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ABSTRACT

The most important property for accurate mechanical time bases is isochronism: the
independence of period from oscillation amplitude. This paper develops a new concept in
isochronism adjustment for flexure-based watch oscillators. Flexure pivot oscillators, which
would advantageously replace the traditional balance wheel-spiral spring oscillator used in
mechanical watches due to their significantly lower friction, exhibit nonlinear elastic prop-
erties that introduce an isochronism defect. Rather than minimizing this defect, we are
interested in controlling it to compensate for external defects such as the ones introduced
by escapements. We show that this can be done by deriving a formula which expresses
the change of frequency of the oscillator with amplitude, i.e. isochronism defect, caused
by elastic nonlinearity. To adjust the isochronism, we present a new method that takes
advantage of the second order parasitic motion of flexures and embody it in a new archi-
tecture called co-RCC flexure pivot oscillator. In this realization, the isochronism defect of
the oscillator is controlled by adjusting the stiffness of parallel flexures before fabrication
through their length Lp, which has no effect on any other crucial property, including nomi-
nal frequency. We show that this method is also compatible with post-fabrication tuning by
laser ablation. The advantage of our design is that isochronism tuning is an intrinsic part
of the oscillator, whereas previous isochronism correctors were mechanisms added to the
oscillator. The results of our previous research are also implemented in this mechanism
to achieve gravity insensitivity, which is an essential property for mechanical watch time
bases. We derive analytical models for the isochronism and gravity sensitivity of the oscil-
lator and validate them by finite element simulation. We give an example of dimensioning
this oscillator to reach typical practical watch specifications and show that we can tune
the isochronism defect with a resolution of 1 s/day within an operating range of 10% of
amplitude. We present a mock-up of the oscillator serving as preliminary proof-of-concept.

1 INTRODUCTION

1.1 Limitations of traditional mechanical watches

The time base used in classical mechanical watches is a harmonic oscillator consisting of a
spiral spring attached to a balance wheel having a rigid pivot rotating on jewelled bearings. It has
essentially the same architecture as when it was introduced by Huygens in 1675, see Fig. 1. Sub-
sequently, significant improvements were achieved in chronometric accuracy, but seemed to have
reached a plateau. The general consensus in horology is that the quality factor of the oscillator,
a dimensionless number that characterises the damping of an oscillator, needs to be improved
for the accuracy to increase [1, 2, 3]. This phenomenon, first noted by Douglas Bateman [1], is
not totally understood but is backed up by the apparent correlation between quality factor and
timekeeping accuracy highlighted in Refs. [1, 2, 3], see Fig. 2. Despite concerted efforts by the
watchmaking industry, the quality factor of classical balance spring oscillators barely surpasses
200, the friction in the bearing being the most important limitation to its quality factor [4]. Accord-
ing to Bateman’s observation, a significant improvement in accuracy, i.e., better than 1 second/day
error, would involve increasing the quality factor by an order of magnitude, as illustrated in Fig. 2
and as discussed in Refs. [1,2,3].
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Fig. 1: Balance wheel-spiral spring oscillator drawn by Huygens in Ref. [5]

Fig. 2: Correlation between accuracy and quality factor [3]

1.2 The advent of flexure-based watch oscillators
A defining moment in watchmaking was the recent adoption by this very traditional industry of

high technology materials and techniques [6] – there are now mechanical watches having silicon
components made using Deep Reactive Ion Etching (DRIE), for example [7]. This acceptance
paved the way for flexure-based watch oscillators for two reasons: replacing bearings by flexure
pivots increases quality factor [4] and the minimal internal friction of monocrystalline silicon, by
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definition, increases quality factor, typically by an order of magnitude as compared to the classical
metals used in watchmaking. For the reasons outlined in Section 1.1, flexure-based oscillators
manufactured in silicon appear to be the breakthrough needed to achieve a new level in mechani-
cal watch accuracy.

The watch industry has therefore taken on this challenge and a number of prototypes and
mechanical watches featuring flexure-based watch oscillators have recently been presented. The
first of these was the Genequand System discussed in Section 2.2 and presented in 2014 [8]. This
mechanism already validated some expectations of flexure-based oscillators as it increased the
quality factor and watch autonomy by an order of magnitude. More recent prototypes of flexure
pivot oscillator were released in watches in 2017 [9, 10] and 2019 [11, 12]. These systems will
however not be commented due to the lack of available information.

1.3 Advantages of flexures
Apart from an increase in quality factor, the introduction of flexures brings additional advan-

tages such as suppressing the need for lubrication, a traditional concern in watchmaking,1 and
simplifying assembly through monolithic fabrication [13,14].

Besides their bearing function, flexures have an intrinsic elastic restoring torque allowing them
to conveniently replace the spring of the traditional oscillator. However, this restoring torque has
nonlinear properties that introduces an isochronism defect, see Sec. 1.4, to which we present a
solution.

1.4 Isochronism
Accurate timekeeping is essentially equivalent to having an oscillator with a period that is as

regular as possible. Among the factors affecting the period are: amplitude, orientation of gravity,
temperature. The most important of these factors is amplitude and the independence of period
from amplitude is called isochronism. This key element of precise timekeeping was first identi-
fied by Galileo who remarked that the pendulum would be a good time base since its period was
independent of oscillation amplitude. However, Mersenne and Descartes noted in 1636 that this
was not accurate as they observed that the period of the pendulum slightly increases with ampli-
tude [15]. Huygens then analyzed the problem mathematically and devised in 1656 a theoretically
isochronous pendulum by replacing the rod with a flexible cord which unwinds off a cycloid [16],
as depicted in Fig. 3. More details are given in Sec. 2.

In the case of a rotational oscillator consisting of a spring coupled to an inertial mass (such as
the ones used in classical mechanical watches), the condition for isochronism is that the spring
restoring torque must follow Hooke’s law, i.e., be a linear function of the angular displacement. This
condition complicates the use of flexures as oscillator springs since they exhibit nonlinear elastic
properties. Different solutions already exist in order to achieve isochronism with flexure pivots but
they all suffer from some limitation, see Sec. 2. There also exists other designs of flexure pivot
oscillators which do not discuss isochronism [17].

For the reasons outlined in Sections 1.1 to 1.4, minimizing the isochronism defect of flexure-
based mechanical watch oscillators is one of the most important issues to be addressed in order
to significantly improve the chronometric accuracy of mechanical watches.

