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Abstract— Wearable devices are an unobtrusive, cost-
effective means of continuous ambulatory monitoring of chronic
cardiovascular diseases. However, on these resource-constrained
systems, electrocardiogram (ECG) processing algorithms must
consume minimal power and memory, yet robustly provide
accurate physiological information. This work presents RE-
WARD, the Relative-Energy-based WeArable R-Peak Detection
algorithm, which is a novel ECG R-peak detection mechanism
based on a nonlinear filtering method called Relative-Energy
(Rel-En). REWARD is designed and optimized for real-time
execution on wearable systems. Then, this novel algorithm
is compared against three state-of-the-art real-time R-peak
detection algorithms in terms of accuracy, memory footprint,
and energy consumption. The Physionet QT and NST Databases
were employed to evaluate the algorithms’ accuracy and ro-
bustness to noise, respectively. Then, a 32-bit ARM Cortex-
Ma3-based microcontroller was used to measure the energy
usage, computational burden, and memory footprint of the
four algorithms. REWARD consumed at least 63% less energy
and 32% less RAM than the other algorithms while obtaining
comparable accuracy results. Therefore, REWARD would be a
suitable choice of R-peak detection mechanism for wearable
devices that perform more complex ECG analysis, whose
algorithms require additional energy and memory resources.

Index Terms— Wearable devices, Resource-constrained em-
bedded systems, ECG, real-time R-peak detection, Ultra-low
power devices.

I. INTRODUCTION

Cardiovascular diseases (CVD) are the primary cause of
death in the United States and account for 17% of national
health expenditures. These ubiquitous, costly diseases cur-
rently affect 36.9% of the US population. By 2030, this per-
centage is projected to rise to 40.5% and cost the US health
care system over $818 billion [1]. Wearable technologies are
emerging solutions that unobtrusively acquire patients’ phys-
iological data, which enables remote CVD monitoring and
diagnosis, reduces hospitalization costs, expands patients’
mobility, and improves their quality of life [2].

However, the need for wearable, ultra-low-power, and low-
cost wireless sensors imposes several design constraints. The
sensor nodes must process data in real-time with minimal
delays to provide timely assistance in medical emergencies
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[3]. Additionally, to perform long-term monitoring, they must
maximize battery lifetime and therefore use an ultra-low-
power microcontroller (MCU). A wearable wireless sensor
node typically contains few kilobytes of memory, has a
MCU running at a maximum clock speed between 8 and
32 MHz, and usually does not include hardware support
for division and floating-point operations. For example, the
SmartCardia INYU wearable ECG monitor [4] uses the 32-
bit ARM Cortex-M3 MCU that operates at a maximum
frequency of 32 MHz and has 48 of kB RAM and 384
kB of Flash. Consequently, the algorithms employed on
these sensor nodes must consume minimal RAM, Flash, and
energy, as well as limit power-hungry data transmission [5].

To perform CVD monitoring and diagnosis, wearable
devices can measure the electrocardiogram (ECG) signal. Its
main wave, which includes the R-peak, describes the electri-
cal activity of the heart during a ventricular contraction. The
frequency of its occurrence, i.e. heart rate (HR), provides
valuable medical information [6]. R-peak detection is essen-
tial to more complex algorithms that screen for serious med-
ical conditions, such as myocardial infarction [7] and atrial
fibrillation [8]. Current real-time R-peak detection algorithms
employ techniques such as signal derivative analysis [9],
adaptive thresholds and parameters [10], and variations of the
Wavelet Transform [11]-[13]. These algorithms have been
widely compared in terms of R-peak detection accuracy [14].
However, few of these works have performed a complete
study on the energy and memory footprint trade-offs of the
algorithms when implemented on resource-constrained real-
time systems [5], [9], [13]. Furthermore, each work tests
its proposed algorithm on a different hardware processor or
simulator platform, which makes comparative assessment of
the algorithms difficult.

