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Abstract. In this paper, a proper orthogonal decomposition based reduced-order model is presented for
parametrized multiphysics computations. Our application physics is Doppler feedback in a simplified model of
the molten salt fast reactor concept. The reduced model is created using the method of snapshots where the
offline training set is obtained by exercising a full-order model created with the OpenFOAM based multiphysics
solver, GeN-Foam. The steady state models solve the multi-group diffusion k-eigenvalue equations with moving
precursors together with the energy equation. A fixed velocity field is assumed throughout the computations,
hence the momentum and continuity equations are not solved. The discrete empirical interpolation method
is used for the efficient coupling of the ROM solvers, while the input parameter space is surveyed using the
improved distributed latin hypercube sampling algorithm.

1 Introduction

Molten salt reactor (MSR) designs were originally devel-
oped in the mid-1950s at Oak Ridge National Laboratory
(ORNL, USA) [1–3]. In MSRs, the nuclear fuel is in liq-
uid form, dissolved in a salt. Salt compositions vary, but
are typically based on fluorides or chlorides and include
one or more of the following compounds: LiF, NaF, BeF2,
ZrF4, KF, NaCl, MgCl2. Diverse variations on that reac-
tor concept were investigated in the 1960s and 1970s,
including graphite-moderated thermal-spectrum reactors
at ORNL [4,5] as well as fast-spectrum burner reac-
tors at Argonne National Laboratory [6,7]. In the early
1970s, MSR research was in competition for U.S. fed-
eral funding with sodium-cooled fast reactor systems and
the MSR research in the USA dwindled down to low-
priority, low-funding efforts over the following decades,
while the thermal-spectrum light water-cooled pressur-
ized and boiling water reactors and the sodium-cooled fast
reactors became the reference baseline worldwide for ther-
mal and fast spectrum systems, respectively. Nonetheless,
electricity-production priorities and safety requirements in
the nuclear sector have evolved over the last 50 years and
MSRs are now one of the six concepts selected for further
investigation in the frame of the Generation-4 Interna-
tional Forum [8]. MSRs have highly promising features in
terms of sustainability and safety features. Indeed liquid-
fueled MSRs can be designed to have strong negative-only
* e-mail: jean.ragusa@tamu.edu

reactivity feedbacks; they operate at atmospheric pres-
sure; they allow for an online removal of gaseous fission
products; and they give the possibility to drain the fuel
salt in passively cooled and critically-safe tanks in case
of emergency. Most fast-spectrum MSRs currently under
development are based on pumped-loop designs, where
the fuel salt is pumped outside of the primary vessel
and transfers heat to a secondary coolant in separate
heat exchangers. Examples of fast-spectrum molten salt
reactor designs include: the MOlten Salt Actinide Recy-
cler and Transforming (MOSART) project [9], the Molten
Salt Fast Reactor (MSFR) concept based on fluoride
salt, developed in the EVOL (Evaluation and Viability
of Liquid Fuel Fast Reactors) [10–12] and then SAMO-
FAR (Safety Assessment of the Molten Salt Fast Reactor)
[13] programs under the auspices of EURATOM, and the
Molten Chloride Fast Reactor (MCFR), currently devel-
oped by Terrapower [14]. Loop-type fast-spectrum molten
salt reactors present new modeling challenges:

– the fuel is in liquid form, yielding a more complex
level of multiphysics coupling than traditional light
water reactors (e.g., velocity fields needed to assess
space/time location of fuel and delayed neutron
precursors);

– turbulent fuel-salt flow, leading to a large impact
of turbulence modeling (thermal flow mixing in the
core, effects of nozzle inlets,... [15]);

– presence of gas bubbles in the salt, leading to
compressibility and reactivity effects;
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– high solidification temperature of the salt, requir-
ing the modeling of solidification/melting zones (wall
solidification, frozen drain functionality, see [15]);

– high operating temperature in the salt, necessitating
the study of thermal radiation heat transfer.