1 Watchmaking lore attributes a famous but most likely apocryphal quote to Abraham-Louis Breguet (1747-1823),
one of the greatest watchmakers in history. When King Louis XVI asked him to make the perfect watch, he replied:
“Give me the perfect oil and I will make you a perfect watch.”
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Fig. 3: Huygens’ isochronism corrector for the pendulum using cycloidal cheeks

1.5 Gravity sensitivity
The second crucial property for mechanical watch time bases is gravity insensitivity, which is

the independence of oscillator frequency from its orientation with respect to gravity. In the case
of flexure pivots, changes in the loading of the flexures can cause their stiffness to vary and
consequently alter the frequency of the time base. Following our previous research in Ref. [18],
we consider a flexure to be gravity-insensitive when there is no first order effect of the load on its
stiffness (assuming small loads).

1.6 Statement of results
We design a new flexure pivot architecture that takes advantage of the parasitic shift of flex-

ures, which is of same order as the isochronism defect, to tune the isochronism of the oscilla-
tor without altering any other property crucial to its function such as nominal stiffness, operating
stroke, gravity sensitivity and center of rotation shift. This idea is new and is the principal contribu-
tion of the paper. The new architecture is called co-RCC flexure pivot oscillator and is depicted in
Fig. 4 and 5.

We derive a formula which expresses the frequency of an oscillator in terms of the amplitude,
thus characterizing the isochronism defect. We show that the variation from nominal frequency
with amplitude depends on the restoring torque nonlinearity k2 of the pivot and focus our research
on the study of this parameter. Rather than minimizing the isochronism defect by minimizing k2,
we are interested in controlling it to compensate for external defects such as the ones introduced
by escapements, see Sec. 2.2.

In the co-RCC design, the parasitic shift of the RCC flexures (labelled ∆v1 and ∆v2 in Fig. 4)
deforms the neighbouring parallel flexures, resulting in a contribution of third order of their stiffness
to the restoring torque of the system. The nonlinearity k2 (and thus the isochronism defect) of the
system can thus be tuned, without affecting any other crucial property, by changing the stiffness
of the parallel flexures, in particular by changing their length Lp, see Fig. 5a. As opposed to the
goal of Huygens cycloidal cheeks which theoretically eliminate isochronism defect, our method is
similar to modifying Hugyens cycloidal cheeks to obtain any specific isochronism defect in a range
around isochronism, i.e., around zero defect.

We call our method intrinsic isochronism tuning in opposition to the isochronism correctors
previously realized through external mechanisms, see Sec. 2. We believe that our method is more
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Fig. 4: Pseudo-rigid-body model of the co-RCC flexure pivot oscillator

adapted to modern manufacturing techniques and compact architectures.
We demonstrate in Sec. 6 that we are able to dimension a physical embodiment of the co-RCC

oscillator that satisfies practical mechanical watch specifications, in particular a planar architec-
ture that is compatible with current microfabrication processes and an isochronism tuning with a
resolution of 1 s/day for a 10% amplitude variation from 15 degree nominal amplitude. We show
that we can compensate a realistic range of isochronism defects from −200 s/day to 400 s/day,
see Fig. 6, and that we can achieve the specified isochronism defect tuning of order 1 s/day by
varying the parallel flexure length Lp on the order 2.5 µm, see Sec.6.2.1. In the co-RCC design,
this tuning is implemented before manufacturing and is well within the range of current microfabri-
cation techniques such as DRIE. Moreover, methods exist to adjust defects after manufacturing, in
particular removing microns of matter by laser ablation in order to lengthen Lp, see Fig. 5a. This
technique is being used in the completely automated adjustment of the daily rate of mechanical
watches [19].

Figure 6 displays the daily rate, that is, the gain or loss of the timekeeper in seconds per
day with respect to a reference frequency, see Eq. (7), of a co-RCC oscillator for different values
of the parallel flexure length Lp, as quantified by the dimensionless parameter λ = Lp/LR, see
Fig. 5a. The parameter α, which describes the angle between the RCC flexures, see Sec. 4.2,
also affects the isochronism but is not used for fine-tuning as it also affects the gravity sensitivity
of the oscillator. Details are provided in Sections 4 and 6.2.

The architecture is also gravity-insensitive, thus achieving two of the conditions for accu-
rate timekeeping. The design principle used to achieve gravity insensitivity is similar to the co-
differential concept that we introduced in Ref. [18]. The two concepts are compared in Sec. 3.4.1.

The analytical models derived for the isochronism and gravity sensitivity of the co-RCC, re-
spectively in Sec. 4 and 5, are validate by numerical simulation in Sec. 6.3.

6
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Lp

LR

(a) Mock-up at rest position. The length Lp is used
to tune isochronism. To make our results indepen-
dent of scale, we quantify this using the dimen-
sionless parameter λ = Lp/LR (with LR constant)

(b) Mock-up rotated by 26 degrees. An increased
gap between the inertial mass and the intermedi-
ate bodies and a deformation of the parallel flex-
ures can be observed as a result of the parasitic
shift of the RCC pivots (∆v1 and ∆v2 in Fig. 4)

Fig. 5: Mock-up of the co-RCC flexure pivot oscillator manufactured by laser cutting in Poly-
oxymethylene to demonstrate the qualitative behaviour of the pivot. Thickness: 5 mm, outer
diameter: 150 mm, admissible angular stroke: ±26 degrees

In order to be used in a watch, this oscillator needs an escapement. However, this topic is not
considered in this article except for specifying a nominal amplitude of operation of 15 degrees, un-
der the assumption that this amplitude is sufficient for an escapement to work, see Sec. 6.1. The
third condition for accurate timekeeping, insensitivity to temperature, is also out of the scope of this
article. We assume that it can be achieved through already established temperature-invariant ma-
terials, such as the ones described in Refs. [20,21,7], or temperature compensation techniques.