Few works in the literature have compared the feasibility
of implementing different real-time R-peak detection tech-
niques on embedded systems. Braojos et al. assess the accu-
racy of a morphological derivative-based versus a wavelet-
based ECG delineation algorithm and measure their memory
footprints [5]. Elgendi et al. compare a variety of algorithms
in terms of robustness to noise and qualitatively assess their
numerical efficiency [14]. Nevertheless, to the best of our
knowledge, no existing work compares a wide variety of
real-time R-peak detection algorithms in terms of accuracy,
robustness, memory footprint, and energy consumption using
the same hardware platform.

In this work, we design and optimize REWARD, the



Relative-Energy-based WeArable R-Peak Detection algo-
rithm, which is a novel real-time R-peak detection mech-
anism based on a nonlinear filtering method called Relative-
Energy [15]. We implement this method in real-time and
design a peak detection procedure to complement it. Then,
we optimize the REWARD algorithm specifically for use
on resource-constrained systems, maximizing its accuracy
while minimizing its energy and memory footprints. We
compare this new algorithm against three state-off-the-art
real-time R-peak detection algorithms and show that it per-
forms comparably in terms of accuracy while consuming less
energy and memory. In addition, we address the need for
a comprehensive comparison of well-established approaches
for real-time R-peak detection in wearable systems. The
accuracy and robustness of these four algorithms are tested
using standard databases, and their energy consumption,
computational burden, and memory footprint are measured
on the same hardware platform.

II. RELATED WORK ON REAL-TIME R-PEAK
DETECTION ALGORITHMS

Many R-peak detection algorithms have been developed,
but relatively few are designed for real-time implementation
on ultra-low power embedded systems. Three algorithms
that meet these design constraints are the Pan-Tompkins
(PT) algorithm [10], a wavelet transform delineation (WTD)
[13], and a derivative-analysis-based delineation (DAD) [9].
These algorithms are well-known for their high accuracy
and previous implementation on real-time wearable systems.
They also represent diverse R-peak detection methodologies.

An ECG R-peak detection algorithm generally consists of
a two-step procedure, as depicted in Fig. 1. First, a pre-
processing step may include a filtering method to suppress
noise in the ECG excerpt, as well as specific methods to
highlight the principal components of the ECG waveform.
Then, a peak detection procedure locates the R-peaks.

This section provides an overview of the aforementioned
three state-of-the-art R-peak detection algorithms, detailing
the real-time implementation of each of them. All filters
and algorithms are implemented in the C programming lan-
guage using primarily 16-bit integer arithmetic, a sampling
frequency of 250 Hz, and minimal buffer sizes to ensure a
fair energy and memory consumption comparison.

A. Real-time Preprocessing Methods

Every algorithm contains its own preprocessing method
for filtering and highlighting the principal components of
the ECG waveform. These methods are often used to remove
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Fig. 1. Block diagram of a general real-time R-peak detection algorithm

baseline wander, high frequency noise, and muscle artifacts.
Two frequently-used real-time filtering approaches, a mor-
phological filter (MF) [16] and a band-pass filter (BPF) [9],
are analyzed to determine the benefits they provide to the ac-
curacy of each algorithm versus the drawbacks of additional
energy and memory consumption. The MF performs two
operations, opening and closing, which respectively remove
the peaks and valleys of the signal. These operations produce
the baseline, which is then subtracted from the original signal
to remove any baseline drift. An opening window of 0.2s is
used, along with a closing window of 0.3 s. The filter is coded
in C in real-time and introduces a delay of 0.49s. The FIR
filter design of the BPF, with a passband of 0.3-40 Hz and
order 32, is done offline, which suppresses both the baseline
and high frequency noise. It is coded in C using mainly
16-bit integer operations and implemented using symmetry
criteria for the filter coefficients, as described in [9] .

