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ABSTRACT
One of the most accurate methods for solving the time-dependent Schrödinger equation uses a combination of the dynamic Fourier method
with the split-operator algorithm on a tensor-product grid. To reduce the number of required grid points, we let the grid move together with
the wavepacket but find that the naïve algorithm based on an alternate evolution of the wavefunction and grid destroys the time reversibility of
the exact evolution. Yet, we show that the time reversibility is recovered if the wavefunction and grid are evolved simultaneously during each
kinetic or potential step; this is achieved by using the Ehrenfest theorem together with the splitting method. The proposed algorithm is con-
ditionally stable, symmetric, and time-reversible and conserves the norm of the wavefunction. The preservation of these geometric properties
is shown analytically and demonstrated numerically on a three-dimensional harmonic model and collinear model of He–H2 scattering. We
also show that the proposed algorithm can be symmetrically composed to obtain time-reversible integrators of an arbitrary even order. We
observed 10 000-fold speedup by using the tenth-order instead of the second-order method to obtain a solution with a time discretization error
below 10−9. Moreover, using the adaptive grid instead of the fixed grid resulted in a 64-fold reduction in the required number of grid points
in the harmonic system and made it possible to simulate the He–H2 scattering for six times longer while maintaining reasonable accuracy.
Applicability of the algorithm to high-dimensional quantum dynamics is demonstrated using the strongly anharmonic eight-dimensional
Hénon–Heiles model.
© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5127856., s

I. INTRODUCTION

Understanding many dynamical phenomena in chemical
physics requires the solution of the time-dependent Schrödinger
equation.1–7 This equation can be often solved both accurately and
efficiently by employing a combination of the dynamic Fourier
method with a high-order split-operator algorithm8–12 on a tensor-
product grid.8,9,13 However, for simulations that access only a
small portion of the tensor-product Hilbert space, more suit-
able methods exist. These methods focus the available compu-
tational resources on the important portions of the full Hilbert
space.

The multiconfigurational time-dependent Hartree (MCTDH)
method14–16 and its multilayer extension17 reduce the required

number of basis functions by employing an optimized time-
dependent basis set. The recently developed pruned, collocation-
based MCTDH approach18 mitigates the exponential scaling of the
MCTDH method with the number of dimensions by employing a
pruned basis19 and simultaneously extends the applicability of the
MCTDH method to general potential energy surfaces by using a
collocation grid.20 Another way of reducing the required compu-
tational resources is by appropriately truncating a lattice of Gaus-
sian basis functions21–24 or a set of grid points.25,26 In particu-
lar, sparse-grid methods10,27–29 reduce the number of required grid
points, e.g., by employing the Smolyak quadrature.30 Making the
grid adaptive31 is another common approach to reduce the required
number of grid points. For example, the adaptive moving grid
has been used to improve the quantum trajectory method32,33 near
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wavefunction nodes,34–36 to treat the interaction of molecules with
intense time-dependent electromagnetic fields,37 and to reduce
the size38,39 of grids employed in discrete variable representation
(DVR),40,41 which has been widely employed to compute vibra-
tional spectra.42,43 The parallelized44,45 time-dependent DVR39,46 has
enabled quantum dynamics simulations in various multistate and
multidimensional systems.47

To reduce the number of grid points and memory required
for quantum simulations of systems that occupy only a small part
of the accessible phase space at any given time, in this paper, we
use an adaptive tensor-product grid that moves according to the
wavepacket expectation values of position and momentum. The
most naïve approach is to evolve the grid only after each time step of
the wavefunction propagation. However, this naïve grid adaptation
breaks the symmetry and, therefore, also the time reversibility of the
time propagation scheme.

We find that the time reversibility is recovered when the grid
is evolved simultaneously with the wavepacket. The resulting algo-
rithm is not only symmetric and time-reversible but also norm-
preserving and conditionally stable (i.e., stable for small enough
time steps). In addition, because of its symmetry, this algorithm can
be composed by various symmetric composition schemes to obtain
higher-order integrators.11,12,48–51 As well as having favorable geo-
metric properties, the proposed algorithm is also very simple to
implement because its implementation does not depend on the form
of the potential energy function and because the grid adaptation
requires no adjustable parameters.

The remainder of this paper is organized as follows: In Sec. II,
we give a brief overview of the split-operator algorithm and dynamic
Fourier method, including their discretized implementation on a
tensor-product grid. Then, we demonstrate the breakdown of the
time reversibility by the naïve grid adaptation and the recovery of
the time reversibility by employing a combination of the Ehrenfest
theorem52 and splitting method.10,11 In Sec. III, we numerically con-
firm the geometric and convergence properties of the proposed algo-
rithm using a three-dimensional harmonic model of electronic exci-
tation and a two-dimensional modified Secrest–Johnson53,54 model
of He–H2 scattering. Using the highly nonlinear eight-dimensional
Hénon–Heiles system, we demonstrate that the proposed algo-
rithm can also be used for high-dimensional quantum dynamics,
which is beyond the reach of the conventional split-operator algo-
rithm on a fixed tensor-product grid. Section IV concludes the
paper.

II. THEORY
The time-dependent Schrödinger equation,

d∣ψt⟩
dt
= − i

h̵
Ĥ∣ψt⟩, (1)

where Ĥ is a time-independent Hamiltonian and |ψt⟩is the quantum
state at time t, has the solution |ψt⟩= Û(t)|ψ0⟩with the exact evolu-
tion operator Û(t) ∶= e−itĤ/̵h. In general, this exact solution must be
approximated by one of many possible time propagation schemes.
Here, we will only discuss the split-operator algorithms8–10 in detail
because the splitting method10,11 is crucial for the time-reversible
grid adaptation that we derive in Sec. II G.

