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Synopsis

We present HOTmix, a new model to describe the diffusion MRI signal for molecules undergoing hindered diffusion. HOTmix is based on a
mixture of generalized higher order tensors, explicitly incorporating the diffusion sequence’s time-dependent parameters. The method was
evaluated on simulated diffusion MRI signals obtained through Monte Carlo simulations, using intermediate diffusion times, mimicking both ex-
vivo and in-vivo conditions. HOTmix provided better reconstructions compared to the standard diffusion tensor, the kurtosis tensor, and a
single generalized higher order tensor. In future work, we will explore whether modelling the hindered compartment using HOTmix improves
microstructural features estimated using dMRI.

Introduction

Diffusion MRI (dMRI) allows estimating White Matter (WM) microstructural features in-vivo and ex-vivo, by using compartment models to characterize
restricted and hindered components. Methods usually rely on a diffusion tensor (DT) to characterize the hindered comparment.’?3 At long diffusion times,
including time dependence in the DT formulation has improved axon diameter estimates.* Optimized protocols for diameter estimation rely on intermediate
diffusion times (dozens of milliseconds).?® For this purpose, we propose to model the hindered compartment using HOTmix, a mixture of generalized
higher order tensors (HOT).®

Theory
If the WM is modeled as parallel cylinders, the HOT tensor® becomes axi-symmetric. We found its signal to be:
S _ o~ DY cos (@) b2 DPsint (@) +b DV sint (a)
So
where b = —(vGoH(A — 2—35) (G, A and J are the gradient amplitude, separation and duration, respectively), o is the angle between the diffusion

gradient and axon orientations, and D‘(In) and D(f) are the n-th order parallel and perpendicular diffusivities. b™ has a time-dependent term that differs

from (bm)", used in the kurtosis tensor (KT) for example. HOTmix assumes that different spin packets experience different local micro-environments,
each generating a signal given by an axi-symmetric HOT:
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The equation can be linearized to S/Sy = Aw,” were A is a matrix containing columns 4; = e b7 Dy jcos®(0) ~b 7 Dy sin*(@)+b Dy [ sin' () gy w; are the
relative contribution of each column to the total signal. The orientation is estimated from the DT 15! eigenvector,” and D‘(|2) taken from the DT 15t

eigenvalue. The coefficients w are estimated by minimizing the following problem:
argmingso||Aw — S|/

Matching the axi-symmetric HOT model with the signal of a gaussian distribution of diffusivities,® our model can be interpreted as a mixture of gaussians
with time-varying variance:
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which goes in line with the coarse-graining illustration for dMRI.®

Methods

22 gamma distributions from histological studies'®""2 were used to generate substrates with restricted volume fractions of 50, 60 and 70% (Figure 1). The
diffusion signal was generated using the MC/DC Monte Carlo simulator'® (1M spins in the extra-axonal space, voxel size of 0.5x0.5x0.5mm?, periodic
cylinder positions'#). Experiments mimicking ex-vivo (Dy=0.6x10"3mm?/s) and in-vivo (D =2.0x103mm?/s) conditions were conducted. Protocols included
a selection of b-values with varying either G, A or § while keeping the other two parameters constant (Table 1). One b-value could therefore have up to 3
different signal values depending on the choice of G, A or §. Samples were acquired in 60 directions homogeneously covering the unit sphere. Signals
were contaminated with rician noise (SNR=30 for ex-vivo and SNR=60 for in-vivo, as most in-vivo non-perpendicular samples were below the SNR=30

floor). The HOTmix dictionary was built by discretizing D(f) and \/D(f) (5 values between [1x106,0.4x10-3Jmm?/s and 5 values between [0,1.414x10

(2)
[
estimated by fitting a DT to the b-values lower than 2°000s/mmZ2. The HOTmix model was compared to the DT, KT and a single HOT tensor. For a fair

comparison, only the perpendicular components were estimated, after factoring out the effect of the orientation and D‘(‘") estimated previously. Estimated