B. Real-Time R-Peak Detection Algorithms

1) The Pan-Tompkins Algorithm (PT): Pan and Tompkins
proposed a real-time ECG R-peak detection algorithm in
1985 [10], which has since been widely used in the literature.
The 4-step preprocessing method of the algorithm consists of
a 5-12 Hz bandpass filter, a derivative of the filtered signal,
squaring the derivative to amplify the QRS complex, and
a moving-window integrator. Then, the peaks of the ECG
signal are identified by applying adaptive thresholds on the
filtered and integrated signals. These thresholds use the past
eight peak amplitudes and R-R intervals to identify peaks
and ensure that they have an R-R interval above 0.2s.

The initial delay and buffer size of this algorithm include
5s of signal, namely, 2s to initialize the peak detection
thresholds, plus 3s to compute the initial R-R interval and
search back for missed peaks. The algorithm is implemented
in real-time in C using primarily 16-bit integer arithmetic.

2) Wavelet Transform Delineation (WTD): A widely-
implemented algorithm that performs full ECG delineation
is the Wavelet Transform (WT). The WT of a signal is
proportional to the derivative of the signal with a smoothing
impulse response at different scales. Therefore, the zero-
crossings of the WT function correspond to the local maxima
or minima of a signal at a given scale, and the peaks
correspond to its maximum slopes. Five dyadic scales are
chosen (i.e. 2! to 2°), since most of the ECG signal energy
lies within these scales [11]. Once the WT is applied to
the signal, the R-peaks are identified as the zero-crossings
that are common across scales 2! through 24, and which are
preceded by a positive peak and followed by a negative peak.

The WTD algorithm analyzed in this work is the opti-
mized, single-lead, offline ECG delineation algorithm pre-
sented in [11], implemented by [12], and extended in [13].
This delineator detects all characteristic points of an ECG
waveform using a quadratic spline wavelet transform. The
algorithm is implemented in real-time with a buffer size
of 1.024s. It is coded in C using primarily 16-bit integer
operations.



3) Derivative Analysis Delineation (DAD): Recently,
Bote et al. proposed a derivative-based, low-complexity algo-
rithm for ECG delineation [9], which has a modular design. It
can perform either full ECG delineation, or operate in a low-
power mode that only detects R-peaks, the latter of which is
analyzed in this work. First, the signal is preprocessed with a
14 Hz lowpass filter. Next, the first and second derivatives in
a 2s window are analyzed to identify the R-peaks as points
at which 1) there is a zero crossing of the first derivative, 2)
the RR-interval is higher than 0.25 s, and 3) the magnitude of
the second derivative exceeds 0.33x the average of the past
five minimum/maximum window values. This algorithm is
implemented in real-time with a buffer length of 2s. It is
coded using primarily 16-bit integer arithmetic.

III. REWARD DESIGN AND REAL-TIME OPTIMIZATION

The REWARD algorithm includes two main components.
Firstly, the ECG signal is preprocessed to highlight its peaks
and suppress its baseline using the Relative Energy (Rel-En)
nonlinear filtering method proposed in [15]. Secondly, the
R-peaks are detected from the filtered signal. In this work,
we have developed the first real-time implementation of the
Rel-En preprocessing method and optimized it for use on
ultra-low power wearable systems. Then, it is paired with the
R-peak detection procedure that we designed, all of which
is described next.

A. Rel-En Preprocessing Implementation and Optimization

The Rel-En preprocessing method considers the energies
of a long sliding window [, (0.95s) and a short sliding win-
dow syin (0.14s), both centered at sample n. Iy, describes
the long-term behavior of the ECG signal x, while syi, can
capture an R-peak occurrence, resulting in a larger short-term
energy than when no peak occurs. The ratio between the
energies of these windows, the coefficient c(n), is multiplied
by x(n) resulting in a signal xgg, in which the peaks are
amplified, as depicted in (1) and (2). The parameter w in (1)
represents a Hamming window function, and p = 2.
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In this work, the Rel-En preprocessing method is ported
from MATLAB to C and optimized for single-lead, real-time
ECG R-peak detection on resource-constrained wearable
systems. First, the computation is changed from floating
point arithmetic (32-bit) to short integer (16-bit) to consume
less energy and memory on the MCU. Subsequently, the Rel-
En method is implemented using circular buffers to minimize
RAM usage and processing delays. It considers a centered
sliding window of 0.95 s of the ECG signal for preprocessing
to obtain the xgg signal.

