Optimization Notes

Sepand Kashani
Audiovisual Communications Laboratory (LCAV)
School of Computer and Communication Sciences (IC)
École Polytechnique Fédérale de Lausanne (EPFL)
sepand.kashani@epfl.ch

Abstract

While optimization is well studied for real-valued functions $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$, many physical problems are (partially) specified in terms of complex-valued functions $f_{c}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{M}$. Current optimization packages have limited support for such functions. In particular it is unclear how to define algorithmic differentiation w.r.t. complex-valued functions and arguments. This document is a collection of working notes on the topic.

Key words. First-order Methods, Algorithmic Differentiation

1. Preliminaries.

1.1. Conventions. Throughout this document, we adopt the following conventions:

- Vectors are denoted with bold lowercase letters: y.
- Matrices are denoted with bold uppercase letters: A.
- If $\mathbf{A} \in \mathbb{C}^{M \times N}, \mathbf{a}_{k} \in \mathbb{C}^{M}$ denotes the k-th column of \mathbf{A}.
- The i-th entry of vector \mathbf{y} is denoted $[\mathbf{y}]_{i}$.
- The (i, j)-th entry of matrix \mathbf{A} is denoted $[\mathbf{A}]_{i j}$.
- The conjugation operator is denoted by overlining a vector or a matrix respectively: $\overline{\mathrm{a}}, \overline{\mathbf{A}}$.
- The modulus of a complex number $z \in \mathbb{C}$ is denoted by $|z|$.
- The real/imaginary parts of matrix \mathbf{A} are denoted $\Re\{\mathbf{A}\}, \Im\{\mathbf{A}\}$, or $\mathbf{A}_{R}, \mathbf{A}_{I}$, respectively.
1.2. Hadamard, Kronecker and Khatri-Rao products. The Hadamard product is the element-wise multiplication operator:

Definition 1.1 (Hadamard product). Let $\mathbf{A} \in \mathbb{C}^{M \times N}$ and $\mathbf{B} \in \mathbb{C}^{M \times N}$. The Hadamard product $\mathbf{A} \odot \mathbf{B} \in \mathbb{C}^{M \times N}$ is defined as

$$
[\mathbf{A} \odot \mathbf{B}]_{i j}=[\mathbf{A}]_{i j}[\mathbf{B}]_{i j} .
$$

Moreover, we denote by $\mathbf{A}^{\odot k}$ the product sequence $\underbrace{\mathbf{A} \odot \cdots \odot \mathbf{A}}_{k \times}$.
The Kronecker product generalises the vector outer product to matrices, and represents the tensor product between two finite-dimensional linear maps:

Definition 1.2 (Kronecker product). Let $\mathbf{A} \in \mathbb{C}^{M_{1} \times N_{1}}$ and $\mathbf{B} \in \mathbb{C}^{M_{2} \times N_{2}}$. The Kronecker
product $\mathbf{A} \otimes \mathbf{B} \in \mathbb{C}^{M_{1} M_{2} \times N_{1} N_{2}}$ is defined as

$$
\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{ccc}
{[\mathbf{A}]_{11} \mathbf{B}} & \cdots & {[\mathbf{A}]_{1 N_{1}} \mathbf{B}} \\
\vdots & \ddots & \vdots \\
{[\mathbf{A}]_{M_{1} 1} \mathbf{B}} & \cdots & {[\mathbf{A}]_{M_{1} N_{1}} \mathbf{B}}
\end{array}\right]
$$

The main properties of the Kronecker product are [3]:

$$
\begin{gather*}
(\mathbf{A} \otimes \mathbf{B})^{H}=\mathbf{A}^{H} \otimes \mathbf{B}^{H} \tag{1.1}\\
(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D})=(\mathbf{A C}) \otimes(\mathbf{B D}) \tag{1.2}\\
(\mathbf{A} \otimes \mathbf{B}) \odot(\mathbf{C} \otimes \mathbf{D})=(\mathbf{A} \odot \mathbf{C}) \otimes(\mathbf{B} \odot \mathbf{D}) \tag{1.3}
\end{gather*}
$$