2 STATE OF THE ART
2.1 Isochronism correction for the pendulum

In 1656, Huygens confirmed mathematically Mersenne and Descartes’ observation that the
pendulum was not isochronous and devised an isochronous pendulum in three stages [22]. First,
he sought the curve from A to B shown in Fig. 7 down which an object will slide from rest without
friction under gravity to point B in the same time, irrespective of its starting point between A and
B. He showed that this so-called tautochrone curve is a cycloid.2 Secondly, he introduced the
notion of involute, the curve traced by the end of a string wrapping around another curve (the
evolute). Thirdly, he showed that the involute of a cycloid is another cycloid. The result is a

241 years later, Johann Bernoulli proved that this was also the brachistochrone, i.e., the curve of fastest descent
under gravity between two points [23]. 7
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Fig. 6: Daily rate ρ versus λ of a co-RCC at Θ = 16.5 degrees with respect to reference amplitude
Θ1 = 15 degrees. The dimensions of the oscillator are given in Sec. 6.2. The results obtained with
the analytical model with α = 25, 34.7 and 43 degrees are compared to those obtained by FEM
simulation

pendulum consisting of a suspension thread that wraps around cycloidal cheeks and a bob that
consequently follows the tautochrone curve, see Fig. 8. This idea was implemented in a clock in
1657, see Fig. 9. Note that another way to look at the effect of the cycloidal cheeks is that they
change the effective length of the pendulum as it swings, thus altering its frequency. This solution
is theoretically correct but does not appear to work well in practice, as explained in Refs. [24,
p.24] [25, pp.60-62]. It was quickly abandoned in favor of rigid rods with small amplitudes. It
should be noted that the small amplitude solution was not considered by Huygens since he was
interested in marine chronometers, which necessitated large amplitudes. Subsequently, there was
much research on pendulum suspensions and isochronism [25, pp.62-68] [2, pp.97-137] [26]. We
are currently studying the possibility of applying the results of this paper to this subject.

2.2 Flexure pivot oscillator isochronism correction
The first flexure pivot oscillator for a mechanical watch was introduced in the 2014 Genequand

system [8]. The basis of the Genequand system was a flexure-based escapement, similar to
the grasshopper escapement invented by Harrison around 1722 [28]. The crossed flexure pivot,
introduced by Wittrick [29] and depicted in Fig. 10, was added at a later stage in order to implement
the system at a watch scale. The oscillator is gravity-insensitive thanks to a particular value of the
crossing point of its flexures [30, 31] but has an isochronism defect. A system was developed by
Henein and Schwab [32] to address this defect as well as the one caused by the escapement. It is
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A

B

Fig. 7: ball sliding along a cycloid

indeed known that escapements introduce isochronism defects and this property has already been
used in clocks to compensate the intrinsic defect of pendulums [24, pp.33-34] [33, pp. 79-80]. This
is also why, in this article, we are interested in controlling the defect of the oscillator rather than
minimizing it.

2.2.1 The Genequand system isochronism corrector
The isochronism corrector developed for the Genequand system [32] uses flexible blades that

come in contact with the escapement anchor for part of the stroke, introducing a discrete change
in stiffness. Since the anchor is always in contact with the oscillator, the change directly affects
the oscillator. Figure 11 shows the contact between pin 9 of the anchor and flexure 14. Due to the
mechanical stop 22, the contact happens only when the pin is to the right of axis A. The discrete
stiffness variation always happens at the same angular position, such that the ratio of time that
the oscillator spends with one stiffness to the time spent with the other stiffness depends on the
amplitude of oscillation. This introduces a variation of frequency with amplitude that can be used
to correct the isochronism. The tool relies on three setting inputs and is complex to tune. It also
introduces shocks at the contact point 14a that can have undesired consequences.

2.2.2 Isochronous crossed flexure pivots
We explained in Sections 1.4 and 1.5 that the crucial properties for a mechanical watch time-

base are isochronism and gravity insensitivity. In Ref. [18], we presented a pivot capable of reach-
ing both goals since the crossing point of its flexures can be used to set the isochronism defect
and its architecture is intrinsically gravity-insensitive.

The crossed flexure pivot of the Genequand system used a special value of the crossing point
of its flexures to reach gravity insensitivity and this parameter could thus not be used to set its
isochronism defect. Di Domenico et al. [34] solved this issue by using the angle α between the
flexures in addition to their crossing point to set the isochronism defect while minimizing gravity
sensitivity, as depicted in Fig. 12a.

These methods do not qualify as isochronism tuning according to our definition in Sec. 1.6:
changing the crossing point or the angle between the flexure also affects the gravity sensitivity
and center shift of the pivot [35, 36]. The architecture illustrated in Fig. 12b, where two crossed-
flexure pivots are mounted head-to-tail [37], seems to eliminate the gravity-sensitivity and center
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Fig. 8: Huygens drawing of the isochronous pendulum [27, note to letter from Ch. Huygens to H.
Oldenburg, June 24 1673]

shift issues through its symmetry, allowing for isochronism tuning using the angle α. It is indeed
known that α has no significant impact on the nominal stiffness and stroke of the oscillator [38].
This architecture however has a redundant degree-of-freedom (DOF): the intermediate body 20
can rotate without moving the inertial body 201. Such redundant DOF can be excited by external
forces and affect the stroke of the pivot or start vibrating [13], thus disturbing the oscillator.

3 DESIGN AND KINEMATICS OF THE CO-RCC FLEXURE PIVOT
3.1 The concept

The design principle behind the co-RCC is that two remote center of compliance (RCC) flexure
pivots [13] “collaborate” to form a pivot with superior properties: the parasitic center shift of the
RCC is used to tune the restoring torque nonlinearity of the pivot and its effect on the inertial body
is significantly reduced. Additionally, external loads on the main rigid body are shared between the
two RCC pivots in a way that makes the co-RCC gravity-insensitive. Its architecture is depicted
in Fig. 4, where the flexures are represented by their pseudo-rigid-body equivalent [14]. The
rigid bars with pin joints and rotational springs at their extremities have equivalent force-deflection
characteristics to the leaf springs used in the physical embodiment in Fig.5.

10
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Fig. 9: Huygens’ clock design with cycloidal cheeks shown in FIG. II. [16]

We explain the design of the co-RCC by decomposing it into sub-elements. We start with
the RCC pivot in Sec. 3.2, then add a slider to it to form the half co-RCC in Sec. 3.3, and finally
combine two of these elements in parallel to form the co-RCC in Sec. 3.4.

3.2 The RCC flexure pivot
The RCC pivot, sometimes also referred to as isosceles-trapezoidal flexural pivot [36], is illus-

trated in Fig. 13. It is a particular case of the crossed flexure pivot [29] where the flexures cross
symmetrically outside of their physical structure. The intersection of the flexures defines (to a first
approximation) the axis of rotation of the pivot [39], see axis w in Fig. 13. This pivot has been
chosen due to its advantageous planar architecture and negative restoring torque nonlinearity that
will be used to tune the isochronism, see Sec. 4.3.

