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Abstract: Risk assessment of dam’s running status is an important part of dam management. A
data-driven method based on monitored displacement data has been applied in risk assessment,
owing to its easy operation and real-time analysis. However, previous data-driven methods
considered displacement data series at each monitoring point as an independent variable and
assessed the running status of each monitoring point separately, without considering the correlation
between displacement of different monitoring points. In addition, previous studies assessed the
dam’s running status qualitatively, without quantifying the risk probability. To solve the above two
issues, a displacement-data driven method based on a multivariate copula function is proposed
in this paper. Multivariate copula functions can construct a joint distribution which reveals the
relevance structure of random variables. We assumed that the risk probability of each dam section
is independent and took monitoring points at one dam section as examples. Starting from the
risk assessment of single monitoring points, we calculated the residual between the monitored
displacement data and the modelled data estimated by the statistical model, and built a risk ratio
function based on the residual. Then, using the multivariate copula function, we obtained a combined
risk ratio of multi-monitoring points which took the correlation between each monitoring point into
account. Finally, a case study was provided. The proposed method not only quantitatively assessed
the probability of the real-time dam risk but also considered the correlation between the displacement
data of different monitoring points.

Keywords: quantitative risk assessment; data-driven approach; concrete dam; multivariate copula

1. Introduction

Risk assessment of a dam’s running status is of great importance for dam safety
management [1]. In earlier studies, a dam’s risk was assessed based on the physical
mechanism of its structural behaviours using numerical simulations or theoretical analysis [2–4].
With the development of soft computing techniques, data-driven methods based on displacement data
have been applied to dam risk assessment, as the displacement data can reflect a dam’s structural
behaviour and it can be obtained by the scores of monitoring instruments buried in the dam body [5,6].

The principle of data-driven methods is an analysis of the absolute residual between monitored
and modelled displacement data [7–9]. With long-term continuous displacement and environmental
monitoring data sets, models can be trained to seize deterministic relation between displacement and
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environmental variables (upstream water level and temperature etc.) and modelled displacement
represents the usual (or anticipated) response to environmental variables. The value of monitored data
deviating from modelled data is then an indicator of a potentially unusual running status. In most
studies, researchers considered the displacement data at one monitoring point as an independent
random variable and assessed the risk of each monitoring point independently, ignoring the
correlations between random variables [10,11]. However, in practical engineering, the displacements
of adjacent monitoring points are highly interrelated and they interact with each other, and any parts of
the dam jointly afford the common external load such as hydrostatic pressure and temperature [12,13].

Several attempts have been made in recent years to deal with the spatial correlations between
displacements of adjacent monitoring points. Samaras et al. [14] applied an analytic hierarchy process
method to dam risk assessment and simplified the correlation between random variables as a linear
relation. Recently, Qin et al. [15] considered the non-linear correlation between random variables
using a principal component analysis method, emphasising selecting dominant indexes rather than a
quantitative risk assessment.

In addition, previous studies evaluated dam running status risks by classifying the residual
between monitored and modelled displacement data into several intervals, and corresponded these
intervals to several degrees of risk [16]. The probability of risk is rarely analysed quantitatively.
Specifically, a dam’s risk represents the probability of an adverse event, such as dam failure.
In practical engineering, the possibility of dam failure is relatively small. However, public society
now demands, more than ever before, high vigilance in dam management regarding safety issues
and risk levels associated with dams. Once an assessment has been made of the probability of failure,
standards of an acceptable level of risk are needed to determine whether safety management requires
improvement. Therefore, the present study put the emphasis on providing a criterion for quotidian
safety management, namely, once the level of risk exceeds a given value, the frequency of real-time
monitoring should be increased so as to prevent potentially serious events.

The present study took a first step toward assessing dam risk quantitatively, with the consideration
of non-linear correlations between the displacement of each monitoring point. First, we quantified a
single monitoring point’s level of risk by establishing a risk ratio function based on the distribution
of absolute residual between monitored and modelled displacement data. The modelled data were
estimated by a statistical model. Second, the non-linear correlations were taken into account using
a Copula function, which is a multivariate cumulative distribution function for which the marginal
probability distribution of each variable is uniform [17,18]. Copula functions have been used to describe
the dependence between random variables in many other fields [19,20]. To connect the risk ratio of
different monitoring points, we started by determining the optimal marginal distribution function of
risk ratio of one single monitoring point based on statistical tests; we then used three Archimedean
Copula functions [21] (i.e., Clayton copula [22], Frank copula [23] and Gumbel copula [24]) to connect
the marginal distribution functions of each monitoring point and selected the best performed Gumbel
copula function [25].

