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Abstract—Modern power systems are at risk of largely re-
ducing the inertia of generation assets and prone to experience
extreme dynamics. The consequence is that, during electrome-
chanical transients triggered by large contingencies, transmission
of electrical power may take place in a wide spectrum well
beyond the single fundamental component. Traditional modeling
approaches rely on the phasor representation derived from the
Fourier Transform (FT) of the signal under analysis. During
large transients, though, FT-based analysis may fail to accurately
identify the fundamental component parameters, in terms of
amplitude, frequency and phase. Taking inspiration from the
theory on analytic signals, this paper proposes a different
approach to model signals of power systems electromechanical
transients based on the Hilbert transform (HT). We compare
FT- and HT-based approaches during representative operating
conditions, i.e., amplitude modulations, frequency ramps and step
changes, in synthetic and real-world datasets. We further validate
the approaches using a contingency analysis on the IEEE 39-bus.

Index Terms—Hilbert Transform, Instantaneous power, Phasor
analysis, Power system modeling, Transient analysis

I. INTRODUCTION

Power systems are rapidly evolving towards low-inertia
networks and system operators are facing new challenges to
operate their grids safely [1]–[5]. Specifically, they are facing
a dramatic increase in renewable energy sources and inverter-
connected devices that, as such, do not provide any inertia to
filter dynamics originated by power system disturbances [6]–
[9]. In the so-formed inertia-reduced power grids, phenomena
that used to be exceptional in traditional networks, such
as frequency modulations, rapid (i.e., sub-second) frequency
variations or sudden amplitude steps, are more likely to be
experienced, and have been identified and documented by
system operators [10], [11].

A clear example happened on September 2016 when the
South Australian system faced a severe blackout because
a strong windstorm hit the region while half of its power
consumption was fed by wind generation [10]. Fig. 1(a)
shows the frequency as recorded by Phasor Measurement Units
(PMUs) installed in that area. The frequency experienced a
large drop of almost 4 Hz in about 0.7 seconds, with an
estimated Rate-of-Change-of-Frequency (ROCOF) of roughly
-6.25 Hz/s. From a theoretical perspective, it is worth inves-
tigating whether these operating conditions can be thoroughly
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Fig. 1. Frequency estimated by PMUs during the Australian blackout on
September 28, 2016 [10] (a) and normalized spectrum of a single-tone signal
characterized by ROCOF of -6.25 Hz/s computed using the DFT (b).

described using traditional power system analysis tools that
refer to the concept of phasor and assume signals to be
in steady-state and characterized by narrow-banded spectra
[12]. Typically, phasor parameters are determined using the
Fourier Transform (FT): the frequency, amplitude and phase
of the phasor associated to the fundamental component can
be inferred from the FT coefficients laying around the nomi-
nal system frequency [13]. However, during dynamic events,
the FT-based representation may not allow for unequivocally
identifying the parameters of the fundamental component [14].
Same considerations hold when applying frequency tracking
techniques, such as the Short-Time FT (STFT) [15], or when
representing the signal as a series of dynamic coefficients
via Taylor-Fourier expansions [16]. In this respect, Fig. 1(b)
represents the spectrum of a single-tone signal at 50 Hz, whose
frequency is decaying with a ROCOF of -6.25 Hz/s, thus
replicating the same condition that occurred in South Australia
before the blackout. For the sake of frequency resolution and
estimation accuracy, the Discrete FT (DFT) is computed over
a window of 1 s, leading to a spectrum granularity of 1 Hz.
The figure shows that only 32% of energy is transmitted in
the range between 48 and 52 Hz, and that the rest is spread
well beyond the fundamental tone. This result shows that an
analysis limited to a narrow bandwidth surrounding the rated
power system frequency would provide only a partial approx-
imation of the grid representative signals. Indeed, any mod-
eling approach relies on assumptions, whose verification is a
necessary condition for obtaining accurate results. DFT-based
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approaches, intended for single narrow-band components, do
not consider the entire Fourier series decomposition of the
signal under test, therefore, they may provide an inaccurate
representation when studying non-stationary signals.

The traditional approach towards power system analysis,
on the one hand, has driven the development of network
modeling techniques based on the concept of phasor. In this
sense, the phasor extraction operation can be seen as a signal
compression, driven by the necessity of providing a concise
and exhaustive description of the information contained in the
time-domain signals. On the other hand, the phasor concept
has motivated also the implementation of system-awareness
applications (e.g., PMUs and state estimators). However, the
capability of accurately describing the power system behaviour
is strongly related to the paradigm employed to formulate
its governing physical laws. In this regard, power system
operators are nowadays experiencing difficulties in interpreting
phasor data estimated during large transients and are con-
cerned about potentially wrong control actions relying on
those estimates. The emerging trend is to build situational
awareness systems that leverage on the raw time-domain data
[17]. For instance, many PMU vendors are considering the idea
of transferring the so-called point-on-wave data along with
the PMU data stream. Those data could be collected at the
data concentration point and then further analyzed by highly
powerful computation tools. However this solution, besides
being extremely bandwidth-demanding for the underlying
telecommunication infrastructure, is simply postponing the
problem of successfully compressing the information related
to the considered power system event.

