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Every newly created object goes through several initialization states: starting from a state where all fields are

uninitialized until all of them are assigned. Any operation on the object during its initialization process, which

usually happens in the constructor via this, has to observe the initialization states of the object for correctness,

i.e. only initialized fields may be used. Checking safe usage of this statically, without manual annotation of

initialization states in the source code, is a challenge, due to aliasing and virtual method calls on this.
Mainstream languages either do not check initialization errors, like Java, C++, Scala, or they defend against

them by not supporting useful initialization patterns, such as Swift. In parallel, past research has shown that

safe initialization can be achieved for varying degrees of expressiveness but by sacrificing syntactic simplicity.

We approach the problem by upholding local reasoning about initialization which avoids whole-program

analysis, and we achieve typestate polymorphism via subtyping. On this basis, we put forward a novel type-

and-effect system that can effectively ensure initialization safety while allowing flexible initialization patterns.

We implement an initialization checker in the Scala 3 compiler and evaluate on several real-world projects.

Additional Key Words and Phrases: Object initialization, Type-and-effect system

1 INTRODUCTION
Object-oriented programming is unsafe if objects cannot be initialized safely. The following code

shows a simple initialization problem
1
:

1 class Hello {

2 val message = "hello, " + name

3 val name = "Alice"

4 }

5 println(new Hello().message))

The code above when run will print “hello, null” instead of “hello, Alice”, as the field name

is not initialized, thus holds the value null, when it is used in the second line.

The problem of safe initialization comes into existence since the introduction of object-oriented

programming, and it is still a headache for programmers and language designers. Joe Duffy, in his

popular blog post on partially constructed objects [Duffy 2010], wrote:

1
In the absence of special notes, the code examples are in Scala.
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2 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

Not only are partially-constructed objects a source of consternation for everyday

programmers, they are also a challenge for language designers wanting to provide guar-

antees around invariants, immutability and concurrency-safety, and non-nullability.

1.1 Theoretical Challenges
Checking safe initialization of objects statically is becoming a challenge as the code in constructors

is getting more complex. From past research [Fähndrich and Leino 2003; Fähndrich and Xia 2007;

Gil and Shragai 2009; Qi and Myers 2009; Servetto et al. 2013; Summers and Müller 2011; Zibin et al.

2012], two initialization requirements are identified and commonly recognized.

Requirement 1: usage of “this” inside the constructor. The usage of already initialized fields
in the constructor is safe and supported by almost all industrial languages. Based on an extensive

study of over sixty thousand classes, Gil and Shragai [2009] report that over 8% constructors

include method calls on this. Method calls on this can be used to compute initial values for field

initialization or serve as a private channel between the superclass and subclass.

Requirement 2: creation of cyclic data structures. Cyclic data structures are common in

programming. For example, the following code shows the initialization of two mutually dependent

objects:

1 class Parent { val child: Child = new Child(this) }

2 class Child(parent: Parent)

The objective is to allow cyclic data structures while preventing accidental premature usage of

aliased objects. Accessing fields or calling methods on those aliased objects under initialization is

an orthogonal concern, the importance of which is open to debate.

There are three theoretical challenges to attack the problems above.

Challenge 1: virtual method calls.While direct usage of already initialized fields via this is

relatively easy to handle, indirect usage via virtual method calls poses a challenge. Such methods

could be potentially overridden in a subclass, which makes it difficult to statically check whether it

is safe to call such a method. This can be demonstrated by the following example:

1 abstract class AbstractFile {

2 def name: String

3 val extension: String = name.substring(4)

4 }

5 class RemoteFile(url:String) extends AbstractFile {

6 val localFile: String = url.hashCode // error

7 def name: String = localFile

8 }

According to the semantics of Scala (Java is the same), fields of a superclass are initialized before

fields of a subclass, so initialization of the field extension proceeds before localFile. The field

extension in the class AbstractFile is initialized by calling the abstract method name. The latter,

implemented in the child class RemoteFile, accesses the uninitialized field localFile.

Challenge 2: aliasing. It is well-known that aliasing complicates program reasoning and it is

challenging to develop practical type systems to support reasoning about aliasing [Clarke et al.

2013; Hogg et al. 1992]. It is also the case for safe initialization: if a field aliases this, we may not

assume the object pointed to by the field is fully initialized. This can be seen from the following

example:

1 class Knot {

2 val self = this

3 val n: Int = self.n // error

, Vol. 1, No. 1, Article . Publication date: September 2020.
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A Type-and-Effect System for Object Initialization 3

4 }

In the code above, the field self is an alias of this, thus we may not use it as a fully initialized

value. Aliasing may also happen indirectly through method calls, as the following code shows:

1 class Foo {

2 def f() = this

3 val n: Int = f().n // error

4 }

Challenge 3: typestate polymorphism. Every newly created object goes through several

typestates [Strom and Yemini 1986]: starting from a state where all fields are uninitialized until all

of them are assigned. If a method does not access any fields on this , then it should be able to be

called on any typestate of this . For example, in the following class C, we should be able to call the

method g regardless of the initialization state of this:

1 class C {

2 // ...

3 def g(): Int = 100

4 }

The challenge is how to support this feature succinctly without syntactic overhead.

1.2 Existing Work
1.2.1 Industrial Languages. Existing programming languages sit at two extremes. On one extreme,

we find languages like Java, C++, Scala, where programmers may use this as if it is fully initialized,

devoid of any safety guarantee. On the other extreme, we find languages like Swift, which ensures

safe initialization, but is overly restrictive. The initialization of cyclic data structures is not supported,

calling methods on this is forbidden, even the usage of already initialized fields is limited. For

example, in the following Swift code, while the usage of x to initialize y is allowed, the usage of y

to initialize f is illegal, which is a surprise:

1 class Position {

2 var x, y: Int

3 var f: () -> Int

4 init() {

5 x = 4

6 y = x * x // OK

7 f = { () -> Int in self.y } // error

8 }

9 }

1.2.2 Masked Types. Masked types [Qi and Myers 2009] is an expressive, flow-sensitive type-and-

effect system [Lucassen and Gifford 1988] for safe initialization of objects.

A masked type T \f denotes objects of the type T , where the masked field f cannot be accessed.

Each method has an effect signature of the formM1 ; M2, which means that the method can only

be called if this conforms to the masks M1, and the resulting masks for this after the call is M2.

However, there are several obstacles to make the system practical.

First, the system incurs cognitive load and syntactic overhead. Many concepts are introduced in

the system, such as subclass masks, conditional masks, abstract masks, each with non-trivial syntax.

The paper mentions that inference can help to remove the syntactic burden. However, it leaves

open the formal development of such an inference system.

, Vol. 1, No. 1, Article . Publication date: September 2020.
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4 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

Second, the system, while expressive, is insufficient for simple and common use cases due to the

missing support for typestate polymorphism. This can be seen from the following example, where

we want the method g to be called for any initialization state of this:

1 class C { def g(): Int = 100 /* effect of g: ∀M .M ; M */ }

As the method g can be called for this with any masks, we would like to give it the (imaginary)

polymorphic effect signature ∀M .M ; M , which is not supported. Even if an extension of the

system supports polymorphic effect signatures, it will only incur more syntactic overhead.

1.2.3 The Freedom Model. Summers and Müller [2011] propose a light-weight, flow-insensitive

type system for safe initialization, which we call the freedom model.
The freedom model classifies objects into two groups: free, that is under initialization, and com-

mitted, that is transitively initialized. Field accesses on free objects may get null, while committed

objects can be used safely. To support typestate polymorphism, it introduces the typestate unclassi-
fied, which means either free or committed. With subtyping, typestate polymorphism becomes just

subtyping polymorphism.

The freedom model supports the creation of cyclic data structures with light-weight syntax.

However, the formal system does not address the usage of already initialized fields in the constructor.

When an object is free, accessing its field will return a value of the type unclassified C?, which

means the value could be null, free or committed. In the implementation, they introduce committed-
only fields which can be assumed to be committed with the help of a dataflow analysis. However,

the paper leaves open the formal treatment of the dataflow analysis. Our work will address the

problem.

Moreover, the abstraction free is too coarse for some use cases. This is demonstrated by the

following example:

1 class Parent {

2 var child = new Child(this)

3 var tag: Int = child.tag // error in freedom model

4 }

5 class Child(parent: Parent @free) {

6 var tag: Int = 10

7 }

According to the freedom model, the expression child in line 3 will be typed as free, thus the
type system cannot tell whether the field child.tag is initialized or not. But conceptually we know

that all fields of child are initialized by the constructor of the class Child. In this work we propose

a new abstraction to improve expressiveness in such cases.

1.3 Contributions
Our work makes contributions in four areas:

1. Better understanding of local reasoning about initialization. Local reasoning about ini-
tialization is a key requirement for simple and fast initialization systems. However, while prior

work [Summers and Müller 2011] takes advantage of local reasoning about initialization to design

simple initialization systems, the concept of local reasoning about initialization is neither mentioned

nor defined precisely. Identifying local reasoning about initialization as a concept with a better

understanding enables it to be applied in the design of future initialization systems.

2. A more expressive type-based model. We propose a more expressive type-based model for

initialization based on the abstractions cold,warm and hot. The introduction of the abstractionwarm
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A Type-and-Effect System for Object Initialization 5

improves the expressiveness of the freedom model [Summers and Müller 2011] which classifies

objects as either free (i.e. cold) or committed (i.e. hot).

