
Optimization Notes

Sepand Kashani
Audiovisual Communications Laboratory (LCAV)

School of Computer and Communication Sciences (IC)
École Polytechnique Fédérale de Lausanne (EPFL)

sepand.kashani@epfl.ch

Abstract. While optimization is well studied for real-valued functions f : RN → R, many physical problems
are (partially) specified in terms of complex-valued functions fc : CN → CM . Current optimization
packages have limited support for such functions. In particular it is unclear how to define algorithmic
differentiation w.r.t. complex-valued functions and arguments. This document is a collection of
working notes on the topic.

Key words. First-order Methods, Algorithmic Differentiation

1. Preliminaries.

1.1. Conventions. Throughout this document, we adopt the following conventions:
• Vectors are denoted with bold lowercase letters: y.
• Matrices are denoted with bold uppercase letters: A.
• If A ∈ CM×N , ak ∈ CM denotes the k-th column of A.
• The i-th entry of vector y is denoted [y]i.
• The (i, j)-th entry of matrix A is denoted [A]ij .
• The conjugation operator is denoted by overlining a vector or a matrix respectively:

a, A.
• The modulus of a complex number z ∈ C is denoted by |z|.
• The real/imaginary parts of matrix A are denoted <{A}, ={A}, or AR, AI , respec-

tively.

1.2. Hadamard, Kronecker and Khatri-Rao products. The Hadamard product is the
element-wise multiplication operator:

Definition 1.1 (Hadamard product). Let A ∈ CM×N and B ∈ CM×N . The Hadamard
product A�B ∈ CM×N is defined as

[A�B]ij = [A]ij [B]ij .

Moreover, we denote by A�k the product sequence A� · · · �A︸ ︷︷ ︸
k×

.

The Kronecker product generalises the vector outer product to matrices, and represents the
tensor product between two finite-dimensional linear maps:

Definition 1.2 (Kronecker product). Let A ∈ CM1×N1 and B ∈ CM2×N2. The Kronecker

1

mailto:sepand.kashani@epfl.ch

product A⊗B ∈ CM1M2×N1N2 is defined as

A⊗B =

 [A]11B · · · [A]1N1
B

...
. . .

...
[A]M11

B · · · [A]M1N1
B

 .
The main properties of the Kronecker product are [3]:

(A⊗B)H = AH ⊗BH ,(1.1)

(A⊗B) (C⊗D) = (AC)⊗ (BD) ,(1.2)

(A⊗B)� (C⊗D) = (A�C)⊗ (B�D) .(1.3)

The Khatri-Rao product finally, is a column-wise Kronecker product:

Definition 1.3 (Khatri-Rao product). Let A ∈ CM1×N and B ∈ CM2×N . The Khatri-Rao
product A ◦B ∈ CM1M2×N is defined as

A ◦B = [a1 ⊗ b1, . . . ,aN ⊗ bN] .

1.3. Matrix identities. A ⊗ B and A ◦ B are often too large to be stored in memory.
However it is not the matrix itself that is of interest in many circumstances, but rather the
effect of a linear map such as f(x) = (A ⊗ B)x. The matrix identities below allow us to
evaluate f(x) without ever having to compute large intermediate arrays. They make use of
the vectorisation operator:

Definition 1.4 (Vectorisation). Let A ∈ CM×N . The vectorisation operator vec(·) reshapes
a matrix into a vector by stacking its columns:

[vec(A)]M(j−1)+i = [A]ij .

Conversely, the matricisation operator matM,N (·) reshapes a vector into a matrix:

[matM,N (a)]ij = [a]M(j−1)+i .

Commonly used matrix identities are the following [2, 5]:

vec(ABC) =
(
CT ⊗A

)
vec(B)(1.4)

vec(A diag(b)C) =
(
CT ◦A

)
b(1.5)

〈A,B〉F = tr
(
AHB

)
= vec(A)H vec(B)(1.6)

vec(baT) = a⊗ b(1.7)

2

The following nonstandard matrix identities are proved in Appendix A:

(A ◦B)H vec(C) = diag
(
BHCA

)
(1.8)

(A⊗B)H (C⊗D) vec(E) = vec(BHDECTA)(1.9)

(A ◦B)H (C ◦D) e = diag
(
BHDdiag(e)CTA

)
(1.10)

(A ◦B)H (C ◦D) = AHC�BHD(1.11)

2. Algorithmic Differentiation. Algorithmic differentiation (AD) [1] is an efficient pro-
cedure to evaluate numerical derivatives of mathematical expressions using a few symbolic
building blocks in conjuction with the chain rule.