The Khatri-Rao product finally, is a column-wise Kronecker product:
Definition 1.3 (Khatri-Rao product). Let $\mathbf{A} \in \mathbb{C}^{M_{1} \times N}$ and $\mathbf{B} \in \mathbb{C}^{M_{2} \times N}$. The Khatri-Rao product $\mathbf{A} \circ \mathbf{B} \in \mathbb{C}^{M_{1} M_{2} \times N}$ is defined as

$$
\mathbf{A} \circ \mathbf{B}=\left[\mathbf{a}_{1} \otimes \mathbf{b}_{1}, \ldots, \mathbf{a}_{N} \otimes \mathbf{b}_{N}\right]
$$

1.3. Matrix identities. $\mathbf{A} \otimes \mathbf{B}$ and $\mathbf{A} \circ \mathbf{B}$ are often too large to be stored in memory. However it is not the matrix itself that is of interest in many circumstances, but rather the effect of a linear map such as $f(\mathbf{x})=(\mathbf{A} \otimes \mathbf{B}) \mathbf{x}$. The matrix identities below allow us to evaluate $f(\mathbf{x})$ without ever having to compute large intermediate arrays. They make use of the vectorisation operator:

Definition 1.4 (Vectorisation). Let $\mathbf{A} \in \mathbb{C}^{M \times N}$. The vectorisation operator vec (\cdot) reshapes a matrix into a vector by stacking its columns:

$$
[\operatorname{vec}(\mathbf{A})]_{M(j-1)+i}=[\mathbf{A}]_{i j}
$$

Conversely, the matricisation operator $\operatorname{mat}_{M, N}(\cdot)$ reshapes a vector into a matrix:

$$
\left[\operatorname{mat}_{M, N}(\mathbf{a})\right]_{i j}=[\mathbf{a}]_{M(j-1)+i}
$$

Commonly used matrix identities are the following [2,5]:

$$
\begin{gather*}
\operatorname{vec}(\mathbf{A B C})=\left(\mathbf{C}^{T} \otimes \mathbf{A}\right) \operatorname{vec}(\mathbf{B}) \tag{1.4}\\
\operatorname{vec}(\mathbf{A} \operatorname{diag}(\mathbf{b}) \mathbf{C})=\left(\mathbf{C}^{T} \circ \mathbf{A}\right) \mathbf{b} \tag{1.5}\\
\langle\mathbf{A}, \mathbf{B}\rangle_{F}=\operatorname{tr}\left(\mathbf{A}^{H} \mathbf{B}\right)=\operatorname{vec}(\mathbf{A})^{H} \operatorname{vec}(\mathbf{B}) \tag{1.6}\\
\operatorname{vec}\left(\mathbf{b a}^{T}\right)=\mathbf{a} \otimes \mathbf{b} \tag{1.7}
\end{gather*}
$$

The following nonstandard matrix identities are proved in Appendix A:

$$
\begin{gather*}
(\mathbf{A} \circ \mathbf{B})^{H} \operatorname{vec}(\mathbf{C})=\operatorname{diag}\left(\mathbf{B}^{H} \mathbf{C} \overline{\mathbf{A}}\right) \tag{1.8}\\
(\mathbf{A} \otimes \mathbf{B})^{H}(\mathbf{C} \otimes \mathbf{D}) \operatorname{vec}(\mathbf{E})=\operatorname{vec}\left(\mathbf{B}^{H} \mathbf{D E C} \mathbf{C}^{T} \overline{\mathbf{A}}\right) \tag{1.9}\\
(\mathbf{A} \circ \mathbf{B})^{H}(\mathbf{C} \circ \mathbf{D}) \mathbf{e}=\operatorname{diag}\left(\mathbf{B}^{H} \mathbf{D} \operatorname{diag}(\mathbf{e}) \mathbf{C}^{T} \overline{\mathbf{A}}\right) \tag{1.10}\\
\quad(\mathbf{A} \circ \mathbf{B})^{H}(\mathbf{C} \circ \mathbf{D})=\mathbf{A}^{H} \mathbf{C} \odot \mathbf{B}^{H} \mathbf{D} \tag{1.11}
\end{gather*}
$$

2. Algorithmic Differentiation. Algorithmic differentiation (AD) [1] is an efficient procedure to evaluate numerical derivatives of mathematical expressions using a few symbolic building blocks in conjuction with the chain rule.