3. A novel type-and-effect inference system. We propose a type-and-effect inference system

for a practical fragment of the type-basedmodel. Existing work usually depends on some unspecified

inference or analysis to cut down syntactic overhead [Qi and Myers 2009; Summers and Müller

2011; Zibin et al. 2012]. We are the first to present a formal inference system on the problem of

safe initialization. Meanwhile, to our knowledge, we are the first to demonstrate the technique of

controlling aliasing in a type-and-effect system.

4. Implementation in Scala 3. We implement an initialization system in the Scala 3 compiler

and evaluate it on several real-world projects. The system is capable of handling complex language

features, such as inner classes, traits and functions.

2 LOCAL REASONING ABOUT INITIALIZATION
An important insight in the work of Summers and Müller [2011] is that if a constructor is called
with only transitively initialized arguments, the resulting object is transitively initialized. We give this

insight a name, local reasoning about initialization; it enables reasoning about initialization without

the global analysis of a program, which is the key for simple and fast initialization systems. The

insight also holds for method calls: if the receiver and arguments of a method call are transitively

initialized, so is the result.

But how can we justify the insight? While a justification can be found in the soundness proof

of the freedom model, it is obscured in a monolithic proof structure (see Lemma 1 of Summers

and Müller [2011]). We provide a modular understanding of local reasoning about initialization by

identifying three semantic properties, which we call weak monotonicity, stackability and scopability.
Identifying local reasoning about initialization as a concept with a better understanding enables it

to be applied in the design of future initialization systems. The properties can be explained roughly

as follows:

• weak monotonicity: initialized fields continue to be initialized.

• stackability: all fields of a class should be initialized at the end of the class constructor.

• scopability: objects under initialization can only be accessed via static scoping.

To study the properties more formally, we first introduce a small language.

2.1 A Small Language
Our language resembles a subset of Scala having only top-level classes, mutable fields and methods.

P ∈ Program ::= (C,D)

C ∈ Class ::= class C( ˆf :T ) { F M }

F ∈ Field ::= var f :T = e
e ∈ Exp ::= x | this | e . f | e .m(e) | new C(e) | e . f = e; e

M ∈ Method ::= def m(x :T ) : T = e
S,T ,U ∈ Type ::= C

A program P is composed of a list of class definitions and an entry class. The entry class must

have the form class D { def main : T = e }. The program runs by executing e .

A class definition contains class parameters (
ˆf :T ), field definitions (var f :T = e) and method

definitions. Class parameters are also fields of the class. All class fields are mutable. As a convention,

we use f to range over all fields, and
ˆf to only range over class parameters.

An expression (e) can be a variable (x ), self reference (this), field access (e . f ), method call (e .m(e)),
class instantiation (new D(e)), block expression (e . f = e; e). The block expression is used to avoid
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introducing the syntactic category of statements in the presence of assignments, which simplifies

the presentation and meta-theory.

A method definition is standard. We restrict method body to just expressions. This choice

simplifies the meta-theory without loss of expressiveness thanks to block expressions.

The following constructs are used in defining the semantics:

Ξ ∈ ClassTable = ClassName⇀ Class

σ ∈ Store = Loc⇀ Obj

ρ ∈ Env = Variable⇀ Value

o ∈ Obj = ClassName × (FieldName⇀ Value)

l,ψ ∈ Value = Loc

We use ψ to denote the value of this , σ corresponds to the heap, ρ corresponds to the local

variable environment of the current stack frame.

The big-step semantics, presented in Appendix C is standard, thus we omit detailed explanation.

The only note is that non-initialized fields are represented by missing keys in the object, instead of

a null value. Newly initialized objects have no fields, and new fields are gradually inserted during

initialization until all fields defined by the class have been assigned.

Note that this language does not enjoy initialization safety, and it is the task of later sections to

make it safe. However, the language enjoys local reasoning about initialization.

2.2 Definitions
Definition 2.1 (reachability). An object l ′ is reachable from l in the heap σ , written σ ⊨ l ; l ′, is

defined below:

l ∈ dom(σ )

σ ⊨ l ; l

σ ⊨ l0 ; l1 (_,ω) = σ (l1) ∃ f . ω(f ) = l2 l2 ∈ dom(σ )

σ ⊨ l0 ; l2

Definition 2.2 (reachability for set of locations).

σ ⊨ L ; l ≜ ∃l ′ ∈ L.σ ⊨ l ′ ; l
σ ⊨ l ; L ≜ ∃l ′ ∈ L.σ ⊨ l ; l ′

Definition 2.3 (cold). An object is cold if it exists in the heap, formally

σ ⊨ l : cold ≜ l ∈ dom(σ )

Definition 2.4 (warm). An object is warm if all its fields are assigned, formally

σ ⊨ l : warm ≜ ∃(C,ω) = σ (l)
∧

f ields(C) ⊆ dom(ω)

Definition 2.5 (hot). An object is hot if all reachable objects are warm, formally

σ ⊨ l : hot ≜ l ∈ dom(σ )
∧

∀l ′.σ ⊨ l ; l ′ =⇒ σ ⊨ l ′ : warm

From the definition, it is easy to see that hot implieswarm andwarm implies cold .

2.3 Weak Monotonicity
The idea of monotonicity dates back to heap monotonic typestates by Fähndrich and Leino [2003].

There are, however, at least three different concepts of monotonicity.

Weak monotonicity means that initialized fields continue to be initialized. More formally, we

may prove the following theorem:
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A Type-and-Effect System for Object Initialization 7

Theorem 2.6 (Weak Monotonicity).

JeK (σ , ρ,ψ ) = (l,σ ′) =⇒ σ ⪯ σ ′

In the above, the predicate weak monotonicity (σ ⪯ σ ′
) is defined below:

Definition 2.7 (Weak Monotonicity).

σ ⪯ σ ′ ≜ ∀l ∈ dom(σ ). (C,ω) = σ (l) =⇒ (C,ω ′) = σ ′(l)

While weak monotonicity is sufficient to justify local reasoning about initialization, stronger

monotonicity is required for initialization safety. For example, the freedom model [Summers and

Müller 2011] enforces strong monotonicity:

σ ⪯ σ ′ ≜ ∀l ∈ dom(σ ). σ ⊨ l : µ =⇒ σ ′ ⊨ l : µ

In the above, we abuse the notation by using µ to denote either cold, warm or hot. Strong
monotonicity additionally ensures that hot objects continue to be hot. Therefore, it is always safe

to use hot objects freely. However, to enforce safer usage of already initialized fields of non-hot

objects, we need an even stronger concept, perfect monotonicity:

σ ⪯ σ ′ ≜ ∀l ∈ dom(σ ). (C,ω) = σ (l) =⇒

(C,ω ′) = σ ′(l)
∧

∀f ∈ dom(ω).σ ⊨ ω(f ) : µ =⇒ σ ′ ⊨ ω ′(f ) : µ

In the above, we abuse the notation by writing directly ω ′(f ) to require that dom(ω) ⊆ dom(ω ′).

Perfect monotonicity in addition ensures that initialization states of object fields are monotone. It

will be problematic if a field is initially assigned a hot value and later reassigned to a non-hot value.

2.4 Stackability
Conceptually, stackability ensures that all newly created objects during the evaluation of an

expression e are warm, i.e. all fields of the objects are assigned. Formally, the insight can be proved

as a theorem:

Theorem 2.8 (Stackability).

JeK (σ , ρ,ψ ) = (l,σ ′) =⇒ σ ≪ σ ′

The predicate σ ≪ σ ′
is defined below, which says that for any object in the heap σ ′

, either the

object is warm, or the object pre-exists in the heap σ .

Definition 2.9 (Stacking).

σ ≪ σ ′ ≜ ∀l ∈ dom(σ ′).σ ′ ⊨ l : warm
∨

l ∈ dom(σ )

Definite assignment [Gosling et al. 2015] can be used to enforce stackability in programming

languages. In Java, however, it only requires that final fields are initialized.

If we push an object in a stack when it comes into existence, and remove it from the stack when

all its fields are assigned, we will find that the object to be removed is always at the top of the stack.

This is illustrated in Figure 1.

2.5 Scopability
Scopability says that the access to uninitialized objects should be controlled by static scoping.

Intuitively, it means that a method may only access pre-existing uninitialized objects through its

environment, i.e. method parameters and this.

Objects under initialization are dangerous when used without care, therefore the access to them

should be controlled. Scopability imposes discipline on accessing uninitialized objects. If we regard
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1
2

4

3

time 5 6

1
2

4

3

5 6

stacked non-stacked

Fig. 1. Each block represents the initialization duration of an object, i.e., from the creation of the object to
the point where all fields are assigned.

uninitialized objects as capabilities, then scopability restricts that there should be no side channels

for accessing those capabilities. All accesses have to go through the explicit channel, i.e. method

parameters and this. In contrast, global variables or control-flow effects such as algebraic effects

may serve as side channels for teleporting values under initialization. To maintain local reasoning

about initialization, an initialization system needs to make sure that only initialized values may

travel by side channels.

More formally, we can prove the following theorem:

Theorem 2.10 (Scopability).

