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MODELING: RELEVANT EFFECTS

▶ Modeling
▶ Design Optimization
▶ Experimental Verification
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MFT MODELING
The underlying analytical descriptions
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MODELING: CORE LOSSES

Different core loss models:
▶ Based on characterization of magnetic hysteresis [1], [2], [3]
▶ Based on loss separation [4]
▶ Time domain core loss model [5]
▶ Based on Steinmetz Equation (MSE [6], IGSE [7], iIGSE [8])

Original Steinmetz Equation:

Pc = Kf αB β
m

Characteristic Waveform:

DT/2
Vi(t)

B(t)

(1-D)T/2

Vdc
Bm

-Vdc

T

t

»»»»»» dB(t)dt
»»»»»» = ⎧⎪⎪⎨⎪⎪⎩ 0 for (1 − D)T

2ΔB
DT for DT

Improved Generalized Steinmetz Equation (IGSE): Application of IGSE on the Characteristic Waveform:

Pc =
1
T ∫ T0 ki

»»»»»»» dB(t)dt
»»»»»»»α(ΔB)β−αdt Ps = 2α+βkif

αB β
mD1−α

ki =
K(2π)α−1 ∫ 2π0 ∣cos(θ)∣α2β−αdθ ki =

K
2β−1πα−1 (0.2761 + 1.7061

α+1.354 )
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MODELING: WINDING LOSSES

Foil Winding Electromagnetic Field Analysis:
▶ Dowell foil winding loss model [9]
▶ Porosity factor validity analysis [10], [11]
▶ Round wire winding loss model [12]
▶ ...

Foil Winding Electromagnetic Field Analysis:
deq

Jz(x)

Hy,extHy,int

x

y

z

heq

Hy = Hext
sinh(αx)
sinh(αdeq) − Hint

sinh(α(x − deq))
sinh(αdeq)

Jz = αHext
cosh(αx)
sinh(αdeq) − αHint

cosh(α(x − deq))
sinh(αdeq)

α = 1 + j
δ ; δ =

√
ρ
πμf ;

Foil Winding Loss Calculation:

Pσ = 1
σ ∫ JJ∗dv; Pσ = I2 Lw

δσhw
m [ς1 + 2

3 (m2 − 1)ς2] ;
ς1 =

sinh(2Δ) + sin(2Δ)
cosh(2Δ) − cos(2Δ) ; ς2 =

sinh(Δ) − sin(Δ)
cosh(Δ) + cos(Δ) ; Δ =

deq
δ ;

Winding Equivalence:
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√π
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√

Ns
Kw

; Nsv =
√
KwNs;

Kw = hw
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Δ′ = √ηΔ; η = deq
Nsv
Hw

;
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MODELING: F-DEPENDENT LEAKAGE INDUCTANCE

Application of Dowell’s Model on the Equivalent Foil Winding:

Lσ = N2
1μ0

lw
Hw

[ dw1eqmw1
3 Fw1 +

dw2eqmw2
3 Fw2ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Frequency dependent portion due to the magnetic
energy within the copper volume of the windings

+ ddÍÑÏ
Portion due to magnetic energy within
the inter-winding dielectric volume

+ dw1i
(mw1 − 1)(2mw1 − 1)
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Portion due to magnetic energy within the
inter-layer dielectric of the primary winding

+ dw2i
(mw2 − 1)(2mw2 − 1)
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inter-layer dielectric of the secondary winding

]
where:

Fw = 1
2m2Δ

[(4m2 − 1)φ1 − 2(m2 − 1)φ2]
φ1 =

sinh(2Δ) − sin(2Δ)
cosh(2Δ) − cos(2Δ) ; φ2 =

sinh(Δ) − sin(Δ)
cosh(Δ) − cos(Δ) ;

Winding Equivalence:

hw

dw1 dw2

Hw

dd

d deq

heq

H

x

H

x

H

x

∆≤1
∆>1

∆≤1
∆>1

∆≤1
∆>1

SYMMETRY AXIS

di
1

i

Nsv

1 Nsh

Δ′ = √ηΔ; η = deq
Nsv
Hw

; m = Nsh; di =
dw − Nshdeq
Nsh − 1 ;

10.1

101

102

103

F R [p
.u

.]

m = 22
m = 27
m = 32
m = 37

∆ [p.u.]