Displacement is mainly influenced by reservoir water level, temperature effect and time effect.
Displacement consists of a horizontal direction (including alongside and across the stream direction
for a gravity dam; radial and tangential direction for an arch dam) and vertical direction. Among them,
a radial displacement component alongside a stream displacement component are the crucial parts for
a concrete arch dam and a gravity dam, respectively [26,27]. In this work, we selected the Jingpin-I
concrete arch dam as an example; therefore, radial displacement is used for the following analysis.

This article is organised as follows—Section 2 presents the method of the present model; Section 3
describes the engineering case and data sets; Section 4 presents the risk assessment results; and the
concluding remarks complete the paper in Section 5.
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2. Method

2.1. Single Monitoring Point Risk Ratio Function

Monitored displacement data reflect a dam’s real-time structural behaviour and can be easily
acquired, benefiting from the widely installed monitoring instruments inside the dam. Modelled
displacement data, which are estimated from related parameters of the external environment
(e.g., upstream water level, temperature), imply the theoretical dam displacement. To assess the
dam risk, we established a risk ratio function based on the distribution of residual between the
monitored and modelled displacement data. For an arch concrete dam (e.g., the selected dam in the
present study), the radial displacement is commonly used to evaluate the risk to dam safety.

A statistical model is commonly used to obtain the radial modelled displacement data δ̂. In the
statistical model, the dam’s radial displacement consists of three components—a water pressure
component δH , a temperature component δT and an aging component δθ . The modelled displacement
data δ̂ can be expressed as:

δ̂ = δH + δT + δθ (1)

The water pressure component δH is the sum of the displacement of the dam body itself δ1H , the
dam foundation δ2H and the dam bedrock’s rotational displacement δ3H under the upstream water
load. δ1H , δ2H and δ3H are as functions of the upstream water level H.

δH = δ1H + δ2H + δ3H (2)

δ1H , δ2H and δ3H are obtained on the basis of engineering mechanics, which simplifies the gravity dam
as a beam structure and the arch dam as an arch shape beam structure. Figure 1 shows a stretch of
dam displacement due to water pressure δH .

Figure 1. The three components of δH : (a) δ1H , (b) δ2H and (c) δ3H .

Taking the gravity dam as an example,
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δ2H =

[
3
(
1− µ2

r
)

γ0

πErm2h2 H3 +
(1 + µr) (1− 2µr) γ0

2Ermh
H2

]
(h− d) (4)

δ3H = αH (5)

Then, for the gravity dam, δH is written as:

δH = a1H + a2H2 + a3H3 (6)

For the arch dam, owing to its more complicated structure, δH is a polynomial function at least of
third order:

δH = a1H + a2H2 + a3H3 + · · · (7)

The coefficients ai are related to the dam height h, downstream slope angle m, the distance from
the monitoring point to the dam foundation d and the material parameters including the elastic
modulus of the dam body Ec, Poisson’s ratio of the dam body µc, elastic modulus of the foundation Er

and Poisson’s ratio of the foundation µr.
The temperature component δT is the displacement mainly resulting from internal temperature

variation. When the internal monitored temperature data is lacking, researchers often apply
a trigonometric function to describe δT .

δT =
2

∑
j=1

(bj1sin(id) + bj2cos(id)) (8)

where d = 2πt
365 and t is the number of days from the beginning of the monitoring sequence, bj1 and

bj2 are pending coefficients. Equation (8) is used to describe the temperature effect with one-year or
six-month periodicity.

The aging component δθ characterizes the irreversible displacement caused by the factors such
as creep and fatigue of concrete. Due to the difficulties of expressing δθ theoretically, we provide
a formula considering time as a variable to describe its tendency.

δθ = c1θ + c2lnθ (9)

where θ is a parameter related to the time of the observation date t and the time of the initial date t0,
which can be expressed as θ = (t− t0)/100; c1 and c2 are pending coefficients.

