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The most important property for accurate mechanical time bases is
isochronism: the independence of period from oscillation ampli-
tude. This paper develops a new concept in isochronism adjustment
for flexure-based watch oscillators. Flexure pivot oscillators, which
would advantageously replace the traditional balance wheel-spiral
spring oscillator used in mechanical watches due to their signifi-
cantly lower friction, exhibit nonlinear elastic properties that intro-
duce an isochronism defect. Rather than minimizing this defect, we
are interested in controlling it to compensate for external defects
such as the one introduced by escapements. We show that this
can be done by deriving a formula that expresses the change of fre-
quency of the oscillator with amplitude, i.e., isochronism defect,
caused by elastic nonlinearity. To adjust the isochronism, we
present a new method that takes advantage of the second-order par-
asitic motion of flexures and embody it in a new architecture we call
the co-RCC flexure pivot oscillator. In this realization, the isochro-
nism defect of the oscillator is controlled by adjusting the stiffness
of parallel flexures before fabrication through their length Lp,
which has no effect on any other crucial property, including
nominal frequency. We show that this method is also compatible
with post-fabrication tuning by laser ablation. The advantage of
our design is that isochronism tuning is an intrinsic part of the
oscillator, whereas previous isochronism correctors were mecha-
nisms added to the oscillator. The results of our previous research
are also implemented in this mechanism to achieve gravity insensi-
tivity, which is an essential property for mechanical watch time

bases. We derive analytical models for the isochronism and
gravity sensitivity of the oscillator and validate them by finite
element simulation. We give an example of dimensioning this oscil-
lator to reach typical practical watch specifications and show that
we can tune the isochronism defect with a resolution of 1 s/day
within an operating range of 10% of amplitude. We present a
mock-up of the oscillator serving as a preliminary proof-of-
concept. [DOI: 10.1115/1.4045388]
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1 Introduction
1.1 Limitations of Traditional Mechanical Watches. The

time base used in classical mechanical watches is a harmonic oscil-
lator consisting of a spiral spring attached to a balance wheel having
a rigid pivot rotating on jeweled bearings. It has essentially the same
architecture as when it was introduced by Huygens in 1675 [1], see
Fig. 1. Subsequently, significant improvements were achieved in
chronometric accuracy but seemed to have reached a plateau. The
general consensus in horology is that the quality factor of the oscil-
lator, a dimensionless number that characterizes the damping of an
oscillator, needs to be improved for the accuracy to increase [2–4].
This phenomenon, first noted by Bateman [2], is not totally under-
stood but is backed up by the apparent correlation between quality
factor and timekeeping accuracy highlighted in Refs. [2–4], see
Fig. 2. Despite concerted efforts by the watchmaking industry,
the quality factor of classical balance spring oscillators barely sur-
passes 200, the friction in the bearing being the most important lim-
itation to its quality factor [5]. According to Bateman’s observation,
a significant improvement in accuracy, i.e., better than 1 s/day error,
would involve increasing the quality factor by an order of magni-
tude, as illustrated in Fig. 2 and as discussed in Refs. [2–4].

1.2 The Advent of Flexure-Based Watch Oscillators. A
defining moment in watchmaking was the recent adoption by this
very traditional industry of high-technologymaterials and techniques
[6]—there are now mechanical watches having silicon components
made using deep reactive ion etching (DRIE), for example,
Ref. [7]. This acceptance paved the way for flexure-based watch
oscillators for two reasons: replacing bearings by flexure pivots
increases quality factor [5] and theminimal internal friction ofmono-
crystalline silicon, by definition, increases quality factor, typically by
an order of magnitude as compared with the classical metals used in
watchmaking. For the reasons outlined in Sec. 1.1, flexure-based
oscillators manufactured in silicon appear to be the breakthrough
needed to achieve a new level in mechanical watch accuracy.
The watch industry has therefore taken on this challenge, and a

number of prototypes and mechanical watches featuring flexure-
based watch oscillators have recently been presented. The first of

Fig. 1 Balance wheel-spiral spring oscillator drawn by Huygens
in Ref. [1]
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these was the Genequand System discussed in Sec. 2.2 and pre-
sented in 2014 [8]. This mechanism already validated some expec-
tations of flexure-based oscillators as it increased the quality factor
and watch autonomy by an order of magnitude. More recent proto-
types of flexure pivot oscillator were released in watches in 2017
[9,10] and 2019 [11,12]. These systems will however not be com-
mented due to the lack of available information.

1.3 Advantages of Flexures. Apart from an increase in quality
factor, the introduction of flexures brings additional advantages
such as suppressing the need for lubrication, a traditional concern
in watchmaking,2 and simplifying assembly through monolithic
fabrication [13,14].
Besides their bearing function, flexures have an intrinsic elastic

restoring torque allowing them to conveniently replace the spring
of the traditional oscillator. However, this restoring torque has non-
linear properties that introduce an isochronism defect, see Sec. 1.4,
to which we present a solution.

1.4 Isochronism. Accurate timekeeping is essentially equiva-
lent to having an oscillator with a period that is as regular as possi-
ble. Among the factors affecting the period are amplitude,
orientation of gravity, and temperature. The most important of
these factors is amplitude, and the independence of period from
amplitude is called isochronism. This key element of precise time-
keeping was first identified by Galileo who remarked that the pen-
dulum would be a good time base since its period was independent
of the oscillation amplitude. However, Mersenne and Descartes
noted in 1636 that this was not accurate as they observed that the
period of the pendulum slightly increases with amplitude [15].
Huygens then analyzed the problem mathematically and devised
in 1656 a theoretically isochronous pendulum by replacing the
rod with a flexible cord which unwinds off a cycloid [16], as
depicted in Fig. 3. More details are given in Sec. 2.
In the case of a rotational oscillator consisting of a spring coupled

to an inertial mass (such as the ones used in classical mechanical
watches), the condition for isochronism is that the spring restoring
torque must follow Hooke’s law, i.e., be a linear function of the
angular displacement. This condition complicates the use of flex-
ures as oscillator springs since they exhibit nonlinear elastic proper-
ties. Different solutions already exist in order to achieve
isochronism with flexure pivots but they all suffer from some

limitation, see Sec. 2. There also exist other designs of flexure
pivot oscillators which do not discuss isochronism [17].
For the reasons outlined in Secs. 1.1–1.4, minimizing the iso-

chronism defect of flexure-based mechanical watch oscillators is
one of the most important issues to be addressed in order to signifi-
cantly improve the chronometric accuracy of mechanical watches.

