re-
spect the triangle inequality. Moreover, CDMs are skew-symmetric, while EDMs are symmetric.
Finally, when transitioning from a point set to a CDM, information about the absolute trans-
lation of the points is irremediably lost. When estimating points from EDMs, in addition to
translation, we also lose the information about their rotation and reflection.

Let us now consider the recovery of points in 1D. Assuming a connected CDM, we require at
least one measurement per point, that is N � 1 coordinate di↵erences to recover N points. To
visualize this, we can think in terms of a build-up algorithm and fix the first point at 0. Then
we can iteratively reconstruct the remaining points in one pass from the coordinate di↵erences.
The entries of EDMs in 1D are simply the squared values of the entries of CDMs, but this small
di↵erence makes the recovery problem significantly harder. In addition to fixing the first point at
0, we also need to pick the sign of the second point to fix the reflection. Then we can iteratively
build a solution, observing that for every newly added point we have two possibilities. To identify
the correct one, we need at least one additional measurement from a previously recovered point.

Moving to point recovery in higher dimensions, the measurements in CDMs are given as K-
dimensional coordinate di↵erences between D-dimensional points, where K � D. The minimal
number of measurements is achieved for N � 1 connected measurements per each dimension,
resulting in the total number of D(N � 1) measurements. For noiseless EDMs, there is no
exact formula that describes the minimum number of measurements, but we can lower bound
it by a counting argument. We have DN unknowns (N D-dimensional points) to recover, but
these points are only recovered up to rigid motions, which encompass D degrees of freedom for
translations, and D(D � 1)/2 degrees of freedom for orthogonal transformations. We conclude
that the number of measurements is lower bounded by DN � (D + 1)D/2. Moreover, to ensure
that every point is rigidly connected to the others, at least D + 1 measurements are needed
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for every point. As the dimension of the space in most applications is typically 2 or 3, the
contribution of the second term is negligible and the reconstruction of points from CDMs and
noiseless EDMs requires the same number of measurements. When distances are noisy, there is
no clear expression for the minimal number of measurements in the EDM reconstruction problem
and no existing algorithm guarantees an optimal solution [48]. On the other side, our proposed
algorithm within the CDM framework has an optimal closed-form solution even with imperfect
measurements.

This leads to another important di↵erence between CDMs and EDMs. As no algorithm
guarantees an optimal solution for EDM reconstruction with incomplete matrices, many methods
in the EDM literature split the problem into two independent steps: matrix completion and
denoising, followed by point recovery. The goal of the matrix completion and denoising is to
determine the closest EDM for a given incomplete matrix. Having the complete EDM, the point
recovery is then obtained via a simple SVD. When using CDMs, the completion and denoising
steps are not required because one can directly apply the point recovery algorithm on incomplete
CDMs, which implicitly denoises and completes CDMs.

Lastly, although EDMs and CDMs are both designed to solve assigned distance and vector
problems, they prove to be useful as labeling and denoising tools in various applications. As an
example, the rank property of EDMs has been used to recover distance labels in room geometry
reconstruction from echoes [49]. When we measure unlabeled coordinate di↵erences instead of
unlabeled distances, CDMs could be used in the same way. Concretely, one could iterate over
possible permutations and check if the resulting matrix satisfies Proposition 6.1, the su�cient
condition of CDMs. Alternatively, EDMs and CDMs can be used in unassigned geometry prob-
lems to denoise a partial solution set during any iterative point recovery algorithm, as shown in
Section 7.5.

6.7 Conclusion

The main contribution of this chapter is the formulation and analysis of coordinate di↵erence
matrices, simple tools that enabled us to introduce an e�cient optimization framework for recon-
structing point sets from their noisy and partial coordinate di↵erences. The structure of CDMs
also relates to graph theory which in turn helped us provide necessary and su�cient conditions
for the proposed framework to work. A significant advantage of CDMs is their easy generalization
to the multidimensional setting, where we proposed two methods for the point reconstruction
and presented a statistical analysis of their reconstruction errors. The first method is optimal
even in the presence of noisy and partial measurements, while the main advantage of the sec-
ond approach lies in its e�ciency. We also found cases where the second method achieves the
optimal solution. When compared to algorithms in a similar setup that retrieve points from a
set of pairwise Euclidean distances, we showed that our algorithms are advantageous in terms of
stability, resistance to noise and the number of required measurements.

In the next chapter we put these theoretical findings to test in four di↵erent practical ap-
plications in active research fields and show that CDMs can be used to solve a wide range of
problems with both simulated and real data.
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6.A Proofs of CDM properties

P.1. Following a basic rank inequality, rank(C)  rank(x1>) + rank(1x>) = 2. Observe that
rank(C) = 1 can only happen when N = 1.

P.2. Cij = xi � xk + xk � xj = Cik + Ckj .

P.3. Cij = xi � xj = �(xj � xi) = �Cji.

P.4. Cii = xi � xi = 0.

P.5. Follows from Properties P.3 and P.4.

P.6.
P

j Cij =
P

j(xi�xj) = Nxi�
P

j xj . Dividing both sides by N , 1

N

P

j Cij = xi+c, where

c = � 1

N

P

j xj .

P.7. Follows from (6.1): every column j of a CDM is equal to x shifted by �xj .

P.8. (x+ c)1> � 1(x+ c)> = x1> � 1x>
.

P.9. Denote � as an eigenvalue of C and v as a corresponding eigenvector. Then, hCv,vi =
hv,C>

vi = �hv,Cvi. Observe further that hCv,vi = h�v,vi = � kvk2, and �hv,Cvi =
�hv,�vi = ��⇤ kvk2 . We conclude that � = ��⇤, i.e. the eigenvalues of C are imaginary.

P.10. Since rank(C) = 2, we can denote nonzero eigenvalues as �
1

and �

2

. Knowing that
eig(C) = eig(C>) and C = �C

>, we can write

det I � �C = det I � �C

> = det I � (��)C.

Therefore, if � is an eigenvalue of C, then �� is also an eigenvalue. As there are only 2
nonzero eigenvalues, it follows that �

1

= ��
2

.

6.B Connection with reciprocal matrices

An alternative way to check if the su�cient condition Cij = Cik +Ckj is satisfied for all (i, j, k)
is based on consistent positive reciprocal matrices [159], introduced below for the completeness.

Definition 6.6 The matrix R 2 RN⇥N is positive reciprocal if Rij > 0 and Rij = R

�1

ji , for
any i, j = 1, . . . , N . If Rik = RijRjk, it is said to be consistent.

We can transform a CDM C into a reciprocal matrix R with element-wise exponentiation,
R = exp(C). The consistency property is then the natural extension of the triangle equality to
reciprocal matrices. In combination with the following proposition, this provides an alternative
way of testing if a matrix is a CDM.

Proposition 6.7 (Shiraishi 1998 [159]) A positive reciprocal matrix R is consistent if and
only if P

R

(�) = �

N �N�

N�1, where P
R

(�) is the characteristic function of R. In other words,
R has N � 1 zero eigenvalues and one eigenvalue equal to N .
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Instead of examining if every triplet (i, j, k) of a given matrix C satisfies the triangle equality,
we can verify if the corresponding reciprocal matrix R has N � 1 zero eigenvalues and one
eigenvalue equal to N . If yes, this implies that C satisfies the triangle equality. Following
Proposition 6.1, C is a CDM.

6.C Proof of convergence of (6.6) to (6.5) for complete CDMs

Let us define matrices P and Q as

P =
X

k

P

k
0

=
1
X

k=0

✓

11> � I

N � 1

◆k

,

Q =
N � 11

N

(11> + I).

We need to show that P = Q. To this end, we establish that the two matrices have the same
eigenvalues and corresponding eigenvectors. First, observe that we can rewrite any square matrix
in R(N�1)⇥(N�1) that has diagonal values equal to ↵ and non-diagonal values equal to � as

�11> + (↵� �)I = (↵� �)

✓

I +
�

� � ↵

11>
◆

.

From the matrix determinant lemma, we know that

det�11> + (↵� �)I = (↵� �)N�2

✓

1 + (N � 1)
�

↵� �

◆

. (6.19)

Using (6.19), we compute the eigenvalues of P
0

by solving its characteristic equation:

detP
0

� �I =

✓

�+
1

N � 1

◆N�2

✓

1� N � 1

�(N � 1) + 1

◆

= 0.

Thus, the eigenvalues of P
0

are �
0

= �1

N�1

(with multiplicity N � 2) and �
1

= N�2

N�1

. The two
eigenvalues of P are consequently equal to



0

=
1
X

k=0

✓ �1

N � 1

◆k

=
N � 1

N

,



1

=
1
X

k=0

✓

N � 2

N � 1

◆k

= N � 1.

Furthermore, the eigenvectors of P
0

(and by extension of P ) can be found by solving the eigen-
value equations

(P
0

� �

0

I)u
0

= 11T
u

0

= 0.

(P
0

� �

1

I)u
1

=
�

11T � (N � 1)I
�

u

1

= 0.
(6.20)

We use the matrix determinant lemma again to compute the eigenvalues of Q:

detQ� �I =

✓

�� N � 1

N

◆N�2

✓

1 +
(N � 1)2

N � 1� �N

◆

= 0.
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The corresponding eigenvalues are N�1

N (with multiplicity N �2) and N �1, which are the same
as P . Moreover, the eigenvectors of Q can be found by solving

(Q� 

0

I)v
0

= 11T
v

0

= 0.

