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ABSTRACT

This paper presents an extension to PathFinder FPGA routing algo-
rithm, which enables it to deliver FPGA designs free from risks of
crosstalk attacks. Crosstalk side-channel attacks are a real threat
in large designs assembled from various IPs, where some IPs are
provided by trusted and some by untrusted sources. It suffices that
a ring-oscillator based sensor is conveniently routed next to a sig-
nal that carries secret information (for instance, a cryptographic
key), for this information to possibly get leaked. To address this
security concern, we apply several different strategies and evaluate
them on benchmark circuits from Verilog-to-Routing tool suite. Our
experiments show that, for a quite conservative scenario where
10-20% of all design nets are carrying sensitive information, the
crosstalk-attack-aware router ensures that no information leaks
at a very small penalty: 1.58-7.69% increase in minimum routing
channel width and 0.12-1.18% increase in critical path delay, on
average. In comparison, in an AES-128 cryptographic core, less
than 5% of nets carry the key or the intermediate state values of
interest to an attacker, making it highly likely that the overhead
for obtaining a secure design is, in practice, even smaller.
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1 INTRODUCTION

Parallel nature of field-programmable gate arrays (FPGAs) enables
them to offer superior processing power than modern processors,
and makes FPGAs perfect hardware-acceleration platforms for a
large spectra of applications. With increased application space and
technology scaling, FPGAs continue to grow in size and number
of available resources. Consequently, FPGAs today can accommo-
date extremely large heterogeneous designs. In large development
projects, modularisation and design reuse are the key to meeting
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delivery deadlines while ensuring the validity of the entire design.
Often, in the absence of in-house design modules (cores) for some
of the required design functionalities, companies opt for purchasing
IP cores from sources specialized in IP-core development or for out-
sourcing a part of their development to other companies. As a result,
large designs are often assembled from modules originating from
various sources, presumably all trusted and performing only the
desired functionality. In the absence of means or time to thoroughly
test whether all the design modules are free of any malicious code,
designers would greatly benefit from this task to be handled by the
EDA tools.

Crosstalk coupling between neighboring routing wires is known
to affect signal delays [12]: a long wire carrying logical 1 reduces
the propagation delay of the signal carried by the adjacent long
wire [3]. This phenomenon can not only be observed, but also
exploited for side-channel attacks [3]. All that it takes is for an FPGA
Trojan to enable a ring oscillator, which has to be conveniently
routed so that one of the wires between two ring-oscillator stages is
neighboring the victim signal. To validate if the threat of a crosstalk
attacks is real, Provelengios et al. examined long wire coupling on
various types of wires across three FPGAs in technology nodes
from 60 to 20 nm (Cyclone IV, Stratix V, Arria 10); their findings
were affirmative [8].

Researchers have been focusing on the feasibility of crosstalk
attacks in multi-user setting, such as FPGAs in the cloud, not en-
tirely realizing that higher risk lies in designs assembled from IP
cores, acquired in the RTL form and assembled as parts of large
and complex designs. One of such IP cores, for example, a USB
transmitter/receiver, may contain a hidden FPGA Trojan, actively
attempting to pick up signals from neighboring wires. If one of those
wires, for instance, carries a secure cryptographic key—required
by an encryption core that happens to be an integral part of the
design—a crosstalk side-channel attack becomes reality.

One approach to preventing crosstalk attacks could be by identi-
fying all combinational loops, ring oscillators being among them.
However, researchers have shown that even without a combina-
tional loop it is possible to synthesize very efficient sensors for mea-
suring crosstalk leakage [2]. Hence, we take a completely different
approach. In this paper, we show how PathFinder [7], well-known
routing algorithm for FPGAs, can be extended (at minimal cost) to
prevent crosstalk FPGA Trojans from performing an attack. With
our algorithm, all designers need to do is label nets that carry sen-
sitive information, for instance the nets carrying the cryptographic
key or intermediate encryption/hash register states. The router
then ensures that all labeled nets are never routed close to any of
the signals that originate from potentially untrusted sources, thus
effectively preventing the crosstalk attack.
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The main contributions of this paper can be summarized as
follows:

e To the best of our knowledge, this is the first work that
leverages FPGA routing to prevent crosstalk side-channel
attacks on FPGAs.

