
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Type-and-Effect System for Object Initialization

FENGYUN LIU, EPFL
ONDŘEJ LHOTÁK, University of Waterloo

AGGELOS BIBOUDIS, EPFL
PAOLO G. GIARRUSSO, Delft University of Technology

MARTIN ODERSKY, EPFL

Every newly created object goes through several initialization states: starting from a state where all fields are

uninitialized until all of them are assigned. Any operation on the object during its initialization process, which

usually happens in the constructor via this, has to observe the initialization states of the object for correctness,

i.e. only initialized fields may be used. Checking safe usage of this statically, without manual annotation of

initialization states in the source code, is a challenge, due to aliasing and virtual method calls on this.
Mainstream languages either do not check initialization errors, like Java, C++, Scala, or they defend against

them by not supporting useful initialization patterns, such as Swift. In parallel, past research has shown that

safe initialization can be achieved for varying degrees of expressiveness but by sacrificing syntactic simplicity.

We approach the problem by upholding local reasoning about initialization which avoids whole-program

analysis, and we achieve typestate polymorphism via subtyping. On this basis, we put forward a novel type-

and-effect system that can effectively ensure initialization safety while allowing flexible initialization patterns.

We implement an initialization checker in the Scala 3 compiler and evaluate on several real-world projects.

Additional Key Words and Phrases: Object initialization, Type-and-effect system

1 INTRODUCTION
Object-oriented programming is unsafe if objects cannot be initialized safely. The following code

shows a simple initialization problem
1
:

1 class Hello {

2 val message = "hello, " + name

3 val name = "Alice"

4 }

5 println(new Hello().message))

The code above when run will print “hello, null” instead of “hello, Alice”, as the field name

is not initialized, thus holds the value null, when it is used in the second line.

The problem of safe initialization comes into existence since the introduction of object-oriented

programming, and it is still a headache for programmers and language designers. Joe Duffy, in his

popular blog post on partially constructed objects [Duffy 2010], wrote:

1
In the absence of special notes, the code examples are in Scala.

Authors’ addresses: Fengyun Liu, EPFL; Ondřej Lhoták, University of Waterloo; Aggelos Biboudis, EPFL; Paolo G. Giarrusso,

Delft University of Technology; Martin Odersky, EPFL.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

XXXX-XXXX/2020/9-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

Not only are partially-constructed objects a source of consternation for everyday

programmers, they are also a challenge for language designers wanting to provide guar-

antees around invariants, immutability and concurrency-safety, and non-nullability.

1.1 Theoretical Challenges
Checking safe initialization of objects statically is becoming a challenge as the code in constructors

is getting more complex. From past research [Fähndrich and Leino 2003; Fähndrich and Xia 2007;

Gil and Shragai 2009; Qi and Myers 2009; Servetto et al. 2013; Summers and Müller 2011; Zibin et al.

2012], two initialization requirements are identified and commonly recognized.

Requirement 1: usage of “this” inside the constructor. The usage of already initialized fields
in the constructor is safe and supported by almost all industrial languages. Based on an extensive

study of over sixty thousand classes, Gil and Shragai [2009] report that over 8% constructors

include method calls on this. Method calls on this can be used to compute initial values for field

initialization or serve as a private channel between the superclass and subclass.

Requirement 2: creation of cyclic data structures. Cyclic data structures are common in

programming. For example, the following code shows the initialization of two mutually dependent

objects:

1 class Parent { val child: Child = new Child(this) }

2 class Child(parent: Parent)

The objective is to allow cyclic data structures while preventing accidental premature usage of

aliased objects. Accessing fields or calling methods on those aliased objects under initialization is

an orthogonal concern, the importance of which is open to debate.

There are three theoretical challenges to attack the problems above.

Challenge 1: virtual method calls.While direct usage of already initialized fields via this is

relatively easy to handle, indirect usage via virtual method calls poses a challenge. Such methods

could be potentially overridden in a subclass, which makes it difficult to statically check whether it

is safe to call such a method. This can be demonstrated by the following example:

1 abstract class AbstractFile {

2 def name: String

3 val extension: String = name.substring(4)

4 }

5 class RemoteFile(url:String) extends AbstractFile {

6 val localFile: String = url.hashCode // error

7 def name: String = localFile

8 }

According to the semantics of Scala (Java is the same), fields of a superclass are initialized before

fields of a subclass, so initialization of the field extension proceeds before localFile. The field

extension in the class AbstractFile is initialized by calling the abstract method name. The latter,

implemented in the child class RemoteFile, accesses the uninitialized field localFile.

Challenge 2: aliasing. It is well-known that aliasing complicates program reasoning and it is

challenging to develop practical type systems to support reasoning about aliasing [Clarke et al.

2013; Hogg et al. 1992]. It is also the case for safe initialization: if a field aliases this, we may not

assume the object pointed to by the field is fully initialized. This can be seen from the following

example:

1 class Knot {

2 val self = this

3 val n: Int = self.n // error

, Vol. 1, No. 1, Article . Publication date: September 2020.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

A Type-and-Effect System for Object Initialization 3

4 }

In the code above, the field self is an alias of this, thus we may not use it as a fully initialized

value. Aliasing may also happen indirectly through method calls, as the following code shows:

1 class Foo {

2 def f() = this

3 val n: Int = f().n // error

4 }

Challenge 3: typestate polymorphism. Every newly created object goes through several

typestates [Strom and Yemini 1986]: starting from a state where all fields are uninitialized until all

of them are assigned. If a method does not access any fields on this , then it should be able to be

called on any typestate of this . For example, in the following class C, we should be able to call the

method g regardless of the initialization state of this:

1 class C {

2 // ...

3 def g(): Int = 100

4 }

The challenge is how to support this feature succinctly without syntactic overhead.

1.2 Existing Work
1.2.1 Industrial Languages. Existing programming languages sit at two extremes. On one extreme,

we find languages like Java, C++, Scala, where programmers may use this as if it is fully initialized,

devoid of any safety guarantee. On the other extreme, we find languages like Swift, which ensures

safe initialization, but is overly restrictive. The initialization of cyclic data structures is not supported,

calling methods on this is forbidden, even the usage of already initialized fields is limited. For

example, in the following Swift code, while the usage of x to initialize y is allowed, the usage of y

to initialize f is illegal, which is a surprise:

1 class Position {

2 var x, y: Int

3 var f: () -> Int

4 init() {

5 x = 4

6 y = x * x // OK

7 f = { () -> Int in self.y } // error

8 }

9 }

1.2.2 Masked Types. Masked types [Qi and Myers 2009] is an expressive, flow-sensitive type-and-

effect system [Lucassen and Gifford 1988] for safe initialization of objects.

A masked type T \f denotes objects of the type T , where the masked field f cannot be accessed.

Each method has an effect signature of the formM1 ; M2, which means that the method can only

be called if this conforms to the masks M1, and the resulting masks for this after the call is M2.

However, there are several obstacles to make the system practical.

First, the system incurs cognitive load and syntactic overhead. Many concepts are introduced in

the system, such as subclass masks, conditional masks, abstract masks, each with non-trivial syntax.

The paper mentions that inference can help to remove the syntactic burden. However, it leaves

open the formal development of such an inference system.

, Vol. 1, No. 1, Article . Publication date: September 2020.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

Second, the system, while expressive, is insufficient for simple and common use cases due to the

missing support for typestate polymorphism. This can be seen from the following example, where

we want the method g to be called for any initialization state of this:

1 class C { def g(): Int = 100 /* effect of g: ∀M .M ; M */ }

As the method g can be called for this with any masks, we would like to give it the (imaginary)

polymorphic effect signature ∀M .M ; M , which is not supported. Even if an extension of the

system supports polymorphic effect signatures, it will only incur more syntactic overhead.

1.2.3 The Freedom Model. Summers and Müller [2011] propose a light-weight, flow-insensitive

type system for safe initialization, which we call the freedom model.
The freedom model classifies objects into two groups: free, that is under initialization, and com-

mitted, that is transitively initialized. Field accesses on free objects may get null, while committed

objects can be used safely. To support typestate polymorphism, it introduces the typestate unclassi-
fied, which means either free or committed. With subtyping, typestate polymorphism becomes just

subtyping polymorphism.

The freedom model supports the creation of cyclic data structures with light-weight syntax.

However, the formal system does not address the usage of already initialized fields in the constructor.

When an object is free, accessing its field will return a value of the type unclassified C?, which

means the value could be null, free or committed. In the implementation, they introduce committed-
only fields which can be assumed to be committed with the help of a dataflow analysis. However,

the paper leaves open the formal treatment of the dataflow analysis. Our work will address the

problem.

Moreover, the abstraction free is too coarse for some use cases. This is demonstrated by the

following example:

1 class Parent {

2 var child = new Child(this)

3 var tag: Int = child.tag // error in freedom model

4 }

5 class Child(parent: Parent @free) {

6 var tag: Int = 10

7 }

According to the freedom model, the expression child in line 3 will be typed as free, thus the
type system cannot tell whether the field child.tag is initialized or not. But conceptually we know

that all fields of child are initialized by the constructor of the class Child. In this work we propose

a new abstraction to improve expressiveness in such cases.

1.3 Contributions
Our work makes contributions in four areas:

1. Better understanding of local reasoning about initialization. Local reasoning about ini-
tialization is a key requirement for simple and fast initialization systems. However, while prior

work [Summers and Müller 2011] takes advantage of local reasoning about initialization to design

simple initialization systems, the concept of local reasoning about initialization is neither mentioned

nor defined precisely. Identifying local reasoning about initialization as a concept with a better

understanding enables it to be applied in the design of future initialization systems.

2. A more expressive type-based model. We propose a more expressive type-based model for

initialization based on the abstractions cold,warm and hot. The introduction of the abstractionwarm

, Vol. 1, No. 1, Article . Publication date: September 2020.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

A Type-and-Effect System for Object Initialization 5

improves the expressiveness of the freedom model [Summers and Müller 2011] which classifies

objects as either free (i.e. cold) or committed (i.e. hot).

3. A novel type-and-effect inference system. We propose a type-and-effect inference system

for a practical fragment of the type-basedmodel. Existing work usually depends on some unspecified

inference or analysis to cut down syntactic overhead [Qi and Myers 2009; Summers and Müller

2011; Zibin et al. 2012]. We are the first to present a formal inference system on the problem of

safe initialization. Meanwhile, to our knowledge, we are the first to demonstrate the technique of

controlling aliasing in a type-and-effect system.

4. Implementation in Scala 3. We implement an initialization system in the Scala 3 compiler

and evaluate it on several real-world projects. The system is capable of handling complex language

features, such as inner classes, traits and functions.