Definition 2.1 (Jacobian matrix). Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$. The Jacobian matrix $\mathbf{D}_{f} \in \mathbb{R}^{M \times N}$ is

$$
\mathbf{D}_{f}=\left[\begin{array}{ccc}
\frac{\partial[f]_{1}}{\partial[\mathbf{x}]_{1}} & \cdots & \frac{\partial[f]_{1}}{\partial[\mathbf{x}]_{N}} \\
\vdots & \ddots & \vdots \\
\frac{\partial[f]_{M}}{\partial[\mathbf{x}]_{1}} & \cdots & \left.\frac{\partial[f]_{M}}{\partial[\mathbf{x}]_{N}}\right]
\end{array}\right] .
$$

Definition 2.2 (Chain rule (real case)). Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}, g: \mathbb{R}^{M} \rightarrow \mathbb{R}^{P}$ and $h=g \circ f$. Then

$$
\mathbf{D}_{h}(\mathbf{x})=\mathbf{D}_{g}(\mathbf{f}) \mathbf{D}_{f}(\mathbf{x}) \in \mathbb{R}^{P \times N},
$$

with $\mathbf{f}=f(\mathbf{x}) \in \mathbb{R}^{M}$.
Example 2.3. Let $f(\mathbf{x})=\|\mathbf{y}-\mathbf{A x}\|_{2}^{2}=(\gamma \circ \beta \circ \alpha)(\mathbf{x})$, with

$$
\begin{array}{ccc}
\alpha: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M} & \beta: \mathbb{R}^{M} \rightarrow \mathbb{R}^{M} & \gamma: \mathbb{R}^{M} \rightarrow \mathbb{R} \\
\mathbf{x} \rightarrow \mathbf{A x} & \mathbf{a} \rightarrow \mathbf{y}-\mathbf{a} & \mathbf{b} \rightarrow\|\mathbf{b}\|_{2}^{2}
\end{array}
$$

Then $\nabla_{\mathbf{x}} f \in \mathbb{R}^{1 \times N}$ is given by

$$
\begin{aligned}
\nabla_{\mathbf{x}} f=\mathbf{D}_{f}(\mathbf{x}) & =\mathbf{D}_{\gamma}(\mathbf{b}) \mathbf{D}_{\beta}(\mathbf{a}) \mathbf{D}_{\alpha}(\mathbf{x}) \\
& =\left(2 \mathbf{b}^{T}\right)\left(-I_{M}\right) \mathbf{A} \\
& =-2 \mathbf{b}^{T} \mathbf{A},
\end{aligned}
$$

where $\mathbf{a}=\alpha(\mathbf{x}) \in \mathbb{R}^{M}$ and $\mathbf{b}=\beta(\mathbf{a}) \in \mathbb{R}^{M}$.
While well developed for real-valued functions $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$, generalization of Definition 2.2 to complex-valued functions $f: \mathbb{C}^{N} \rightarrow \mathbb{C}^{M}$ is not straightforward. The generalization makes use of the hat operator:

Definition 2.4 (Hat operator). Let $f: \mathbb{C}^{N} \rightarrow \mathbb{C}^{M}$. The hat operator ${ }^{\wedge}$ maps f onto its counterpart \hat{f} expressed solely in terms of real-valued expressions:

$$
\begin{aligned}
f: \mathbb{C}^{N} & \rightarrow \mathbb{C}^{M} \\
\mathbf{x}_{R}+j \mathbf{x}_{I} & \rightarrow f_{R}\left(\mathbf{x}_{R}+j \mathbf{x}_{I}\right)+ \\
& j f_{I}\left(\mathbf{x}_{R}+j \mathbf{x}_{I}\right)
\end{aligned}
$$

$$
\begin{aligned}
\hat{f}: \mathbb{R}^{2 N} & \rightarrow \mathbb{R}^{2 M} \\
{\left[\begin{array}{c}
\mathbf{x}_{R} \\
\mathbf{x}_{I}
\end{array}\right] } & \rightarrow\left[\begin{array}{l}
f_{R}\left(\mathbf{x}_{R}, \mathbf{x}_{I}\right) \\
f_{I}\left(\mathbf{x}_{R}, \mathbf{x}_{I}\right)
\end{array}\right]
\end{aligned}
$$