e Four enhancements (or modes of operation) of the PathFinder
routing algorithm are presented, some of them more and
some less constraining.

e Using benchmarks from Verilog-to-Routing (VTR) suite [9],
we experimentally evaluate how routing in secure mode
performs, in terms of minimal channel width and critical
path delay, compared to the baseline VPR router [9]. The
results show that, for a conservative scenario where 10% or
20% of all benchmark nets carry sensitive information, our
router ensures that no information can leak at an acceptably
small penalty of 1.58-7.69% increase in minimum routing
channel width and 0.12-1.18% increase in critical path delay,
on average. In comparison, in an AES-128 cryptographic
circuit, less than 5% of nets carry the key or the intermediate
state values of interest to an attacker [1]. Hence, in practice,
these overheads may be even smaller.

In the remainder of this paper, we first address the related work
(Section 2). Then, we lay down the background in crosstalk side-
channel leakage and PathFinder FPGA routing algorithm (Section 3).
In Section 4, we describe our enhancements of PathFinder. Section 5
explains the experimental setup and presents the results, while
Section 6 concludes the paper.

2 RELATED WORK

There has been quite a bit of work on VLSI routers that under-
stand crosstalk [10, 11], but surprisingly very little in routers for
FPGAs [12]. Wilton, in his crosstalk-aware router for FPGAs, modi-
fies the cost function used by the PathFinder algorithm to include
the delay penalty caused by the crosstalk effect [12]. As a result, the
router tends to route nets with high criticality away from other nets,
thereby lowering the crosstalk effect on the routing delays. Our
work is different, because we are not concerned by crosstalk effects
across the entire FPGA design. Applying a crosstalk-related cost
penalty to all nets and trying to reduce crosstalk everywhere on
the FPGA is not our target goal. Moreover, our design constraints
are tighter: to avoid crosstalk side-channel leakage, we must guar-
antee that no sensitive net is routed next to an untrusted net [2, 3].
Previously published crosstalk-aware routers [12] do not address
security issues, whereas we do.

Huffmire et al. suggest using a spatial isolation mechanism called
a moat and a controlled core-to-core communication mechanism
called a drawbridge [4, 5], as methods for ensuring separation on re-
configurable devices. To construct moats, they partition the design
and place cores in nonoverlapping regions of the chip. The unused
space between cores becomes the moat. Inside moats, routing is
disabled, except for the signals that use drawbridges to cross moats.
The authors report an overhead of 1,000 configurable logic blocks,
for the moat of size six and a design of seven cores [4], as well as
the maximum decrease in design clock frequency of ~2%. More
recently, Yazdanshenas and Betz suggest wrapping the FPGA user
applications (also known as roles) with soft shells [13], in which
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Figure 1: Nearest neighbor wires (in blue) and second near-
est neighbor wires (dashed) of a sensitive net, whose routing
tree contains a long wire (in red). For simplicity, only the
path from the net source node (S1) to one of the sink nodes
(T1) is shown. Additionally, neither the short wires nor the
vertical routing channels are drawn.
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Figure 2: Threat scenario: the ring oscillator of the crosstalk
side-channel receiver (in purple) is routed next to a sensi-
tive net (in red). For simplicity, only the path from the net
source node (S1) to one of the sink nodes (T1) is shown. Ad-
ditionally, neither the short wires nor the vertical routing
channels are drawn.

the data that has to leave the role is encrypted, ensuring off-role
confidentiality. However, this causes about 80% higher latency of
the secure bandwidth compared to the regular (unencrypted) traffic.
Moreover, the additional resources to implement the encryption
reduce the area available for the FPGA roles by about 20%. In our
work, no physical separation between the cores is required, while
the decrease in critical path delay, as we will show later, remains
below 2%, on average.

