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We bootstrap the S matrix of massless particles in unitary, relativistic two dimensional quantum field
theories. We find that the low energy expansion of such S matrices is strongly constrained by the existence
of a UV completion. In the context of flux tube (FT) physics, this allows us to constrain several terms in the
S matrix low energy expansion or—equivalently—on Wilson coefficients of several irrelevant operators
showing up in the FT effective action. These bounds have direct implications for other physical quantities;
for instance, they allow us to further bound the ground state energy as well as the level splitting of
degenerate energy levels of large FTs. We find that the S matrices living at the boundary of the allowed
space exhibit an intricate pattern of resonances with one sharper resonance whose quantum numbers, mass,
and width are precisely those of the world-sheet axion proposed by Athenodorou, Bringoltz, and Teper and
Dubovsky, Flauger, and Gorbenko. The general method proposed here should be extendable to massless S
matrices in higher dimensions and should lead to new quantitative bounds on irrelevant operators in
theories of Goldstones and, also, in gauge and gravity theories.
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Introduction.—Unraveling the dual string description of
the Yang-Mills theory is an long-standing problem. A first
step toward achieving this goal is solving for the spectrum
of long strings or confining flux tubes (FTs) of pure glue.
At low energies, the massless FT excitations (or branons)
decouple from the massive short strings (or glueballs) (If
the number of colors Nc tends to infinity, then the FTs
decouple from the glueballs at any energy.) and can be
described by a two dimensional world-sheet theory which
can be formulated in terms of an effective Lagrangian or in
terms of the branon S matrix.
The FT’s effective Lagrangian density is built out of

derivatives of the fields Xμ describing the embedding of the

world sheet in spacetime. At low energies, it is dominated
by the square root of the induced metric determinant
h ¼ det hαβ ¼ det ∂αXμ∂βXνημν, i.e., the Nambu-Goto
Lagrangian. Any interaction consistent with the bulk D-
dimensional Poincaré symmetry is also permitted. Thus,
the action is written in terms of curvature invariants [1–6]

A ¼
Z

d2σ
ffiffiffiffiffiffi
−h

p
½l−2

s þRþ K2 þ l2
sK4 þ…�; ð1Þ

where RðhαβÞ is the Ricci scalar, Kμ
αβ ¼ ∇α∂βXμ is the

extrinsic curvature tensor, and implicit are Wilson coef-
ficients multiplying any of these structures in the effective
Lagrangian. The parameter ls is called the string length.
In static gauge, XμðσÞ ¼ ðσα; XiÞ, where i ¼ 1;…; D − 2
are the transverse excitations of the FT.
Ricci is a total derivative and K2 vanishes on shell,

so the first two terms in the effective field theory expansion
can be dropped. Therefore, the low energy dynamics of (1)
is tightly constrained by the nonlinearly realized target
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Poincaré symmetry. This is known as low energy univer-
sality [1,2,7]. The leading deviations from the Nambu-Goto
predictions for physical observables arise from K4 oper-
ators in (1), namely, effects of Oð∂8X4Þ. There are two K4

operators and, thus, two coefficients α3 and β3, which do
depend on the specific underlying confining theory.
We will constrain them in this Letter and, thus, bound

interesting physical quantities which depend on them. To
constrain these parameters, we turn to the on-shell
approach to the FT world-sheet theory pioneered by [1]
which is based on the branon S matrix. The 2 → 2
scattering amplitudes can be decomposed into channels,
i.e., irreducible representations of the symmetry group
OðD − 2Þ. The low energy expansion of the phase shifts
in each channel can be written as (see Setup for details)

2δsym¼
s
4
þα2s2þα3s3þOðs4Þ;

2δanti¼
s
4
−α2s2þðα3þ2β3Þs3þOðs4Þ;