(Q� 

1

I)v
1

=
�

11T � (N � 1)I
�

v

1

= 0.
(6.21)

By comparing equations (6.20) and (6.21), we see that matrices P and Q also have equal eigen-
vectors and thus are equal.





Chapter 7

Coordinate Di↵erence Matrices:
Applications*

The final test of a theory is its capacity to solve the problems

which originated it.

Linear Programming and Extensions

George Dantzig

7.1 Main contributions and outline

Inspired by Euclidean distance matrices (EDMs) and their broad use in solving distance geometry
problems (DGPs), in Chapter 6 we introduced coordinate di↵erence matrices (CDMs). In this
chapter, we show that our CDM framework is well suited for the vector geometry problems
(VGPs), where the dissimilarity between points is not only given by their distance, but also by
the orientation of the di↵erence vector between them. One of the main contributions of this
chapter is to demonstrate and reveal connections between problems that seem very di↵erent at
first glance. In particular, we stress the generality and practicality of the theoretical framework

*The material in this chapter is the result of joint work of the author (MK) with Gilles Baechler (GB), Juri
Ranieri (JR), Frederike Dümbgen (FD), Goolnosh Elhami (GE) and Martin Vetterli (MV) [91–93]. Section 7.2:
MK analyzed the data and wrote the section. Section 7.3: FD worked on real measurements; MK performed
numerical simulations and wrote the section based on [92], written by MK, GB, FD and GE. Section 7.4: FD
implemented E-MDS and MDS algorithms; MK wrote the section based on [91], written by MK, GB, FD and
GE. Section 7.5: JR devised the support recovery algorithm; MK and GB proposed algorithmic improvements,
analyzed the complexity and influence of di↵erent point configurations, and carried out experiments; MK wrote
the section based on [93], written by MK, GB and JR.

159
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established in Chapter 6 via four di↵erent applications, ranging from ranking in sports to phase
retrieval.

In Section 7.2 we study ranking in sports and abstract the problem by considering the strength
of teams as points on a line. With such a formulation, ranking teams simplifies to solving 1D
CDM problem. By applying CDMs to rank sports teams, we do not aim to demonstrate the
superior performance of our method over state-of-the-art ranking techniques, but to show an
application of the CDM framework in 1D and gain more insights about the proposed algorithm
using real data.

In Section 7.3 we exploit CDMs for sensor array calibration in 2D, that is determining the
locations of sensors given measurements from external calibration sources. We demonstrate the
robustness of our algorithm by performing measurements in real environment. Even though the
solution to this problem is quite simple, it nicely visualizes the multidimensional setup introduced
in the context of CDMs for the case when the number of measurement directions is higher than
the dimension of the space.

In Section 7.4 we consider a self-localization of nodes in a sensor network in 2D. We assume
that every sensor is equipped with angle-of-arrival technology, and it can measure its distance
and angle from a subset of other sensors in the network. Given a set of noisy and incomplete
measurements from every sensor, our goal is to recover sensors’ positions. We show that such a
localization problem can be framed as the multidimensional CDM problem for the case when the
measurements are observed in Cartesian coordinates. Moreover, we present results of numerical
simulations to confirm that the proposed CDM-based algorithm outperforms the state-of-the-art
multimodal localization.

Lastly, in Section 7.5 we demonstrate that CDM framework can be leveraged in the context
of unlabeled vector geometry problems (uVGPs) as a denoising tool. The distinction between
this and the first three problems is that the labels are not known: in the context of CDMs, it
corresponds to having access to the matrix elements but not their positions. A typical example
of an uVGP is the (noisy) turnpike problem [41]. It finds applications in many fields, including
phase retrieval for sparse signals, which is studied in this chapter. We propose a pipeline of
algorithms that solve the phase retrieval for sparse signals defined on continuous domain. In
the proposed pipeline, the most challenging step is labeling entries of CDMs. As our overall
algorithm results in significant improvement over the state of the art, in this chapter we describe
the complete solution to the phase retrieval problem and emphasize parts related to CDMs.

For each application, we present a literature review, make a connection with CDMs, propose
the solution and discuss the main results.

7.2 Rankings and ratings in sports

7.2.1 Introduction

In the sports community, ranking teams based on their performances has been a long-standing
question with a number of proposed solutions. The problem statement is elegantly simple—
arrange teams in order such that the better team has a higher rank. We are interested in a
more general problem called rating, which assigns to teams absolute scores that reflect their
performance.

As the rating problem goes beyond sports, the literature is very rich and connects many
di↵erent fields such as optimization, statistics, game theory, etc. Langville and Meyer explain
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fundamental ideas behind mathematical rating systems and summarize about a dozen of the
best known ranking techniques [106]. The most important ones di↵er in the considered model
of the teams and the amount of used information. As the CDM framework revolves around
pairwise di↵erences, we are interested in pairwise comparison methods, which are a subset of
ranking methods of the most widespread interest. We mention here only a few of the most
fundamental approaches: Colley’s matrix model [36] relies solely on the number of wins and
loses and formulates the ranking problem as a linear set of equations. To incorporate more
information, Keener [84] proposes to arrange the absolute scores of each team in a non-negative
matrix and uses the eigenvalues decomposition to rank the teams. Jech [82] takes a probabilistic
formulation and describes conditions for a unique ranking in incomplete tournaments. The theory
of Markov chains is also leveraged to produce rankings [33, 68]. More recent algorithms take into
account advanced statistics [103, 177, 182].

The evaluation and the comparison of di↵erent approaches can be troublesome in the absence
of one absolute ground truth ranking [106]. We therefore solely aim to show that CDMs can be
leveraged in the ranking application using real data.

7.2.2 Problem setup

One of the most widely used rating algorithms in the sports community is called Massey’s
method [121]. It abstracts the problem by considering the strength of teams as points on a line.
We undertake the same approach and assume that the strength of a team encompasses all its
characteristics, including the quality of the players, points scored in the past games, statistics,
etc. The greater the strength, the higher the likelihood that a team is going to win a game. Then,
we model the net score of a game between team i and team j as xi�xj+zij , where xi represents
the strength of the team i and zij are independent noise realizations. This formulation enables
us to directly use the net scores as CDM entries. Moreover, the entries of the weight matrix W

are Wij = 1 if teams i and j played against each other and 0 otherwise. If the teams i and j play
more than one game with each other, Cij is simply a weighted average of the score di↵erence and
Wij represents the sum of these weights. This also makes it possible to assign di↵erent weights
to games. For instance, the first game of the championship is probably less important than the
final of the playo↵s, and hence could have a lower weight assigned. The strengths of the teams
{xi}Ni=1

are then recovered from (6.7).

7.2.3 Discussion

We illustrate an application of our algorithm to the results of a regular NBA season, which ranks
teams based on their winning percentage. We construct the CDM C and the weight matrix W

from all the team scores of the NBA regular season 2015/16. We assign the same weight to all
games and estimate the ranking of the teams by (6.7). Table 7.1 lists the first 9 teams ranked
based on our proposed algorithm. We observe that the same teams are among the first 9 in the
actual NBA ranking, but in a slightly di↵erent order. The two most outstanding cases are the
Oklahoma City Thunder and the Toronto Raptors. The Thunder is placed 3rd in our ranking
and 5th in the NBA standings, while the Raptors are placed 6th in our ranking and 4th in the
NBA standings.

To find clues for this disparity, we look at the percentage of games that were won or lost by
a small di↵erence. More precisely, for each team we calculate the ratio of the number of games
that were won (lost) by a score di↵erence less than 10 (tight win/loss) over the total number of
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Team CDM NBA W L TW/W TL/L NETRG

Golden State Warriors 1 1 73 9 0.425 0.444 11.6

San Antonio Spurs 2 2 67 15 0.418 0.600 11.8

Oklahoma City Thunder 3 5 55 27 0.418 0.852 6.9

Cleveland Cavaliers 4 3 57 25 0.491 0.680 5.8

Los Angeles Clippers 5 6 53 29 0.547 0.586 5.5

Toronto Raptors 6 4 56 26 0.589 0.731 4.3

Atlanta Hawks 7 7 48 34 0.417 0.588 4.1

Boston Celtics 8 8 48 34 0.500 0.676 3.0

Charlotte Hornets 9 9 48 34 0.521 0.588 3.3

Table 7.1: Comparison of rankings with CDMs, traditional rankings (NBA), and the NETRG
advanced statistics. Here, W is the total number of wins, L is the total number of losses, TW is
the number of tight wins (+10 or less), and TL is the number of tight losses (-10 or less).

games won (lost) by a team. We display these values in columns TW/W and TL/L in Table 7.1.
Observe that the highest value of the column TW/W belongs to the Raptors, who won 58.9%
of their games by a small margin. Clearly, our algorithm takes that into account and places this
team two spots lower than the NBA ranking. Similarly, we observe that the largest value of the
column TL/L belongs to the Thunder: 85.2% of their losses were tight, which explains why our
algorithm ranks the team two spots higher than the NBA standings.

We also underline the correlation between our proposed ranking and the most widely used
advanced statistics called net rating (NETRG). It is defined as the di↵erence between points
scored and allowed per 100 possessions, and it reflects how e�cient a team is when it possesses
the ball, which is believed to be strongly correlated with the team’s strength. We observe that the
correlation between the ranking obtained by our algorithm and the advanced statistics (0.983)
is higher than the correlation between the NBA standings and the NETRG (0.9). In fact, our
proposed ranking is identical to the NETRG, except for the first and last two teams that are
switched. This is remarkable given that we just use the net scores to rank the teams.