Then, the statistical model used to model the dam’s displacement can be written as:

δ̂ =
n

∑
i=1

ai Hi +
2

∑
j=1

(
bj1 sin

2π jt
365

+ bj2 cos
2π jt
365

)
+ (c1θ + c2lnθ) (10)

where n = 3 for gravity dam and n ≥ 4 for arch dam; ai are pending coefficients in the water pressure
component δH , bj1 and bj2 are pending coefficients in the temperature component δT and ci are pending
coefficients in the aging component δθ , which can be estimated by Ordinary Least Squares regression
with monitored displacement data δ as test sets. After coefficients are determined, with input sets
of upstream water level H and number of days from the beginning of monitoring sequence t, the
modelled displacement δ̂ can be calculated.

In practical engineering, the occurrence probability of the event—that the monitored displacement
data δ has a large deviation from the modelled displacement data δ̂—is fairly low. We adopted
the occurrence probability of the absolute residual between δ and δ̂ to assess dam risk. Here, we
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quantified the probability of dam risk by risk ratio and proposed a cumulative distribution function
(CDF) of the absolute residual to express it (see Equation (11)).

P (|ε|, t) =

{
F (|X| ≤ |ε (t) |) |ε (t) | < α

1 |ε (t) | ≥ α
(11)

where |ε (t) | = |δ (t)− δ̂ (t) | is the absolute difference between monitored and modelled displacement
data; P (|ε|, t) denotes the risk ratio; t is time; F (|X| ≤ |ε (t) |) is the CDF of the absolute residual; α is
a failure limit indicator. Figure 2 exhibits the relationship between the risk ratio P and the absolute
residual |ε|. The interval of the risk ratio is [0,1]. Based on the small probability method, once |ε|
exceeded the limit value α, the monitoring point region would be regarded as being in a failure state.

Figure 2. The relationship between the risk ratio P and the absolute residual|ε|: (a) the probability
density function of |ε|, (b) the risk ratio function based on |ε|.

2.2. Multi-Monitoring Point Risk Ratio Function

With the method presented in Section 2.1, we can obtain the real-time risk ratio P(|ε|, t) of a
single monitoring point. As both the value of the loading combination and the material resistance
are identical for adjacent monitoring points, it is of great importance to take into consideration the
correlations of the displacement of adjacent monitoring points. Therefore, we applied a joint CDF to
express the risk ratio for multiple monitoring points. The combined risk ratio for multiple monitoring
points becomes:

P∗ (x1, x2, . . . , xn; t) = P (|X1| ≤ |ε1 (t) |, |X2| ≤ |ε2 (t) , . . . , |Xn| ≤ |εn (t) |) (12)

where Xi (i = 1, 2, . . . , n) denote the random variables of |ε| of the i-th monitoring point;
P∗ (x1, x2, . . . , xn; t) denotes the risk ratio of the dam section. Section 2.2 presents how the joint
CDF is constructed by copula functions.
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2.2.1. Copula Theory

Sklar (1973) [28] proposed that any joint distribution function can be decomposed into N marginal
distribution functions and one copula function, in which the copula function describes the relevance
structure between random variables. Here, each single-monitoring point risk ratio function is
a marginal distribution function and the multi-monitoring point risk ratio function is the joint
distribution function. Hence, the copula function essentially constructs the multi-monitoring point
risk ratio function by connecting the risk ratio functions of several monitoring points.

Suppose the joint CDF of the d-dimensional random vector (X1, X2, · · · , Xd) is F (x1, x2, . . . , xd),
the marginal CDFs are F1, F2, . . . , Fd and C is the copula function that characterizes the correlation
between each random vector (X1, X2, · · · , Xd), the joint CDF of the d-dimensional vector
(X1, X2, · · · , Xd) can be expressed as:

F (x1, x2, . . . , xd) = C (F1 (x1) , F2 (x2) , . . . , Fd (xd)) (13)

Then, several commonly used distributions, including Exponential, Gamma, Lognormal and
Weibull distributions, were selected as possible marginal distributions of absolute residuals of each
displacement data series. The distribution functions of the selected four marginal distributions and
the parameters are presented in Table 1.

Table 1. List of the selected marginal distribution functions and parameters.