2δsing¼
s
4
−ðD−3Þα2s2þðα3−ðD−2Þβ3Þs3þOðs4Þ; ð2Þ

where α2 ¼ ½ðD − 26Þ=ð384πÞ�, and s is the square of the
center of mass energy. Here and below, we set ls ¼ 1. The
low energy universality mentioned above is manifest here
up to Oðs2Þ included [1]. The nonuniversal K4 terms in (1)
contribute at Oðs3Þ and are encoded in the parameters α3
and β3 in (2). To this order, the phase shifts are real because
inelastic processes like 2 → 4 give rise to imaginary
contributions of Oðs6Þ.
Below, we will see that, by requiring a consistent UV

completion of the branon S matrix, we can put bounds on
its low energy expansion and, thus, bound the effective
field theory parameters. This immediately leads to many
interesting bounds on various low energy physical observ-
ables. One such interesting observable is the finite volume
energy spectrum which we can compute in perturbation
theory from the action (1) above. For example, for the
ground state, we will find

E0ðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 −

π

3
ðD − 2Þ

r
þ δðDÞ

R7
þOð1=R9Þ; ð3Þ

where R is the length of the FT loop and

δðDÞ ¼ 32π6ð2 −DÞ½ðD − 2Þα3 þ ðD − 4Þβ3�
225

: ð4Þ

More speculatively, we will also study the boundary of
the allowed S-matrix space and find a remarkable numeri-
cal coincidence: on that boundary lies an S matrix exhibit-
ing a resonance with the quantum numbers, mass, and
width exactly as predicted in [8,9] and dubbed as the QCD
world-sheet axion there. Amusingly, at that same point,
the S matrix we obtain also contains three further heavier

excitations which we call the dilaton, the symmetron, and
the axion*. Given the remarkable numerical coincidence
with respect to the QCD axion, it is tempting to speculate
that they should be present in the QCD FT.
Lattice Monte Carlo simulations of the pure Yang-Mills

theory provide precious information on the dynamics of
confining FTs. The measurements of the low energy
spectrum support the outlined picture of universality at
large radius—see [10] for a review—and should, hopefully,
be sensitive to the nonuniversal corrections soon, e.g., [11]
for D ¼ 3. They also favor the existence of the conjectured
axion excitation [8,9,12,13]; it would be very interesting to
look for other more massive excitations.
2D massless S-matrix bootstrap.—Massless excitations

in 2D can be left (L) or right (R) movers. In this section, we
study the L-R scattering amplitude of branons.
Setup: A long FT in D dimensions breaks the target

Poincaré symmetry to ISOð1; 1Þ ×OðD − 2Þ. (We assume
that the D-dimensional theory and the FT preserve parity.)
This leads to D − 2 Goldstone bosons or branons. Now,
consider the 2 → 2 scattering amplitude of these branons,

ScdabðsÞ ¼ σ1ðsÞδabδcd þ σ2ðsÞδcaδdb þ σ3ðsÞδdaδcb; ð5Þ

where the indices run over the D − 2 transverse directions,
and s is the square of the center-of-mass energy. Crossing
symmetry leads to

σ2ð−sÞ ¼ σ2ðsÞ; σ3ð−sÞ ¼ σ1ðsÞ: ð6Þ
The amplitude (5) can also be decomposed in partial waves
of OðD − 2Þ, namely, the singlet, the antisymmetric tensor,
and the symmetric traceless tensor (see [14,15] for details),

Ssing ¼ e2iδsing ¼ ðD − 2Þσ1 þ σ2 þ σ3;

Santi ¼ e2iδanti ¼ σ2 − σ3;

Ssym ¼ e2iδsym ¼ σ2 þ σ3; ð7Þ
where δrep may have an imaginary part due to particle
production. In this basis, unitarity is simply

jSrepðsÞj2 ≤ 1; ∀ s > 0: ð8Þ

The amplitudes σiðsÞ are analytic functions of s in the
upper and the lower half plane related by real analyticity

σiðs�Þ ¼ ½σiðsÞ��: ð9Þ
Therefore, it is enough to know the amplitudes in the upper
half plane, where Eqs. (6) and (9) lead to