We have therefore demonstrated that the CDM framework developed in the previous chapter
can be useful in estimating ranking and ratings of sports teams by using the NBA data set.
However, we stress that our goal is not to revolutionize the way teams are o�cially ranked; after
all, that would completely change the behavior of the teams, who would switch their objectives
from winning games to winning games with the largest margin.

7.3 Sensor array calibration

7.3.1 Introduction

In our second application, we exploit CDMs for sensor array calibration, that is determining the
locations of sensors given measurements from external calibration sources. We distinguish this
from sensor self-localization, which is treated in Section 7.4.
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Sensor arrays have been employed in real-time monitoring and measurement for decades,
and the importance of accurate calibration of their relative positions is evident in numerous
applications. For example, in signal processing, sensor arrays are often employed to measure
physical phenomena. This includes wireless sensor networks measuring weather conditions [78],
ultrasonic sensors detecting breast cancer in ultrasound tomography [54], and room geometry
estimation from a microphone array [49]. Furthermore, in the field of acoustics, the most accurate
solutions to common problems such as direction-of-arrival estimation [118, 135, 153], source
separation [76, 171] and noise reduction [62] rely on microphone arrays with precisely known
microphone locations, [14]. Therefore, accurate localization of all sensors in the network is
critical for many tasks.

We demonstrate the application of CDMs for the accurate position calibration of sensor ar-
rays. We consider measurements from a number of sources placed in far field at known locations,
emitting waves that can be approximated to arrive with the same incident angles at all sensors.
Even though the described setup is of practical relevance, it has not received much attention in
the literature. Many proposed methods consider the sources in the near field and assume their
exact synchronization [18, 20, 38, 63, 102]. These approaches use measured distances between
sources and sensors, and are closely related to the framework of EDMs. Extensions to far-field
calibration also exist [60, 90, 131, 167]; however, in these works the source locations are assumed
to be unknown and the algorithms iteratively estimate the direction of arrival along with the
sensor locations, which is not necessary in the method we propose. We show that knowledge of
the source locations in far field can be used to directly apply a CDM-based algorithm for point
recovery in higher dimensions.

7.3.2 Problem setup

We aim to localize N sensors from the measurements of K calibration sources placed at angles
{'k}Kk=1

in the far field. The far-field assumption implies that the sources emit plane waves,
and the incident angle 'k of some fixed source k is the same for all sensors. The measurements
from the calibration sources are conducted in the following way: The sources produce waves
at unknown times, and the sensors register the absolute times of arrival (TOA) of the waves,
denoted ⌧nk for the nth sensor and the kth source. If there is a sensor n that registered all
TOAs for every source k, then we can subtract ⌧nk from the detected times ⌧mk of all the sensors
m = 1, . . . , N , for every direction k. This corresponds to fixing the nth sensor to the origin.
However, if this is not the case, we cannot combine measurements from di↵erent sources k, as
each of them has a di↵erent emission time. Nevertheless, we can compute the pairwise di↵erences
of the registered times, which brings us to the framework of CDMs. Such measurements can be
seen as coordinate di↵erences of the sensors, projected onto the directions of the frame vectors
'k. This is illustrated in Fig. 7.1a. In accordance with the theory developed in Section 6.4 of
the previous chapter, we can thus reconstruct the sensors’ locations in D dimensions as long
as we have K � D non-collinear calibration sources, and enough measurements to satisfy the
connectivity requirement (see Section 6.4.5).

To investigate the performance of the proposed method, we used the experimental setup
in Fig. 7.1b. The setup included a microphone array called Pyramic [150] and three speakers
placed in an anechoic chamber. As the speakers were located as far as possible to emulate far-field
conditions, it was more practical to turn the microphone array instead of turning the speakers,
yielding the same desired relative orientation.

The Pyramic array and the distribution of microphones in each branch are more closely dis-
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Figure 7.1: Calibration of sensor arrays: geometry and real experiment. a) Three edges of the
Pyramic array with several microphones. The di↵erences of the measured times of arrival for the
calibration source k and two microphones i, j are denoted d

k
ij . b) Pyramic array (foreground)

and speakers (background) in an anechoic chamber.

played in Fig. 7.2. The array was designed such that distances between microphones ensure
high frequency resolution and avoid spatial aliasing. The shortest distance between two micro-
phones is 8 mm, which implies that the maximum frequency of the recording without spatial
ambiguity is fmax = 42.5 KHz. The maximum distance is 200 mm, corresponding to fmax of 1.7
KHz. Therefore, with such a microphone placement, the system is able to span a wide range of
frequencies, while maintaining a reasonable size of the microphone array [7].

7.3.3 Results

To test our algorithm in a real environment, we localize the 21 microphones of the top triangle
of the Pyramic array using 90 calibration directions uniformly spaced in [0, 180�). In the exper-
iment, the speaker is in the same plane as the top triangle of the Pyramic array, so we consider
a two-dimensional setup, D = 2. The vectors in the frame �

0

correspond to the directions of
arrival of the sound played by a speaker:

�
0

=

"

cos 0� cos 2� cos 4� . . . cos 178�

sin 0� sin 2� sin 4� . . . sin 178�

#>

.

All microphones worked properly throughout the experiment, so for every k = 1, . . . , 90 we could
compute the pairwise di↵erences of the sound detection times for all pairs of 21 microphones,
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404040 40 16 168

Figure 7.2: a) A picture of the 3D Pyramic array. Pyramic has 48 microphones spread on
6 printed circuit boards, each bearing 8 MEMS (microelectromechanical systems) microphones
and an analog-to-digital converter. b) Eight microphones placed in one board of the Pyramic
array, where distances are in mm.

arrange them in a measurement vector ed and create a corresponding matrix Bk as

Bk =

2

6

6

6
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4

1 �1 0 . . . 0 0

1 0 �1 . . . 0 0
...

...
...

. . .
...
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7

7

7

7

5

2 R210⇥21

.

We used the splitting algorithm (6.13) to find the locations of the microphones. As Bk = B

0

for every k, it leads to the optimal solution, but more e�ciently than solving the original problem
by (6.12). Our method localizes the microphones with a mean squared error (MSE) of 4.45 µm.

In addition to this real experiment, we performed numerical simulations with K = 90 and
N = 21 to evaluate the impact on the number of active microphones on the robustness of the
reconstruction. We started with a complete set of pairwise di↵erences M =

PK
k=1

Mk = 90
�

21

2

�

,
as in the real experiment, and decreased the value of M until we had a sparsely connected graph
for every direction k. The results are illustrated in Fig. 7.3. These simulations confirm that the
MSE decreases at a faster rate when adding a measurement in a relatively incomplete setup (see
the left side of the graph). On the other hand, adding a measurement to an almost complete
setup has little benefit, as intuitively expected.

7.4 Multimodal sensor localization

7.4.1 Introduction

We consider a sensor network in which nodes can measure distances and angles between each
other, and we want to recover the sensors’ locations given a set of such measurements. This
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4 6 8 10 12 14 16 18

Figure 7.3: CDM estimation error ✏. We consider N = 21 microphones, K = 90 frame vectors
uniformly spread by 2�, and Gaussian noise on the di↵erences with 0-mean and a variance of �2.
We illustrate the dependence of ✏ on number of measurements M for di↵erent values of �. The
number of measured di↵erences varies from M = 3000 to the complete case, M = 18900.

problem is central to many applications, including indoor localization, autonomous vehicles, or
intelligent warehouses.

When the nodes can measure only their pairwise distances, the problem is well studied and
can be solved with a number of algorithms relying on the EDM theory [38, 46, 63, 132]. Sim-
ilarly, when the only available information are the angular measurements between the nodes,
several studies have been proposed to localize the sensors [29, 105, 141]. Setups leveraging both
measurement modalities did not attract as much attention. This is surprising given the fact that
a multimodal approach could provide a significant improvement in accuracy and robustness. On
the other hand, distance and angle measurements are often of a fundamentally di↵erent nature,
so it is not obvious how to combine them into a precise mathematical framework; the consistent
combination of quantities of di↵erent unities into one framework is studied by Hart [73].

For the particular case of angles and distances, trigonometric properties linking the two
can be exploited [19], where the cosine law is applied to the triangles formed by triplets made
of the points to be localized. Macagnano et al. [117] improve on this method by introducing
edge-multidimensional scaling (E-MDS), which solves a multidimensional scaling (MDS) problem
adapted for the vectors between points. In our previous work [91], we build upon the work of
Macagnano et al. [117] and enhance their E-MDS method by introducing additional constraints
that enforce geometric consistency between the edge vectors.

Here we demonstrate how to combine distance and angle measurements into CDMs, which
allows us to localize sensors in closed form. We compare our algorithm with the state-of-the-art
solution [117] and demonstrate its superior performance.

7.4.2 Problem setup

Consider a set of N points in 2D with coordinates denoted by xi 2 R2 for i = 1, . . . , N . The
vector of coordinate di↵erences dij 2 R2 between the points xi and xj is given by dij = xi�xj .
Its length is the Euclidean distance between the points, `ij = kxi � xjk

2

, while its orientation
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Figure 7.4: Localization setup in 2D. The di↵erence vector dij between points xi and xj is
defined either with its distance `ij and directed angle ✓ij , or with its projections onto x- and y-
axis, d1ij and d

2

ij , respectively.