2 LOCAL REASONING ABOUT INITIALIZATION
An important insight in the work of Summers and Müller [2011] is that if a constructor is called
with only transitively initialized arguments, the resulting object is transitively initialized. We give this

insight a name, local reasoning about initialization; it enables reasoning about initialization without

the global analysis of a program, which is the key for simple and fast initialization systems. The

insight also holds for method calls: if the receiver and arguments of a method call are transitively

initialized, so is the result.

But how can we justify the insight? While a justification can be found in the soundness proof

of the freedom model, it is obscured in a monolithic proof structure (see Lemma 1 of Summers

and Müller [2011]). We provide a modular understanding of local reasoning about initialization by

identifying three semantic properties, which we call weak monotonicity, stackability and scopability.
Identifying local reasoning about initialization as a concept with a better understanding enables it

to be applied in the design of future initialization systems. The properties can be explained roughly

as follows:

• weak monotonicity: initialized fields continue to be initialized.

• stackability: all fields of a class should be initialized at the end of the class constructor.

• scopability: objects under initialization can only be accessed via static scoping.

To study the properties more formally, we first introduce a small language.

2.1 A Small Language
Our language resembles a subset of Scala having only top-level classes, mutable fields and methods.

P ∈ Program ::= (C,D)

C ∈ Class ::= class C(ˆf :T) { F M }

F ∈ Field ::= var f :T = e
e ∈ Exp ::= x | this | e . f | e .m(e) | new C(e) | e . f = e; e

M ∈ Method ::= def m(x :T) : T = e
S,T ,U ∈ Type ::= C

A program P is composed of a list of class definitions and an entry class. The entry class must

have the form class D { def main : T = e }. The program runs by executing e .

A class definition contains class parameters (
ˆf :T), field definitions (var f :T = e) and method

definitions. Class parameters are also fields of the class. All class fields are mutable. As a convention,

we use f to range over all fields, and
ˆf to only range over class parameters.

An expression (e) can be a variable (x), self reference (this), field access (e . f), method call (e .m(e)),
class instantiation (new D(e)), block expression (e . f = e; e). The block expression is used to avoid

, Vol. 1, No. 1, Article . Publication date: September 2020.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

introducing the syntactic category of statements in the presence of assignments, which simplifies

the presentation and meta-theory.

A method definition is standard. We restrict method body to just expressions. This choice

simplifies the meta-theory without loss of expressiveness thanks to block expressions.

The following constructs are used in defining the semantics:

Ξ ∈ ClassTable = ClassName⇀ Class

σ ∈ Store = Loc⇀ Obj

ρ ∈ Env = Variable⇀ Value

o ∈ Obj = ClassName × (FieldName⇀ Value)

l,ψ ∈ Value = Loc

We use ψ to denote the value of this , σ corresponds to the heap, ρ corresponds to the local

variable environment of the current stack frame.

The big-step semantics, presented in Appendix C is standard, thus we omit detailed explanation.

The only note is that non-initialized fields are represented by missing keys in the object, instead of

a null value. Newly initialized objects have no fields, and new fields are gradually inserted during

initialization until all fields defined by the class have been assigned.

Note that this language does not enjoy initialization safety, and it is the task of later sections to

make it safe. However, the language enjoys local reasoning about initialization.

2.2 Definitions
Definition 2.1 (reachability). An object l ′ is reachable from l in the heap σ , written σ ⊨ l ; l ′, is

defined below:

l ∈ dom(σ)

σ ⊨ l ; l

σ ⊨ l0 ; l1 (_,ω) = σ (l1) ∃ f . ω(f) = l2 l2 ∈ dom(σ)

σ ⊨ l0 ; l2

Definition 2.2 (reachability for set of locations).

σ ⊨ L ; l ≜ ∃l ′ ∈ L.σ ⊨ l ′ ; l
σ ⊨ l ; L ≜ ∃l ′ ∈ L.σ ⊨ l ; l ′

Definition 2.3 (cold). An object is cold if it exists in the heap, formally

σ ⊨ l : cold ≜ l ∈ dom(σ)

Definition 2.4 (warm). An object is warm if all its fields are assigned, formally

σ ⊨ l : warm ≜ ∃(C,ω) = σ (l)
∧

f ields(C) ⊆ dom(ω)

Definition 2.5 (hot). An object is hot if all reachable objects are warm, formally

σ ⊨ l : hot ≜ l ∈ dom(σ)
∧

∀l ′.σ ⊨ l ; l ′ =⇒ σ ⊨ l ′ : warm

From the definition, it is easy to see that hot implieswarm andwarm implies cold .

2.3 Weak Monotonicity
The idea of monotonicity dates back to heap monotonic typestates by Fähndrich and Leino [2003].

There are, however, at least three different concepts of monotonicity.

Weak monotonicity means that initialized fields continue to be initialized. More formally, we

may prove the following theorem:

, Vol. 1, No. 1, Article . Publication date: September 2020.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

A Type-and-Effect System for Object Initialization 7

Theorem 2.6 (Weak Monotonicity).

JeK (σ , ρ,ψ) = (l,σ ′) =⇒ σ ⪯ σ ′

In the above, the predicate weak monotonicity (σ ⪯ σ ′
) is defined below:

Definition 2.7 (Weak Monotonicity).

σ ⪯ σ ′ ≜ ∀l ∈ dom(σ). (C,ω) = σ (l) =⇒ (C,ω ′) = σ ′(l)

While weak monotonicity is sufficient to justify local reasoning about initialization, stronger

monotonicity is required for initialization safety. For example, the freedom model [Summers and

Müller 2011] enforces strong monotonicity:

σ ⪯ σ ′ ≜ ∀l ∈ dom(σ). σ ⊨ l : µ =⇒ σ ′ ⊨ l : µ

In the above, we abuse the notation by using µ to denote either cold, warm or hot. Strong
monotonicity additionally ensures that hot objects continue to be hot. Therefore, it is always safe

to use hot objects freely. However, to enforce safer usage of already initialized fields of non-hot

objects, we need an even stronger concept, perfect monotonicity:

σ ⪯ σ ′ ≜ ∀l ∈ dom(σ). (C,ω) = σ (l) =⇒

(C,ω ′) = σ ′(l)
∧

∀f ∈ dom(ω).σ ⊨ ω(f) : µ =⇒ σ ′ ⊨ ω ′(f) : µ

In the above, we abuse the notation by writing directly ω ′(f) to require that dom(ω) ⊆ dom(ω ′).

Perfect monotonicity in addition ensures that initialization states of object fields are monotone. It

will be problematic if a field is initially assigned a hot value and later reassigned to a non-hot value.

2.4 Stackability
Conceptually, stackability ensures that all newly created objects during the evaluation of an

expression e are warm, i.e. all fields of the objects are assigned. Formally, the insight can be proved

as a theorem:

Theorem 2.8 (Stackability).

JeK (σ , ρ,ψ) = (l,σ ′) =⇒ σ ≪ σ ′

The predicate σ ≪ σ ′
is defined below, which says that for any object in the heap σ ′

, either the

object is warm, or the object pre-exists in the heap σ .

Definition 2.9 (Stacking).

σ ≪ σ ′ ≜ ∀l ∈ dom(σ ′).σ ′ ⊨ l : warm
∨

l ∈ dom(σ)

Definite assignment [Gosling et al. 2015] can be used to enforce stackability in programming

languages. In Java, however, it only requires that final fields are initialized.

If we push an object in a stack when it comes into existence, and remove it from the stack when

all its fields are assigned, we will find that the object to be removed is always at the top of the stack.

This is illustrated in Figure 1.

2.5 Scopability
Scopability says that the access to uninitialized objects should be controlled by static scoping.

Intuitively, it means that a method may only access pre-existing uninitialized objects through its

environment, i.e. method parameters and this.

Objects under initialization are dangerous when used without care, therefore the access to them

should be controlled. Scopability imposes discipline on accessing uninitialized objects. If we regard

, Vol. 1, No. 1, Article . Publication date: September 2020.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

1
2

4

3

time 5 6

1
2

4

3

5 6

stacked non-stacked

Fig. 1. Each block represents the initialization duration of an object, i.e., from the creation of the object to
the point where all fields are assigned.

uninitialized objects as capabilities, then scopability restricts that there should be no side channels

for accessing those capabilities. All accesses have to go through the explicit channel, i.e. method

parameters and this. In contrast, global variables or control-flow effects such as algebraic effects

may serve as side channels for teleporting values under initialization. To maintain local reasoning

about initialization, an initialization system needs to make sure that only initialized values may

travel by side channels.

More formally, we can prove the following theorem:

Theorem 2.10 (Scopability).

JeK (σ , ρ,ψ) = (l,σ ′) =⇒ (σ , codom(ρ) ∪ { ψ }) ⋖ (σ ′, { l }) (1)

In the above, the predicate (σ , L) ⋖ (σ ′, L′) is defined below:

Definition 2.11 (Scoping). A set of addresses L′ ⊆ dom(σ ′) is scoped by a set of addresses L ⊆

dom(σ), written (σ , L) ⋖ (σ ′, L′), is defined as follows

(σ , L) ⋖ (σ ′, L′) ≜ ∀l ∈ dom(σ). σ ′ ⊨ L′ ; l =⇒ σ ⊨ L ; l

The theoremmeans that if e evaluates to l , then l and every location l ′ reachable from l in the new
heap is either fresh, in that it did not exist in the old heap, or it was reachable from codom(ρ) ∪ψ
in the old heap.

Note that in the definition of scopinд, we use σ ⊨ L ; l instead of σ ′ ⊨ L ; l . This is because in
a language with mutation, l may no longer be reachable from L in σ ′

due to reassignment. This can

be seen in Figure 2.

The property of scopability holds intuitively, but its proof is not obvious at all. The subtlety is in

proving the case e1.m(e2). Suppose we have Je1K (σ1, ρ,ψ) = (l1,σ2) and Je2K (σ2, ρ,ψ) = (l2,σ3). By
induction hypothesis, we have (σ1, codom(ρ) ∪ { ψ }) ⋖ (σ2, l1) and (σ2, codom(ρ) ∪ { ψ }) ⋖ (σ3, l2).
However, we do not know that (σ1, codom(ρ) ∪ { ψ }) ⋖ (σ3, l1). We need some invariant saying

that scoping relations are preserved. That invariant has to be carefully defined, as not all scoping

relations are preserved due to reassignment. We refer the reader to the technical report for more

detailed discussions [Liu et al. 2020].

2.6 Local Reasoning about Initialization
With weak monotonicity, stackability and scopability, we may prove the theorem of local reasoning

about initialization.