3 BACKGROUND
3.1 Crosstalk Side-Channel Leakage

Giechaskiel et al. observed that a long routing wire carrying a
logical 1 reduces the propagation delay of another adjacent, but
unconnected, long wire in the FPGA routing network [3]. The
change in the wire delay can be relatively simply measured using a



ring oscillator (sequence of an odd number of inverters closed in
aloop) and a frequency counter, thus allowing malicious users to
build an FPGA Trojan capable of performing crosstalk side-channel
attacks.

In the same work, the authors experimentally demonstrated
that the longer the overlap between the neighboring long wires,
the more pronounced the crosstalk effect is. This phenomenon is
still observable, although 20X weaker, when the transmitter and
the receiver wires are separated by a single unoccupied long wire.
When the transmitter and the receiver pair are separated even
farther, the coupling is too weak and the transmitted data cannot be
reliably inferred. Given that it is not the switching frequency of the
transmitted signal but its value that determines the wire delay, even
constant signals (such as the outputs of registers keeping encryption
key) may leak information. Therefore, preventing crosstalk attacks
is equivalent to not permitting any malicious net to come close to
nets carrying sensitive information.

Fig. 1 illustrates what the nearest and the second nearest neigh-
bors of a wire are: the wires at a distance one or two, respectively.
Fig. 2 shows the crosstalk-attack threat scenario, in which the ring-
oscillator of the side-channel receiver is routed next to a sensitive
net. For simplicity, only the path from the net source node to one
of the sink nodes is shown. Additionally, neither the short wires
nor the vertical routing channels are drawn.

3.2 PathFinder Routing Algorithm

Although the exact FPGA architecture varies from vendor to vendor,
all FPGAs share the same basic structure; they are two-dimensional
arrays of configurable logic blocks and hardened computational
units separated by unidirectional routing wires. To achieve the best
design speed, modern FPGAs typically have a mix of short and long
wires, in both horizontal and vertical directions.

The FPGA routing resources are represented as a directed Routing
Resource Graph (RRG) G = (V,E), where V is the set of vertices
and E is the set of edges. Each vertex v € V is a wire or a pin of
an FPGA LUT, register, or hardened unit. Each edge e;; € Eis a
configurable switch allowing to connect a pin to a wire, or a wire
to a wire. Signals to route through G form the design netlist, where
every net is defined by its source vertex s; and the sink vertices
{t1,12, ..., tm }. A net Nj is routed once the paths from its source s;
to each of its sinks are found; those paths constitute a routing tree
RT(N;) € G of net N;. Routing of the entire FPGA design (netlist)
is successful if the routing trees of all nets are disjoint in G.

PathFinder is the most common academic and commercial FPGA
routing algorithm [7]. It is a negotiated-congestion router, that
iterates over all nets, applies A* search to find the shortest routing
trees, and incrementally increases the cost of vertices in G so that,
eventually, the congestion among the resources is resolved and all
the routing trees are disjoint.

4 SECURE ROUTING

Let us introduce the following design module properties: trusted
and untrusted. All nets originating from a trusted design unit
(designed in-house or obtained from a trusted source) are considered
trusted, whilst all nets originating from potentially untrusted IPs
are considered untrusted.

Algorithm 1: Function to route the entire design netlist.

Input: Routing resource graph: G = {V,E}
Input: Nets N = {N;},i = 1..|N]|
Output: Routing trees RT = {RT;} € G,i = 1..|N|
while congestionExists and NumlIterations < MAX do
foreach net N; € N do
ripUpRoutingTree(RT;)
updatePresentCost(RT;)
RT; « s; // Source node of net Nj
foreach sink t; j € N; do
L Pj « mazeExpand(RT;, t;, j)
RT; « RT; U Pj
updatePresentCost(RT;)
setGuards(RT;)
| blockOccupiedResources(RT;)
foreach net N; € N do
updateHistoryCost(RT;)
| resetGuards(RT;)

For every net, one can define a property called key, initialized
with the identifier of the design module from which this net orig-
inates. This enables telling whether two nets originate from the
same or two different design units.