1.5 Gravity Sensitivity. The second crucial property for
mechanical watch time bases is gravity insensitivity, which is the
independence of oscillator frequency from its orientation with
respect to gravity. In the case of flexure pivots, changes in the
loading of the flexures can cause their stiffness to vary and conse-
quently alter the frequency of the time base. Following our previous
research in Ref. [18], we consider a flexure to be gravity-insensitive
when there is no first-order effect of the load on its stiffness (assum-
ing small loads).

1.6 Statement of Results. We design a new flexure pivot
architecture that takes advantage of the parasitic shift of flexures,
which is of the same order as the isochronism defect, to tune the iso-
chronism of the oscillator without altering any other property crucial
to its function such as nominal stiffness, operating stroke, gravity
sensitivity, and center of rotation shift. This idea is new and is the
principal contribution of the paper. The new architecture is called
co-RCC flexure pivot oscillator and is depicted in Figs. 4 and 5.
We derive a formula that expresses the frequency of an oscillator

in terms of the amplitude, thus characterizing the isochronism defect.
We show that the variation from the nominal frequency with

Fig. 2 Correlation between accuracy and quality factor [4]

Fig. 3 Huygens’ isochronism corrector for the pendulum using
cycloidal cheeks

Fig. 4 Pseudo-rigid-body model of the co-RCC flexure pivot
oscillator

2Watchmaking lore attributes a famous but most likely apocryphal quote to
Abraham-Louis Breguet (1747–1823), one of the greatest watchmakers in history.
When King Louis XVI asked him to make the perfect watch, he replied: “Give me
the perfect oil and I will make you a perfect watch.”
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amplitude depends on the restoring torque nonlinearity k2 of the pivot
and we focus our research on the study of this parameter, see Eq. (5).
Rather thanminimizing the isochronism defect byminimizing k2, we
are interested in controlling it to compensate for external defects such
as the one introduced by escapements, see Sec. 2.2.
In the co-RCC design, the parasitic shift of the RCC flexures

(labeled Δv1 and Δv2 in Fig. 4) deforms the neighboring parallel
flexures, resulting in a contribution of the third-order of their stiff-
ness to the restoring torque of the system. The nonlinearity k2 (and
thus the isochronism defect) of the system can thus be tuned,
without affecting any other crucial property, by changing the stiff-
ness of the parallel flexures, in particular by changing their length
Lp, see Fig. 5(a). As opposed to the goal of Huygens’ cycloidal
cheeks that theoretically eliminate isochronism defect, our method
is similar to modifying Hugyens’ cycloidal cheeks to obtain any
specific isochronism defect in a range around isochronism, i.e.,
around zero defect.
We call our method intrinsic isochronism tuning in opposition to

the isochronism correctors previously realized through external
mechanisms, see Sec. 2. We believe that our method is more
adapted to modern manufacturing techniques and compact
architectures.
We demonstrate in Sec. 6 that we are able to dimension a physical

embodiment of the co-RCC oscillator that satisfies practical
mechanical watch specifications, in particular a planar architecture
that is compatible with current microfabrication processes and an
isochronism tuning with a resolution of 1 s/day for a 10% amplitude
variation from 15 deg nominal amplitude. We show that we can
compensate for a realistic range of isochronism defects from
−200 s/day to 400 s/day, see Fig. 6, and that we can achieve the
specified isochronism defect tuning of order 1 s/day by varying
the parallel flexure length Lp on the order 2.5 μm, see Sec. 6.2.1.
In the co-RCC design, this tuning is implemented before manufac-
turing and is well within the range of current microfabrication tech-
niques such as DRIE. Moreover, methods exist to adjust defects
after manufacturing, in particular removing microns of matter by
laser ablation in order to lengthen Lp, see Fig. 5(a). This technique

is being used in the completely automated adjustment of the daily
rate of mechanical watches [19].
Figure 6 displays the daily rate, that is, the gain or loss of

the timekeeper in seconds per day with respect to a reference fre-
quency, see Eq. (7), of a co-RCC oscillator for different values of
the parallel flexure length Lp, as quantified by the dimensionless
parameter λ= Lp/LR, see Fig. 5(a). The parameter α, which
describes the angle between the RCC flexures, see Sec. 4.2, also
affects the isochronism but is not used for fine-tuning as it also
affects the gravity sensitivity of the oscillator. Details are provided
in Secs. 4 and 6.2.

(a) (b)

Lp

LR

Fig. 5 Mock-up of the co-RCC flexure pivot oscillator (a) at rest position and (b) rotated by 26 deg, manufactured by
laser cutting in polyoxymethylene to demonstrate the qualitative behavior of the pivot. Thickness: 5 mm, outer diameter:
150 mm, admissible angular stroke: ±26 deg. The length Lp is used to tune isochronism. To make our results indepen-
dent of scale, we quantify this using the dimensionless parameter λ=Lp/LR (with LR constant). In the rotated position (b),
an increased gap between the inertial mass and the intermediate bodies and a deformation of the parallel flexures can be
observed as a result of the parasitic shift of the RCC pivots (Δv1 and Δv2 in Fig. 4).

Fig. 6 Daily rate ρ versus λ of a co-RCC at Θ=16.5 deg with
respect to the reference amplitude Θ1=15 deg. The dimensions
of the oscillator are given in Sec. 6.2. The results obtained with
the analytical model with α=25, 34.7, and 43 deg are compared
with those obtained by the FEM simulation.
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The architecture is also gravity-insensitive, thus achieving two of
the conditions for accurate timekeeping. The design principle used
to achieve gravity insensitivity is similar to the co-differential
concept that we introduced in Ref. [18]. The two concepts are com-
pared in Sec. 3.4.1.
The analytical models derived for the isochronism and gravity

sensitivity of the co-RCC, respectively, in Secs. 4 and 5, are vali-
dated by numerical simulation in Sec. 6.3.
In order to be used in a watch, this oscillator needs an escape-

ment. However, this topic is not considered in this article except
for specifying a nominal amplitude of operation of 15 deg, under
the assumption that this amplitude is sufficient for an escapement
to work, see Sec. 6.1. The third condition for accurate timekeeping,
insensitivity to temperature, is beyond the scope of this article. We
assume that it can be achieved through already established
temperature-invariant materials, such as the ones described in
Refs. [7,20,21] or temperature compensation techniques.