σ2ð−s�Þ ¼ ½σ2ðsÞ��; σ3ð−s�Þ ¼ ½σ1ðsÞ��: ð10Þ

The Nambu-Goto Lagrangian leads to the low energy
expansion of the phase shifts as 2δrep ¼ ðs=4Þ þOðs2Þ. In
principle, higher order terms may also include nonanalytic
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terms of the form spðlog sÞk with p > k > 0. Furthermore,
we know that Imδrep ¼ Oðs6Þ because particle production
starts with jM2→4j2 ∼ l12s [16]. [In D ¼ 3, particle pro-
duction starts at Oðs8Þ]. Using just these facts and (10), we
can derive the low energy expansion (2) with α2, α3, and β3
as real parameters. In the context of the FT theory, α2 ¼
½ðD − 26Þ=ð384πÞ� is universal and α3 and β3 are nonuni-
versal coefficients related to the two independent K4 terms
in (1). In the Supplemental Material [17], we push this
expansion up to Oðs6Þ and find perfect agreement with the
Oðs4Þ results of [18].
D ¼ 3 Flux Tubes: To start with, we focus on the D ¼ 3

target space. In this case, only δsing ≡ δ is meaningful, and
the amplitude S ¼ e2iδ obeys Sð−s�Þ ¼ ½SðsÞ�� for s in the
upper half plane. Furthermore, it was shown in [19] that
Imδ ¼ Oðs8Þ. This implies

2δðsÞ ¼ s
4
þ γ3s3 þ γ5s5 þ γ7s7 þ iγ8s8 þOðs9Þ; ð11Þ

where γ3, γ5, γ7 are nonuniversal parameters. On the other
hand, γ8 is determined by the probability of particle
production at leading order P2→n≥4 ¼ 2γ8s8 þOðs9Þ. As
explained in [19], γ8 ∝ γ23 is not an independent parameter.
The S matrix SðzÞ is a holomorphic function from the

upper half plane H to the unit disc D because unitarity on
the real axis along with the maximum modulus principle
implies that jSðzÞj ≤ 1 in the full upper half plane. Next, we
construct a new function

Sð1ÞðzjwÞ≡ SðzÞ − SðwÞ
1 − SðzÞSðwÞ =

z − w
z − w̄

; ð12Þ

where w is any point in the upper half plane. It is easy to see
that (as a holomorphic function of z) this function (a) has
no singularities in the upper half plane and (b) is again
bounded by 1 for z on the real line. By the maximum
modulus principle, it is bounded everywhere on the upper
half plane: jSð1ÞðzjwÞjImðzÞ≥0 ≤ 1. This is the so-called
Schwarz-Pick theorem. Inserting (11) in the Schwarz-
Pick combination (12) and expanding for small and
imaginary z and w, we find

Sð1ÞðzjwÞ ¼ −1þ
�
1

96
þ 8γ3

�
jzwj þ � � � ≥ −1: ð13Þ

This leads to our first bound

γ3 ≥ −
1

768
: ð14Þ

The authors of [9,19] estimated γ3 ≈ 3 × 10−4 from lattice
data for SUð6Þ Yang-Mills theory [20]. Similarly, one can
define Sð2Þðzjq; wÞ by replacing SðzÞ by Sð1ÞðzjqÞ in (12).
Such Schwarz-Pick multipoint generalizations [21] can be

used to derive (see Supplemental Material [17] for details,
which includes Refs. [22,23])

γ̃5 ≥ 4γ̃23 −
1

64
γ̃;3 ;

γ̃7 ≥
γ̃25
γ̃3

þ 1

4096
γ̃3 þ

1

64
γ̃5 −

1

16
γ̃23; ð15Þ

where γ̃n ¼ γn þ ð−1Þðnþ1Þ=2½1=ðn23n−1Þ�, see Fig. 1.
D ¼ 4 Flux Tubes: In D ¼ 4 dimensions, the branon S

matrix possesses an Oð2Þ symmetry. In addition, the
crossing and unitary equations are invariant under Ssing ↔
Santi interchange corresponding to β3 ↔ −β3 in (2).
Universality fixes the low energy expansion of the phase
shifts up to order s2 included. The leading nonuniversal
behavior depends on the two coefficients α3 and β3
introduced in (2).
Crossing mixes the various irreps, but the symmetric

channel S matrix is still bounded by 1 along all the real s
axes (By crossing jScrossedsym j ¼ 1