In this context, we are investigating mathematical transfor-
mations that enable us to go beyond the concept of phasor
based on the FT: we envision a treatise in which the signal
dynamics are preserved unaltered and thus can be suitably
estimated, potentially leading to novel approaches for the oper-
ation and control of power networks. In this regard, the Hilbert
Transform (HT) might represent a promising and effective
solution. Given the acquired waveform, the HT produces a
complex-valued signal, also known as analytic signal, whose
spectrum consists only of real components [18]. Moreover,
the HT may enable us to analytically formulate power system
dynamics by means of dynamic phasors [19]–[22]. Also,
analytic signals may be used to formulate circuit theory
fundamental laws supporting frequency adaptive simulation of
power system transients [23]–[27].

In this paper, we discuss the advantages of an HT-based
representation of power system transients. First, we define
equivalent expressions of signals representing typical power
system dynamics and we derive their representation using
the FT and the HT. Specifically, we consider (i) amplitude
modulation, (ii) frequency ramp and (iii) amplitude step as
representative transient operating conditions. The comparison
of the obtained spectra enables us to highlight the limitation of
FT-based analysis in non-stationary conditions and, conversely,
the HT capability of accurately tracking the evolution of in-
stantaneous power flows. Then we present a way to reconstruct
the true instantaneous power using analytic signals. Finally,
we validate these purely theoretical findings analyzing the

results of dedicated time-domain simulations by means of the
FT and HT. In particular, we use a simple 2-bus system to
reproduce the three above defined transients as well as real-
world datasets. We further use the IEEE 39-bus system to
include a contingency analysis on a large scale power grid.

The paper is structured as follows. Section II provides
the theoretical foundations. Section III describes the vali-
dation method. Section IV assesses the proposed approach
performance in representative operative conditions. Section V
concludes the paper discussing possible implications of the
proposed HT-based analysis.

II. REPRESENTATION OF POWER SYSTEM TRANSIENTS
USING THE HILBERT TRANSFORM

This section aims at providing the theoretical basis of our
investigation. First, Section II-A formulates typical power
system transients using the FT and the HT, showing that, in
principle, it is possible to build a solver that uses analytic
signals to retrieve the instantaneous parameters associated
to real power system signals. Such solver should integrate
the Kirchhoff’s circuit laws associated to the portion of the
electrical grid under analysis as well as the expression of
typical power system operating conditions. In the absence of
an appropriate solver, whose formulation is out of the scope
of this paper, Section II-B presents a way to reconstruct the
true instantaneous power using analytic signals.

For the sake of nomenclature, we recall some definitions
regarding the HT. Given a generic time-varying real-valued
signal x(t), its HT H(·) is defined as [18]:

x̃(t) = H[x(t)] =
1

π

∫ +∞

−∞

x(τ)

t− τ
dτ (1)

Such transform has the property of introducing a phase shift
of −π/2 at each positive frequency and +π/2 at each negative
frequency. The combination of the real signal x(t) and its HT
x̃(t) form the so-called analytic signal x̂(t):

x̂(t) = x(t) + j · H[x(t)] = x(t) + j · x̃(t) (2)

A. Application to Realistic Scenarios

The HT enables us to analyze realistic signals typical of
power system transients, where traditional FT-based tech-
niques fail to give an appropriate phasor representation. For
instance, let us start with the case of a generic power system
signal whose amplitude is modulated by a cosine whose
frequency is much slower than the fundamental one (i.e.,
the power system frequency). To fix ideas, this signal may
represent a nodal voltage. This phenomenon typically appears
during inter-area oscillations between large system regions.
Formally, an amplitude modulation can be modeled as [28]:

x(t) = A0(1 + kacos(2πfat)) · cos(2πf0t+ ϕ0) (3)

being f0, A0 and ϕ0 the fundamental tone frequency, am-
plitude and initial phase, respectively, fa the modulation
frequency (fa � f0) and ka the modulation factor.
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In this case, the signal FT can be expressed as:

F [x(t)] = A0/2 ·
[
δ(f − f0)ejϕ0 + δ(f + f0)e−jϕ0 +

ka
2
·
[
δ(f − (f0 + fa))ejϕ0 + δ(f + (f0 + fa))e−jϕ0 +

δ(f − (f0 − fa))ejϕ0 + δ(f + (f0 − fa))e−jϕ0
]]

(4)

The spectrum is characterized by three pairs of bins in the
positive and negative frequency domain: one at frequency f0
and two centered around it at f0±fa. In such a scenario, an FT-
based signal analyzer (tailored to investigate signals around the
rated power system frequency) could fail to provide a correct
spectrum interpretation because of the interference generated
by the modulating tones. Conversely, the HT-based approach
enables us to derive a single component analytic signal:

x̂(t) = A0(1 + kacos(2πfat)) · ej(2πf0t+ϕ0) (5)

i.e., a phasor rotating at the fundamental frequency f0, while
its amplitude is pulsating at the modulation frequency fa.