Definition 2.1 (Jacobian matrix). Let f : RN → RM . The Jacobian matrix Df ∈ RM×N

is

Df =

∂[f]1
∂[x]1

· · · ∂[f]1
∂[x]N

...
. . .

...
∂[f]M
∂[x]1

· · · ∂[f]M
∂[x]N

 .
Definition 2.2 (Chain rule (real case)). Let f : RN → RM , g : RM → RP and h = g ◦ f .

Then

Dh(x) = Dg(f) Df (x) ∈ RP×N ,

with f = f(x) ∈ RM .

Example 2.3. Let f(x) = ‖y −Ax‖22 = (γ ◦ β ◦ α)(x), with

α : RN → RM

x→ Ax

β : RM → RM

a→ y − a

γ : RM → R
b→ ‖b‖22

Then ∇xf ∈ R1×N is given by

∇xf = Df (x) = Dγ(b) Dβ(a) Dα(x)

= (2bT) (−IM) A

= −2bTA,

where a = α(x) ∈ RM and b = β(a) ∈ RM .

While well developed for real-valued functions f : RN → RM , generalization of Defini-
tion 2.2 to complex-valued functions f : CN → CM is not straightforward. The generalization
makes use of the hat operator:

Definition 2.4 (Hat operator). Let f : CN → CM . The hat operator ̂ maps f onto its
counterpart f̂ expressed solely in terms of real-valued expressions:

3

f : CN → CM

xR + jxI →fR(xR + jxI) +

jfI(xR + jxI)

f̂ : R2N → R2M[
xR
xI

]
→
[
fR(xR,xI)
fI(xR,xI)

]
Example 2.5 (Linear map).

f : CN → CM

xR + jxI → Ax

f̂ : R2N → R2M[
xR
xI

]
→
[
ARxR −AIxI
ARxI + AIxR

]
See [4] for some useful properties of the hat operator.

Definition 2.6 (Chain rule (complex case)). Let f : CN → CM , g : CM → CP and h = g◦f .
Then

Dĥ(x̂) = Dĝ(f̂) Df̂ (x̂) ∈ R2P×2N , with

Df̂ (x̂) =

[
∂fR
∂xR

(xR,xI)
∂fR
∂xI

(xR,xI)
∂fI
∂xR

(xR,xI)
∂fI
∂xI

(xR,xI)

]
,

where f = f(x) ∈ CM .

Note that the chain rule is only defined in terms of f̂ . In particular, it is generally not possible
to “unhat” Df̂ : R2M → R2N . However, in the special case of functions f : CN → RM , the

short-hand complex-valued quantity Df (xR + jxI) = ∂f
∂xR

(x) + j ∂f∂xI
(x) is sometimes useful.

Example 2.7. Let f(x) = 1T (y −Ax) = (γ ◦ β ◦ α)(x), with

α : CN → CM

x→ Ax

β : CM → CM

a→ y − a

γ : CM → C
b→ 1Tb

Then ∇x̂f̂ ∈ R2×2N is given by

∇x̂f̂ = Df̂ (x̂) = Dγ̂(b̂) Dβ̂(â) Dα̂(x̂)

=

[
1TM 0
0 1TM

] [
−IM 0
0 −IM

] [
AR −AI

AI AR

]
= −

[
1TMAR −1TMAI

1TMAI 1TMAR

]
,

where a = α(x) ∈ CM and b = β(a) ∈ CM . This expression cannot be further reduced to
obtain a valid expression for ∇xf .