2 State of the Art
2.1 Isochronism Correction for the Pendulum. In 1656,

Huygens confirmed mathematically Mersenne and Descartes’
observation that the pendulum was not isochronous and devised
an isochronous pendulum in three stages [22]. First, he sought the
curve from A to B shown in Fig. 7 down which an object will
slide from rest without friction under gravity to point B in the
same time, irrespective of its starting point between A and B. He
showed that this so-called tautochrone curve is a cycloid.3

Second, he introduced the notion of involute, the curve traced by
the end of a string wrapping around another curve (the evolute).
Third, he showed that the involute of a cycloid is another cycloid.
The result is a pendulum consisting of a suspension thread that
wraps around cycloidal cheeks and a bob that consequently
follows the tautochrone curve, see Fig. 8. This idea was imple-
mented in a clock in 1657, see Fig. 9. Note that another way to
look at the effect of the cycloidal cheeks is that they change the
effective length of the pendulum as it swings, thus altering its fre-
quency. This solution is theoretically correct but does not appear
to work well in practice, as explained in Refs. [24,25]. It was
quickly abandoned in favor of rigid rods with small amplitudes. It
should be noted that the small-amplitude solution was not consid-
ered by Huygens since he was interested in marine chronometers,
which necessitated large amplitudes. Subsequently, there was
much research on pendulum suspensions and isochronism
[3,25,26]. We are currently studying the possibility of applying
the results of this paper to this subject. 2.2 Flexure Pivot Oscillator Isochronism Correction. The

first flexure pivot oscillator for a mechanical watch was introduced
in the 2014 Genequand system [8]. The basis of the Genequand
system was a flexure-based escapement, similar to the grasshopper

Fig. 7 Ball sliding along a cycloid

Fig. 8 Huygens’ drawing of the isochronous pendulum [27, note
to letter from Ch. Huygens to H. Oldenburg, June 24, 1673]

Fig. 9 Huygens’ clock design with cycloidal cheeks shown in
Fig. II [16]

341 years later, Johann Bernoulli proved that this was also the brachistochrone, i.e.,
the curve of fastest descent under gravity between two points [23].
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escapement invented by Harrison around 1722 [28]. The crossed
flexure pivot, introduced by Wittrick [29] and depicted in Fig. 10,
was added at a later stage in order to implement the system at the
watch scale. The oscillator is gravity-insensitive thanks to a partic-
ular value of the crossing point of its flexures [30,31] but has an iso-
chronism defect. A system was developed by Henein and Schwab
[32] to address this defect as well as the one caused by the escape-
ment. It is indeed known that escapements introduce isochronism
defects and this property has already been used in clocks to compen-
sate for the intrinsic defect of pendulums [24,33]. This is also why,
in this article, we are interested in controlling the defect of the oscil-
lator rather than minimizing it.

2.2.1 The Genequand System Isochronism Corrector. The iso-
chronism corrector developed for the Genequand system [32] uses
flexible blades that come in contact with the escapement anchor for
part of the stroke, introducing a discrete change in stiffness. Since
the anchor is always in contact with the oscillator, the change
directly affects the oscillator. Figure 11 shows the contact
between pin 9 of the anchor and flexure 14. Due to the mechanical
stop 22, the contact happens only when the pin is to the right of axis
A. The discrete stiffness variation always happens at the same
angular position, such that the ratio of time that the oscillator
spends with one stiffness to the time spent with the other stiffness
depends on the amplitude of oscillation. This introduces a variation
of frequency with an amplitude that can be used to correct the iso-
chronism. The mechanism relies on three setting inputs and is
complex to tune. It also introduces shocks at the contact point
14a that can have undesired consequences.

2.2.2 Isochronous Crossed Flexure Pivots. We explained in
Secs. 1.4 and 1.5 that the crucial properties for a mechanical
watch timebase are isochronism and gravity insensitivity. In
Ref. [18], we presented a pivot capable of reaching both goals
since the crossing point of its flexures can be used to set the isochro-
nism defect and its architecture is intrinsically gravity-insensitive.
The crossed flexure pivot of the Genequand system used a

special value of the crossing point of its flexures to reach gravity
insensitivity and this parameter could thus not be used to set its iso-
chronism defect. Di Domenico et al. [34] solved this issue by using
the angle α between the flexures in addition to their crossing point to
set the isochronism defect while minimizing gravity sensitivity, as
depicted in Fig. 12(a).

These methods do not qualify as isochronism tuning according
to our definition in Sec. 1.6: changing the crossing point or the
angle between the flexure also affects the gravity sensitivity
and center shift of the pivot [35,36]. The architecture illustrated
in Fig. 12(b), where two crossed-flexure pivots are mounted
head-to-tail [37], seems to eliminate the gravity-sensitivity and
center shift issues through its symmetry, allowing for isochronism
tuning using the angle α. It is indeed known that α has no significant
impact on the nominal stiffness and stroke of the oscillator [38].
This architecture however has a redundant degree-of-freedom
(DOF): the intermediate body 20 can rotate without moving the
inertial body 201. Such a redundant DOF can be excited by external
forces and affect the stroke of the pivot or start vibrating [13], thus
disturbing the oscillator.

3 Design and Kinematics of the Co-RCC Flexure Pivot
3.1 The Concept. The design principle behind the co-RCC is

that two remote center of compliance flexure pivots (RCC pivots)
[13] “collaborate” to form a pivot with superior properties: the para-
sitic center shift of the RCCpivots is used to tune the restoring torque
nonlinearity of the co-RCC and the effect of the parasitic shift on the
inertial body is significantly reduced. Additionally, external loads on
the main rigid body are shared between the two RCC pivots in a way
that makes the co-RCC gravity-insensitive. Its architecture is
depicted in Fig. 4, where the flexures are represented by their
pseudo-rigid-body equivalent [14]. The rigid bars with pin joints
and rotational springs at their extremities have equivalent force-
deflection characteristics to the leaf springs used in the physical
embodiment in Fig. 5.
We explain the design of the co-RCC by decomposing it into sub-

elements. We start with the RCC pivot in Sec. 3.2, then add a slider
to it to form the half co-RCC in Sec. 3.3, and finally combine two of
these elements in parallel to form the co-RCC in Sec. 3.4.