✓ij lies between 0 and 2⇡ and is defined with respect to some common reference direction (see
Fig. 7.4). Note that the angles are often measured in a coordinate system that is local and
di↵erent for each node. Distributed algorithms can convert these relative angles to a common
coordinate system [53].

Our goal is to estimate points bxi from a noisy subset of measured distances e`ij and angles
e

✓ij . Once again, we can leverage CDMs; the noisy coordinate di↵erences are recovered from e

`ij

and e✓ij as edij =
h

e

`ij cos e✓ij , e

`ij sin e✓ij

i>
. We observe that this is a 2D point recovery problem,

which can be optimally solved with the splitting algorithm from Section 6.4.4; we can decompose
the problem into two independent sub-problems and resolve each independently with (6.7). In
this case, we always work in the canonical basis, hence � = I.

7.4.3 Results

To evaluate the proposed CDM approach, we compare with the state-of-the-art in multimodal lo-
calization, E-MDS [117], and the most common approach for range-only measurements, MDS [100].
We consider N = 10 points chosen uniformly at random from [0, 1]D. As in most real-world ap-
plications the measurements of distances and angles are obtained in an independent manner
from time-of-arrival and angle-of-arrival estimates, we also generate independent additive noise
for these quantities. We assume Gaussian noise with 0-mean and standard deviation �` and �✓,
respectively. Note that the noise exceeding ±⇡ will distort the angle noise distribution, but for
the range of standard deviations chosen in these experiments, this e↵ect is negligible.

We evaluate the performance of the three algorithms using the root mean squared error
(RMSE) between the original and the estimated point sets and illustrate its dependence on the
noise levels in Fig. 7.5. For a more convenient comparison, we slice the graphs at four di↵erent
values of �` and �✓. Fig. 7.5a shows the dependence of the RMSE on the distance noise level
for two chosen levels of angle noise: low (�✓ = 0.11), and high (�✓ = 0.5). We observe that
for low �✓ it is advantageous to include angle measurements, since both multimodal methods
achieve smaller error than MDS. For higher �✓, our method still outperforms MDS, except for
very small values of the distance noise. The dependence of the RMSE on the angle noise level for
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Figure 7.5: Comparison of the CDM with E-MDS and MDS for di↵erent distance and angle
noise. a) Dependence of RMSE on �` for two fixed �✓. b) Dependence of RMSE on �✓ for two
fixed �`.

two chosen levels of distance noise is shown in Fig. 7.5b. For low distance noise (�` = 0.05), we
observe that using multimodal methods is beneficial only when angle noise is low; otherwise the
angle information becomes detrimental and one should rely on the distance-based method MDS.
However, for higher distance noise (�` = 0.15), using angles significantly improves the result for
all considered noise levels.

Numerical simulations show that the proposed algorithm based on CDMs surpasses the state-
of-the-art multimodal localization method E-MDS for every pair of (�`,�✓). It also compares
favorably with range-only based method MDS, except for the case of high �✓ and low �`, which
is a relatively rare case in practice.

7.5 Super resolution phase retrieval for sparse sigals

7.5.1 Introduction

In our last application of CDMs we address the phase retrieval (PR) problem, where the goal is
to recover a function from the magnitudes of its Fourier transform (FT). It is of great interest
in many real-world scenarios, in which it is easier to measure the FT of a signal instead of the
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signal itself. A phase loss or distortion can occur during the measurement process in many
scientific disciplines, particularly those involving optics and communications. A few examples
are X-ray crystallography [126], speckle imaging in astronomy [88] and blind channel estimation
of multi-path communication channels [11].

In this chapter, we consider a realistic and challenging PR problem on sparse signals de-
fined on a continuous domain. The sparsity assumption is legitimate and encountered in many
applications; for example atoms in crystallography form a sparse structure and communication
channels are often a collection of discrete echoes. We define a sparse signal by a set of N atoms
determined by their locations and amplitudes.

Recently, several sparse PR algorithms have been proposed assuming a discrete spatial do-
main, often borrowing inspiration from the area of compressed sensing. Two notable examples
are GrEedy Sparse PhAse Retrieval (GESPAR) [157], based on the 2-opt algorithm [40], and
Two-stage Sparse Phase Retrieval (TSPR) [80], where the support is recovered by solving the
discrete turnpike problem [41, 160]. Both algorithms di↵er from our approach in that their
models are discrete and the locations of the spikes are bound to a discrete grid. Even though
it was not designed with continuous setups in mind, TSPR can theoretically recover locations
on a continuous domain. However, while it handles noise on the measured coe�cients, it does
not tolerate noise in the support, which makes it impractical for continuous setups. Other ap-
proaches with discrete support include [113], where the measurement matrix has random entries,
PhaseLift [34], where the sampling matrix entries are independently sampled on the unit sphere,
or [56], which is a variation of GESPAR based on the short-time Fourier transform.

The major benefit of having a continuous parametric model is that it enables estimation of the
locations and amplitudes avoiding any discretization. In such a case, the achievable resolution is
theoretically infinite and only limited by the noise corrupting the measurements. This is what
we call super resolution phase retrieval.

Perhaps surprisingly, the continuous sparse phase retrieval problem has received little atten-
tion. The current literature o↵ers only few results in this settings and they are not usable in
practice mostly due to their instability to noise. Beinert et al. [12, 13] propose a super resolution
approach based on the finite rate of innovation (FRI) framework, which is also one of the building
blocks of the proposed algorithm in this chapter. Nonetheless, our work represents a significant
improvement over the state of the art as it is robust to noise in the measurements.

7.5.1.1 Main contributions

We propose a three-stage algorithm that precisely determines a continuous sparse signal from
the absolute value of its FT, even in presence of significant noise. First, we reconstruct the
super-resolved auto-correlation function (ACF) from a set of its discrete Fourier coe�cients. In
the second step, we find the locations of Diracs that generate such ACF; this is known as the
support recovery problem. Lastly, we estimate their amplitudes. In this chapter we focus on the
second step of the algorithm for two reasons:

• It is closely related to the previously studied CDMs. The connection becomes clearer in
Section 7.5.3 where we formally define the problem.

• It constitutes the critical element of the pipeline. In fact, the first step—the super resolution
with FRI—is well covered in the literature, where theoretical analyses, extensive simulations
in noisy scenarios and e�cient denoising schemes have been proposed [52, 119, 135]. On
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the other hand, the amplitude recovery, while being novel, only consists of simple algebraic
manipulations that are not computationally costly.

Therefore, we describe the details of the proposed support recovery method, provide its
complexity analysis together with a method to reduce its computational cost and propose a few
improvements and variations of the algorithm to make it more robust to noise. We discuss the
influence of the support configuration on the resulting reconstruction.

For a more detailed analysis of the other steps, we refer the reader to our paper [93]. In
addition to the material presented in this chapter, we provide an approximated theoretical
bound (confirmed by numerical simulations) to successfully recover the signal support in a noisy
regime [93]. We show that the success rate of the proposed algorithm exhibits a sharp phase
transition, which is a function of the number of sparse elements, and the noise a↵ecting the
inputs. In other words, given a randomly generated input, the algorithm has either a very high
or very low probability of success. We also implement the PR pipeline for Charge Flipping, a
state-of-the-art algorithm in crystallography, and demonstrate the superiority of our algorithm
both in low and high noise regimes. As those topics go beyond the application of CDMs, we do
not include them in this chapter.

7.5.2 Problem statement

We consider the most compact structure for a sparse signal: a set of N atoms defined by their
locations xn and their amplitudes cn,

f(x) =
N
X

n=1

cn�(x� xn) = f

s(x) ⇤ �(x),

where f

s(x) =
PN

n=1

cn�(x � xn) represents the structure, x is a spatial variable defined over
RD, D is the dimensionality of the signal, �(x) is the scattering function induced by one atom
and ⇤ is the convolution operator.

An important component for solving the PR problem of sparse signals is the observation that
the ACF structure of f(x) is completely inherited from it:

a(x) =
N
X

i=1

N
X

j=1

cicj (x� (xi � xj))

=

2

4

N
X

i=1

N
X

j=1

cicj�(x� (xi � xj))

3

5 ⇤  (x)

= a

s(x) ⇤  (x). (7.1)

The kernel  (x) is the ACF of �(x) and a

s(x) is the ACF of the sparse structure of the train of
Diracs fs(x). Moreover, we use the well-known fact that the ACF a(x) of f(x) is given by the
inverse FT of |F (!)|2:

a(x) = f(x) ⇤ f(�x) = F�1

⇥|F (!)|2⇤ ,
where F�1 is the inverse FT operator [174]. In the Fourier domain, we have

A(!) = |F (!)|2 =
N
X

i=1

N
X

j=1

cicj exp
��j!

>(xi � xj)
 |�(!)|2.
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Figure 7.6: Typical PR measurement pipeline: the signal of interest fs(x) generates the auto-
correlation function a

s(x), which is first filtered by the scattering function  (x) (here an ideal
lowpass filter) to yield a(x) and then sampled, resulting in a

k

. Note that the spatial samples a
k

can be obtained via the inverse discrete FT of the Fourier samples A

`

, when the periodicity in
the two domains holds. Darker colors represent higher intensities.