A. Split-operator algorithm and dynamic Fourier
method

The splitting method requires the Hamiltonian to be separable
into a sum of kinetic and potential energy operators,

Ĥ = T(ˆ⃗p ) + V(ˆ⃗q ), (2)

where p⃗ and q⃗ are D-dimensional momentum and position, respec-
tively. For orthogonal coordinates, the kinetic energy T(p⃗ ) has a
simple form

T(p⃗) = 1
2
p⃗T ⋅m−1 ⋅ p⃗, (3)

where m is a real symmetric (and often diagonal) D × D mass
matrix. For Hamiltonians of form (2), all split-operator algorithms
can be expressed as a composition11 of kinetic [ÛT̂(t)] and poten-
tial [ÛV̂(t)] evolution operators, where ÛÂ(t) ∶= e−itÂ/̵h is the exact
evolution operator for a Hamiltonian Ĥ = Â. The simplest first-
order split-operator algorithm55 has the approximate evolution
operator,

ÛTV(Δt) ∶= ÛT̂(Δt)ÛV̂(Δt). (4)

This “TV” algorithm can be composed with its adjoint, ÛVT(Δt)
∶= ÛTV(−Δt)−1, to obtain the second-order TVT algorithm,56

ÛTVT(Δt) ∶= ÛTV(Δt/2)ÛVT(Δt/2)

= ÛT̂(Δt/2)ÛV̂(Δt)ÛT̂(Δt/2), (5)

which is symmetric, i.e., satisfies ÛTVT(Δt) = ÛTVT(−Δt)−1. Because
it is symmetric, the TVT algorithm can be recursively composed by
symmetric schemes10,11,48–51 to obtain symmetric algorithms

Ûcomp(Δt) ∶= ÛTVT(γNcompΔt)⋯ÛTVT(γ1Δt) (6)

of arbitrary even orders of accuracy in the time step, where γk is the
kth composition coefficient (with∑Ncomp

k=1 γk = 1, γNcomp+1−k = γk) and
Ncomp is the number of composition steps. [Exchanging V and T
in algorithms (4)–(6) results in another set of split-operator algo-
rithms.] The higher-order algorithms, despite their higher compu-
tational cost per time step, are often more efficient if high accu-
racy is desired. Moreover, all symmetric split-operator algorithms
are examples of geometric integrators because they preserve many
important geometric properties of the exact solution of Eq. (1),
namely, linearity, unitarity, symplecticity, stability, symmetry, and
time reversibility.10,11,57 For additional details about the properties
and numerical implementation of the higher-order split-operator
algorithms, we refer the reader to Ref. 12.

The action of compositions of ÛT̂(Δt) and ÛV̂(Δt) on |ψ⟩is
simply evaluated using the dynamic Fourier method8,9,13 in which
the action of a function g(ˆ⃗x) of an operator ˆ⃗x on the wavepacket
|ψ⟩is evaluated as g(x⃗)ψ(x⃗) in the x⃗-representation, where x⃗ is either
the position q⃗ or momentum p⃗. The wavefunction is transformed,
if required, to the x⃗-representation by either the Fourier or inverse
Fourier transformation,

ψ̃(p⃗) = (2πh̵)−D/2 ∫ ψ(q⃗)e−i⃗p⋅⃗q/̵hdDq, (7)

ψ(q⃗) = (2πh̵)−D/2 ∫ ψ̃(p⃗)ei⃗p⋅⃗q/̵hdDp, (8)
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where p⃗ ⋅ q⃗ ∶= ∑D
l=1 plql.

B. Dynamic Fourier method on a grid
The dynamic Fourier method on a grid follows the same

approach as in Sec. II A except that g(x⃗)ψ(x⃗) and the integral trans-
forms (7) and (8) are now discretized on a grid, consisting of points
x⃗I for all I ∈ I. Here, the multi-index I = (i1, . . ., iD) is an ordered
D-tuple of integers from the set I of all admissible multi-indices,
where

I ∶= {(i1, . . . , iD) : il ∈ {0, . . . ,Nl − 1} for all l ∈ {1, . . . ,D}},
(9)

and N l is the number of grid points in the lth dimension. When iter-
ating over all admissible multi-indices, we will simply write I ∈ I.
The D coordinates of the grid point x⃗I are given by

xIl ∶= xctr,l + (il −Nl/2)Δxl for l ∈ {1, . . . ,D}, (10)

where x⃗ctr is the x⃗-grid center and Δx⃗ are the x⃗-spacings of the grid.
Note that ΔqlΔpl = 2πh̵/N l.

Application of the operator g(ˆ⃗x) to ψ in x⃗-representation is
given by

g(x⃗)ψ(x⃗) grid= g(x⃗I)ψ(x⃗I), (11)

where
grid= denotes “is represented on a grid as.” The integral trans-

forms (7) and (8) are discretized on a grid as

ψ̃(p⃗K) = Cq∑
J∈I

ψ(q⃗ J)e−i⃗p
K
⋅ q⃗ J
/
̵h, K ∈ I, (12)

ψ(q⃗ J) = Cp∑
K∈I

ψ̃(p⃗K)ei⃗p
K
⋅ q⃗ J
/
̵h, J ∈ I, (13)

with prefactors Cx ∶= ∏D
l=1(Δxl/

√
2πh̵). To express Eqs. (12) and

(13) in terms of the standard discrete Fourier transform (DFT), we
scale the wavefunctions as ψ̃K ∶= ψ̃(p⃗K)/

√
Cq, ψJ ∶= ψ(q⃗ J)/

√
Cp

and use Eq. (10). As a result, we obtain

ψ̃K = 1√
N
∑
J∈I

e−2πi⟨K,J⟩e−itKJ/
̵hψJ , K ∈ I, (14)

ψJ = 1√
N
∑
K∈I

e2πi⟨J,K⟩eitKJ/
̵hψ̃K , J ∈ I, (15)

where N ∶= ∏D
l=1 Nl denotes the total number of grid points,

tKJ =
D

∑
l=1
[(pctr,l − ΔplNl/2)(qctr,l − ΔqlNl/2)

+ pctr,ljlΔql + qctr,lklΔpl − πh̵(jl + kl)], (16)

and the multi-index inner product ⟨K, J⟩ ∶= ∑D
l=1 kljl/Nl. The scaled

wavefunction ψ̃K can be viewed as a standard DFT of e−itKJ/
̵hψJ and

ψJ as a standard inverse DFT of eitKJ/
̵hψ̃K . In practice, the DFT is

implemented using the celebrated fast Fourier transform algorithm,
which has been parallelized via the message passing interface (MPI)
and the open multiprocessing (openMP) interface.58