Example 2.8. Let f(x) = ‖y −Ax‖22 = (δ ◦ β ◦ α)(x), with

α : CN → CM

x→ Ax

β : CM → CM

a→ y − a

δ : CM → R
b→ ‖b‖22

4

f : CN → CM Df̂ : R2M → R2N

αx, α ∈ C
[
αR −αI
αI αR

]
⊗ IN

x + y, y ∈ CN I2 ⊗ IN

x

[
1 0
0 −1

]
⊗ IN

Ax, A ∈ CM×N
[
AR −AI

AI AR

]
a� x, a ∈ CN

[
diag(aR) −diag(aI)
diag(aI) diag(aR)

]
a⊗ x, a ∈ CK

[
aR ⊗ IN −aI ⊗ IN
aI ⊗ IN aR ⊗ IN

]
x⊗ a, a ∈ CK

[
IN ⊗ aR IN ⊗−aI
IN ⊗ aI IN ⊗ aR

]
Table 1

Jacobian matrices of commonly-used operators in optimization. These can be chained using Definition 2.6
to evaluate numerical gradients of arbitarily-complex functions.

Then ∇x̂f̂ ∈ R2×2N is given by

∇x̂f̂ = Df̂ (x̂) = Dδ̂(b̂) Dβ̂(â) Dα̂(x̂)

=

[
2bTR 2bTI
0 0

] [
−IM 0
0 −IM

] [
AR −AI

AI AR

]
= −2

[
<
{
bTA

}
=
{
bTA

}
0 0

]
.

where a = α(x) ∈ CM and b = β(a) ∈ CM . This expression can be further reduced to obtain
a valid expression for ∇xf = Df (x) = −2bTA ∈ C1×N .

Remark 2.9 (Implementation note). Since optimization algorithms require (sums of) loss
functions of the form f : CN → R, in practice we will always be able to express gradients
using the shorthand form ∇xf ∈ C1×N after applying Definition 2.6.

Table 1 provides symbolic closed-form expressions for most common operators encountered
in optimization.

5

Appendix A. Proofs.

Proof. (1.8)[
(A ◦B)H vec(C)

]
i

= 〈(A ◦B)i, vec(C)〉 = (ai ⊗ bi)
H vec(C)

(1.7)
= vec(bia

T
i)H vec(C)

(1.6)
= tr

(
aib

H
i C
)

= tr
(
bHi Cai

)
=
[
BHCA

]
ii

=
[
diag

(
BHCA

)]
i

Proof. (1.9)

(A⊗B)H (C⊗D) vec(E)
(1.1)
=
(
AH ⊗BH

)
(C⊗D) vec(E)

(1.2)
=
[(
AHC

)
⊗
(
BHD

)]
vec(E)

(1.4)
= vec(BHDECTA)

Proof. (1.10)

(A ◦B)H (C ◦D) e
(1.5)
= (A ◦B)H vec

(
Ddiag(e)CT

)
(1.8)
= diag

(
BHDdiag(e)CTA

)
Proof. (1.11)[

(A ◦B)H (C ◦D)
]
ij

= 〈ai ⊗ bi, cj ⊗ dj〉
(1.7)
=
〈
vec(bia

T
i), vec(djc

T
j)
〉

(1.6)
= tr

(
aib

H
i djc

T
j

)
= tr

(
bHi djc

T
j ai
)

= 〈bi,dj〉 〈ai, cj〉 .

When put in matrix form, the above yields

(A ◦B)H (C ◦D) = AHC�BHD.

REFERENCES

[1] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, Automatic differentiation in
machine learning: a survey, Journal of machine learning research, 18 (2018).

[2] K. Jinadasa, Applications of the matrix operators vech and vec, Linear Algebra and its Applications, 101
(1988), pp. 73–79.

[3] S. Liu and G. Trenkler, Hadamard, khatri-rao, kronecker and other matrix products, International
Journal of Information and Systems Sciences, 4 (2008), pp. 160–177.

[4] B. Rimoldi, Principles of Digital Communication: A Top-Down Approach, Cambridge University Press,
2016.

[5] A.-J. van der Veen and S. J. Wijnholds, Signal processing tools for radio astronomy, in Handbook of
Signal Processing Systems, Springer, 2013, pp. 421–463.

6

	Preliminaries
	Conventions
	Hadamard, Kronecker and Khatri-Rao products
	Matrix identities

	Algorithmic Differentiation
	Appendix A. Proofs