Due to limitations of the measurement setup, in practice we are usually only able to measure
the absolute values of the samples of FT, that we denote |F

`

|, where F
`

= F (`⌦), ` = ZD and ⌦
is the sampling frequency. Analogously, we do not have an access to the whole A(!), but only
to its Fourier samples A

`

= A(`⌦).
We now have all the ingredients to state our super resolution PR problem:

Problem 7.1 Given Fourier samples A
`

of the sparse ACF defined in (7.1), recover the support
X = {xn}Nn=1

and amplitudes {cn}Nn=1

determining the signal f(x).

The PR acquisition pipeline can be summarized as the filtering of the ACF a

s(x) followed
by sampling, where the filtering represents the scattering operation, as illustrated in Fig. 7.6.
The information we are interested in is hidden behind two walls: the convolution with the kernel
 (x) that spatially blurs the sparse structure of the ACF and the phase loss of the original sparse
signal, fs(x), that usually characterizes any PR problem.

7.5.3 A three-stage approach

We propose to solve Problem 7.1 in three distinct stages: 1) reconstruct the continuous ACF
a(x) from a set of its discrete Fourier coe�cients, 2) estimate the support X of f(x) given a(x),
and 3) estimate its amplitudes {cn}Nn=1

.
Sparsity has two antagonistic e↵ects on PR: it makes the problem combinatorial and hence

hard to solve, but at the same time enables a divide-and-conquer approach, in which we first
recover the support {xn}Nn=1

and then the amplitudes {cn}Nn=1

of f(x). We argue that the
support contains more information than the amplitudes, hence we choose to estimate it first. As
an example, if all the atoms have the same amplitude, then only the support is useful to recover
the original signal. On the other hand, if all the atoms have the same location, the problem is
trivially solvable.
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The first step is a classical sampling problem where we would like to fully characterize a
continuous sparse signal from a set of discrete measurements:

Problem 7.2 (Sparse ACF super resolution) Given samples A

`

of the sparse ACF as
defined in (7.1), recover its continuous version a(x).

The second step is the support recovery problem, which is equivalent to labeling the entries
of CDMs:

Problem 7.3 (Support recovery) Assume we are given the complete set of unlabeled dif-
ferences D = {di,j}i,j = {xi � xj}i,j , recover the support X = {xn}Nn=1

of the sparse signal
f(x).

The set D is derived from the noisy samples a
k

of the ACF a(x) by solving Problem 7.2 and
hence the unlabeled di↵erences of Problem 7.3 are corrupted by noise. Noise is first introduced
when measuring the samples of the ACF a

k

; it is independently distributed and added to the
ACF samples, and not to the di↵erences D. Next, the algorithm that recovers the di↵erences
from the ACF deforms and amplifies the initial measurement noise. Hence, we always obtain a
noisy and non-symmetrical set of di↵erences, instead of the noiseless set D.

Throughout this chapter, we generically refer to the sampling artifacts and their propagation
due to the reconstruction algorithm as noise. In our specific case, we propose to solve the super
resolution of the ACF with an FRI-based algorithm, whose noise analysis is not trivial. We refer
the interested reader to [10, 22, 52, 119] for more details about it: theoretical bounds such as
the Cramér-Rao bound [37] and the Barankin bound [9] are derived in [10, 22, 52]. Moreover,
Monte Carlo simulations show the reconstruction noise distribution along with the theoretical
Cramér-Rao bound [22].

While the literature clearly defines the noise a↵ecting the distances di,j as neither Gaussian
nor independently distributed, we model such a noise as i.i.d. Gaussian random variables,

e

di,j = di,j + zi,j ,

where zi,j ⇠ N (0,�I).
If the labels i and j are known, we could simply arrange the coordinates of the di↵erences

e

di,j =
h

e

d

1

i,j , . . . ,
e

d

D
i,j

i

in D CDMs { eCd}Dd=1

, such that eCd
i,j = e

d

d
i,j , where d = 1, . . . , D is indexing

the coordinates in the D-dimensional space. Then, we could apply (6.7) for every CDM inde-
pendently and find the original points. The challenge of the PR problem is to find the labeling
of the di↵erences.

In what follows, we state a few interesting observations related to Problem 7.3. First, when
we measure a set of di↵erences, some information is inevitably lost.

Observation 7.4 A set of points can be reconstructed from their pairwise di↵erences, even
when labeled, only up to shifts and reflections.
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To show that, we first translate and reflect the set of points X as X 0 = �X + x̄, where we
overload the arithmetic operators on sets to transform each point as x0

n = �xn + x̄. Then, the
set of di↵erences of the transformed points is equivalent to the original one,

d

0
i,j = x

0
i � x

0
j = �xi + x̄+ xj � x̄ = xj � xi = �di,j ,

where the natural symmetry of D compensates for the negative sign.
Second, while excluding shifts and reflections does not lead to a unique solution in general,

we can still prove uniqueness under certain assumptions.

Observation 7.5 Assume that the points xn are drawn independently at random from a
su�ciently smooth distribution, then the solution is unique [145].

Third, we say that there is a collision in the ACF when two di↵erent pairs of distinct points
from X map to the same di↵erence in D. Since we consider a continuous domain for the support,
it natively prevents the appearance of collisions.

Observation 7.6 If the locations of the points are independently drawn uniformly from a
finite interval, then collisions in the ACF occur with probability zero.

Last, we note that a valid solution bX is contained in the set of di↵erences D.

Observation 7.7 The set of di↵erences D is a superset of 2N valid solutions bX to Problem 7.3
and such solutions always contain the point zero, that is 0 2 bX .

To verify this, we pick an element of the support, e.g. xj 2 X , and build the following
tentative solution,

bX = {xi � xj | i = 1, . . . , N}. (7.2)

Then, we notice that 1) bX is a valid solution with the shift fixed as �xj , 2) bX ⇢ D and 3) we
have a solution for every element of X . Moreover, due to the symmetry of the ACF, the set

{xj � xi | i = 1, . . . , N} ⇢ D

is also a valid solution, so we reach the aforementioned 2N solutions.
In the context of CDMs, Observation 7.7 is even more apparent. Let us start with the one-

dimensional case, D = 1. Due to Property P.6 from Section 6.2, we know that every column of a
CDM C is a solution set. In other words, a CDM created from the jth column x = {Cij}Ni=1

is
identical to C. Moreover, we know that the entries of C are the di↵erences in D. Therefore, every
column of C creates the support bX , and since C is a hollow matrix, every solution set contains
the point 0. The same is valid for D > 1, where the entry (i, j) in every CDM C

d, d = 1, . . . , D
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Algorithm 7.1 Support recovery

Input: A set of M = N

2 �N + 1 di↵erences eD = { edm}Mm=1

ordered by their norms.
Output: A set of N points bX such that their pairwise di↵erences generate eD.
bX
2

= {0, edM}
P
2

= eD \ { ed
1

,

e

dM}
for n = 2, . . . , N � 1 do

b

xn+1

= argmin
p2P

n

P

bx2 bX
n

min e
d2 eD

�

�

�

p� bx� e

d

�

�

�

2

bXn+1

= bXn [ bxn+1

Pn+1

= Pn \ bxn+1

end for

return bXN

is the dth coordinate of the ith point in the solution set created from the jth column. As the
zero-element is located on the diagonal of every C

d, the point 0 is in the solution set.
Once the support bX of the solution has been retrieved, it remains to find the amplitudes

{cn}Nn=1

of the signal f(x).

Problem 7.8 (Amplitude recovery) Given an ACF a(x) as defined in (7.1) together with
the estimated support bX of f(x), find the amplitudes {cn}Nn=1

.

7.5.4 Algorithms

In this section, we lay down our solutions to Problems 7.2, 7.3 and 7.8, e↵ectively providing an
end-to-end framework to solve the sparse PR problem.

7.5.4.1 ACF super resolution

When we look at (7.1), we notice that a(x) is completely defined by the locations xi � xj and
the amplitudes cicj . Hence, we can recast Problem 7.2 as a parametric estimation problem given
the measured samples A

`

of the FT of the ACF. An e↵ective existing approach is known as
finite rate of innovation sampling [51, 173]. The higher dimensional case was first discussed by
Maravic [119], who proposed a first algorithm requiring O(ND) samples, where D is the number
of dimensions. More recently, Pan et al. [136] came up with a multidimensional reconstruction
algorithm using only O(N) samples.

7.5.4.2 Support recovery

For the recovery of the support, i.e. for the estimation of a column of a CDM, we propose a novel
greedy algorithm that is initialized with a partial solution bX

2

, which contains two locations. At
any given iteration n, we generate a partial solution bXn+1

composed of n + 1 locations, hence
the algorithm has a total of N � 2 iterations indexed from 2 to N � 1.
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Initialization. We denote the set of measured di↵erences as eD = { edi,j}i,j . For simplicity of
notation, we convert the pairs of indices (i, j) to m 2 {1, . . . ,M}, where M = N

2 � N + 1,
and order them such that k ed

1

k  k ed
2

k  . . .  k edMk. We do not assume any ordering on the
elements of X .