C. Shifting the grid
In Sec. II B, we assumed the grid centers to be fixed, but this

assumption will now be dropped to allow for grid shifting. More-
over, all quantities defined in Sec. II B will be re-expressed in a more
compact matrix form. Equations (14) and (15) thus become

ψ̃(p⃗ctr) = f(q⃗ctr, p⃗ctr)ψ(q⃗ctr), (17)

ψ(q⃗ctr) = f̃(q⃗ctr, p⃗ctr)ψ̃(p⃗ctr), (18)

where the “vectors” ψ(q⃗ctr) and ψ̃(p⃗ctr) are rank-D tensors with N
components ψJ(q⃗ctr) and ψ̃K(p⃗ctr), respectively, and the “matrices”
representing the Fourier transforms are

[f(q⃗ctr, p⃗ctr)]KJ ∶=
1√
N
e−2πi⟨K,J⟩e−itKJ(q⃗ctr ,⃗pctr)/

̵h, (19)

f̃(q⃗ctr, p⃗ctr) = f(q⃗ctr, p⃗ctr)−1 = f(q⃗ctr, p⃗ctr)†. (20)

In Eqs. (17) and (18), a compact notation for the “matrix-vector”
multiplication, defined by (aψ)K ∶= ∑J∈I aKJψ

J , K ∈ I, is employed,
and ˜ above a matrix denotes that it is applied to a wavefunction in
the p⃗-representation.

Equation (18) expresses that the momentum wavefunction
ψ̃(p⃗ctr) represented on the p⃗-grid centered at p⃗ctr is transformed to
the position wavefunction ψ(q⃗ctr) represented on the q⃗-grid cen-
tered at q⃗ctr by applying f̃(q⃗ctr, p⃗ctr). Similarly, ψ(q⃗ctr) is transformed
to ψ̃(p⃗ctr) by applying f(q⃗ctr, p⃗ctr) according to Eq. (17).

D. Split-operator algorithm on a grid
Potential and kinetic evolution operators ÛV̂(Δt) and ÛT̂(Δt),

which are composed to obtain any split-operator algorithm (see
Sec. II A), are discretized on a grid as diagonal finite-dimensional
tensors

[UV(Δt, q⃗ctr)]JJ′ = δJJ′e−iΔtV(q⃗
J
(q⃗ctr))/

̵h, (21)

[ŨT(Δt, p⃗ctr)]KK′ = δKK′e
−iΔtT(p⃗K

(p⃗ctr))/
̵h. (22)

Therefore, the time-evolved wavefunctions are

⟨q⃗ ∣ÛV̂(Δt)∣ψ⟩
grid=
√
CpUV(Δt, q⃗ctr)ψ(q⃗ctr), (23)

⟨p⃗ ∣ÛT̂(Δt)∣ψ⟩
grid=
√
CqŨT(Δt, p⃗ctr)ψ̃(p⃗ctr); (24)

note that the scaled wavefunctions, ψJ and ψ̃K , must be scaled back
to ψ(q⃗ J) and ψ̃(p⃗K) at the end of the propagation with factors

√
Cp

and
√
Cq, respectively (see Sec. II B).

E. Loss of linearity by the grid adaptation
To be specific, we now assume that the initial wavefunction

is provided in the q⃗-representation and that the solution at time
t is desired also in the q⃗-representation. Let the adaptive x⃗-grid
be centered at the wavefunction’s x⃗-expectation value. The result-
ing equations of motion for the wavefunction and grid centers,
x⃗t ∶= x⃗ctr(t), are
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ψ̇t(q⃗t) = −
i
h̵
H(q⃗t , p⃗t)ψt(q⃗t), (25)

q⃗t = ⟨q⃗(q⃗t)⟩ψt(q⃗t), (26)

p⃗t = ⟨ ˜⃗p(p⃗t)⟩ψ̃t(p⃗t), (27)

where ψ̃t(p⃗t) = f(q⃗t , p⃗t)ψt(q⃗t), H(q⃗t , p⃗t) is the Hamiltonian in the
q⃗-representation, containing appropriate Fourier transforms, and
represented on the grid centered at x⃗t , [x⃗(x⃗t)]II′ ∶= δII′ x⃗I(x⃗t), and
⟨O(x⃗t)⟩ψt(x⃗t) ∶= ⟨ψt(x⃗t)∣O(x⃗t)ψt(x⃗t) ⟩. The inner product between
ψ and ϕ is defined as

⟨ψ(x⃗t)∣ϕ(x⃗t)⟩ ∶= (
D

∏
l=1

Δxl)∑
I∈I

ψ(x⃗I(x⃗t))∗ϕ(x⃗I(x⃗t)). (28)

The grid adaptation leads to the loss of some geometric proper-
ties even if Eqs. (25)–(27) are solved exactly. In Eq. (25), the Hamil-
tonian is nonlinear due to its dependence on ψt (via q⃗t and p⃗t); the
corresponding evolution operator is, therefore, also nonlinear and
does not preserve the inner product.59 As a consequence, the sym-
plectic two-form10 ω(ψ, ϕ) ∶= −2h̵Im⟨ψ|ϕ⟩ is not preserved, either.
In contrast, the exact solution of Eqs. (25)–(27) does preserve the
norm and is both symmetric and time-reversible.