We define a local coordinate system for the RCC pivot whose origin lies at the intersection of
the neutral axes of the flexure beams as depicted in Fig. 13. Axis v is parallel to the bisector of the
angle formed by the flexures, axis w is perpendicular to the plane holding the neutral axes and u
is the third orthogonal axis.

11
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Fig. 10: Crossed flexure pivot with crossing point minimizing its gravity sensitivity [31]

3.2.1 Parasitic center shift
The center of rotation of the RCC pivots exhibits a so-called parasitic shift. Zhao and Bi [35]

give analytical expressions for the components of the parasitic shift along the u and v axes of
the RCC local coordinate system, see Fig. 13. For slender flexures3 and small rotations, the v-
component is of second order of the rotation angle and the u-component, which is of third order,
can be neglected.

3.3 The half co-RCC
The half co-RCC element depicted in Fig. 14 is obtained by adding a slider between the RCC

and the main rigid body, where the axis of the slider is parallel to the v-axis of the RCC. This
element has two degrees-of-freedom: one rotation around center O and one translation along v.
As we will see in Sec. 3.4, the additional DOF allows to tune the isochronism of the oscillator, to
achieve gravity insensitivity and to avoid overconstraining4 the co-RCC.

3.4 The co-RCC flexure pivot
The co-RCC depicted in Fig. 15 consists of two half co-RCC arranged in parallel, at a 90

degree angle, with coinciding axes of rotation. The first half co-RCC consists of the “RCC 1” in
series with the “Slider 1” and the second consists of the “RCC 2” in series with the “Slider 2”.
They share the same main rigid body and the center of mass of the system is placed at its center
of rotation O. We assume that the intermediate bodies have negligible mass. The system has
one DOF and no overconstraint in the xy-plane. Note that the out-of-plane overconstraints can
be overlooked assuming that the mechanism is monolithically fabricated. Taking advantage of the
elasticity of the RCC flexures, if the main rigid body has a non-zero inertia J , this flexure pivot
behaves as a rotational oscillator.

3We consider a flexure to be slender if, in the uv-plane of Fig. 13, length > 10 × thickness. This is the case in our
analysis.

4A mechanism is overconstrained when its mobility obtained through Grübler’s formula [40] is less than its actual
DOF. This can lead to important and unpredictable variations of the stiffness of flexure mechanisms and the stresses in
their flexures [13].

12
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Fig. 11: Figure from the Genequand system isochronism corrector patent [32]

Through the parallel arrangement of two half co-RCC elements, the translation of the main
rigid body allowed by one half co-RCC is blocked by the other one. As a result, when the system
rotates, the parasitic shift of the RCC pivots, which is along the sliding axis of their respective half
co-RCC (see Sec. 3.2.1), does not affect the main rigid body (as this motion is blocked by the
other half co-RCC). The motion of the main rigid body closely approximates a rotation about point
O, which we define as the rotation of the co-RCC.

It follows that the parasitic shifts of each RCC pivot results in a relative linear motion, labelled
∆v1 or ∆v2 in Fig. 15, between the intermediate body to which it is attached and the main body. In
the flexure implementation of Fig. 5, the sliders are realized with parallel flexures which are known
to closely approximate a sliding motion5 [13]. The deflection of these flexures caused by the RCC
parasitic shift is of second order of the rotation angle [35] and their stiffness, depicted as linear
springs in Fig. 15, can be used to tune the isochronism of the oscillator, see Sec. 4.3.

We manufactured a mock-up to validate qualitatively the kinematics of the co-RCC pivot, see
Fig. 5 . This hardware showed that the system behaves qualitatively as a pivot (one DOF and
a motion of the main body closely approximating a rotation about point O) while having a linear
relative motion between the intermediate bodies and the main body, see Fig. 5b.

5The parallel flexures also exhibit a parasitic motion that is of second order of the sliding motion [13]. In the co-RCC
geometry, this motion is of fourth order of the rotation angle and can thus be neglected.13
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(a) Crossed flexure pivot oscillator from Ref. [34] (b) Crossed flexure pivot oscillator from Ref. [37]

Fig. 12: Crossed flexure pivot oscillators whose angle α between the flexures is used to minimize
the isochronism defect

v

u
w

O

Fixed part
Mobile part

Fig. 13: Remote center of compliance (RCC) flexure pivot in undeflected position (solid lines) and
rotated about the w-axis (dashed lines)

Remark. The design can be generalized by using any type of crossed flexure pivot, by using
rotational joints instead of slider joints, by changing the order of the joints of the half co-RCC and
by using any type of flexures that have the force deflection characteristic of the PRBM depicted in
Fig. 4.
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Fig. 15: Design of the co-RCC flexure pivot

3.4.1 Gravity sensitivity and comparison with the co-differential
An additional advantageous property of the co-RCC architecture is that it follows the co-

differential concept introduced in Ref. [18] to achieve gravity-insensitivity. In the co-differential
concept, the flexures providing the rotational stiffness of the pivot are always loaded with equal but
opposite forces, which minimizes the influence of an external load, such as gravity, on the overall

15
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stiffness. This effect is obtained by placing the flexures symmetrically at a 180 degree rotation.
In the co-RCC, the same compensating effect is obtained through the fact that the sliders do

not transmit any load along their axis of motion (under the assumption that their stiffness is much
lower than that of the “blocked” degrees-of-freedom). Thus, when an external load acts on the
main rigid body, each half co-RCC element is loaded with the component of that force along its
local u-axis and the RCC flexures are loaded with equal but opposite forces.

4 ANALYTICAL MODEL: ISOCHRONISM
In this section, we derive an analytical model for the isochronism defect of the co-RCC flexure

pivot oscillator and show how it can be tuned by modifying only the non-linearity of the pivot’s
restoring torque. This effect is treated separately from the gravity sensitivity, itself treated in see
Sec. 5, by assuming no external load (F = 0).

Remark: The assumption to decouple both effects in the analysis is reasonable since the
terms combining F and θ have order > 2, see Eq. (27). They are thus negligible under our small
load and small displacement assumptions.