From Observation 7.7, we know that the solution set bX is contained in eD and 0 2 X ; this
gives us the first point of the solution, that is bx

1

= 0. Next, we identify the element edM in
eD with the largest norm, so that we maximize the noise resilience of our algorithm. Indeed,
assuming that the locations are corrupted by identically distributed noise, picking the largest
norm ensures the maximal SNR of our initial solution. Note that the value edM is the noisy
di↵erence between two unknown locations of f(x); without loss of generality, we call them x

1

and x

2

. The elements bx
1

= 0 and bx
2

= e

dM are nothing but x

1

and x

2

+ z

2,1 translated by

�x

1

. Therefore, we are always guaranteed that the initialized solution bX
2

= {0, edM} is a (noisy)
subset of the set of locations X � x

1

.
Referring again to Observation 7.7, we know that the set of di↵erences eD contains the rest of

the points {xn � x

1

+ zn,1}Nn=3

, that should belong to the final solution bX = bXN . Furthermore,

since we do not want to duplicate points in bXn, we initialize a set of possible elements of the
solution P

2

= eD \ { ed
1

,

e

dM}. Due to noise, the vector 0 is not in eD, so we remove the closest
element ed

1

.

Main algorithm. We would like to identify the element bxn+1

2 Pn to be added to the current
solution set bXn, that is bXn+1

= bXn[ bxn+1

. In the noiseless case, this new element of the solution
should be chosen such that the pairwise di↵erences between the elements of bXn+1

form a subset
of D.

This intuition can be generalized to the noisy case: we would like to identify the element
b

xn+1

2 Pn such that the set of pairwise di↵erences of the points in bXn+1

= bXn [ bxn+1

is the
closest to be a subset of the measured eD. To that end, we propose to generalize the concept of
subset to a noisy environment by searching for the di↵erences in eD that are closest in `2-norm
to the pairwise di↵erences of the elements in bXn+1

.
At each step n, we identify the element in Pn that, when added to the partial solution bXn,

minimizes the error with respect to the measured set of di↵erences eD. More precisely, at every
iteration n we solve the following optimization problem,

b

xn+1

= argmin
p2P

n

X

bx2 bX
n

min
e
d2 eD

�

�

�

p� bx� e

d

�

�

�

2

. (7.3)

This procedure is summarized in Algorithm 7.1 and its application on the ACF a

s(x) from
Fig. 7.6 is illustrated in Fig. 7.7.

7.5.4.3 Amplitude recovery

Due to Observation 7.6, we assume that there are no collisions and suggest a simple but e�cient
algebraic solution to Problem 7.8, inspired by the work of Ranieri et al. [145]. While their method
relies on a matrix inversion step to solve the problem, here we propose to work in the logarithmic
domain. Numerical simulations have shown that it is both faster and more robust to noise.

Let c = [c
1

, c

2

, . . . , cN ]> be a vector made of the amplitudes to be recovered. If we define a
matrix � = cc

>, all the elements outside of the diagonal of such a matrix are the amplitudes
of the measured ACF, that is �i,j = cicj . Notice that we cannot observe the diagonal entries
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Figure 7.7: 2D instance of Algorithm 7.1 on the ACF a

s(x) from Fig. 7.6. We start by setting
b

x

1

= 0 and identifying bx
2

, the point with the largest norm. Points bx
3

to bx
5

are then selected in
a greedy way according to (7.3). The solution coincides with the initial signal fs(x) displayed
in Fig. 7.6.

�i,i = c

2

i,i as we just have access to their sum a

s
0 =

P

i c
2

i,i, which is the value of the ACF at
0. This is unfortunate since they are precisely the values we are interested in, up to a squaring
operator.

We recast Problem 7.8 as a matrix completion problem, where we would like to estimate the
diagonal entries �i,i under the constraint of � being a rank-one matrix. The first step of our
proposed method is to introduce a matrix L such that

Li,j =

(

log(�i,j) = `i + `j for i 6= j

0 otherwise,

where `i = log(ci). The sum of the ith row of L is given by

N
X

j=1

Li,j = (N � 1)`i +
N
X

j=1

`j � `i = (N � 2)`i +
N
X

j=1

`j ,

where the term
P

j `j does not vary between rows. Hence, its value can be obtained from
summing all the entries in L,

s =
N
X

i=1

N
X

j=1

Li,j = (N � 2)
N
X

i=1

`i +N

N
X

j=1

`j = 2(N � 1)
N
X

j=1

`j .

Then, we recover the vector ` = [`
1

, `

2

, . . . , `N ]> for N > 2 as

` =
1

N � 2

✓

L

>1� s

2(N � 1)
1

◆

,

where 1 is the all-ones vector.1 Finally, it su�ces to compute ci = exp(`i) to retrieve the
amplitudes.

1When N = 2, the entries `1, `2 can be recovered by solving a system of two equations.
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Figure 7.8: Examples of our algorithm in 1D for di↵erent values of N and di↵erent noise
regimes: a) original points; b) corresponding continuous ACF; c) discrete noisy ACF with 100
samples (sinc sampling kernel used); d) output of the FRI-based super resolution algorithm
(Section 7.5.4.1); e) result of the support and amplitude recovery algorithms (Sections 7.5.4.2
and 7.5.4.3).

Note that this solution assumes that � is symmetric; this might not be the case in a noisy
setup, but we enforce it by replacing � with 1

2

(�+ �>).

Putting all pieces together, these three algorithms from Sections 7.5.4.1, 7.5.4.2 and 7.5.4.3
combine to enable the recovery of a continuous signal from its noisy sampled ACF; Fig. 7.8 illus-
trates a few examples of recoveries of trains of Diracs based on the combination of these three
steps.

7.5.5 Complexity analysis

Algorithm 7.1 has N rounds. In each of these rounds, we go through all points in the existing
solution set bXn, and for each point we compute the di↵erence with all the values in eD. Since there
are O(N) points in bXn and O(N2) elements in eD, this is done in O(N3) operations. Furthermore,
for each of these computed di↵erences, we need to find the closest element in eD, which requires
additional O(N2) comparisons. In total, the complexity of our algorithm is O(N6). Even though
this is high and limits the field of application to reasonable sizes, it compares favorably to an
exhaustive search strategy, which grows exponentially with N .

It is possible to trade time complexity for storage complexity. Indeed, we observe that we
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Figure 7.9: Comparison of the average run time of the original algorithm and its cached version.
The times reported are the average of 100 runs of the algorithm. The dashed lines represent
curves of the form CN

↵ that are fitted to the data. For the method without caching, we have
C = 4.25 · 10�6 and ↵ = 5.06, while for the method with caching we have C = 3.88 · 10�6 and
↵ = 4.37. Remark how the caching is reducing the polynomial degree of the computational cost
by approximately one.

compute at each round the following values

e

di,j = argmin
e
d2 eD

kpj � bxi � e

dk2, (7.4)

for every point bxi 2 bXn and candidate pj 2 Pn. However, since we are just moving one element

from Pn to bXn+1

at each iteration, we propose to cache the values (7.4) in a lookup table to
reduce the total computational cost. By doing so, we only need to update each e

di,j when the

corresponding candidate pj is removed from Pn to be added to bXn+1

.

The theoretical complexity when caching e

di,j is not trivial to analyze, but in practice we
notice a significant improvement, as illustrated in Fig. 7.9.

7.5.6 Improving noise resilience

We now discuss strategies and variations of our support recovery algorithm aiming at improving
the quality of the solution in noisy settings.

7.5.6.1 Deleting solutions from the set of di↵erences

When a new point bxn+1

is added to bXn, Algorithm 7.1 ignores some useful information. Assuming
that there are no collisions and no noise, we know that the values bXn � bxn+1

and bxn+1

� bXn in
D cannot belong to the solution bX . Thus, as soon as bxn+1

is added to the solution set, we can
remove all values of the form bXn � bxn+1

and bxn+1

� bXn from D.
The same reasoning applies to the noisy case, but we pick the closest values in eD as we do

not have exact di↵erences. More formally, when we add a new point bxn+1

to the solution bXn,
we dispose of the following 2n elements of eD,

e

d

⇤ = argmin
e
d2 eD

k± bx⌥ bxn+1

� e

dk2, 8bx 2 bXn.
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This approach results in two opposing e↵ects. On one hand, we introduce the risk of erroneously
discarding a point ed⇤ that belongs to the solution. On the other hand, we are pruning many
elements out of eD and naturally reduce the risk of picking an erroneous candidate later on in the
recovery process. As we will show in Section 7.5.6.4, the benefits out-weight the risks.

7.5.6.2 Symmetric cost function

Next, we replace the cost function (7.3) with a symmetric one to leverage the natural symmetry
of the ACF.

In Algorithm 7.1, we search for the vectors in eD closest to the computed di↵erences p� bXn for
each candidate p. We strengthen its noise resilience by jointly searching for the vectors closest
to ⌥ bXn ± p and choosing the candidate p that minimizes the sum of both errors. Specifically,
we rewrite the cost function (7.3) as

b

xn+1

= argmin
p2P

n

X

bx2 bX
n

min
e
d, ed02 eD

�

�

�

p� bx� e

d

�

�

�

2

+
�

�

�

b

x� p� e

d

0
�

�

�

2

.

We stress that this improvement is compatible with the idea of caching introduced in Sec-
tion 7.5.5. We can in fact cache the following pairs

( ed, ed0)i,j = argmin
e
d, ed02 eD

kpj � bxi � e

dk2 + kbxi � pj � e

d

0k2,

for each bxi 2 bXn and pj 2 Pn and recompute them when pj gets added to the solution bXn+1

.