One prevention mechanism is to limit the routing of the nets
internal to IPs to physically separated regions. However, IPs com-
municate with the rest of the design, hence some nets must leave
the regions where their circuits are placed; moreover, some of those
nets may be carrying sensitive information. To distinguish the nets
carrying sensitive information from others, we introduce new net
property: sensitive. For instance, all signals carrying secure en-
cryption key are sensitive. In the most general case, both trusted
and untrusted design modules can have sensitive nets.

4.1 Routing Strategies

Our FPGA router is based on the VPR Pathfinder algorithm [9],
which we modify to stop routing when both the congestion is
removed and a specific correctness criterion is satisfied. Correctness
criteria can be more or less strict while achieving the same goal,
which is why we propose the following strategies:

(1) Block-2NN: the nearest and the second nearest neighbors
of the sensitive nets are unoccupied.

(2) Block-NN: the nearest neighbors of the sensitive nets are
unoccupied.

(3) Block-Untrusted: the nearest neighbors of the sensitive
nets are never occupied by an untrusted net originating
from another design module.

(4) Lock-NN: the nearest neighbors of the sensitive nets can
only be occupied by the nets having the same key, i.e., the
nets originating from the same design module as the corre-
sponding sensitive nets.

Our enhanced FPGA router is designed to work with any of the
above strategies.



Algorithm 2: Function setGuards that assigns locked/blocked
constraints on guard wires.

Algorithm 4: Function resetGuards that clears locked and
blocked flags.

Input: Routing resource graph: G = {V,E}
Input: Net N; and its routing tree RT; € G
Input: Safety level L
if Nj.sensitive = True then
foreach node v € RT; do
if v is a long wire then
switch L do
case Block-2NN do
foreach w € extendedNeighborhood(v)
do
L w.blocked < True

case Block-NN do

foreach w € neighborhood(v) do
L w.blocked < True

case Lock-NN do
foreach w € neighborhood(v) do
if w.locked = True then
L if w.key # N;.key then
L w.blocked «— True

else
L w.locked «— True

w.key < Nj.key

Algorithm 3: Function blockOccupiedResources that blocks
all wires in use by a sensitive net.

Input: Routing resource graph: G = {V,E}
Input: Net N; and its routing tree RT; ¢ G
Output: Updated G
foreach node v € RT; do
if Nj.sensitive = True then
L v.blocked < True

else
| wv.blocked « False

4.2 Routing Algorithm

VPR sorts the nets in decreasing order of criticality, which is the
amount of the available timing slack on the nets. We keep the
same approach, except that we give priority to the sensitive nets,
because they impose constraints on the routing of all the other nets.
Consequently, we sort the nets so that on top of the list are the
sensitive nets, followed by all the other nets. Both the sensitive
and the other nets are sorted in decreasing order of criticality. As
a result, a noncritical sensitive net will always be routed before a
critical nonsensitive net, possibly affecting the design critical path.

In the VPR routing resource graph, every node description con-
tains the list of the node successors (adjacent nodes), for faster
graph traversal while searching for the paths. We modify the RRG
representation of the long wires by adding two additional lists:

Input: Routing resource graph: G = {V,E}
Input: Net N; and its routing tree RT; € G
Input: Safety level L

Output: Updated G

if N;.sensitive = True then

foreach node v € RT; do
v.blocked «— False

switch L do
case Block-2NN do

foreach w € extendedNeighborhood(v) do
w.locked < False

w.blocked < False

otherwise do

foreach w € neighborhood(v) do
w.locked « False

w.blocked < False

Algorithm 5: Function mazeExpand that finds a path from the
net routing tree to one of the net sinks.