3.2 The RCC Flexure Pivot. The RCC pivot, sometimes also
referred to as isosceles-trapezoidal flexural pivot [36], is illustrated
in Fig. 13. It is a particular case of the crossed flexure pivot [29]
where the flexures cross symmetrically outside of their physical
structure. The intersection of the flexures defines (to a first

Fig. 10 Crossed flexure pivot with crossing point minimizing its
gravity sensitivity [31]

Fig. 11 Figure from the Genequand system isochronism correc-
tor patent [32]
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approximation) the axis of rotation of the pivot [39], see axis w in
Fig. 13. This pivot has been chosen due to its advantageous
planar architecture and negative restoring torque nonlinearity that
will be used to tune the isochronism, see Sec. 4.3.
We define a local coordinate system for the RCC pivot whose

origin lies at the intersection of the neutral axes of the flexure
beams as depicted in Fig. 13. Axis v is parallel to the bisector of
the angle formed by the flexures, axis w is perpendicular to the
plane holding the neutral axes, and u is the third orthogonal axis.

3.2.1 Parasitic Center Shift. The center of rotation of the RCC
pivots exhibits a so-called parasitic shift. Zhao and Bi [35] give ana-
lytical expressions for the components of the parasitic shift along
the u and v axes of the RCC local coordinate system, see Fig. 13.
For slender flexures4 and small rotations, the v-component is of

second-order of the rotation angle and the u-component, which is
of third-order, can be neglected.

3.3 The Half Co-RCC. The half co-RCC element depicted in
Fig. 14 is obtained by adding a slider between the RCC and the
main rigid body, where the axis of the slider is parallel to the
v-axis of the RCC. This element has two degrees-of-freedom: one
rotation around center O and one translation along v. As we will
see in Sec. 3.4, the additional DOF allows to tune the isochronism
of the oscillator, to achieve gravity insensitivity and to avoid over-
constraining5 the co-RCC.

3.4 The Co-RCC Flexure Pivot. The co-RCC depicted in
Fig. 15 consists of two half co-RCC arranged in parallel, at a
90 deg angle, with coinciding axes of rotation. The first half
co-RCC consists of the “RCC 1” in series with the “Slider 1” and
the second consists of the “RCC 2” in series with the “Slider 2.”
They share the same main rigid body, and the center of mass of
the system is placed at its center of rotation O. We assume that
the intermediate bodies have negligible mass. The system has one
DOF and no overconstraint in the xy-plane. Note that the
out-of-plane overconstraints can be overlooked assuming that
the mechanism is monolithically fabricated. Taking advantage of
the elasticity of the RCC flexures, if the main rigid body has a
non-zero inertia J, this flexure pivot behaves as a rotational
oscillator.
Through the parallel arrangement of two half co-RCC elements,

the translation of the main rigid body allowed by one-half co-RCC
is blocked by the other one. As a result, when the system rotates, the
parasitic shift of the RCC pivots, which is along the sliding axis of
their respective half co-RCC (see Sec. 3.2.1), does not affect the
main rigid body (as this motion is blocked by the other half
co-RCC). The motion of the main rigid body closely approximates
a rotation about point O, which we define as the rotation of the
co-RCC.
It follows that the parasitic shifts of each RCC pivot results in a

relative linear motion, labeled Δv1 or Δv2 in Fig. 15, between the
intermediate body to which it is attached and the main body. In
the flexure implementation of Fig. 5, the sliders are realized with
parallel flexures which are known to closely approximate a

Fig. 12 Crossed flexure pivot oscillators from (a) Ref. [34] and (b) Ref. [37], whose angle α between the flexures is used to
minimize the isochronism defect

Fig. 13 Remote center of compliance (RCC) flexure pivot in
undeflected position (solid lines) and rotated about the w-axis
(dashed lines)

4We consider a flexure to be slender if, in the uv-plane of Fig. 13, length > 10 ×
thickness. This is the case in our analysis.

5A mechanism is overconstrained when its mobility obtained through Grübler’s
formula [40] is less than its actual DOF. This can lead to important and unpredictable
variations of the stiffness of flexure mechanisms and the stresses in their flexures [13].
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sliding motion6 [13]. The deflection of these flexures caused by the
RCC parasitic shift is of second-order of the rotation angle [35] and
their stiffness, depicted as linear springs in Fig. 15, can be used to
tune the isochronism of the oscillator, see Sec. 4.3.
We manufactured a mock-up to validate qualitatively the kine-

matics of the co-RCC pivot, see Fig. 5. This hardware showed
that the system behaves qualitatively as a pivot (one DOF and a
motion of the main body closely approximating a rotation about
point O) while having a linear relative motion between the interme-
diate bodies and the main body, see Fig. 5(b).
Remark. The design can be generalized by using any type of

crossed flexure pivot, by using rotational joints instead of slider
joints, by changing the order of the joints of the half co-RCC and
by using any type of flexures that have the force-deflection charac-
teristics of the PRBM depicted in Fig. 4.

3.4.1 Gravity Sensitivity and Comparison With the
Co-Differential. An additional advantageous property of the
co-RCC architecture is that it follows the co-differential concept
introduced in Ref. [18] to achieve gravity-insensitivity. In the
co-differential concept, the flexures providing the rotational stiff-
ness of the pivot are always loaded with equal but opposite

forces, which minimizes the influence of an external load, such as
gravity, on the overall stiffness. This effect is obtained by placing
the flexures symmetrically at a 180 deg rotation.
In the co-RCC, the same compensating effect is obtained through

the fact that the sliders do not transmit any load along their axis of
motion (under the assumption that their stiffness is much lower than
that of the “blocked” degrees-of-freedom). Thus, when an external
load acts on the main rigid body, each half co-RCC element is
loaded with the component of that force along its local u-axis and
the RCC flexures are loaded with equal but opposite forces.

4 Analytical Model: Isochronism
In this section, we derive an analytical model for the isochronism

defect of the co-RCC flexure pivot oscillator and show how it can be
tuned by modifying only the non-linearity of the pivot’s restoring
torque. This effect is treated separately from the gravity sensitivity,
itself treated in Sec. 5, by assuming no external load (F= 0).
Remark. The assumption to decouple both effects in the analysis

is reasonable since the terms combining F and θ have order >2, see
Eq. (27). They are thus negligible under our small load and small
displacement assumptions.