L σ [µ
H

]

8

7.5

6.5

7

10.1

m = 22
m = 27
m = 32
m = 37

∆ [p.u.]

ECPE Workshop, Lausanne, Switzerland February 14, 2019 Power Electronics Laboratory | 6 of 33



MODELING: LEAKAGE INDUCTANCE (HYBRID MODEL)

Influence of Winding Geometry on Leakage inductance:
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Hybrid Leakage Inductance Model [13]:

▶ Rogowski correction factor:

heq =
hw
KR

KR = 1 − 1 − e−πhw/(dw1+dd+dw2)
πhw/(dw1 + dd + dw2)

▶ Correction of Dowell’s model (Hw → heq):

Lσ = N2
1μ0

lw
Hw

[ dw1eqmw1
3 Fw1 +

dw2eqmw2
3 Fw2 + dd

+ dw1i
(mw1 − 1)(2mw1 − 1)

6mw1
+ dw2i

(mw2 − 1)(2mw2 − 1)
6mw2

]
Δ′ = √ηΔ; η = deq

Nsv
Hw

;
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MODELING: MAGNETIZING INDUCTANCE

Magnetic Circuit with an Air-Gap:

d

lm

NI

Hw

µr µ0

Magnetizing Inductance Calculation:

Lm = μ0N
2Ac

lm
μr + d

Air-Gap Calculation:

d = μ0
N2Ac
Lm

−
lm
μr

Fringing Effect:
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′
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MODELING: HEAT-TRANSFER MECHANISMS

Conduction Qh = kA ΔT
L Qh Qh

T1 T2

Top:
Qh

Ts

T∞ h =
k(0.65+0.36R1/6aL )2

L L = Area
Perimeter

Convection
over

Hot-Plate Qh = hA(Ts − T∞) Side: Qh

Ts T∞

h = k
L (0.825 + 0.387R1/6aL(1+(0.492/Pr)9/16)8/27 )

2

L = Height

Bottom:
Qh

Ts

T∞ h =
k0.27R1/4aL

L L = Area
Perimeter

Radiation Qh = hA(T1 − T2) Qh
T1 T2

h = εσ (T1+273.15)4−(T2+273.15)4(T1−T2)
where: RaL - Rayleigh number, Pr - Prandtl number, ε - Emissivity, σ - Stefan–Boltzmann constant [14], [15], [16]
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MODELING: THERMAL MODEL

Modes Of Heat Transfer:
▶ Conduction
▶ Convection
▶ Radiation

Planes of Symmetry:

Partitioning Into Zones:
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MODELING: THERMAL MODEL IMPLEMENTATION

Implementation of Thermal Network Model:
▶ Admittance Matrix:

Q(n) = Yth(nxn)ΔT(n)
▶ Rearranging the nodes:[ QA(m)

0(p) ] = [YthAA(mxm) YthAB(mxp)
YthBA(pxm) YthBB(pxp) ] [ ΔTA(m)

ΔTB(p) ]
▶ Kron reduction:

ΔTA(m) = (YthAA(mxm) − YthAB(mxp)Y−1thBB(pxp)YthBA(pxm) )−1 QA(m)
ΔTA(m) = Y−1Kron(mxm)QA(m)

▶ Kron matrix:
YKron(mxm) = YthAA(mxm) − YthAB(mxp)Y−1thBB(pxp)YthBA(pxm)

Analytical Model Results for the optimal MFT prototype:

T1 [oC] T2 [oC] T3 [oC] T4 [oC] T6 [oC] T9 [oC]
51.3 59.9 58.4 73.75 124.6 116.3

Detailed Thermal Network Model [17]:
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MODELING: THERMAL FEM ANALYSIS

Results:
▶ Different cooling conditions inside and

outside of core window
▶ High thermal conduction equalizes the

temp along the conductors
▶ Full 3D model estimations correlate

well with analytical ones

Hot-Spot Temperature Estimation Comparison:

Hot-spot nodes T1 [oC] T2 [oC] T3 [oC] T4 [oC] T6 [oC] T9 [oC]
FEM 2D detail 1 / / / 70 120 106
FEM 2D detail 2 / / / 76 127 125
FEM 3D full / / / 75 122 113
Analytical 51.3 59.9 58.4 73.75 124.6 116.3

2D symmetry detail 1: 2D symmetry detail 2: Full 3D model:
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MFT DESIGN OPTIMIZATION
Brute force academic example
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TECHNOLOGIES AND MATERIALS

Construction Choices:
▶ MFT Types

Shell Type Core Type C-Type Coaxial Type

▶ Winding Types

Litz Wire Foil Coaxial Hollow

Materials:

▶ Magnetic Materials
▶ Silicon Steel
▶ Amorphous
▶ Nanocrystalline
▶ Ferrites

▶ Windings
▶ Copper
▶ Aluminum

▶ Insulation
▶ Air
▶ Solid
▶ Oil

▶ Cooling
▶ Air natural/forced
▶ Oil natural/forced
▶ Water
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MFT DESIGN OPTIMIZATION

EPFL PhD: Villar [18]

EPFL: 300kW, 2kHz

ETHZ PhD: Ortiz [19]

ETHZ: 166kW, 20kHz

CHALMERS PhD: Bahmani [20]

CHALMERS: 50kW, 5kHz
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DESIGN OPTIMIZATION: ALGORITHM

ELECTRICAL INPUTS DIELECTRIC DISTANCES OPTIMISATION VAR RANGES

PREPARE DATA

CORE MATERIALS DATA

CORE DIMENSIONS DATA

WIRE DATA

DATA BASE
INPUTS

DIRECT USER 
INPUTS

Winding Losses Calculation

Magnetic Energy Calculation

Core Losses Calculation

Mass and Volume Calculation

Hot-Spot Temperature Calculation

OPTIMISATION ENGINE

SAVE DESIGN

Calculate diw to match Lσ,ref

Calculate lg to match Lm,ref

Datasheet values

AWG, Kw, Fwg

diw ≥ dw1w2, lg ≥ 0, TC,hs ≤ TC,hs max, TW,hs ≤ TW,hs max

 Un, In, f, D, Lm,ref, Lσ,ref  dw1c, dw2c, dw1w2

 Bsat, K, α, β, ρ, µr, Fcg 

 N1, J, AWG, Kw, KC, Km 

▲ MFT design optimization algorithm

Algorithm Specifications:

▶ Used Software Platform:
▶ MathWorks MATLAB

▶ Used Hardware Platform:
▶ Laptop PC (i7-2.1GHz, 8GB RAM)

▶ Performance Measure:
▶ 59000 designs are generated in less

than 190 seconds

▶ Electrical Specifications:
Pn 100kW fsw 10kHz
V1 750V V2 750V
Lσ1,2 3.27μH Lm 1.8mH
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Magnetic Energy Calculation

Core Losses Calculation

Mass and Volume Calculation

Hot-Spot Temperature Calculation

OPTIMISATION ENGINE

SAVE DESIGN

Calculate diw to match Lσ,ref

Calculate lg to match Lm,ref

Datasheet values

AWG, Kw, Fwg

diw ≥ dw1w2, lg ≥ 0, TC,hs ≤ TC,hs max, TW,hs ≤ TW,hs max

 Un, In, f, D, Lm,ref, Lσ,ref  dw1c, dw2c, dw1w2

 Bsat, K, α, β, ρ, µr, Fcg 

 N1, J, AWG, Kw, KC, Km 

▲ MFT design optimization algorithm

Algorithm Specifications:

▶ Used Software Platform:
▶ MathWorks MATLAB

▶ Used Hardware Platform:
▶ Laptop PC (i7-2.1GHz, 8GB RAM)

▶ Performance Measure:
▶ 59000 designs are generated in less

than 190 seconds

▶ Electrical Specifications:
Pn 100kW fsw 10kHz
V1 750V V2 750V
Lσ1,2 3.27μH Lm 1.8mH
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DESIGN OPTIMIZATION: RESULTS

Applied Filters:
TWmax [oC] TCmax [oC] Vmax [l] Mmax [kg] ηmin [%]