The second case under investigation consists in a power
system whose frequency is decaying with a descending ramp
trend, as typical of the stages anticipating a severe system
collapse. A frequency ramp can be modeled as [28]:

x(t) = A0 · cos(2πf0t+ ϕ0 +Rπt2) (6)

being R the ramp rate. The signal FT can be formulated as:

F [x(t)] =
A

2
√

2
e
j

[
π(f−f0)2

R −π4 +ϕ0

]
+

A

2
√

2
e
−j

[
π(f+f0)2

R −π4 +ϕ0

]

(7)
In this context, it should be noticed how difficult it is to dis-
tinguish the fundamental tone from the spurious contributions
introduced by the time-varying frequency.

By contrast, the HT provides the following analytic signal:

x̂(t) = A0 · ej(2πf0t+ϕ0+Rπt
2) (8)

that can be regarded as a dynamic phasor, characterized by
constant amplitude and rotating at the ramping frequency.

The final case of our investigation refers to a situation where
FT-based methods provide largely discrepant results, i.e., a
signal whose amplitude experiences a step, modeled as [28]:

x(t) = A0(1 + ksh(t)) · cos(2πf0t+ ϕ0) (9)

being ks the step factor and h(t) the Heaviside function, that
is null for t < 0 and 1 for t ≥ 0. The signal FT is:

F [x(t)] =A/2 (1 + ks/2) · [δ(f − f0)ejϕ0 + δ(f + f0)e−jϕ0 ]

+
ksA

j4π(f − f0)
ejϕ0 +

ksA

j4π(f + f0)
e−jϕ0 (10)

This formulation still maintains the information regarding
the fundamental tone, but contains also two hyperbolic terms
whose contributions are spread over the whole frequency
spectrum. In such a scenario, an FT-based approach fails in
providing an appropriate reconstruction of the signal under
investigation due to the scattering of the spectrum bins that
largely bias the information related to the fundamental tone.

The HT, instead, provides an analytic signal formulation:

x̂(t) = A0(1 + ksh(t)) · ej(2πf0t+ϕ0) (11)
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Fig. 2. DFT modules of a single tone cosine signal y1 (red), of an amplitude
modulation term y2 (blue), of a frequency ramp term y3 (green) and of an
amplitude step y4 (pink). The DFT is computed using an observation interval
of 200 ms and a sampling frequency of 10 kHz.

where the amplitude step information is entirely preserved.
Equations (5), (8) and (11) are derived assuming the fol-

lowing property of the Hilbert transform: the HT of the
product of two signals with non-overlapping spectra is equal
to the product of the low-frequency term by the HT of the
high-frequency term [18]. In this regard, Fig. 2 shows the
DFT modules of four signals, computed using an observation
interval of 200 ms and a sampling frequency of 10 kHz. In
particular, the red plot represents the spectrum of a single
tone signal y1 pulsating at 49 Hz, with amplitude A0 = 1
p.u. and phase ϕ0 = 0 rad. The blue plot represents the
modulating term in (3), characterized by a typical modulation
amplitude for power systems ka = 0.1 p.u., and modulation
frequency fa = 5 Hz (y2(t) = kacos(2πfat)). The green
plot refers to the frequency ramp in (6), with a ramping
factor R = -6.25 Hz/s (y3(t) = cos(Rπt2)). The pink plot
represents the amplitude step in (9), applied in the central
point of the window, considering a typical step amplitude for
power systems ks = 0.1 p.u. (y4(t) = ks · h(t)). As shown
in the figure, in the frequency range [45, 55] Hz, the DFT
bins corresponding to the fundamental tone y1 are at least
two orders of magnitude bigger than the DFT bins of the
interfering tones y2, y3 and y4. Therefore, even though it is
not formally verified that the two signals are characterized by
non-overlapping spectra, it is practically satisfied by typical
power systems signals when the frequency resolution is in the
order of few Hz.

It is also worth pointing out that the current treatise refers to
single tone signals. In the presence of interfering components,
a suitable decomposition should be performed, like the one
introduced by the Hilbert-Huang transform [29], [30].