Distribution Cumulative Distribution Parameters

Exponential 1− e
−x
δ1 δ1

Gamma 1
δ

δ1
2 Γ(δ1)

xδ1−1e−
x

δ2 δ1, δ2

Lognormal 1
xδ2
√

2π
e
−(logx−δ1)

2

2δ2
2 δ1, δ2

Weibull δ2
δ1
( x

δ1
)δ2−1e−(

x
δ1
)δ2

δ1, δ2

Three Archimedean copulas (i.e., Clayon copula, Frank copula and Gumbel copula) were used
to construct the joint CDFs for a risk ratio of multi-monitoring points. Table 2 shows their generator
functions and ranges of related parameters.

Table 2. Generator functions and parameter ranges of selected Archimedean copulas.

NO. Name Generator Function Parameter Range

1 Clayton
1
θ

(
t−θ − 1

)
(0, ∞)

2 Gumbel (−log(t))θ [1, ∞]

3 Frank −log

[
e−θt − 1
e−θ − 1

]
(−∞,+∞)\ {0}

2.2.2. Parameters of Distribution Functions Determination

We used the maximum likelihood estimation to estimate the parameters in both marginal
distribution functions and copula distribution functions. First, the likelihood function is expressed by:

L (θ) =
n

∏
i=1

c (u1, u2, . . . , un; θ) =
n

∏
i=1

∂nC (u1, u2, . . . , un; θ)

∂u1∂u2 . . . ∂un
(14)
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In order to make a simplification, we used the logarithm form of the likelihood function lnL (θ)

in the following calculations (see Equation (15)).

lnL (θ) =
n

∏
i=1

c (u1, u2, . . . , un; θ) =
n

∑
i=1

lnc (u1, u2, . . . , un) (15)

By solving Equation (16), we can obtain that the maximum likelihood estimator θ̂ML satisfying
lnL

(
θ̂ML

)
≥ lnL (θ).

∂lnL (θ)

∂θ
= 0 (16)

2.2.3. Optimal Distribution Function Selection

In order to find the optimal distribution functions, three statistical tests, including
Kolmogorov-Smirnov (K-S), root mean square error c(RMSE) and the Akaike information criterion
(AIC), were used.

The K-S test evaluates whether the random variables X follow the selected CDF by comparing
the samples’ actual distribution Fn (x) and the theoretical distribution of selected CDF F (x).
The statistics for the K-S test are Dn = sup

x
|Fn (x)− F (x) | and the observation of Dn can be defined as:

D̂n = max
1≤k≤n

|Fn(xk)− F(xk)| (k = 1, 2, . . . , n) (17)

The Dn(α) can be obtained, once the significance level α and the sample size n are determined.
Then, if D̂n < Dn(α), we may consider that the theoretical distribution of selected CDF F(x) fits well
with the actual distribution of sample data Fn(x); otherwise, the selected CDF is not matched with
the samples.

RMSE reflects the difference between the theoretical probability of selected CDF and the empirical
probability of sample data. The equation of RMSE is written as:

RSME =

√
1
n

n

∑
i=1

[Fc(i)− P0(i)]2 (18)

where n is the sample size, Fc is the theoretical probability distribution, P0 denotes the empirical
probability of the sample data.

AIC estimates the relative amount of information lost by the selected CDF, with the consideration
of its goodness of fit and simplicity. The AIC is expressed as:

AIC = −2ln(L) + 2m (19)

where L is the likelihood function of the selected CDF, m is the number of parameters
in the selected CDF.

The flowchart of the proposed method is exhibited in Figure 3.
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Figure 3. Flowchart of the proposed method.

3. Data Sets

In this study, we selected the concrete dam at Jinping-I Hydropower station as an engineering
example. The selected dam, with a height of 305 m, is currently the highest concrete arch dam in
the world. Figure 4 shows a picture of the selected dam and its location. As the dam adopted the
construction form that casting the remaining transverse joints between dam sections, we supposed
that the risk probabilities of different dam sections are independent and took monitoring points at one
dam section as examples.

Figure 4. Picture of the selected concrete arch dam and its location.