150 100 / / /
Number of Designs:
▶ More than 1.8 Million
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▲ Generated designs: left: Efficiency vs V-density; right: Efficiency vs W-density. Color code indicates hot-spot temperature

ECPE Workshop, Lausanne, Switzerland February 14, 2019 Power Electronics Laboratory | 17 of 33



DESIGN OPTIMIZATION: RESULTS

Applied Filters:
TWmax [oC] TCmax [oC] Vmax [l] Mmax [kg] ηmin [%]

150 100 12 25 99.7

Number of Designs:
▶ More than 1.8 Million

Power Density [kW/l]
0 5 10 15 20 25 30

E
ffi

ci
en

cy
 [%

]

98.6

98.8

99

99.2

99.4

99.6

99.8

100

40

60

80

100

120

140

All Designs
Filtered designs

Power Density [kW/kg]
0 1 2 3 4 5 6 7 8 9

E
ffi

ci
en

cy
 [%

]

98.6

98.8

99

99.2

99.4

99.6

99.8

100

40

60

80

100

120

140

All Designs
Filtered designs

▲ Generated designs: left: Efficiency vs V-density; right: Efficiency vs W-density. Color code indicates hot-spot temperature

ECPE Workshop, Lausanne, Switzerland February 14, 2019 Power Electronics Laboratory | 18 of 33



DESIGN OPTIMIZATION: RESULTS
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DESIGN OPTIMIZATION: RESULTS

Applied Filters:
TWmax [oC] TCmax [oC] Vmax [l] Mmax [kg] ηmin [%]

135 80 10 24 99.6

Number of Designs:
▶ More than 1.8 Million

Power Density [kW/l]
0 5 10 15 20 25 30

E
ffi

ci
en

cy
 [%

]

98.6

98.8

99

99.2

99.4

99.6

99.8

100

40

60

80

100

120

140

All Designs
Filtered designs
Designs with standard core and wire
Filtered standard designs

Power Density [kW/kg]
0 1 2 3 4 5 6 7 8 9

E
ffi

ci
en

cy
 [%

]

98.6

98.8

99

99.2

99.4

99.6

99.8

100

40

60

80

100

120

140

All Designs
Filtered designs
Designs with standard core and wire
Filtered standard designs

▲ Generated designs: left: Efficiency vs V-density; right: Efficiency vs W-density. Color code indicates hot-spot temperature

ECPE Workshop, Lausanne, Switzerland February 14, 2019 Power Electronics Laboratory | 21 of 33



DESIGN OPTIMIZATION: RESULTS

Applied Filters:
TWmax [oC] TCmax [oC] Vmax [l] Mmax [kg] ηmin [%]

135 80 10 24 99.6

Number of Designs:
▶ More than 1.8 Million

Power Density [kW/l]
0 5 10 15 20 25 30

E
ffi

ci
en

cy
 [%

]

98.6

98.8

99

99.2

99.4

99.6

99.8

100

40

60

80

100

120

140

All Designs
Filtered designs
Designs with standard core and wire
Filtered standard designs
Selected design

Power Density [kW/kg]
0 1 2 3 4 5 6 7 8 9

E
ffi

ci
en

cy
 [%

]

98.6

98.8

99

99.2

99.4

99.6

99.8

100

40

60

80

100

120

140

All Designs
Filtered designs
Designs with standard core and wire
Filtered standard designs
Selected design

▲ Generated designs: left: Efficiency vs V-density; right: Efficiency vs W-density. Color code indicates hot-spot temperature

ECPE Workshop, Lausanne, Switzerland February 14, 2019 Power Electronics Laboratory | 22 of 33



PROTOTYPE: OPTIMAL MFT DESIGN ASSEMBLY

Optimal MFT Design 3D-CAD Coil-Formers 3D-CAD Coil-Formers 3D-Print Primary Winding Secondary Winding

Core Assembly MFT Assembly1 MFT Assembly2 Litz-Wire Termination MFT Prototype
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PROTOTYPE: FINAL ASSEMBLY

MFT Prototype

▲ 100kW, 10kHz MFT including resonant capacitors

Prototype Specifications:

▶ Core:
▶ 12 stacks of 4 x SiFERRITE U-Cores (UU9316 - CF139)