4.1 Definition of isochronism defect
We first consider the ideal case of the simple rotational harmonic oscillator satisfying

Jθ̈ + kθ = 0, (1)

where θ = θ(t) is angular displacement, J is the moment of inertia and k is the rotational stiffness.
This has solution

θ(t) = Θ sin(ω0t+ Φ), (2)

where Θ is the amplitude, ω0 =
√
k/J is the angular frequency and Φ is a phase depending on

initial conditions.
In the ideal case, the angular frequency ω0 is independent of the amplitude Θ, so there is

isochronism. However, this is not true in practice and this, in fact, is the exact subject of this
article. We therefore consider the perturbed harmonic oscillator

θ(t) = Θ sin(ωt+ Φ), (3)

in which the angular frequency ω = ω(Θ) depends on the amplitude Θ.
We showed in Ref. [41] that, for a rotational oscillator with constant inertia J and nonlinear

restoring torque, the angular frequency at small amplitude satisfies

ω(Θ) = ω0

(
1 +

3µ

8
Θ2

)
, (4)

where µ is the relative restoring torque nonlinearity introduced in Ref. [18].
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For a pivot whose restoring torque

M = k0 θ + k2 θ
3 +O

(
θ5
)

(5)

is expressed by a power series having only odd terms (since restoring torque is an odd function of
the angle), we call k2 the nonlinearity of the restoring torque and

µ =
k2

k0
(6)

the relative nonlinearity of the restoring torque. Note that, in this case, the nominal frequency of
the oscillator is ω0 =

√
k0/J .

Equation (4) gives an explicit expression for the isochronism defect, the subject of this paper
will be the study of its tuning by modifying only the nonlinearity k2.

In order to apply Eqn. (4) to provide numerical isochronism data, we choose a reference am-
plitude Θ1 with corresponding frequency ω1. One then defines the daily rate [42] by

ρ = 86400
ω − ω1

ω1
, (7)

that is, the gain or loss of the timekeeper, in seconds per day, with respect to the reference fre-
quency. Daily rate gives a precise measure of the (hopefully small) isochronism defect. Applying
Eq. (4) gives the following explicit formula for the daily rate in terms of amplitude, the reference
amplitude and µ

ρ = 32400µ
Θ2 −Θ2

1

1 + 3µΘ2
1/8

. (8)

4.1.1 Alternate definition of isochronism defect
In previous research, we adopted an alternate definition of isochronism defect which proved

useful to the watchmaking industry [43]. This definition will not be used in this paper, but we derive
Eq. (11) below so that our results can be easily translated into that notation.

As above, a reference amplitude Θ1 is chosen with corresponding frequency ω1, with daily rate
ρ as above corresponding to a neighboring amplitude Θ. The relative isochronism defect is then
defined by

σ =
ρ

Θ%
, (9)

where

Θ% = 100
Θ−Θ1

Θ1
, (10)
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so that the isochronism defect is expressed as seconds per day in terms of relative amplitude
variation, expressed in %. Note that this definition of isochronism defect is highly dependent on
the choice of reference amplitude.

Substituting Eq. (4) into Eq. (9) yields the relative isochronism defect of an oscillator with
relative nonlinearity µ

σ =
324µΘ1 (Θ + Θ1)

1 + 3µΘ2
1/8

. (11)

Remark. In Ref. [43], the relative isochronism defect was computed in terms of relative oscillator
energy E%, not relative amplitude Θ%, since it was not possible to identify the amplitude of the
2 degrees-of-freedom oscillators considered there. Since oscillator energy is proportional to the
square of amplitude, it is easily shown that, under suitable conditions, the relative isochronism
defects with respect to energy and with respect to amplitude differ by approximately a factor of 2.

4.2 Restoring torque nonlinearity of the co-RCC
In Sec. 4.1, we showed the relationship between restoring torque nonlinearity and isochronism

defect. We now derive an expression for the nonlinearity of the co-RCC, which we use to tune its
isochronism defect. Our analysis is valid under the following assumptions:

• We consider the flexure element as springs and the other bodies as rigid. Figure 16 shows
such model where the RCC pivots have a rotational stiffness kRCC1 and kRCC2 and the sliders
have a translation stiffness kp1 and kp2.
• The motion of the sliders (∆v1 and ∆v2) corresponds to the parasitic motion of the RCC pivots

along their local v axis, see Sec. 3.4.
• The system is symmetric: kRCC1 = kRCC2 = kR, kp1 = kp2 = kp and ∆v1 = ∆v2 = ∆v.
• The rotations are small and we express terms using series expansions around θ = 0.

We proceed with the following steps:

1. Express the restoring torque and motion of the spring elements for a given rotation of the
co-RCC.

2. Express the strain energy of the co-RCC for a given rotation.
3. Derive the restoring torque of the co-RCC from its total strain energy.
4. Express the restoring torque nonlinearity of the co-RCC.

4.2.1 Restoring torque and motion of the spring elements
The nonlinear restoring torque of the spring elements can be expressed by series expansion

in the same way as Eq. (5), giving

MR (θ) = kR,0 θ + kR,2 θ
3 +O

(
θ5
)

(12)

for the RCC pivots and

Mp (∆v) = kp,0 ∆v + kp,2 ∆v3 +O
(
∆v5

)
(13)
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Fig. 16: Spring model of the co-RCC

for the parallel flexures.

The displacement of the parallel springs for a given rotation θ of the system corresponds to the
parasitic motion of the RCC pivots along v given in Ref. [35]:

∆v = −(9δ2 + 9δ + 1)LR
15 cosα

θ2 +O
(
θ4
)
, (14)

where LR is the length of the RCC flexures, α is the half angle between them and δ = d/LR
describes their intersection point, see Fig. 17.

4.2.2 Strain energy

The strain energy of the co-RCC for a rotation θ is the sum of the potential energies of each
spring

U = 2

(∫ θ

0
MR (ν) dν +

∫ ∆v

0
Mp (ν) dν

)
, (15)

which, when substituting with Eq. (12)-(14), yields

U = kR,0 θ
2 +

(
1

2
kR,2 +

(9δ2 + 9δ + 1)2L2
R

225 cos2 α
kp,0

)
θ4 +O

(
θ6
)
. (16)
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Fig. 17: Top view of a RCC flexure pivot with geometric parameters and a load acting at its center
of rotation

4.2.3 Restoring torque

The restoring torque of the co-RCC for a rotation θ is the derivative of the strain energy U with
respect to θ

Mc =
dU

dθ
= 2kR,0 θ +

(
2kR,2 +

4(9δ2 + 9δ + 1)2L2
R

225 cos2 α
kp,0

)
θ3 +O

(
θ5
)
. (17)