The modeling challenges in fast-spectrum MSRs largely
prohibit the use of simulation packages developed and
tailored specifically for Light Water Reactors (LWRs).
For instance, the Virtual Environment for Reactor Appli-
cations (VERA), developed as part of the Consortium
for Advanced Simulation of Light water reactors (CASL)
is being leveraged for MSR modeling but is only at an
early stage of development for MSR and mostly focused
on thermal-spectrum reactors, where salt flows mostly
uni-directionally in graphite channels [16,17]. Hence, high-
fidelity models, based on first-principle physics, become
the only available tool to gain understanding of the sig-
nificance of foreseeable phenomena unique to molten salt
and circulating fuel systems. Driven by the need for
high-fidelity computational fluid dynamics (CFD), many
research teams developing fast-spectrum MSRs rely on the
open-source OpenFOAM CFD platform, either directly
[18,19] or embedded in reactor physics packages such as
GeN-Foam (Generalized Nuclear Foam) [20,21].
However, the simulation of such complex systems

requires the solution of coupled partial differential equa-
tions, which can be computationally expensive to obtain.
Model-order reduction comprises a set of empirical and
mathematical techniques that can be used for lowering
the computational complexity of the Full-Order Models
(FOM) by creating Reduced-Order Models (ROM) that
sacrifice a modest amount of accuracy for large gains in
compute time. An effective mathematical technique for
model-order reduction is the Reduced Basis (RB) method,
which is based on the assumption that the solution of
a complex model lives in a relatively small subspace.
When parametric studies are to be performed, one should
expand that subspace to account for solution variability.
One manner by which such a subspace is “discovered” is
through multiple full-order solutions, with adequate sam-
pling of the parameter (input) space. This is known as
the method of snapshots. The information contained in
these snapshots is then extracted by means of Proper
Orthogonal Decomposition (POD) [22,23] (e.g., via cor-
relation matrix or singular value decompositions). The
FOM is then Galerkin-projected on the obtained basis
functions to yield the ROM. In this work, a POD-based
ROM is created for parametrized multiphysics computa-
tions on the Doppler feedback effect in the Molten Salt
Fast Reactor (MSFR) [24,25]. In this technique, the FOM
is projected onto an appropriate subspace obtained via
a POD of solutions determined by exercising the FOM
itself. In other words, snapshots are taken at different
states of the FOM and a POD is used to build a suit-
able basis for projection-based reduction. In the nuclear
engineering community, applications of POD-based ROMs
can be noted in reactor kinetics problems [26,27], fixed
source, steady state neutral particle transport applications
[28]. An approach for POD-ROM of eigenvalue problems

connected to reactor physics has already been developed
in [29–33].
However, the utilization of POD-based ROM for multi-

physics applications can be challenging because the oper-
ators in the full-order models often do not have an affine
decomposition, meaning that the ROMs involve costly,
full-order operations, possibly yielding negligible savings
in computation time. A method for the reduced-order
modeling of multiphysics problems in nuclear engineer-
ing has also been derived in [30]. The approach described
in the present work serves as an alternative. Instead of
assuming an overall linear temperature dependence for
the cross sections, here we opt for a hyper-reduction
technique, namely, the Discrete Empirical Interpolation
Method (DEIM) [34]. This allows the handling of an
arbitrary, non-linear temperature dependence of the cross
sections (in our case, in the logarithm of temperature).
Our approach is exemplified using a liquid nuclear fuel
system, more specifically, for a simplified 2D model of
the Molten Salt Fast Reactor. The methodology has been
integrated into GeN-Foam. For different applications of
DEIM in other fields of engineering, we refer the reader
to [35–37].
The rest of the paper is organized as follows. In

Section 2, projection-based model order reduction is
reviewed, first for linear systems, then for nonlinear
systems, such as the ones encountered in multiphysics
applications. In Section 3, a full-order simulation model
is provided for a fast-spectrum molten salt reactor and
its associated reduced-order model is derived. Section 4
describes the chosen MSFR computational model and its
parametric input space. Results comparing the FOM and
ROM models are provided in Section 5. We conclude and
propose future work in Section 6.