7.5.6.3 Denoising of partial solutions

At each iteration n of Algorithm 7.1, we have a partial solution bXn+1

and, from (7.3), we identify
for each pair bxi, bxj 2 bXn+1

a di↵erence bdi,j that is the closest to bxi � bxj . In other words, we

are simultaneously labeling the di↵erences bdi,j using our current partial solution and arranging

them in D CDMs {Cd}Dd=1

such that bdi,j =
h

C

1

i,j C

2

i,j . . . C

D
i,j

i>
.

The labeling is completed as k reaches the final iteration N � 1. The CDMs can be exploited
to denoise the set bXn+1

as they provide unused additional constraints and mitigate the error
propagation between the iterations. More precisely, at every step we propose to replace bXn+1

with a set of points {bxi}n+1

i=1

that minimize the following cost function

J

�{bxi}n+1

i=1

�

=
X

i,j

k bdi,j � (bxi � bxj)k2 (a)
=
X

i,j

X

d

kCd
i,j � (bxd

i � bxd
j )k2. (7.5)

This turns out to be the function minimized in the multidimensional CDM problem introduced
in Section 6.4, where (a) follows from the fact that the frame �

0

is an orthonormal basis. The
solution to (7.5) is derived in closed-form by setting its first derivative to 0. It results in the
matrix form (6.11), whereB indicates all pairs of points in the solution set bXn+1

, and�
0

contains
the standard basis for D-dimensional space. As discussed in Chapter 6, the solution is optimal
when the di↵erences are corrupted by additive Gaussian noise, as it is the case here.

Observe that in every step we construct complete CDMs with one additional row and column
for every new point in the solution set. Again referring to Chapter 6, we showed that for the
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complete case, the point recovery is as simple as taking the average of the di↵erences related to
each point bxi 2 bXn+1

as

b

xi =
1

n+ 1

n+1

X

j=1

b

di,j .

To see why this works, we separate the sum as

1

n+ 1

n+1

X

j=1

b

di,j = xi � 1

n+ 1

n+1

X

j=1

xj +
1

n+ 1

n+1

X

j=1

zi,j .

The sum � 1

n+1

Pn+1

j=1

xj is the constant translation for all points bxi. The consequence of this
approach is that the total noise is reduced as we average its di↵erent realizations over n + 1
values. Note that since Algorithm 7.1 assumes that bx

1

= 0 in bXn, we also translate back all the
points by �bx

1

after each update.
Unfortunately, the idea of caching the di↵erences introduced in Section 7.5.5 is not compatible

with the denoising of the partial solutions. As at each step we modify the partial solution set
bXn, the di↵erences between bXn and eD change accordingly, which makes it impossible to cache
them. Hence, there exists a hard trade-o↵ between quality and complexity, and we should pick
the right strategy depending on the requirements of each specific practical scenario.

7.5.6.4 Comparison of improvement strategies

Last, we evaluate the significance of our proposed improvements on Algorithm 7.1. We quantify
the results using the index error, as well as the `2 error. We define the index error as a binary
metric that is equal to 0 if the solution set bX is of the form (7.2), and 1 otherwise. This error
can be used to measure the probability of success of Algorithm 7.1. The `2 error we define as
the `2-norm of the di↵erence between the underlying points X and their estimation bX .2

The comparison of the di↵erent improvement strategies is illustrated in Fig. 7.10. In the
experiment, we draw N one-dimensional points uniformly at random from the interval [0, 1] and
add Gaussian noise N (0,�2) on their pairwise di↵erences. We perform two experiments, with
N = 6 and N = 10. We run Algorithm 7.1 and the proposed improvements for di↵erent noise
levels �. It is clear that all the proposed strategies enhance the original algorithm, with respect
to both the index error and the `2 error.

Moreover, we also observe that di↵erent strategies combine constructively: for example when
N = 6, the symmetric cost function decreases the `2 error by 5% on average, while deleting
solutions from the set of di↵erences improves the results by 27% on average. When combined
together, the average error decreases by 59%. Including the denoising further enhances the
algorithm, as the average error decreases by 62%. Similarly, for the index error there is an evident
shift between the phase transitions of the original algorithm with and without improvements. In
Table 7.2 we quantify the performance of each of these enhancing methods for N = 6 and N = 10.
We can conclude that di↵erent strategies combine constructively and improve the performance
of the original algorithm in both cases.

2This requires to first align the two sets of points X and bX by minimizing the `2-norm between their elements,
subject to any shift and/or reflection.
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Figure 7.10: Average error for the di↵erent combinations of improvements of the algorithm.
We create X from N 1D points chosen uniformly at random from the interval [0, 1], create D
accordingly and add Gaussian noise N (0,�2) to its elements. In a) and c) we plot the `2 error
for di↵erent levels of noise � and di↵erent improvements of the original algorithm. In b) and d)
we show the index error.

sym. del. sym. + del. sym. + del. + denoising

N = 6 5% 27% 59% 62%

N = 10 1% 28% 48% 49%

Table 7.2: The average decrease in `2 error for di↵erent improvement strategies of the original
Algorithm 7.1.

7.5.7 Influence of point locations

When running numerical simulations, we noticed that some configurations of points are easier to
recover than others. In this section, we perform a small experiment to visualize the challenges
posed by certain configurations.

We consider a low-complexity setup (N = 4, D = 1), fix the support boundaries, that is
x

1

= 0 and x

2

= 1, and study the reconstruction error for various pairs (x
3

, x

4

) 2 [0, 1]2. We
generate several instances of this problem and perturb the di↵erences in D with additive Gaussian
noise with zero mean and � = 0.01. We measure the performance of Algorithm 7.1 (with all the
improvements introduced in Section 7.5.6) using both the index and the `2 error. The average
errors are then shown in Fig. 7.11, where we observe that there exist some combinations of points
that lead to a significantly higher error.
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Figure 7.11: Influence of the points’ locations on the estimation errors. We solve a 1D instance
of the problem with N = 4, x

1

= 0, and x

2

= 1. The locations x
3

and x

4

vary along the x- and
y-axis.

We now develop intuition about a few interesting cases that emerged from the previous
experiment. For the sake of simplicity, we consider a noiseless setting where collisions in the
ACF or non-uniqueness of the solution are the only causes of challenging configurations.

1. Collision between a di↵erence and a point. When a di↵erence and a point collide, it can
happen that the di↵erence is mistaken for the point. This does not influence the `2 error,
but causes an index error. An example of such a case is when x

3

= x

4

(the main diagonal
in Fig. 7.11): both the di↵erence x

4

� x

3

and x

1

have value 0. As a consequence, the sets
X 0 = {x

1

, x

2

, x

3

, x

4

} and X 00 = {x
4

� x

3

, x

2

, x

3

, x

4

} are both equal to X = {0, 1, x
3

, x

3

},
but X 00 is not of the form (7.2).

2. Constant di↵erence 0.5. When x

4

= x

3

± 0.5, we can actually find more than one set of
4 points that map to a subset of the given di↵erences. In the case x

4

= x

3

+ 0.5, the
di↵erences are D = ±{0, 1, x

3

, x

3

+ 0.5, 1� x

3

, 0.5� x

3

, 0.5}; thus, D contains all pairwise
di↵erence from both X 0 = {0, 1, x

3

, x

3

+ 0.5} and X 00 = {0, 1, 0.5, x
3

}. However, X 00 does
not lead to a zero `2 error.

3. Collision of di↵erences when adding a new point to the solution set. This is for example the
case of x

4

= 1�2x
3

with D = ±{0, 1, x
3

, 1�2x
3

, 1�x

3

, 2x
3

, 1�3x
3

}. The di↵erences 0 and
1 are always selected in the first and the second step. In the third step, we could potentially
add 2x

3

to X
2

= {0, 1} and reduce the set of di↵erences to D = ±{x
3

, 1 � x

3

, 1 � 3x
3

}.
Next, we select x

3

as a new point. We can verify that the di↵erences of x
3

and the values
in X

3

= {0, 1, 2x
3

} exist in D. However, in this verification we use the value x

3

in D twice:
once as the di↵erence between x

3

and 0, and once as the di↵erence between x

3

and 2x
3

.
The set of pairwise di↵erences of X

4

= {0, 1, 2x
3

, x

3

} is indeed contained in the original D,
but neither its `2 error nor its index error is zero. Notice that if we swap the third and
the fourth step, this confusion would be avoided as x

3

would be removed from the set of
di↵erences in the third step.
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These three cases explain all the segments visible in Fig. 7.11. Such an analysis also applies to
noisy regimes; the main di↵erence is that we move from very localized configurations to blurrier
areas where the solution is ambiguous. In fact, we introduced some noise into the experiment
in Fig. 7.11 to enable the visualization of the lines identifying challenging patterns—a noiseless
setting would have just led to infinitesimally thin lines. Such patterns become blurrier and wider
as noise increases.

7.5.8 Conclusion

We presented a novel approach to solve the phase retrieval problem for sparse signals. While
conventional algorithms operate in discretized space and recover the support of the points on
a grid, the power of FRI sampling combined with the sparsity assumption on the signal model
enables to recover the support of the points in continuous space. In this chapter, we focused
on the support recovery algorithm which is in fact equivalent to labeling the entries of CDMs.
We observed that while our algorithm runs in polynomial time with respect to the sparsity
number of the signal, it remains relatively costly. To alleviate the computational costs without
impacting the quality of the reconstruction, we proposed a caching layer to avoid repeating
calculations. Furthermore, supported by the theoretical insights and algorithmic results on CDMs
from Chapter 6, we introduced several improvements that contribute to enhance the quality of
estimation in the presence of noise. In a more comprehensive coverage of this topic [93], we also
derive the performance bound of the support recovery algorithm with a theoretical analysis and
demonstrate the benefits of the proposed PR method for sparse signals via a comparison with
Charge Flipping, a reference algorithm in crystallography.