Figure 5a represents the distribution map of all 24 displacement monitoring points that were
installed inside the dam Sections 5#, 9#, 11#, 13#, 16#, 19#, respectively. In this study, we chose
Section 9#, which includes three monitoring points (PL9-3, PL9-4 and PL9-5), as an example. We
selected the radial displacement monitored data (to the downstream is positive, to the upstream is
negative) from 20 November 2012 to 4 November 2016. The radial displacement was measured twice a
day during the flood season and once a day during the drought season and we calculated the average
radial displacement for each day. There were 676 validated time frames in total. The time evolution of
the radial displacement of the selected three monitoring points, as well as the upstream water level,
are exhibited in Figure 5b. It is noticeable that the trend of the radial displacement at the selected three
monitoring points had high relevance.
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Figure 5. (a) Distribution of the monitoring points from upstream side view; (b) Time variation of radial
monitored displacement data at the three selected monitoring points and upstream water level data.

4. Results and Discussion

According to Section 2, we first calculated the modelled displacement data δ̂(t) of these three
monitoring points by Equation (10) using the Ordinary least square regression. We then determined
the absolute residual between modelled and monitored displacement data |ε (t) | = |δ (t) − δ̂ (t) |.
With the absolute residual |ε|, we constructed a risk ratio function for each monitoring point. Then, with
the optimal marginal distribution of each random variable, we applied copula functions to construct
the joint distribution function, so as to determine the risk ratio of the whole dam section.

4.1. Single-Point Qualitative Risk Assessment

First, we determined the modelled displacement data δ̂i using a statistical model (Section 2.1) for
each monitoring point and compared them with the monitored displacement data δ. Time variation
of the δ̂i and δi of the monitoring points PL9-3, PL9-4 and PL9-5 are shown in Figures 6a, 7a and 8a,
respectively. Then, we calculated the absolute residual |εi| between the δ̂i and δi. In many earlier studies,
the dam’s running status risk was qualitatively analysed based on the classification of the absolute
residual |εi| with a building assessment index system [29]. We adopted s (standard deviation) to set
the borders of the intervals. Standard deviation is used to describe the dispersion degree in the sample
and we considered that if the residual obeys a normal distribution, then the proportion of the residual
belonging to interval [0, s), [s, 2s), [2s, 3s) and [3s, +∞) are 68.3%, 27.3%, 4.2% and 0.2%, respectively.
According to the quantitative description and assessment intervals on the evaluation index, the original
information of the evaluation indexes are classified into different divided evaluation levels. Here,
the intervals on the evaluation index and the evaluation level of the dam’s risk are divided as follows:

|εi| = |δi − δ̂i| =


[0, s) Usual

[s, 2s) Basically usual

[2s, 3s) Minor unusual

[3s,+∞) Moderate unusual

(20)
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Figure 6. Time variation of (a) absolute residual and (b) modelled and monitored displacement data
for the monitoring point PL9-3.

Figure 7. Time variation of (a) absolute residual and (b) modelled and monitored displacement data
for the monitoring point PL9-4.
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Figure 8. Time variation of (a) classified residual and (b) modelled and monitored displacement data
for the monitoring point PL9-5.

To avoid the human effect, here we classified the dam’s risk into 4 groups based on the probability
of the occurrence of the residual between the monitored and modelled data. A higher residual means a
higher level of risk; however, the exact value for the risk of dam collapse needs further simulation based
on mechanics. The occurrence probability of the ‘moderate unusual’ group is 0.2% but the risk of dam
collapse is a lot lower than 0.2%. The objective of the classification of risk is to provide a quantitative
criterion for engineers to determine the frequency of measurement (e.g., whether the dam requires
additional measurement). The present study set the interval using s, 2 s and 3 s but these intervals are
not absolute. Table 3 presents the frequency of monitoring response to each interval of level of risk.

Table 3. Management of monitoring frequency.

State Descriptions Monitoring Frequency

Usual 1 time monitoring per day
Basically usual 2–3 times monitoring per day
Minor unusual 3–4 times monitoring per day, and one on-site inspection per day
Moderate unusual 3–4 times monitoring per day, on-site inspections twice per day and

report to Monitoring Management Center

Figures 6a, 7a and 8a exhibit the absolute residuals of these three monitoring points and the
shades of red represent different risk descriptions.