F. Loss of time reversibility by the naïve adaptive grid
Due to their mutual coupling, Eqs. (25)–(27) cannot be, in

general, solved analytically. The naïve adaptive grid approximation
decouples the equations for the wavefunction and grid evolutions by
first solving Eq. (25) for ψt with fixed q⃗t and p⃗t during the time 0 ≤ t
≤ Δt, obtaining ψΔt(q⃗0) = U(Δt; q⃗0, p⃗0)ψ0(q⃗0), where

U(Δt; q⃗0, p⃗0) ∶= e−iΔtH(q⃗0 ,⃗p0)/
̵h. (29)

[In practice, U(Δt; q⃗0, p⃗0)ψ0(q⃗0) is approximated numerically using
time propagation schemes, such as the split-operator algorithm,
short iterative Lanczos scheme,60,61 or Crank–Nicolson62,63 method.]
The grid centers are then updated using the propagated wavefunc-
tion ψΔt(q⃗0):

q⃗Δt = ⟨q⃗(q⃗0)⟩ψΔt(q⃗0), (30)

p⃗Δt = ⟨ ˜⃗p(p⃗0)⟩ψ̃Δt(p⃗0). (31)

Finally, the wavefunction ψΔt(q⃗0) is represented on the updated
grid:

ψ̃Δt(p⃗Δt) = f(q⃗0, p⃗Δt)ψΔt(q⃗0), (32)

ψΔt(q⃗Δt) = f̃(q⃗Δt , p⃗Δt)ψ̃Δt(p⃗Δt). (33)

The overall evolution operator for the naïve adaptive grid is, there-
fore,

Unaïve(Δt;ψ0, q⃗0, p⃗0) ∶= f̃(q⃗Δt , p⃗Δt)f(q⃗0, p⃗Δt)U(Δt; q⃗0, p⃗0), (34)

where the dependence of Unaïve on ψ0 comes from the dependence
of q⃗Δt and p⃗Δt on ψ0.

The time propagation on the naïve adaptive grid preserves the
norm ∥ψt(q⃗t)∥ ∶= ⟨ψt(q⃗t)∣ψt(q⃗t)⟩

1/2 because Unaïve is a composition
of three norm-preserving operators: That f and f̃ preserve the norm

follows from Eq. (20), and U(Δt, q⃗0, p⃗0) preserves the norm because
U† = U−1 [see Eq. (29)].

A symmetric operator is time-reversible [i.e., satisfies U(−Δt)
U(Δt) = 1] and vice versa. Both of these properties are lost in the
naïve adaptive grid approach because

Unaïve(−Δt;ψΔt , q⃗Δt , p⃗Δt)Unaïve(Δt;ψ0, q⃗0, p⃗0)

= f̃(q⃗ ′0 , p⃗ ′0 )f(q⃗Δt , p⃗ ′0 )U(−Δt; q⃗Δt , p⃗Δt)

× f̃(q⃗Δt , p⃗Δt)f(q⃗0, p⃗Δt)U(Δt; q⃗0, p⃗0) ≠ 1, (35)

where

q⃗ ′0 = ⟨q⃗(q⃗Δt)⟩ψ0(q⃗Δt) ≠ q⃗0, (36)

p⃗ ′0 = ⟨ ˜⃗p(p⃗Δt)⟩ψ̃0(p⃗Δt) ≠ p⃗0, (37)

ψ0(q⃗Δt) = U(−Δt; q⃗Δt , p⃗Δt)ψΔt(q⃗Δt), (38)

ψ̃0(p⃗Δt) = f(q⃗Δt , p⃗Δt)ψ0(q⃗Δt). (39)

Note that inequality (35) would still hold even in the unlikely situ-
ation that, by chance, q⃗ ′0 = q⃗0 and p⃗ ′0 = p⃗0. As we shall see below,
to preserve the symmetry and time reversibility, the grid must be
evolved simultaneously with the wavefunction.

G. Recovery of time reversibility by a combination
of the splitting method and Ehrenfest theorem

The Ehrenfest theorem52 states that the time derivatives of the
position and momentum expectation values satisfy

˙⃗qt = ⟨∂H/∂p⃗(q⃗t , p⃗t)⟩ψt(q⃗t)
, (40)

˙⃗pt = −⟨∂H/∂q⃗(q⃗t , p⃗t)⟩ψt(q⃗t)
. (41)

The system of differential and algebraic equations (25)–(27) for
ψt , q⃗t , p⃗t is equivalent to and, hence, can be replaced with the system
of differential equations (25), (40), and (41). These equations can be
solved analytically if Ĥ = V(ˆ⃗q) or Ĥ = T(ˆ⃗p). This is the essence of
the splitting method10,11 (see Sec. II A).

1. Potential propagation: Ĥ = V( ˆ⃗q )
When Ĥ = V(ˆ⃗q ), Eqs. (25), (40), and (41) become

ψ̇t(q⃗t) = −
i
h̵
V(q⃗t)ψt(q⃗t), (42)

˙⃗qt = 0, (43)

˙⃗pt = −⟨∂V/∂q⃗(q⃗t)⟩ψt(q⃗t)
, (44)

where [V(q⃗t)]JJ′ = δJJ′V(q⃗ J(q⃗t)). These equations have an exact
analytical solution for arbitrarily long time t, namely,

ψt(q⃗t) = UV(t, q⃗0)ψ0(q⃗0), (45)

q⃗t = q⃗0, (46)

p⃗t = p⃗0 − t⟨∂V/∂q⃗(q⃗0)⟩ψ0(q⃗0)
. (47)
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2. Kinetic propagation: Ĥ = T( ˆ⃗p )
Similarly, when Ĥ = T(ˆ⃗p ), Eqs. (25), (40), and (41) become

˙̃ψt(p⃗t) = −
i
h̵
T̃(p⃗t)ψ̃t(p⃗t), (48)

˙⃗qt = m−1 ⋅ ⟨p̃(p⃗t)⟩ψ̃t(p⃗t), (49)

˙⃗pt = 0, (50)

where [T̃(p⃗t)]KK′ = δKK′T(p⃗K(p⃗t)). The exact solution of Eqs. (48)–
(50) for any time t is

ψ̃t(p⃗t) = ŨT(t, p⃗0)ψ̃0(p⃗0), (51)

q⃗t = q⃗0 + tm−1 ⋅ p⃗0, (52)

p⃗t = p⃗0. (53)

Note that Eqs. (47) and (52), which appear to be first-order approx-
imations, are exact since ∂V/∂q⃗(q⃗t) commutes with UV(t, q⃗t) and
˜⃗p(p⃗t) commutes with ŨT(t, p⃗t); therefore, ⟨∂V/∂q⃗(q⃗t) ⟩ψt(q⃗t) in
Eq. (44) and ⟨p̃(p⃗t)⟩ψ̃t(p⃗t) in Eq. (49) are time-independent. The
evaluation of UV(t, q⃗0) in Eq. (45) and ŨT(t, p⃗0) in Eq. (51), as
well as their action on ψ0(q⃗0) and ψ̃0(p⃗0), respectively, can be
parallelized using the openMP interface.