Finally, the Rel-En preprocessing method is simplified
to reduce its energy consumption. In [15], the Hamming
window function is used to smooth the long-term energy of
each coefficient c¢(n), which represents a significant number

of operations performed per coefficient output. Specifically,
suppressing this step reduces the computational load by a
factor of N=fs*l,,;, where fs is the sampling frequency, so
for each coefficient there must be N calculated Hamming
window coefficients and N multiplications. In order to
reduce the algorithm’s complexity and consequent energy
consumption, we removed the Hamming window function
from the long-term window calculation, ie. w(j) = 1,
without any significant cost to the algorithm’s performance,
which is shown in Section V-A.

B. REWARD Peak Detection

To complete the REWARD algorithm, we paired the Rel-
En method with a real-time peak detection procedure that is
both adaptable and computationally simple. Our algorithm
is based on the hysteresis comparator [17], and several
optimizations are applied to improve its detection accuracy.
The R-peaks are detected using a window of 1.75s. Conse-
quently, the initial delay of this algorithm is (0.95/2+1.75)s.
For each R-peak detection window, the algorithm first checks
if the dominant peak is positive or negative. Then the
hysteresis comparator is applied to identify possible peaks.
Next, the algorithm selects the peaks that meet a set of
criteria, such as representing a HR between 30-240 BPM
and a peak width in the same range as that of the previously-
selected R-peak.

The first step of the algorithm is a real-time variation of
the negative peak identification procedure described in [18].
Within the 1.75s peak detection window, if the minimum
amplitude relative to the mean value of xrg is greater than
70% of the maximum amplitude relative to the mean, it is
presumed that the R-peak is negative.

Next, the hysteresis comparator method is implemented
to identify the locations of the peaks based on two adaptive
thresholds, as illustrated in Fig. 2. Segments in which the sig-
nal goes above the upper threshold, Thyyper, and subsequently
below the lower threshold, Thjywe, are considered active
peak regions. The maximum of the signal between these
two points is considered a peak candidate. The purpose of
having two thresholds is to eliminate false R-peak candidates
due to high-frequency oscillations or false peaks at the
threshold boundary. This procedure is less complex than
initially searching for all local maxima in a window and then
applying a threshold to select the peaks, since false peaks
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Fig. 2. The hysteresis comparator detects the peaks of sel102 of the QTDB.



often exist at the threshold boundary due to signal noise.

In order for the thresholds to adapt to changes in the
signal’s amplitude from one window to the next, they are
defined as shown in Lines 2-4 of Algorithm 1. Avg and Mazx
denote the mean and maximum values in one window of Xgg.
To determine the optimal thresholds, the unfiltered REWARD
algorithm was tested on the QTDB with every combination
of threshold constants 7;, and 7;. Thresholds that are too
high result in missed peaks and a low sensitivity, whereas
thresholds that are too low result in a low positive prediction
value. Thus, after a careful experimental validation, we
conclude that the pair of threshold constants producing the
highest G-mean (98.61%) is T;, = 0.4 and 7; = 0.15.

False peaks often occur due to enlarged T-waves that
exceed Thypper. To solve this issue, we employed the
physiological characteristics of the R-R interval and the T-
wave: The R-R interval lies between 0.25-2 s, while the T-
wave is typically wider than the QRS complex and occurs
within 0.5 s after the R-peak. Accordingly, we implemented
the peak selection procedure described in Lines 5-18 of
Algorithm 1. First, we compute the peak widths in Line 5 and
check the corresponding R-R interval. The peak width is the
time interval between the peak onset and offset, determined
by Thypper and Thigwer. If the R-R interval is longer than
0.5 s, the current peak is kept, and if it is less than 0.25 s, the
peak is discarded. Finally, if the R-R interval is between 0.25-
0.5 s, the widths of both peaks are compared to determine if
both peaks are valid or one is an enlarged T-wave. If one peak
is more than 35% wider than the other, the peak is discarded.
This percentage value was chosen empirically (cf. Section
IV-A for details about the used databases), considering the
physiology of the ECG waveform.