4.1 Definition of Isochronism Defect. We first consider the
ideal case of the simple rotational harmonic oscillator satisfying

Jθ̈ + kθ = 0 (1)

where θ= θ(t) is angular displacement, J is the moment of inertia,
and k is the rotational stiffness. This has solution

θ(t) = Θ sin(ω0t +Φ) (2)

where Θ is the amplitude, ω0 =
����
k/J

√
is the angular frequency, and

Φ is a phase depending on initial conditions.
In the ideal case, the angular frequency ω0 is independent of the

amplitude Θ, so there is isochronism. However, this is not true in
practice and this, in fact, is the exact subject of this article. We there-
fore consider the perturbed harmonic oscillator

θ(t) = Θ sin(ωt +Φ) (3)

in which the angular frequencyω=ω(Θ) depends on the amplitudeΘ.
We showed in Ref. [41] that, for a rotational oscillator with cons-

tant inertia J and nonlinear restoring torque, the angular frequency
at small amplitude satisfies

ω(Θ) = ω0 1 +
3μ
8
Θ2

( )
(4)

where μ is the relative nonlinearity of the restoring torque intro-
duced in Ref. [18].
For a pivot whose restoring torque

M = k0 θ + k2 θ
3 +O θ5

( )
(5)

is expressed by a power series having only odd terms (since restor-
ing torque is an odd function of the angle), we call k2 the nonline-
arity of the restoring torque and

μ =
k2
k0

(6)

the relative nonlinearity of the restoring torque. Note that, in this
case, the nominal frequency of the oscillator is ω0 =

�����
k0/J

√
.

Equation (4) gives an explicit expression for the isochronism
defect; the subject of this paper will be the study of its tuning by
modifying only the nonlinearity k2.
In order to apply Eq. (4) to provide numerical isochronism data,

we choose a reference amplitude Θ1 with corresponding frequency

Fig. 14 Design of the half co-RCC

Fig. 15 Design of the co-RCC flexure pivot

6The parallel flexures also exhibit a parasitic motion that is of second-order of the
sliding motion [13]. In the co-RCC geometry, this motion is of fourth-order of the rota-
tion angle and can thus be neglected.
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ω1. One then defines the daily rate [42] by

ρ = 86400
ω − ω1

ω1
(7)

that is, the gain or loss of the timekeeper, in seconds per day, with
respect to the reference frequency. Daily rate gives a precise
measure of the (hopefully small) isochronism defect. Applying
Eq. (4) gives the following explicit formula for the daily rate in
terms of amplitude, the reference amplitude and μ

ρ = 32400μ
Θ2 − Θ2

1

1 + 3μΘ2
1/8

(8)

4.1.1 Alternate Definition of Isochronism Defect. In previous
research, we adopted an alternate definition of isochronism defect
that proved useful to the watchmaking industry [43]. This definition
will not be used in this paper, but we derive Eq. (11) below so that
our results can be easily translated into that notation.
As above, a reference amplitude Θ1 is chosen with correspond-

ing frequency ω1, with daily rate ρ as above corresponding to a
neighboring amplitude Θ. The relative isochronism defect is then
defined by

σ =
ρ

Θ%
(9)

where

Θ% = 100
Θ − Θ1

Θ1
(10)

so that the isochronism defect is expressed as seconds per day in
terms of relative amplitude variation, expressed in %. Note that
this definition of isochronism defect is highly dependent on the
choice of reference amplitude.
Substituting Eq. (4) into Eq. (9) yields the relative isochronism

defect of an oscillator with relative nonlinearity μ

σ =
324μΘ1 Θ + Θ1( )

1 + 3μΘ2
1/8

(11)

Remark. In Ref. [43], the relative isochronism defect was com-
puted in terms of relative oscillator energy E%, not relative ampli-
tude Θ%, since it was not possible to identify the amplitude of the
2 degrees-of-freedom oscillators considered there. Since oscillator
energy is proportional to the square of amplitude, it is easily
shown that, under suitable conditions, the relative isochronism
defects with respect to energy and with respect to amplitude
differ by approximately a factor of 2.

4.2 Restoring Torque Nonlinearity of the Co-RCC. In
Sec. 4.1, we showed the relationship between restoring torque
nonlinearity and isochronism defect. We now derive an expression
for the nonlinearity of the co-RCC, which we use to tune its iso-
chronism defect. Our analysis is valid under the following
assumptions:

• We consider the flexure element as springs and the other
bodies as rigid. Figure 16 shows such model where the RCC
pivots have a rotational stiffness kRCC1 and kRCC2 and the
sliders have a translation stiffness kp1 and kp2.

• The motion of the sliders (Δv1 andΔv2) corresponds to the par-
asitic motion of the RCC pivots along their local v-axis, see
Sec. 3.4.

• The system is symmetric: kRCC1= kRCC2= kR, kp1= kp2= kp,
and Δv1 = Δv2 = Δv.

• The rotations are small and we express terms using series
expansions around θ= 0.

We proceed with the following steps:

(1) Express the restoring torque and motion of the spring ele-
ments for a given rotation of the co-RCC.

(2) Express the strain energy of the co-RCC for a given rotation.
(3) Derive the restoring torque of the co-RCC from its total strain

energy.
(4) Express the restoring torque nonlinearity of the co-RCC.

4.2.1 Restoring Torque and Motion of the Spring Elements.The
nonlinear restoring torque of the spring elements can be expressed
by series expansion in the same way as Eq. (5), giving

MR θ( ) = kR,0 θ + kR,2 θ
3 +O θ5

( )
(12)

for the RCC pivots and

Mp Δv( ) = kp,0 Δv + kp,2 Δv3 +O Δv5
( )

(13)

for the parallel flexures.
The displacement of the parallel springs for a given rotation θ of

the system corresponds to the parasitic motion of the RCC pivots
along v given in Ref. [35]:

Δv = −
(9δ2 + 9δ + 1)LR

15 cos α
θ2 +O θ4

( )
(14)

where LR is the length of the RCC flexures, α is the half-angle
between them, and δ= d/LR describes their intersection point, see
Fig. 17.

4.2.2 Strain Energy. The strain energy of the co-RCC for a
rotation θ is the sum of the potential energies of each spring

U = 2
∫θ
0
MR ν( ) dν +

∫Δv
0
Mp ν( ) dν

( )
(15)

which, when substituting with Eq. (12)–(14), yields

U = kR,0 θ
2 +

1
2
kR,2 +

(9δ2 + 9δ + 1)2L2R
225 cos2 α

kp,0

( )
θ4 +O θ6

( )
(16)

4.2.3 Restoring Torque. The restoring torque of the co-RCC
for a rotation θ is the derivative of the strain energy U with

Fig. 16 Spring model of the co-RCC
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respect to θ

Mc =
dU

dθ
= 2kR,0 θ + 2kR,2 +

4(9δ2 + 9δ + 1)2L2R
225 cos2 α

kp,0

( )
θ3 +O θ5

( )
(17)

The nominal stiffness of the RCC pivot kR,0 and parallel flexures
kp,0 can be substituted with the expressions from Ref. [13]

kR,0 =
8EIR(3δ2 + 3δ + 1)