2 Model order reduction: background

In this section, we review some of the basics of projection-
based model-order reduction. For brevity of the exposi-
tion, the reduced basis will always be sought through a
POD decomposition and the reduced system will always
be obtained using Galerkin projection. We refer the reader
to [38,39] for other reduced basis approaches and to [40]
for Petrov-Galerkin projection-based ROM.

2.1 Model order reduction for linear systems

First, we consider a linear parameterized steady-state
FOM. After discretization, the FOM can be written as

A(µ)x(µ) = b(µ), (1)

where A(µ) ∈ RN×N is the discretized linear operator
(a possibly large system of dimension N), x(µ) ∈ RN is
the solution vector and the parametric dependence of the
model is denoted by the d-dimensional input parameter
vector µ = [µ1, . . . , µd]

T . In order to discover the lower
dimension manifold in which the parametric solutions can
be adequately represented, the FOM is exercised for a cer-
tain number of realizations of the input parameter vector
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µi, with 1 ≤ i ≤ NS and NS denoting the number of snap-
shots. Letting S = [x(µ1), . . . ,x(µNS

)] ∈ RN×NS denote
the snapshot matrix, we perform a POD on S, which
constructs an orthonormal basis V = [v1, . . . ,vr] ∈ RN×r
where only the r most dominant modes are retained. A
computationally effective manner to do this consists in
generating the correlation matrix Q of the snapshots as

Q = STS. (2)

Then, the eigenvalue decomposition of the correlation
matrix is obtained

Q = WΛWT , (3)

where W = [w1, . . . ,wNs
] is the matrix of eigenvectors

and Λ is a diagonal matrix containing the Λi eigenval-
ues. The orthonormal basis vectors in V can then be
constructed using the snapshots by

vj =
1√
Λi

Ns∑
i=1

x(µi)wj,i. (4)

Once this offline stage has been completed, the reduced
order model is obtained by projection of the full order
system:

Ar(µ)xr(µ) = br(µ), (5)

with the reduced linear operator Ar(µ) = V TA(µ)V ∈
Rr×r, reduced right-hand side br(µ) = V T b(µ) ∈ Rr, and
the reduced state vector xr(µ) ∈ Rn. This linear system
of size r � N , is solved for xr, which are the coefficients of
the full-order solution in the basis V . Hence, the full-order
solution is reconstructed as

x ≈
r∑
i=1

vixr,i = V xr. (6)

For additional information, we refer the reader to [41,42].

2.2 Model order reduction for nonlinear systems

Next, we consider a nonlinear full-order model (FOM)
which, after discretization, can be written as

A(µ)x(µ) + F (x(µ),µ) = b, (7)

where a nonlinear vector-valued function has been added,
F (x(µ),µ) ∈ RN . Henceforth, for the sake of easier read-
ability, the dependence of the operators on µ is only
assumed and not shown explicitly. If one carries out
the procedures described in Section 2.1, the resulting
nonlinear reduced-order model is

Arxr(µ) + V TF (V xr(µ)) = br. (8)

Even though this equation is expressed in terms of the vec-
tor of reduced unknowns, xr, solving it requires evaluating
the full-order nonlinear vector-valued function, of size
N � r. This can be computational very expensive, often
resulting in limited CPU time savings when solving the

reduced order model, compared to the original full-order
model. To remedy this, the Discrete Empirical Interpola-
tion Method (DEIM) [34] is used in order to approximate
F in a low-dimensional space by sampling it at only m�
N components. Hence, during the offline stage, a second
matrix of snapshots is collected for the nonlinear function
values, SF = [F (x(µ1)), . . . ,F (x(µNS

))] ∈ RN×NS . Sim-
ilarly to the method described in equations (2)–(4), the
POD of SF is computed and m of the basis functions for
the nonlinear vector-valued function are retained to subse-
quently interpolate F : [u1, . . . ,um] = U ∈ RN×m. DEIM
also selects m distinct interpolation points p1, . . . , pm ∈
[1, N ] in order to assemble the DEIM interpolation point
matrix P = [ep1 , . . . , epm ] ∈ RN×m, where ei is the ith
canonical unit vector. Finally, the DEIM interpolant
of F is