Our real-time peak detection procedure is more adaptable
and computationally simple than the peak detection proposed

Algorithm 1 R-peak selection within a long window
1: function PEAKSEL(XRE, Riast, Tu, 1)

2: (Avg, Mazx, Min) = statSigInWindow(Xrg);
3: Thypper = Avg + T, X |[Avg — Max/Min|;

4: Thiower = Avg + 1) x |Avg — Max/Min|;

5: pksloewid — findPks(xrg, T hupper, T Riower);
6:  for n =2 : length(pks'°®) do

7: if 0.25s < pksﬁfc — R4t then

8: discardPeaks(pks);

9: else if pks'® — Rj,s > 0.55 then

10: keepPeaks(pks'o®);

11: else

12: if 0.65 < pks¥'/pks?¥id > 1.35 then
13: discardPeakWithLargerWidth();
14: else

15: keepPeaks(pkslo®);

16: end if

17: end if

18: end for

19: end function

in [15]. In particular, in the original offline method, the
entire signal was first normalized based on its minimum and
maximum values, the mean of the signal was subtracted,
and then a fixed threshold was applied. This normalization
and mean subtraction introduces significant computational
complexity, since each function performs at least one math-
ematical operation on every sample in the signal. In contrast,
we implemented the hysteresis-based procedure described in
Algorithm 1 whose peak detection thresholds, Thypper and
Thjower, are adapted based on the average and maximum
values of each peak detection window.

IV. EXPERIMENTAL SETUP
A. Standard Databases and Metrics for Accuracy Evaluation

In order to quantify the detection accuracy of the algo-
rithms, we use two public databases provided by Physionet
[19]. The first is the QT Database (QTDB) [20], which con-
sists of 105 two-channel ECG Holter recordings with a wide
variety of ECG morphologies, including various arrhythmias
and sudden death cases. Each 15-minute recording contains
two leads, sampled at 250 Hz. At least 30 beats of each
recording have been manually annotated by an expert to
identify the locations of several ECG fiducial points. Out
of the 3622 annotated beats in the database, a total of 3587
annotations include the R-peak.

Next, to test the algorithm’ robustness to noise, the Noise
Stress Test Database (NSTDB) [21] is used. The NSTDB
consists of two clean 30-minute-long signals of the MIT-
BIH Arrhythmia Database (MITDB), to which five varying
amounts of noise were added such that the Signal-to-Noise
Ratio (SNR) decreased by 6 dB for each noise addition. The
signals were originally sampled at a frequency of 360 Hz and
re-sampled to 250 Hz to maintain consistency when testing
the algorithms. The original R-peak annotations from the
MITDB are used as ground-truth.

To assess the performance of the analyzed algorithms, the
true positives (TP), false positives (FP), and false negatives
(FN) of the detected peaks were computed using 150 ms of
tolerance from the annotated peak [22]. Accordingly, we use
the performance metrics of sensitivity (SE), positive predic-
tion value (PPV), geometric mean (G-mean), and detection
error rate (DER). Finally, the mean error (/) and its standard
deviation (o) are measured.

B. Hardware Platform for Real-time Implementation

To measure the energy consumption of the state-of-the-art
and proposed algorithms and filters on resource-constrained
wearable devices, they were implemented on the Silicon
Labs EFM32 Leopard Gecko 32-bit MCU [23]. This board
contains a 48 MHz ARM Cortex-M3 CPU, 32 kB of RAM,
and 256 kB of flash memory. These hardware specifications
are similar to those found on wearable ECG sensor nodes;
the aforementioned INYU device uses the same processor.
Every algorithm is run using the -O3 compiler optimization
level, which is the best optimization tolerated by the EFM32.
The board, along with its development environment Sim-
plicity Studio, includes an energy profiler that measures the