The resulting, overall evolution operators (which also include
the grid evolution) for the potential and kinetic splitting steps
are

UV,adpt(Δt;ψ0, q⃗0) ∶= UV(Δt, q⃗0), (54)

UT,adpt(Δt;ψ0, q⃗0, p⃗0) ∶= f̃(q⃗Δt , p⃗0)ŨT(Δt, p⃗0)f(q⃗0, p⃗0), (55)

respectively, where we have used that p⃗0 = p⃗Δt in Eq. (55) [which
follows from Eq. (53)]. Evolution operators UV,adpt(Δt;ψ0, q⃗0)
and UT,adpt(Δt;ψ0, q⃗0, p⃗0) preserve the norm, which follows
from Eq. (20) and from the fact that UV(Δt, q⃗0)†UV(Δt, q⃗0)
= ŨT(Δt, p⃗0)†ŨT(Δt, p⃗0) = 1. A composition of norm-
preserving operators is norm-preserving64 and, therefore, any
split-operator algorithm composed from UV,adpt(Δt;ψ0, q⃗0) and
UT,adpt(Δt;ψ0, q⃗0, p⃗0) is norm-preserving.

Time reversibility of UV,adpt(Δt;ψ0, q⃗0) follows because
UV(−Δt, q⃗0)UV(Δt, q⃗0) = 1. Similarly, UT,adpt(Δt;ψ0, q⃗0, p⃗0) is time-
reversible because

UT,adpt(−Δt;ψΔt , q⃗Δt , p⃗0)UT,adpt(Δt;ψ0, q⃗0, p⃗0)

= f̃(q⃗0, p⃗0)ŨT(−Δt, p⃗0)f(q⃗Δt , p⃗0)

× f̃(q⃗Δt , p⃗0)ŨT(Δt, p⃗0)f(q⃗0, p⃗0) = 1, (56)

where we used Eq. (20) and the identity ŨT(−Δt, p⃗0)ŨT(Δt, p⃗0) = 1.
A symmetric composition of time-reversible operators is time-
reversible.64 Therefore, all symmetric split-operator algorithms
of form (6) that are composed from UV,adpt(Δt;ψ0, q⃗0) and
UT,adpt(Δt;ψ0, q⃗0, p⃗0) are time-reversible.

H. Stability of the time-reversible adaptive grid
Equations (46), (47), (52), and (53) for the evolution of the grid

centers are essentially the equations of the Verlet algorithm.57,65,66

The stability57,67 of the method from Sec. II G, therefore, depends
mostly on the stability of the Verlet algorithm because the split-
operator algorithms, by themselves, are stable for all Δt.

The Verlet algorithm applied to the harmonic oscillator is stable
for time steps that satisfy

Δt < Tosc/π, (57)

where Tosc is the oscillation period.57 In higher-dimensional har-
monic models, the restriction (57) on the time step must hold for
the period Tosc of the fastest normal mode.57

III. NUMERICAL EXAMPLES
A. Three-dimensional harmonic model

To analyze the geometric and convergence properties of the
algorithm proposed in Sec. II G, we devised a two-surface three-
dimensional harmonic model of electronic excitation of a molecule.
The initial vibrational state, determined using the ground-state
potential energy surface, was propagated solely on the excited-state
surface, following an impulsive electronic excitation. More precisely,
the initial state for the propagation was the ground vibrational
eigenstate,

ψ(q⃗ ) = (πh̵)−D/4 exp(−q⃗ 2/2h̵), (58)

of the ground-state Hamiltonian,

Ĥg =
D

∑
l=1

ωl

2
[(p̂l)2 + (q̂l)2], (59)

where ql is the lth ground-state normal mode coordinate, pl is
its conjugate momentum, and ωl is the associated vibrational fre-
quency. After the electronic excitation, ψ(q⃗ ) was propagated with
the excited-state Hamiltonian

Ĥe =
D

∑
l=1

ωl

2
p̂2
l +

1
2
(ˆ⃗q − q⃗0)T ⋅ K ⋅ (ˆ⃗q − q⃗0), (60)

where q⃗0 is the displacement of the excited-state potential energy
surface and K is a symmetric positive definite matrix; K is not
diagonal because the excited-state normal modes were chosen to
be Duschinsky rotated68 with respect to the ground-state normal
modes. For the dynamics, natural units (n.u.) were used: h̵ = ω2
= mH = 1, where mH is the mass of a hydrogen atom. The diagonal
(K ll) and off-diagonal (K lm) elements of the K matrix, displacement
q⃗0, and ground-state vibrational frequency ωl in Eq. (60) are listed
in Table I, which also contains the initial parameters of the adaptive
grid and the total propagation time tf .

To verify that grid adaptation does not decrease the accuracy of
the solution, we compared the wavefunction ψ(Δt)t propagated using
the adaptive grid with the time step Δt to the corresponding “bench-
mark” wavefunction Ψ(Δt)t propagated using a fixed grid. Indeed, the
errors ∥ψ(Δt)t −Ψ(Δt)t ∥ were minuscule (the errors were 5 × 10−11 at
t = 0 and 2 × 10−10 at t = tf ). The wavefunctions were propagated
with the optimally composed tenth-order TVT split-operator algo-
rithm with Δt = tf /29. (See Ref. 64 and the references therein for a
detailed discussion of composition schemes.) We used a high-order
integrator with a small time step so that the error was dominated by
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TABLE I. Parameters for the quantum dynamics of the harmonic model from
Sec. III A. The parameters of the Hamiltonian (60) (the force constant K, displacement
q⃗0, and ground-state vibrational frequencies ω⃗), initial parameters of the adaptive grid
(N⃗, q⃗ctr,Δq⃗ ), and the total propagation time are shown in natural units (n.u.) defined
in Sec. III A.