Example 2.5 (Linear map).

$$
\begin{aligned}
f: \mathbb{C}^{N} & \rightarrow \mathbb{C}^{M} & \hat{f}: \mathbb{R}^{2 N} & \rightarrow \mathbb{R}^{2 M} \\
\mathbf{x}_{R}+j \mathbf{x}_{I} & \rightarrow \mathbf{A x} & {\left[\begin{array}{c}
\mathbf{x}_{R} \\
\mathbf{x}_{I}
\end{array}\right] } & \rightarrow\left[\begin{array}{l}
\mathbf{A}_{R} \mathbf{x}_{R}-\mathbf{A}_{I} \mathbf{x}_{I} \\
\mathbf{A}_{R} \mathbf{x}_{I}+\mathbf{A}_{I} \mathbf{x}_{R}
\end{array}\right]
\end{aligned}
$$

See [4] for some useful properties of the hat operator.
Definition 2.6 (Chain rule (complex case)). Let $f: \mathbb{C}^{N} \rightarrow \mathbb{C}^{M}, g: \mathbb{C}^{M} \rightarrow \mathbb{C}^{P}$ and $h=g \circ f$. Then

$$
\begin{aligned}
\mathbf{D}_{\hat{h}}(\hat{\mathbf{x}}) & =\mathbf{D}_{\hat{g}}(\hat{\mathbf{f}}) \mathbf{D}_{\hat{f}}(\hat{\mathbf{x}}) \in \mathbb{R}^{2 P \times 2 N}, \quad \text { with } \\
\mathbf{D}_{\hat{f}}(\hat{\mathbf{x}}) & =\left[\begin{array}{ll}
\frac{\partial f_{R}}{\partial x_{R}}\left(\mathbf{x}_{R}, \mathbf{x}_{I}\right) & \frac{\partial f_{R}}{\partial \mathbf{x}_{I}}\left(\mathbf{x}_{R}, \mathbf{x}_{I}\right) \\
\frac{\partial f_{I}}{\partial \mathbf{x}_{R}}\left(\mathbf{x}_{R}, \mathbf{x}_{I}\right) & \frac{\partial f_{I}}{\partial \mathbf{x}_{I}}\left(\mathbf{x}_{R}, \mathbf{x}_{I}\right)
\end{array}\right],
\end{aligned}
$$

where $\mathbf{f}=f(\mathbf{x}) \in \mathbb{C}^{M}$.
Note that the chain rule is only defined in terms of \hat{f}. In particular, it is generally not possible to "unhat" $\mathbf{D}_{\hat{f}}: \mathbb{R}^{2 M} \rightarrow \mathbb{R}^{2 N}$. However, in the special case of functions $f: \mathbb{C}^{N} \rightarrow \mathbb{R}^{M}$, the short-hand complex-valued quantity $\mathbf{D}_{f}\left(\mathbf{x}_{R}+j \mathbf{x}_{I}\right)=\frac{\partial f}{\partial \mathbf{x}_{R}}(\mathbf{x})+j \frac{\partial f}{\partial \mathbf{x}_{I}}(\mathbf{x})$ is sometimes useful.

Example 2.7. Let $f(\mathbf{x})=\mathbf{1}^{T}(\mathbf{y}-\mathbf{A x})=(\gamma \circ \beta \circ \alpha)(\mathbf{x})$, with

$$
\begin{array}{ccc}
\alpha: \mathbb{C}^{N} \rightarrow \mathbb{C}^{M} & \beta: \mathbb{C}^{M} \rightarrow \mathbb{C}^{M} & \gamma: \mathbb{C}^{M} \rightarrow \mathbb{C} \\
\mathbf{x} \rightarrow \mathbf{A x} & \mathbf{a} \rightarrow \mathbf{y}-\mathbf{a} & \mathbf{b} \rightarrow \mathbf{1}^{T} \mathbf{b}
\end{array}
$$