JeK (σ , ρ,ψ ) = (l,σ ′) =⇒ (σ , codom(ρ) ∪ { ψ }) ⋖ (σ ′, { l }) (1)

In the above, the predicate (σ , L) ⋖ (σ ′, L′) is defined below:

Definition 2.11 (Scoping). A set of addresses L′ ⊆ dom(σ ′) is scoped by a set of addresses L ⊆

dom(σ ), written (σ , L) ⋖ (σ ′, L′), is defined as follows

(σ , L) ⋖ (σ ′, L′) ≜ ∀l ∈ dom(σ ). σ ′ ⊨ L′ ; l =⇒ σ ⊨ L ; l

The theoremmeans that if e evaluates to l , then l and every location l ′ reachable from l in the new
heap is either fresh, in that it did not exist in the old heap, or it was reachable from codom(ρ) ∪ψ
in the old heap.

Note that in the definition of scopinд, we use σ ⊨ L ; l instead of σ ′ ⊨ L ; l . This is because in
a language with mutation, l may no longer be reachable from L in σ ′

due to reassignment. This can

be seen in Figure 2.

The property of scopability holds intuitively, but its proof is not obvious at all. The subtlety is in

proving the case e1.m(e2). Suppose we have Je1K (σ1, ρ,ψ ) = (l1,σ2) and Je2K (σ2, ρ,ψ ) = (l2,σ3). By
induction hypothesis, we have (σ1, codom(ρ) ∪ { ψ }) ⋖ (σ2, l1) and (σ2, codom(ρ) ∪ { ψ }) ⋖ (σ3, l2).
However, we do not know that (σ1, codom(ρ) ∪ { ψ }) ⋖ (σ3, l1). We need some invariant saying

that scoping relations are preserved. That invariant has to be carefully defined, as not all scoping

relations are preserved due to reassignment. We refer the reader to the technical report for more

detailed discussions [Liu et al. 2020].

2.6 Local Reasoning about Initialization
With weak monotonicity, stackability and scopability, we may prove the theorem of local reasoning

about initialization.
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1

7
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6

1

7 2
4

3

5

6
8

9

˟

Heap σ Heap σ’ 

⟦e⟧(σ, ø, 2) 

Fig. 2. Each circle represents an object and numbers are locations. An arrow means that an object holds a
reference to another object. The thick circles and links on the right heap are new objects and links created
during the execution. Due to scopability, we have (σ , {2}) ⋖ (σ ′, {8}). It means if the result object 8 reaches
any object which pre-exists in the heap σ , then the object must be reachable from object 2 in the heap σ . The
object 7 which is reachable from the object 2 in the heap σ , is no longer reachable from object 2 in the heap
σ ′ due to the removal of the link from object 1 to object 7.

Lemma 2.12 (Local Reasoning). The following proposition holds

(σ , L) ⋖ (σ ′, L′) σ ≪ σ ′ σ ⪯ σ ′ σ ⊨ L : hot

σ ′ ⊨ L′ : hot

Proof. Let’s consider a reachable object l from L′, i.e. σ ′ ⊨ L′ ; l . Depending on whether

l ∈ dom(σ ), there are two cases.

• Case l < dom(σ ).
Use the fact that σ ≪ σ ′

, we know σ ′ ⊨ l : warm.

• Case l ∈ dom(σ ).
Use the fact that (σ , L) ⋖ (σ ′, L′), we have σ ⊨ L ; l . From the premise σ ⊨ L : hot , we have
σ ⊨ l : warm. From σ ⪯ σ ′

, we have σ ′ ⊨ l : warm.

In both cases, we have σ ′ ⊨ l : warm, by definition we have σ ′ ⊨ L′ : hot . □

Theorem 2.13 (Local Reasoning). The following proposition holds:

JeK (σ , ρ,ψ ) = (l,σ ′) σ ⊨ { ψ } ∪ codom(ρ) : hot

σ ′ ⊨ l : hot

Proof. Immediate from Lemma 2.12, the preconditions are satisfied by Theorem 2.10, Theo-

rem 2.6 and Theorem 2.8. □

In particular, if e is a method body, we can conclude that if the receiver and all the method

parameters are hot, then the return value is also hot.

This theorem echoes the insight in the freedommodel [Summers andMüller 2011]: if a constructor

is called with all arguments committed, then the constructed object is also committed.

3 THE BASIC MODEL
In this section, we take advantage of local reasoning about initialization to develop a type system

that ensures initialization safety of objects.
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3.1 Types
From the last section, we see that there are three natural abstractions of initialization states:

cold A cold object may have uninitialized fields.

warm A warm object has all its fields initialized.

hot A hot object has all its fields initialized and only reaches hot objects.

If we posit the abstractions cold, warm and hot as types, we arrive at a type system for safe

initialization of objects, which we call the basic model. Types in the language have the form Cµ
:

Ω ::= { f1, f2, . . . }
µ ::= cold | warm | hot | Ω
T ::= Cµ

The typeCΩ
is introduced to support the usage of already initialized fields — Ω denotes the set of

initialized fields. The type is well-formed if Ω contains only fields of the class C . In languages that

are equipped with an annotation system, such as Java, the typeCµ
can be written using annotations

(e.g.C @warm andC @cold), while a type without annotation can be assumed to be hot. Types like
CΩ

are mainly used internally in the type system, thus there is no need to write them explicitly.

A type Cµ1
is a subtype of another type Cµ2

, written Cµ1 <: Cµ2
, if µ1 ⊑ µ2. The lattice for modes

µ is defined below:

hot ⊑ µ warm ⊑ Ω Ω1 ∪ Ω2 ⊑ Ω1 µ ⊑ cold

The modes hot and cold are respectively bottom and top of the lattice, and Ω is in the middle.

Methods are now annotated with modes, i.e., in @µ def m(x :T ) : T = e , the mode µ means this
has the type Cµ

inside the methodm of the class C . We will propose an inference system to avoid

the annotations (Section 4 and 5). The semantics of the language remain the same as the language

introduced in section 2.

3.2 Type System
We present definition typing and expression typing in Figure 3 and Figure 4. In an expression

typing judgment Γ;T ⊢ e : U , the typeT is the type for this . Note that for simplicity of presentation,

the class table Ξ is omitted in expression typing judgments.

• The rule T-Block demands that we only reassign hot values to fields; that is how we enforce

perfect monotonicity in the system.

• Both the rules T-New and T-Invoke take advantage of local reasoning about initialization at

the type level.

• The rule T-SelHot capitalizes on the fact that a hot object may only reach hot objects.

The soundness theorem says that a well-typed program does not get stuck at runtime.

Theorem 3.1 (Soundness). If ⊢ P, then ∀k . JPK (k) , Error

The meta-theory takes the approach of step-indexed definitional interpreters [Amin and Rompf

2017]. For a step-indexed interpreter, there are three possible outcomes: (1) time out; (2) error; (3) a

resulting value and an updated heap. Initialization safety is implied by soundness, as initialization

errors will cause the program to fail at runtime. We refer the reader to the technical report for more

details about the meta-theory [Liu et al. 2020].
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Program Typing ⊢ P

Ξ = C → C Ξ(D) = class D { def main : T = e } ∅;Dhot ⊢ e : T Ξ ⊢ C

⊢ (C,D)
(T-Prog)

Class Typing Ξ ⊢ C

Ω0 = ˆf Ξ;CΩi ⊢ Fi Ωi+1 = Ωi ∪ { fi } Ξ;C ⊢ M

Ξ ⊢ class C( ˆf :T ) { F M }

(T-Class)

Field Typing Ξ;CΩ ⊢ F

∅;CΩ ⊢ e : T

Ξ;CΩ ⊢ var f : T = e
(T-Field)

Method Typing Ξ;C ⊢ M

x :T ;Cµ ⊢ e : S

Ξ;C ⊢ @µ def m(x :T ) : S = e
(T-Method)

Fig. 3. Definition typing of the basic model

3.3 Typestate Polymorphism and Authority
A key design decision of the type system is to embrace flow-insensitivity. It follows an insight

from Summers and Müller [2011] that we may achieve typestate polymorphism via subtyping in a

flow-insensitive system.

Otherwise, if the system were flow-sensitive, we would have to track the change of typestates of

this inside a method. Suppose we track the changes of a method m with Cµ1 → Cµ2
, which means

that the method m requires this to conform to Cµ1
before the call, and this takes the typestate Cµ2

after the call, similar to what is done by Qi and Myers [2009]. This creates a difficulty for methods

that can be called for any typestates of this, as the following example shows:

1 class C {

2 // ...

3 def g(): Int = 100 // ∀µ .Cµ → Cµ

4 }

In the code above, the method g can be called for any typestate of this. Representing the fact

in the system would require parametric polymorphism, which complicates the solution. In fact,

the system proposed by Qi and Myers [2009] does not support typestate polymorphism and thus

invalidates such simple use cases.