2
jSsing þ Santij ≤ 1, this

actually holds for any OðN ¼ D − 2Þ theory. [14]), so
we can still apply the first Schwarz-Pick inequality in this
channel. This leads to

α3 ≥ −
1

768
þ 121

9216π2
: ð16Þ

However, this is not the full allowed fα3; β3g space as we
have yet to explore all channels and their interrelations.
To find the optimal bounds, we proceed numerically in
the spirit of [24–26]. The numerical result of the optimi-
zation problem is shown in Fig. 2. When β3 ¼ 0, the
numerical bound and the analytic one coincide. At this
point, the S matrix satisfies the Yang-Baxter equation; see
Supplemental Material [17].
Energy spectrum in finite volume.—At very large R, we

read off the string tension from the ground state energy
E0ðRÞ ≃ R=l2

s . Recall that the corrections up to 1=R5 to

FIG. 1. Allowed fγ̃3; γ̃5; γ̃7g space for a D ¼ 3 FT S matrix.
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this confining result are universal and given by the square
root in (3). The sub-sub-sub-subleading term is not
uniquely fixed by symmetry and is the subject of this
section. Computing the nonuniversal correction in (3) is
straightforward in perturbation theory, albeit increasingly
complex as we move to higher orders in 1=R. The leading
correction δðDÞ comes from the two K4 possible inter-
actions which we parametrize as

Lnonuniv ¼ ∂a∂bXi∂a∂bXj∂c∂dXk∂c∂dXl

× ½4δikδjlðα3 þ β3Þ − 2δijδklðα3 þ 3β3Þ�: ð17Þ

Here, we parametrize the coefficient of the two invariant
structures so as to match the eye pleasing expressions (2),
as can be verified by a straightforward tree level compu-
tation. Thus, the leading order nonuniversal contribution to
the vacuum energy density is

ð18Þ

where fðDÞ ¼ 4ð2 −DÞ½ðD − 2Þα3 þ ðD − 4Þβ3�. The
derivative of the finite volume propagator is given by
∂μΔRðxÞ ¼

P
n ∂μΔðxþ nÞ, where ∂μΔðxÞ ¼ −xμ=ð2πx2Þ

and nμ ¼ ð0; nRÞ is a displacement vector in the winding
direction. The zero mode nμ ¼ ð0; 0Þ gives a short-distance
divergence in the limit x → 0 leading to (18). This is
regulated by a local counterterm which, at this order,
simply amounts to neglecting the zero mode. Thus, after
a bit of algebra and excluding the zero mode, we are led
to ½∂μ∂ν∂ρ∂σΔRð0Þ�2ren ¼ 288=π2

P∞
n;m¼1 1=ðR8n4m4Þ ¼

8π6=225R8, which gives the desired relation (4) between
the first nonuniversal correction to the energy and the first
nonuniversal low energy S-matrix parameters or Wilson
coefficients. See Supplemental Material [17] for further
details, which includes Ref. [27]. (In D ¼ 3, physical
quantities only depend on the combination α3 − β3 ¼ γ3.)
Since we bounded the latter low energy parameters, see

Figs. 1 and 2, we automatically obtain bounds on the
Wilson coefficients and on the ground state energy. In three

and four dimensions, for instance, we find the following
bound on the deviation from the square root formula

δð3Þ ¼ −
32π6γ3
225

≤
π6

5400
; ð19Þ

and

δð4Þ ¼ −
128π6α3
225

≤
π6

1350
−
121π4

16200
: ð20Þ

Note that the right-hand side of (20) is negative so the
square root formula must be corrected; the right-hand side
of (19) is positive, in nice agreement with the fact that
integrableD ¼ 3 strings have precisely Eint

0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðπ=3Þ

p
.