Input: Routing resource graph: G = {V,E}
Input: Net N; and its routing tree RT; ¢ G
Input: One of the net sink nodes t € V
Input: Safety level L
Output: On success, a path from routing tree RT; to sink ¢.
Otherwise, NULL.

foreach node v € RT; do

| enqueue(PQ, v)
while priorityQueueEmpty(PQ) = False do
v = dequeue(PQ)
if v =t then

| return buildPath(v, RT;)
foreach node u adjacent tov do
toEnqueue <« False
if u is a long wire then

if u.blocked = True then
L continue

else
goodNeighborhood < checkNeighborhood(u)
if goodNeighborhood then

if u.locked = True then

L if u.key = Nj.key then

| toEnqueue < True

else
| toEnqueue < True

else

if u.blocked = False then
| toEnqueue < True

if toEnqueue = True then
| enqueue(PQ, u)

return NULL




Algorithm 6: Function checkNeighborhood that tests if it is
safe to consider adding an RRG node to the priority queue.

Input: Routing resource graph: G = {V,E}
Input: Anodev € V

Input: Safety level L

goodNeighborhood < True

if L = Block-Untrusted then

if Nj.trusted = False then

foreach node w € neighborhood(v) do

if w.occupancy = 1 then
k < whichNetOccupiesNode(w)

if Nj.sensitive = True then
if Ni.key # Nj.key then
| goodNeighborhood < False

else
if N;.sensitive = True then
foreach node w € neighborhood(v) do
if w.occupancy = 1 then
k «— whichNetOccupiesNode(w)
if Ni.key # N;.key then
L if Ni.trusted = False then
| goodNeighborhood < False

the nearest neighbors and the second nearest neighbors, con-
taining the vertices corresponding to the neighboring wires, as
illustrated in Fig. 1. Additionally, we add a property called locked
and a property called key to the long wires. Finally, we add a prop-
erty blocked to the wires in general, to signal that no net should
be occupying them if that property is set.

As shown in Algorithm 1, in each routing iteration, the previous
routing tree of each net is ripped-up and then re-routed. After-
wards, the cost of the routing resources is updated. To ensure that
the neighbors of the routing resources used by the sensitive nets
satisfy the routing strategy, setGuards (Algorithm 2) and blockOccu-
piedResources (Algorithm 3) functions are called. The latter function
blocks all routing resources used by the sensitive nets (except the
source and the sink nodes), to prevent them from being used by
other nets. At the end of each routing iteration, resetGuards func-
tion (Algorithm 4) is called to invalidate the locked and the blocked
flags of all routing resources.

Based on the routing correctness criterion, setGuards function
assigns guarding properties to wires. For Block-NN or Block-
2NN, it blocks the nearest or both the nearest and the second
nearest neighbors (extendedNeighborhood), respectively. If the
routing criteria is Lock-NN and the neighboring wire is not locked,
the function locks it and assigns to it the key of the sensitive net.
However, if the neighboring wire is already locked using another
key (because it already has a sensitive net as its neighbor), we block
it, to prevent it from being occupied by other nets.

To route a net, mazeExpand function (Algorithm 5) normally
puts all current node’s neighbors on the priority queue. However,
to satisfy our safety criteria, the status of each routing resource

Table 1: VTR benchmark details.

No. | Name # Blocks | FFs | Mult | Mem | FPGA Size
B1 | blob_merge 6016 735 0 0 29 X 29
B2 boundtop 2921 1671 0 1 21 x21
B3 | ch_intrinsics 413 233 0 1 8 X8
B4 diffeql 434 193 5 0 12 x 12
B5 | diffeq2 277 96 5 0 12 x 12
B6 mkDelayWorker32B 5580 2491 0 9 48 x 48
B7 | mkPktMerge 226 36 0 3 26 X 26
B8 | mkSMAdapter4B 1977 983 0 3 18 X 18
B9 | or1200 2963 691 1 2 25X 25
B10 | raygentop 2134 1423 18 1 17 x 17
Bi11 | sha 2212 911 0 0 18 X 18
B12 | stereovisionl 10366 11789 | 152 0 41 x 41
B13 | stereovision3 174 102 0 0 6 X6

should now be checked before adding that node on the queue.
For instance, if the blocked property of the routing node is True,
that node should not be added. If the blocked property of the
routing node is False, checkNeighborhood function (Algorithm 6)
is called to examine the neighbors of the current node. In case of
Block-Untrusted approach, it has to check that no untrusted net,
originating from a different module, already occupies a neighbor
of the node in question.

