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Abstract— We present an analysis of the response of a grounding 

electrode located on top of a mountain. Specifically, we derive an 

analytical solution for the low-frequency response of a 

hemispheric grounding electrode buried on the top of a cone-

shaped mountain characterized by its apex angle. The derived 

equation is validated using numerical simulations based on the 

Finite Element Method obtained using COMSOL. 

Simulation results show that, for the same ground electrical 

parameters, the grounding resistance of such an electrode for steep 

mountains can be significantly higher than that obtained if the 

electrode is on flat ground. Such situations can occur in particular 

for the case of telecommunication towers or wind turbines located 

on mountaintops.  

The study emphasizes the importance of considering the terrain 

profile in the evaluation of the grounding resistance of structures 

located in elevated locations.  

 
Index Terms—Lightning, grounding resistance, hilly, elevated 

terrain, grounding electrode  

I. INTRODUCTION 

all structures such as wind turbines and mobile phone base 

stations are often installed in remote and hilly locations. 

Those locations are very likely to be struck by lightning due to 

their geographical elevation [1,2] and to the initiation of upward 

flashes [3,4] from them. 

These hilly areas are often very rocky with low soil 

conductivity (0.001 S/m and lower). Therefore, the design of 

proper grounding systems is of high importance. 

The evaluation of the impedance of grounding electrodes 

requires, in general, the application of numerical methods (e.g., 

[5]), or simplified transmission-line-based or circuit-based 

models (e.g., [6]). On the other hand, analytical expressions are 

available for the grounding resistance for various electrode 

geometries, such as a hemisphere, buried ring, and vertical or 

horizontal rods (see, e.g., Appendix D of [7]). All these 

analytical expressions have been derived assuming that the 

earth is a homogeneous half space and its surface is flat.   

 

To the best of our knowledge, no previous studies have 

discussed the influence of a non-flat ground on the impedance 

of grounding electrodes. In this paper, we derive an analytical 

solution for the case of a hemispheric electrode located on top 

of a mountain represented by a conical shape. We compare the 

derived analytical solution to numerical simulations for 

validation purposes.  

II. LOW-FREQUENCY RESPONSE OF A GROUNDING 

ELECTRODE 

A. Basic Equations 

The low-frequency response of a grounding system is 

governed by Ohm’s law and the current continuity equation. 

Ohm’s law in differential form, also called point form, can be 

written as: 

𝐽 = 𝜎𝐸⃗⃗ (1) 

where 𝜎 is the conductivity of the medium at a given point and  

𝐽 is the current density.  

The continuity equation in cases where the time derivative of 

the volume charge density can be neglected, can be written as: 

∇⃗⃗⃗ ∙ 𝐽 = 0 (2) 

Using (1) and expressing the electric field in terms of the 

electric potential for the considered low frequency regime, (2) 

can be rewritten as 

−∇⃗⃗⃗ ∙ (𝜎∇⃗⃗⃗ ∙ 𝜑) = 0 (3) 

Current sources at the boundary with a non-conducting medium 

can be imposed through Neumann boundary condition. In the 

analysis, the numerical simulations will be carried out using the 

AC/DC module of the commercial tool COMSOL [8]. 

B. Hemispheric Grounding Electrode in a Flat Ground 

The geometry of the problem is shown in Figure 1. We 

consider a metallic hemispheric electrode of radius R0 buried in 

a flat ground, characterized by its electric conductivity and 

relative permittivity.  The derivation of the grounding resistance 

is classical and has been carried out elsewhere [9,10]. However, 

for the sake of completeness, we will present it here.  

 

 
Fig. 1. Hemispheric electrode buried in a flat ground. The origin of the spherical 

coordinate system is at the center of the hemisphere.  
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A current I is impressed at the center of the hemisphere. The 

resistance of the grounding electrode is defined as the ratio of 

the ground potential rise (GPR) at the feeding point and the 

injected current 𝐼: 

𝑅 =
𝑉∞

𝐼
 (4) 

 Due to the symmetry of the problem, the magnitude of the 

current density 𝐽 is constant at points in the ground that are at a 

given distance r from the origin and it is collinear with the radial 

vector. Therefore, the current at a distance r is simply given by: 

𝐽 =
𝐼

𝐴
𝑒𝑟̂ =

𝐼

2𝜋𝑟2
𝑒𝑟̂ (5) 

where A is the surface of the hemisphere at a given distance r. 