B. Reconstruction of the Electrical Power using the HT

Let us consider two signals representing a generic voltage
v(t) and current i(t) of a power system. The instantaneous
power is computed as the product among the two waveforms:

p(t) = v(t) · i(t) (12)

By applying (2), the analytic signals associated to the voltage,
current and instantaneous power can be expressed as:

v̂(t) = v(t) + j · H[v(t)] = v(t) + j · ṽ(t)

î(t) = i(t) + j · H[i(t)] = i(t) + j · ĩ(t)
p̂(t) = p(t) + j · H[p(t)] = p(t) + j · p̃(t) (13)
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Furthermore, if we compute the product between the ana-
lytic signals of voltage and current, we get:

p̂′(t) = v̂(t) · î(t) = [v(t) + j · ṽ(t)] · [i(t) + j · ĩ(t)] =

= v(t)i(t)− ṽ(t)̃i(t) + j · [ṽ(t)i(t) + v(t)̃i(t)] (14)

In a similar way, the product between the analytic signals of
voltage and current complex conjugate is:

p̂′′(t) = v̂(t) · conj(̂i(t)) = [v(t) + j · ṽ(t)] · [i(t)− j · ĩ(t)] =

= v(t)i(t) + ṽ(t)̃i(t) + j · [ṽ(t)i(t)− v(t)̃i(t)] (15)

It is interesting to compute the sum of (14) and (15):

p̂′′′(t) = p̂′(t) + p̂′′(t) = 2v(t) · i(t) + 2j · ṽ(t) · i(t) (16)

whose real part is proportional to the instantaneous power:

real(p̂′′′(t)) = 2p(t) (17)

At first, voltage and current signals can be modeled as
sinusoids pulsating at the same frequency f (similar results
can be obtained also for more exhaustive formulations):

v(t) = V cos(2πft+ ϕv), i(t) = Icos(2πft+ ϕi) (18)

The instantaneous power is given by the waveforms’ product:

p(t) = v(t) · i(t) =
1

2
V I[cos(ϕv−ϕi)+cos(4πft+ϕv+ϕi)]

(19)
As expected, the resulting instantaneous power pulsates at a
frequency that is double the power system frequency. The
voltage and current HTs are obtained by shifting the spectra
by ±π/2, resulting in the following analytic signals:

v̂(t) = v(t)+j ·ṽ(t) = V cos(2πft+ϕv)+j ·V sin(2πft+ϕv)
(20)

î(t) = i(t) + j · ĩ(t) = Icos(2πft+ϕi) + j · Isin(2πft+ϕi)
(21)

If we compute the HT of the instantaneous power, we get:

p̃(t) =
1

2
V Isin(4πft+ ϕv + ϕi) (22)

However, by comparing this result with (19), we notice that the
information regarding the constant offset is lost. That is to say
that the HT of the instantaneous power computed by simply
using its definition is useless with respect to (19). Similarly,
if we compute the analytic signal of p(t), we get:

p̂(t) = p(t) + j · p̃(t) =
1

2
V I
[
cos(ϕv − ϕi) +

+cos(4πft+ ϕv + ϕi) + j · sin(4πft+ ϕv + ϕi)
]

(23)

that, compared to (19), maintains the constant offset informa-
tion, but introduces an imaginary complex term that does not
have a clear physical meaning.

As in (14) and (15), p̂′ and p̂′′ can be computed as:

p̂′(t) = V I · [cos(4πft+ϕv +ϕi) + j · sin(4πft+ϕv +ϕi)]
(24)

p̂′′(t) = V I · [cos(ϕv − ϕi) + j · sin(ϕv − ϕi)] (25)

Finally, as in (16), the sum of the obtained quantities is:

p̂′′′(t) = V I · [cos(ϕv − ϕi) + cos(4πft+ ϕv + ϕi)]+

j · V I · [sin(ϕv − ϕi) + sin(4πft+ ϕv + ϕi)] (26)

v(t) R LvA(t) vB(t)

iA(t) iB(t)

A BTransmission
Line (FD)

Fig. 3. Block diagram of the adopted EMTP-RV simulation model. The
generator is characterized by nominal voltage of 380 kV, and is connected to
a 100 MW load through a 100 km frequency dependent (FD) overhead line.

whose real part corresponds to twice the instantaneous power
in (19), exactly as in (17), demonstrating that p̂′′′ can be
used to derive the instantaneous power of an electrical grid.
The imaginary part, instead, does not have a specific physical
meaning but is just a modeling artifact.

III. VALIDATION MODELS AND ALGORITHM

In this section, we provide the modeling and algorithmic
details for the numerical validation of the proposed HT-based
analysis. To this end, we use two models and two different
simulation environments to generate datasets characterized by
significant power system dynamics. First, we adopt a simple
2-bus model using the EMTP-RV simulation environment
[31], [32], in order to replicate the waveforms described in
Section II. Second, we use the IEEE 39-bus model [33], [34]
implemented within the OPAL-RT environment [35], in order
to emulate the operating conditions of large-scale networks.
We further present an algorithm that enables us to compare
the performance of FT- and HT-based approaches. It is worth
pointing out that the FT is approximated by means of the DFT.