▶ Windings:
▶ 8-Turns
▶ Square Litz Wire (8.7x8.7mm, 1400 strands, AWG 32,

43.69mm2)

▶ Coil-Formers:
▶ Additive manufacturing process (3-D printing)
▶ High strength thermally resistant plastic (PA2200)

▶ Resonant Capacitor Banks:
▶ (7x5μF + 1x2.5μF) AC film capacitors in parallel
▶ Custom designed copper bus-bars

▶ Electrical Ratings:
Pn 100kW V1 750V Lσ1,2 4.2μH
fsw 10kHz V2 750V Lm 750μH
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EXPERIMENTAL VERIFICATION
Full power rated B2B resonant test setup
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MEASUREMENTS: ELECTRIC PARAMETERS

Measurement of Electric Parameters:
▶ Network Analyzer Bode100
▶ Impedance Measurement
▶ Results at 10kHz: Lσ = 8.4μH, Lm = 750μH, Rσ = 0.2μΩ

LV Measurement Setup:

▲ Electrical measurements using Bode100

Series Resistance Measurement:

Frequency [Hz]
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Frequency [Hz]
102 103 104 105 106

Estimation Error [%]
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Leakage Inductance Measurement:
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MEASUREMENTS: DIELECTRIC PARAMETERS

Dielectric Withstand Test:
▶ Partial Discharge measurement between all conductive parts
▶ High Voltage 50Hz source within a Faraday cage
▶ 10pC - between primary and secondary winding at 4kV

HV Measurement Setup:

▲ MFT during AC test

PD Test Settings:
▶ Front of the voltage profile: V = 6kV
▶ Flat back of the voltage profile: V = 4kV
▶ Peak PD at periods where ∣dV/dt∣ increases after the V peak
▶ PD is influenced by combination of V and ∣dV/dt∣

Measured PD at flat back V = 4kV:

▲ MPD600 obtained measurement results
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MEASUREMENTS: LOAD TEST

Test Setup Topology:
▶ B2B Resonant Converter
▶ Input voltage maintained by UDC
▶ Power circulation via IDC

Lσ1 Lσ2’Rσ1 Rσ2’

Lm

N1:N2

Cr1

MFT
Cr2

IDC

UDC 1 I1 I2
2

3

4

Test Setup:

▲ B2B MFT test setup

Measurement Results:
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▲ Experimental results: left: MFT primary waveforms; right: MFT secondary waveforms
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MEASUREMENTS: THERMAL RUN

Measurement Setup:

Thermal Run:
▶ No-Load Operation:
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▶ Full-Load Operation:
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▲ Thermal heat run results
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CONCLUSION

▶ Complex and challenging design
optimization

▶ Large number of available materials
▶ Customized designs prevail
▶ Research opportunities...

Components & Materials

Prototype

Design Selection

ELECTRICAL INPUTS DIELECTRIC DISTANCES OPTIMISATION VAR RANGES

PREPARE DATA

CORE MATERIALS DATA

CORE DIMENSIONS DATA

WIRE DATA

DATA BASE
INPUTS

DIRECT USER 
INPUTS

Winding Losses Calculation

Magnetic Energy Calculation

Core Losses Calculation

Mass and Volume Calculation

Hot-Spot Temperature Calculation

OPTIMISATION ENGINE

SAVE DESIGN

Calculate diw to match L ,ref

Calculate lg to match Lm,ref

Datasheet values

AWG, Kw, Fwg

diw ≥ dw1w2, lg ≥ 0, TC,hs ≤ TC,hs max, TW,hs ≤ TW,hs max

 Un, In, f, D, Lm,ref, L ,ref  dw1c, dw2c, dw1w2

 Bsat, K, , , , µr, Fcg 

 N1, J, AWG, Kw, KC, Km 

Algorithm

3D-DesignTesting

ECPE Workshop, Lausanne, Switzerland February 14, 2019 Power Electronics Laboratory | 30 of 33



CONCLUSION

▶ Complex and challenging design
optimization

▶ Large number of available materials
▶ Customized designs prevail
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Given: Upcoming:
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Q AND A

Tutorial pdf can be downloaded from:
▶ https://pel.epfl.ch/publications_talks_en
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