, Vol. 1, No. 1, Article . Publication date: September 2020.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

A Type-and-Effect System for Object Initialization 9

1

7
2

4

3

5

6

1

7 2
4

3

5

6
8

9

˟

Heap σ Heap σ’

⟦e⟧(σ, ø, 2)

Fig. 2. Each circle represents an object and numbers are locations. An arrow means that an object holds a
reference to another object. The thick circles and links on the right heap are new objects and links created
during the execution. Due to scopability, we have (σ , {2}) ⋖ (σ ′, {8}). It means if the result object 8 reaches
any object which pre-exists in the heap σ , then the object must be reachable from object 2 in the heap σ . The
object 7 which is reachable from the object 2 in the heap σ , is no longer reachable from object 2 in the heap
σ ′ due to the removal of the link from object 1 to object 7.

Lemma 2.12 (Local Reasoning). The following proposition holds

(σ , L) ⋖ (σ ′, L′) σ ≪ σ ′ σ ⪯ σ ′ σ ⊨ L : hot

σ ′ ⊨ L′ : hot

Proof. Let’s consider a reachable object l from L′, i.e. σ ′ ⊨ L′ ; l . Depending on whether

l ∈ dom(σ), there are two cases.

• Case l < dom(σ).
Use the fact that σ ≪ σ ′

, we know σ ′ ⊨ l : warm.

• Case l ∈ dom(σ).
Use the fact that (σ , L) ⋖ (σ ′, L′), we have σ ⊨ L ; l . From the premise σ ⊨ L : hot , we have
σ ⊨ l : warm. From σ ⪯ σ ′

, we have σ ′ ⊨ l : warm.

In both cases, we have σ ′ ⊨ l : warm, by definition we have σ ′ ⊨ L′ : hot . □

Theorem 2.13 (Local Reasoning). The following proposition holds:

JeK (σ , ρ,ψ) = (l,σ ′) σ ⊨ { ψ } ∪ codom(ρ) : hot

σ ′ ⊨ l : hot

Proof. Immediate from Lemma 2.12, the preconditions are satisfied by Theorem 2.10, Theo-

rem 2.6 and Theorem 2.8. □

In particular, if e is a method body, we can conclude that if the receiver and all the method

parameters are hot, then the return value is also hot.

This theorem echoes the insight in the freedommodel [Summers andMüller 2011]: if a constructor

is called with all arguments committed, then the constructed object is also committed.

3 THE BASIC MODEL
In this section, we take advantage of local reasoning about initialization to develop a type system

that ensures initialization safety of objects.

, Vol. 1, No. 1, Article . Publication date: September 2020.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

3.1 Types
From the last section, we see that there are three natural abstractions of initialization states:

cold A cold object may have uninitialized fields.

warm A warm object has all its fields initialized.

hot A hot object has all its fields initialized and only reaches hot objects.

If we posit the abstractions cold, warm and hot as types, we arrive at a type system for safe

initialization of objects, which we call the basic model. Types in the language have the form Cµ
:

Ω ::= { f1, f2, . . . }
µ ::= cold | warm | hot | Ω
T ::= Cµ

The typeCΩ
is introduced to support the usage of already initialized fields — Ω denotes the set of

initialized fields. The type is well-formed if Ω contains only fields of the class C . In languages that

are equipped with an annotation system, such as Java, the typeCµ
can be written using annotations

(e.g.C @warm andC @cold), while a type without annotation can be assumed to be hot. Types like
CΩ

are mainly used internally in the type system, thus there is no need to write them explicitly.

A type Cµ1
is a subtype of another type Cµ2

, written Cµ1 <: Cµ2
, if µ1 ⊑ µ2. The lattice for modes

µ is defined below:

hot ⊑ µ warm ⊑ Ω Ω1 ∪ Ω2 ⊑ Ω1 µ ⊑ cold

The modes hot and cold are respectively bottom and top of the lattice, and Ω is in the middle.

Methods are now annotated with modes, i.e., in@µ def m(x :T) : T = e , the mode µ means this
has the type Cµ

inside the methodm of the class C . We will propose an inference system to avoid

the annotations (Section 4 and 5). The semantics of the language remain the same as the language

introduced in section 2.

3.2 Type System
We present definition typing and expression typing in Figure 3 and Figure 4. In an expression

typing judgment Γ;T ⊢ e : U , the typeT is the type for this . Note that for simplicity of presentation,

the class table Ξ is omitted in expression typing judgments.

• The rule T-Block demands that we only reassign hot values to fields; that is how we enforce

perfect monotonicity in the system.

• Both the rules T-New and T-Invoke take advantage of local reasoning about initialization at

the type level.

• The rule T-SelHot capitalizes on the fact that a hot object may only reach hot objects.

The soundness theorem says that a well-typed program does not get stuck at runtime.

Theorem 3.1 (Soundness). If ⊢ P, then ∀k . JPK (k) , Error

The meta-theory takes the approach of step-indexed definitional interpreters [Amin and Rompf

2017]. For a step-indexed interpreter, there are three possible outcomes: (1) time out; (2) error; (3) a

resulting value and an updated heap. Initialization safety is implied by soundness, as initialization

errors will cause the program to fail at runtime. We refer the reader to the technical report for more

details about the meta-theory [Liu et al. 2020].

, Vol. 1, No. 1, Article . Publication date: September 2020.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

A Type-and-Effect System for Object Initialization 11

Program Typing ⊢ P

Ξ = C → C Ξ(D) = class D { def main : T = e } ∅;Dhot ⊢ e : T Ξ ⊢ C

⊢ (C,D)
(T-Prog)

Class Typing Ξ ⊢ C

Ω0 = ˆf Ξ;CΩi ⊢ Fi Ωi+1 = Ωi ∪ { fi } Ξ;C ⊢ M

Ξ ⊢ class C(ˆf :T) { F M }

(T-Class)

Field Typing Ξ;CΩ ⊢ F

∅;CΩ ⊢ e : T

Ξ;CΩ ⊢ var f : T = e
(T-Field)

Method Typing Ξ;C ⊢ M

x :T ;Cµ ⊢ e : S

Ξ;C ⊢ @µ def m(x :T) : S = e
(T-Method)

Fig. 3. Definition typing of the basic model

3.3 Typestate Polymorphism and Authority
A key design decision of the type system is to embrace flow-insensitivity. It follows an insight

from Summers and Müller [2011] that we may achieve typestate polymorphism via subtyping in a

flow-insensitive system.

Otherwise, if the system were flow-sensitive, we would have to track the change of typestates of

this inside a method. Suppose we track the changes of a method m with Cµ1 → Cµ2
, which means

that the method m requires this to conform to Cµ1
before the call, and this takes the typestate Cµ2

after the call, similar to what is done by Qi and Myers [2009]. This creates a difficulty for methods

that can be called for any typestates of this, as the following example shows:

1 class C {

2 // ...

3 def g(): Int = 100 // ∀µ .Cµ → Cµ

4 }

In the code above, the method g can be called for any typestate of this. Representing the fact

in the system would require parametric polymorphism, which complicates the solution. In fact,

the system proposed by Qi and Myers [2009] does not support typestate polymorphism and thus

invalidates such simple use cases.

The combination of flow-insensitivity and strong/perfect monotonicity imposes a rule in the

design of initialization systems, which we call authority. Roughly, it means that we may only

advance initialization states of an object at specific locations in its class constructor.

, Vol. 1, No. 1, Article . Publication date: September 2020.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

Expression Typing Γ;T ⊢ e : T

Γ;T ⊢ e : T1 T1 <: T2

Γ;T ⊢ e : T2
(T-Sub)

x : U ∈ Γ

Γ;T ⊢ x : U
(T-Var)

Γ;T ⊢ this : T (T-This)

Γ;T ⊢ e : Dhot Cµ = fieldType(D, f)

Γ;T ⊢ e . f : Chot
(T-SelHot)

Γ;T ⊢ e : Dwarm U = fieldType(D, f)

Γ;T ⊢ e . f : U
(T-SelWarm)

Γ;T ⊢ e : DΩ f ∈ Ω U = fieldType(D, f)

Γ;T ⊢ e . f : U
(T-SelObj)

Ti = constrType(C) Γ;T ⊢ ei : C
µi
i C

µi
i <: Ti µ = (⊔ µi) ⊓warm

Γ;T ⊢ new C(e) : Cµ (T-New)

Γ;T ⊢ e : Cµ0 (µm,Ti ,D
µr) =methodType(C,m)

µ0 ⊑ µm Γ;T ⊢ ei : D
µi
i D

µi
i <: Ti µ = (⊔ µi = hot)?hot : µr

Γ;T ⊢ e .m(e) : Dµ (T-Invoke)

Γ;T ⊢ e1. f : Cµ Γ;T ⊢ e2 : C
hot Γ;T ⊢ e : T1

Γ;T ⊢ e1. f = e2; e : T1
(T-Block)

Fig. 4. Expression typing of the basic model

In a flow-insensitive system, how can we safely advance typestates of objects? It is unsafe to do

so at arbitrary locations in the program, as the update may break monotonicity if the typestate of

the object can be advanced differently via aliases elsewhere. More theoretically, a flow-insensitive

system cannot establish the order of updates at different locations (and possibly via aliases) to

guarantee monotonicity.

The rule of authority suggests that it is safe to perform typestate updates only via an outstanding

alias and only at definite locations in a local context. The definite locations form a local flow in

a flow-insensitive system. In the experimental language, the outstanding alias is this, and the

locations are the points of field initializations inside the class constructor.

The design rule of authority comes from the meta-theory. The meta-theory is based on store
typing [Pierce 2002, Chapter 13]. We use Σ to range over store typings, which are maps from

locations to types, i.e. Loc ⇀ Type . An important semantic property used in the proof is the

following:

, Vol. 1, No. 1, Article . Publication date: September 2020.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

A Type-and-Effect System for Object Initialization 13

∀l ∈ dom(Σ).Σ(l) = CΩ =⇒ Σ′(l) = CΩ

Σ � Σ′

In the above, Σ and Σ′
are the store typings before and after evaluating an expression. Literally,

the property says that if the object at location l is considered to have initialization state Ω before

the evaluation of an expression, it must be considered to still have the initialization state Ω after

the evaluation of the expression.

Intuitively, the property implies that we may not advance the initialization state of existing

objects during evaluation of an expression. It leaves only the possibility to advance object state at

special locations in the constructor. At the end of the class body when all fields are initialized, we

promote the type of the fresh object to be warm. Its promotion to hot may be delayed until a group

of cyclic objects becomes hot together, which is called a commitment point by Summers and Müller

[2011].