A. Simple 2-bus Model

We perform off-line simulations within the EMTP-RV sim-
ulation environment [31], [32]. Without loss of generality, in
order to use a repeatable example, we refer to the simple
model in Fig. 3, that consists of a time-varying 3-phase voltage
generator powering a generic load through a transmission line,
characterized by steady-state rated voltage of 380 kV at 50 Hz.

The voltage source has been modeled by means of a look-
up-table providing point-on-wave data representing a generic
dynamic voltage supplying the line. We consider a 100 km
aluminum conductors steel reinforced overhead line modeled
using the frequency dependent line model in [36]. The load,
instead, is modeled by means of an R-L parallel equivalent,
where R and L have been tuned in order to get a total load of
100 MW and 0.9 power factor in case of a purely sinusoidal
voltage at 50 Hz.

B. The IEEE 39-bus Model

In order to test the proposed technique over large-scale
power systems, we adopt the Opal-RT eMEGAsim PowerGrid
Real Time Simulator (RTS) [35] to implement a detailed dy-
namic model of IEEE 39-bus power system, also known as 10-
machine New-England power system [33], represented in Fig.
4. This model represents a widely-employed benchmark for
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Fig. 4. Block diagram of the modified IEEE 39-bus power grid Opal-RT
simulation model [34]. The system is characterized by nominal voltage of
345 kV. The model consist of 6 synchronous generators (blue circles), 4 wind
farms (green circles) and 19 loads (orange arrows). The total installed capacity
is 10 GW.

performance evaluation and comparison of several monitoring
and control applications. In more detail, the simulated power
system has a nominal voltage of 345 kV, and consists of 39
buses, 10 generators and 19 loads. In order to take into account
the effects of distributed renewable generation, we modify the
benchmark by replacing 4 conventional synchronous gener-
ators with wind farms [37]. Specifically, this reduced-inertia
model includes wind farms instead of generators G1, G5, G8,
and G9, for a total wind installed capacity of 4 GW. The total
capacity for conventional synchronous generators is 6 GW, for
an overall system installed capacity of 10 GW. Moreover, in
order to emulate realistic load and generation patterns, we use
wind and load profiles coming from real measurements. The
network is modeled in Simulink and the simulations are run
using the Opal-RT eMEGAsim RTS. More details about this
model are provided in [34].

C. The Validation Algorithm

In the simulated scenario, we know the time-domain 3-phase
waveforms of voltage and current in each node, and we post-
process them via DFT and HT, as described in Algorithm 1.

First, we define the true instantaneous power p(t) as the
product between voltage and current waveforms (line 1 in Alg.
1). We focus our investigations on the instantaneous power,
to avoid the non-unique interpretation of active and reactive
power (and the underlying hypothesis of steady-state phasor)
in case of a broad signal spectrum [38]. The 3-phase power is
obtained by summing the contribution of each phase {a, b, c}.
In order to emulate more realistic operating conditions, we
simulate the noise and measurement uncertainty by means
of a purely additive and uncorrelated white Gaussian noise
component (line 3 and 13). Specifically, we consider a signal-
to-noise ratio (SNR) equal to 80 dB.
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Fig. 5. Magnitude and phase response of the filter approximating the ideal HT
over the whole frequency bandwidth (a) and over the power system operating
conditions (b): filter order 31 and transition width 50 Hz.

Algorithm 1
1: p(t) =

∑
abc v(t) · i(t) . True 3-phase power

FT analysis
2: for x(t) = {v(t), i(t)}abc
3: x(t) = x(t) +N (t) . Noise adding
4: for t = 0→ end,∆t = 200ms
5: X(k) = F [x(t) · w(t)] ≈ FFT [x(t) · w(t)]
6: {f̃(t), Ã(t), ϕ̃(t)} = IpDFT (X(k))
7: x̃F (t) = Ã(t)cos(2πf̃(t)∆t/2 + ϕ̃(t))
8: end for
9: end for

10: p̃F (t) =
∑
abc ṽF (t) · ĩF (t)

11: ∆pF (t) = p̃F (t)− p(t)
HT filter analysis

12: for x(t) = {v(t), i(t)}abc
13: x(t) = x(t) +N (t) . Noise adding
14: x̂H(t) = x(t) + j · H[x(t)] ≈ filter[x(t)]
15: end for
16: p̂′(t) =

∑
abc v̂(t) · î(t)

17: p̂′′(t) =
∑
abc v̂(t) ∗ î(t)