The correlation coefficient R of monitoring points PL9-3, PL9-4 and PL9-5 are 0.9907, 0.9954 and
0.9910, respectively. The R for all the monitoring points is above 0.9, which means the modelling
results using the statistical model are good. It is striking from Figures 6–8 that each monitoring point
had a period in which the monitored displacement value was moderately unusual. PL9-3 was in
moderate unusual status from 29 December 2014 to 29 January 2015 (32 days); PL9-4 was in moderate
unusual status from 12 January 2015 to 28 April 2015 (107 days); PL9-5 was in moderate unusual status
from 1 April 2015 to 12 May 2015 (42 days). Qualitative risk assessment can be used in concrete dam
management. However, applications based on qualitative results are limited, as risk comparisons
among different monitoring points cannot be achieved. From Section 4.2 to Section 4.5, the risk
ratio considering the correlation between each monitoring point is calculated for quantitative risk
assessment.
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4.2. Correlations between Monitoring Points

In order to determine the strength of the relevance of selected monitoring points, we first evaluated
the coefficient of correlation between absolute residuals of each monitoring point (|ε|9−3, |ε|9−4 and
|ε|9−5)). Using a Pearson correlation coefficient (Equation (21)), the correlation between each random
variable is represented in Figure 9.

rxy =
∑n

i=1(Xi − X̄)(Yi − Ȳ)√
∑n

i=1(Xi − X̄)2 ∑N
I=1(Yi − Ȳ)2

(21)

where rxy is the Pearson correlation coefficient, Xi and Yi are random variable pairs of |εi| (i.e., PL9-3
and PL9-4, PL9-4 and PL9-5, or PL9-5 and PL9-3).

Figure 9. Pearson correlation coefficient r between |ε|9−3, |ε|9−4 and |ε|9−5.

As can be seen from Figure 9, the correlations between these three pairs of variables are quite
significant. Especially, the Person correlation coefficient r between |ε|9−3 and |ε|9−4 is as high as 0.84.
The lowest one is 0.62 between |ε|9−3 and |ε|9−5, which also represents a high correlation.

In addition to the Person correlation coefficient, the Spearman’s rank correlation coefficient
(Equation (22)–(23)) and the Kendall’s rank correlation coefficient(Equation (24)–(25)) were also
calculated. The correlations between each pair of random variables are represented in Table 4.

ρn =
∑n

i=1(Ri − R̄)(Si − S̄)√
∑n

i=1(Ri − R̄)2 ∑N
I=1(Si − S̄)2

(22)

R̄ =
1
n

n

∑
i=1

Ri =
n + 1

2
=

1
n

n

∑
i=1

Si = S̄ (23)

where ρn is Spearman’s rank correlation coefficient; Ri and Si are ranks of random variables X and
Y, respectively.

τ =
2

n(n− 1) ∑
1≤<j≤n

sign[(xi − xj)(yi − yj)] (24)
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where τ is the Kendall rank correlation coefficient; n is the sample size; (xi, yi) are the pairs of random
variables; sign(·) is the sign function which satisfies:

sign(·) =


1 (xi − xj)(yi − yj) > 0
−1 (xi − xj)(yi − yj) < 0

0 (xi − xj)(yi − yj) = 0
(25)

Table 4. Correlations between each pair of random variables.

Correlation Index Spearman ρn Kendall τ Pearson rxy

PL9-3 and PL9-4 0.8138 0.6402 0.8357
PL9-4 and PL9-5 0.6827 0.5446 0.6517
PL9-3 and PL9-5 0.6318 0.4724 0.6240

According to Table 4, correlation coefficients of |ε9−3|, |ε9−4| and |ε9−5| are all more than zero,
which means a positive relevance between |ε9−3| and |ε9−4|, |ε9−4| and |ε9−5|, |ε9−3| and |ε9−5|.

4.3. Marginal Distributions

To determine a best fitted marginal distribution for the random variables, we first selected four
commonly used distribution functions—Exponent function, Gamma function, Lognormal function
and Weibull function. Then, we adopted a Maximum Likelihood Estimate to estimate the parameters
in each selected marginal distribution (see Section 2.2.1). Table 5 exhibits the estimated parameters and
the results of statistical tests for selected distribution functions and random variables. The values of the
K-S test did not exceed their critical values 0.05 and D30(0.05) = 0.409, which implies that all empirical
distributions fitted well with the marginal distributions for |ε|9−3, |ε|9−4 and |ε|9−5. The CDF fitting
curves of the selected four distribution functions for |ε|9−3, |ε|9−4 and |ε|9−5 are shown in Figures 10–13.
It is surprising that the Gamma distribution had the lowest RMSE and AIC for |ε| of all three of these
monitoring points; hence, it was selected as the preferred marginal distribution to establish a joint
probability model.