We call the semantic property above the property of authority. The property is necessary to prove
perfect monotonicity, which is an important invariant in the soundness proof. The reason can be

demonstrated by the following program:

1 class C(a: A @cold) { var x: D @cold = e; var y: Int = 10 }

In the code above, suppose the type ofψ (the value for this) starts as C { a }
, and a side-effect of

evaluating e updates the type ofψ toCµ
. After assigning the value of e , denoted as le , to the field x ,

we update the type of this to Cµ′
. We would like µ ′ ⊑ { a, x } to record that the fields a and x is

initialized, and monotonicity requires that µ ′ ⊑ µ. The property of authority ensures that µ = { a },

which enables one simple solution to these constraints, namely µ ′ = { a, x }. This is a sound choice

because we do know that the field x has been assigned the value le , which is of the type Dcold

(known by induction hypothesis) as required by the semantic typing of the objectψ as C { a,x }
.

In the absence of authority, it would be allowed to update the type of ψ as a side-effect of

evaluating e , for example to Chot
. Then the constraint µ ′ ⊑ µ would force µ to be hot. However,

there is no guarantee that le is transitively initialized. From the induction hypothesis, we only

know that it has the type Dcold
. So setting µ ′ to hot would be unsound, since this might no longer

be transitively initialized after the field x is assigned the value le .
Note that the property of authority only talks about types of the formCΩ

. The store typing never

contains types like Ccold
, a value takes such a type by subtyping. Authority for values of the type

Cwarm
is not necessary for soundness. The reason is that the only operation in the store typing for

a warm object is to promote its type from Cwarm
to Chot

, the only possible next monotone state, it

is thus impossible for monotonicity to fail. For the type Chot
, monotonicity guarantees that the

type keeps the same.

We believe the property of authority is already necessary for a flow-insensitive system that

enforces strong monotonicity, such as the freedom model [Summers and Müller 2011], but it has

not been made explicit in previous work.

4 TYPE-AND-EFFECT INFERENCE, INFORMALLY
The type system proposed in the last section depends on verbose annotations, which forms an

obstacle for its adoption in practice. In this section, we propose a type-and-effect inference system

[Lucassen and Gifford 1988; Nielson et al. 1999] to significantly cut down the syntactic overhead.

We first discuss the design of the type-and-effect inference system informally by examples.

4.1 Potentials and Effects
Consider the following erroneous program, which accesses the field y before it is initialized:

, Vol. 1, No. 1, Article . Publication date: September 2020.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

1 class Point {

2 var x: Int = this.y // Point.this.y!

3 var y: Int = 10

4 }

A natural idea to ensure safe initialization is to analyze the fields that are accessed at each step

of initialization, and check that only initialized fields are accessed. This leads to the fundamental

effect in initialization: field access effect, e.g. C .this . f !.
Fields may also be accessed indirectly through method calls, as the following code shows:

1 class Point {

2 var x: Int = this.m() // Point.this.m<>

3 var y: Int = 10

4 def m(): Int = this.y // Point.this.y!

5 }

For this case, we may introduce method calls as effects, which act as placeholders for the actual

effects that happen in the method: method call effects, e.g. C .this .m♢.
If we first analyze effects of the methodm and map the effect Point .this .m♢ to the set of effects

{Point .this .y!}, then we may effectively check the initialization error in the code above.

One subtlety in the design is how to handle aliasing. We illustrate with the following example:

1 class Knot {

2 var self = this // potentials of "self": { Knot.this }

3 var x: Int = self.x // effects of "self.x": { Knot.this.self.x! }

4 }

In the code above, the field x is used via the alias self before it is initialized. To check such errors,

we need a way to represent the aliasing information in the system. That leads us to the concept

of potentials. Potential over-approximate expressions that could potentially alias a potentially

uninitialized object. If an expression could refer to an uninitialized object, it must be abstracted by

a potential. If an expression has an empty set of potentials, it means at runtime the value of the

expression is always hot.

A potential encodes aliasing information in the form of paths, such as C.this, C.this.f or

C.this.m. In the code example above, the field self takes the potentials of its initializer, i.e. the set

{ Knot.this }. Now an initialization checker may take advantage of the aliasing information and

report an error for the code self.x.

To enforce that all arguments to method calls are hot, we introduce promotion effects that
promote potentials to be hot, e.g. C .this↑. The checking system will check that only hot objects are

promoted. The following example illustrates the usage of the effect:

1 class Point {

2 var x: Int = this.m() // Point.this.m<>

3 def m(): Int = call(this) // Point.this↑

4 }

In the code above, the method call effect Point .this .m♢ incurs the promotion effect Point .this↑.
The system finds that at the point of the call this.m(), the value of this is not hot, such promotion

is thus illegal.

Semantically, potentials keep track of objects possibly under initialization in order to maintain a

directed segregation of initialized objects and objects under initialization: objects under initialization
may point to initialized objects, but not vice versa. A promotion effect means that the object pointed

, Vol. 1, No. 1, Article . Publication date: September 2020.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

A Type-and-Effect System for Object Initialization 15

to by the potential ascends to the initialized world, and the system gives up on tracking it. The

system will have to ensure that by the time this happens, the object is hot.

Note that field access C .this .a! and field promotion C .this .a↑ are different effects, because field
access does not necessarily need to promote the field, as demonstrated by the following example:

1 class Knot {

2 var a = this

3 var b = this.a // Knot.this.a! , but no promotion

4 }

Aliasing and promotion may also happen through methods, as the following example shows:

1 class Fact {

2 var value = escape(this.m()) // Fact.this.m↑

3 def m() = this // potentials of m: { Fact.this }

4 }

The type-and-effect system knows that the return value of the method m aliases this, thus the

promotion of this.m() at line 2 indirectly promotes this.

A similar distinction is drawn on methods: (1) the method invocation effect C .this .m♢ means

that the method m is called with the receiver this; (2) the method promotion effectC .this .m↑means

that the return value of the call this.m is promoted.

4.2 Two-Phase Checking
A common issue in program analysis is how to deal with recursive methods. We tackle the problem

with two phase checking. In the first phase, the system computes effect summaries for methods and

fields. In the second phase, the system checks that no fields are used before they are initialized.

During the checking, it uses the effect summaries from the first phase. For example, assume the

following program:

1 class Foo {

2 var a: Int = h()

3 def h(): Int = g()

4 def g(): Int = h()

5 }

In the first phase, the computed summary for the methods h and g is as follows:

method effects potentials

h { Foo.this .д♢ } { Foo.this .д }

д { Foo.this .h♢ } { Foo.this .h }

In the second phase, while checking the method call h(), the analysis propagates the effects

associated with the method h until it reaches the fixed point { Foo.this .д♢, Foo.this .h♢ }. As the
set does not contain accesses to any uninitialized fields of this nor invalid promotion, the program

passes the check. Note that the domain of effects has to be finite for the existence of the fixed point.

4.3 Full-Construction Analysis
Another common issue in analysis is how to handle virtual method calls. The approach we take is

full-construction analysis: we treat the constructors of concrete classes as entry points, and check all
super constructors as if they were inlined. The analysis spans the full duration of object construction.

This way, all virtual method calls on this can be resolved statically. From our experience, full-

construction analysis greatly improves user experience, as no annotations are required for the

interaction between subclasses and superclasses.

, Vol. 1, No. 1, Article . Publication date: September 2020.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

The following problem also motivates us to check the full construction duration of an object,

which is also known as the fragile base class problem:

1 class Base { def g(): String = "hello" }

2 class Foo extends Base { val a = this.g() }

3 class Bar extends Base {

4 val b: String = "b"

5 override def g(): String = this.b

6 }

This program is correct. However, if we follow a type-based approach like the freedom model

[Summers and Müller 2011], in order to call g() in the class Foo, the method Base.g has to be

annotated @free, so that it may not access any fields on this. For soundness, the overriding method

Bar.g has to be annotated @free too: but now it may not access the field this.b in the body of the

method Bar.g. This unnecessarily restricts expressiveness of the system.

Moreover, we believe it is the only practical way to handle complex language features such as

properties and traits. In languages such as Scala and Kotlin, fields are actually properties, accesses

of public field are dynamic method calls, as the following code shows:

1 class A { val a = "Bonjour"; val b: Int = a.size }

2 class B extends A { override val a = "Hi" }

3 new B

In the code above, when the constructor of class B calls the constructor of class A, the expression

a.size will dynamically dispatch to read the field a declared in class B, not the field a declared in

class A. This results in a null-pointer exception at runtime because at the time the field a in class B

is not yet initialized. Without full-construction analysis, it is difficult to make the analysis sound

for the code above.

Closed World Assumption. Full-construction analysis does not assume a closed world in the

sense that it does not depend on the program entry as the analysis entry point. In contrast, it takes

constructors of concrete classes as analysis entry points. In the analysis, it requires the code of

constructors of superclasses to be available.

Modularity. While full-construction analysis is capable of handling language features like traits

and properties, it pays the price of modularity in the sense that if a superclass is changed, the

subclasses have to be recompiled. We believe this is a worthy price to pay. First, the coupling

between super class and subclass is well-known in object-oriented programming. For example,

if a superclass adds a new method, then all its subclasses have to be recompiled to check proper

overriding. Second, the ideal granularity for modular checking is not classes, but projects. From

our experience with real-world projects, most subtle initializations happen within the same project.

Third, the type system presented in Section 3 can serve as coarse-grained type specification at

project boundaries.

4.4 Cyclic Data Structures
Cyclic data structures are supported with an annotation@cold on class parameters, as the following

example demonstrates:

1 class Parent { val child: Child = new Child(this) }

2 class Child(parent: Parent @cold) {

3 val friend: Friend = new Friend(this.parent)

4 }

5 class Friend(parent: Parent @cold) { val tag = 10 }

, Vol. 1, No. 1, Article . Publication date: September 2020.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

A Type-and-Effect System for Object Initialization 17

The annotation @cold indicates that the actual argument to parent during object construction

might not be initialized. The type-and-effect system will ensure that the field parent is not used

directly or indirectly when instantiating Child. However, aliasing the field to another cold class

parameter is fine, thus the code new Friend(this.parent) at line 3 is accepted by the system. This

allows programmers to create complex aliasing structures during initialization.

Our system tracks the return value of new Child(this) as the set of potentials { warm[Child] }.
All fields of a warm value are assigned, but they may hold values that are not fully initialized.

The inference system also takes advantage of local reasoning about initialization (Section 2): the

whole cyclic data structure becomes hot at the same time when the first object in the group, i.e. the

instance of Parent, becomes warm. This is called commitment point in the work of Summers and

Müller [2011].

4.5 Relationship with the Type System
The type-and-effect system is intended to serve as an inference system for the type system in

Section 3. Although simpler, the type system there requires annotations and thus forms an obstacle

for adoption in practice. Meanwhile, the type-and-effect system scales better to complex language

features like properties, inner classes and functions, and integrates better with compilers as no

changes to the type system of the compiler are needed.