LR
and kp,0 =

24EIp
L3p

(18)

where E is Young’s modulus for the flexures, IR and Ip are the area
moment of inertia of the cross-section of the RCC and parallel flex-
ures, respectively, and Lp is the length of the parallel flexures, see
Fig. 5(a), yielding

Mc =
16EIR(3δ2 + 3δ + 1)

LR
θ

+ 2kR,2 +
32(9δ2 + 9δ + 1)2EIpL2R

75 cos2 αL3p

( )
θ3 +O θ5

( ) (19)

4.2.4 Restoring Torque Nonlinearity. The nonlinearity of the
co-RCC

kc,2 = 2kR,2 +
32(9δ2 + 9δ + 1)2EIpL2R

75 cos2 αL3p
(20)

follows from Eq. (19) and its relative nonlinearity according to
Eq. (6) is

μc = μR +
2(9δ2 + 9δ + 1)2

75(3δ2 + 3δ + 1) cos2 αλ3
Ip
IR

(21)

where

λ = Lp/LR (22)

is the dimensionless ratio of the length of the parallel flexures to the
length of the crossed flexures, see Fig. 5(a), and

μR =
kR,2
kR,0

(23)

is the relative nonlinearity of the RCC flexures. We showed in
Ref. [17] that kR,2 cannot be calculated accurately using Euler-
Bernoulli beam theory and overcome this issue by calculating it
numerically, see Sec. 6.3.
Remark. It is assumed here that Young’s modulus is the same for

all flexures. If an anisotropic material is chosen, the difference in
Young’s modulus should be taken into account in the calculation
of the nonlinearity.

4.3 Isochronism Tuning. Our objective is to tune the isochro-
nism defect of the co-RCC without affecting any other crucial prop-
erty. Equation (4) shows that isochronism can be tuned through the
restoring torque nonlinearity and Eq. (20) shows the parameters
influencing it. Several parameters could be used to vary the isochro-
nism defect but only those of the parallel flexures, Lp and Ip, will
have no effect on the other crucial properties of the oscillator
such as nominal stiffness (and consequently nominal frequency),
gravity sensitivity, or stroke, which only depend on the geometry
of the RCC flexures. The length Lp of the parallel flexures is a con-
venient parameter for the tuning whereas the range of Ip is limited
by constraints on the flexure thickness h and height b (in the
z-direction) imposed by manufacturing.
The isochronism tuning achieved by modifying Lp is expressed in

terms of daily rate by substituting Eq. (21) into Eq. (8), yielding

ρ =

32400 μR +
2(9δ2 + 9δ + 1)2

75(3δ2 + 3δ + 1) cos2 α

Ip
IR

LR
Lp

( )3
( )

Θ2 − Θ2
1

( )

1 +
3
8

μR +
2(9δ2 + 9δ + 1)2

75(3δ2 + 3δ + 1) cos2 α

Ip
IR

LR
Lp

( )3
( )

Θ2
1

(24)

In order to be able to set the sign of the isochronism defect, the RCC
pivot is chosen to have a negative nonlinearity μR [41] such that the
two terms forming the nonlinearity in Eq. (20) are of opposite sign.
The sign of the defect then depends on the relative magnitude of
these two terms. The tuning obtained with Eq. (24) is displayed
in Fig. 6 where the dimensionless ratio λ=Lp/LR is used to make
the results independent of scale.

5 Analytical Model: Gravity Sensitivity
As explained in Sec. 4, we treat the gravity sensitivity of the

co-RCC flexure pivot oscillator separately from its isochronism.
This is done by assuming a small amplitude, i.e., θ2 negligible in
this part of the analysis.
Our gravity sensitivity analysis follows the method introduced in

Ref. [18] to express the change in stiffness of the oscillator caused

Fig. 17 Top view of an RCC flexure pivot with geometric param-
eters and a load acting at its center of rotation

Journal of Mechanical Design JULY 2020, Vol. 142 / 075001-9

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/142/7/075001/6463702/m
d_142_7_075001.pdf by EPFL Lausanne user on 16 D

ecem
ber 2019



by gravity loading and to calculate the resulting timekeeping defect.
The development consists of the steps below, following the struc-
ture of Sec. 3:

(1) Calculate the rotational stiffness of an RCC pivot subject to a
force applied at point O.

(2) Calculate the rotational stiffness of a half co-RCC subject to
a force applied at point O.

(3) Calculate the rotational stiffness of a co-RCC subject to a
force applied at point O.

(4) Express the gravity sensitivity of the co-RCC in terms of
daily rate.

The analysis is valid under the following assumptions:

• The loads are small and we express terms using series expan-
sions around F= 0.

• The rotations are small and we express terms using series
expansions around θ= 0.

• The RCC flexures are not subject to shear or torsion and, with
the previous assumption, Euler-Bernoulli beam theory can be
used to calculate their deflection behavior.

• The dimension b of the flexures in the z-direction is large
enough for the beams to be considered rigid in that direction
in comparison with in-plane stiffness. We thus analyze the
effect of loads in the xy-plane only.

• The restoring torque caused by the parasitic shift of the RCC
flexures is negligible. Note that this is a standard assumption
in the analysis of flexure pivots, see Refs. [35,38].

• The center of mass of the system is in point O as defined in
Sec. 3 and stays there for any rotation. The effect of gravity
is then equivalent to a force applied in point O.

• The parallel flexures do not transmit any force along their
sliding axis. This assumption is reasonable knowing that
their stiffness is much smaller than that of the “blocked”
degrees-of-freedom of the flexure joints. It is assumed that
the possible stiffening of the parallel flexures caused by
gravity [13] is not sufficient to invalidate this assumption.

5.1 Rotational Stiffness of the Remote Center of
Compliance Pivot Subject to Gravity. We use Euler-Bernoulli
beam theory to compute the stiffness of an RCC pivot subject to
gravity, considering each flexure as a cantilever beam under axial
loading with a rotation θ prescribed at its extremity. The axial
forces in the beams due to an external load F applied on the
mobile part in point O at an angle φ such as depicted in Fig. 17 are

P1 =
F

2
sinφ
sin α

+
cosφ
cos α

( )
(25)

and

P2 =
F

2
−
sinφ
sin α

+
cosφ
cos α

( )
(26)

Following the derivation of Eqs. (1)–(7) in Ref. [18] with these two
axial loads, the stiffness of the loaded RCC becomes

kR= kR,0+
EIR

12600LR
1680�F(9δ2+9δ+1)cosφ

cosα
− �F2(9δ2+9δ+11)

[
cos2φ
cos2α

+ �F2(9δ2+9δ+11)sin
2φ

sin2α

]
+O(θ2)+O(�F3)

(27)

The stiffness is expressed using series expansions at F= 0 for small
loads and θ= 0 for small amplitudes, where kR,0 is the nominal stiff-
ness of the RCC for an infinitesimal rotation in absence of external
load given in Eq. (18) and

�F=
FL2R
EIR

(28)

is the normalized external load on the pivot.