18: p̂′′′(t) = p̂′(t) + p̂′′(t)
19: p̃Hfil(t) = real(p̂′′′(t))/2
20: ∆pHfil(t) = p̃Hfil(t)− p(t)

HT functional basis analysis
21: for x̂H(t) = {v̂H(t), îH(t)}abc
22: for t = 0→ end,∆t = 200ms
23: X̂(k) = DFT [x̂H(t)]
24: P = D†X̂(k)
25: N = norm[PD − X̂(k)]
26: [nidx, ncoeff ] = min[N ]
27: x̂Hbas(t) = ncoeff ·D(:, nidx)
28: end for
29: end for
30: p̃Hbas(t) =

∑
abc ṽHbas(t) · ĩHbas(t)

31: ∆pHbas(t) = p̃Hbas(t)− p(t)
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When the FT is adopted, we analyze the signals using a
method inspired by the IEC Std. 61000-4-7 [39]: by means of
sliding windows of 200 ms, we shift the observation interval
sample-by-sample (given the sampling frequency of 10 kHz,
this corresponds to steps of 100 µs) (line 4). For each window,
we approximate the FT by means of the DFT computed via a
Fast FT (FFT) algorithm (line 5). The adopted window length
(corresponding to 10 cycles at the nominal power system
frequency) determine a 5 Hz granularity in the frequency
domain. In order to reduce spectral leakage effects, we win-
dow the signal with the Hanning weighing function w(t). In
order to reduce the effects of spectrum granularity, for each
observation interval we define the estimated frequency f̃(t),
amplitude Ã(t) and phase ϕ̃(t) by means of the Interpolated
DFT (IpDFT) (line 6) [40], [41]. For the sake of conciseness,
this analysis is not repeated for different interval lengths or
windowing functions1. These estimates are used to approx-
imate the time domain trend of the sinusoidal component in
the considered observation interval. We construct the estimated
signal x̃F (t) by extracting the central point of each of the
consecutive sliding windows (line 7). The 3-phase power is
obtained by summing the contribution from each phase (line
10) resulting in power errors (line 11).

As regards the HT, we first compute the analytic signal of
the noisy waveforms (line 14). We approximate the analytic
signal by means of a filter using 10 kHz sampling frequency,
filter order set to 31 and transition width set to 50 Hz, in order
to comply with PMU-based applications [42]. As shown in
Fig. 5, the magnitude response is nearly equal to zero (the
ideal value) for the positive frequency domain, whereas it is
lower than -120 dB in the negative frequency range, achieving
a high rejection of the long-range interference coming from
the negative frequency components. As regards the phase
response, an offset is introduced but the trend around the
rated power system frequency is almost linear and can be
characterized and compensated in post-processing.

Finally, we compute the quantities defined in equations (14)-
(16) (line 16-18). As in (17), the estimated power p̃H(t) is
computed as the real part of p̂′′′(t) (line 19) and the corre-
sponding power errors are consequently computed (line 20).

D. Functional Basis Analysis

An alternative solution for approximating the signal HT is
provided by functional analysis [43]. The acquired signal x(t)
is projected over a pre-defined vector basis of analytic signals
whose kernel is defined as:

(1 + gA(t)) · ej(2πgf (t)t+gϕ(t)) (27)

where the functions gA, gf and gϕ account for the time-
variations of amplitude, frequency and phase of the funda-
mental component, and might follow different trends like

1It is worth observing that as for any FT-based approach, the longer the
observation interval, the smaller the spectrum granularity and thus the higher
the accuracy of the resulting estimates. By contrast, a shorter interval length
results in a faster response time in passing from one steady state to the other.
In this study we are mainly interested in the accuracy of the estimates, rather
than on their responsiveness, therefore, we adopt a fairly long observation
interval.

ramps, sinusoids or step changes. Differently from the filtering
approach, the projection over a basis would allow to identify a
mathematical model of the parameters’ evolution that, de facto,
would enable the compression of the time domain information
into few coefficients of (27). In this regard, it is worth noticing
that the employment of analytic signals enables us to define
dictionary atoms that are not pure sinusoidal tones, but consist
of modulated complex exponentials that better match the wide-
band spectrum of the dynamics under investigation. However,
its performance depends on the number of possible realizations
of (27) included in the basis: the larger the more accurate, but
also the more computationally demanding and numerically ill-
conditioned due to the high correlation between the vectors.