That said, the type-and-effect system is based on the type system in Section 3, and can be regarded

as an inference system for a fragment of the type system there. For example, given the following

code:

1 class C {

2 val d: D = new D(this)

3 def foo = this.n

4 foo

5 val n = 10

6 }

7 class D(c: C @cold) {

8 val tag = 10

9 }

The field d is associated with the potentials { warm[D] }, it may thus take the type Dwarm
. The

method foo is associated with the effects { this .n! }, which suggests that this should conform to

the type C { n }
when the method foo is called.

In practice, the type-and-effect system does not bother to compute the exact type annotations

nor elaborate the program with such type annotations, because the type elaboration is not useful

in later compiler phases. Instead, it only checks that all the effects are safe in the constructor.

The fragment of the type system that we identify demands that (1) method arguments must be
hot, and (2) non-hot class parameters must be annotated. The fragment supports calling methods on

this in the constructor, as well as creation of cyclic data structures. There are several considerations

for the restrictions.

First, from practical experience, there is little need to use non-hot values as method arguments.

Meanwhile, virtual method calls on this are allowed, which covers most use cases in practice [Gil

and Shragai 2009].

Second, it agrees with good programming practices that values under initialization should not

escape [Bloch 2008]. Therefore, when there is the need to pass non-hot arguments to a constructor,

it is a good practice to mark them explicitly.

, Vol. 1, No. 1, Article . Publication date: September 2020.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

Third, demanding method arguments to be hot saves us from changing the core type system of a

language to check safe overriding of virtual methods.

5 FORMALIZING TYPE-AND-EFFECT INFERENCE
In this section, we formalize the type-and-effect system presented informally in the last section.

Due to space limit, the soundness proof of the system is presented in the technical report included

as supplemental material.

5.1 Syntax and Semantics
Our language is almost the same as the language introduced in section 2, except for the definition of

class parameters. In a class definition like class C(ˆf :T) { F M }, we introduce cold class parameters,
which has the syntax

˜f . Cold class parameters may take a value that is not transitively initialized.

A class parameter
ˆf is also a field of its defining class. By default, we use f to range over all fields,

ˆf over class parameters, and
˜f over cold class parameters.

The tilde annotation
˜f is only used in the type-and-effect system; it does not have runtime

semantics. That is the only annotation that is required in the source code.

The semantics is the same as the language in section 2, we thus omit the details.

5.2 Effects and Potentials
As seen from Figure 5, the definition of potentials (π) and effects (ϕ) depends on roots (β). Roots are
the shortest path that represents an alias of a value that may not be transitively initialized. There

are three roots in the system:

• C .this represents an alias of this inside class C .
• warm[C] represents an alias of a value of class C , all fields of which are assigned, but it may

not be transitively initialized.

• cold represents a value whose initialization status is unknown. It is used to represent the

potentials of cold class parameters. Field access or method calls on such an object is forbidden.

Potentials (π) represent aliasing information. They extend roots with field aliasing β . f and

method aliasing β .m. Field aliasing β . f represents aliasing of the field f of β , while method aliasing

β .m represents aliasing of the return value of the methodm with the receiver β .
Effects (ϕ) include field accesses, method calls and promotions of possibly uninitialized values.

A promotion effect is represented with π ↑, which enforces that the potential π is transitively

initialized. The field access effect β . f ! means that the field f is accessed on β . The method call

effect β .m♢ means that the methodm is called on β .
There are three helpers for the creation of potentials and effects:

• Field selection: select(Π, f)
• Method call: call(Π,m)

• Class instantiation: init(C, ˆfi = Πi)

They are used in expression typing to summarize the potentials and effects of expressions. A key

to understand the definitions is that the promotion effect π↑ is the same as saying that π should be

hot; and the empty set of potentials means that the result is hot.

Bounded Length. To make sure that the domain of effects and potentials is finite, the current

system restricts the maximum length of potentials and effects to be two. In the implementation

(Section 6), the maximum length of effects is 3. The bound is chosen in order to support calling

methods on inner class instances, which is relatively common in Scala.

, Vol. 1, No. 1, Article . Publication date: September 2020.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

A Type-and-Effect System for Object Initialization 19

If the length of potentials exceeds the limit, the system checks that the potential is hot by
producing a promotion effect. This can be seen from the last line of the definitions of the helper

methods select and call .
Limiting the length will lead to incompleteness relative to the type system presented in Section

3. It does not pose a problem in practice (Section 7), due to the fact that fields usually hold hot

values and methods return hot values. On the other hand, if it becomes an issue, the user may

write explicit type annotations and the inference system can be extended to take advantage of the

explicit type annotations.

Potentials and Effects
T ::= C | D | E | · · · type

β ::= C .this | warm[C] | cold root

π ::= β | β . f | β .m potential

Π ::= { π1, π2, · · · } potentials

ϕ ::= π↑ | β . f ! | β .m♢ effect

Φ ::= { ϕ1,ϕ2, · · · } effects

Ω ::= { f1, f2, · · · } fields

∆ ::= fi 7→ (Φi ,Πi) field summary

S ::= mi 7→ (Φi ,Πi) method summary

E ::= C 7→ (∆,S) effect table

Select
select(Π, f) = Π.map(π ⇒ select(π , f)).reduce(⊕)

select(β, ˜f) = (∅, {cold})

select(β, ˆf) = (∅, ∅)
select(β, f) = ({β . f !}, {β . f }) where β , cold

select(cold, f) = ({cold↑}, ∅)
select(π , f) = ({π↑}, ∅) where π = β . f or π = β .m

Call
call(Π,m) = Π.map(π ⇒ call(m, π)).reduce(⊕)
call(β,m) = ({β .m♢}, {β .m}) where β , cold

call(cold,m) = ({cold↑}, ∅)
call(π ,m) = ({π↑}, ∅) where π = β . f or π = β .m

Init
init(C, ˆfi = Πi) = (∪Πk,j↑, {warm[C]}) if ∃ ˜fj ,Πj , ∅

init(C, ˆfi = Πi) = (∪Πi↑, ∅)

Helpers
Π↑ = { π↑ | π ∈ Π }

(A1,A2) ⊕ (B1,B2) = (A1 ∪ B1,A2 ∪ B2)

Fig. 5. Potentials and Effects

, Vol. 1, No. 1, Article . Publication date: September 2020.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

5.3 Expression Typing

Expression Typing Γ;C ⊢ e : D ! (Φ,Π)

x : D ∈ Γ

Γ;C ⊢ x : D ! (∅, ∅)
(T-Var)

Γ;C ⊢ this : C ! (∅, {C .this}) (T-This)

Γ;C ⊢ e : D ! (Φ,Π) (Φ′,Π′) = select(Π, f) E = fieldType(D, f)

Γ;C ⊢ e . f : E ! (Φ ∪ Φ′,Π′)
(T-Sel)

Γ;C ⊢ e0 : E0 ! (Φ,Π) Γ;C ⊢ ei : Ei ! (Φi ,Πi)

(xi :Ei ,D) = methodType(E0,m) (Φ′,Π′) = call(Π,m)

Γ;C ⊢ e0.m(e) : D ! (Φ ∪ Φi ∪ Πi↑ ∪ Φ′,Π′)
(T-Call)

ˆfi :Ei = constrType(C) Γ;C ⊢ ei : Ei ! (Φi ,Πi) (Φ′,Π′) = init(C, ˆfi = Πi)

Γ;C ⊢ new C(e) : C ! (∪Φi ∪ Φ′,Π′)
(T-New)

Γ;C ⊢ e0 : E0 ! (Φ0,Π0) E1 = fieldType(E0, f)
Γ;C ⊢ e1 : E1 ! (Φ1,Π1) Γ;C ⊢ e2 : E2 ! (Φ2,Π2)

Γ;C ⊢ e0. f = e1; e2 : E2 ! (Φ0 ∪ Φ1 ∪ Π1↑ ∪Φ2,Π2)
(T-Block)

Fig. 6. Expression Typing

Expression typing (Figure 6) has the form Γ;C ⊢ e : D ! (Φ,Π), it means that the expression e in
classC under the environment Γ, can be typed as D, and it produces effects Φ and has the potentials

Π. Generally, when typing an expression, the effects of sub-expressions will accumulate, while
potentials may be refined (via selection), promoted (used as arguments to methods).

The definitions assume several helper methods, such as fieldType(C, f), methodType(C,m) and

constrType(C), to look up in class table Ξ the type, respectively, of field C . f , of method C .m and of

the constructor of C .

5.4 Definition Typing
Definition typing (Figure 7) defines how programs, classes, fields and methods are checked. The

checking happens in two phases:

(1) first phase: conventional type checking is performed and effect summaries are computed;

(2) second phase: effect checking is performed to ensure initialization safety.

The two-phase checking is reflected in the typing rule T-Prog. To type check a program (C,D),
first each class is type checked separately for well-typing and the effect summary for fields ∆c and

methods Sc is computed using class typing Ξ ⊢ C ! (∆,S). The result of class typing is stored in

the effect table E, which is then used for modular effect checking of each class. Effect checking is

performed modularly on each class with the help of the effect table E. The typing rule T-Prog also

checks that the entry class D is well-typed.

, Vol. 1, No. 1, Article . Publication date: September 2020.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

A Type-and-Effect System for Object Initialization 21

Program Typing ⊢ P

Ξ = C 7→ C Ξ(D) = class D { def main : T = e } ∅;D ⊢ e : T ! (Φ,Π)

Ξ ⊢ C ! (∆c ,Sc) E = C 7→ (∆c ,Sc) Ξ; E ⊢ C

⊢ (C,D)
(T-Prog)

Effect Checking Ξ; E ⊢ C

(∆, _) = E(C) (Φ, _) = ∆(fi) E;C { f1, · · · ,fi−1 } ⊢ Φ

Ξ; E ⊢ class C(ˆf :T) { F M }

(T-Check)

Class Typing Ξ ⊢ C ! (∆,S)

Ξ;C ⊢ Fi ! (Φi ,Πi) ∆ = fi 7→ (Φi ,Πi) Ξ;C ⊢ Mi ! (Φi ,Πi) S =mi 7→ (Φi ,Πi)

Ξ ⊢ class C(ˆf :T) { F M } ! (∆,S)
(T-Class)

Field Typing Ξ;C ⊢ F ! (Φ,Π)

∅;C ⊢ e : D ! (Φ,Π)

Ξ;C ⊢ var f : D = e ! (Φ,Π)
(T-Field)

Method Typing Ξ;C ⊢ M ! (Φ,Π)

x :D;C ⊢ e : E ! (Φ,Π)

Ξ;C ⊢ def m(x :D) : E = e ! (Φ,Π)
(T-Method)

Fig. 7. Definition Typing

When type checking a class, the rule T-Class checks that the body fields and methods are well-

typed, and the associated effects and potentials are computed. The effects and potentials associated

with a field are the effects and potentials of its initializer (the right-hand-side expression). The

effects and potentials associated with a method are the effects and potentials of the body expression

of the method. The effect summaries are used during the second phase in T-Check, where it checks

that given the already initialized fields, the effects on the right-hand-side of each field are allowed.