Then $\nabla_{\hat{\mathbf{x}}} \hat{f} \in \mathbb{R}^{2 \times 2 N}$ is given by

$$
\begin{aligned}
\nabla_{\hat{\mathbf{x}}} \hat{f}=\mathbf{D}_{\hat{f}}(\hat{\mathbf{x}}) & =\mathbf{D}_{\hat{\gamma}}(\hat{\mathbf{b}}) \mathbf{D}_{\hat{\beta}}(\hat{\mathbf{a}}) \mathbf{D}_{\hat{\alpha}}(\hat{\mathbf{x}}) \\
& =\left[\begin{array}{cc}
\mathbf{1}_{M}^{T} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}_{M}^{T}
\end{array}\right]\left[\begin{array}{cc}
-I_{M} & \mathbf{0} \\
\mathbf{0} & -I_{M}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A}_{R} & -\mathbf{A}_{I} \\
\mathbf{A}_{I} & \mathbf{A}_{R}
\end{array}\right] \\
& =-\left[\begin{array}{cc}
\mathbf{1}_{M}^{T} \mathbf{A}_{R} & -\mathbf{1}_{M}^{T} \mathbf{A}_{I} \\
\mathbf{1}_{M}^{T} \mathbf{A}_{I} & \mathbf{1}_{M}^{T} \mathbf{A}_{R}
\end{array}\right],
\end{aligned}
$$

where $\mathbf{a}=\alpha(\mathbf{x}) \in \mathbb{C}^{M}$ and $\mathbf{b}=\beta(\mathbf{a}) \in \mathbb{C}^{M}$. This expression cannot be further reduced to obtain a valid expression for $\nabla_{\mathbf{x}} f$.

Example 2.8. Let $f(\mathbf{x})=\|\mathbf{y}-\mathbf{A x}\|_{2}^{2}=(\delta \circ \beta \circ \alpha)(\mathbf{x})$, with

$$
\begin{array}{ccc}
\alpha: \mathbb{C}^{N} \rightarrow \mathbb{C}^{M} & \beta: \mathbb{C}^{M} \rightarrow \mathbb{C}^{M} & \delta: \mathbb{C}^{M} \rightarrow \mathbb{R} \\
\mathbf{x} \rightarrow \mathbf{A x} & \mathbf{a} \rightarrow \mathbf{y}-\mathbf{a} & \mathbf{b} \rightarrow\|\mathbf{b}\|_{2}^{2}
\end{array}
$$

$f: \mathbb{C}^{N} \rightarrow \mathbb{C}^{M}$	$\mathbf{D}_{\hat{f}}: \mathbb{R}^{2 M} \rightarrow \mathbb{R}^{2 N}$
$\alpha \mathbf{x}, \alpha \in \mathbb{C}$	$\left[\begin{array}{cc}\alpha_{R} & -\alpha_{I} \\ \alpha_{I} & \alpha_{R}\end{array}\right] \otimes I_{N}$
$\mathbf{x}+\mathbf{y}, \mathbf{y} \in \mathbb{C}^{N}$	$I_{2} \otimes I_{N}$
$\overline{\mathbf{x}}$	$\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] \otimes I_{N}$
$\mathbf{A x}, \mathbf{A} \in \mathbb{C}^{M \times N}$	$\left[\begin{array}{cc}\mathbf{A}_{R} & -\mathbf{A}_{I} \\ \mathbf{A}_{I} & \mathbf{A}_{R}\end{array}\right]$
$\mathbf{a} \odot \mathbf{x}, \mathbf{a} \in \mathbb{C}^{N}$	$\left[\begin{array}{ll}\operatorname{diag}\left(\mathbf{a}_{R}\right) & -\operatorname{diag}^{2}\left(\mathbf{a}_{I}\right) \\ \operatorname{diag}\left(\mathbf{a}_{I}\right) & \operatorname{diag}\left(\mathbf{a}_{R}\right)\end{array}\right]$
$\mathbf{a} \otimes \mathbf{x}, \mathbf{a} \in \mathbb{C}^{K}$	$\left[\begin{array}{ll}\mathbf{a}_{R} \otimes I_{N} & -\mathbf{a}_{I} \otimes I_{N} \\ \mathbf{a}_{I} \otimes I_{N} & \mathbf{a}_{R} \otimes I_{N}\end{array}\right]$
$\mathbf{x} \otimes \mathbf{a}, \mathbf{a} \in \mathbb{C}^{K}$	$\left[\begin{array}{ll}I_{N} \otimes \mathbf{a}_{R} & I_{N} \otimes-\mathbf{a}_{I} \\ I_{N} \otimes \mathbf{a}_{I} & I_{N} \otimes \mathbf{a}_{R}\end{array}\right]$

