Simultaneous unwrapping and low pass filtering of continuous phase maps based on autoregressive phase model and wrapped Kalman filtering

We propose a simultaneous noise filtering and phase unwrapping algorithm. Spatial evolution of phase is modeled as an autoregressive Gaussian Markov random field. Accordingly, phase value at a pixel is related to phase values at surrounding pixels in a probabilistic manner. The problem of estimation of these probabilities is formulated as state space analysis using the wrapped Kalman filter. Simulation and experimental results demonstrate the practical applicability of the proposed phase unwrapping algorithm.


Publié dans:
Optics and Lasers in Engineering, 124, 105826
Année
2020-01
Autres identifiants:
Laboratoires:


Note: Le fichier est sous embargo jusqu'à: 2022-06-30


 Notice créée le 2019-12-19, modifiée le 2020-05-04

POSTPRINT:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)