Parameters Values Parameters Values

K11 1.997 ω1 2
K22 1.015 ω2 1
K33 2.48 ω3 2.5
K12 −0.04 N1 = N2 = N3 32
K13 −0.017 qctr,1 = qctr,2 = qctr,3 0
K23 0.04 Δq1 = Δq2 = Δq3 0.4375
q0,1 −7 tf 50
q0,2 = q0,3 7

grid adaptation and not by time discretization. Both q⃗- and p⃗-ranges
of the fixed grid were chosen to be twice larger than the ranges of
the adaptive grid because the amplitude of the adaptive grid’s oscil-
lation was approximately equal to its range. In order that the fixed
and adaptive grids had the same density, the fixed grid was chosen
to have 128 × 128 × 128 points (see the Appendix for the expo-
nential convergence of the wavefunction with the number of grid
points).

Figure 1(a) shows that the expectation value of position is com-
puted correctly with the adaptive grid, even when the wavefunction
moves beyond the range of the initial grid. In fact, Fig. 1(b) shows
that the error of the position expectation value is minuscule (of the
order of 10−11) for all times; the slow linear increase in the error is
due to the accumulation of roundoff errors.

Figure 2 demonstrates that the compositions11,48–51 of the pro-
posed algorithm from Sec. II G achieve the predicted higher orders
of accuracy. The figure also demonstrates the divergence of the dis-
cretization errors ∥ψ(Δt)tf − ψ(Δt/2)tf ∥ when the composition substep
size, |γk|Δt, does not satisfy condition (57). Note that the accumu-
lation of roundoff errors does not allow the discretization errors to
reach below ≈10−10.

Higher-order methods require a longer computational time
per time step but converge faster with the decreasing time step
size. Therefore, to obtain a wavefunction with a discretization error

FIG. 1. Accuracy of the adaptive grid used for quantum dynamics of the three-
dimensional harmonic model (60) from Sec. III A. (a) Position expectation values
⟨ql⟩ψt computed on the adaptive grid. (b) Difference Δ⟨ql⟩ ∶= ⟨ql⟩ψt − ⟨ql⟩Ψt

between the position expectation values computed on the adaptive grid (32 × 32
× 32 points) and fixed grid (128 × 128 × 128 points).

below a certain threshold value, higher-order methods have a lower
computational cost, which we measure by the central processing
unit (CPU) time. Figure 3 shows that a tenfold speedup is already
achieved by using the optimal tenth-order instead of the second-
order algorithm to reach a moderate discretization error of 10−2.
The speedup relative to the second-order algorithm is much greater
if a small error is desired. To reach an error of 10−9, 500-fold
speedup is achieved by using the Suzuki fourth-order algorithm.
Moreover, 2000-, 5000-, and 10 000-fold speedups are achieved
by using the optimal sixth-, eighth-, and tenth-order algorithms,
respectively.

Because a split-operator propagation is equivalent to an exact
propagation with an effective, time-dependent Hamiltonian, the
energy E(Δt)t = ⟨ψ(Δt)t ∣Ĥ∣ψ(Δt)t ⟩ is conserved only approximately.

FIG. 2. Convergence (up to the tenth-
order) of the wavefunction as a func-
tion of the time step in the harmonic
system from Sec. III A. In this figure
and Figs. 3–5, we only show the results
for the compositions of the TVT algo-
rithm. Gray straight lines indicate pre-
dicted orders of convergence. Top: all
discussed methods; bottom left: meth-
ods composed through Suzuki’s frac-
tal;48 bottom right: sixth-order methods.
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FIG. 3. Efficiency of the compositions of the proposed algorithm (see Sec. II G)
in the harmonic system from Sec. III A. Results of the second-order TVT algo-
rithm were extrapolated using the line of best fit beyond CPU time = 7 × 104 s
to highlight the higher efficiency of the higher-order methods. Top: all discussed
methods; bottom: optimally composed methods (Suzuki’s fractal is the opti-
mal fourth-order composition scheme50,51,64). Line labels are the same as in
Fig. 2.

Figure 4(a) shows that the energy is conserved to the same order
of accuracy [O(Δtm)] as the wavefunction. Figures 4(b) and 4(d)
demonstrate that the compositions of the proposed algorithm are
exactly norm-preserving and time-reversible as already justified
analytically in Sec. II G. In Sec. II E, we showed that the grid
adaptation leads to the nonconservation of the inner product.
Figure 4(c) may, therefore, be misleading because the inner prod-
uct appears to be conserved. However, this is not true in general,
as shown later on the example of collinear He–H2 scattering (see
Sec. III B).

In all panels of Fig. 4, the slow increase in the error for decreas-
ing time steps is due to the accumulation of roundoff errors; there-
fore, the (minuscule) errors are larger for methods with more com-
position steps per time step.11 Panels (b)–(d) show that, on the
other hand, the errors diverge for large time steps Δt because of
the instability of the Verlet algorithm (see Sec. II H); larger errors
result from methods with a larger maximum composition coeffi-
cient [maxk|γk|, see Eq. (57)]. Specifically, for large Δt, the time
reversibility of the proposed algorithm is lost because the centers
of the position and momentum grids diverge due to the instabil-
ity of the Verlet algorithm, used for propagating the grid centers.
Similarly, beyond a certain time step size, the norm is no longer pre-
served because it is evaluated on a grid whose center has diverged to
infinity.

Figure 5 confirms that the naïve adaptive grid approach is not
time-reversible, while the algorithm proposed in Sec. II G is. Note
that for very small time steps (Δt ≤ 10−2), the solution is essentially
exact, and even the naïve adaptive grid approach becomes effectively
time-reversible. The bottom panel of Fig. 5 shows, however, that for
a fixed time step Δt, the time propagation on the naïve adaptive grid
is not time-reversible already after a short propagation time t; the

FIG. 4. Conservation of geometric properties by the compositions of the proposed
algorithm from Sec. II G as a function of the time step in the harmonic system from
Sec. III A: (a) energy [E0 = 140.389 n.u.], (b) norm, (c) inner product, and (d) time
reversibility. ϕ0 is wavepacket (58) displaced by q1 = −1 n.u. and q2 = q3 = 1 n.u.
(hence, ⟨ψ0|ϕ0⟩= 0.472). Time reversibility is measured by the distance between
ψ0 and the forward-backward propagated state, i.e., ψ0 propagated forward in
time for tf and then backward in time for tf . Gray straight lines indicate predicted
orders of convergence O(Δtm) for m = 2, 4, and 10. Line labels are the same as
in Fig. 2.

breaking of time reversibility is an inherent property of the naïve
adaptive grid.