5.2 Rotational Stiffness of the Half Co-RCC Subject to
Gravity. The slider placed between the RCC and the body on
which the gravity load is applied allows only for forces along u
to be transmitted to the RCC, see Sec. 3.3. The resulting rotational
stiffness of the half co-RCC is obtained by substituting φ= 90 deg
in Eq. (27), giving

kh(�F) = kR,0 −
EIR
LR

9δ2 + 9δ + 11

12600 sin2 α
�F2 +O θ2

( )
+O(�F3) (29)

Remark. We can see that with the co-RCC design, the deviation
from the nominal stiffness due to the external load has gone from
first order �F in Eq. (27) to second-order �F2, which is the effect
desired for achieving gravity insensitivity, see Sec. 1.5.

5.3 Rotational Stiffness of the Co-RCC Subject to Gravity.
For a gravity load F acting on the co-RCC at an angle ψ with the
x-axis, the RCC pivots 1 and 2 support the component of the load
along their local u-axis, respectively, F1=F cos ψ and F2=F sin ψ.
In order to calculate the effect of gravity on the co-RCC stiffness,

we replace the nominal stiffness of the RCC pivots 2kR,0 in Eq. (17)
with the stiffness of the loaded half co-RCC elements
kh(�F1) + kh(�F2), yielding

kc(�F) = 2kR,0 −
EIR
LR

9δ2 + 9δ + 11

12600 sin2 α
�F2( sin2 ψ + cos2 ψ) +O θ2

( )

+O(�F3) = 2kR,0 −
EIR
LR

9δ2 + 9δ + 11

12600 sin2 α
�F2 +O θ2

( )
+O(�F3)

(30)

We now have an element whose only DOF is a rotation and whose
stiffness is gravity-insensitive: the deviation from the nominal stiff-
ness due to the external load is of second-order and the result is
independent of the direction ψ of gravity. Note that this last property
is obtained through the 90 deg angle between the two half co-RCC
elements.

5.4 Gravity Sensitivity in Terms of Daily Rate. In horolog-
ical terms, gravity sensitivity is specified by the daily rate caused
by a change in the orientation of the oscillator with respect to
gravity. From Eq. (7), one can express the gravity sensitivity of
an oscillator with nominal stiffness k0 and stiffness k under
gravity load

ρ = 43200
k − k0
k0

+O (k − k0)
2( )

(31)

This expression is obtained using Taylor series expansion around
k= k0 for a rotational oscillator with frequency ω =

����
k/J

√
, see

Sec. 4.1.

Fig. 18 Example embodiment of a co-RCC oscillator
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Using Eq. (30) and neglecting the load effects of order >2 due to
our small load assumption, the gravity sensitivity of the co-RCC is

ρ(�F) ≈ 43200
kc(�F) − kc(0)

kc(0)
≈ −

3
14

9δ2 + 9δ + 11

(3δ2 + 3δ + 1) sin2 α
�F2 (32)

6 Dimensioning and Numerical Validation
We give here an example of dimensions for a co-RCC oscillator

reaching the practical specifications listed in Sec. 6.1. The resulting
geometry is depicted in Fig. 18. We use this oscillator for the numer-
ical validation of the model using the finite element method (FEM).

6.1 Practical Watch Specifications. The following specifica-
tions are used as guidelines for our dimensioning

(1) Isochronism defect of order 1 s/day over the operating stroke.
(2) Daily rate stability in all orientations with respect to gravity

within 5 s/day.
(3) Nominal amplitude of operation of 15 deg, assuming that this

will be sufficient for an escapement to work.
(4) Amplitude variation of 10% during normal operation.
(5) Planar design compatible with standard microfabrication

processes.

6.2 Example of Dimensioning. The geometry of the co-RCC
pivot can be described by the following set of dimensionless param-
eters for which we give the values chosen in this dimensioning:

• α= 34.7 deg
• β= b/h= 20
• γ= LR/h= 347
• δ= d/LR= 0.1
• λ= 0.72
• �F = 0.92

The geometry of the RCC flexures is illustrated in Fig. 17 and the
parallel flexures are chosen to have the same cross-section (Ip= IR).
Note that the normalized load �F results from the weight of the
chosen inertial mass.
These dimensions correspond to a watch mechanism and are

compatible with standard microfabrication processes such as
DRIE. The crossing point δ is chosen so as to maximize the
stroke of the pivot (in order to reach specifications 3 and 4 of
Sec. 6.1) while keeping a feasible planar architecture satisfying spe-
cification 5 of Sec. 6.1. The maximum admissible stroke of a
crossed flexure pivot is actually obtained when δ=−0.5 (see
Eq. 14 in Ref. [17]) but values smaller than δ= 0.1 would bring
the flexures too close to each other or need a design in two
planes. The values of β and γ are chosen to allow for a large
stroke while keeping sufficient out-of-plane stiffness. For materials
with a ratio σadm/E > 0.44%, such as silicon or some titanium
alloys, the pivot only reaches the admissible bending stress σadm
for strokes θ > 19 deg, see Eq. (14) in Ref. [18], thus satisfying spe-
cification 3 and 4 of Sec. 6.1.
The values of α and λ were chosen to reach isochronism (see

Sec. 6.2.1) and a constant gravity sensitivity of −5 s/day with the
chosen normalized load �F. Any arbitrary value of gravity sensitivity
could have been chosen as long as it stays constant, such as pre-
dicted by Eq. (32). However, we know that our analytical model
is not perfect and chose a gravity sensitivity of −5 s/day assuming
that any deviation would stay of the same order and thus satisfy spe-
cification 2 of Sec. 6.1.