U(P TU)−1P TF (x(µ)),

and the resulting nonlinear reduced-order model system
is

Arxr(µ) + V TU(P TU)−1P TF (V xr(µ)) = br. (9)

Several remarks are in order:

– V TU(P TU)−1 ∈ Rr×m is a small matrix that can
be pre-computed once for all;

– P TF extracts only a few (actually m, with m �
N) components of F that need to be evaluated.
This is a large savings afforded by the use of the
DEIM. Because discretization of partial differen-
tial equations usually results in local connectivity
between an unknown and its neighbors, evalu-
ating P TF (V x(µ)) is therefore computationally
inexpensive when m� N .

For additional information on DEIM, we refer the reader
to [34,43].

3 Governing laws

In this section, we select mathematical models (partial dif-
ferential equations) that will be used as FOM and derive
their reduced-order counterparts. These models are said
to be parametric in the sense that certain parameters are
uncertain in the governing equations and will be sam-
pled from appropriate probability density functions. In
this work, the following parameter are assumed uncer-
tain: the total reactor power (Pth), the heat exchange
coefficient in the heat sink, i.e., in the heat exchanger
(αext), the ultimate heat sink temperature (Text), and the
volumetric area of the heat sink (AV ). The vector con-
taining all the uncertain parameters will be denoted by
µ = (αext, AV , Text, Pth)T .
The mathematical models are selected to be representa-

tive of a simplified molten salt reactor design. The molten
salt reactor application is discussed in a later section.
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3.1 Full-Order Model (FOM)

In order to represent the physics of a MSFR, we define a
multiphysics model comprising of

– neutronics: six-group k-eigenvalue diffusion theory,
with delayed neutron precursor balance equation
with a drift (advection) term, and

– thermal-hydraulics: here, we only consider an energy
balance equation, with a given (but spatial vary-
ing) flow field computed using nominal values of the
uncertain parameters. For the types of parametric
modifications employed here, the effect of flow per-
turbations should be small. For the reduced-order
modeling for turbulent flows, we refer the reader to
[44,45].

The cross sections in the neutronics models are
temperature-dependent. The multi-group diffusion k-
eigenvalue problem [46] can be described as a coupled
partial differential equation system expressing the balance
of neutrons in each energy bin as

−~∇ · (Dg
~∇Φg) + Σr,gΦg =

(1− β)χp,g
k

G∑
g′=1

νΣf,g′Φg′

+χd,g

I∑
i=z

λzCz +

G∑
g′ 6=g

Σg′→gΦg′ , (10)

where G denotes the number of energy groups, I the
number of delayed neutron precursor groups, Φg is the
neutron scalar flux, Dg is the diffusion coefficient, Σr,g
is the macroscopic removal cross-section and νΣf,g is
the total fission neutron yield times the macroscopic fis-
sion cross-section in energy group g. Furthermore, Σg′→g
is the macroscopic scattering cross-section from group
g′ to g, χp,g and χd,g describe the fraction of prompt
and delayed neutrons released in group g, while β is
the effective delayed neutron yield. Moreover, λz denotes
the decay constant corresponding to the delayed neutron
precursor concentration Cz of group precursor group z.
The problem is supplemented with boundary conditions:
reflective boundary conditions (~∇Φg ·~n = 0, g = 1, . . . , G)
are applied on the symmetry planes and zero-incoming
current boundaries are applied on the other boundaries
(−Dg

~∇Φg · ~n = 1
2Φg, g = 1, . . . , G). These equations are

coupled with the steady-state balance equations for the
delayed neutron precursors, commonly expressed as