The nominal stiffness of the RCC pivot kR,0 and parallel flexures kp,0 can be substituted with the
expressions from Ref. [13]

kR,0 =
8EIR(3δ2 + 3δ + 1)

LR
and kp,0 =

24EIp
L3
p

, (18)

where E is Young’s modulus for the flexures, IR and Ip are the area moment of inertia of the cross-
section of the RCC and parallel flexures respectively, and Lp is the length of the parallel flexures,
see Fig. 5a, yielding

Mc =
16EIR(3δ2 + 3δ + 1)

LR
θ +

(
2kR,2 +

32(9δ2 + 9δ + 1)2EIpL
2
R

75 cos2 αL3
p

)
θ3 +O

(
θ5
)
. (19)
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4.2.4 Restoring torque nonlinearity

The nonlinearity of the co-RCC

kc,2 = 2kR,2 +
32(9δ2 + 9δ + 1)2EIpL

2
R

75 cos2 αL3
p

(20)

follows from Eq. (19) and its the relative nonlinearity according to Eq. (6) is

µc = µR +
2(9δ2 + 9δ + 1)2

75(3δ2 + 3δ + 1) cos2 αλ3

Ip
IR
, (21)

where

λ = Lp/LR (22)

is the dimensionless ratio of the length of the parallel flexures to the length of the crossed flexures,
see Fig. 5a, and

µR =
kR,2
kR,0

(23)

is the relative nonlinearity of the RCC flexures. We showed in Ref. [18] that kR,2 cannot be cal-
culated accurately using Euler-Bernoulli beam theory and overcome this issue by calculating it
numerically, see Sec. 6.3.

Remark. It is assumed here that Young’s modulus is the same for all flexures. If an anisotropic
material is chosen, the difference in Young’s modulus should be taken into account in the calcula-
tion of the nonlinearity.

4.3 Isochronism tuning

Our objective is to tune the isochronism defect of the co-RCC without affecting any other
crucial property. Equation (4) shows that isochronism can be tuned through the restoring torque
nonlinearity and Eq. (20) shows the parameters influencing it. Several parameters could be used
to vary the isochronism defect but only those of the parallel flexures, Lp and Ip, will have no
effect on the other crucial properties of the oscillator such as nominal stiffness (and consequently
nominal frequency), gravity sensitivity or stroke, which only depend on the geometry of the RCC
flexures. The length Lp of the parallel flexures is a convenient parameter for the tuning whereas
the range of Ip is limited by constraints on the flexure thickness h and height b (in the z-direction)
imposed by manufacturing.

The isochronism tuning achieved by modifying Lp is expressed in terms of daily rate by substi-
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tuting Eq. (21) into Eq. (8), yielding

ρ =

32400

(
µR + 2(9δ2+9δ+1)2

75(3δ2+3δ+1) cos2 α
Ip
IR

(
LR
Lp

)3
)(

Θ2 −Θ2
1

)
1 + 3

8

(
µR + 2(9δ2+9δ+1)2

75(3δ2+3δ+1) cos2 α
Ip
IR

(
LR
Lp

)3
)

Θ2
1

. (24)

In order to be able to set the sign of the isochronism defect, the RCC pivot is chosen to have a
negative nonlinearity µR [41] such that the two terms forming the nonlinearity in Eq. (20) are of
opposite sign. The sign of the defect then depends on the relative magnitude of these two terms.
The tuning obtained with Eq. (24) is displayed in Fig. 6 where the dimensionless ratio λ = Lp/LR
is used to make the results independent of scale.

5 ANALYTICAL MODEL: GRAVITY SENSITIVITY
As explained in Sec. 4, we treat the gravity sensitivity of the co-RCC flexure pivot oscillator

separately from it isochronism. This is done by assuming small amplitude, i.e., θ2 negligible in this
part of the analysis.

Our gravity sensitivity analysis follows the method introduced in Ref. [18] to express the change
in stiffness of the oscillator caused by gravity loading and to calculate the resulting timekeeping
defect. The development consists of the step below, following the structure of Sec. 3:

1. Calculate the rotational stiffness of a RCC pivot subject to a force applied in point O.
2. Calculate the rotational stiffness of a half co-RCC subject to a force applied in point O.
3. Calculate the rotational stiffness of a co-RCC subject to a force applied in point O.
4. Express the gravity sensitivity of the co-RCC in terms of daily rate

The analysis is valid under the following assumptions

• The loads are small and we express terms using series expansions around F = 0.
• The rotations are small and we express terms using series expansions around θ = 0.
• The RCC flexures are not subject to shear or torsion and, with the previous assumption, Euler-

Bernoulli beam theory can be used to calculate their deflection behavior.
• The dimension b of the flexures in the z-direction is large enough for the beams to be consid-

ered rigid in that direction in comparison with in-plane stiffness. We thus analyze the effect of
loads in the xy-plane only.
• The restoring torque caused by the parasitic shift of the RCC flexures is negligible. Note that

this is a standard assumption in the analysis of flexure pivots, see Refs. [35,38].
• The center of mass of the system is in point O as defined in Sec. 3 and stays there for any

rotation. The effect of gravity is then equivalent to a force applied in point O.
• The parallel flexures do not transmit any force along their sliding axis. This assumption is

reasonable knowing that their stiffness is much smaller than that of the “blocked” degrees-of-
freedom of the flexure joints. It is assumed that the possible stiffening of the parallel flexures
caused by gravity [13] is not sufficient to invalidate this assumption.
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5.1 Rotational stiffness of the RCC pivot subject to gravity
We use Euler-Bernoulli beam theory to compute the stiffness of a RCC pivot subject to gravity,

considering each flexure as a cantilever beam under axial loading with a rotation θ prescribed at
its extremity. The axial forces in the beams due to a an external load F applied on the mobile part
in point O, at an angle ϕ such as depicted in Fig. 17 are

P1 =
F

2

(
sinϕ

sinα
+

cosϕ

cosα

)
(25)

and

P2 =
F

2

(
−sinϕ

sinα
+

cosϕ

cosα

)
. (26)

Following the derivation in Ref. [18, Eq. (1) to (7)] with these two axial loads, the stiffness of the
loaded RCC becomes

kR =kR,0 +
EIR

12600LR

[
1680F̄

(
9δ2 + 9δ + 1

) cosϕ

cosα
− F̄ 2

(
9δ2 + 9δ + 11

) cos2 ϕ

cos2 α

+ F̄ 2
(
9δ2 + 9δ + 11

) sin2 ϕ

sin2 α

]
+O

(
θ2
)

+O
(
F̄ 3
)
.