B. Collinear He–H2 scattering
As a more challenging test, we also applied the algorithm pro-

posed in Sec. II G to a very anharmonic system. Following Ref. 38,
we simulated the collinear He–H2 scattering using a modified54

Secrest–Johnson53 potential energy surface,

VSJ(q⃗) = D(1 − e−βq1)2 + e−α(q2−q1), (61)

where β = 0.158 n.u., D = 20 n.u., and α = 0.3 n.u. The natural units
(n.u.) are different from those defined in Sec. III A: h̵ = 1 as before,
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FIG. 5. Time reversibility of the naïve (see Sec. II F) and proposed (see Sec. II G)
split-operator algorithms on adaptive grids in the harmonic system from Sec. III A.
Both split-operator algorithms were composed to the tenth order using the optimal
scheme. Top: time reversibility as a function of the time step Δt for a fixed total
propagation time t. Bottom: time reversibility as a function of the total propagation
time t for a fixed time step Δt.

but
√

2Dβ2/m1 = m1 = 1 instead. In Eq. (61), q1 is the vibrational
coordinate of H2, and q2 is the distance between the He atom and
the center of mass of H2.53 In this coordinate system, m1 = 1 n.u. and
m2 = 2/3 n.u.38,53 The Hamiltonian for this problem is Ĥscat = T(ˆ⃗p)
+ VSJ(ˆ⃗q), where T(ˆ⃗p) has the form (3).

As in Ref. 38, the initial state is a product of two one-
dimensional Gaussian wavepackets,

ψ(1)(q) = (πh̵)−1/4 exp(−q2/2h̵),

ψ(2)(q) = (πσ2
0)−1/4 exp[−(q − q0)2/2σ2

0 + ip0(q − q0)/h̵].
(62)

The Gaussian wavepacket ψ(2)(q) is sufficiently narrow and far from
the interaction region so that there is no significant initial interac-
tion between He and H2 (σ2

0 = 8 n.u. and q0 = 24 n.u.). A negative
initial momentum (p0 = −3.56 n.u.) ensures a collision at a later
time.

Figure 6 shows the error of the wavefunction propagated using
either the adaptive or fixed grid, both with the same number of grid
points. The error of the wavefunction propagated using the adap-
tive grid remains reasonably small (<10−3) for six times longer than
the error of the corresponding wavefunction on the fixed grid. The
significance is that for a given number of grid points, determined,
e.g., by the available memory, the time scale of a simulation can be
extended by grid adaptation.

Figure 7 displays the time dependence of the expectation value
of q⃗ and of its error. Panel (a) shows that the collision between
He and H2 induces the vibration of H2, which was originally in
its ground vibrational state. Panel (b) shows that the error of the

FIG. 6. Error ∥ψt − Ψt∥ of the wavefunction ψt propagated on either the
adaptive or fixed grid (both with 128 × 128 points) in the He–H2 scattering
from Sec. III B. Ψt is the “exact” reference wavefunction propagated on a fixed
grid with 128 × 2048 points. The initial q1 range of all grids was (−14 n.u.,
14 n.u.). The initial q2 range was (0 n.u., 48 n.u.) for both grids with 128 × 128
points and (−50 n.u., 400 n.u.) for the reference fixed grid. Figures 6–8 were
produced using the optimal tenth-order composition of the VTV algorithm with
Δt = 0.1 n.u.

position expectation value was reasonably small until t ≈ 20 n.u.
on the adaptive grid. After t ≈ 20 n.u., however, the error starts
to grow rapidly in the second dimension because the width of the
wavepacket in this dimension increases approximately linearly from
t ≈ 10 n.u. Thus, a significant portion of the wavepacket eventually
escapes through the boundaries of the adaptive grid in the second
dimension.

Finally, in Fig. 8, we show that the proposed algorithm pre-
serves the geometric invariants even in the collinear scattering of
He–H2, where the wavepacket is more delocalized than in the har-
monic example from Sec. III A. As expected, the norm [Fig. 8(b)]
and time reversibility [Fig. 8(d)] are preserved exactly (the slow lin-
ear increase in the invariants is again due to the accumulation of
roundoff errors). On the other hand, the energy [Fig. 8(a)] and inner
product [Fig. 8(c)] are not conserved. In particular, the apparent
conservation of the inner product observed in Sec. III A is indeed
not general.

FIG. 7. Accuracy of the adaptive grid for simulating the He–H2 scattering
(see Sec. III B). (a) Expectation values of position computed on the adaptive
grid. (b) The difference between the position expectation values computed on
the adaptive grid (128 × 128 points) and reference fixed grid (128 × 2048
points).
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FIG. 8. Geometric properties of the algorithm proposed in Sec. II G applied to
the He–H2 scattering from Sec. III B: (a) energy, (b) norm, (c) inner product, and
(d) time reversibility. The time reversibility is defined in the same way as in the
caption of Fig. 4. Gaussian wavepacket ϕ0 is identical to ψ0, the two-dimensional
initial Gaussian wavepacket from Sec. III B, except that p0 in Eq. (62) is −3.0 n.u.
instead of −3.56 n.u. (hence, |⟨ψ0|ϕ0⟩| = 0.534).