TABLE I

R-PEAK DETECTION RESULTS ON THE QT DATABASE ON 3587 EVALUATED BEATS

Methods REWARD PT [10] WTD [13] DAD [9]
Filters NF MF BPF NF MF BPF NF MF BPF NF MF BPF
TP 3550 3563 3546 2694 3281 2602 3574 3581 3576 3445 3421 3443
FP 63 26 53 129 32 209 0 0 0 4 3 2
FN 37 24 41 833 306 985 13 6 11 142 166 144
SE (%) 98.97 99.33 98.86 76.38 91.47 72.54 99.64 99.83 99.69 96.04 95.37 95.99
PPV (%) 98.26 99.28 98.53 95.43 99.03 92.56 100.0 100.0 100.0 99.88 99.91 99.94
G-mean (%) | 98.61 99.30 98.69 85.38 95.18 81.94 99.82 99.92 99.85 97.94 97.62 97.94
DER (%) 2.74 1.38 2.58 26.31 9.34 31.45 0.36 0.17 0.31 4.07 4.71 4.07
m=o(ms) 9.5+4 | 9.3+3.5 | 9.7+£4.3 | 100£9.6 | 13+4.4 | 100£10 | 114£3.8 | 75433 | 11+3.7 | 11£3.3 | 7.54£3.2 | 7.6+3.2

execution time and total energy consumed by the algorithms
within a specified execution window. The board is placed into
a sleep mode before and after each algorithm execution to
ensure that the energy consumption and execution time only
reflect those of the algorithm. The Simplicity Studio devel-
opment environment also measures the amount of memory,
both RAM and Flash, consumed by each algorithm. Flash
memory permanently stores the variables and instructions of
a program, whereas RAM performs run-time operations on
the variables it retrieves from Flash.

The algorithms were tested independently on the EFM32
board, considering 12 seconds (3000 samples) of 4 different
recordings of the QT Database, which were chosen to contain
varying degrees of R-peak detection accuracy.

V. EXPERIMENTAL RESULTS

A. Accuracy and Energy Impact of REWARD Real-Time
Design and Optimization

As REWARD was designed for use on real-time, ultra-low
power systems, several optimizations were performed to min-
imize its energy and memory footprints while increasing its
R-peak detection accuracy. This involved multiple changes to
the original Rel-En preprocessing method proposed in [15],
as well as our design of a paired peak detection algorithm.

First, the original Rel-En preprocessing method was ported
from MATLAB to C, changed from 32-bit floating point
to 16-bit integer arithmetic, and run on the EFM32 using
the -O3 optimization level. We then optimized the Rel-En
method by removing the Hamming window function w(j) in
Equation (1), as described in Section III-A. Multiplying each
value of the long window by its corresponding Hamming
window coefficient significantly increased the number of
operations performed per coefficient output. Consequently,
the Hamming window function consumed 96% of the total
energy of REWARD. This optimization only decreased the
unfiltered REWARD G-mean by 0.13%, but dramatically
reduced the energy consumption by more than three orders
of magnitude (1316x).

The original algorithm described in [15] was tested on the
QTDB with an offline 4-40 Hz BPF and produced a G-mean
of 99.97%. The final G-mean of our optimized, real-time
REWARD algorithm with a real-time 0.3-40 Hz BPF was
only 1.28% lower than that of the original algorithm.

B. R-peak Detection Accuracy

The accuracy results of the four algorithms are displayed
in Table I, which lists the performance with no additional
filters "NF”, and with a MF or BPF applied. Moreover, the
algorithms’ performance in terms of G-mean is summarized
in Fig. 3. First, the benefit of the two filters was assessed.
Due to their design, using a BPF alongside the REWARD,
WTD, DAD, and PT algorithms did not significantly improve
their accuracy; their G-means increased by 0.08% or less.
This is because the REWARD preprocessing amplifies the
peaks and the hysteresis comparator counteracts the effects
of high frequency noise. Similarly, PT and DAD use aggres-
sive lowpass filters, while their use of derivatives mitigates
baseline drift. MF, on the other hand, resulted in higher G-
mean increases in the algorithms. The use of MF increased
PT’s G-mean by 11.5%, that of REWARD by 0.70%, and that
of WTD by 0.10%. Overall, filtering does not significantly
increase the accuracy of these algorithms, but it is still
advisable for medical applications in which precise results
are indispensable.