(27)

The stiffness is expressed using series expansions at F = 0 for small loads and θ = 0 for small
amplitudes, where kR,0 is the nominal stiffness of the RCC for an infinitesimal rotation in absence
of external load given in Eq. 18 and

F̄ =
FL2

R

EIR
(28)

is the normalized external load on the pivot.

5.2 Rotational stiffness of the half co-RCC subject to gravity
The slider placed between the RCC and the body on which the gravity load is applied allows

only for forces along u to be transmitted to the RCC, see Sec.3.3. The resulting rotational stiffness
of the half co-RCC is obtained by substituting ϕ=90 degrees in Eq. (27), giving

kh(F̄ ) = kR,0 −
EIR
LR

9δ2 + 9δ + 11

12600 sin2 α
F̄ 2 +O

(
θ2
)

+O
(
F̄ 3
)
. (29)

Remark. We can see that with the co-RCC design, the deviation from the nominal stiffness
due to the external load has gone from first order F̄ in Eq. (27) to second order F̄ 2, which is the
effect desired for achieving gravity insensitivity, see Sec. 1.5.
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5.3 Rotational stiffness of the co-RCC subject to gravity
For a gravity load F acting on the co-RCC at an angle ψ with the x-axis, the RCC pivots 1

and 2 support the component of the load along their local u-axis, respectively F1 = F cosψ and
F2 = F sinψ.

In order to calculate the effect of gravity on the co-RCC stiffness, we replace the nominal
stiffness of the RCC pivots 2kR,0 in Eq. (17) with the stiffness of the loaded half co-RCC elements
kh(F̄1) + kh(F̄2), yielding

kc(F̄ ) = 2kR,0 −
EIR
LR

9δ2 + 9δ + 11

12600 sin2 α
F̄ 2
(

sin2 ψ + cos2 ψ
)

+O
(
θ2
)

+O
(
F̄ 3
)

= 2kR,0 −
EIR
LR

9δ2 + 9δ + 11

12600 sin2 α
F̄ 2 +O

(
θ2
)

+O
(
F̄ 3
)
.

(30)

We now have an element whose only DOF is a rotation and whose stiffness is gravity-insensitive:
the deviation from the nominal stiffness due to the external load is of second order and the result
is independent of the direction ψ of gravity. Note that this last property is obtained through the 90
degree angle between the two half co-RCC elements.

5.4 Gravity sensitivity in terms of daily rate
In horological terms, gravity sensitivity is specified by the daily rate caused by a change in

the orientation of the oscillator with respect to gravity. From Eq. (7), one can express the gravity
sensitivity of an oscillator with nominal stiffness k0 and stiffness k under gravity load

ρ = 43200
k − k0

k0
+O

(
(k − k0)2

)
. (31)

This expression is obtained using Taylor series expansion around k = k0 for a rotational oscillator
with frequency ω =

√
k/J , see Sec. 4.1.

Using Eq. 30 and neglecting the load effects of order>2 due to our small load assumption, the
gravity sensitivity of the co-RCC is

ρ(F̄ ) ≈ 43200
kc(F̄ )− kc(0)

kc(0)
≈ − 3

14

9δ2 + 9δ + 11

(3δ2 + 3δ + 1) sin2 α
F̄ 2. (32)

6 DIMENSIONING AND NUMERICAL VALIDATION
We give here an example of dimensions for a co-RCC oscillator reaching the practical specifi-

cations listed in Sec. 6.1. The resulting geometry is depicted in Fig. 18. We use this oscillator for
the numerical validation of the model using the finite element method (FEM).

6.1 Practical watch specifications
The following specifications are used as guidelines for our dimensioning

1. Isochronism defect of order 1 s/day over the operating stroke.
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Fig. 18: Example embodiment of a co-RCC oscillator

2. Daily rate stability in all orientations with respect to gravity within 5 s/day.
3. Nominal amplitude of operation of 15 degrees, assuming that this will be sufficient for an

escapement to work.
4. Amplitude variation of 10% during normal operation.
5. Planar design compatible with standard microfabrication processes.

6.2 Example of dimensioning
The geometry of the co-RCC pivot can be described by the following set of dimensionless

parameters for which we give the values chosen in this dimensioning:

• α = 34.7 degrees
• β = b/h = 20
• γ = LR/h = 347
• δ = d/LR = 0.1
• λ = 0.72
• F̄ = 0.92

The geometry of the RCC flexures is illustrated in Fig. 17 and the parallel flexures are chosen to
have the same cross-section (Ip = IR). Note that the normalized load F̄ results from the weight of
the chosen inertial mass.

These dimensions correspond to a watch mechanism and are compatible with standard micro-
fabrication processes such as DRIE. The crossing point δ is chosen so as to maximize the stroke
of the pivot (in order to reach specifications 3 and 4 of Sec. 6.1) while keeping a feasible planar
architecture satisfying specification 5 of Sec. 6.1. The maximum admissible stroke of a crossed
flexure pivot is actually obtained when δ = −0.5 (see Ref. [18, Eq. 14]) but values smaller than
δ = 0.1 would bring the flexures too close to each other or need a design in two planes. The
values of β and γ are chosen to allow for a large stroke while keeping sufficient out-of-plane stiff-
ness. For materials with a ratio σadm/E > 0.44%, such as silicon or some titanium alloys, the pivot
only reaches the admissible bending stress σadm for strokes θ > 19 degrees, see [18, Eq. 14], thus
satisfying specification 3 and 4 of Sec. 6.1.

The values of α and λ were chosen to reach isochronism (see Sec. 6.2.1) and a constant
gravity sensitivity of −5 s/day with the chosen normalized load F̄ . Any arbitrary value of gravity
sensitivity could have been chosen as long as it stays constant, such as predicted by Eq. 32.
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However, we know that our analytical model is not perfect and chose a gravity sensitivity of −5
s/day assuming that any deviation would stay of the same order and thus satisfy specification 2 of
Sec. 6.1.

6.2.1 Isochronism tuning
We explained in Sec. 4.3 that the isochronism defect of the co-RCC could be tuned using the

parameter λ, by varying the length Lp of the parallel flexures. Figure 6 displays the influence of λ
on the isochronism of the example co-RCC. The numerical estimates for the isochronism defect
are calculated in terms of daily rate at Θ = 16.5 degrees with respect to reference amplitude
Θ1 = 15 degrees using Eq. 24. This corresponds to a 10% amplitude variation with respect to the
reference amplitude in accordance with the specifications of Sec. 6.1.