~∇· (~uCz)− ~∇· (αeff~∇Cz) =
βz
k

G∑
g=1

νΣf,gΦg−λzCz, (11)

where ~u is a precomputed (stationary) velocity field, βz
is the delayed neutron yield for precursor group z and
αeff is an effective diffusion coefficient that takes into
account the effects of turbulent mixing as well. For sim-
plicity, zero gradient boundary conditions (~∇Cz · ~n = 0
for z = 1, . . . , I) are used for each of the precursor equa-
tions on every wall. We stress that ~u is not uniform, but
taken from a CFD simulation using the nominal values

of the uncertain parameters (the RANS continuity and
momentum equations were solved using k−ε model for
turbulence [21]). Thus, ~u and αeff are known fields dur-
ing the generation of the reduced operators. We leave
model-order reduction of turbulent hydrodynamics for
subsequent work. The multigroup neutron fluxes are nor-
malized using the group-wise power cross section Σp,g to
ensure a certain total reactor power, Pth:

∫
domain

d3r

G∑
g=1

Σp,g(r)Φg(r) = Pth. (12)

The cross sections are assumed to be temperature-
dependent. For fast spectrum reactors, as shown in [47],
a logarithmic interpolation between pre-computed data-
bases (for example at 900 K and 1200 K) of the group
constants yields good results:

Σ(T ) = Σ900 +
Σ1200 − Σ900

log
(

1200
900

) log

(
T

900

)
= Σconst + Σvar log (T ). (13)

where T denotes the temperature field.
Finally, to be able to account for the temperature

feedback, the following energy balance equation is solved:

~∇ · (~uρcpT ) = ~∇ · (kT ~∇T )− αAV (T − Text) +

G∑
g=1

Σp,gΦg,

(14)
where ρ is the density, cp is the heat capacity, kT the
effective thermal conductivity of the fluid, while α is the
heat transfer coefficient and AV is the volumetric area
of the heat sink. All of the parameters in the equation
above are assumed to be constant. Furthermore, the heat
transfer coefficient α is computed as the harmonic mean
of two coefficients, one that characterizes the heat transfer
between the salt and the structure of the heat exchanger
(αsalt) and a second describing the heat flow between the
heat exchanger and the external heat sink (αext). For sim-
plicity, zero gradient boundary conditions (~∇T ·~n = 0) are
used for every surface in the model. The iteration scheme
used for the solution of the coupled problem is discussed in
details in [21]. αext, AV and Text are assumed uncertain;
hence this model is parametric in those input parameters.

3.2 Reduced-Order Model (ROM)

The ROMs are constructed by physics-wise (equation-
wise) projection of the FOM equations onto suitable
reduced bases obtained applying POD to the solution
snapshots. During the offline phase, the solution fields
are collected into corresponding snapshot matrices and a
Proper Orthogonal Decomposition is carried out for each
snapshot matrix separately. This segregated approach has
been proven to be effective for k-eigenvalue multigroup
problems [33]. The approximate solutions in the reduced
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spaces can be written as

Φg ≈
rg∑
i=1

ψg,ifg,i = Ψr,gfg, Cz ≈
rz∑
i=1

Cz,icz,i = Cr,dcd,

(15)

T ≈
rT∑
i=1

τiti = Trt, log (T ) ≈
rl∑
i=1

Lili = Lrl

(16)
where ψg,i is the ith basis vector of the subspace selected
for the neutron flux in group g, Cz,i is the ith basis
vector for the precursor group z, τi denotes the basis vec-
tor of temperature and Li is the ith basis vector of the
logarithmic temperature. Moreover, fg, cd, t and l vec-
tors contain the coordinates of the approximated flux in
group g, approximated precursor concentration in group d,
approximated temperature and logarithmic temperature
within their corresponding reduced spaces. Using these,
the ROMs for the multi-group diffusion equations can be
described as

Rgfg + Sr,gfg =
1

kr

G∑
g′=1

Sf,g′fg′ +

I∑
z=1

Lzcz

+

G∑
g′ 6=g

Ss,g′fg′ , (17)

where kr is the largest eigenvalue of the reduced sys-
tem and the reduced operators are computed using the
approximation mentioned in equation (15) together with
a Galerkin projection onto the corresponding subspace.
Thus, the elements of the reduced diffusion operator can
be expressed as