The combination of flow-insensitivity and strong/perfect monotonicity imposes a rule in the

design of initialization systems, which we call authority. Roughly, it means that we may only

advance initialization states of an object at specific locations in its class constructor.
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Expression Typing Γ;T ⊢ e : T

Γ;T ⊢ e : T1 T1 <: T2

Γ;T ⊢ e : T2
(T-Sub)

x : U ∈ Γ

Γ;T ⊢ x : U
(T-Var)

Γ;T ⊢ this : T (T-This)

Γ;T ⊢ e : Dhot Cµ = fieldType(D, f )

Γ;T ⊢ e . f : Chot
(T-SelHot)

Γ;T ⊢ e : Dwarm U = fieldType(D, f )

Γ;T ⊢ e . f : U
(T-SelWarm)

Γ;T ⊢ e : DΩ f ∈ Ω U = fieldType(D, f )

Γ;T ⊢ e . f : U
(T-SelObj)

Ti = constrType(C) Γ;T ⊢ ei : C
µi
i C

µi
i <: Ti µ = (⊔ µi ) ⊓warm

Γ;T ⊢ new C(e) : Cµ (T-New)

Γ;T ⊢ e : Cµ0 (µm,Ti ,D
µr ) =methodType(C,m)

µ0 ⊑ µm Γ;T ⊢ ei : D
µi
i D

µi
i <: Ti µ = (⊔ µi = hot)?hot : µr

Γ;T ⊢ e .m(e) : Dµ (T-Invoke)

Γ;T ⊢ e1. f : Cµ Γ;T ⊢ e2 : C
hot Γ;T ⊢ e : T1

Γ;T ⊢ e1. f = e2; e : T1
(T-Block)

Fig. 4. Expression typing of the basic model

In a flow-insensitive system, how can we safely advance typestates of objects? It is unsafe to do

so at arbitrary locations in the program, as the update may break monotonicity if the typestate of

the object can be advanced differently via aliases elsewhere. More theoretically, a flow-insensitive

system cannot establish the order of updates at different locations (and possibly via aliases) to

guarantee monotonicity.

The rule of authority suggests that it is safe to perform typestate updates only via an outstanding

alias and only at definite locations in a local context. The definite locations form a local flow in

a flow-insensitive system. In the experimental language, the outstanding alias is this, and the

locations are the points of field initializations inside the class constructor.

The design rule of authority comes from the meta-theory. The meta-theory is based on store
typing [Pierce 2002, Chapter 13]. We use Σ to range over store typings, which are maps from

locations to types, i.e. Loc ⇀ Type . An important semantic property used in the proof is the

following:
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∀l ∈ dom(Σ).Σ(l) = CΩ =⇒ Σ′(l) = CΩ

Σ � Σ′

In the above, Σ and Σ′
are the store typings before and after evaluating an expression. Literally,

the property says that if the object at location l is considered to have initialization state Ω before

the evaluation of an expression, it must be considered to still have the initialization state Ω after

the evaluation of the expression.

Intuitively, the property implies that we may not advance the initialization state of existing

objects during evaluation of an expression. It leaves only the possibility to advance object state at

special locations in the constructor. At the end of the class body when all fields are initialized, we

promote the type of the fresh object to be warm. Its promotion to hot may be delayed until a group

of cyclic objects becomes hot together, which is called a commitment point by Summers and Müller

[2011].

We call the semantic property above the property of authority. The property is necessary to prove
perfect monotonicity, which is an important invariant in the soundness proof. The reason can be

demonstrated by the following program:

1 class C(a: A @cold) { var x: D @cold = e; var y: Int = 10 }

In the code above, suppose the type ofψ (the value for this) starts as C { a }
, and a side-effect of

evaluating e updates the type ofψ toCµ
. After assigning the value of e , denoted as le , to the field x ,

we update the type of this to Cµ′
. We would like µ ′ ⊑ { a, x } to record that the fields a and x is

initialized, and monotonicity requires that µ ′ ⊑ µ. The property of authority ensures that µ = { a },

which enables one simple solution to these constraints, namely µ ′ = { a, x }. This is a sound choice

because we do know that the field x has been assigned the value le , which is of the type Dcold

(known by induction hypothesis) as required by the semantic typing of the objectψ as C { a,x }
.

In the absence of authority, it would be allowed to update the type of ψ as a side-effect of

evaluating e , for example to Chot
. Then the constraint µ ′ ⊑ µ would force µ to be hot. However,

there is no guarantee that le is transitively initialized. From the induction hypothesis, we only

know that it has the type Dcold
. So setting µ ′ to hot would be unsound, since this might no longer

be transitively initialized after the field x is assigned the value le .
Note that the property of authority only talks about types of the formCΩ

. The store typing never

contains types like Ccold
, a value takes such a type by subtyping. Authority for values of the type

Cwarm
is not necessary for soundness. The reason is that the only operation in the store typing for

a warm object is to promote its type from Cwarm
to Chot

, the only possible next monotone state, it

is thus impossible for monotonicity to fail. For the type Chot
, monotonicity guarantees that the

type keeps the same.

We believe the property of authority is already necessary for a flow-insensitive system that

enforces strong monotonicity, such as the freedom model [Summers and Müller 2011], but it has

not been made explicit in previous work.

4 TYPE-AND-EFFECT INFERENCE, INFORMALLY
The type system proposed in the last section depends on verbose annotations, which forms an

obstacle for its adoption in practice. In this section, we propose a type-and-effect inference system

[Lucassen and Gifford 1988; Nielson et al. 1999] to significantly cut down the syntactic overhead.

We first discuss the design of the type-and-effect inference system informally by examples.

4.1 Potentials and Effects
Consider the following erroneous program, which accesses the field y before it is initialized:
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1 class Point {

2 var x: Int = this.y // Point.this.y!

3 var y: Int = 10

4 }

A natural idea to ensure safe initialization is to analyze the fields that are accessed at each step

of initialization, and check that only initialized fields are accessed. This leads to the fundamental

effect in initialization: field access effect, e.g. C .this . f !.
Fields may also be accessed indirectly through method calls, as the following code shows:

1 class Point {

2 var x: Int = this.m() // Point.this.m<>

3 var y: Int = 10

4 def m(): Int = this.y // Point.this.y!

5 }

For this case, we may introduce method calls as effects, which act as placeholders for the actual

effects that happen in the method: method call effects, e.g. C .this .m♢.
If we first analyze effects of the methodm and map the effect Point .this .m♢ to the set of effects

{Point .this .y!}, then we may effectively check the initialization error in the code above.

One subtlety in the design is how to handle aliasing. We illustrate with the following example:

1 class Knot {

2 var self = this // potentials of "self": { Knot.this }

3 var x: Int = self.x // effects of "self.x": { Knot.this.self.x! }

4 }

In the code above, the field x is used via the alias self before it is initialized. To check such errors,

we need a way to represent the aliasing information in the system. That leads us to the concept

of potentials. Potential over-approximate expressions that could potentially alias a potentially

uninitialized object. If an expression could refer to an uninitialized object, it must be abstracted by

a potential. If an expression has an empty set of potentials, it means at runtime the value of the

expression is always hot.

A potential encodes aliasing information in the form of paths, such as C.this, C.this.f or

C.this.m. In the code example above, the field self takes the potentials of its initializer, i.e. the set

{ Knot.this }. Now an initialization checker may take advantage of the aliasing information and

report an error for the code self.x.

To enforce that all arguments to method calls are hot, we introduce promotion effects that
promote potentials to be hot, e.g. C .this↑. The checking system will check that only hot objects are

promoted. The following example illustrates the usage of the effect:

1 class Point {

2 var x: Int = this.m() // Point.this.m<>

3 def m(): Int = call(this) // Point.this↑

4 }

In the code above, the method call effect Point .this .m♢ incurs the promotion effect Point .this↑.
The system finds that at the point of the call this.m(), the value of this is not hot, such promotion

is thus illegal.

Semantically, potentials keep track of objects possibly under initialization in order to maintain a

directed segregation of initialized objects and objects under initialization: objects under initialization
may point to initialized objects, but not vice versa. A promotion effect means that the object pointed
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to by the potential ascends to the initialized world, and the system gives up on tracking it. The

system will have to ensure that by the time this happens, the object is hot.

Note that field access C .this .a! and field promotion C .this .a↑ are different effects, because field
access does not necessarily need to promote the field, as demonstrated by the following example:

1 class Knot {

2 var a = this

3 var b = this.a // Knot.this.a! , but no promotion

4 }

Aliasing and promotion may also happen through methods, as the following example shows:

1 class Fact {

2 var value = escape(this.m()) // Fact.this.m↑

3 def m() = this // potentials of m: { Fact.this }

4 }

The type-and-effect system knows that the return value of the method m aliases this, thus the

promotion of this.m() at line 2 indirectly promotes this.

A similar distinction is drawn on methods: (1) the method invocation effect C .this .m♢ means

that the method m is called with the receiver this; (2) the method promotion effectC .this .m↑means

that the return value of the call this.m is promoted.

4.2 Two-Phase Checking
A common issue in program analysis is how to deal with recursive methods. We tackle the problem

with two phase checking. In the first phase, the system computes effect summaries for methods and

fields. In the second phase, the system checks that no fields are used before they are initialized.

During the checking, it uses the effect summaries from the first phase. For example, assume the

following program:

1 class Foo {

2 var a: Int = h()

3 def h(): Int = g()

4 def g(): Int = h()

5 }

In the first phase, the computed summary for the methods h and g is as follows:

method effects potentials

h { Foo.this .д♢ } { Foo.this .д }

д { Foo.this .h♢ } { Foo.this .h }

In the second phase, while checking the method call h(), the analysis propagates the effects

associated with the method h until it reaches the fixed point { Foo.this .д♢, Foo.this .h♢ }. As the
set does not contain accesses to any uninitialized fields of this nor invalid promotion, the program

passes the check. Note that the domain of effects has to be finite for the existence of the fixed point.

4.3 Full-Construction Analysis
Another common issue in analysis is how to handle virtual method calls. The approach we take is

full-construction analysis: we treat the constructors of concrete classes as entry points, and check all
super constructors as if they were inlined. The analysis spans the full duration of object construction.

