Efficient Microchannel Cooling of Multiple Power Devices with Compact Flow Distribution for High Power-Density Converters

In this work, we describe a new approach for compact and energy-efficient cooling of converters where multiple miniaturized microfluidic cold-plates are attached to transistors providing local heat extraction. The high pressure drop associated with microchannels was minimized by connecting these cold-plates in parallel using a compact 3D-printed flow distribution manifold. We present the modeling, design, fabrication and experimental evaluation of this microfluidic cooling system and provide a design strategy for achieving energy-efficient cooling with minimized pumping power. An integrated cooling system is experimentally demonstrated on a 2.5 kW switched capacitor DC-DC converter, cooling down 20 GaN transistors. A thermal resistance of 0.2 K/W was measured at a flow rate of 1.2 ml/s and a pressure drop of 600 mbar, enabling the cooling of a total of 300 W of losses in the converter using only 75 mW of pumping power, which can be realized with small micropumps. Experimental results show a 10-fold increase in power density compared to conventional cooling, potentially up to 30 kW/l. This proposed cooling approach offers a new way of co-engineering the cooling and the electronics together to achieve more compact and efficient power converters.


Publié dans:
IEEE Transactions on Power Electronics, 1-1
Année
Dec 18 2019
Autres identifiants:
Laboratoires:


Note: Le statut de ce fichier est: Anyone


 Notice créée le 2019-12-18, modifiée le 2020-04-20

PREPRINT:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)