6.2.1 Isochronism Tuning. We explained in Sec. 4.3 that the
isochronism defect of the co-RCC could be tuned using the param-
eter λ, by varying the length Lp of the parallel flexures. Figure 6 dis-
plays the influence of λ on the isochronism of the example co-RCC.
The numerical estimates for the isochronism defect are calculated in
terms of the daily rate at Θ= 16.5 deg with respect to reference
amplitude Θ1= 15 deg using Eq. (24). This corresponds to a 10%
amplitude variation with respect to the reference amplitude in accor-
dance with the specifications of Sec. 6.1.
Figure 6 shows that λ can be used to introduce a range of positive

or negative isochronism defects up to the order ±100 s/day.

Fig. 19 Relative nonlinearity μR of the example RCC pivot
versus α. The data are fitted with a Fourier model (with period π
due to symmetry): μR(α)=−2.6+0.14 cos 2α+3.1 sin 2α+0.76
cos 4α−0.17 sin 4α

(a) (b)

Fig. 20 Finite element model of the co-RCC oscillator: (a) first-mode shape and
(b) close-up view of the mesh
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This means that a value of λ can be found such that the oscillator is
isochronous, i.e., ρ= 0, or that significant isochronism defects
external to the oscillator can be compensated.
In order to satisfy specification 1 of Sec. 6.1, one has to estimate

the step size Δλ that corresponds to step size Δρ of 1 s/day. Given
the dimensions specified in Sec. 6.2, the slope of the daily rate
around the operating point (α= 34.7 deg and λ= 0.72) is
−560 s/day, see Fig. 6, which means that a rate variation of Δρ=
1 s/day corresponds to a variation Δλ/λ = 0.25%. For parallel flex-
ures with a length Lp of order 1 mm, this corresponds to a change in
length of order 2.5 μm, which is compatible with DRIE and laser
ablation. Note that this resolution can be increased by setting the
operating point where the slope of ρ(λ) is smaller. For example,
around the operating point λ= 1 in Fig. 6, Δρ= 1 s/day is obtained
with a 0.65% variation of λ.
Figure 6 also shows that for pivots with different values of RCC

nonlinearity, characterized here by different values of α, a value of λ
can be found such that the oscillator is isochronous. The influence
of α on the relative nonlinearity μR of the RCC is shown in Fig. 19.
Remark. The parameter α affects both terms of the co-RCC non-

linearity in Eq. (20) and can be used as a design parameter to offset
the isochronism tuning curve, see Fig. 6. As mentioned in
Sec. 4.2.4, the RCC nonlinearity μR is calculated numerically
using the method described in Sec. 6.3.1. In order to get an expres-
sion with respect to α, we fit a curve through a set of FEM-
calculated data points depicted in Fig. 19.

6.3 Numerical Validation. We validate the analytical models
described in Secs. 4 and 5 by simulating the example co-RCC
depicted in Fig. 18 using the commercial FEM software ANSYS

[44]. We use a mesh of hexahedral elements of type SOLID186
that is refined on the flexures such that there are three elements
across their thickness h and six along their height b. The number
of elements along the length of the flexures is chosen such that
the elements have a square face. The meshing can be seen in
Fig. 20. Since we are interested in the nonlinear behavior of our
system, the structural analyses are performed with the large deflec-
tion setting.

6.3.1 Isochronism Validation. We evaluate the nonlinearity of
a pivot by FEM from its torque-angle relationship. We apply 50
incremental displacement values from 0 to 10 deg on the mobile
end of the pivot and measure the reaction torque on the fixed
frame. We then fit an odd cubic polynomial to the torque-angle rela-
tionship and extract the relative nonlinearity using Eq. (20). This
method is used to calculate the relative nonlinearity of the RCC
for the analytical model, see Fig. 19, and to calculate the relative
nonlinearity of the co-RCC for the numerical validation.
The analytical and numerical results are compared in terms of

daily rate, from the relative restoring torque nonlinearity, using
Eq. (8). The results are computed for different values of λ and α

and plotted in Fig. 6, showing a good match that validates the ana-
lytical component of the model.
For the values of design parameters chosen to reach isochro-

nism (α= 34.7 deg and λ= 0.72), the simulation returns a restor-
ing torque nonlinearity μ=−0.0024 corresponding to a daily rate
ρ=−1.1 s/day at Θ= 16.5 deg with respect to reference amplitude
Θ1= 15 deg, thus satisfying specification 1 of Sec. 6.1. Note that
the remaining defect could be the result of numerical errors or, if
this is not the case, could be further reduced by fine-tuning the
value of Lp.

6.3.2 Gravity Sensitivity Validation. We simulate the gravity
sensitivity of the pivot by subjecting it to standard earth gravity
and extracting the frequency of its first-vibration mode, see
Fig. 20(a). In order to be consistent with the theoretical model,
the masses of the intermediate bodies and flexures are set to zero
and the center of mass is in pointO. The data are collected for accel-
erations in the xy-plane with orientation ψ spanning the interval
from 0 to 360 deg, and the daily rate with respect to operation
without gravity calculated with Eq. (7) is displayed in Fig. 21.
The gravity sensitivity obtained by FEM simulation varies

between −4.5 and −7 s/day whereas Eq. (32) returns a constant
value of −5 s/day with the dimensions given in Sec. 6.2. Consider-
ing the order of magnitude observed (a 1 s/day rate variation corre-
sponds to a 10 parts per million frequency variation), the results are
close enough to validate the model.
The numerical solution shows a daily rate of −5.75± 1.25 s/day

which is well within the practical mechanical watch specification 2
of Sec. 6.1. Note that the constant offset of −5.75 s/day is not prob-
lematic since it can be compensated by tuning the nominal fre-
quency of the oscillator. This can be done by varying its inertia
and is a standard procedure for watchmakers.
Remark. The differences between the analytical model and the

numerical solution could be explained by a shift of the center of
mass of the pivot due to the u-component of the RCC parasitic
shift that is neglected in our model, see Sec. 3.2.1. This assumption
is coherent with the symmetric maximum and minimum observed at
45 and 225 deg, corresponding to the axis of symmetry of the
architecture.

7 Conclusion
This article presents a new way of tuning the isochronism of

flexure-based mechanical time bases by taking advantage of their
parasitic motion. We highlighted the importance of isochronism
in the development of precision mechanical time bases and situated
our contribution in this context. We invented a new flexure pivot
we called the co-RCC that integrates the new isochronism tuning
method in a gravity-insensitive architecture. We provided an analyt-
ical model that can be used to dimension an oscillator and validated
it by numerical simulation. We showed that the concept can be
embodied in a compact architecture that is compatible with micro-
fabrication. Our future work will consist in the experimental valida-
tion of the co-RCC concept and the exploration of new ways to tune
the isochronism of flexure-based mechanical oscillators.
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