The typing rule T-Field checks the right-hand-side expression e in an empty typing environment,

as there are no variables in a class body (class parameters are fields of their defining class). In the

typing rule T-Method, the method parameters x : D are used as the typing environment to check

the method body.

, Vol. 1, No. 1, Article . Publication date: September 2020.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

Propagate Potentials E ⊢ π ; Π

E ⊢ β ; ∅

(∆, _) = E(C) (_,Π) = ∆(f)

E ⊢ C .this . f ; Π

(_,S) = E(C) (_,Π) = S(m)

E ⊢ C .this .m ; Π

E ⊢ C .this . f ; Π Π′ = [C .this 7→ warm[C]]Π

E ⊢ warm[C]. f ; Π′

E ⊢ C .this .m ; Π Π′ = [C .this 7→ warm[C]]Π

E ⊢ warm[C].m ; Π′

Propagate Effects E ⊢ ϕ ; Φ

E ⊢ β . f ! ; ∅

E ⊢ π ; Π

E ⊢ π↑; Π↑

(_,S) = E(C) (Φ, _) = S(m)

E ⊢ C .this .m♢; Φ

E ⊢ C .this .m♢; Φ Φ′ = [C .this 7→ warm[C]]Φ

E ⊢ warm[C].m♢; Φ′

Closure

Φ ⊆ Φ′ ∀ϕ ∈ Φ′.E ⊢ ϕ ; Φ′′ =⇒ Φ′′ ⊆ Φ′

Φc = Φ′

Check E;Ω;C ⊢ Φ

β↑< Φc ∀C .this . f ! ∈ Φc . f ∈ Ω

E;CΩ ⊢ Φ

Fig. 8. Effect Checking

5.5 Effect Checking
The effect checking judgment E;CΩ ⊢ Φ (Figure 8) means that the effects Φ are permitted inside

class C when the fields in Ω are initialized. It first checks that there is no promotion of this in the

closure of the effects, as the underlying object is not transitively initialized, the promotion thus is

illegal. Then it checks that each accessed field is in the set Ω, i.e., only initialized fields are used.

The closure of effects is presented in a declarative style for clarity, but it has a straight-forward

algorithmic interpretation: it just propagates the effects recursively until a fixed-point is reached.

The fixed-point always exists as the domain of effects and potentials is finite for any given program.

The main step in fixed-point computation is the propagation of effects and potentials. In effect

propagation E ⊢ ϕ ; Φ, field access β . f ! is an atomic effect, thus it propagates to the empty set.

For a promotion effect π ↑, we first propagate the potential π to a set of potentials Π, and then

promote each potential in Π. For a method call effect C .this .m♢, it looks up the effects associated

with the method from the effect table.

, Vol. 1, No. 1, Article . Publication date: September 2020.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

A Type-and-Effect System for Object Initialization 23

In potential propagation E ⊢ π ; Π, root potentials like C .this propagate to the empty set, as

they do not contain proxy aliasing information in the effect table. For a field potential likeC .this . f ,
it just looks up the potentials associated with the field f from the effect table. For a method potential

C .this .m, it looks up the potentials associated with the methodm from the effect table.

The soundness theorem says that a well-typed program does not get stuck at runtime.

Theorem 5.1 (Soundness). If ⊢ P, then ∀k . JPK (k) , Error

The meta-theory takes the approach of step-indexed definitional interpreters [Amin and Rompf

2017]. Initialization safety is implied by soundness, as initialization errors will cause the program

to fail at runtime. We refer the reader to the technical report for more details about the meta-theory

[Liu et al. 2020].

6 IMPLEMENTATION
Based on the type-and-effect inference system, we implement an initialization system for Scala.

The implementation is already integrated in the Scala 3 compiler [Odersky et al. 2013] and available

to Scala programmers via the compiler option -Ycheck-init.

The implementation supports inner classes, first-class functions, traits and properties. Instantia-

tion of inner classes is supported without any annotations, as the following example shows:

1 class Trees {

2 private var counter = 0

3 class ValDef { counter += 1 } // ok, counter is initialized

4 class EmptyValDef extends ValDef

5 val theEmptyValDef = new EmptyValDef

6 }

To make the example above work, a warm potential in the system takes the formwarm(C, π),
where C is the concrete class of the object, π is the potential for the immediate outer of C . The
current version of the system only allows creating cyclic data structures via inner classes, passing

this as arguments to new-expressions is disallowed. Supporting the usage requires the introduction

of an annotation to the language thus involves a language improvement process, which we want

to avoid in the initial version. We plan to support this in the next version following the solution

outlined in the theory (Section 5).

To support first-class functions, we introduce the potential Fun(Φ,Π), where Φ is the set of

effects to be triggered when the function is called, while Π is the set of potentials for the result of

the function call. For example, it enables the following code, which is rejected in Swift:

1 class Rec {

2 val even = (n: Int) => n == 0 || odd(n - 1)

3 val odd = (n: Int) => n == 1 || even(n - 1)

4 val flag: Boolean = odd(6)

5 }

In functional programming, the recursive binding construct letrec may introduce similar initial-

ization patterns as the code above. With the latest checker [Reynaud et al. 2018], OCaml still does

not support the code below in the construct let rec:

1 let rec even n = if n = 0 then true else odd (x - 1)

2 and odd n = if n = 0 then false else even (x - 1)

3 and flag = odd 3

Naive extension of the type-and-effect system can easily lead to non-termination of effect

checking in practice. This can be demonstrated by the following example:

, Vol. 1, No. 1, Article . Publication date: September 2020.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

Project KLOC W/K W X1 X2 X3 X4 A B C D E F G H

dotty 106.0 0.73 77 742 447 146 350 7 16 2 32 0 3 4 13

intent 1.8 39.53 71 10 290 0 1 0 0 0 71 0 0 0 0

algebra 1.3 4.70 6 1 6 0 0 0 0 0 0 0 0 6 0

stdLib213 43.6 0.62 27 231 104 8 99 14 0 4 2 0 1 6 0

scalacheck 5.5 1.08 6 39 70 6 83 0 0 0 6 0 0 0 0

scalatest 378.9 0.39 149 1037 718 18 664 0 0 8 114 0 8 19 0

scalaXml 6.8 0.15 1 36 13 0 0 0 0 0 0 0 0 1 0

scopt 0.3 0.00 0 6 4 0 0 0 0 0 0 0 0 0 0

scalap 2.2 5.43 12 62 57 2 108 0 0 0 7 5 0 0 0

sqants 14.1 0.00 0 9 0 0 0 0 0 0 0 0 0 0 0

betterfiles 2.8 0.00 0 17 1 0 0 0 0 0 0 0 0 0 0

ScalaPB 16.2 0.31 5 28 10 0 6 4 0 0 1 0 0 0 0

shapeless 2.5 0.79 2 5 0 0 0 0 0 0 0 2 0 0 0

effpi 5.7 0.53 3 15 5 0 12 0 0 0 3 0 0 0 0

sconfig 21.8 0.60 13 70 43 0 8 13 2 2 0 0 1 6 2

munit 2.7 1.13 3 32 73 1 13 0 0 0 2 0 0 0 1

SUM 612.1 0.61 375 2340 1841 181 1344 38 18 16 238 7 13 42 16

Fig. 9. Experiment result. The column W/K is the number of warnings per KLOC, and the column W is the
number of warnings issued for the corresponding project. Other columns are explained in the text.

1 class B {

2 class C extends B

3 val c: C = new C

4 }

The code above involves an infinite sequence of constructor call effects of the form πi .init(C),
where π0 = warm(C, this) and πi = warm(C, πi−1). We have to resort to a standard technique in

abstract interpretation, widening [Cousot and Cousot 1991]. In the example above, we can stop the

infinite sequence by widening πi towarm(C, cold).
One advantage of the type-and-effect system is that it integrates well with the compiler without

changing the core type system. In contrast, integrating a type-based system in the compiler poses

an engineering challenge, as the following example demonstrates:

1 class Knot {

2 val self: Knot @cold = this

3 }

In the code above, the type of the field self depends on when we ask for its type. If it is queried

during the initialization of the object, then it has the type Knot @cold. Otherwise, it has the type

Knot. We do not see a principled way to implement the type-based solution in the Scala 3 compiler.

7 EVALUATION
We evaluate the implementation on a significant number of real-world projects, with zero changes

to the source code. The experiment results are shown in Figure 9. The first three columns show the

size of the projects and warnings reported for each project:

• KLOC - the number of lines of code (KLOC) in the project checked by the system

• W/K - the number of warnings issued by the system per KLOC

• W - the number of warnings issued by the system

, Vol. 1, No. 1, Article . Publication date: September 2020.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

A Type-and-Effect System for Object Initialization 25

We can see that for over 0.6 million lines of code, the system reports 375 warnings in total,

the average is 0.61 warnings per KLOC. We can better interpret the data in conjunction with the

following columns:

• X1 - the number of field accesses on this during initialization

• X2 - the number of method calls on this during initialization

• X3 - the number of field accesses on warm objects during initialization

• X4 - the number of method calls on warm objects during initialization

The data for the columns above are censused by the initialization checker, one per source location.

Without type-and-effect inference, the system would have to issue one warning for each method

call on this and warm objects
2
, i.e., the counts in columns X1-X4 would all become warnings. This

contributes more than 5700 warnings, a 15-fold increase in the number of warnings.

We manually analyzed all the warnings, and classified them into 8 categories:

• A - Use this as constructor arguments, e.g. new C(this)

• B - Use this as method arguments, e.g. call(this)

• C - Use inner class instance as constructor arguments, e.g. new C(innerObj)

• D - Use inner class instance as method arguments, e.g. call(innerObj)

• E - Use uninitialized fields as by-name arguments

• F - Access non-initialized fields

• G - Call external Java or Scala 2 methods

• H - others

The warnings in category A and C are related to the creation of cyclic data structures. From

Section 5, we know such code patterns can be supported by declaring a class parameter to be cold.
The current implementation does not support any annotations yet, we plan to introduce explicit

annotations in the next version of the system.

Most of the warnings lie in the category D, which refer to cases like the following:

1 object Foo {

2 case class Student(name: String, age: Int)

3 call(Student("Jack", 30) // should be OK, currently a warning

4 }

For the code above, our system currently issues a warning, as it only knows that the object

created by Student("Jack", 20) is warm, while method arguments are required to be hot. Checking

whether an inner class instance may be safely promoted to hot or not can be expensive if the inner

class contains many fields and methods. However, it suggests that the system could be improved

for common use cases that only involve small classes, such as the example above.