Analyzing the SE and PPV of the algorithms reveals that
REWARD produced high accuracy results both with and
without filtering. In terms of SE, REWARD paired with
MF was only 0.50% less than WTD with MF. In terms
of PPV, REWARD with MF was 0.72% lower than WTD
with and without filtering. The four achieved high PPVs with
MF: over 99.0%. WTD produced the highest G-mean, with
the unfiltered G-means of REWARD and DAD trailing that
of WTD by only 1.2% and 1.89%, respectively. With MF
applied, the REWARD G-mean was only 0.62% lower than
that of WTD. Furthermore, REWARD produced comparable
accuracy results to both WTD and other state-of-the-art
algorithms, and MF further increased its performance [14].
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Fig. 3. The G-means of the four R-peak detection algorithms with their
respective filters applied on the QTDB.




TABLE I

ENERGY PROFILE AND MEMORY FOOTPRINT OF R-PEAK DETECTION ALGORITHMS AND FILTERS

Computational burden (%) | Total Energy (mJ) | RAM (kB) | Flash (kB)
Filtering MF 0.95 5.52 1.88 15.8
BPF 0.29 1.92 0.228 7.50
PT 16.4 90.6 28.6 16.7
R-peak WTD 0.56 3.30 6.26 23.10
detection DAD 0.37 2.49 2.34 8.51
REWARD 0.16 0.916 1.58 12.20

C. Robustness to Noise Evaluation

REWARD, WTD, and DAD were tested on the NSTDB
to determine how signal quality degradation affects their R-
peak detection accuracy. In Fig. 4, the SNR of each signal
in the NSTDB is plotted against the corresponding G-mean
of each algorithm. For signal 118, G-mean of REWARD
was an average of 3.77% lower than that of DAD for
the three highest SNRs, and an average of 7.67% lower
overall. REWARD performed poorly on signal 119, however,
due to overly high hysteresis thresholds for this particular
ECG morphology. The REWARD G-mean decreased fairly
consistently with each 6 dB drop, while the DAD and WTD
G-means stayed nearly the same for SNRs between 12 and
24 dB and then dropped sharply. These results indicate the
algorithms’ behavior in the presence of noise, which can
occur in daily environments using a wearable sensor.
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Fig. 4. The accuracy results of WTD, DAD and REWARD algorithms
with MF and BPF on the NSTSB signals with varying SNRs.

D. Energy Consumption and Memory Footprint Assessment

The energy metrics of the algorithms and filters on the four
12-second-long (3000 samples) QTDB signals, when run
on the EFM32 MCU using -O3 compiler optimization, are
averaged and presented in Table II. First, the table displays
the computational burden, which is the total code execution
time divided by the total ECG signal acquisition time (i.e.
12 s). This metric indicates what percentage of the ECG sam-
pling period (i.e. 4ms) is spent performing the algorithm’s
functions. The table also shows the total energy that it takes
to process the 12s. REWARD consumed the least energy:
only 916 uJ, which corresponds to 305nJ per processed
sample. DAD and WTD consumed 2.72x and 3.6x more
energy than REWARD, respectively. Furthermore, when the
code was run using no compiler optimizations (-O0), DAD

consumed 2.29x more energy than REWARD, indicating that
increased optimization levels lead to a comparatively better
performance for REWARD. PT consumed over 98x as much
energy as REWARD.

Fig. 5 depicts the energy consumed by each algorithm
when it processes 12s of data from the QTDB, when both
filter are applied. It shows that three of the four algorithms
(REWARD, WTD, and DAD) had comparable energy con-
sumptions, while PT consumed much more.