This way, all virtual method calls on this can be resolved statically. From our experience, full-

construction analysis greatly improves user experience, as no annotations are required for the

interaction between subclasses and superclasses.
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The following problem also motivates us to check the full construction duration of an object,

which is also known as the fragile base class problem:

1 class Base { def g(): String = "hello" }

2 class Foo extends Base { val a = this.g() }

3 class Bar extends Base {

4 val b: String = "b"

5 override def g(): String = this.b

6 }

This program is correct. However, if we follow a type-based approach like the freedom model

[Summers and Müller 2011], in order to call g() in the class Foo, the method Base.g has to be

annotated @free, so that it may not access any fields on this. For soundness, the overriding method

Bar.g has to be annotated @free too: but now it may not access the field this.b in the body of the

method Bar.g. This unnecessarily restricts expressiveness of the system.

Moreover, we believe it is the only practical way to handle complex language features such as

properties and traits. In languages such as Scala and Kotlin, fields are actually properties, accesses

of public field are dynamic method calls, as the following code shows:

1 class A { val a = "Bonjour"; val b: Int = a.size }

2 class B extends A { override val a = "Hi" }

3 new B

In the code above, when the constructor of class B calls the constructor of class A, the expression

a.size will dynamically dispatch to read the field a declared in class B, not the field a declared in

class A. This results in a null-pointer exception at runtime because at the time the field a in class B

is not yet initialized. Without full-construction analysis, it is difficult to make the analysis sound

for the code above.

Closed World Assumption. Full-construction analysis does not assume a closed world in the

sense that it does not depend on the program entry as the analysis entry point. In contrast, it takes

constructors of concrete classes as analysis entry points. In the analysis, it requires the code of

constructors of superclasses to be available.

Modularity. While full-construction analysis is capable of handling language features like traits

and properties, it pays the price of modularity in the sense that if a superclass is changed, the

subclasses have to be recompiled. We believe this is a worthy price to pay. First, the coupling

between super class and subclass is well-known in object-oriented programming. For example,

if a superclass adds a new method, then all its subclasses have to be recompiled to check proper

overriding. Second, the ideal granularity for modular checking is not classes, but projects. From

our experience with real-world projects, most subtle initializations happen within the same project.

Third, the type system presented in Section 3 can serve as coarse-grained type specification at

project boundaries.

4.4 Cyclic Data Structures
Cyclic data structures are supported with an annotation @cold on class parameters, as the following

example demonstrates:

1 class Parent { val child: Child = new Child(this) }

2 class Child(parent: Parent @cold) {

3 val friend: Friend = new Friend(this.parent)

4 }

5 class Friend(parent: Parent @cold) { val tag = 10 }
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The annotation @cold indicates that the actual argument to parent during object construction

might not be initialized. The type-and-effect system will ensure that the field parent is not used

directly or indirectly when instantiating Child. However, aliasing the field to another cold class

parameter is fine, thus the code new Friend(this.parent) at line 3 is accepted by the system. This

allows programmers to create complex aliasing structures during initialization.

Our system tracks the return value of new Child(this) as the set of potentials { warm[Child] }.
All fields of a warm value are assigned, but they may hold values that are not fully initialized.

The inference system also takes advantage of local reasoning about initialization (Section 2): the

whole cyclic data structure becomes hot at the same time when the first object in the group, i.e. the

instance of Parent, becomes warm. This is called commitment point in the work of Summers and

Müller [2011].

4.5 Relationship with the Type System
The type-and-effect system is intended to serve as an inference system for the type system in

Section 3. Although simpler, the type system there requires annotations and thus forms an obstacle

for adoption in practice. Meanwhile, the type-and-effect system scales better to complex language

features like properties, inner classes and functions, and integrates better with compilers as no

changes to the type system of the compiler are needed.

That said, the type-and-effect system is based on the type system in Section 3, and can be regarded

as an inference system for a fragment of the type system there. For example, given the following

code:

1 class C {

2 val d: D = new D(this)

3 def foo = this.n

4 foo

5 val n = 10

6 }

7 class D(c: C @cold) {

8 val tag = 10

9 }

The field d is associated with the potentials { warm[D] }, it may thus take the type Dwarm
. The

method foo is associated with the effects { this .n! }, which suggests that this should conform to

the type C { n }
when the method foo is called.

In practice, the type-and-effect system does not bother to compute the exact type annotations

nor elaborate the program with such type annotations, because the type elaboration is not useful

in later compiler phases. Instead, it only checks that all the effects are safe in the constructor.

The fragment of the type system that we identify demands that (1) method arguments must be
hot, and (2) non-hot class parameters must be annotated. The fragment supports calling methods on

this in the constructor, as well as creation of cyclic data structures. There are several considerations

for the restrictions.

First, from practical experience, there is little need to use non-hot values as method arguments.

Meanwhile, virtual method calls on this are allowed, which covers most use cases in practice [Gil

and Shragai 2009].

Second, it agrees with good programming practices that values under initialization should not

escape [Bloch 2008]. Therefore, when there is the need to pass non-hot arguments to a constructor,

it is a good practice to mark them explicitly.
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Third, demanding method arguments to be hot saves us from changing the core type system of a

language to check safe overriding of virtual methods.

5 FORMALIZING TYPE-AND-EFFECT INFERENCE
In this section, we formalize the type-and-effect system presented informally in the last section.

Due to space limit, the soundness proof of the system is presented in the technical report included

as supplemental material.

5.1 Syntax and Semantics
Our language is almost the same as the language introduced in section 2, except for the definition of

class parameters. In a class definition like class C( ˆf :T ) { F M }, we introduce cold class parameters,
which has the syntax

˜f . Cold class parameters may take a value that is not transitively initialized.

A class parameter
ˆf is also a field of its defining class. By default, we use f to range over all fields,

ˆf over class parameters, and
˜f over cold class parameters.

The tilde annotation
˜f is only used in the type-and-effect system; it does not have runtime

semantics. That is the only annotation that is required in the source code.

The semantics is the same as the language in section 2, we thus omit the details.

5.2 Effects and Potentials
As seen from Figure 5, the definition of potentials (π ) and effects (ϕ) depends on roots (β). Roots are
the shortest path that represents an alias of a value that may not be transitively initialized. There

are three roots in the system:

• C .this represents an alias of this inside class C .
• warm[C] represents an alias of a value of class C , all fields of which are assigned, but it may

not be transitively initialized.

• cold represents a value whose initialization status is unknown. It is used to represent the

potentials of cold class parameters. Field access or method calls on such an object is forbidden.

Potentials (π ) represent aliasing information. They extend roots with field aliasing β . f and

method aliasing β .m. Field aliasing β . f represents aliasing of the field f of β , while method aliasing

β .m represents aliasing of the return value of the methodm with the receiver β .
Effects (ϕ) include field accesses, method calls and promotions of possibly uninitialized values.

A promotion effect is represented with π ↑, which enforces that the potential π is transitively

initialized. The field access effect β . f ! means that the field f is accessed on β . The method call

effect β .m♢ means that the methodm is called on β .
There are three helpers for the creation of potentials and effects:

• Field selection: select(Π, f )
• Method call: call(Π,m)

• Class instantiation: init(C, ˆfi = Πi )

They are used in expression typing to summarize the potentials and effects of expressions. A key

to understand the definitions is that the promotion effect π↑ is the same as saying that π should be

hot; and the empty set of potentials means that the result is hot.

Bounded Length. To make sure that the domain of effects and potentials is finite, the current

system restricts the maximum length of potentials and effects to be two. In the implementation

(Section 6), the maximum length of effects is 3. The bound is chosen in order to support calling

methods on inner class instances, which is relatively common in Scala.
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If the length of potentials exceeds the limit, the system checks that the potential is hot by
producing a promotion effect. This can be seen from the last line of the definitions of the helper

methods select and call .
Limiting the length will lead to incompleteness relative to the type system presented in Section

3. It does not pose a problem in practice (Section 7), due to the fact that fields usually hold hot

values and methods return hot values. On the other hand, if it becomes an issue, the user may

write explicit type annotations and the inference system can be extended to take advantage of the

explicit type annotations.