Note, also, that the four dimensional bound (20) is saturated
when β3 ¼ 0 (see Fig. 2) which corresponds to the
particular point where integrability is preserved.
In fact, if we exploit the low energy integrability of the

theory, we can bypass the Lagrangian approach altogether
and, by means of the so-called thermodynamic Bethe
ansatz (TBA), compute (3) in terms of the S matrix. We
checked that, indeed, the TBA approach yields precisely
the same results as Eqs. (19) and even (20) when β3 ¼ 0
which is the D ¼ 4 integrable point.
It should be possible to relate, more generally, the

various energy levels with the two-to-two Smatrix together
with all higher point amplitudes of nonintegrable theories.
The Lüscher corrections [28] provide the leading term,
and generalized Lüscher corrections have recently been
explored, e.g., in [29]. Perhaps the recent rederivation of
the TBA in more diagrammatic terms, see, e.g., [30], can
provide some insights for such a putative description, or,
developing the approach of [31] for the FT, may turn out
useful.
Resonances.—Given the bounds in Figs. 1 and 2, it is

natural to ask which S matrices lie on those boundaries.
This is particularly relevant in 4D since lattice Monte Carlo
simulations shows a rich phenomenology with the presence
of a parity odd resonance [12,13] dubbed a QCD world-
sheet axion in the S-matrix approach to the long FT [8,9]. In
D ¼ 4, we find that the Smatrices which saturate the bound
have zeros, which physically correspond to resonances.
Figure 3 describes the position of these resonances in the
antisymmetric channel as we move along the boundary
of Fig. 2.
Depending on whether we are to the right or left of the

integrable β3 ¼ 0 point, there is one (β3 < 0) or two zeros
there (β3 > 0). As we move along the boundary in the
region β3 > 0, the sharpest of these resonances passes spot
on by the values of the world-sheet axion. The two dots
correspond to estimates based on SUð3Þ [8,9] and SUð5Þ
[32] lattice Monte Carlo simulations [12]. Because of these
encouraging numerical coincidences, we will denote these
two points along the boundary as the SUð3Þ point and
SUð5Þ point. Remarkably, at these points, we find other

FIG. 2. Allowed region in the fβ3; α3g parameter space of FT S
matrices in D ¼ 4 as obtained by numerics.
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zeros in the S matrices. One broader resonance shows up
in the antisymmetric channel along with a resonance in
each of the other two channels. The spectrum, measured
as s0 ¼ ðmþ iΓ=2Þ2 at the position Srepðs0Þ ¼ 0, for the
SUð3Þ and SUð5Þ points is given by

Spectrum ½m;Γ� SUð3Þ SUð5Þ
Axion [1.85, 0.39] [1.64, 0.22]
Axion* [3.25, 8.84] [2.83, 7.02]
Symmetron [2.36, 4.99] [2.34, 4.54]
Dilaton [1.88, 3.37] [1.84, 3.52]

Even though these values should obviously be taken as
benchmark values only, could these resonances be further
excitations present in the Yang-Mills long FTs? Of course,
these explorations must be taken with a grain of salt since
there is a priori no strong reason for the real FT to be close
to the boundary.
Discussion.—The physics of FTs is very rich. At low

energy, we have universality which very powerfully con-
strains all physical observables. Here, we bounded the first
nonuniversal corrections by means of the S-matrix boot-
strap. In short, the existence of a properly UV completed
branon S matrix constrains the possible space of S matrices
and their low energy expansion and, therefore, the space of
Wilson coefficients in effective field theory language.
To our knowledge, this is the first time that the low

energy Wilson coefficients are bounded optimally using
the full consistency conditions of four particle scattering
amplitudes—see, e.g., (15).
Clearly, our bounds also apply to any stringlike defect

with the same symmetry breaking pattern as FTs [33].
Moreover, the very same logic could be applied more
broadly to bound other systemswith spontaneous symmetry
breaking in two dimensions such as those arising from
broken supersymmetry and even in higher dimensions.
It would be fascinating to follow our approach to bound

the leading irrelevant operators showing up in pion physics
or, more ambitiously, in gauge and gravity theories, and to
compare with existing bounds based on the analytic proper-
ties of the forward amplitude [34–36]. We look forward to
pursuing this further.
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