Table 5. Estimated parameters in the marginal distributions and results of statistical tests.

Distribution Estimated Parameters Statistical Tests

PA PB D̂n D̂n(0.05) RMSE AIC

|ε|9−3

Exponent 0.9537 - 0.0900

0.409

0.0325 1289.872
Gamma 1.4216 0.6709 0.0351 0.0160 1245.576
Lognormal −0.4387 0.9904 0.0702 0.0329 1315.256
Weibull 1.0199 1.2172 0.0429 0.0187 1251.53

|ε|9−4

Exponent 0.4730 - 0.0486

0.409

0.0244 341.732
Gamma 1.245 0.3799 0.0519 0.0214 324.738
Lognormal −1.2014 1.0568 0.0709 0.0288 371.89
Weibull 0.4933 1.1141 0.0563 0.0232 330.736

|ε|9−5

Exponent 0.2391 - 0.0234

0.409

0.0090 −580.618
Gamma 1.2283 0.1947 0.0224 0.0086 −595.448
Lognormal −1.8903 1.1147 0.0436 0.0242 −487.484
Weibull 0.2490 1.1106 0.0263 0.0101 −591.056
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Figure 10. Univariate cumulative distribution function (CDF) fitting curves of |ε|9−3: (a) Exponential
distribution function, (b) Gamma distribution function, (c) Lognormal distribution function, (d) Weibull
distribution function.
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Figure 11. Univariate CDF fitting curves of |ε|9−4: (a) Exponential distribution function, (b) Gamma
distribution function, (c) Lognormal distribution function, (d) Weibull distribution function.
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Figure 12. Univariate CDF fitting curves of |ε|9−5: (a) Exponential distribution function, (b) Gamma
distribution function, (c) Lognormal distribution function, (d) Weibull distribution function.
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Figure 13. Univariate PDF fitting curves of (a) |ε|9−3, (b) |ε|9−4 and (c) |ε|9−5.

4.4. Copula-Based Multivariate Joint Distributions

We used three Archimedean copulas including Clayon, Frank and Gumbel to connect the marginal
distributions of |ε|9−3, |ε|9−4 and |ε|9−5. First, we compared the theoretical probabilities of the
Archimedean copulas and the empirical probabilities of sample data. As shown in Figures 14–16,
the plots of all copulas have a deviation from the 45◦ diagonal line. For the first impression,
the minimum deviation from diagonal line were with the Gumbel copula, which implies that
the Gumbel is the best suited copula. It should be noted that, when the empirical probability exceeds
0.8, the Gumbel copula starts to overestimate the risk ratio. However, overestimation during a
high level of risk improves the safety of risk management. In contrast, Clayon and Frank copulas
overestimate the risk ratio when the empirical probabilities are below 0.4; however, they underestimate
the probabilities when they exceed 0.4.

Figure 14. Comparison of theoretical and empirical probability with Clayon copula: (a) Q-Q plots;
(b) empirical and theoretical probabilities.
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Figure 15. Comparison of theoretical and empirical probability with Frank copula: (a) Q-Q plots;
(b) empirical and theoretical probabilities.

Figure 16. Comparison of theoretical and empirical probability with Gumbel copula: (a) Q-Q plots;
(b) empirical and theoretical probabilities.

In addition, we calculated the statistical tests of these three copula functions and find the same
results as with the comparison of probabilities. Table 6 exhibits the copula parameters θ as well as the
results of statistical tests RSME and Dn for each joint distribution function. The Gumbel distribution
was selected as the optimal joint distribution for multiple variables, as it has the lowest RSME of 0.0285
and the lowest Dn of 0.0711.

Table 6. Estimated parameters and statistical test results of the joint distribution.