Now, from Ohm’s law (1), one obtains:  

𝐸⃗⃗ =
𝐼

2𝜋𝜎𝑟2
𝑒𝑟̂ 

(6) 

The GPR is defined as the voltage difference from the feeding 

point to the remote earth: 

𝑉∞ = ∫ 𝐸⃗⃗ 𝑑𝑟⃗⃗⃗⃗⃗
𝑟=∞

𝑟=0

= 

= ∫
𝐼

2𝜋𝜎ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒𝑟2
𝑑𝑟

𝑟=𝑅0

𝑟=0

+ ∫
𝐼

2𝜋𝜎𝑟2
𝑑𝑟

𝑟=∞

𝑟=𝑅0

 

(7) 

The hemisphere being made of metal (𝜎ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒 in the order 

of 106 S/m), the first integral on the right-hand side of the 

equation can be neglected (the voltage is constant along the 

conductor). The final result reads: 

𝑉∞ ≈
𝐼

2𝜋𝜎𝑅0
 (8) 

Thus, the resistance is given by: 

𝑅𝑓𝑙𝑎𝑡 =
𝑉∞

𝐼
=

1

2𝜋𝜎𝑅0
 (9) 

C. Hemispheric Grounding Electrode in a Cone-Shaped 

Ground 

Let us now consider the geometry shown in Figure 2. In this 

case, a hemispheric grounding electrode of radius R0 is buried 

on the top of a truncated cone-shaped earth characterized by an 

angle 𝜑. We assume that the hemispheric electrode reaches the 

edges of the truncated cone, a situation which does not 

necessarily correspond to a realistic case, but will allow us to 

derive an analytical solution for the grounding resistance, 

providing insight into the effect of a non-flat terrain on the low-

frequency response of a grounding system. A more realistic 

situation will be considered in Section II.E and analyzed 

numerically using COMSOL. 

The current is assumed to be applied at the center of the 

hemisphere. In this case, the current density in the spherical 

coordinate system will be a function of both r and the azimuth 

angle. 

 
 

Fig. 2. Hemispheric electrode buried on the top of a truncated cone-shaped 

ground. The center of the spherical coordinate system is at the tip of the 

untruncated cone. 

 

In order to be able to derive an analytical solution for the 

grounding resistance, let us approximate the original 

hemispheric electrode by a spherical sector delimited by the 

dotted line and centered at the tip of the cone (Fig. 2). The 

radius of this sphere is given by  

𝑅1 = 𝑅0 + 𝑑 (10) 

in which d is defined in Fig. 2. R1 can be expressed in terms of 

the apex angle 𝜑 as follows: 

𝑅1 = 𝑅0(1 + 𝑐𝑡𝑔(𝜑)) (11) 

As can be seen from Fig. 2, the approximated electrode covers 

a larger area compared to the original one. Thus, the resulting 

grounding resistance would be an underestimate of the original 

one. A curved surface area of a spherical sector of radius r is 

given by: 

𝐴 = Ω𝑟2 (12) 

where Ω is the solid angle which can be calculated from the 

apex angle as: 

Ω = 2π(1 − cos (𝜑)) (13) 

Because of the symmetry of the approximate geometry, the 

current density depends only on the variable r and it is always 

collinear with the radial vector. The current density at a given 

distance r is given by 

𝐽 =
𝐼

𝐴
𝑒𝑟̂ =

𝐼

2π(1 − cos (𝜑))𝑟2
𝑒𝑟̂ (14) 

The GPR at the feeding point can be calculated as: 

𝑉∞ = ∫ 𝐸⃗⃗ 𝑑𝑟⃗⃗⃗⃗⃗
𝑟=∞

𝑟=0

≈ ∫
𝐼

2𝜋𝜎(1 − cos (𝜑))𝑟2
𝑑𝑟

𝑟=∞

𝑟=𝑅1

 (15) 

where, as in (7), the potential drop across the conductor is 

considered to be negligible. The final expression for the voltage 

is given by 

𝑉∞ =
𝐼

2𝜋𝜎𝑅0(1 − cos (𝜑))(1 + 𝑐𝑡𝑔(𝜑))
 (16) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

3 

which can be used in (4) to calculate the resistance of the 

grounding electrode as follows: 

𝑅𝑐𝑜𝑛𝑒 =
1

2𝜋𝜎𝑅0(1 − cos (𝜑))(1 + 𝑐𝑡𝑔(𝜑))
 (17) 

To express the increase of the grounding resistance as a 

function of the ground profile, let us define a coefficient k given 

by the ratio of the resistance for a flat ground and the one for a 

conical ground: 

𝑘 =
𝑅𝑐𝑜𝑛𝑒

𝑅𝑓𝑙𝑎𝑡
=

1
(1 − cos (𝜑))(1 + 𝑐𝑡𝑔(𝜑))

 (18) 

As can be seen from (18), this ratio depends only on the apex 

angle  𝜑. For the case of a flat ground, 𝜑 =90o, (17) reduces to 

(9) and k tends to 1. Fig. 3 presents the coefficient k as a 

function of the apex angle.  

 
Fig. 3. Coefficient of increase of the grounding resistance as a function of the 

apex angle. 

 

It can be seen that for very steep profiles, the ratio can take 

significant values, corresponding to an appreciable increase in 

the grounding resistance. As an example, for 𝜑 = 60o, the 

resistance is increased by about 30 %, and for  𝜑 = 40o, the 

increase is almost 100%. For very steep profiles, namely for 

angles smaller than 20o, the resistance can be increased by a 

factor of 5 or more. 