The category E refers to cases like the following, which is not supported currently:

1 def foo(x: => Int) = new A(x)

2 class A(init: => Int)

3 class Foo {

4 val a: A = foo(b) // category E

5 val b: Int = 100

6 }

As an over-approximation, we expect the warnings in category F are all false positives. However,

to our delight, the system actually finds 8 true positives in ScalaTest, and one true positive in the

Scala standard library. It also discovers two bugs in the Scala 3 compiler. We reported the bugs and

they are already fixed.

2
If we forget that non-private field accesses are also method calls in Scala.

, Vol. 1, No. 1, Article . Publication date: September 2020.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

The category G involves method calls on this in the constructor, but the target method is

compiled by Java or the Scala 2 compiler. The category H invovles code that performs pattern

matching on this, or calling methods on cold values. We discuss more about the experiment results

in the appendix.

8 RELATEDWORK
Our work takes inspiration from several milestone papers on the problem of initialization.

Fähndrich and Leino [2003] introduce raw types like T raw(S)
— a value of such a type is possibly

under initialization, and all fields up to the superclass S are initialized. Class fields may not hold

raw values, thus it does not support creating cyclic data structures. To overcome the limitation,

they introduce delayed types [Fähndrich and Xia 2007]. The system ensures that the initialization

of objects forms stacked time regions.

Qi and Myers [2009] introduce a flow-sensitive type-and-effect system for initialization based

on masked types. The system is expressive, however, it leaves open the problem of typestate

polymorphism and type-and-effect inference. Our work can be seen as an attempt to address the

problems.

Summers and Müller [2011] show that initialization of cyclic data structures can be supported

in a light-weight, flow-insensitive type system. The system cleverly uses subtyping to achieve

typestate polymorphism. However, it leaves open the design of a dataflow analysis that enables the

usage of already initialized fields. Our work effectively addresses the problem.

There is another main difference: our system favors perfect monotonicity, while the freedom
model favors strong monotonicity. There are design trade-offs in both approaches. In our case,

perfect monotonicity enables us to remove the abstraction unclassified and it is easy to safely use

already initialized fields in the constructor. In contrast, the freedom model enables assigning a free

object to the field of another free object anywhere, while in our system it is only possible in the

constructor at initialization points. More concretely, the following example is supported by the

freedom model, but not by our system:

1 class A {

2 m(this)

3 var b: b = new B(this)

4 def m(a: A @free): Unit = a.b = new B(a) // !!

5 }

6 class B(a: A @free)

The assignment a.b = new B(a) in the method m will be rejected by our system, as new B(a) is a

value under initialization (it holds a reference to a free value a). In our system, it is only possible

to assign hot values to fields of cold objects, while in the freedom model it is possible to assign

non-committed values to fields of non-committed values. Our design is based on our experience

with Scala projects, where an object rarely escapes from its constructor and has its fields initialized

elsewhere. Summers and Müller [2011] have similar observations (Section 8.1).

The Checker Framework enables many useful checkers for various properties of Java programs

[Ernst and Ali 2010]. In particular, it implements and extends the freedom model. One major

extension is the introduction of the annotation UnknownInitialization, which is in the same spirit

as warm. A difference is that warm in our type-based model enjoys transitivity — a warm object

may in turn contain warm fields. The initialization model in Checker Framework does not enjoy

this kind of transitivity enabled by warm, despite the introduction of 4 annotations: Initialized,

UnderInitialization, UnknownInitialization and NotOnlyInitialized.

, Vol. 1, No. 1, Article . Publication date: September 2020.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

A Type-and-Effect System for Object Initialization 27

The initialization in X10 [Zibin et al. 2012] employs an inter-procedural analysis to ensure safe

initialization, which removes the annotation burden required when calling final or private methods

on this. However, the analysis algorithm is not presented in the paper. To call virtual methods on

this, annotations are required on method definitions.

The Billion-Dollar Fix [Servetto et al. 2013] introduces a new linguistic construct placeholders and
placeholder types to support initialization of circular data structures. The work is orthogonal to the

current work, in that we are constrained from introducing new language constructs and semantics.

, Vol. 1, No. 1, Article . Publication date: September 2020.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

REFERENCES
Nada Amin and Tiark Rompf. 2017. Type soundness proofs with definitional interpreters. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe
Castagna and Andrew D. Gordon (Eds.). ACM, 666–679. http://dl.acm.org/citation.cfm?id=3009866

Joshua Bloch. 2008. Effective Java (2nd Edition) (The Java Series) (2 ed.). Prentice Hall PTR, Upper Saddle River, NJ, USA.
Dave Clarke, James Noble, and Tobias Wrigstad (Eds.). 2013. Aliasing in Object-Oriented Programming. Types, Analysis and

Verification. Lecture Notes in Computer Science, Vol. 7850. Springer. https://doi.org/10.1007/978-3-642-36946-9

Patrick Cousot and Radhia Cousot. 1991. Comparison of the Galois Connection and Widening/Narrowing Approaches to

Abstract Interpretation. In Actes JTASPEFL’91 (Bordeaux, France), October 1991, Laboratoire Bordelais de Recherche en
Informatique (LaBRI), Proceedings (Series Bigre), Michel Billaud, Pierre Castéran, Marc-Michel Corsini, Kaninda Musumbu,

and Antoine Rauzy (Eds.), Vol. 74. Atelier Irisa, IRISA, Campus de Beaulieu, 107–110.

Joe Duffy. 2010. On partially-constructed objects. http://joeduffyblog.com/2010/06/27/on-partiallyconstructed-objects/.

Michael D. Ernst and Mahmood Ali. 2010. Building and using pluggable type systems. In Proceedings of the 18th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010,
Gruia-Catalin Roman and André van der Hoek (Eds.). ACM, 375–376. https://doi.org/10.1145/1882291.1882356

Manuel Fähndrich and K. Rustan M. Leino. 2003. Declaring and checking non-null types in an object-oriented language. In

Proceedings of the 2003 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications,
OOPSLA 2003, October 26-30, 2003, Anaheim, CA, USA, Ron Crocker and Guy L. Steele Jr. (Eds.). ACM, 302–312. https:

//doi.org/10.1145/949305.949332

Manuel Fähndrich and K Rustan M Leino. 2003. Heap monotonic typestates. In International Workshop on Aliasing,
Confinement and Ownership in object-oriented programming (IWACO).

Manuel Fähndrich and Songtao Xia. 2007. Establishing object invariants with delayed types. In Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2007,
October 21-25, 2007, Montreal, Quebec, Canada, Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy

L. Steele Jr. (Eds.). ACM, 337–350. https://doi.org/10.1145/1297027.1297052

Joseph Gil and Tali Shragai. 2009. Are We Ready for a Safer Construction Environment?. In ECOOP 2009 - Object-Oriented
Programming, 23rd European Conference, Genoa, Italy, July 6-10, 2009. Proceedings (Lecture Notes in Computer Science),
Sophia Drossopoulou (Ed.), Vol. 5653. Springer, 495–519. https://doi.org/10.1007/978-3-642-03013-0_23

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. 2015. The Java Language Specification, Java SE 8

Edition.

John Hogg, Doug Lea, Alan Cameron Wills, Dennis de Champeaux, and Richard C. Holt. 1992. The Geneva convention on

the treatment of object aliasing. OOPS Messenger 3, 2 (1992), 11–16. https://doi.org/10.1145/130943.130947

Fengyun Liu, Ondrej Lhoták, Aggelos Biboudis, Paolo G. Giarrusso, and Martin Odersky. 2020. Safe Initialization of Objects.

(2020), 141. http://infoscience.epfl.ch/record/279970

John M. Lucassen and David K. Gifford. 1988. Polymorphic Effect Systems. In Conference Record of the Fifteenth Annual ACM
Symposium on Principles of Programming Languages, San Diego, California, USA, January 10-13, 1988, Jeanne Ferrante and
P. Mager (Eds.). ACM Press, 47–57. https://doi.org/10.1145/73560.73564

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of program analysis. Springer. https://doi.org/10.

1007/978-3-662-03811-6

Martin Odersky et al. 2013. Dotty Compiler: A Next Generation Compiler for Scala. https://dotty.epfl.ch/.

Benjamin C. Pierce. 2002. Types and programming languages. MIT Press.

Xin Qi and Andrew C. Myers. 2009. Masked types for sound object initialization. In Proceedings of the 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, Zhong
Shao and Benjamin C. Pierce (Eds.). ACM, 53–65. https://doi.org/10.1145/1480881.1480890

Alban Reynaud, Gabriel Scherer, and Jeremy Yallop. 2018. A right-to-left type system for mutually-recursive value definitions.

CoRR abs/1811.08134 (2018). arXiv:1811.08134 http://arxiv.org/abs/1811.08134

Marco Servetto, Julian Mackay, Alex Potanin, and James Noble. 2013. The Billion-Dollar Fix - Safe Modular Circular

Initialisation with Placeholders and Placeholder Types. In ECOOP 2013 - Object-Oriented Programming - 27th European
Conference, Montpellier, France, July 1-5, 2013. Proceedings (Lecture Notes in Computer Science), Giuseppe Castagna (Ed.),
Vol. 7920. Springer, 205–229. https://doi.org/10.1007/978-3-642-39038-8_9

Robert E. Strom and Shaula Yemini. 1986. Typestate: A Programming Language Concept for Enhancing Software Reliability.

IEEE Trans. Software Eng. 12, 1 (1986), 157–171. https://doi.org/10.1109/TSE.1986.6312929

Alexander J. Summers and Peter Müller. 2011. Freedom before commitment: a lightweight type system for object initialisation.

In Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011, Cristina Videira Lopes and
Kathleen Fisher (Eds.). ACM, 1013–1032. https://doi.org/10.1145/2048066.2048142

, Vol. 1, No. 1, Article . Publication date: September 2020.

http://dl.acm.org/citation.cfm?id=3009866
https://doi.org/10.1007/978-3-642-36946-9
http://joeduffyblog.com/2010/06/27/on-partiallyconstructed-objects/
https://doi.org/10.1145/1882291.1882356
https://doi.org/10.1145/949305.949332
https://doi.org/10.1145/949305.949332
https://doi.org/10.1145/1297027.1297052
https://doi.org/10.1007/978-3-642-03013-0_23
https://doi.org/10.1145/130943.130947
http://infoscience.epfl.ch/record/279970
https://doi.org/10.1145/73560.73564
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://dotty.epfl.ch/
https://doi.org/10.1145/1480881.1480890
https://arxiv.org/abs/1811.08134
http://arxiv.org/abs/1811.08134
https://doi.org/10.1007/978-3-642-39038-8_9
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1145/2048066.2048142

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

A Type-and-Effect System for Object Initialization 29

Yoav Zibin, David Cunningham, Igor Peshansky, and Vijay A. Saraswat. 2012. Object Initialization in X10. In ECOOP 2012 -
Object-Oriented Programming - 26th European Conference, Beijing, China, June 11-16, 2012. Proceedings (Lecture Notes in
Computer Science), James Noble (Ed.), Vol. 7313. Springer, 207–231. https://doi.org/10.1007/978-3-642-31057-7_10

, Vol. 1, No. 1, Article . Publication date: September 2020.

https://doi.org/10.1007/978-3-642-31057-7_10

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

A DISCOVERED BUGS
As an over-approximation, we expect the warnings are all false positives. However, to our delight,

our initialization system finds real bugs in high-quality projects, such as the Scala 3 compiler, Scala

standard library and ScalaTest.

