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PEL RESEARCH FOCUS

MVDC Technologies and Systems
▶ System Stability
▶ Protection Coordination
▶ Power Electronic Converters
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Power Electronics Conversion
▶ Multilevel Converters
▶ Solid State Transformers
▶ Medium Frequency Conversion
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IMPEDANCE/ADMITTANCE MEASUREMENTS AT MEDIUM VOLTAGE
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▲ AD/DC distributed power system

▶ Power electronics dominated energy system require careful design and stability studies
▶ System identification is challenging at medium voltage level [1]
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MV GRID EMULATOR FOR PHSP RT-HIL

Medium Voltage Research Platform - MV Grid Emulator is needed!
▶ Extending flexibility of pumped hydro storage plants
▶ Assessment of ancillary services
▶ Converter Fed Synchronous Machines - CFSM
▶ Doubly Fed Induction Generator - DFIG
▶ Novel power electronics conversion technologies [2]
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▲ Medium Voltage Pumped Hydro Storage Plant Emulation Platform (0.5MVA, 6kV)

▲ ACS2000: 1MW, 6kV, 4Q 5-level drive

▲ IM (left) + SM (right): 0.5MVA, 6kV, 4p, 1500rpm
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MEDIUM VOLTAGE GRID EMULATOR - 4Q ROBICON TOPOLOGY
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▲ CHB topology with 15 LV cells and (small) output filter
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▲ Bidirectional CHB cell with input filter and overvoltage protection

Table 1 Grid Emulator Parameters

Parameter Value

apparent power rating 1MVA
transformer primary side line voltage 6 kV

transformer secondary side line voltage 710 V
maximum cell dc link voltage 1200 V

CHB output line voltage 0 to 6 kV ac or ±5 kV dc
switching frequency AFE 10 kHz

apparent switching frequency CHB 100 kHz
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▲ CHB topology with 15 LV cells and (small) output filter
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▲ One goal is to avoid need for these filters!

Table 1 Grid Emulator Parameters

Parameter Value

apparent power rating 1MVA
transformer primary side line voltage 6 kV

transformer secondary side line voltage 710 V
maximum cell dc link voltage 1200 V

CHB output line voltage 0 to 6 kV ac or ±5 kV dc
switching frequency AFE 10 kHz

apparent switching frequency CHB 100 kHz
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▲ CHB topology with 15 LV cells and (small) output filter
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▲ Another goal is to achieve high control bandwidth at the output!

Table 1 Grid Emulator Parameters

Parameter Value

apparent power rating 1MVA
transformer primary side line voltage 6 kV

transformer secondary side line voltage 710 V
maximum cell dc link voltage 1200 V

CHB output line voltage 0 to 6 kV ac or ±5 kV dc
switching frequency AFE 10 kHz

apparent switching frequency CHB 100 kHz
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▲ CHB topology with 15 LV cells and (small) output filter
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▲ Bidirectional CHB cell without input filter and with SiC output stage

Table 1 Grid Emulator Parameters

Parameter Value

apparent power rating 1MVA
transformer primary side line voltage 6 kV

transformer secondary side line voltage 710 V
maximum cell dc link voltage 1200 V

CHB output line voltage 0 to 6 kV ac or ±5 kV dc
switching frequency AFE 10 kHz

apparent switching frequency CHB 100 kHz
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MULTIWINDING PHASE-SHIFT TRANSFORMER

▶ 1MVA rated
▶ 6kV primary winding
▶ 15 x 710V secondary windings
▶ Complex but relatively cheap
▶ Not a symmetrical structure [3]
▶ Turns ratio and phase deviations

▲ 1MVA, 6kV multiwinding transformer
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▲ Detailed and accurate PLECS simulation model is available

▲ Measured and simulated short circuit impedances
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GRID SYNCHRONIZATION - PLL VOLTAGE SENSING LOCATION?
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▲ Multiple secondary side PLLs

▶ Transformer secondary winding voltage as source
▶ Local PLL on each cell
▶ Transformer parameters mismatch not relevant
▶ Discrete filters are needed in front of the AFE - bulky!
▶ Straightforward solution

PLL
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▲ Single primary side PLL

▶ Grid voltage as source
▶ Transformer leakage inductances used as filter
▶ Transformer nameplate parameters used (ratio, phase)
▶ No discrete filters are needed in front of the AFE - savings!
▶ Preferred solution [4]
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CONTROL IMPLEMENTATION
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▲ Single primary side PLL
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▲ SRF PLL is used for both cases
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▲ AFE DC link voltage controller

▶ PR controllers in SRF for AFE input current control
▶ PI DC link voltage controller
▶ CHB operation causes 2nd harmonic ripple
▶ Notch filter on measured DC link voltage
▶ PSC PWM
▶ Controller parameters are available in [4]
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SIMULATION RESULTS...
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▲ Single primary side PLL
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▲ Performances during load change - with discrete filters and multiple PLLs on the secondary side
Transformer Primary Side Voltages and Currents