(Rg)i,j = 〈ψg,i,−~∇ · (Dg
~∇ψg,j)〉, (18)

where 〈 · 〉 denotes the volumetric integral of the given
scalar fields that can be carried out numerically. Even
though it is not shown explicitly, this reduced operator
takes into account the boundary conditions imposed on
the scalar flux by incorporating a 〈ψg,i, 1

2ψg,j〉Γ term (in
case of vacuum boundary) for every boundary face Γ of
the computational domain. Again, it must be mentioned,
that Dg depends on the approximate logarithmic temper-
ature (see Eq. (16)). By translating this linear dependence
into the ROM, the expressions of the reduced operators
become slightly more convoluted and can be written as

(Rg)i,j = 〈ψg,i,−~∇ · (Dconst
g ∇ψg,j)〉

+

rl∑
k=1

〈ψg,i,−~∇ · (Dvar
g Lk∇ψg,j)〉lk, (19)

where the values of Dconst
g and Dvar

g can be determined
using equation (13) and the coefficients of the logarith-
mic temperature (li) are computed using the coefficients
of the temperature (ti) through the Discrete Empirical
Interpolation Method, described in Section 2.2 in detail,

as follows:

l = (P TLr)
−1 log(P TT rt).

It should be noted that, in this case, it is enough the carry
out the DEIM in terms of the logarithm of the temper-
ature due to the fact that the nonlinearity in the model
is caused by the temperature-dependence of the cross sec-
tions, and the non-linear function involves the logarithm
of the temperature. As noted in the previous Section, we
recall that the reduced operator can be precomputed in a
tensor form and every time the operator has to be recon-
structed due to the changing temperature field, it only
requires the summation of reduced matrices making the
coupling of the reduced models extremely efficient. The
same treatment is applied to the other reduced operators
containing cross-sections, even though in the following def-
initions it is not shown explicitly. The additional reduced
operators in equation (17) are computed as

(Sr,g)i,j = 〈ψg,i,Σr,gψg,j〉,
(Sf,g′)i,j = 〈ψg,i, (1− β)χp,gνΣf,g′ψg′,j〉, (20)

(Lz)i,j = 〈ψg,i, χd,gλzCz,j〉,
(Ss,g′)i,j = 〈ψg,i,Σg′→gψg′,j〉. (21)

One can notice that these reduced matrices may be rect-
angular depending on the number of POD modes used for
the different reduced bases. Similarly, the reduced form of
the precursor equations can be expressed as

F zcz −Mzcz =
1

kr

G∑
g=1

Ez,gfg −L
∗
zcz, (22)

where the entries of the reduced operators are computed
as

(F z)i,j = 〈Cz,i, ~∇ · (~uCz,j)〉,
(Mz)i,j = 〈Cz,i, ~∇ · (αeff~∇Cz,i)〉, (23)

(Ez,g)i,j = 〈Cz,i, βzνΣf,gψg,j〉,
(L∗

z)i,j = 〈Cz,i, λzCz,j〉. (24)

As a last step, the reduction of the energy equation is
carried out as

Ht = Kt−At− a+

G∑
g=1

Sp,gfg, (25)

where the entries of the reduced matrices and sink vector
are given by

(H)i,j = 〈τi, ~∇ · (~uρcpτj)〉 (K)i,j = 〈τi, ~∇ · (kT∇τj)〉
(26)

(A)i,j = 〈τi,−αAV τj〉 (a)i = 〈τi, αAV Text〉 (27)

(Sp,g)i,j = 〈τi,Σp,gψg,j〉. (28)

Finally, we note that the elements of input parameter
vector µ = (αext, AV , Text, Pth)T are simply factors in the
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Fig. 1. The geometry and flow field used for the snapshot gener-
ation with the FOM. Dimensions are shown in mm. (P – Pump,
HX – Heat Exchanger).