SImm?/,/s for ex-vivo, and [1x10*4, 2x10-}Jmm?/s and [1x10®,5x10%Jmm?/,/s for in-vivo conditions, respectively). Cylinder orientation and D, were

parameters were used to reconstruct the signal for a protocol with perpendicular samples only, and with a higher sampling of b-values (each 500 s/mm?).

https://submissions.mirasmart.com/ISMRM2019/ViewSubmissionPublic.aspx?sei=CjdmFRQ6x 1/4



11/7/2018 https://submissions.mirasmart.com/ISMRM2019/ViewSubmissionPublic.aspx?sei=CjdmFRQ6x

Each model was evaluated by computing the Relative Mean Absolute Error (RMAE) between the reconstructed signal S and the noiseless signal S
N 158
I5;
N

i=1
simulated using the perpendicular protocol:

Results and discussion

Figure 2 shows the reconstructed signal and the ground truth for the ex-vivo experiments (fitting the noiseless signal). The DT model was unable to capture
neither the curvature nor the different offsets of the curves. The DK model captured the curvature but not the different offsets. The HOT model
distinguished the 3 curves but was unable to capture the correct curvature. Finally, HOTmix was able to reconstruct the noiseless signal accurately. Results
were similar for the in-vivo experiments (not shown). Figure 3 summarizes the RMAE distribution over all substrates and experiments. HOTmix had the
lowest mean RMAE and was the only model able to disentangle accurately the effects of the different sequence parameters, in particular A and §, owing to
the explicit dependence of the 2nd-order terms on the timing parameters of the diffusion sequence.

Conclusion

HOTmix yields better reconstructions of the hindered dMRI signal at intermediate diffusion times compared to the DT, KT and HOT models, adapting to
both ex-vivo and in-vivo conditions. A better description of the signal is likely to improve estimates of microstructural features.* The estimated parameters
might also provide information on the substrate microstructure, like hindered volume fraction or outer axon mean diameter. In future work, we will explore
whether using HOTmix improves microstructural features estimated from dMRI.
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(a) Ex-vivo diffusion protocol

G(mT/m) A (ms)

127.0
Varying G { 359.3
508.2
550.0
Varving A { 550.0
550.0
114.4
Varying & { 114.4
114.4

20.0
20.0
20.0
9.5
21.5
53.8
32.4
324
32.4

& (ms)

b-value (s/mm?)

1'000
8000
16'000
2'500
#'000
16'000
1'000
8000
16'000

(b) In-vivo diffusion protocol

G (mT/m) A(ms)

127.0

Varying G { 220.1
311.2

550.0

{ a50.0
114.4
Varying & { 114.4
114.4

Varying A

20,0
20,0
20.0
1.1
210
324
324
324

4§ (ms)

7.0
70
7.0
3.75
3.75
59
10.5
15.3

b-value (s/mm?)

1'000
3’000
6'000
3000
6'000
1'000
3000
6'000

Table 1: ex-vivo and in-vivo diffusion protocols
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Figure 1: lllustration of the pipeline used to generate EA dMRI signals for 2 different substrates (IA volume fractions of 0.7). (a) Cylinder diameter
distributions; (b) cylinder positions (100x100um? section is shown for visibility); (c) generated dMRI signals. Left: 489'691 small radii from I'(8.5,3.7E-8).
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Right: 16’589 large radii from I'(3.2,4.9E-7).
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(c) HOT order 4
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Figure 2: Reconstructed ex-vivo signals (dotted lines) overlapped with the corresponding ground-truth (full lines) when using DT, DK, HOT and HOTmix.
For each model, the signals for the substrate with smallest and highest mean cylinder size are shown.
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Figure 3: RMAE over all substrates for the different models when reconstructing the signal using parameters estimated from the noiseless ex-vivo signal,
the noiseless in-vivo signal, the noisy ex-vivo signal and the noisy in-vivo signal.
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