Conclusion

Il faut que je supporte deux ou trois chenilles si je veux

connâıtre les papillons.

1

The Little Prince

Antoine de Saint-Exupery

For everyone who read the previous chapters of this thesis, we hope that our contributions
and discussions gratified your curiosity.

If you are an academic or entrepreneur interested in the field of simultaneous localization and
mapping, we hope that our practical tools, algorithms and favorable results from Chapter 3 and
Chapter 4 will encourage you to pursue your research using sonar robots with minimal sensing,
and create even faster and more versatile methods. And when you do so, do not forget our
theoretical results from Chapter 2 and Chapter 5 to be sure that your solution is unique.

If your interest happens to be in ranking, sensor localization or phase retrieval, we hope that
our insights from Chapter 6 and Chapter 7 about the connection of these seemingly very di↵erent
problems will help you find answers to your questions in the union of these distinct fields; each
of them has attracted a vast literature, some of which focuses on theoretical aspects, and some
of which addresses practical concerns.

Outlook

For adventurers looking for inspiration, below we propose a few research topics to be further
investigated.

Active learning from pairwise comparisons In Chapter 7 we proposed an algorithm to estimate
ranking of sport teams from their pairwise comparisons, which are given as a set of net scores
in a finished tournament. What if every game has a cost, and we would like to find a “correct”
ranking of the teams in the most e�cient way? This problem is known as optimal data collection
problem, or more specifically, optimal tournament design. In practice, there exist many di↵erent

1Well, I must endure the presence of a few caterpillars if I wish to become acquainted with butterflies.
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kinds of tournaments. In a single elimination tournament with N teams and N � 1 games, we
expect that the “best” team wins the tournament, but it is di�cult to rank the remaining teams
in any reasonable way. At the other extreme, a round-robin tournament among N teams requires
�

N
2

�

games, which may not be feasible when N is large. It is clear that there is a trade-o↵ between
the amount of pairwise data collected and the informativeness of the ranking, and the question
is how to find an optimal tournament which maximizes the probability of a correct ranking for
a given number of games?

In [133], the authors considered the ranking problem as the least squares estimation equal to
our vector form (6.8) for CDMs. They formulated a bi-level optimization problem to maximally
improve the informativeness of the ranking given the opportunity to collect a certain number of
additional pairwise comparisons. In this bi-level optimization, the inner problem is to determine
the ranking for a given set of scores and the outer problem is to identify data that maximizes the
Fisher information of the ranking. They showed that for the least-squares estimate, the outer
problem decouples from the inner problem. In other words, the optimality criteria for the Fisher
information does not depend on the scores of the games.

Our preliminary results show that by maximizing the expected probability of a correct ranking
rather than the Fisher information, the two problems do not decouple and the probability of
estimating the correct ranking is higher than for the methods proposed in [133]. Even though
theoretically e�cient and promising, the tournaments created by our optimization algorithm are
not very realistic: teams with similar rankings have to play against each other time and again,
while the teams that stand further in the ranking never face each other. Hence, it would be
interesting to see how adding the cost and constraints on the data collection, i.e. limiting the
number of games between the same pairs, impacts di↵erent optimization strategies.

Optimal control of a mobile robot A similar question appears in the problem of simultaneous
localization and mapping. In Chapter 4, we showed that when a robot performs a random
motion, we can jointly reconstruct a room and estimate its trajectory by measuring distances
from the nearest walls. For some applications it could however be crucial to localize the robot
and obtain the geometry of the room in the most e�cient way. In such a case, after every
measurement the robot should decide where to move next to maximize the informativeness of
the future measurements.

In [176], the authors were inspired by a similar question and addressed the problem of optimal
robot motion for the audio source localization. They considered a mobile robot with a microphone
array and one fixed source. They represented the likelihood of the source position on a discrete
grid and proposed an algorithm to find the optimal robot trajectory by minimizing the entropy
of the grid. Their experiments showed that optimal trajectories in di↵erent environments have
similar shapes: the robots move towards the source along an arc, pass by the source and move
around it.

To develop further these promising results, we suggest to consider the following questions:
How does the performance of the algorithm change when the motion model is noisy? Can we
move from the discrete grid to the continuous domain? What if the robot is equipped with a
single omnidirectional microphone instead of the microphone array and we replace the angle of
arrival measurements with point-to-plane distances? What if there are multiple sources and their
labeling is unknown? We believe that answering these questions will enable to design an optimal
control system for our echolocating robot, which would be of considerable value in time-sensitive
applications, such as fire in buildings.
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Odometry-free EchoSLAM In Chapter 3, we proposed an iterative algorithm to factor a point-
to-plane distance matrix (PPDM) into a product of coordinate and projection matrices. In terms
of simultaneous localization and mapping, it allows to jointly estimate a robot’s trajectory and
positions of the walls from the propagation times of first-order echoes. To obtain first-order
echoes, we needed to distinguish them from other pulses in room impulse responses and to
match them with the walls from which they originated. To that end, we leveraged the estimates
of trajectories. We showed that such an approach is robust to noise in the estimates, but it does
not work when the information about the trajectory is completely absent.

As the factorization of PPDMs does not require any knowledge about the trajectory (and
walls), we would ideally have an algorithm with the same characteristics for the detection and
labeling of the first-order echoes. In terms of PPDMs, this problem arises in the following
question: Given a set of unordered entries from every row of a PPDM, along with some additional
measurements, can we e�ciently reconstruct a PPDM?

A positive answer would enable us to envision an odometry-free EchoSLAM algorithm and
apply it not only to echolocating robots with inertial measurement units or odometry hardware,
but also to any mobile device with a minimal sensing (one source and one receiver) and no
information about its motion. As the increasingly present smart-home voice assistants constitute
one category of such devices, the odometry-free EchoSLAM could have significant potential for
variety of applications.

Closing remark One last time, I will refer to “The Little Prince”, and conclude the thesis with
the words that resonate with all of us:

I am not at all sure of success. One drawing goes along all right, and an-
other has no resemblance to its subject. I make some errors, too, in the
little prince’s height: in one place he is too tall and in another too short.
And I feel some doubts about the colour of his costume. So I fumble along
as best I can, now good, now bad, and I hope generally fair-to-middling.

The Little Prince
Antoine de Saint-Exupery

I slightly modified the paragraph to better resonate with mathematicians and other scientists:

I am not at all sure of success. One derivation goes along all right, and an-
other has no resemblance to its experimental result. I make some errors,
too, in the noise model: in one place it is too large and in another too
small. And I feel some doubts about the algorithm convergence. So I fumble
along as best I can, now good, now bad, and I hope generally fair-to-middling.

While doing the research and writing this thesis, I often identified with this quote. Many
times it made me realize that it is natural to be critical towards one’s own work. But more
importantly, it taught me to always keep persevering; accept the imperfections and hold the
head up. Each individual contribution, no matter the size, is a significant and valuable piece
in creating a greater common knowledge. I hope that this thesis will be a stepping stone for
someone else just getting started.
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[69] P. Güntert, C. Mumenthaler, and K. Wüthrich, “Torsion angle dynamics for NMR struc-
ture calculation with the new program Dyana,” Journal of Molecular Biology, vol. 273,
no. 1, pp. 283–298, 1997.

[70] P. Güntert, Automated NMR Structure Calculation With CYANA. Totowa, NJ: Humana
Press, 2004, pp. 353–378.

[71] L. Guttman, “A general nonmetric technique for finding the smallest coordinate space for
a configuration of points,” Psychometrika, vol. 33, no. 4, pp. 469–506, 1968.



194 Bibliography

[72] K. M. Hall, “An r-dimensional quadratic placement algorithm,” Management Science,
vol. 17, no. 3, pp. 219–229, 1970.

[73] G. W. Hart, Multidimensional Analysis - Algebras and Systems for Science and Engineer-
ing, 1st ed. Springer-Verlag New York, Inc., 1995.

[74] R. Hartley and F. Scha↵alitzky, “Powerfactorization: 3D reconstruction with missing or
uncertain data,” Australia-Japan Advanced Workshop on Computer Vision, vol. 74, pp.
76–85, 2003.
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of-arrival localization based on antenna arrays for wireless sensor networks,” Computers &
Electrical Engineering, vol. 36, no. 6, pp. 1181–1186, 2010.

[106] A. N. Langville and C. D. Meyer, Who’s #1?: The science of rating and ranking. Princeton
University Press, 2012.

[107] E. Leitinger, F. Meyer, F. Hlawatsch, K. Witrisal, F. Tufvesson, and M. Z. Win, “A belief
propagation algorithm for multipath-based SLAM,” Corr, vol. arXiv:1801.04463v3, 2018.

[108] E. Leitinger, S. Grebien, X. Li, F. Tufvesson, and K. Witrisal, “On the use of MPC
amplitude information in radio signal based SLAM,” in Proc. Statistical Signal Processing
Workshop (SSP), pp. 633–637. IEEE, 2018.

[109] E. Leitinger, P. Meissner, M. Lafer, and K. Witrisal, “Simultaneous localization and map-
ping using multipath channel information,” in Proc. IEEE International Conference on
Communication Workshop, pp. 754–760, 2015.
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