reduced order equations as well, thus the reconstruction
of the reduced matrices is not necessary for repeating sim-
ulations with the ROM. For the solution of the coupled
problem, the standard GeN-Foam iteration scheme is used
which is discussed in paper [48] in detail. The same itera-
tive scheme is used to solve both the FOM and the ROM
models. To compare the solutions of the ROM with those
of the FOM we use the following two error indicators:

∆k = |k − kr|, (29)

that describes the absolute difference between the largest
eigenvalue of FOM and the ROM, and

eζ =
||ζFOM − ζROM||L2

||ζFOM||L2

(30)

that gives the relative L2 error in the field variables, where
ζ can be Φg (g = 1, . . . , G), Cz (z = 1, . . . , I) or T .

4 MSFR computational model

A 2D axisymmetric model of the MSFR has been created
using the available information in [18,48,49]. The dimen-
sions of the geometry are provided in Figure 1 together
with the pre-computed velocity field. The velocity field
has been obtained by a standalone steady state solve of
the incompressible porous Navier-Stokes equations with
k-ε turbulence model [21]. The heat exchanger (HX) is
modeled as a porous medium responsible for flow resis-
tance and heat sink, while the pump (P) is modeled as a
simple volumetric momentum source. For more informa-
tion about the semi-empirical expressions used to compute
the parameters of the flow resistance and heat sink, the
reader may refer to [21].
The mesh used for the computations has been created

using SALOME [50] and contains 11,064 cells. For the
neutronics computations, six energy and eight precur-
sor groups are used, meaning that the full-order model
has 165,960 degrees of freedom. The corresponding group
constants are generated using Serpent 2 Monte Carlo
Transport code [51] for two salt temperatures, 900 K and
1200 K. The bounds of the used energy group structure
are presented in Table 1.

Table 1. The energy group structure used for the
computations [52].

Energy group Lower bound (MeV) Upper bound (MeV)
1 2.231E−00
2 4.979E−01 2.231E−00
3 2.479E−02 4.979E−01
4 5.531E−03 2.479E−02
5 2.485E−04 5.531E−03
6 2.485E−04

Table 2. The dimensions of the sub-spaces used for the
approximation of the fields and the projection of the
equations.

Field dim. Field dim. Field dim. Field dim.
Φ1 2 Φ5 2 C3 1 C7 2
Φ2 2 Φ6 2 C4 1 C8 2
Φ3 2 C1 1 C5 1 T 3
Φ4 2 C2 1 C6 1 log(T ) 2

Altogether 20 parameter vectors are sampled for
snapshot generation using the Improved Distributed
Latin Hypercube Sampling (IHS) method [53]. The
uncertain parameters in these vectors are varied in
a ±20% interval around their mean values µ̄ =
(105Wm−2K, 100m2m−3, 900 K, 1440 MWth). Using
these snapshots, altogether 16 reduced spaces are created
using POD. One for the neutron flux in each energy group,
one for the precursor concentration in each group, one for
the temperature and one for the logarithmic temperature.
The decay in the eigenvalue of the correlation matrices
(defined in Eq. (2)) are presented in Figure 2; the eigen-
values are normalized to their largest one. It is visible that
for all field variables, the eigenvalues decay rapidly, sug-
gesting that only a few modes are enough to approximate
the full-order solution. It can also be observed that, as
the half-life of the precursor group decreases (from group
1 to 8), the decay in the eigenvalues of the corresponding
correlation matrices is slower.
The dimensions of the reduced spaces for the differ-

ent solution fields are summarized in Table 2. These
numbers are acquired using a strategy based on the
energy-retention limit defined as

ri∑
i

λi

Ns∑
i

λi

< 1− εlim,

where λi are the eigenvalues of the correlation matrix built
using the snapshots of a selected field, r is the number
of POD modes retained for this field and (1 − εlim) is
the energy-retention limit. This characterizes the error
in the reconstruction of the snapshots originating from
discarding the rest of the POD modes (r + 1, . . . , Ns).
When εlim = 0, all of the POD modes are used, hence
the snapshots can be reconstructed exactly. In this work,
εlim = 10−7 was used.
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Fig. 2. The decay in the eigenvalues of correlation matrices for the neutron flux (left), precursor concentration (middle) and
temperature (right).