In the ScalaTest project, the checker reports 8 true positives
3
. The errors have similar forms, the

following code demonstrates two of them:

1 sealed abstract class Fact {

2 val isVacuousYes: Boolean

3 val isYes: Boolean

4

5 final def stringPrefix: String =

6 if (isYes) {

7 if (isVacuousYes) "VacuousYes" else "Yes"

8 }

9 else "No"

10 }

11

12 class Binary_&(left: Fact, right: Fact) extends Fact {

13 val rawFactMessage: String = {

14 // ...

15 factDiagram(0)

16 }

17

18 val isYes: Boolean = left.isYes && right.isYes

19 val isVacuousYes: Boolean = isYes && (left.isVacuousYes || right.isVacuousYes)

20

21 override def factDiagram(level: Int): String = {

22 stringPrefix

23 }

24 }

The problem with the code above is that when we create an instance of Binary_&, it will call

factDiagram, which in turn calls stringPrefix, where the properties isYes and isVacuousYes are

used before they are initialized in the class Binary_&. Such errors never cause null-pointer exceptions,

when they slip into a large code base, it will take significant efforts to debug.

The following code demonstrates a bug in the Scala 3 compiler
4
:

1 class Scanner(...) {

2 val indentSyntax = ...

3 // ...

4 nextToken() // the call indirectly reach the property indentSyntax

5 }

6

7 class LookaheadScanner(indent: Boolean = false) extends Scanner(...) {

8 override val indentSyntax = indent

9 // ...

3
https://github.com/scalatest/scalatest/issues/1481

4
https://github.com/lampepfl/dotty/issues/7660

, Vol. 1, No. 1, Article . Publication date: September 2020.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

A Type-and-Effect System for Object Initialization 31

10 }

Our checker reports the following error:

1 [warn] -- Warning: dotty/compiler/src/dotty/tools/dotc/parsing/Scanners.scala:885:34

2 [warn] 885 | override val indentSyntax = indent

3 [warn] | ^

4 [warn] |Access non-initialized field indentSyntax. Calling trace:

5 [warn] | -> class LookaheadScanner(...) { [Scanners.scala:884]

6 [warn] | -> nextToken() [Scanners.scala:1323]

7 [warn] | -> if (isAfterLineEnd) handleNewLine(lastToken) [Scanners.scala:311]

8 [warn] | -> indentIsSignificant = indentSyntax [Scanners.scala:484]

The problem is that when we create an instance of LookaheadScanner, the call nextToken() in the

super class Scanner will reach the overridden property indentSyntax, which is not yet initialized in

the sub-class.

The other bug found in the Scala 3 compiler is related to a subtle optimization of lazy value defi-

nitions in traits
5
, which is not in accord with the language specification. Without the initialization

checker, the bug would be latent longer in the compiler.

The bug in the Scala standard library
6
can be illustrated with the code below:

1 object Promise {

2 val Noop = new Transformation[Nothing, Nothing](...)

3

4 class Transformation[-F, T] (...) extends DefaultPromise[T]() with ... {

5 def this(...) = this(...)

6 }

7

8 class DefaultPromise[T](initial: AnyRef) extends ... {

9 def this() = this(Noop: AnyRef)

10 }

11 }

The problem is that when we initialize the field Noop, it creates an instance of Transformation,

which calls the super constructor in DefaultPromise, where Noop is accessed before initialization.

B CHALLENGING EXAMPLES
One design goal of the Scala 3 initialization system is to keep the core type system of the compiler

intact. Consequently, we require that all arguments to methods are fully initialized, which is in line

with good initialization practices. Otherwise, new types such as T@cold must be introduced in the

language to handle safe method overriding.

Even if we manage to change the type system, it does not automatically solve the problem. This

is demonstrated by the following example:

1 class Knot {

2 val self: Knot @cold = this

3 }

In the code above, the type of the field self depends on when we perform the check. If it is

checked during the initialization of the object, then it has the type Knot @cold. Otherwise, it has

the type Knot. How to integrate this kind of types in the compiler is an engineering challenge.

5
https://github.com/lampepfl/dotty/issues/7434

6
https://github.com/scala/bug/issues/11979

, Vol. 1, No. 1, Article . Publication date: September 2020.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

The current implementation is based on a type-and-effect system. It elegantly lays on top of the

type system, thus avoids the problems that a type-based solution would cause.

However, during the experiment we do encounter some reasonable code patterns that current

implementation does not support. The following code about LazyList construction is one such

example:

1 trait LazyList[A] { ... }

2 implicit class Helper[A](l: => LazyList[A]) {

3 def #:: [B >: A](elem: => B): LazyList[B] = ...

4 }

5 class Test {

6 val a: LazyList[Int] = 5 #:: b

7 val b: LazyList[Int] = 10 #:: a

8 }

In the code above, inside the class Test, we use b (before it is initialized) as a by-name argument

to initialize the field a. Similar code patterns also appear in by-name implicits
7
.

To support the example above, the system has to support passing objects under initialization

as arguments to methods and constructors. There is a chance to support the usage above without

complicating the type system if we restrict that the methods are effectively final. The restriction
removes the burden of overriding checks. Class constructors are inherently final, thus is not a

problem.

However, the restriction cannot handle some use cases. The following code is a common pattern

in the Scala 3 compiler to create cyclic type structures:

1 class RecType(parentExp: RecType => Type) {

2 val parent = parentExp(this)

3 }

A solution based on types would change the type of parentExp to something like RecType @cold

=>Type @cold. The solution requires changes to the core type system, thus is not feasible as we

discussed above.

We can make the field parent lazy to to silence the warning about the escape of this. However,

as compilers are performance-sensitive, we cannot do that due to the potential performance penalty

with lazy fields. Currently, we have to resort to @unchecked for such cases.

Making a field lazy and adding the annotation @unchecked are currently the two ways to suppress

warnings for complex initialization code. The lazy trick is a panacea with the slight danger of

turning actual initialization errors into non-termination. On the other hand, drawing the line of

when @unchecked should be used is a difficult language design decision. We expect the insights

developed in the meta-theory about local reasoning will contribute to the decision process.

7
https://docs.scala-lang.org/sips/byname-implicits.html

, Vol. 1, No. 1, Article . Publication date: September 2020.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

A Type-and-Effect System for Object Initialization 33

C SEMANTICS OF THE EXPERIMENTAL LANGUAGE

Program evaluation
r
(C,D)

z
= (l,σ)

r
(C,D)

z
= JeK ({ l 7→ (D, ∅) }, ∅, l)

where Ξ = C → C and l is a fresh location

and Ξ(D) = class D { def main : T = e }

Expression evaluation JeK (σ , ρ,ψ) = (l,σ ′)

JxK (σ , ρ,ψ) = (ρ(x),σ)
JthisK (σ , ρ,ψ) = (ψ ,σ)
Je . f K (σ , ρ,ψ) = (ω(f),σ1) where (l0,σ1) = JeK (σ , ρ,ψ)

and (_,ω) = σ1(l0)
Je0.m(e)K (σ , ρ,ψ) = Je1K (σ2, ρ1, l0)

where (l0,σ1) = Je0K (σ , ρ,ψ)
and (C, _) = σ1(l0)

and lookup(C,m) = def m(x :T) : T = e1
and (l,σ2) = JeK (σ1, ρ,ψ)
and ρ1 = x 7→ l

Jnew C(e)K (σ , ρ,ψ) = (l,σ3)

where (l,σ1) = JeK (σ , ρ,ψ)
and σ2 = [l 7→ (C, ∅)]σ1 where l is fresh

and σ3 = init(l, l,C,σ2)
Je1. f = e2; eK (σ , ρ,ψ) = JeK (σ3, ρ,ψ)

where (l1,σ1) = Je1K (σ , ρ,ψ)
and (l2,σ2) = Je2K (σ1, ρ,ψ)
and σ3 = assiдn(l1, f , l2,σ2)

Initialization
init(ψ , l,C,σ) =

r
F

z
(σ1,ψ)

where lookup(C) = class C(ˆf :T) { F M }

and σ1 = assiдn(ψ , ˆf , l,σ)
Jvar f : D = eK (σ ,ψ) = assiдn(ψ , f , l1,σ1) where (l1,σ1) = JeK (σ , ∅,ψ)

Helpers
JeK (σ , ρ,ψ) = f old e (Nil,σ) f where

f (ls,σ1) e = let (l,σ2) = JeK (σ1, ρ,ψ) in (l :: ls,σ2)r
F

z
(σ ,ψ) = f old F σ f where f σ1 F = JF K (σ1,ψ)

assiдn(ψ , f , l,σ) = [ψ 7→ (C, [f 7→ l]ω)]σ where (C,ω) = σ (ψ)

assiдn(ψ , f , l,σ) = [ψ 7→ (C, [f 7→ l]ω)]σ where (C,ω) = σ (ψ)

Fig. 10. Big-step semantics, defined as a definitional interpreter.

, Vol. 1, No. 1, Article . Publication date: September 2020.

	Abstract
	1 Introduction
	1.1 Theoretical Challenges
	1.2 Existing Work
	1.3 Contributions

	2 Local Reasoning about Initialization
	2.1 A Small Language
	2.2 Definitions
	2.3 Weak Monotonicity
	2.4 Stackability
	2.5 Scopability
	2.6 Local Reasoning about Initialization

	3 The Basic Model
	3.1 Types
	3.2 Type System
	3.3 Typestate Polymorphism and Authority

	4 Type-and-Effect Inference, Informally
	4.1 Potentials and Effects
	4.2 Two-Phase Checking
	4.3 Full-Construction Analysis
	4.4 Cyclic Data Structures
	4.5 Relationship with the Type System

	5 Formalizing Type-and-Effect Inference
	5.1 Syntax and Semantics
	5.2 Effects and Potentials
	5.3 Expression Typing
	5.4 Definition Typing
	5.5 Effect Checking

	6 Implementation
	7 Evaluation
	8 Related Work
	References
	A Discovered Bugs
	B Challenging Examples
	C Semantics of the Experimental Language