5 EXPERIMENTAL EVALUATION

We implement our routing enhancements in VTR 7.0 and test them
using the Intel Stratix-IV FPGA architecture and 13 VTR bench-
marks [6], listed in Table 1. The horizontal routing channels in Intel
Stratix IV FPGA are composed of a combination of wire segments
of length four and 20, whereas the vertical channels are composed
of wire segments of length four and 12. Given that VTR 7.0 cannot
model different horizontal and vertical channel configuration, we
use a combination of wires of length four (short wires) and 16 (long
wires); in each routing channel, 13% of wires are long and 87% of
wires are short.

We first place and route every benchmark, to find the minimum
channel width. Then, we identify two groups of nets: those whose
bounding box width or length are higher than twice the length of
a long wire (long nets), and those that do not satisfy the above
criteria (short nets).

To test Block-2NN and Block-NN approach, we randomly mark
10% and 20% of all the long and of all the short nets as sensitive,
run our router, and measure the minimum channel width and the
critical path delay. This is a somewhat conservative assumption
as, for instance, a standard AES-128 cryptographic core can have
about 10,000 nets, out of which less than 5% carry some secret infor-
mation [1]. To test Block-Untrusted strategy, we randomly mark
50% of all the long and 50% of all the short nets as untrusted (the
remaining nets are trusted), and choose 10% or 20% of all trusted
(resp. untrusted) nets as sensitive. To test Lock-NN approach, we
model four IPs by randomly assigning 25% of all the long and 25%
all the short nets to every IP. Then, we randomly label 10% or 20%
of IP nets as sensitive. Table 2 and 3 summarize the results of all
the above experiments, averaged over 10 runs.

The results show that using Block-2NN strategy causes an in-
crease in the minimum required channel width by 2.73% (resp.



Table 2: Channel width increase with respect to the baseline VPR router, averaged across 10 experiments.

Benchmarks Experiment 1: 10% Experiment 2: 20% Experiment 3: 10% Experiment 4: 20%
No. | Name Block-2NN || Block-NN || Block-2NN || Block-NN || Block-Untrusted || Lock-NN || Block-Untrusted || Lock-NN
B1 | blob_merge 0.79% 0.48% 12.7% 2.38% 0.48% 0.48% 3.65% 3.65%
B2 | boundtop 2% 2% 3.09% 2.18% 1.82% 1.82% 2.18% 2.18%
B3 | ch_intrinsics 2.44% 2.22% 2.67% 2.89% 1.78% 0.67% 2.89% 2.67%
B4 | diffeql 0.68% 0.23% 1.59% 1.59% 0% 0% 2.27% 1.59%
B5 | diffeq2 2.05% 3.59% 10.51% 5.9% 3.08% 2.82% 7.18% 6.41%
B6 | mkDelayWorker32B 5.28% 3.06% 6.67% 5.69% 1.81% 1.94% 3.06% 3.47%
B7 | mkPktMerge 4.64% 6.07% 29.64% 28.57% 4.29% 5.36% 22.5% 13.57%
B8 | mkSMAdapter4B 0.66% 0.33% 2.95% 1.31% 0.16% 0.16% 0.82% 0.98%
B9 | or1200 1.59% 2.06% 5.71% 3.97% 1.27% 0.63% 4.6% 2.38%
B10 | raygentop 0.61% 0.45% 2.88% 2.27% 0.76% 0.15% 1.06% 1.21%
B11 | sha 0.54% 0.18% 1.25% 0.89% 0% 0.18% 0% 0.36%
B12 | stereovisionl 4.66% 3.7% 7.4% 4.52% 2.33% 1.78% 3.01% 3.42%
B13 | stereovision3 9.58% 7.5% 12.92% 12.92% 7.08% 4.58% 18.75% 10.83%

Average 2.73% 2.45% 7.69% 5.78% 1.91% 1.58% 5.54% 4.06%

Table 3: Critical path delay increase with respect to the baseline VPR router, averaged across 10 experiments.