Table 1
Jacobian matrices of commonly-used operators in optimization. These can be chained using Definition 2.6 to evaluate numerical gradients of arbitarily-complex functions.

Then $\nabla_{\hat{\mathbf{x}}} \hat{f} \in \mathbb{R}^{2 \times 2 N}$ is given by

$$
\begin{aligned}
\nabla_{\hat{\mathbf{x}}} \hat{f}=\mathbf{D}_{\hat{f}}(\hat{\mathbf{x}}) & =\mathbf{D}_{\hat{\delta}}(\hat{\mathbf{b}}) \mathbf{D}_{\hat{\beta}}(\hat{\mathbf{a}}) \mathbf{D}_{\hat{\alpha}}(\hat{\mathbf{x}}) \\
& =\left[\begin{array}{cc}
2 \mathbf{b}_{R}^{T} & 2 \mathbf{b}_{I}^{T} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
-I_{M} & \mathbf{0} \\
\mathbf{0} & -I_{M}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A}_{R} & -\mathbf{A}_{I} \\
\mathbf{A}_{I} & \mathbf{A}_{R}
\end{array}\right] \\
& =-2\left[\begin{array}{cc}
\Re\left\{\mathbf{b}^{T} \overline{\mathbf{A}}\right\} & \Im\left\{\mathbf{b}^{T} \overline{\mathbf{A}}\right\} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] .
\end{aligned}
$$

where $\mathbf{a}=\alpha(\mathbf{x}) \in \mathbb{C}^{M}$ and $\mathbf{b}=\beta(\mathbf{a}) \in \mathbb{C}^{M}$. This expression can be further reduced to obtain a valid expression for $\nabla_{\mathbf{x}} f=\mathbf{D}_{f}(\mathbf{x})=-2 \mathbf{b}^{T} \overline{\mathbf{A}} \in \mathbb{C}^{1 \times N}$.

Remark 2.9 (Implementation note). Since optimization algorithms require (sums of) loss functions of the form $f: \mathbb{C}^{N} \rightarrow \mathbb{R}$, in practice we will always be able to express gradients using the shorthand form $\nabla_{\mathbf{x}} f \in \mathbb{C}^{1 \times N}$ after applying Definition 2.6.

Table 1 provides symbolic closed-form expressions for most common operators encountered in optimization.

Appendix A. Proofs.

Proof. (1.8)

$$
\begin{aligned}
{\left[(\mathbf{A} \circ \mathbf{B})^{H} \operatorname{vec}(\mathbf{C})\right]_{i} } & =\left\langle(\mathbf{A} \circ \mathbf{B})_{i}, \operatorname{vec}(\mathbf{C})\right\rangle=\left(\mathbf{a}_{i} \otimes \mathbf{b}_{i}\right)^{H} \operatorname{vec}(\mathbf{C}) \\
& \stackrel{(1.7)}{=} \operatorname{vec}\left(\mathbf{b}_{i} \mathbf{a}_{i}^{T}\right)^{H} \operatorname{vec}(\mathbf{C}) \stackrel{(1.6)}{=} \operatorname{tr}\left(\overline{\mathbf{a}}_{i} \mathbf{b}_{i}^{H} \mathbf{C}\right) \\
& =\operatorname{tr}\left(\mathbf{b}_{i}^{H} \mathbf{C} \overline{\mathbf{a}}_{i}\right)=\left[\mathbf{B}^{H} \mathbf{C} \overline{\mathbf{A}}_{i i}=\left[\operatorname{diag}\left(\mathbf{B}^{H} \mathbf{C} \overline{\mathbf{A}}\right)\right]_{i}\right.
\end{aligned}
$$