A possible solution via functional basis is provided in this
Section, in order to demonstrate the prospective application of
such an approach. In particular, a dictionary D of vectors is
constructed, that accounts for a limited set of disturbances that
are likely to take place in the power system scenario. Accord-
ing to the IEC Std. 61000-4-7 [39], observation intervals of
200 ms are considered. More specifically, the frequency of the
fundamental tone is limited to a finite bandwidth between 48
and 52 Hz with a step of 0.01 Hz. Then, for each frequency,
the following vectors are included in the basis:
• A steady-state sinusoid (gA = 0, dgf/dt = 0, gϕ = 0);
• A sinusoid characterized by an amplitude modulation
gA(t) = 1 + ka · cos(2πfat), being ka = 10% and fa
= [1, 5] Hz with steps of 0.01 Hz (dgf/dt = 0, gϕ = 0);

• A sinusoid characterized by a frequency ramp gϕ(t) =
R · πt2, being R = [-6, 6] Hz/s with steps of 0.01 Hz/s
(gA = 0, dgf/dt = 0);

• A sinusoid characterized by an amplitude step gA =
kshs(t − τ), being ks = 10% and τ = [0, 200] ms with
steps of 5 ms (dgf/dt = 0, gϕ = 0).

The dictionary contains the frequency domain representations
of the so-defined analytic atoms.

The analytic signals computed in line 14 of Algorithm 1 are
first divided into overlapping windows of 200 ms, and then
projected over the dictionary (line 24 in Alg. 1). Then, the
residuals of the projection errors are computed (line 25) and
the vector that minimizes the residuals is selected as solution
(line 26). Finally, it is sufficient to multiply the selected
vector for the corresponding projection coefficient to obtain
the best approximated trend (line 27). The 3-phase power is
obtained by summing the contribution from each phase (line
30) resulting in power errors (line 31).

IV. RESULTS

In this section, we describe the results that enable us to
validate the proposed HT-based analysis. We analyze three
different datasets. The first one is obtained using EMTP-
RV and is inspired by the signals formulated in Section II,
representing approximations of actual power system operating
conditions. The second dataset is still obtained using EMTP-
RV and refers to real-world events. Particularly, we replicate
the waveforms taking place in Australia on September 2016
(see Fig. 1) and in Europe during an inter-area oscillation
on December 2016 [11]. In that occasion, an unexpected
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opening of a line in the French transmission network caused
a voltage phase angle difference in the continental Europe
electricity system and decreased the general damping that
triggered a permanent oscillation at 0.15 Hz [11]. The third
set of waveforms is obtained simulating a large contingency
within the IEEE 39-bus model using Opal-RT.

For each operating condition, the results are presented by
means of two plots showing the instantaneous active power
computed using the FT and the HT as in Alg. 1. The upper plot
represents the power in phase a and the true reference power,
the bottom plot represents the 3-phase power error. In Section
IV-A, the power errors are reported also for the functional basis
analysis presented in Section III-D. The results are presented
for one bus only, but similar considerations hold for the other
buses of the considered network.

A. Theoretical Operating Conditions

By using Matlab environment, we numerically simulate
a plausible situational awareness context, with a sampling
frequency of 10 kHz. We synthesize voltage waveforms with
a nominal voltage of 380 kV, for a total duration of 4 seconds
for each test. These waveforms used to model the output of the
voltage source are presented in Fig. 3. Then, as discussed in
Section III, we analyze voltage and current signals as provided
by EMTP-RV simulations. In more detail, we consider three
cases with the signal characterized by:

a) Amplitude modulation, being fa = 5 Hz the modulation
frequency and ka = 0.1 the modulation factor in (3);

b) Negative frequency ramp in the range 50 ≤ f0 ≤ 46,
being R = −6.25 Hz/s the ramp rate in (6);

c) Amplitude step, being ks = 0.1 the step factor in (9).
Regarding the amplitude modulation case, Fig. 6 shows that

the DFT does not enable us to correctly interpret a signal
whose fundamental component is modulated. Indeed, the ob-
tained signal spectrum is largely biased by the interference
produced by the modulating term, leading to imprecise pa-
rameters estimation. Both voltage and current are inaccurately
measured, leading to a maximum power error in the order of 50
MW. By contrast, it is evident that the HT, using the filter and
the functional basis analysis, preserves the information needed
to entirely reconstruct the analyzed signal: the maximum
attained power errors are in the order of 10 W.

Regarding the frequency ramp case, Fig. 7 shows that as the
frequency deviates from its nominal value, the DFT provides
erroneous results due to spectral leakage. The maximum
obtained power error is in the order of 10 MW. Conversely,
the HT is able to follow instantaneously the signal dynamics
experienced during a frequency ramp, providing an almost-
perfect signal reconstruction. Also in this operating condition,
the HT provides errors lower than 10 W, both using the filter
and the functional basis analysis.