Figure 6 shows that λ can be used to introduce a range of positive or negative isochronism
defects up to the of order ±100 s/day. This means that a value of λ can be found such that the
oscillator is isochronous, i.e. ρ = 0, or that significant isochronism defects external to the oscillator
can be compensated.

In order to satisfy specification 1 of Sec. 6.1, one has to estimate the step size ∆λ that cor-
responds to step size ∆ρ of 1 s/day. Given the dimensions specified in Sec. 6.2, the slope of the
daily rate around the operating point (α = 34.7 degrees and λ = 0.72) is -560 s/day, see Fig. 6,
which means that a rate variation of ∆ρ = 1 s/day corresponds to a variation ∆λ/λ = 0.25%.
For parallel flexures with a length Lp of order 1 mm, this corresponds to a change in length of
order 2.5 µm, which is compatible with DRIE and laser ablation. Note that this resolution can be
increased by setting the operating point where the slope of ρ (λ) is smaller. For example, around
the operating point λ = 1 in Fig. 6, ∆ρ = 1 s/day is obtained with a 0.65% variation of λ.

Figure 6 also shows that for pivots with different values of RCC nonlinearity, characterized
here by different values of α, a value of λ can be found such that the oscillator is isochronous. The
influence of α on the relative nonlinearity µR of the RCC is showed in Fig. 19.

Remark. The parameter α affects both terms of the co-RCC nonlinearity in Eq. (20) and can
be used as design parameter to offset the isochronism tuning curve, see Fig. 6. As mentioned
in Sec. 4.2.4, the RCC nonlinearity µR is calculated numerically using the method described in
Sec. 6.3.1. In order to get an expression with respect to α, we fit a curve through a set of FEM-
calculated data points depicted in Fig. 19.

6.3 Numerical validation
We validate the analytical models described in Sec. 4 and 5 by simulating the example co-RCC

depicted in Fig. 18 using the commercial FEM software ANSYS [44]. We use a mesh of hexahedral
elements of type SOLID186 that is refined on the flexures such that there are 3 elements across
their thickness h and 6 along their height b. The number of elements along the length of the
flexures is chosen such that the elements have a square face. The meshing can be seen in
Fig. 20. Since we are interested in the nonlinear behavior of our system, the structural analyses
are performed with the large deflection setting.

6.3.1 Isochronism validation
We evaluate the nonlinearity of a pivot by FEM from its torque-angle relationship. We apply 50

incremental displacement values from 0 to 10 degrees on the mobile end of the pivot and measure
the reaction torque on the fixed frame. We then fit an odd cubic polynomial to the torque-angle
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Fig. 19: Relative nonlinearity µR of the example RCC pivot versus α. The data is fitted with
a Fourier model (with period π due to symmetry): µR(α) = −2.6 + 0.14 cos 2α + 3.1 sin 2α +
0.76 cos 4α− 0.17 sin 4α

.

(a) First mode shape (b) Close-up view of the mesh

Fig. 20: Finite element model of the co-RCC oscillator

relationship and extract the relative nonlinearity using Eq. (20). This method is used to calculate
the relative nonlinearity of the RCC for the analytical model, see Fig. 19, and to calculate the
relative nonlinearity of the co-RCC for the numerical validation.

The analytical and numerical results are compared in terms of daily rate, from the relative
restoring torque nonlinearity, using Eq. 8. The results are computed for different values of λ and α
and plotted in Fig. 6, showing a good match that validates the analytical component of the model.

For the values of design parameters chosen to reach isochronism (α = 34.7 degrees and λ =
0.72), the simulation returns a restoring torque nonlinearity µ = −0.0024 corresponding to a daily
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rate ρ = −1.1 s/day at Θ = 16.5 degrees with respect to reference amplitude Θ1 = 15 degrees,
thus satisfying specification 1 of Sec. 6.1. Note that the remaining defect could be the result of
numerical errors or, if this is not the case, could be further reduced by fine-tuning the value of Lp.

6.3.2 Gravity sensitivity validation
We simulate the gravity sensitivity of the pivot by subjecting it to standard earth gravity and

extracting the frequency of its first vibration mode, see Fig. 20a. In order to be consistent with
the theoretical model, the masses of the intermediate bodies and flexures are set to zero and the
center of mass is in point O. The data is collected for accelerations in the xy-plane with orientation
ψ spanning the interval from 0 to 360 degrees and the daily rate with respect to operation without
gravity calculated with Eq. (7) is displayed in Fig. 21.

The gravity sensitivity obtained by FEM simulation varies between −4.5 and −7 s/day whereas
Eq. (32) returns a constant value of −5 s/day with the dimensions given in Sec. 6.2. Considering
the order of magnitude observed (a 1 s/day rate variation corresponds to a 10 parts per million
frequency variation), the results are close enough to validate the model.

The numerical solution shows a daily rate of −5.75±1.25 s/day which is well within the practical
mechanical watch specification 2 of Sec. 6.1. Note that the constant offset of −5.75 s/day is not
problematic since it can be compensated by tuning the nominal frequency of the oscillator. This
can be done by varying its inertia and is a standard procedure for watchmakers.

Remark. The differences between the analytical model and the numerical solution could be
explained by a shift of the center of mass of the pivot due to the u-component of the RCC parasitic
shift that is neglected in our model, see Sec. 3.2.1. This assumption is coherent with the symmetric
maximum and minimum observed at 45 and 225 degrees, corresponding to the axis of symmetry
of the architecture.
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Fig. 21: Gravity sensitivity in s/day of the co-RCC oscillator versus the angle ψ of the gravity load
in the xy-plane
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7 CONCLUSION
This article presents a new way of tuning the isochronism of flexure-based mechanical time

bases by taking advantage of their parasitic motion. We highlighted the importance of isochronism
in the development of precision mechanical time bases and situated our contribution in this con-
text. We invented a new flexure pivot called co-RCC that integrates the new isochronism tuning
method in a gravity-insensitive architecture. We provide an analytical model which can be used to
dimension an oscillator and validated it by numerical simulation. We showed that the concept can
be embodied in a compact architecture that is compatible with microfabrication. Our future work
will consist in the experimental validation of the co-RCC concept and the exploration of new ways
to tune the isochronism of flexure-based mechanical oscillators.
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