Archimedean Copula Parameters Statistical Tests

θ RSME Dn

Clayon 4.23 0.0523 0.1043
Frank 8.36 0.0340 0.0864

Gumbel 3.00 0.0285 0.0711

4.5. Multi-Point Risk Ratio

In this section, we constructed a joint distribution based on the risk ratio of each monitoring point
with the Gumbel copula, which represents the occurrence probability of the event (X1 ≤ |ε|1, X2 ≤
|ε|2, X3 ≤ |ε|3). 0.95 was the assessment criterion of the joint distribution probability—once the joint
distribution probability exceeds 0.95, the running status of the selected dam section will be regarded
as moderately unusual.

According to the method in Section 2.1, the risk ratios of these three monitoring points are
calculated, respectively. Figure 17 shows the time evolution of risk ratios of these three monitoring
points. Each monitoring point has different probabilities of moderate–unusual running status.
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Figure 17. Displacement risk ratios for monitoring points PL9-3, PL9-4 and PL9-5.

As can be seen from Figure 17, the risk ratios of the three monitoring points varied sharply during
the whole period (from 20 November 2012 to 4 November 2016), while the average values are quite
close, being 0.4961, 0.4927 and 0.4975, respectively. Then, we calculated the risk ratios in the most
recent year (from January 1 2016 to November 1 2016), the average values being 0.3925, 0.3965 and
0.4329, respectively. By comparison of these risk ratios, we discovered that the risk ratios surrounding
the monitoring point PL9-5 in dam Section 9# are relatively high. Therefore, attention should be paid
to safety inspection around the dam foundation region.

Figure 18 represents the multi-point risk ratios calculated with subjective weight method
(setting even weight as 0.333 for PL9-3, PL9-4 and PL9-5 without the consideration of correlations)
and multivariate copulas. The results obtained by the proposed method have a similar tendency
to the subjective weight method. Taking account of the structural correlation, the risk ratios with
multivariate copulas were above 0.95 from 29 December 2014 to 15 March 2015 and from 1 April 2015
to 14 April 2015, which implies the dam section was in moderate–unusual status during those periods.
The evaluated time of moderate–unusual running status was 45 days less than that without considering
the correlations, namely, the previous methods overestimated the probability of risk.

Figure 18. Multi-point risk ratios for dam Section 9# of the Jinping-I arch dam.

Multivariate copulas construct the joint distribution to describe the occurrence probability of
the event (X1 ≤ |ε|1, X2 ≤ |ε|2, X3 ≤ |ε|3), which considers the running status of these three monitoring
points simultaneously. In this way, the description of the running status of one dam section is more
practical, as all components in the dam section are considered to be bearing external loads (upstream
water pressure and temperature changes) as an integral structure. In addition, the multivariate copulas
method expresses the correlations merely on the basis of displacement monitoring data, which is
objective. Therefore the multi-point risk ratio of the proposed method was more rational to use for risk
assessment.

5. Conclusions

The present study proposed a data-driven method based on multivariate copulas for the risk
assessment of a dam’s safety, with the objective of assessing the dam risk quantitatively and to
consider the correlation of displacement between each monitoring point. The concrete dam at Jinping-I
Hydropower Station was selected as a case study. We first calculated the absolute residuals between
monitored and modelled displacement data for a single monitoring point. We then used multivariate
copulas to connect the distribution functions of different monitoring points. The Gamma distribution
was selected as the optimal marginal distribution. Gumbel copula, which fitted best with the empirical
probabilities, was selected as the joint distribution. Considering that the risk probabilities of different
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dam sections are independent, we took one dam section, which includes three monitoring points, as
an example, and we estimated the real-time running status of the selected dam section, which we call
the risk ratio. The risk ratio helps us to explain and quantify the level of the dam’s safety and the
measurement frequency needs. The following conclusions are remarkable:

First, the risk ratio of each monitoring point was highly dependent on its displacement and
the residual between monitored and modelled displacement data; the risk ratio of the selected dam
section had a slight deviation from the risk ratios of each monitoring point.

Second, taking account of the temporal and spatial correlations among the selected monitoring
points with a Copula function, the estimated moderate unusual time was 45 days less than that without
considering the correlations. This means that the previous methods overestimated the probability of
risk. Most previous studies considered displacement at different monitoring points as independent
variables and assessed the risk for each monitored point separately.

In addition, the risk ratios during flood seasons were slightly higher than those during drought
seasons, indicating that monitoring frequency should be increased during flood seasons. The risk ratio
can provide a quantitative indicator for the measures management of the dams.
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