 

D. Comparison with Numerical Simulations 

Fig. 4 shows the distribution of the potential to remote earth 

obtained by solving (3) numerically using COMSOL. A current 

source of 1 A was applied at the center of the 20-m radius 

hemispheric electrode. The Dirichlet boundary condition is set 

at the bottom of the cone as φ = 0 V, and the Neumann boundary 

condition, 𝐽𝑛𝑜𝑟𝑚𝑎𝑙 = 0, is set on the surface of the cone. The 

height of the cone is taken such that it is far enough for the 

results to converge (200 to 2000 m, depending on the apex 

angle). Let us consider a hemisphere with a radius R0 = 20 m, 

which would represent as a first approximation the grounding 

system of a wind turbine. Considering a grounding conductivity 

of σ = 0.001 S/m and an apex angle of 𝜑 = 45𝑜, we obtain a 

grounding resistance of 13,68 Ω, while using the analytical 

approximation (18), we obtain a value of 13,58 Ω.  

 
Fig. 4. Potential to remote earth for the case of R0=20 m, σ=0.001S/m, 𝜑=45° 

and 1 A current source applied at the center of the hemisphere. Simulated in the 

commercial tool COMSOL [8].  

 

Fig 5 shows the values of the grounding resistance as a 

function of the apex angle, obtained using the proposed 

analytical solution and the COMSOL numerical results. It can 

be seen that the proposed analytical approximation yields 

values which are in excellent agreement with numerical results, 

for all considered angles.  

 
Fig. 5.  Grounding resistance for σ = 0.001 S/m and R0 = 20 m. Analytical 

solution and discrete numerical solution as a function of apex angle. 
 

Fig 6 shows similar results for the case of a hemispheric 

grounding electrode of radius R0 =  5 m. Again, it can be seen 

that the results obtained using the proposed analytical 

expression agree well with the numerical results obtained using 

COMSOL. 

 
Fig. 6.  Grounding resistance for σ = 0.001 S/m and R0 = 5 m. Analytical 

solution and discrete numerical solution as a function of the apex angle. 
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E. Variation of Cone Top Radius 

As mentioned earlier, the considered case of a hemispheric 

electrode that reaches the edges of the truncated cone-shaped 

mountain (as opposed to one that is smaller) is not a realistic 

case. Here, we will consider the geometry shown in Fig. 7 in 

which the top radius of the cone is bigger than the radius of 

hemispheric grounding electrode. The distance between the 

center of the hemisphere and edge of cone is rtop and the apex 

angle is 𝜑.  

 

 
Fig. 7. Hemispheric electrode buried on the top of a truncated cone-shaped 

ground. The center of the spherical coordinate system is at the tip of the 

truncated cone prolongation.  

Table 1 shows the COMSOL computed values for the 

grounding resistance of a 5-m radius hemispheric grounding 

electrode, with a ground conductivity of σ = 0.001 S/m, as a 

function of the apex angle and the distance rtop to the cone edge. 

The grounding resistance of the same electrode buried in a flat 

ground would be 31.8 Ω. 

 
Table 1 – Grounding resistance of a 5-m radius hemisphere grounding 

electrode buried in a cone-shaped ground of conductivity σ = 0.001 S/m, as a 

function of the apex angle 𝜑 and the distance rtop to the cone edge. 

Apex 

angle 

(𝜑) 

Resistance (Ω) 

rtop= R0 rtop= 2R0 rtop= 4R0 rtop= 10R0 

60o 44.8 38 34.5 32.4 

45o 60.4 46.2 38.6 34.1 

30 o 93.5 62.9 46.6 36.8 

15 o 206 121 75.7 48.7 

10 o 324.4 188.7 108.7 67.9 

 

It can be seen that, even for the case when the top radius is four 

times the radius of the grounding electrode, the increase in the 

grounding resistance with respect to the case of a flat ground 

would be as high as 50% for an apex angle of 30o. For the case 

of an apex angle of 60 o and rtop=10R0, the resulting grounding 

resistance approaches the value for a flat ground. Similar 

relative increase as in Table 1. was observed for the case of 

vertical rod and it will be further discussed in future studies. 

 

III. CONCLUSION 

In this study, we analyzed the response of a grounding 

electrode located on top of a hill or a mountain top. Specifically, 

we derived an analytical solution for the low-frequency 

response of a hemispheric grounding electrode buried on top of 

a cone-shaped mountain characterized by its apex angle. The 

derived equation was validated using numerical simulations 

based on the Finite Element Method obtained using COMSOL. 

Results show that, for the same ground electrical parameters, 

the grounding resistance of such an electrode can increase 

significantly for steep mountains. Such situations can occur in 

particular for the case of telecommunication towers or wind 

turbines located on mountaintops. These conclusions can be 

extended to any geometry of grounding system. 

The study emphasizes the importance of considering the 

terrain profile in the evaluation of the grounding resistance or 

structures located in elevated locations.  
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