Benchmarks Experiment 1: 10% Experiment 2: 20% Experiment 3: 10% Experiment 4: 20%
No. | Name Block-2NN || Block-NN || Block-2NN || Block-NN || Block-Untrusted || Lock-NN || Block-Untrusted || Lock-NN
B1 | blob_merge -0.03% 0.35% 0.27% 0.47% 0.43% 0.09% 0.65% 0.28%
B2 | boundtop -5.21% -3.79% -3.24% -5.31% -5.3% -4.81% -3.35% -4.53%
B3 | ch_intrinsics -1.14% 1.42% -0.15% -0.97% -0.38% 3.71% 0.91% -0.82%
B4 | diffeql 4.68% 3.56% 6.58% 4.22% 5.87% 4.96% 4.67% 3.66%
B5 | diffeq2 7.44% 3.91% 3.23% 5.31% 4.27% 4.78% 6.95% 6.08%
B6 | mkDelayWorker32B -0.49% -0.1% -0.2% 0.84% -0.08% -0.13% -0.38% 0.51%
B7 | mkPktMerge 0.01% 0.1% 0% 0.12% 0.27% 0% 0.04% -0.17%
B8 | mkSMAdapter4B 0.7% 3% 2.41% 4.89% 2.27% 3.23% 3.84% 3.15%
B9 | or1200 0.57% 0.54% 1.19% 3.06% 0.66% 1.46% 1.56% 0.91%
B10 | raygentop -1.92% -5.34% -5.21% -2.67% -5.07% -2.72% -0.37% -3.24%
B11 | sha 0.31% 0.68% 1.06% 0.8% 0.24% 0.02% 2.29% 0.8%
B12 | stereovisionl -5.12% -0.94% 0.19% 0.35% -1.38% -1.34% -1% -3.07%
B13 | stereovision3 1.77% 1.67% 1.08% 4.22% 4.66% 1.88% -5.05% 2.75%

Average 0.12% 0.39% 0.56% 1.18% 0.50% 0.86% 0.83% 0.46%

7.69%) for 10% (resp. 20%) of sensitive nets. In case of Block-NN,
given that only the nearest neighbors of the sensitive long wire are
blocked, the corresponding values are reduced to 2.45% (resp. 5.78%).
Block-Untrusted results in 1.91% (resp. 5.54%) versus 1.58% (resp.
4.06%) when Lock-NN is used. Therefore, as expected, the most
efficient strategy is Lock-NN.

Although the blocking of the routing resources can have a nega-
tive impact on the design critical path, the accompanying increase
in the channel width sometimes leads to better timing. The results
show that the impact that our crosstalk-attack-aware routing has
on the critical path delay is almost negligible; on average, the criti-
cal path delay increases by a value between 0.12%, for Block-2NN
and 10% of sensitive nets, and 1.18%, for Block-NN and 20% of
sensitive nets. In future work, we shall measure the change in the
critical path when the channel width is fixed and only the routing
algorithm changes; we expect to observe even smaller variations.

6 CONCLUSIONS

In this paper, we leverage CAD algorithms to prevent crosstalk side-
channel attacks on FPGAs. Unlike previous work, we do not use
moats, drawbridges, nor shells around the IP cores, but modify the
FPGA routing algorithm to ensure that all sensitive nets are routed

away from untrusted signal sources. Four different enhancements
to the state-of-the-art PathFinder algorithm are presented in this
paper and experimentally tested on benchmarks from Verilog-to-
Routing tool. Results achieved are promising: designs with 10% of
sensitive nets can be protected at the cost as low as 1.58% increase
in minimal required channel width and 0.86% increase in critical
path delay, when Lock-NN strategy is used. In large and complex
designs, only a very small number of nets carry truly sensitive
information. Therefore, it is reasonable to expect similar overheads
even in industrial-size projects. We believe that this work will
greatly encourage FPGA CAD software providers to adapt similar
strategies in their tools and thus assure FPGA users that crosstalk
side-channel attacks are prevented by design.
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