Potentials and Effects
T ::= C | D | E | · · · type

β ::= C .this | warm[C] | cold root

π ::= β | β . f | β .m potential

Π ::= { π1, π2, · · · } potentials

ϕ ::= π↑ | β . f ! | β .m♢ effect

Φ ::= { ϕ1,ϕ2, · · · } effects

Ω ::= { f1, f2, · · · } fields

∆ ::= fi 7→ (Φi ,Πi ) field summary

S ::= mi 7→ (Φi ,Πi ) method summary

E ::= C 7→ (∆,S) effect table

Select
select(Π, f ) = Π.map(π ⇒ select(π , f )).reduce(⊕)

select(β, ˜f ) = (∅, {cold})

select(β, ˆf ) = (∅, ∅)
select(β, f ) = ({β . f !}, {β . f }) where β , cold

select(cold, f ) = ({cold↑}, ∅)
select(π , f ) = ({π↑}, ∅) where π = β . f or π = β .m

Call
call(Π,m) = Π.map(π ⇒ call(m, π )).reduce(⊕)
call(β,m) = ({β .m♢}, {β .m}) where β , cold

call(cold,m) = ({cold↑}, ∅)
call(π ,m) = ({π↑}, ∅) where π = β . f or π = β .m

Init
init(C, ˆfi = Πi ) = (∪Πk,j↑, {warm[C]}) if ∃ ˜fj ,Πj , ∅

init(C, ˆfi = Πi ) = (∪Πi↑, ∅)

Helpers
Π↑ = { π↑ | π ∈ Π }

(A1,A2) ⊕ (B1,B2) = (A1 ∪ B1,A2 ∪ B2)

Fig. 5. Potentials and Effects
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5.3 Expression Typing

Expression Typing Γ;C ⊢ e : D ! (Φ,Π)

x : D ∈ Γ

Γ;C ⊢ x : D ! (∅, ∅)
(T-Var)

Γ;C ⊢ this : C ! (∅, {C .this}) (T-This)

Γ;C ⊢ e : D ! (Φ,Π) (Φ′,Π′) = select(Π, f ) E = fieldType(D, f )

Γ;C ⊢ e . f : E ! (Φ ∪ Φ′,Π′)
(T-Sel)

Γ;C ⊢ e0 : E0 ! (Φ,Π) Γ;C ⊢ ei : Ei ! (Φi ,Πi )

(xi :Ei ,D) = methodType(E0,m) (Φ′,Π′) = call(Π,m)

Γ;C ⊢ e0.m(e) : D ! (Φ ∪ Φi ∪ Πi↑ ∪ Φ′,Π′)
(T-Call)

ˆfi :Ei = constrType(C) Γ;C ⊢ ei : Ei ! (Φi ,Πi ) (Φ′,Π′) = init(C, ˆfi = Πi )

Γ;C ⊢ new C(e) : C ! (∪Φi ∪ Φ′,Π′)
(T-New)

Γ;C ⊢ e0 : E0 ! (Φ0,Π0) E1 = fieldType(E0, f )
Γ;C ⊢ e1 : E1 ! (Φ1,Π1) Γ;C ⊢ e2 : E2 ! (Φ2,Π2)

Γ;C ⊢ e0. f = e1; e2 : E2 ! (Φ0 ∪ Φ1 ∪ Π1↑ ∪Φ2,Π2)
(T-Block)

Fig. 6. Expression Typing

Expression typing (Figure 6) has the form Γ;C ⊢ e : D ! (Φ,Π), it means that the expression e in
classC under the environment Γ, can be typed as D, and it produces effects Φ and has the potentials

Π. Generally, when typing an expression, the effects of sub-expressions will accumulate, while
potentials may be refined (via selection), promoted (used as arguments to methods).

The definitions assume several helper methods, such as fieldType(C, f ), methodType(C,m) and

constrType(C), to look up in class table Ξ the type, respectively, of field C . f , of method C .m and of

the constructor of C .

5.4 Definition Typing
Definition typing (Figure 7) defines how programs, classes, fields and methods are checked. The

checking happens in two phases:

(1) first phase: conventional type checking is performed and effect summaries are computed;

(2) second phase: effect checking is performed to ensure initialization safety.

The two-phase checking is reflected in the typing rule T-Prog. To type check a program (C,D),
first each class is type checked separately for well-typing and the effect summary for fields ∆c and

methods Sc is computed using class typing Ξ ⊢ C ! (∆,S). The result of class typing is stored in

the effect table E, which is then used for modular effect checking of each class. Effect checking is

performed modularly on each class with the help of the effect table E. The typing rule T-Prog also

checks that the entry class D is well-typed.
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Program Typing ⊢ P

Ξ = C 7→ C Ξ(D) = class D { def main : T = e } ∅;D ⊢ e : T ! (Φ,Π)

Ξ ⊢ C ! (∆c ,Sc ) E = C 7→ (∆c ,Sc ) Ξ; E ⊢ C

⊢ (C,D)
(T-Prog)

Effect Checking Ξ; E ⊢ C

(∆, _) = E(C) (Φ, _) = ∆(fi ) E;C { f1, · · · ,fi−1 } ⊢ Φ

Ξ; E ⊢ class C( ˆf :T ) { F M }

(T-Check)

Class Typing Ξ ⊢ C ! (∆,S)

Ξ;C ⊢ Fi ! (Φi ,Πi ) ∆ = fi 7→ (Φi ,Πi ) Ξ;C ⊢ Mi ! (Φi ,Πi ) S =mi 7→ (Φi ,Πi )

Ξ ⊢ class C( ˆf :T ) { F M } ! (∆,S)
(T-Class)

Field Typing Ξ;C ⊢ F ! (Φ,Π)

∅;C ⊢ e : D ! (Φ,Π)

Ξ;C ⊢ var f : D = e ! (Φ,Π)
(T-Field)

Method Typing Ξ;C ⊢ M ! (Φ,Π)

x :D;C ⊢ e : E ! (Φ,Π)

Ξ;C ⊢ def m(x :D) : E = e ! (Φ,Π)
(T-Method)

Fig. 7. Definition Typing

When type checking a class, the rule T-Class checks that the body fields and methods are well-

typed, and the associated effects and potentials are computed. The effects and potentials associated

with a field are the effects and potentials of its initializer (the right-hand-side expression). The

effects and potentials associated with a method are the effects and potentials of the body expression

of the method. The effect summaries are used during the second phase in T-Check, where it checks

that given the already initialized fields, the effects on the right-hand-side of each field are allowed.

The typing rule T-Field checks the right-hand-side expression e in an empty typing environment,

as there are no variables in a class body (class parameters are fields of their defining class). In the

typing rule T-Method, the method parameters x : D are used as the typing environment to check

the method body.
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Propagate Potentials E ⊢ π ; Π

E ⊢ β ; ∅

(∆, _) = E(C) (_,Π) = ∆(f )

E ⊢ C .this . f ; Π

(_,S) = E(C) (_,Π) = S(m)

E ⊢ C .this .m ; Π

E ⊢ C .this . f ; Π Π′ = [C .this 7→ warm[C]]Π

E ⊢ warm[C]. f ; Π′

E ⊢ C .this .m ; Π Π′ = [C .this 7→ warm[C]]Π

E ⊢ warm[C].m ; Π′

Propagate Effects E ⊢ ϕ ; Φ

E ⊢ β . f ! ; ∅

E ⊢ π ; Π

E ⊢ π↑; Π↑

(_,S) = E(C) (Φ, _) = S(m)

E ⊢ C .this .m♢; Φ

E ⊢ C .this .m♢; Φ Φ′ = [C .this 7→ warm[C]]Φ

E ⊢ warm[C].m♢; Φ′

Closure

Φ ⊆ Φ′ ∀ϕ ∈ Φ′.E ⊢ ϕ ; Φ′′ =⇒ Φ′′ ⊆ Φ′

Φc = Φ′

Check E;Ω;C ⊢ Φ

β↑< Φc ∀C .this . f ! ∈ Φc . f ∈ Ω

E;CΩ ⊢ Φ

Fig. 8. Effect Checking

5.5 Effect Checking
The effect checking judgment E;CΩ ⊢ Φ (Figure 8) means that the effects Φ are permitted inside

class C when the fields in Ω are initialized. It first checks that there is no promotion of this in the

closure of the effects, as the underlying object is not transitively initialized, the promotion thus is

illegal. Then it checks that each accessed field is in the set Ω, i.e., only initialized fields are used.

The closure of effects is presented in a declarative style for clarity, but it has a straight-forward

algorithmic interpretation: it just propagates the effects recursively until a fixed-point is reached.

The fixed-point always exists as the domain of effects and potentials is finite for any given program.

The main step in fixed-point computation is the propagation of effects and potentials. In effect

propagation E ⊢ ϕ ; Φ, field access β . f ! is an atomic effect, thus it propagates to the empty set.

For a promotion effect π ↑, we first propagate the potential π to a set of potentials Π, and then

promote each potential in Π. For a method call effect C .this .m♢, it looks up the effects associated

with the method from the effect table.
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In potential propagation E ⊢ π ; Π, root potentials like C .this propagate to the empty set, as

they do not contain proxy aliasing information in the effect table. For a field potential likeC .this . f ,
it just looks up the potentials associated with the field f from the effect table. For a method potential

C .this .m, it looks up the potentials associated with the methodm from the effect table.

The soundness theorem says that a well-typed program does not get stuck at runtime.

Theorem 5.1 (Soundness). If ⊢ P, then ∀k . JPK (k) , Error

The meta-theory takes the approach of step-indexed definitional interpreters [Amin and Rompf

2017]. Initialization safety is implied by soundness, as initialization errors will cause the program

to fail at runtime. We refer the reader to the technical report for more details about the meta-theory

[Liu et al. 2020].

6 IMPLEMENTATION
Based on the type-and-effect inference system, we implement an initialization system for Scala.

The implementation is already integrated in the Scala 3 compiler [Odersky et al. 2013] and available

to Scala programmers via the compiler option -Ycheck-init.

The implementation supports inner classes, first-class functions, traits and properties. Instantia-

tion of inner classes is supported without any annotations, as the following example shows:

1 class Trees {

2 private var counter = 0

3 class ValDef { counter += 1 } // ok, counter is initialized

4 class EmptyValDef extends ValDef

5 val theEmptyValDef = new EmptyValDef

6 }

To make the example above work, a warm potential in the system takes the formwarm(C, π ),
where C is the concrete class of the object, π is the potential for the immediate outer of C . The
current version of the system only allows creating cyclic data structures via inner classes, passing

this as arguments to new-expressions is disallowed. Supporting the usage requires the introduction

of an annotation to the language thus involves a language improvement process, which we want

to avoid in the initial version. We plan to support this in the next version following the solution

outlined in the theory (Section 5).