Proof. (1.9)

$$
\begin{aligned}
(\mathbf{A} \otimes \mathbf{B})^{H}(\mathbf{C} \otimes \mathbf{D}) \operatorname{vec}(\mathbf{E}) & \stackrel{(1.1)}{=}\left(\mathbf{A}^{H} \otimes \mathbf{B}^{H}\right)(\mathbf{C} \otimes \mathbf{D}) \operatorname{vec}(\mathbf{E}) \\
& \stackrel{(1.2)}{=}\left[\left(\mathbf{A}^{H} \mathbf{C}\right) \otimes\left(\mathbf{B}^{H} \mathbf{D}\right)\right] \operatorname{vec}(\mathbf{E}) \\
& \stackrel{(1.4)}{=} \operatorname{vec}\left(\mathbf{B}^{H} \mathbf{D E C} \mathbf{C}^{T} \overline{\mathbf{A}}\right)
\end{aligned}
$$

Proof. (1.10)

$$
\begin{aligned}
&(\mathbf{A} \circ \mathbf{B})^{H}(\mathbf{C} \circ \mathbf{D}) \mathbf{e} \stackrel{(1.5)}{=}(\mathbf{A} \circ \mathbf{B})^{H} \operatorname{vec}\left(\mathbf{D} \operatorname{diag}(\mathbf{e}) \mathbf{C}^{T}\right) \\
& \stackrel{(1.8)}{=} \operatorname{diag}\left(\mathbf{B}^{H} \mathbf{D} \operatorname{diag}(\mathbf{e}) \mathbf{C}^{T} \overline{\mathbf{A}}\right)
\end{aligned}
$$

Proof. (1.11)

$$
\begin{aligned}
{\left[(\mathbf{A} \circ \mathbf{B})^{H}(\mathbf{C} \circ \mathbf{D})\right]_{i j} } & =\left\langle\mathbf{a}_{i} \otimes \mathbf{b}_{i}, \mathbf{c}_{j} \otimes \mathbf{d}_{j}\right\rangle \stackrel{(1.7)}{=}\left\langle\operatorname{vec}\left(\mathbf{b}_{i} \mathbf{a}_{i}^{T}\right), \operatorname{vec}\left(\mathbf{d}_{j} \mathbf{c}_{j}^{T}\right)\right\rangle \\
& \stackrel{(1.6)}{=} \operatorname{tr}\left(\overline{\mathbf{a}_{i}} \mathbf{b}_{i}^{H} \mathbf{d}_{j} \mathbf{c}_{j}^{T}\right)=\operatorname{tr}\left(\mathbf{b}_{i}^{H} \mathbf{d}_{j} \mathbf{c}_{j}^{T} \overline{\mathbf{a}_{i}}\right) \\
& =\left\langle\mathbf{b}_{i}, \mathbf{d}_{j}\right\rangle\left\langle\mathbf{a}_{i}, \mathbf{c}_{j}\right\rangle .
\end{aligned}
$$

When put in matrix form, the above yields

$$
(\mathbf{A} \circ \mathbf{B})^{H}(\mathbf{C} \circ \mathbf{D})=\mathbf{A}^{H} \mathbf{C} \odot \mathbf{B}^{H} \mathbf{D}
$$

REFERENCES

[1] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, Automatic differentiation in machine learning: a survey, Journal of machine learning research, 18 (2018).
[2] K. Jinadasa, Applications of the matrix operators vech and vec, Linear Algebra and its Applications, 101 (1988), pp. 73-79.
[3] S. Liu and G. Trenkler, Hadamard, khatri-rao, kronecker and other matrix products, International Journal of Information and Systems Sciences, 4 (2008), pp. 160-177.
[4] B. Rimoldi, Principles of Digital Communication: A Top-Down Approach, Cambridge University Press, 2016.
[5] A.-J. van der Veen and S. J. Wijnholds, Signal processing tools for radio astronomy, in Handbook of Signal Processing Systems, Springer, 2013, pp. 421-463.