Table II also displays the memory footprints of the al-
gorithms and filters. REWARD consumed by far the least
amount of RAM; 1.51x less than DAD. WTD consumed
3.96x more RAM than REWARD, while PT consumed nearly
all of the available 32kB of RAM. REWARD and DAD
consumed less Flash than the other algorithms, followed
by PT. Finally, WTD consumed 1.89x more Flash than
REWARD. Overall, REWARD and DAD were the most
memory-efficient algorithms.
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Fig. 5. The energy consumed by four R-peak detection algorithms with
and without filters on 12 s of samples from the QTDB.

E. Energy and Memory vs Accuracy Analysis

Fig. 6 displays the energy and RAM consumption of
each algorithm-filter combination, except those of PT, plotted
against their G-means from Table I. This figure shows that
without filters, REWARD achieves the lowest energy and
RAM footprint, while WTD has the highest accuracy but
also the highest RAM and energy consumption. It also shows
that applying a MF to REWARD increases both the accuracy
and energy consumption, whereas applying filters to WTD
and DAD increases their energy consumption without a
significant impact on their accuracies.

REWARD has the lowest energy consumption and a small
memory footprint, but its current implementation is less
robust than that of WTD and DAD. WTD produces the most
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Fig. 6. The energy and RAM consumed by the R-peak detection algorithms
with their respective filters versus their accuracies tested on the QTDB.

accurate, robust results, and consumes little energy, but its
memory footprint is significantly higher than that of DAD
and REWARD. Similarly, DAD exhibits the best robustness
to noise and lowest Flash memory consumption, but its SE
when tested on the QTDB is low compared to the WTD and
REWARD, which implies that it does not correctly identify
R-peaks of various ECG morphologies present in the QTDB.
Finally, for the filters, Table II shows that BPF is more
energy-efficient than MF, using 65% less energy, whereas
Table I shows that MF leads to higher G-means. Though the
use of MF only slightly improved the accuracy results of the
four algorithms, it should still be considered for processing
noisier signals from wearable sensors.

While each algorithm’s specific computational burden and
energy consumption may vary depending on the selected
hardware, testing all four algorithms on the same ARM
Cortex-M3-based platform provides a comparative analysis
of the algorithms relative to each other. This assessment en-
ables wearable technology designers to select the algorithm
and filter that fits the accuracy, energy consumption, and
memory footprint constraints of their device. Moreover, our
results indicate that the new optimized REWARD algorithm
is the optimal choice for wearable medical devices in which
on-board machine learning is necessary, since its low energy
consumption and memory footprint leave room for additional
processing capabilities. For example, using REWARD for
R-peak detection would leave RAM available for complex
cardiological analysis, such as the HR variability analysis
algorithm described in [24] (which consumes 8 kB of RAM),
and the atrial fibrillation detection algorithm in [8] (which
uses 2 kB of RAM).

VI. CONCLUSION

Wearable technologies provide accurate, energy efficient
means of health and pathology monitoring. This work has
detailed the real-time implementation and optimization, in
the context of resource-constrained wearable devices, of the
low-complexity Rel-En preprocessing method, as well as the
design of a novel R-peak detection algorithm to complement
it. Furthermore, this work has addressed the need for a
comprehensive comparison of three state-of-the-art real-time
R-peak detection algorithms (PT, WTD, DAD), as well
as the REWARD algorithm, to determine each algorithm’s
feasibility of implementation on ultra-low power real-time

embedded systems. REWARD was the most efficient in
terms of energy and memory compared with state-of-the
art R-peak detection algorithms. It used at least 63% less
energy and 32% less RAM than the other algorithms, and
produced comparable accuracy results. This new and opti-
mized real-time algorithm we have proposed can therefore
be implemented on ultra-low power wearable devices to
maximize battery lifetime and provide sufficient RAM for
more complex cardiovascular anomaly detection algorithms.
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