To support first-class functions, we introduce the potential Fun(Φ,Π), where Φ is the set of

effects to be triggered when the function is called, while Π is the set of potentials for the result of

the function call. For example, it enables the following code, which is rejected in Swift:

1 class Rec {

2 val even = (n: Int) => n == 0 || odd(n - 1)

3 val odd = (n: Int) => n == 1 || even(n - 1)

4 val flag: Boolean = odd(6)

5 }

In functional programming, the recursive binding construct letrec may introduce similar initial-

ization patterns as the code above. With the latest checker [Reynaud et al. 2018], OCaml still does

not support the code below in the construct let rec:

1 let rec even n = if n = 0 then true else odd (x - 1)

2 and odd n = if n = 0 then false else even (x - 1)

3 and flag = odd 3

Naive extension of the type-and-effect system can easily lead to non-termination of effect

checking in practice. This can be demonstrated by the following example:

, Vol. 1, No. 1, Article . Publication date: September 2020.



1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 F. Liu, O. Lhoták, A. Biboudis, P. Giarrusso, M. Odersky

Project KLOC W/K W X1 X2 X3 X4 A B C D E F G H

dotty 106.0 0.73 77 742 447 146 350 7 16 2 32 0 3 4 13

intent 1.8 39.53 71 10 290 0 1 0 0 0 71 0 0 0 0

algebra 1.3 4.70 6 1 6 0 0 0 0 0 0 0 0 6 0

stdLib213 43.6 0.62 27 231 104 8 99 14 0 4 2 0 1 6 0

scalacheck 5.5 1.08 6 39 70 6 83 0 0 0 6 0 0 0 0

scalatest 378.9 0.39 149 1037 718 18 664 0 0 8 114 0 8 19 0

scalaXml 6.8 0.15 1 36 13 0 0 0 0 0 0 0 0 1 0

scopt 0.3 0.00 0 6 4 0 0 0 0 0 0 0 0 0 0

scalap 2.2 5.43 12 62 57 2 108 0 0 0 7 5 0 0 0

sqants 14.1 0.00 0 9 0 0 0 0 0 0 0 0 0 0 0

betterfiles 2.8 0.00 0 17 1 0 0 0 0 0 0 0 0 0 0

ScalaPB 16.2 0.31 5 28 10 0 6 4 0 0 1 0 0 0 0

shapeless 2.5 0.79 2 5 0 0 0 0 0 0 0 2 0 0 0

effpi 5.7 0.53 3 15 5 0 12 0 0 0 3 0 0 0 0

sconfig 21.8 0.60 13 70 43 0 8 13 2 2 0 0 1 6 2

munit 2.7 1.13 3 32 73 1 13 0 0 0 2 0 0 0 1

SUM 612.1 0.61 375 2340 1841 181 1344 38 18 16 238 7 13 42 16

Fig. 9. Experiment result. The column W/K is the number of warnings per KLOC, and the column W is the
number of warnings issued for the corresponding project. Other columns are explained in the text.

1 class B {

2 class C extends B

3 val c: C = new C

4 }

The code above involves an infinite sequence of constructor call effects of the form πi .init(C),
where π0 = warm(C, this) and πi = warm(C, πi−1). We have to resort to a standard technique in

abstract interpretation, widening [Cousot and Cousot 1991]. In the example above, we can stop the

infinite sequence by widening πi towarm(C, cold).
One advantage of the type-and-effect system is that it integrates well with the compiler without

changing the core type system. In contrast, integrating a type-based system in the compiler poses

an engineering challenge, as the following example demonstrates:

1 class Knot {

2 val self: Knot @cold = this

3 }

In the code above, the type of the field self depends on when we ask for its type. If it is queried

during the initialization of the object, then it has the type Knot @cold. Otherwise, it has the type

Knot. We do not see a principled way to implement the type-based solution in the Scala 3 compiler.

7 EVALUATION
We evaluate the implementation on a significant number of real-world projects, with zero changes

to the source code. The experiment results are shown in Figure 9. The first three columns show the

size of the projects and warnings reported for each project:

• KLOC - the number of lines of code (KLOC) in the project checked by the system

• W/K - the number of warnings issued by the system per KLOC

• W - the number of warnings issued by the system
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We can see that for over 0.6 million lines of code, the system reports 375 warnings in total,

the average is 0.61 warnings per KLOC. We can better interpret the data in conjunction with the

following columns:

• X1 - the number of field accesses on this during initialization

• X2 - the number of method calls on this during initialization

• X3 - the number of field accesses on warm objects during initialization

• X4 - the number of method calls on warm objects during initialization

The data for the columns above are censused by the initialization checker, one per source location.

Without type-and-effect inference, the system would have to issue one warning for each method

call on this and warm objects
2
, i.e., the counts in columns X1-X4 would all become warnings. This

contributes more than 5700 warnings, a 15-fold increase in the number of warnings.

We manually analyzed all the warnings, and classified them into 8 categories:

• A - Use this as constructor arguments, e.g. new C(this)

• B - Use this as method arguments, e.g. call(this)

• C - Use inner class instance as constructor arguments, e.g. new C(innerObj)

• D - Use inner class instance as method arguments, e.g. call(innerObj)

• E - Use uninitialized fields as by-name arguments

• F - Access non-initialized fields

• G - Call external Java or Scala 2 methods

• H - others

The warnings in category A and C are related to the creation of cyclic data structures. From

Section 5, we know such code patterns can be supported by declaring a class parameter to be cold.
The current implementation does not support any annotations yet, we plan to introduce explicit

annotations in the next version of the system.

Most of the warnings lie in the category D, which refer to cases like the following:

1 object Foo {

2 case class Student(name: String, age: Int)

3 call(Student("Jack", 30) // should be OK, currently a warning

4 }

For the code above, our system currently issues a warning, as it only knows that the object

created by Student("Jack", 20) is warm, while method arguments are required to be hot. Checking

whether an inner class instance may be safely promoted to hot or not can be expensive if the inner

class contains many fields and methods. However, it suggests that the system could be improved

for common use cases that only involve small classes, such as the example above.

The category E refers to cases like the following, which is not supported currently:

1 def foo(x: => Int) = new A(x)

2 class A(init: => Int)

3 class Foo {

4 val a: A = foo(b) // category E

5 val b: Int = 100

6 }

As an over-approximation, we expect the warnings in category F are all false positives. However,

to our delight, the system actually finds 8 true positives in ScalaTest, and one true positive in the

Scala standard library. It also discovers two bugs in the Scala 3 compiler. We reported the bugs and

they are already fixed.

2
If we forget that non-private field accesses are also method calls in Scala.
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The category G involves method calls on this in the constructor, but the target method is

compiled by Java or the Scala 2 compiler. The category H invovles code that performs pattern

matching on this, or calling methods on cold values. We discuss more about the experiment results

in the appendix.

8 RELATEDWORK
Our work takes inspiration from several milestone papers on the problem of initialization.

Fähndrich and Leino [2003] introduce raw types like T raw(S )
— a value of such a type is possibly

under initialization, and all fields up to the superclass S are initialized. Class fields may not hold

raw values, thus it does not support creating cyclic data structures. To overcome the limitation,

they introduce delayed types [Fähndrich and Xia 2007]. The system ensures that the initialization

of objects forms stacked time regions.

Qi and Myers [2009] introduce a flow-sensitive type-and-effect system for initialization based

on masked types. The system is expressive, however, it leaves open the problem of typestate

polymorphism and type-and-effect inference. Our work can be seen as an attempt to address the

problems.

Summers and Müller [2011] show that initialization of cyclic data structures can be supported

in a light-weight, flow-insensitive type system. The system cleverly uses subtyping to achieve

typestate polymorphism. However, it leaves open the design of a dataflow analysis that enables the

usage of already initialized fields. Our work effectively addresses the problem.

There is another main difference: our system favors perfect monotonicity, while the freedom
model favors strong monotonicity. There are design trade-offs in both approaches. In our case,

perfect monotonicity enables us to remove the abstraction unclassified and it is easy to safely use

already initialized fields in the constructor. In contrast, the freedom model enables assigning a free

object to the field of another free object anywhere, while in our system it is only possible in the

constructor at initialization points. More concretely, the following example is supported by the

freedom model, but not by our system:

1 class A {

2 m(this)

3 var b: b = new B(this)

4 def m(a: A @free): Unit = a.b = new B(a) // !!

5 }

6 class B(a: A @free)

The assignment a.b = new B(a) in the method m will be rejected by our system, as new B(a) is a

value under initialization (it holds a reference to a free value a). In our system, it is only possible

to assign hot values to fields of cold objects, while in the freedom model it is possible to assign

non-committed values to fields of non-committed values. Our design is based on our experience

with Scala projects, where an object rarely escapes from its constructor and has its fields initialized

elsewhere. Summers and Müller [2011] have similar observations (Section 8.1).

The Checker Framework enables many useful checkers for various properties of Java programs

[Ernst and Ali 2010]. In particular, it implements and extends the freedom model. One major

extension is the introduction of the annotation UnknownInitialization, which is in the same spirit

as warm. A difference is that warm in our type-based model enjoys transitivity — a warm object

may in turn contain warm fields. The initialization model in Checker Framework does not enjoy

this kind of transitivity enabled by warm, despite the introduction of 4 annotations: Initialized,

UnderInitialization, UnknownInitialization and NotOnlyInitialized.
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The initialization in X10 [Zibin et al. 2012] employs an inter-procedural analysis to ensure safe

initialization, which removes the annotation burden required when calling final or private methods

on this. However, the analysis algorithm is not presented in the paper. To call virtual methods on

this, annotations are required on method definitions.