Cell Input Currents

DC Link Voltages

Instantaneous Powers: Transformer Primary Side and CHB Stage (Output Phases and Total)

(V
)

-5000

0

5000
(A

)

-100
0

100

(V
)

1000

1200

1400

Time (s)
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

× 1e6

(V
A

)

-1
0
1

PCHB,totalPCHB,PhaseC

PAFE,total

-167

167
0 (A

)

DPF

▲ Performances during load change - without discrete filters and with single PLLs on the primary side

ECPE Workshop, Freiburg, Germany December 3-4, 2019 Power Electronics Laboratory | 9 of 20



SIMULATION RESULTS

PLL Output: Phase Angles

PLL Output: Amplitudes

Difference between PLL Phase Angles and Grid Phase Angle
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▲ PLL performances: primary side based (black) and secondary side based (colored)
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▲ Grid side current spectrum ▲ AFE current waveforms
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SEMICONDUCTOR CONSIDERATIONS?
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▲ Static characteristic of several considered modules
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▲ Switching energies at 1200 V

Halfbridge Module Short Designator Package
Datasheet Parameters

Tj,SW Tj,D Rg,on Rg,off Ref.

CAS300M17BM2 SiC I 62mm 150 ◦C 150 ◦C 2.5 Ω 2.5 Ω [5]
APTMC170AM30CT1AG SiC II SP1 150 ◦C 175 ◦C 10 Ω 10 Ω [6]
2MSI400VE-170-53 Hybrid M277 150 ◦C 150 ◦C 1 Ω 0.5 Ω [7]
SKM150GB17E4 Si IGBT 34mm 150 ◦C 150 ◦C 2 Ω 2 Ω [8]
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SEMICONDUCTOR LOSSES

SiC I:  M = 0.97, PF = 1
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SiC II:  M = 0.97, PF = 1
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Hybrid:  M = 0.97, PF = 1
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Si IGBT:  M = 0.97, PF = 1
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▲ AFE losses per switch, P = 1MW.

SiC I:  M = 0.82, PF = -1
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SiC II:  M = 0.82, PF = -1
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Hybrid:  M = 0.82, PF = -1
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Si IGBT:  M = 0.82, PF = -1
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▲ Inverter losses per switch, P = 1MW.
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SEMICONDUCTOR LOSSES...
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▲ 4Q cell losses for different fsw with same modules in both stages

▶ Full SiC - nice, efficient, but not critical for AFE
▶ Hybrid solution seems more appropriate and cost effective
▶ AFE 10 kHz (Si) + CHB 20kHz (SiC)
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▲ 4Q cell losses for Si IGBT AFE and SiC I HB at different fsw

▲ 4Q cell semiconductor efficiency for switching frequency ranges
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SYSTEM IDENTIFICATION

▲ Three-phase supplied Active Front End (AFE) interfaced to single phase inverter with an LC filter.

▶ AFE regulates DC link voltage
▶ Slower dynamics of AFE
▶ Impact on the CHB output?
▶ Source affected impedance
▶ Need to characterize source

impedance?

▲ HB inverter with an LC filter ▲ HB inverter with an LC filter and internal Zsource
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SYSTEM PERTURBATION AND IDENTIFICATION

▲ Three-phase AFE feeding a load.
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▲
Output, dc side, impedance of the AFE under the input current and
output voltage control loops closed.

▲ Hardware in the loop system

▶ RT-Box based HIL
▶ Power hardware emulation
▶ Control on the DSP
▶ PRBS injection
▶ High flexibility in work
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SYSTEM PERTURBATION AND IDENTIFICATION...

▲
Closed-loop dynamics of the HB inverter with cascaded inductor
current and capacitor voltage control.
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▲
Comparison of control-to-output Gcvc

co,cl characteristics of a HB
operating with an ideal dc link voltage and with AFE as an input stage
controlling the dc-link voltage.
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▲
d-axis control-to-output characteristics Gcvc

co,cl,dd of the HB-inverter
supplied from ideal DC source.
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▲
d-axis control-to-output characteristics Gcvc

co,cl,dd of the HB-inverter
operated with AFE as the input stage.
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ONGOING HW DESIGN

▶ 1.7kV Si IGBT (62mm package)
▶ 1.7kV SiC MOSFET (samples from Mitsubishi Electric)
▶ Cost design optimization of HW
▶ ABB AC 800PEC as main controller
▶ Communication, measurements, protection
▶ Mechanical design...

▲ 4Q PEBB under testing (communication)
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▲ 4Q PEBB - present design
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SUMMARY

▶ 4Q Robicon based Grid Emulator
▶ Hybrid design: AFE (Si), CHB (SiC)
▶ Perturbation Injection Converter for system identification
▶ Primary side PLL allow for significant cost savings
▶ Robust control despite transformer asymmetries
▶ SiC devices enabling high output control bandwidth!

▲ 1MVA, 6kV multiwinding transformer
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▲ SiC PEBB during gate driver testing
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