Fig. 3. The reduced order solution for the scalar flux in energy
group one together with its absolute deviation from the full order
solution.

The relatively low dimensions can be explained by
the fact that all the uncertain parameters appear in the
thermal balance equation and changing them does not
influence the distributions of flux and temperature fields
considerably. This also means that the 165,960 degrees of
freedom in the FOM can be reduced to 27 unknowns in
the ROM.

5 Results

After building the reduced-order model, a new real-
ization of the input parameter vector, µ∗ = (9.3 ×
104Wm−2K, 111.1m2m−3, 833.3 K, 1320 MWth) is
selected and simulations are performed with both the
ROM and the FOM in order to test the accuracy and
efficacy of the ROM. We stress that µ∗ was not included
in the training set. Figure 3 shows the reconstructed scalar
flux in energy group one from the ROM together with its
absolute deviation from the full order solution. It is vis-
ible that the maximum error is more than three orders
of magnitude lower than the maximum value of the full
order solution.
Figure 4 compares the precursor concentration in pre-

cursor group eight. Again, it is visible that the maximum
absolute deviation is approximately three orders of mag-
nitude lower than the maximum of the original solution.
Figure 5 shows the reconstructed temperature profile of
the ROM with its relative deviation from the FOM. Again,
the maximum relative error is slightly above 1%. Further-
more, the deviation between the effective multiplication

Fig. 4. The reduced order solution for the precursor concentra-
tion in group eight together with its absolute deviation from the
full order solution.

Fig. 5. The reduced order solution for the temperature together
with its absolute deviation from the full order solution.

factors coming from the ROM and FOM was 8.5 pcm,
which is also satisfactory. It is worth noting that loosen-
ing the energy-retention limit to 10−6 resulted a 77.6 pcm
difference in the eigenvalues, while tightening it to 10−8

gave 22.3 pcm due to the inclusion of a third POD mode
for the logarithmic temperature that decreased the accu-
racy in the temperature coefficients. By further increasing
the energy-retention limit, we observed no further change
from the 22 pcm difference level.
Furthermore, the relative L2 errors in the field variables,

defined at equation (30), are summarized in Table 3. It
can be observed that none of the fields have a relative L2

error above 1%. The speed-up factor for the solution of
the problem was 1550 for this specific example.
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Table 3. The dimensions of the sub-spaces used in the
projections.

ζ eζ(%) ζ eζ(%) ζ eζ(%) ζ eζ(%)
Φ1 0.034 Φ5 0.032 C3 0.006 C7 0.023
Φ2 0.033 Φ6 0.085 C4 0.003 C8 0.028
Φ3 0.032 C1 0.007 C5 0.006 T 0.596
Φ4 0.031 C2 0.007 C6 0.013

6 Conclusions

An efficient way of coupling parametrized neutronics
and energy equations has been developed for POD-based
ROMs. It utilizes the group-wise projection of the multi-
group diffusion equations, including the precursor balance
equations, and the enthalpy equation in moving fuel sys-
tems. In the current state of the development, the velocity
equations are not solved; a constant velocity field is
assumed. The non-linear temperature dependence of the
group constants is handled using DEIM. To demonstrate
the viability of the method, it has been implemented in
OpenFOAM based multiphysics solver, GeN-Foam. More-
over, a ROM has been created for the MSFR and the
corresponding reduced spaces have been generated by
exercising a simplified 2D axisymmetric FOM. The lim-
ited number of parameters and the underlying physics
resulted in reduced spaces with dimensions between 1-3.
A test has been performed with four uncertain parameters
in the energy equation and the results of the ROM have
been compared to those of the FOM. A good agreement
is observed both in terms of the solution vectors and the
effective multiplication factors. The experienced speed up
factor was above 1,500.

This material is based upon work supported under an NEUP-
IRP Award of the U.S. Department of Energy, Office of Nuclear
Energy (contract reference DE-NE0008651).
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