The Billion-Dollar Fix [Servetto et al. 2013] introduces a new linguistic construct placeholders and
placeholder types to support initialization of circular data structures. The work is orthogonal to the

current work, in that we are constrained from introducing new language constructs and semantics.
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A DISCOVERED BUGS
As an over-approximation, we expect the warnings are all false positives. However, to our delight,

our initialization system finds real bugs in high-quality projects, such as the Scala 3 compiler, Scala

standard library and ScalaTest.

In the ScalaTest project, the checker reports 8 true positives
3
. The errors have similar forms, the

following code demonstrates two of them:

1 sealed abstract class Fact {

2 val isVacuousYes: Boolean

3 val isYes: Boolean

4

5 final def stringPrefix: String =

6 if (isYes) {

7 if (isVacuousYes) "VacuousYes" else "Yes"

8 }

9 else "No"

10 }

11

12 class Binary_&(left: Fact, right: Fact) extends Fact {

13 val rawFactMessage: String = {

14 // ...

15 factDiagram(0)

16 }

17

18 val isYes: Boolean = left.isYes && right.isYes

19 val isVacuousYes: Boolean = isYes && (left.isVacuousYes || right.isVacuousYes)

20

21 override def factDiagram(level: Int): String = {

22 stringPrefix

23 }

24 }

The problem with the code above is that when we create an instance of Binary_&, it will call

factDiagram, which in turn calls stringPrefix, where the properties isYes and isVacuousYes are

used before they are initialized in the class Binary_&. Such errors never cause null-pointer exceptions,

when they slip into a large code base, it will take significant efforts to debug.

The following code demonstrates a bug in the Scala 3 compiler
4
:

1 class Scanner(...) {

2 val indentSyntax = ...

3 // ...

4 nextToken() // the call indirectly reach the property indentSyntax

5 }

6

7 class LookaheadScanner(indent: Boolean = false) extends Scanner(...) {

8 override val indentSyntax = indent

9 // ...

3
https://github.com/scalatest/scalatest/issues/1481

4
https://github.com/lampepfl/dotty/issues/7660
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10 }

Our checker reports the following error:

1 [warn] -- Warning: dotty/compiler/src/dotty/tools/dotc/parsing/Scanners.scala:885:34

2 [warn] 885 | override val indentSyntax = indent

3 [warn] | ^

4 [warn] |Access non-initialized field indentSyntax. Calling trace:

5 [warn] | -> class LookaheadScanner(...) { [Scanners.scala:884 ]

6 [warn] | -> nextToken() [Scanners.scala:1323 ]

7 [warn] | -> if (isAfterLineEnd) handleNewLine(lastToken) [Scanners.scala:311 ]

8 [warn] | -> indentIsSignificant = indentSyntax [ Scanners.scala:484]

The problem is that when we create an instance of LookaheadScanner, the call nextToken() in the

super class Scanner will reach the overridden property indentSyntax, which is not yet initialized in

the sub-class.

The other bug found in the Scala 3 compiler is related to a subtle optimization of lazy value defi-

nitions in traits
5
, which is not in accord with the language specification. Without the initialization

checker, the bug would be latent longer in the compiler.

The bug in the Scala standard library
6
can be illustrated with the code below:

1 object Promise {

2 val Noop = new Transformation[Nothing, Nothing](...)

3

4 class Transformation[-F, T] (...) extends DefaultPromise[T]() with ... {

5 def this(...) = this(...)

6 }

7

8 class DefaultPromise[T](initial: AnyRef) extends ... {

9 def this() = this(Noop: AnyRef)

10 }

11 }

The problem is that when we initialize the field Noop, it creates an instance of Transformation,

which calls the super constructor in DefaultPromise, where Noop is accessed before initialization.

B CHALLENGING EXAMPLES
One design goal of the Scala 3 initialization system is to keep the core type system of the compiler

intact. Consequently, we require that all arguments to methods are fully initialized, which is in line

with good initialization practices. Otherwise, new types such as T@cold must be introduced in the

language to handle safe method overriding.

Even if we manage to change the type system, it does not automatically solve the problem. This

is demonstrated by the following example:

1 class Knot {

2 val self: Knot @cold = this

3 }

In the code above, the type of the field self depends on when we perform the check. If it is

checked during the initialization of the object, then it has the type Knot @cold. Otherwise, it has

the type Knot. How to integrate this kind of types in the compiler is an engineering challenge.

5
https://github.com/lampepfl/dotty/issues/7434

6
https://github.com/scala/bug/issues/11979
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The current implementation is based on a type-and-effect system. It elegantly lays on top of the

type system, thus avoids the problems that a type-based solution would cause.

However, during the experiment we do encounter some reasonable code patterns that current

implementation does not support. The following code about LazyList construction is one such

example:

1 trait LazyList[A] { ... }

2 implicit class Helper[A](l: => LazyList[A]) {

3 def #:: [B >: A](elem: => B): LazyList[B] = ...

4 }

5 class Test {

6 val a: LazyList[Int] = 5 #:: b

7 val b: LazyList[Int] = 10 #:: a

8 }

In the code above, inside the class Test, we use b (before it is initialized) as a by-name argument

to initialize the field a. Similar code patterns also appear in by-name implicits
7
.

To support the example above, the system has to support passing objects under initialization

as arguments to methods and constructors. There is a chance to support the usage above without

complicating the type system if we restrict that the methods are effectively final. The restriction
removes the burden of overriding checks. Class constructors are inherently final, thus is not a

problem.

However, the restriction cannot handle some use cases. The following code is a common pattern

in the Scala 3 compiler to create cyclic type structures:

1 class RecType(parentExp: RecType => Type) {

2 val parent = parentExp(this)

3 }

A solution based on types would change the type of parentExp to something like RecType @cold

=>Type @cold. The solution requires changes to the core type system, thus is not feasible as we

discussed above.

We can make the field parent lazy to to silence the warning about the escape of this. However,

as compilers are performance-sensitive, we cannot do that due to the potential performance penalty

with lazy fields. Currently, we have to resort to @unchecked for such cases.

Making a field lazy and adding the annotation @unchecked are currently the two ways to suppress

warnings for complex initialization code. The lazy trick is a panacea with the slight danger of

turning actual initialization errors into non-termination. On the other hand, drawing the line of

when @unchecked should be used is a difficult language design decision. We expect the insights

developed in the meta-theory about local reasoning will contribute to the decision process.

7
https://docs.scala-lang.org/sips/byname-implicits.html
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C SEMANTICS OF THE EXPERIMENTAL LANGUAGE

Program evaluation
r
(C,D)

z
= (l,σ )

r
(C,D)

z
= JeK ({ l 7→ (D, ∅) }, ∅, l)

where Ξ = C → C and l is a fresh location

and Ξ(D) = class D { def main : T = e }

Expression evaluation JeK (σ , ρ,ψ ) = (l,σ ′)

JxK (σ , ρ,ψ ) = (ρ(x),σ )
JthisK (σ , ρ,ψ ) = (ψ ,σ )
Je . f K (σ , ρ,ψ ) = (ω(f ),σ1) where (l0,σ1) = JeK (σ , ρ,ψ )

and (_,ω) = σ1(l0)
Je0.m(e)K (σ , ρ,ψ ) = Je1K (σ2, ρ1, l0)

where (l0,σ1) = Je0K (σ , ρ,ψ )
and (C, _) = σ1(l0)

and lookup(C,m) = def m(x :T ) : T = e1
and (l,σ2) = JeK (σ1, ρ,ψ )
and ρ1 = x 7→ l

Jnew C(e)K (σ , ρ,ψ ) = (l,σ3)

where (l,σ1) = JeK (σ , ρ,ψ )
and σ2 = [l 7→ (C, ∅)]σ1 where l is fresh

and σ3 = init(l, l,C,σ2)
Je1. f = e2; eK (σ , ρ,ψ ) = JeK (σ3, ρ,ψ )

where (l1,σ1) = Je1K (σ , ρ,ψ )
and (l2,σ2) = Je2K (σ1, ρ,ψ )
and σ3 = assiдn(l1, f , l2,σ2)

Initialization
init(ψ , l,C,σ ) =

r
F

z
(σ1,ψ )

where lookup(C) = class C( ˆf :T ) { F M }

and σ1 = assiдn(ψ , ˆf , l,σ )
Jvar f : D = eK (σ ,ψ ) = assiдn(ψ , f , l1,σ1) where (l1,σ1) = JeK (σ , ∅,ψ )

Helpers
JeK (σ , ρ,ψ ) = f old e (Nil,σ ) f where

f (ls,σ1) e = let (l,σ2) = JeK (σ1, ρ,ψ ) in (l :: ls,σ2)r
F

z
(σ ,ψ ) = f old F σ f where f σ1 F = JF K (σ1,ψ )

assiдn(ψ , f , l,σ ) = [ψ 7→ (C, [f 7→ l]ω)]σ where (C,ω) = σ (ψ )

assiдn(ψ , f , l,σ ) = [ψ 7→ (C, [f 7→ l]ω)]σ where (C,ω) = σ (ψ )

Fig. 10. Big-step semantics, defined as a definitional interpreter.
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