C. Eight-dimensional Hénon–Heiles model
To demonstrate the applicability of the algorithm from Sec. II G

to high-dimensional quantum dynamics, we applied it to the eight-
dimensional Hénon–Heiles model,

ĤHH = T(ˆ⃗p) + VHH(ˆ⃗q), (63)

whose kinetic energy T(ˆ⃗p) is of the form (3) and potential energy is
given by

VHH(q⃗) =
κ
2

D

∑
l=1

q2
l + λ

D−1

∑
l=1
(q2

l ql+1 − q3
l+1/3) (64)

with D = 8. Simulating the quantum dynamics of the Hénon–Heiles
system is challenging because the potential VHH(q⃗) is anharmonic
and unbound and contains intermode couplings. Following Ref. 69,
the parameters were chosen to be λ = 0.111 803 n.u. and ml = 1 n.u.
for l = 1, . . ., D, where the natural units (n.u.) were defined by fixing
h̵ = mH = κ = 1; the initial state is ψ(q⃗) = π−D/4 exp[−(q⃗ − q⃗0)2/2]
with q0,l = 2 n.u. for l = 1, . . ., D.

Panels (a) and (b) of Fig. 9 show that the autocorrelation func-
tion ⟨ψ0|ψt⟩ is obtained more accurately by the adaptive grid algo-
rithm than by the standard split-operator algorithm on a fixed grid
when both the adaptive and fixed grids have the same number (88)
of grid points. In particular, the detailed shape of the first recur-
rence of the autocorrelation function is correctly described only
by the proposed algorithm [see the insets of panels (a) and (b)
of Fig. 9]. Consequently, only the spectrum calculated using the
adaptive grid algorithm has the correct shape of the envelope [see
Fig. 9(c)].

FIG. 9. Autocorrelation function for the Hénon–Heiles model from Sec. III C com-
puted using either (a) the split-operator algorithm on a fixed grid or (b) the proposed
adaptive grid algorithm (see Sec. II G). Both algorithms were composed to the
fourth order using Suzuki’s fractal. (c) Spectrum calculated via the Fourier trans-
form of the autocorrelation function, using f (t) = exp[−(t/tdamp)

2] with tdamp
= 30 n.u. as the damping function. The fixed grid was defined between ql
= −3.5 n.u. and ql = 3.5 n.u., and the initial adaptive grid was defined between
ql = −3.0 n.u. and ql = 7.0 n.u.; both grids had 88 points. The benchmark was
calculated using the MCTDH method.14

IV. CONCLUSION
We have described a split-operator algorithm combined with

an adaptive phase space grid whose center moves according to the
wavepacket’s expectation values of position and momentum. By
propagating the grid center exactly and simultaneously with the
wavefunction, the symmetry and time reversibility were built into
the proposed algorithm. Adapting the grid reduces the number of
required grid points while maintaining high accuracy in situations
where the wavepacket remains localized. Examples include har-
monic systems or short-time dynamics in moderately anharmonic
systems. On the example of He–H2 scattering, we showed that the
proposed algorithm is also suitable for longer-time dynamics if only
a moderate accuracy of the wavepacket is required, i.e., when one can
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ignore small parts of the wavepacket escaping through the bound-
aries of the adaptive grid. The algorithm allowed us to compute accu-
rately the medium-resolution spectrum of the eight-dimensional
Hénon–Heiles system, which is not only high-dimensional but also
highly nonlinear.

We showed both analytically and numerically that the time
reversibility is lost by the naïve grid adaptation. Then, we introduced
an amendment that recovered the time reversibility. The geomet-
ric properties of the resulting algorithm, namely, norm preserva-
tion, conditional stability, symmetry, and time reversibility, were
demonstrated analytically as well as numerically on two different
model systems. Note that because neither the Chebyshev method70

nor the Lanczos60,61 method is time-reversible,10 it is only rea-
sonable to combine them with the naïve adaptive grid. Moreover,
combining the Chebyshev method with adaptive grids would be
inappropriate because the advantage of the Chebyshev algorithm
as a global, long time propagator would be lost by changing the
grid and, therefore, the Hamiltonian matrix regularly at small time
intervals.

Because of its symmetry, the proposed algorithm can be com-
posed to obtain higher-order integrators. We verified that these
higher-order integrators are more efficient compared to the second-
order integrator if high accuracy is desired. As an additional ben-
efit, the proposed algorithm requires no adjustable parameters
for the grid adaptation because the grid center follows the exact
trajectory of the wavepacket’s expectation values of position and
momentum.

Finally, we hope that the proposed time-reversible integra-
tor for the time-dependent Schrödinger equation on an adaptive
grid could serve as a benchmark for more approximate methods,
such as the thawed Gaussian approximation,71–73 that rely on the
wavepacket remaining localized for relevant time scales.
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APPENDIX: EXPONENTIAL CONVERGENCE
WITH THE NUMBER OF GRID POINTS

Figure 10 shows the exponential convergence of the wavefunc-
tion with increasing number of grid points. As expected, the con-
vergence is slower for the fixed grid, which must cover roughly four
times larger phase space area in each dimension to account for the
movement of the wavepacket.

The fast Fourier transform, which is the bottleneck of the com-
bination of the dynamic Fourier method with the split-operator
algorithm on a tensor-product grid, scales as N logN. Because
N = MD, where M is the geometric average number of grid points in
each dimension, the method scales exponentially with the number of
dimensions. Similar to the MCTDH or time-dependent DVR meth-
ods, the proposed algorithm does not remove the exponential scaling
but slows down the exponential growth significantly compared to
the conventional split-operator algorithm on a fixed grid (see, e.g.,

FIG. 10. Convergence of the wavefunction ψM (tf ) with the increasing number of
grid points. ψM (tf ) is evaluated on either the adaptive or fixed grid of N = MD

points in the harmonic system from Sec. III A. For balanced q⃗- and p⃗-grids, the
ranges as well as the densities of both q⃗- and p⃗-grids were increased by a factor
of
√

2 for every doubling of the number of grid points. Wavefunctions on grids
of different densities were compared through the trigonometric interpolation of the
wavefunction on the sparser grid. Both the proposed adaptive grid algorithm from
Sec. II G and the split-operator algorithm on a fixed grid were composed to the
tenth order using the optimal scheme; Δt = 0.1 n.u.

Fig. 10). This is, indeed, what allowed us to treat the eight-
dimensional Hénon-Heiles system in Sec. III C.
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