Regarding the amplitude step case, the DFT spectrum does
not contain the information needed to infer the signal parame-
ters during such sudden waveform deformations. Fig. 8, shows
that over the whole period during which the step is contained
in the sliding window (i.e., 200 ms), the DFT provides wrong
results reaching 30 MW error when the step appears in the
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Fig. 6. Amplitude modulation: instantaneous single-phase active power (a)
and three-phase power error (b) computed using the DFT (green) and the
HT (blue) in case of a signal characterized by an amplitude modulation with
modulating frequency of 5 Hz. The red line represents the true power.
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center of the window and therefore the spectrum reconstruction
is the most wanting. On the contrary, the HT enables us to
follow the signal throughout the whole time interval, matching
almost sample-by-sample the signal parameters. Again, the
maximum attained power error is in the order of 10 W. As
regards the functional basis analysis, the figure shows that the
proposed dictionary, that only accounts for ideal step changes,
leads to errors in the same order of the DFT for few ms.

B. Real-world Operating Conditions

The second set of waveforms, refers to real-world events.
Particularly, we replicate the waveforms taking place in Aus-
tralia during the blackout on September 2016 and in Europe
during the inter-area oscillations on December 2016 [10], [11].
Based on PMU estimates of fundamental frequency, amplitude
and initial phase, at each reporting time the fundamental
component trend is recovered in the time domain as sampled
at 10 kHz, through the non-linear fitting approach in [28].
The method estimates the parameters of a series of samples
by fitting them to a single-tone signal model. These datasets
are used to replicate the voltage source in Fig. 3.

Regarding the Australian blackout, as illustrated in Fig
1, the signal is characterized by two criticalities: first the
amplitude step occurring at 1.6 s, then the sudden frequency
drop at 2.7 s. As discussed so far, the two events are difficult to
analyze adopting DFT-based tools because the signal spectrum
is so spread that it is ambitious to infer the waveform param-
eters. Conversely, the HT proves to be potentially suitable for
analyzing both situations. As a matter of fact, the results in Fig.
9 confirm the inappropriateness of the DFT to represent both
the amplitude step and the frequency drop, exhibiting errors
in the order of 100 MW. Besides, the HT is characterized by
a maximum error lower than 10 W.

Regarding the European inter-area oscillation, Fig. 10 con-
firms the improvement of adopting the HT in stead of the DFT,
as the instantaneous power estimates are always characterized
by a smaller error: maximum error lower than 10 W for the
HT and 5 MW for the DFT. The HT proves to be a suitable
tool also for analyzing real-world waveforms.

C. Large-scale Power System

In order to evaluate the appropriateness of the proposed
technique to model large-scale power grids, we carry out
dedicated simulations of emergency scenarios using the IEEE
39-bus model in Opal-RT environment. In particular, we
simulate the outage of generator G6, with a total tripped power
of 800 MW, leading a load imbalance that determines a strong
system dynamic. The generator is tripped at second 180 and
the transient lasts for roughly 100 seconds.

Fig. 11 shows the power profiles recorded in bus 21, but
similar results hold for all the buses of the network. As it
is shown in the figure, during the whole transient the DFT
does not provide a truthful representation of the power system
behavior, leading to errors in the order of 300 MW. Conversely,
the HT provides an accurate transient tracking, with errors
always lower than 800 W.
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Fig. 9. Australian blackout: instantaneous single-phase active power (a) and
three-phase power error (b) computed using the DFT (green) and the HT (blue)
in case of replicating the waveforms that took place in Australia during the
blackout on September 28, 2016. The red line represents the true power.
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power (a) and three-phase power error (b) computed using the DFT (green)
and the HT (blue) in case of replicating the waveforms that took place in
Switzerland during the inter-area oscillation on December 1, 2016. The red
line represents the true power.
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V. CONCLUSIONS

In this paper, we proposed an HT-based approach for
studying broadband power system dynamics as an alternative
to the traditional phasor-based representation. First, we com-
pared the FT and HT of three large power system dynamics,
and we discussed the limitations of FT-based analysis in
non-stationary conditions, as well as the HT capability of
tracking the evolution of the signals. Then, we carried out
a numerical analysis where we developed two algorithms for
the estimation of instantaneous power, relying on FT and HT
representation, respectively. We characterized the accuracy to
correctly compute the transmitted instantaneous power of the
proposed transforms in both synthetic and real-world datasets.
To this end, we carried out dedicated time-domain simulations.

Both theoretical and numerical results confirm that the HT
is a suitable tool to be used in power system modeling and
operation. Indeed, the HT provides superior results when
computing the instantaneous power in all the considered
operating conditions, leading to power errors up to 100 times
smaller than in the case of using an FT-based representation.
The treatise presented in this paper opens new scenarios for
modern power systems modeling. On the one hand, HT-based
situational awareness systems that rely on a broad spectrum
could be deployed. For instance, we could think of PMUs
capable of computing the analytic signal rather than the
fundamental component synchrophasor. On the other hand,
circuit theory fundamental laws could be formulated using
analytic signals. Potentially, we could think of HT-based tools
for power flow analysis.
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